WorldWideScience

Sample records for monoenergetic neutron transport

  1. The Fourier transform solution for the Green's function of monoenergetic neutron transport theory

    OpenAIRE

    Ganapol, Barry D.

    2014-01-01

    Nearly 45 years ago, Ken Case published his seminal paper on the singular eigenfunction solution for the Green's function of the monoenergetic neutron transport equation with isotropic scattering. Previously, the solution had been obtained by Fourier transform. While it is apparent the two had to be equivalent, a convincing equivalence proof for general anisotropic scattering remained a challenge until now.

  2. Thermalization of monoenergetic neutrons in a concrete room

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Mercado, G.A. [UAZ, A.P. 336, 98000 Zacatecas (Mexico); Iniguez, M.P.; Martin M, A. [Universidad de Valladolid, (Spain)

    2006-07-01

    The thermalization of neutrons from monoenergetic neutron sources in a concrete room has been studied. During calibration of neutron detectors it is mandatory to make corrections due to neutron scattering produced by the room walls, therefore this factor must be known in advance. The scattered neutrons are thermalized and produce a neutron field that is directly proportional to source strength and inversely proportional to room total wall-surfaces, the proportional coefficient has been calculated for neutrons whose energy goes from 1 eV to 20 MeV. This coefficient was calculated using Monte Carlo methods for 150, 200 and 300 cm-radius spherical cavity, where monoenergetic neutrons were located at the center, along the spherical cavity radius neutron spectra were calculated at several source-to-detector distances inside the cavity. The obtained coefficient is almost three times larger than the factor normally utilized. (Author)

  3. Study of nuclear recoils in liquid argon with monoenergetic neutrons

    CERN Document Server

    Regenfus, C; Amsler, C; Creus, W; Ferella, A; Rochet, J; Walter, M

    2012-01-01

    For the development of liquid argon dark matter detectors we assembled a setup in the laboratory to scatter neutrons on a small liquid argon target. The neutrons are produced mono-energetically (E_kin=2.45 MeV) by nuclear fusion in a deuterium plasma and are collimated onto a 3" liquid argon cell operating in single-phase mode (zero electric field). Organic liquid scintillators are used to tag scattered neutrons and to provide a time-of-flight measurement. The setup is designed to study light pulse shapes and scintillation yields from nuclear and electronic recoils as well as from {\\alpha}-particles at working points relevant to dark matter searches. Liquid argon offers the possibility to scrutinise scintillation yields in noble liquids with respect to the populations of the two fundamental excimer states. Here we present experimental methods and first results from recent data towards such studies.

  4. Analysis of the response of innovative neutron detectors with monoenergetic neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Romei, C.; Ciolini, R.; Mirzajani, N.; Selici, S. [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, Universita di Pisa, Pisa (Italy); Di Fulvio, A.; D' Errico, F. [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, Universita di Pisa, Pisa (Italy); Yale University, New Haven, CT (United States); Souza, S. O. [Departamento de Fisica, Universidade Federal de Sergipe, Sao Cristovao (Brazil); Piotto, M. [Istituto di Ingegneria Elettronica, Computer e Telecomunicazioni, CNR, Pisa (Italy); Esposito, J.; Colautti, P. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy)

    2013-07-18

    Various neutron detectors are currently under development at the University of Pisa. The response of these devices is investigated using monoenergetic neutron beams produced at the CN accelerator of INFN Legnaro National Laboratories with thin lithium target bombarded by protons at different energies, exploiting the {sup 7}Li(p,n){sup 7}Be reaction.

  5. Development of a monoenergetic neutron beam (Theoretical aspects, experimental developments and applications)

    CERN Document Server

    Varela-G, A

    2003-01-01

    By the use of a neutron time of flight system at the Tandem Accelerator of the National Nuclear Research Institute; with neutrons provided by means of the sup 2 H(d, n) sup 3 He we intend to use the associated particle technique in order to have monoenergetic neutrons. This neutron beam will be used both in basic and applied research. (Author)

  6. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, C.; Fallin, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Gooden, M.E., E-mail: megooden@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Howell, C.R. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Arnold, C.W.; Bond, E.M.; Bredeweg, T.A.; Fowler, M.M.; Moody, W.A.; Rundberg, R.S.; Rusev, G.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Becker, J.A.; Macri, R.; Ryan, C.; Sheets, S.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); and others

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  7. Efficiency determination of resistive plate chambers for fast quasi-monoenergetic neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, M.; Cowan, T.E.; Kempe, M.; Yakorev, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universitaet Dresden, Dresden (Germany); Elekes, Z. [MTA ATOMKI, Debrecen (Hungary); Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Aumann, T.; Caesar, C. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt, Darmstadt (Germany); Bemmerer, D.; Sobiella, M.; Stach, D.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Boretzky, K.; Hehner, J.; Heil, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Maroussov, V. [Universitaet zu Koeln, Koeln (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Nusair, O. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Al-Balqa Applied University, Salt (Jordan); Prokofiev, A.V. [Uppsala University, The Svedberg Laboratory, Uppsala (Sweden); Reifarth, R. [Johann Wolfgang Goethe - Universitaet, Frankfurt am Main (Germany); Zilges, A. [Universitaet zu Koeln, Koeln (Germany); Zuber, K. [Technische Universitaet Dresden, Dresden (Germany); Collaboration: R3B Collaboration

    2014-07-15

    Composite detectors made of stainless-steel converters and multigap resistive plate chambers have been irradiated with quasi-monoenergetic neutrons with a peak energy of 175 MeV. The neutron detection efficiency has been determined using two different methods. The data are in agreement with the output of Monte Carlo simulations. The simulations are then extended to study the response of a hypothetical array made of these detectors to energetic neutrons from a radioactive ion beam experiment. (orig.)

  8. Characterization of Monoenergetic Low Energy Neutron Fields with the {mu}TPC Detector

    Energy Technology Data Exchange (ETDEWEB)

    Golabek, C.; Lebreton, L.; Petit, M. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Billard, J.; Grignon, C.; Bosson, G.; Bourrion, O.; Guillaudin, O.; Mayet, F.; Richer, J.-P.; Santos, D. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph (France)

    2011-12-13

    The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20 MeV for metrological purposes. To be considered as a reference facility, fluence and energy distributions of neutron fields have to be determined by primary measurement standards. For this purpose, a micro Time Projection Chamber is being developed to be dedicated to measure neutron fields with energy ranging from 2 keV up to 1 MeV. We present simulations showing that such a detector, which allows the measurement of the ionization energy and the 3D reconstruction of the recoil nucleus, provides the determination of neutron energy and fluence of such low energy neutron fields.

  9. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities.

    Science.gov (United States)

    Mansy, M S; Bashter, I I; El-Mesiry, M S; Habib, N; Adib, M

    2015-03-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5-133keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named "QMNB" was developed in the "MATLAB" programming language to perform the required calculations.

  10. Arbitrary quadratures determination of the monoenergetic neutron density in an homogeneous finite sphere with isotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez G, J., E-mail: julian.sanchez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The solution of the so-called Canonical problems of neutron transport theory has been given by Case, who developed a method akin to the classical eigenfunction expansion procedure, extended to admit singular eigenfunctions. The solution is given as a set consisting of a Fredholm integral equation coupled with a transcendental equation, which has to be solved for the expansion coefficients by iteration. CASE's method make extensive use of the results of the theory of functions of a complex variable and many successful approaches to solve in an approximate form the above mentioned set have been reported in the literature. We present here an entirely different approach which deals with the canonical problems in a more direct and elementary manner. As far as we know, the original idea for the latter method is due to Carlvik who devised the escape probability approximation to the solution of the neutron transport equation in its integral form. In essence, the procedure consists in assuming a sectionally constant form of the neutron density that in turn yields a set of linear algebraic equations obeyed by the assumed constant values of the density. Very well established techniques of numerical analysis for the solution of integral equations consist in independent approaches that generalize the sectionally constant approach by assuming a sectionally low degree polynomial for the unknown function. This procedure also known as the arbitrary quadratures method is especially suited to deal with cases where the kernel of the integral equation is singular. The author wishes to present the results obtained with the arbitrary quadratures method for the numerical calculation of the monoenergetic neutron density in a critical, homogeneous sphere of finite radius with isotropic scattering. The singular integral equation obeyed by the neutron density in the critical sphere is introduced, an outline of the method's main features is given, and tables and graphs of the density

  11. Evaluation of Neutron Response of Criticality Accident Alarm System Detector to Quasi-Monoenergetic 24 keV Neutrons

    Science.gov (United States)

    Tsujimura, Norio; Yoshida, Tadayoshi; Yashima, Hiroshi

    The criticality accident alarm system (CAAS), which was recently developed and installed at the Japan Atomic Energy Agency's Tokai Reprocessing Plant, consists of a plastic scintillator combined with a cadmium-lined polyethylene moderator and thereby responds to both neutrons and gamma rays. To evaluate the neutron absorbed dose rate response of the CAAS detector, a 24 keV quasi-monoenergetic neutron irradiation experiment was performed at the B-1 facility of the Kyoto University Research Reactor. The detector's evaluated neutron response was confirmed to agree reasonably well with prior computer-predicted responses.

  12. Characterization of Monoenergetic Neutron Reference Fields with a High Resolution Diamond Detector

    CERN Document Server

    Zimbal, A; Nolte, R; Schuhmacher, H

    2009-01-01

    A novel radiation detector based on an artificial single crystal diamond was used to characterize in detail the energy distribution of neutron reference fields at the Physikalisch-Technische Bundesanstalt (PTB) and their contamination with charged particles. The monoenergetic reference fields at PTB in the neutron energy range from 1.5 MeV up to 19 MeV are generated by proton and deuteron beams impinging on solid and gas targets of tritium and deuterium. The energy of the incoming particles and the variation of the angle under which the measurement is performed produce monoenergetic reference fields with different mean energies and line shapes. In this paper we present high resolution neutron spectrometry measurements of different monoenergetic reference fields. The results are compared with calculated spectra taking into account the actual target parameters. Line structures in the order of 80 keV for a neutron energy of 9 MeV were resolved. The shift of the mean energy and the increasing of the width of the ...

  13. Design and demonstration of a quasi-monoenergetic neutron source

    CERN Document Server

    Joshi, T H; Mozin, V; Norman, E B; Sorensen, P; Foxe, M; Bench, G; Bernstein, A

    2014-01-01

    The design of a neutron source capable of producing 24 and 70 keV neutron beams with narrow energy spread is presented. The source exploits near-threshold kinematics of the $^{7}$Li(p,n)$^{7}$Be reaction while taking advantage of the interference `notches' found in the scattering cross-sections of iron. The design was implemented and characterized at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory. Alternative filters such as vanadium and manganese are also explored and the possibility of studying the response of different materials to low-energy nuclear recoils using the resultant neutron beams is discussed.

  14. International key comparison of neutron fluence measurements in monoenergetic neutron fields: CCRI(III)-K11

    Science.gov (United States)

    Gressier, V.; Bonaldi, A. C.; Dewey, M. S.; Gilliam, D. M.; Harano, H.; Masuda, A.; Matsumoto, T.; Moiseev, N.; Nico, J. S.; Nolte, R.; Oberstedt, S.; Roberts, N. J.; Röttger, S.; Thomas, D. J.

    2014-01-01

    To ensure the validity of their national standards, National Metrology Institutes (NMIs) participate regularly in international comparisons. In the area of neutron metrology, Section III of the Consultative Committee for Ionizing Radiation is in charge of the organization of these comparisons. From September 2011 to October 2012, the eleventh key comparison, named CCRI(III)-K11, took place at the AMANDE facility of the LNE-IRSN, in France. Participants from nine NMIs came with their own primary reference instruments, or instruments traceable to primary standards, with the aim of determining the neutron fluence, at 1 m distance from the target in vacuum, per monitor count at four monoenergetic neutron fields: 27 keV, 565 keV, 2.5 MeV and 17 MeV. The key comparison reference values (KCRV) were evaluated as the weighted mean values of the results provided by seven participants. The uncertainties of each KCRV are between 0.9% and 1.7%. The degree of equivalence (DoE), defined as the deviation of the result reported by the laboratories for each energy from the corresponding KCRV, and the associated expanded uncertainty are also reported and discussed. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  15. Development of a monoenergetic neutron beam (Theoretical aspects, experimental developments and applications); Desarrollo de un haz de neutrones monoenergeticos (Aspectos teoricos, desarrollos experimentales y aplicaciones)

    Energy Technology Data Exchange (ETDEWEB)

    Varela G, A

    2003-07-01

    By the use of a neutron time of flight system at the Tandem Accelerator of the National Nuclear Research Institute; with neutrons provided by means of the {sup 2} H(d, n) {sup 3} He we intend to use the associated particle technique in order to have monoenergetic neutrons. This neutron beam will be used both in basic and applied research. (Author)

  16. Summary of monoenergetic neutron beam sources for energies gt 14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Brady, F.P.; Romero, J.L. (Univ. of California-Davis, Crocker Nuclear Lab., Davis, CA (US))

    1990-11-01

    This paper examines the production of neutron beams for energies between {approx}20 and 100 MeV. Considerations for obtaining monoenergetic beams as well as some of the limiting factors, such as energy resolution are examined as well. Production cross sections at 0 deg are reviewed for proton- and deuteron-induced reactions on light elements. Some current facilities in the context of neutron beams obtained by collimation, by the associate particle method, and by the use of a beam swinger are also discussed.

  17. Response of a lithium gadolinium borate scintillator in monoenergetic neutron fields.

    Science.gov (United States)

    Williams, A M; Beeley, P A; Spyrou, N M

    2004-01-01

    Accurate estimation of neutron dose requires knowledge of the neutron energy distribution in the working environment. Existing neutron spectrometry systems, Bonner spheres for example, are large and bulky, and require long data acquisition times. A portable system that could indicate the approximate neutron energy spectrum in a short time would be extremely useful in radiation protection. A composite scintillator, consisting of lithium gadolinium borate crystals in a plastic scintillator matrix, produced by Photogenics is being tested for this purpose. A prototype device based on this scintillator and digital pulse processing electronics has been calibrated using quasi-monoenergetic neutron fields at the low-scatter facility of the UK National Physical Laboratory (NPL). Energies selected were 144, 250, 565, 1400, 2500 and 5000 keV, with correction for scattered neutrons being made using the shadow cone technique. Measurements were also made in the NPL thermal neutron field. Pulse distributions collected with the digitiser in capture-gated mode are presented, and detection efficiency and energy resolution derived. For comparison, neutron spectra were also collected using the commercially available Microspec N-Probe from Bubble Technology Industries, which consists of an NE213 scintillator and a 3He proportional counter.

  18. Approximate One-Dimensional Models for Monoenergetic Neutral Particle Transport in Ducts with Wall Migration

    CERN Document Server

    Gonzalez, Arnulfo

    2016-01-01

    The problem of monoenergetic neutral particle transport in a duct, where particles travel inside the duct walls, is treated using an approximate one-dimensional model. The one-dimensional model uses three-basis functions, as part of a previously derived weighted-residual procedure, to account for the geometry of particle transport in a duct system (where particle migration into the walls is not considered). Our model introduces two stochastic parameters to account for particle-wall interactions: an albedo approximation yielding the fraction of particles that return to the duct after striking the walls, and a mean-distance travelled in the walls transverse to the duct by particles that re-enter the duct. Our model produces a set of three transport equations with a non-local scattering kernel. We solve these equations using discrete ordinates with source iteration. Numerical results for the reflection and transmission probabilities of neutron transport in ducts of circular cross section are compared to Monte Ca...

  19. RBE of quasi-monoenergetic 60 MeV neutron radiation for induction of dicentric chromosomes in human lymphocytes.

    Science.gov (United States)

    Nolte, R; Mühlbradt, K-H; Meulders, J P; Stephan, G; Haney, M; Schmid, E

    2005-12-01

    The production of dicentric chromosomes in human lymphocytes by high-energy neutron radiation was studied using a quasi-monoenergetic 60 MeV neutron beam. The average yield coefficient [see text] of the linear dose-response relationship for dicentric chromosomes was measured to be (0.146+/-0.016) Gy-1. This confirms our earlier observations that above 400 keV, the yield of dicentric chromosomes decreases with increasing neutron energy. Using the linear-quadratic dose-response relationship for dicentric chromosomes established in blood of the same donor for 60Co gamma-rays as a reference radiation, an average maximum low-dose RBE (RBEM) of 14+/-4 for 60 MeV quasi-monoenergetic neutrons with a dose-weighted average energy [see text] of 41.0 MeV is obtained. A correction procedure was applied, to account for the low-energy continuum of the quasi-monoenergetic spectral neutron distribution, and the yield coefficient alpha for 60 MeV neutrons was determined from the measured average yield coefficient [see text]. For alpha, a value of (0.115+/-0.026) Gy-1 was obtained corresponding to an RBEM of 11+/-4. The present experiments extend earlier investigations with monoenergetic neutrons to higher energies.

  20. Experimental determination of the response functions of a Bonner sphere spectrometer to monoenergetic neutrons

    Science.gov (United States)

    Hu, Z.; Chen, Z.; Peng, X.; Du, T.; Cui, Z.; Ge, L.; Zhu, W.; Wang, Z.; Zhu, X.; Chen, J.; Zhang, G.; Li, X.; Chen, J.; Zhang, H.; Zhong, G.; Hu, L.; Wan, B.; Gorini, G.; Fan, T.

    2017-06-01

    A Bonner sphere spectrometer (BSS) plays an important role in characterizing neutron spectra and determining their neutron dose in a neutron-gamma mixed field. A BSS consisting of a set of nine polyethylene spheres with a 3He proportional counter was developed at Peking University to perform neutron spectrum and dosimetry measurements. Response functions (RFs) of the BSS were calculated with the general Monte Carlo code MCNP5 for the neutron energy range from thermal up to 20 MeV, and were experimentally calibrated with monoenergetic neutron beams from 144 keV to 14 MeV on a 4.5 MV Van de Graaff accelerator. The calculated RFs were corrected with the experimental values, and the whole response matrix was completely established. The spectrum of a 241Am-Be source was obtained after unfolding the measurement data of the BSS to the source and in fair agreement with the expected one. The integral ambient dose equivalent corresponding to the spectrum was 0.95 of the expected value. Results of the unfolded spectrum and the integral dose equivalent measured by the BSS verified that the RFs of the BSS were well established.

  1. Benchmarking of the mono-energetic transport coefficients-results from the International Collaboration on Neoclassical Transport in Stellarators (ICNTS)

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C. D. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Allmaier, K. [Insitut fur Theoretische Physik, Association EURATOM, Graz, Austria; Isaev, Maxim Yu [Kurchatov Institute, Moscow, Russia; Kasilov, K. [Insitute of Plasma Physics, NSC-KhIPT, Kharkov, Ukraine; Kernbichler, W. [Insitut fur Theoretische Physik, Association EURATOM, Graz, Austria; Leitold, G. [Insitut fur Theoretische Physik, Association EURATOM, Graz, Austria; Maassberg, H. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Mikkelsen, D. R. [Princeton Plasma Physics Laboratory (PPPL); Murakami, Masanori [ORNL; Schmidt, M. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Spong, Donald A [ORNL; Tribaidos, V. [Universidad Carlos III, Madrid, Spain; Wakasa, A. [Kyoto University, Kyoto, Japan

    2011-01-01

    Numerical results for the three mono-energetic transport coefficients required for a complete neoclassical description of stellarator plasmas have been benchmarked within an international collaboration. These transport coefficients are flux-surface-averaged moments of solutions to the linearized drift kinetic equation which have been determined using field-line-integration techniques, Monte Carlo simulations, a variational method employing Fourier-Legendre test functions and a finite-difference scheme. The benchmarking has been successfully carried out for past, present and future devices which represent different optimization strategies within the extensive configuration space available to stellarators. A qualitative comparison of the results with theoretical expectations for simple model fields is provided. The behaviour of the results for the mono-energetic radial and parallel transport coefficients can be largely understood from such theoretical considerations but the mono-energetic bootstrap current coefficient exhibits characteristics which have not been predicted.

  2. Development of a High- Brightness, Quasi- Monoenergetic Neutron Source at LLNL for Nuclear Physics Applications

    Science.gov (United States)

    Johnson, M. S.; Anderson, S. G.; Bleuel, D.; Fitsos, P. J.; Gibson, D.; Hall, J. M.; Marsh, R.; Rusnak, B.

    2016-09-01

    Lawrence Livermore National Laboratory is developing a high-brightness, quasi-monoenergetic neutron source. The intensity of the neutron source is expected to be 1011 n/s/sr with energies between 7 MeV and 10 MeV at 5% bandwidth at 0-degrees. This energy region is important for the study of neutron-induced reactions, nuclear astrophysics, and nuclear structure. For example, for neutrons between 1 and 10 MeV, the capturing states are below the GDR in many nuclei and the dominant reactions are compound and direct capture. The intensity and energy selection of the source makes it appealing for measurements of sparse targets at specific energies. We will present an array of nuclear physics measurements that will benefit from this source. The source is also of interest to generating activated targets for decay-out studies or for target production for other reaction-based measurements, e.g. fusion-evaporation reactions. Other usage examples include practical applications for imaging of very dense objects such as machine parts. For this presentation, we will discuss our method to use (d,n) production reaction on deuterium in a windowless gas target system. This approach is required because of the large power of the 7 MeV, 300 μA deuteron beams. We will discuss our facility and its capabilities. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. High-energy quasi-monoenergetic neutron fields: existing facilities and future needs

    CERN Document Server

    Pomp, S; Mayer, S; Reitz, G; Rottger, S; Silari, M; Smit, F D; Vincke, H; Yasuda, H

    2014-01-01

    The argument that well-characterised quasi-monoenergetic neutron (QMN) sources reaching into the energy domain >20 MeV are needed is presented. A brief overview of the existing facilities is given, and a list of key factors that an ideal QMN source for dosimetry and spectrometry should offer is presented. The authors conclude that all of the six QMN facilities currently in existence worldwide operate in sub-optimal conditions for dosimetry. The only currently available QMN facility in Europe capable of operating at energies >40 MeV, TSL in Uppsala, Sweden, is threatened with shutdown in the immediate future. One facility, NFS at GANIL, France, is currently under construction. NFS could deliver QMN beams up to about 30 MeV. It is, however, so far not clear if and when NFS will be able to offer QMN beams or operate with only so-called white neutron beams. It is likely that by 2016, QMN beams with energies >40 MeV will be available only in South Africa and Japan, with none in Europe.

  4. Development of high pressure deuterium gas targets for the generation of intense mono-energetic fast neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Guzek, J. E-mail: jguzek@debeers.co.za; Richardson, K.; Franklyn, C.B.; Waites, A.; McMurray, W.R.; Watterson, J.I.W.; Tapper, U.A.S

    1999-06-01

    Two different technical solutions to the problem of generation of mono-energetic fast neutron beams on the gaseous targets are presented here. A simple and cost-effective design of a cooled windowed gas target system is described in the first part of this paper. It utilises a thin metallic foil window and circulating deuterium gas cooled down to 100 K. The ultimate beam handling capability of such target is determined by the properties of the window. Reliable performance of this gas target system was achieved at 1 bar of deuterium gas, when exposed to a 45 {mu}A beam of 5 MeV deuterons, for periods in excess of 6 h. Cooling of the target gas resulted in increased fast neutron output and improved neutron to gamma-ray ratio. The second part of this paper discusses the design of a high pressure, windowless gas target for use with pulsed, low duty cycle accelerators. A rotating seal concept was applied to reduce the gas load in a differentially pumped system. This allows operation at 1.23 bar of deuterium gas pressure in the gas cell region. Such a gas target system is free from the limitations of the windowed target but special attention has to be paid to the heat dissipation capability of the beam dump, due to the use of a thin target. The rotating seal concept is particularly suitable for use with accelerators such as radio-frequency quadrupole (RFQ) linacs that operate with a very high peak current at low duty cycle. The performance of both target systems was comprehensively characterized using the time-of-flight (TOF) technique. This demonstrated that very good quality mono-energetic fast neutron beams were produced with the slow neutron and gamma-ray component below 10% of the total target output.

  5. The cross-section data from neutron activation experiments on niobium in the NPI p-7Li quasi-monoenergetic neutron field

    Directory of Open Access Journals (Sweden)

    Simakov S.P.

    2010-10-01

    Full Text Available The reaction of protons on 7Li target produces the high-energy quasi- monoenergetic neutron spectrum with the tail to lower energies. Proton energies of 19.8, 25.1, 27.6, 30.1, 32.6, 35.0 and 37.4 MeV were used to obtain quasi-monoenergetic neutrons with energies of 18, 21.6, 24.8, 27.6, 30.3, 32.9 and 35.6 MeV, respectively. Nb cross-section data for neutron energies higher than 22.5 MeV do not exist in the literature. Nb is the important material for fusion applications (IFMIF as well. The variable-energy proton beam of NPI cyclotron is utilized for the production of neutron field using thin lithium target. The carbon backing serves as the beam stopper. The system permits to produce neutron flux density about 109  n/cm2/s in peak at 30 MeV neutron energy. The niobium foils of 15 mm in diameter and approx. 0.75 g weight were activated. The nuclear spectroscopy methods with HPGe detector technique were used to obtain the activities of produced isotopes. The large set of neutron energies used in the experiment allows us to make the complex study of the cross-section values. The reactions (n,2n, (n,3n, (n,4n, (n,He3, (n,α and (n,2nα are studied. The cross-sections data of the (n,4n and (n,2nα are obtained for the first time. The cross-sections of (n,2n and (n,α reactions for higher neutron energies are strongly influenced by low energy tail of neutron spectra. This effect is discussed. The results are compared with the EAF-2007 library.

  6. Detection of Special Nuclear Material from Delayed Neutron Emission Induced by a Dual-Particle Monoenergetic Source

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Michael F.; Nattress, J.; Jovanovic, I

    2016-06-30

    Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the 11B(d,n gamma)12C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass–polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time- dependent buildup and decay of delayed neutron emission from 238U were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. This method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.

  7. Pulsed and monoenergetic beams for neutron cross-section measurements using activation and scattering techniques at Triangle Universities Nuclear Laboratory

    Science.gov (United States)

    Hutcheson, A.; Angell, C. T.; Becker, J. A.; Boswell, M.; Crowell, A. S.; Dashdorj, D.; Fallin, B.; Fotiades, N.; Howell, C. R.; Karwowski, H. J.; Kelley, J. H.; Kiser, M.; Macri, R. A.; Nelson, R. O.; Pedroni, R. S.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Weisel, G. J.; Wilhelmy, J. B.

    2007-08-01

    In support of the Stewardship Science Academic Alliances initiative, an experimental program has been developed at Triangle Universities Nuclear Laboratory (TUNL) to measure (n,xn) cross-sections with both in-beam and activation techniques with the goal of improving the partial cross-section database for the NNSA Stockpile Stewardship Program. First experimental efforts include excitation function measurements on 235,238U and 241Am using pulsed and monoenergetic neutron beams with En = 5-15 MeV. Neutron-induced partial cross-sections were measured by detecting prompt γ rays from the residual nuclei using various combinations of clover and planar HPGe detectors in the TUNL shielded neutron source area. Complimentary activation measurements using DC neutron beams have also been performed in open geometry in our second target area. The neutron-induced activities were measured in the TUNL low-background counting area. In this presentation, we include detailed information about the irradiation procedures and facilities and preliminary data on first measurements using this capability.

  8. Pulsed and monoenergetic beams for neutron cross-section measurements using activation and scattering techniques at Triangle Universities Nuclear Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hutcheson, A. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States)]. E-mail: hutch@tunl.duke.edu; Angell, C.T. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Becker, J.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Boswell, M. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Crowell, A.S. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Dashdorj, D. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Fallin, B. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Fotiades, N. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Howell, C.R.; Karwowski, H.J.; Kelley, J.H.; Kiser, M. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Macri, R.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Nelson, R.O. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Pedroni, R.S. [NC A and T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); Tonchev, A.P.; Tornow, W. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Vieira, D.J. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Weisel, G.J. [Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601 (United States); Wilhelmy, J.B. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2007-08-15

    In support of the Stewardship Science Academic Alliances initiative, an experimental program has been developed at Triangle Universities Nuclear Laboratory (TUNL) to measure (n,xn) cross-sections with both in-beam and activation techniques with the goal of improving the partial cross-section database for the NNSA Stockpile Stewardship Program. First experimental efforts include excitation function measurements on {sup 235,238}U and {sup 241}Am using pulsed and monoenergetic neutron beams with E {sub n} = 5-15 MeV. Neutron-induced partial cross-sections were measured by detecting prompt {gamma} rays from the residual nuclei using various combinations of clover and planar HPGe detectors in the TUNL shielded neutron source area. Complimentary activation measurements using DC neutron beams have also been performed in open geometry in our second target area. The neutron-induced activities were measured in the TUNL low-background counting area. In this presentation, we include detailed information about the irradiation procedures and facilities and preliminary data on first measurements using this capability.

  9. Performance of a plasma window for a high pressure differentially pumped deuterium gas target for mono-energetic fast neutron production - Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Beer, A. de; Hershcovitch, A.; Franklyn, C.B.; Straaten, S. van; Guzek, J. E-mail: jguzek@debeers.co.za

    2000-09-01

    The reactions D(d,n){sup 3}He and T(d,n){sup 4}He are frequently used for production of the mono-energetic or quasi mono-energetic neutron beams but successful applications are often limited by the intensity of the generated neutron beams. The development of a suitable neutron source for such applications as studies of resonance phenomena, fast neutron radiography, selective fast neutron activation, explosives and contraband detection and others, depends on the output ion current of the accelerator and the design of the target system. A practical solution for a high pressure gas target was previously developed and successfully implemented at De Beers Diamond Research Laboratory in Johannesburg (Guzek et al., 1999), but it is limited to applications using low (<20%) duty cycle accelerators. The concept of a plasma window for the separation of a high pressure gas target region and accelerator vacuum, that was originally developed by Hershcovitch (1995) for electron welding applications, may be suitable for operation with continuous wave accelerators at high particle current output. Preliminary test results, which have been performed with various gases (argon, helium and deuterium), indicate that implementation of the plasma window into a gas target system, for the production of intense mono-energetic fast neutron beams will be achievable.

  10. Neutrons production during the interaction of monoenergetic electrons with a thin tungsten target; Produccion de neutrones durante la interaccion de electrones monoenergeticos con un blanco delgado de tungsteno

    Energy Technology Data Exchange (ETDEWEB)

    Soto B, T. G.; Medina C, D. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Programa de Doctorado en Ciencias Basicas, 98068 Zacatecas, Zac. (Mexico); Baltazar R, A. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Programa de Doctorado en Ingenieria y Tecnologia Aplicada, 98068 Zacatecas, Zac. (Mexico); Vega C, H. R., E-mail: tzinnia.soto@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2016-10-15

    When a linear accelerator for radiotherapy operates with acceleration voltages higher than 8 MV, neutrons are produced, as secondary radiation which deposits an undesirable and undesirable dose in the patient. Depending on the type of tumor, its location in the body and the characteristics of the patient, the cancer treatment with a Linac is performed with photon or electron beams, which produce neutrons through reactions (γ, n) and (e, e n) respectively. Because the effective section for the neutrons production by reactions (γ, n) is approximately two orders of magnitude larger than the effective section of the reactions (e, e n), studies on the effects of this secondary radiation have focused on photo neutrons. en a Linac operates with electron beams, the beam coming out of the magnetic deflector is impinged on the dispersion lamella in order to cause quasi-elastic interactions and to expand the spatial distribution of the electrons; the objective of this work is to determine the characteristics of the photons and neutrons that occur when a mono-energetic electron beam of 2 mm in diameter (pencil beam) is made to impinge on a tungsten lamella of 1 cm in diameter and 0.5 mm of thickness. The study was done using Monte Carlo methods with code MCNP6 for electron beams of 8, 10, 12, 15 and 18 MeV. The spectra of photons and neutrons were estimated in 4 point detectors placed at different equidistant points from the center of the lamella. (Author)

  11. Study of response of {sup 3}He detectors to monoenergetic neutrons; Etude des reponses des detecteurs a {sup 3}He par des neutrons monoenergetiques

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A. [European Organization for Nuclear Research, Geneva (CERN); Andriamonje, S.; Arnould, H.; Barreau, G.; Bercion, M. [Centre d`Etudes Nucleaires, Bordeaux-1 Univ., 33 Gradignan (France); Casagrande, F.; Cennini, P. [European Organization for Nuclear Research, Geneva (CERN); Del Moral, R. [Centre d`Etudes Nucleaires, Bordeaux-1 Univ., 33 Gradignan (France); Gonzales, E. [European Organization for Nuclear Research, Geneva (CERN); Lacoste, V.; Pdemay, G.; Pravikoff, M.S. [Centre d`Etudes Nucleaires, Bordeaux-1 Univ., 33 Gradignan (France); TARC Collaboration under leadership of C. Rubbia

    1997-06-01

    In the search of a hybrid system (the coupling of the particle accelerator to an under-critical reactor) for radioactive waste transmutation the TARC (Transmutation by Adiabatic Resonance Crossing) program has been developed. Due to experimental limitations, the time-energy relation at higher neutron energies, particularly, around 2 MeV, which is an important domain for TARC, cannot be applied. Consequently the responses of the {sup 3}He ionization neutron detector developed for TARC experiment have been studied using a fast monoenergetic neutron source. The neutrons were produced by the interaction of the proton delivered by Van de Graaff accelerator of CENBG. The originality of the detector consists in its structure of three series of electric conductors which are mounted around the anode: a grid ensuring the detector proportionality, a cylindrical suit of alternating positive voltage and grounded wires aiming at eliminating the radial end effects, serving as veto and two cylinders serving as end plugs to eliminate the perpendicular end effects. Examples of anode spectra conditioned (in anticoincidence) by the mentioned vetoes are given. One can see the contribution of the elastic scattering from H and {sup 3}He. By collimating the neutron beam through a borated polyethylene system it was possible to obtain a mapping of the detector allowing the study of its response as a function of the irradiated zones (anode and grid) 2 refs. This paper is related to TRN FR9810178

  12. Experiments on iron shield transmission of quasi-monoenergetic neutrons generated by 43- and 68-MeV protons via the {sup 7}Li(p,n) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tanaka, Shun-ichi; Nakao, Noriaki [and others

    1996-03-01

    In order to provide benchmark data of neutrons transmitted through iron shields in the intermediate-energy region, spatial distributions of neutron energy spectra and reaction rates behind and inside the iron shields of thickness up to 130 cm were measured for 43- and 68-MeVp-{sup 7}Li neutrons using a quasi-monoenergetic neutron beam source at the 90-MV AVF cyclotron facility of the TLARA facility in JAERI. The measured data by five kinds of detectors: the BC501A detector, the Bonner ball counter, {sup 238}U and {sup 232}Th fission counters, {sup 7}LiF and {sup nat}LiF TLDs and solid state nuclear track detector, are numerically provided in this report in the energy region between 10{sup -4} eV and the energy of peak neutrons generated by the {sup 7}Li(p,n) reaction. (author).

  13. Neutron transport simulation (selected topics)

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, P. [Instituto Tecnologico e Nuclear, Estrada Nacional 10, P-2686-953 Sacavem (Portugal)], E-mail: pedrovaz@itn.pt

    2009-10-15

    Neutron transport simulation is usually performed for criticality, power distribution, activation, scattering, dosimetry and shielding problems, among others. During the last fifteen years, innovative technological applications have been proposed (Accelerator Driven Systems, Energy Amplifiers, Spallation Neutron Sources, etc.), involving the utilization of intermediate energies (hundreds of MeV) and high-intensity (tens of mA) proton accelerators impinging in targets of high Z elements. Additionally, the use of protons, neutrons and light ions for medical applications (hadrontherapy) impose requirements on neutron dosimetry-related quantities (such as kerma factors) for biologically relevant materials, in the energy range starting at several tens of MeV. Shielding and activation related problems associated to the operation of high-energy proton accelerators, emerging space-related applications and aircrew dosimetry-related topics are also fields of intense activity requiring as accurate as possible medium- and high-energy neutron (and other hadrons) transport simulation. These applications impose specific requirements on cross-section data for structural materials, targets, actinides and biologically relevant materials. Emerging nuclear energy systems and next generation nuclear reactors also impose requirements on accurate neutron transport calculations and on cross-section data needs for structural materials, coolants and nuclear fuel materials, aiming at improved safety and detailed thermal-hydraulics and radiation damage studies. In this review paper, the state-of-the-art in the computational tools and methodologies available to perform neutron transport simulation is presented. Proton- and neutron-induced cross-section data needs and requirements are discussed. Hot topics are pinpointed, prospective views are provided and future trends identified.

  14. Neutron transport simulation (selected topics)

    Science.gov (United States)

    Vaz, P.

    2009-10-01

    Neutron transport simulation is usually performed for criticality, power distribution, activation, scattering, dosimetry and shielding problems, among others. During the last fifteen years, innovative technological applications have been proposed (Accelerator Driven Systems, Energy Amplifiers, Spallation Neutron Sources, etc.), involving the utilization of intermediate energies (hundreds of MeV) and high-intensity (tens of mA) proton accelerators impinging in targets of high Z elements. Additionally, the use of protons, neutrons and light ions for medical applications (hadrontherapy) impose requirements on neutron dosimetry-related quantities (such as kerma factors) for biologically relevant materials, in the energy range starting at several tens of MeV. Shielding and activation related problems associated to the operation of high-energy proton accelerators, emerging space-related applications and aircrew dosimetry-related topics are also fields of intense activity requiring as accurate as possible medium- and high-energy neutron (and other hadrons) transport simulation. These applications impose specific requirements on cross-section data for structural materials, targets, actinides and biologically relevant materials. Emerging nuclear energy systems and next generation nuclear reactors also impose requirements on accurate neutron transport calculations and on cross-section data needs for structural materials, coolants and nuclear fuel materials, aiming at improved safety and detailed thermal-hydraulics and radiation damage studies. In this review paper, the state-of-the-art in the computational tools and methodologies available to perform neutron transport simulation is presented. Proton- and neutron-induced cross-section data needs and requirements are discussed. Hot topics are pinpointed, prospective views are provided and future trends identified.

  15. Quasi-monoenergetic neutron energy spectra for 246 and 389 MeV (7)Li(p,n) reactions at angles from 0 degrees to 300 degrees

    CERN Document Server

    Iwamoto, Y; Nakamura, T; Nakashima, H; Mares, V; Itoga, T; Matsumoto, T; Nakane, Y; Feldbaumer, E; Jaegerhofer, L; Pioch, C; Tamii, A; Satoh, D; Masuda, A; Sato, T; Iwase, H; Yashima, H; Nishiyama, J; Hagiwara, M; Hatanaka, K; Sakamoto, Y

    2011-01-01

    The authors measured the neutron energy spectra of a quasi-monoenergetic (7)Li(p,n) neutron source with 246 and 389 MeV protons set at seven angles (0 degrees, 2.5 degrees, 5 degrees, 10 degrees, 15 degrees, 20 degrees and 30 degrees), using a time-of-flight (TOF) method employing organic scintillators NE213 at the Research Center for Nuclear Physics (RCNP) of Osaka University. The energy spectra of the source neutrons were precisely deduced down to 2 MeV at 0 degrees and 10 MeV at other angles. The cross-sections of the peak neutron production reaction at 0 degrees were on the 35-40 mb line of other experimental data, and the peak neutron angular distribution agreed well with the Taddeucci formula. Neutron energy spectra below 100 MeV at all angles were comparable, but the shapes of the continuum above 150 MeV changed considerably with the angle. In order to consider the correction required to derive the response in the peak region from the measured total response for high-energy neutron monitors such as DAR...

  16. Influence of the neutron transport tube on neutron resonance densitometry

    Directory of Open Access Journals (Sweden)

    Kitatani Fumito

    2017-01-01

    Full Text Available Neutron Resonance Densitometry (NRD is a non-destructive assay technique of nuclear materials in particle-like debris that contains various materials. An aim of NRD is to quantify nuclear materials in a melting fuel of Fukusima Daiichi plant, spent nuclear fuel and annihilation disposal fuel etc. NRD consists of two techniques of Neutron Resonance Transmission Analysis (NRTA and Neutron Resonance Capture Analysis (NRCA or Prompt Gamma-ray Analysis (PGA. A density of nuclear material isotopes is decided with NRTA. The materials absorbing a neutron in a wide energy range such as boron in a sample are identified by NRCA/PGA. The information of NRCA/PGA is used in NRTA analysis to quantify nuclear material isotopes. A neutron time of flight (TOF method is used in NRD measurements. A facility, consisting of a neutron source, a neutron flight path, and a detector is required. A short flight path and a strong neutron source are needed to downsize such a facility and put NRD into practical use. A neutron transport tube covers a flight path to prevent noises. In order to investigate the effect of neutron transport tube and pulse width of a neutron source, we carried out NRTA experiments with a 2-m short neutron transport tube constructed at Kyoto University Research Reactor Institute - Linear Accelerator (KURRI-LINAC, and impacts of shield of neutron transport tube and influence of pulse width of a neutron source were examined. A shield of the neutron transport tube reduced a background and had a good influence on the measurement. The resonance dips of 183W at 27 eV was successfully observed with a pulse width of a neutron source less than 2 μs.

  17. Evaluation of target photon dose mixed in mono-energetic neutron fields using {sup 7}Li(p,n){sup 7}Be reaction

    Energy Technology Data Exchange (ETDEWEB)

    Tanimura, Y., E-mail: tanimura.yoshihiko@jaea.go.j [Department of Radiation Protection, Nuclear Science and Research Institute, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Tsutsumi, M.; Saegusa, J.; Shikaze, Y.; Yoshizawa, M. [Department of Radiation Protection, Nuclear Science and Research Institute, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai-mura, Ibaraki 319-1195 (Japan)

    2010-12-15

    Target photons mixed in the 144, 250 and 565 keV mono-energetic neutron calibration fields were measured using a cylindrical NaI(Tl) detector with 7.62 cm both in diameter and in length. The ambient dose equivalent H*(10) of the photons was evaluated by applying the 'G(E) function' to the measured pulse height spectrum. Neutrons induce photons by nuclear reactions in the NaI(Tl) detector and affect the pulse height spectrum. In order to eliminate the influence of these neutron events, the time-of-flight technique was applied with operating the accelerator in the pulse mode. The ratios by the ambient dose equivalent H*(10) of the photons to the 144, 250 and 565 keV neutrons were evaluated to be 3.3%, 4.7% and 0.9%, respectively. Although high energy photons ranging from 6 to 7 MeV are emitted by the {sup 19}F(p,{alpha}{gamma}){sup 16}O reactions, the dose of the target photons is low enough to calibrate neutron dosemeters except for ones with high sensitivity to the photons.

  18. Cross Section Measurements of Neutron Induced Reactions on GaAs using Monoenergetic Beams from 7.5 to 15 MeV

    Science.gov (United States)

    Raut, R.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Huibregtse, C.; Kelley, J. H.; Kawano, T.; Kwan, E.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2011-09-01

    Cross section measurements for the neutron induced reactions on GaAs have been carried out at ten different neutron energies from 7.5 to 15 MeV, using the activation technique. The monoenergetic neutron beams were produced via the 2H(d,n)3He reaction, known for it's high neutron yield in the chosen energy regime. GaAs samples were activated along with the Au and Al monitor foils, for estimating the incident neutron flux. The induced activiy was measured using high resolution γ-ray spectroscopy. Five reaction channels viz., 69Ga(n, 2n) Ga, 69Ga(n,p)69mZn, 71Ga(n,p)71mZn, 75As(n, 2n)74As and 75As(n,p)75Ge, have been reported for the comprehensive cross section measurements. The results are compared with the existing literature data and the available evaluations. Statistical model calculations, based on the Hauser-Feshbach formalism, have been carried out using the TALYS and EMPIRE codes and are compared with the experimental values.

  19. Cross-section measurements of neutron-induced reactions on GaAs using monoenergetic beams from 7.5 to 15 MeV

    Science.gov (United States)

    Raut, R.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Huibregtse, C.; Kelley, J. H.; Kawano, T.; Kwan, E.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2011-04-01

    Cross-section measurements for neutron-induced reactions on GaAs have been carried out at twelve different neutron energies from 7.5 to 15 MeV using the activation technique. The monoenergetic neutron beams were produced via the H2(d,n)He3 reaction. GaAs samples were activated along with Au and Al monitor foils to determine the incident neutron flux. The activities induced by the reaction products were measured using high-resolution γ-ray spectroscopy. Cross sections for five reaction channels, viz., Ga69(n,2n)Ga68, Ga69(n,p)Zn69m, Ga71(n,p)Zn71m, As75(n,2n)As74, and As75(n,p)Ge75, are reported. The results are compared with the previous measurements and available data evaluations. Statistical-model calculations, based on the Hauser-Feshbach formalism, have been carried out using the TALYS and the COH3 codes and are compared with the experimental results.

  20. Asymptotic Analysis of Time-Dependent Neutron Transport Coupled with Isotopic Depletion and Radioactive Decay

    Energy Technology Data Exchange (ETDEWEB)

    Brantley, P S

    2006-09-27

    We describe an asymptotic analysis of the coupled nonlinear system of equations describing time-dependent three-dimensional monoenergetic neutron transport and isotopic depletion and radioactive decay. The classic asymptotic diffusion scaling of Larsen and Keller [1], along with a consistent small scaling of the terms describing the radioactive decay of isotopes, is applied to this coupled nonlinear system of equations in a medium of specified initial isotopic composition. The analysis demonstrates that to leading order the neutron transport equation limits to the standard time-dependent neutron diffusion equation with macroscopic cross sections whose number densities are determined by the standard system of ordinary differential equations, the so-called Bateman equations, describing the temporal evolution of the nuclide number densities.

  1. Characteristics of the quarry as shielding for {sup 241}AmBe neutrons and monoenergetic photons; Caracteristicas de la cantera como blindaje para los neutrones del {sup 241}AmBe y fotones monoenergeticos

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M.; Letechipia de L, C.; Salas L, M. A. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rodriguez R, J. A.; Juarez A, C. A., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Civil, Pedro de Alba s/n, San Nicolas de los Garza, Nuevo Leon (Mexico)

    2016-09-15

    Shielding is an important element in radiation protection since allows the management of radiation sources. Currently there are different materials of natural or anthropogenic origin that are used as shielding for both photons and neutrons. The quarry is a material of natural origin and abundant in our country, which is used in construction or for the manufacture of sculptures, however its characteristics as shielding have not been reported. In this paper we report some of the properties of the quarry as shielding for monoenergetic photons and for neutrons produced by an isotopic neutron source of {sup 241}AmBe. A quarry piece was used to determine its density and its chemical composition, with the XCOM code the elemental composition was determined and the mass interaction and total attenuation coefficients of the quarry were determined with photons of 10{sup -3} to 10{sup -5} MeV; the interaction coefficients included coherent dispersion, photoelectric absorption, Compton dispersion and the production of pairs in the nuclear and electronic field. Using the MCNP5 code, a narrow geometry attenuation experiment was modeled and the photon fluence was estimated that reaches a point detector at a distance of 42 cm from a point source, isotropic and monoenergetic photon when the source and the point detector were added quarry pieces of different thicknesses. The reduction of the number of photons as a function of the thickness of the quarry was used to determine the coefficient of linear attenuation of the quarry before photons of 0.03, 0.07, 0.1, 0.3, 1, 2 and 3 MeV that were the same as those calculated with the XCOM code. With the MCNP, the K a and H(10) transmission curves were also calculated. This same model was used to determined the variation of the {sup 241}AmBe neutron spectrum as a function of quarry thickness, as well as the E{sub ROT} and H(10) transmission curves. (Author)

  2. Neutron Transport Simulations for NIST Neutron Lifetime Experiment

    Science.gov (United States)

    Li, Fangchen; BL2 Collaboration Collaboration

    2016-09-01

    Neutrons in stable nuclei can exist forever; a free neutron lasts for about 15 minutes on average before it beta decays to a proton, an electron, and an antineutrino. Precision measurements of the neutron lifetime test the validity of weak interaction theory and provide input into the theory of the evolution of light elements in the early universe. There are two predominant ways of measuring the neutron lifetime: the bottle method and the beam method. The bottle method measures decays of ultracold neutrons that are stored in a bottle. The beam method measures decay protons in a beam of cold neutrons of known flux. An improved beam experiment is being prepared at the National Institute of Science and Technology (Gaithersburg, MD) with the goal of reducing statistical and systematic uncertainties to the level of 1 s. The purpose of my studies was to develop computer simulations of neutron transport to determine the beam collimation and study the neutron distribution's effect on systematic effects for the experiment, such as the solid angle of the neutron flux monitor. The motivation for the experiment and the results of this work will be presented. This work was supported, in part, by a Grant to Gettysburg College from the Howard Hughes Medical Institute through the Precollege and Undergraduate Science Education Program.

  3. Development of a quasi-monoenergetic neutron field and measurements of the response function of an organic liquid scintillator for the neutron energy range from 66 to 206 MeV

    CERN Document Server

    Nakao, N; Nakamura, T; Uwamino, Y

    2002-01-01

    A quasi-monoenergetic neutron field was developed using a thin sup 7 Li target bombarded by protons in the energy range from 70 to 210 MeV at the RIKEN ring cyclotron facility. The neutron energy spectra were measured with an NE213 organic liquid scintillator using the TOF method. The absolute peak neutron yields were obtained by measurements of 478 keV gamma-rays from sup 7 Be nuclei produced in a sup 7 Li target through the sup 7 Li( p,n) sup 7 Be (g.s.+0.429 MeV) reaction. Using the neutron field, the absolute values of the neutron response functions of a 12.7 cm diameter by 12.7 cm long NE213 organic liquid scintillator were measured, and were compared with calculations using a Monte Carlo code developed by Cecil et al. The measured response functions without any wall-effect events were also obtained, and compared with calculations using a modified Monte Carlo code. Comparisons between a measurement and a calculation both with and without any wall-effect events gave a good agreement.

  4. Development of a quasi-monoenergetic neutron field using the 7Li(p,n)7Be reaction in the energy range from 250 to 390 MeV at RCNP.

    Science.gov (United States)

    Taniguchi, S; Nakao, N; Nakamura, T; Yashima, H; Iwamoto, Y; Satoh, D; Nakane, Y; Nakashima, H; Itoga, T; Tamii, A; Hatanaka, K

    2007-01-01

    A quasi-monoenergetic neutron field using the (7)Li(p,n)(7)Be reaction has been developed at the ring cyclotron facility at the Research Center for Nuclear Physics (RCNP), Osaka University. Neutrons were generated from a 10-mm-thick Li target injected by 250, 350 and 392 MeV protons and neutrons produced at 0 degrees were extracted into the time-of-flight (TOF) room of 100-m length through the concrete collimator of 10 x 12 cm aperture and 150 cm thickness. The neutron energy spectra were measured by a 12.7-cm diam x 12.7-cm long NE213 organic liquid scintillator using the TOF method. The peak neutron fluence was 1.94 x 10(10), 1.07 x 10(10) and 1.50 x 10(10) n sr(-1) per muC of 250, 350 and 392 MeV protons, respectively. The neutron spectra generated from various thick (stopping length) targets of carbon, aluminium, iron and lead, bombarded by 250 and 350 MeV protons, were also measured with the TOF method. Although these measurements were performed to obtain thick target neutron yields, they are also used as a continuous energy neutron field. These neutron fields are very useful for characterising neutron detectors, measuring neutron cross sections, testing irradiation effects for various materials and performing neutron shielding experiments.

  5. Exact solution of the neutron transport equation in spherical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Anli, Fikret; Akkurt, Abdullah; Yildirim, Hueseyin; Ates, Kemal [Kahramanmaras Suetcue Imam Univ. (Turkey). Faculty of Sciences and Letters

    2017-03-15

    Solution of the neutron transport equation in one dimensional slab geometry construct a basis for the solution of neutron transport equation in a curvilinear geometry. Therefore, in this work, we attempt to derive an exact analytical benchmark solution for both neutron transport equations in slab and spherical medium by using P{sub N} approximation which is widely used in neutron transport theory.

  6. Energy dependence of fission product yields from 235U, 238U, and 239Pu with monoenergetic neutrons between thermal and 14.8 MeV

    Science.gov (United States)

    Gooden, Matthew; Arnold, Charles; Bhike, Megha; Bredeweg, Todd; Fowler, Malcolm; Krishichayan; Tonchev, Anton; Tornow, Werner; Stoyer, Mark; Vieira, David; Wilhelmy, Jerry

    2017-09-01

    Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and γ-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. γ-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of two months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. Preliminary results from thermal irradiations at the MIT research reactor will also be presented and compared to present data and evaluations. This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Security, LLC under contract DE-AC52-06NA25396, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and by Duke University and Triangle Universities Nuclear Laboratory through NNSA Stewardship Science Academic Alliance grant No. DE-FG52-09NA29465, DE-FG52-09NA29448 and Office of Nuclear Physics Grant No. DE-FG02-97ER41033.

  7. Light-ion production from O, Si, Fe and Bi induced by 175 MeV quasi-monoenergetic neutron

    CERN Document Server

    Bevilacqua, R; Jansson, K; Gustavsson, C; Osterlund, M; Simutkin, V; Hayashi, M; Hirayama, S; Naitou, Y; Watanabe, Y; Hjalmarsson, A; Prokofiev, A; Tippawan, U; Lecolley, F -R; Marie, N; Leray, S; David, J -C; Mashnik, S

    2013-01-01

    We have measured double-differential cross sections in the interaction of 175 MeV quasimonoenergetic neutrons with O, Si, Fe and Bi. We have compared these results with model calculations with INCL4.5-Abla07, MCNP6 and TALYS-1.2. We have also compared our data with PHITS calculations, where the pre-equilibrium stage of the reaction was accounted respectively using the JENDL/HE-2007 evaluated data library, the quantum molecular dynamics model (QMD) and a modified version of QMD (MQMD) to include a surface coalescence model. The most crucial aspect is the formation and emission of composite particles in the pre-equilibrium stage.

  8. Characterization of high-energy quasi-monoenergetic neutron energy spectra and ambient dose equivalents of 80-389 MeV 7Li(p,n) reactions using a time-of-flight method

    Science.gov (United States)

    Iwamoto, Yosuke; Hagiwara, Masayuki; Satoh, Daiki; Araki, Shouhei; Yashima, Hiroshi; Sato, Tatsuhiko; Masuda, Akihiko; Matsumoto, Tetsuro; Nakao, Noriaki; Shima, Tatsushi; Kin, Tadahiro; Watanabe, Yukinobu; Iwase, Hiroshi; Nakamura, Takashi

    2015-12-01

    We completed a series of measurements on mono-energetic neutron energy spectra of the 7Li(p,n) reaction with 80-389-MeV protons in the 100-m time-of-flight (TOF) tunnel at the Research Center for Nuclear Physics cyclotron facility. For that purpose, we measured neutron energy spectra of the 80-, 100- and 296-MeV proton incident reactions, which had not been investigated in our previous studies. The neutron peak intensity was 0.9-1.1×1010 neutrons/sr/μC in the incident proton energy region of 80-389 MeV, and it was almost independent of the incident proton energy. The contribution of peak intensity of the spectrum to the total intensity integrated with energies above 3 MeV varied between 0.38 and 0.48 in the incident proton energy range of 80-389 MeV. To consider the correction required to derive a response in the peak region from the measured total responses of neutron monitors in the 100-m TOF tunnel, we proposed the subtraction method using energy spectra between 0° and 25°. The normalizing factor k against 25° neutron fluence to equalize it to 0° neutron fluence in the continuum region ranges from 0.74 to 1.02 depending on the incident proton energy and angle measured. Even without the TOF method, the subtraction method with the k factor almost decreases the response in the continuum region of a neutron spectrum against the total response of neutron monitors.

  9. Neutron-induced fission cross-section measurement of 234U with quasi-monoenergetic beams in the keV and MeV range using micromegas detectors

    Science.gov (United States)

    Tsinganis, A.; Kokkoris, M.; Vlastou, R.; Kalamara, A.; Stamatopoulos, A.; Kanellakopoulos, A.; Lagoyannis, A.; Axiotis, M.

    2017-09-01

    Accurate data on neutron-induced fission cross-sections of actinides are essential for the design of advanced nuclear reactors based either on fast neutron spectra or alternative fuel cycles, as well as for the reduction of safety margins of existing and future conventional facilities. The fission cross-section of 234U was measured at incident neutron energies of 560 and 660 keV and 7.5 MeV with a setup based on `microbulk' Micromegas detectors and the same samples previously used for the measurement performed at the CERN n_TOF facility (Karadimos et al., 2014). The 235U fission cross-section was used as reference. The (quasi-)monoenergetic neutron beams were produced via the 7Li(p,n) and the 2H(d,n) reactions at the neutron beam facility of the Institute of Nuclear and Particle Physics at the `Demokritos' National Centre for Scientific Research. A detailed study of the neutron spectra produced in the targets and intercepted by the samples was performed coupling the NeuSDesc and MCNPX codes, taking into account the energy spread, energy loss and angular straggling of the beam ions in the target assemblies, as well as contributions from competing reactions and neutron scattering in the experimental setup. Auxiliary Monte-Carlo simulations were performed with the FLUKA code to study the behaviour of the detectors, focusing particularly on the reproduction of the pulse height spectra of α-particles and fission fragments (using distributions produced with the GEF code) for the evaluation of the detector efficiency. An overview of the developed methodology and preliminary results are presented.

  10. Parallel Deterministic Neutron Transport with AMR

    Energy Technology Data Exchange (ETDEWEB)

    Clouse, C

    2005-03-25

    AMTRAN, a one, two and three dimensional Sn neutron transport code with adaptive mesh refinement (AMR) has been parallelized with MPI over spatial domains and energy groups and with threads over angles. Block refined AMR is used with linear finite element representations for the fluxes, which are node centered. AMR requirements are determined by minimum mean free path calculations throughout the problem and can provide an order of magnitude or more reduction in zoning requirements for the same level of accuracy, compared to a uniformly zoned problem.

  11. Generation of monoenergetic positrons

    Energy Technology Data Exchange (ETDEWEB)

    Hulett, L.D. Jr.; Dale, J.M.; Miller, P.D. Jr.; Moak, C.D.; Pendyala, S.; Triftshaeuser, W.; Howell, R.H.; Alvarez, R.A.

    1983-01-01

    Many experiments have been performed in the generation and application of monoenergetic positron beams using annealed tungsten moderators and fast sources of /sup 58/Co, /sup 22/Na, /sup 11/C, and LINAC bremstrahlung. This paper will compare the degrees of success from our various approaches. Moderators made from both single crystal and polycrystal tungsten have been tried. Efforts to grow thin films of tungsten to be used as transmission moderators and brightness enhancement devices are in progress.

  12. Magnetic field devices for neutron spin transport and manipulation in precise neutron spin rotation measurements

    Science.gov (United States)

    Maldonado-Velázquez, M.; Barrón-Palos, L.; Crawford, C.; Snow, W. M.

    2017-05-01

    The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10-7 rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.

  13. Design of a transportable high efficiency fast neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Roecker, C., E-mail: calebroecker@berkeley.edu [Department of Nuclear Engineering, University of California at Berkeley, CA 94720 (United States); Bernstein, A.; Bowden, N.S. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Cabrera-Palmer, B. [Radiation and Nuclear Detection Systems, Sandia National Laboratories, Livermore, CA 94550 (United States); Dazeley, S. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Gerling, M.; Marleau, P.; Sweany, M.D. [Radiation and Nuclear Detection Systems, Sandia National Laboratories, Livermore, CA 94550 (United States); Vetter, K. [Department of Nuclear Engineering, University of California at Berkeley, CA 94720 (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-08-01

    A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV and a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm{sup 2} rising to 5000 cm{sup 2}. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm{sup 2} and 2500 cm{sup 2}. The multiplicity mode was found to be sensitive to the incident neutron angular distribution.

  14. UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    袁光伟; 沈智军; 闫伟

    2003-01-01

    In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.

  15. Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem

    Energy Technology Data Exchange (ETDEWEB)

    William Charlton

    2007-07-01

    Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions.

  16. Neutron transport with anisotropic scattering: theory and applications

    OpenAIRE

    Van den Eynde, Gert

    2005-01-01

    This thesis is a blend of neutron transport theory and numerical analysis. We start with the study of the problem of the Mika/Case eigenexpansion used in the solution process of the homogeneous one-speed Boltzmann neutron transport equation with anisotropic scattering for plane symmetry. The anisotropic scattering is expressed as a finite Legendre series in which the coefficients are the ``scattering coefficients'. This eigenexpansion consists of a discrete spectrum of eigenvalues with its co...

  17. Solar Neutron Transport in the Earth's Atmosphere

    Science.gov (United States)

    Valdes-Galicia, J. F.; Dorman, L. I.; Dorman, I. V.

    1998-11-01

    We present results of a numerical simulation and analytical solution of small scale neutron multi-scattering and attenuation in the earth atmosphere. A range of initial zenith angles and different atmpspheric depths are considered. We show that the angular distribution of neutrons remains symetrycal only for vertical arrival. For inclined arrival the distribution becomes asymetrical; the asymmetry grows with increasing zenith angle. This effect is caused by the stronger attenuation of neutrons scattered to zenith angles larger than the arrival angle. Our analytical solution shows reasonable coincidence with the numerical simulation results. These solutions are able to reproduce the normalised observed counting rates of neutron monitors for the event of 24 may 1990, the largest Solar Neutron event observed on Earth.

  18. Linear extended neutron diffusion theory for semi-in finites homogeneous means; Teoria de difusion de neutrones lineal extendida para medios homogeneos semi-infinitos

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez R, R.; Vazquez R, A.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)], e-mail: rvr@xanum.uam.mx

    2009-10-15

    Originally developed for heterogeneous means, the linear extended neutron diffusion theory is applied to the limit case of monoenergetic neutron diffusion in a semi-infinite homogeneous mean with a neutron source, located in the coordinate origin situated in the frontier of dispersive material. The monoenergetic neutron diffusion is studied taking into account the spatial deviations in the neutron flux to the interfacial current caused by the neutron source, as well as the influence of the spatial deviations in the absorption rate. The developed pattern is an unidimensional model for an energy group obtained of application of volumetric average diffusion equation in the moderator. The obtained results are compared against the classic diffusion theory and qualitatively against the neutron transport theory. (Author)

  19. Transport coefficients in superfluid neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Tolos, Laura [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Frankfurt Institute for Advances Studies. Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Manuel, Cristina [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Sarkar, Sreemoyee [Tata Institute of Fundamental Research, Homi Bhaba Road, Mumbai-400005 (India); Tarrus, Jaume [Physik Department, Technische Universität München, D-85748 Garching (Germany)

    2016-01-22

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  20. Transport coefficients in superfluid neutron stars

    CERN Document Server

    Tolos, Laura; Sarkar, Sreemoyee; Tarrus, Jaume

    2014-01-01

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  1. Neutron transport study of a beam port based dynamic neutron radiography facility

    Science.gov (United States)

    Khaial, Anas M.

    Neutron radiography has the ability to differentiate between gas and liquid in two-phase flow due both to the density difference and the high neutron scattering probability of hydrogen. Previous studies have used dynamic neutron radiography -- in both real-time and high-speed -- for air-water, steam-water and gas-liquid metal two-phase flow measurements. Radiography with thermal neutrons is straightforward and efficient as thermal neutrons are easier to detect with relatively higher efficiency and can be easily extracted from nuclear reactor beam ports. The quality of images obtained using neutron radiography and the imaging speed depend on the neutron beam intensity at the imaging plane. A high quality neutron beam, with thermal neutron intensity greater than 3.0x 10 6 n/cm2-s and a collimation ratio greater than 100 at the imaging plane, is required for effective dynamic neutron radiography up to 2000 frames per second. The primary objectives of this work are: (1) to optimize a neutron radiography facility for dynamic neutron radiography applications and (2) to investigate a new technique for three-dimensional neutron radiography using information obtained from neutron scattering. In this work, neutron transport analysis and experimental validation of a dynamic neutron radiography facility is studied with consideration of real-time and high-speed neutron radiography requirements. A beam port based dynamic neutron radiography facility, for a target thermal neutron flux of 1.0x107 n/cm2-s, has been analyzed, constructed and experimentally verified at the McMaster Nuclear Reactor. The neutron source strength at the beam tube entrance is evaluated experimentally by measuring the thermal and fast neutron fluxes using copper activation flux-mapping technique. The development of different facility components, such as beam tube liner, gamma ray filter, beam shutter and biological shield, is achieved analytically using neutron attenuation and divergence theories. Monte

  2. On generating neutron transport tables with the NJOY system

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, Alexandre D.; Claro, Luiz H., E-mail: alexdc@ieav.cta.br, E-mail: luizhenu@ieav.cta.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil)

    2013-07-01

    Incorrect values for the product of the average number of neutrons released per fission and the fission microscopic cross-section were detected in several energy groups of a neutron transport table generated with the most updated version of the NJOY system. It was verified that the problem persists when older versions of this system are utilized. Although this problem exists for, at least, ten years, it is still an open question. (author)

  3. FLUKA simulations of neutron transport in the Dresden Felsenkeller

    Energy Technology Data Exchange (ETDEWEB)

    Grieger, Marcel [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Technische Universitaet Dresden (Germany); Bemmerer, Daniel; Mueller, Stefan E.; Szuecs, Tamas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Zuber, Kai [Technische Universitaet Dresden (Germany)

    2015-07-01

    A new underground ion accelerator with 5 MV acceleration potential is currently being prepared for installation in the Dresden Felsenkeller. The Felsenkeller site consists of altogether nine mutually connected tunnels. It is shielded from cosmic radiation by a 45 m thick rock overburden, enabling uniquely sensitive experiments. In order to exclude any possible effect by the new accelerator in tunnel VIII on the existing low-background γ-counting facility in tunnel IV, Monte Carlo simulations of neutron transport are being performed. A realistic neutron source field is developed, and the resulting additional neutron flux at the γ-counting facility is modeled by FLUKA simulations.

  4. Considerations in the design of an improved transportable neutron spectrometer

    CERN Document Server

    Williams, A M; Brushwood, J M; Beeley, P A

    2002-01-01

    The Transportable Neutron Spectrometer (TNS) has been used by the Ministry of Defence for over 15 years to characterise neutron fields in workplace environments and provide local correction factors for both area and personal dosimeters. In light of advances in neutron spectrometry, a programme to evaluate and improve TNS has been initiated. This paper describes TNS, presents its operation in known radioisotope fields and in a reactor environment. Deficiencies in the operation of the instrument are highlighted, together with proposals for updating the response functions and spectrum unfolding methodologies.

  5. Calculated characteristics of subcritical assembly with anisotropic transport of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Gorin, N.V.; Lipilina, E.N.; Lyutov, V.D.; Saukov, A.I. [Zababakhin Russian Federal Nuclear Center - All-Russian Scientific Researching Institute of Technical Physics (Russian Federation)

    2003-07-01

    There was considered possibility of creating enough sub-critical system that multiply neutron fluence from a primary source by many orders. For assemblies with high neutron tie between parts, it is impossible. That is why there was developed a construction consisting of many units (cascades) having weak feedback with preceding cascades. The feedback attenuation was obtained placing layers of slow neutron absorber and moderators between the cascades of fission material. Anisotropy of fast neutron transport through the layers was used. The system consisted of many identical cascades aligning one by another. Each cascade consists of layers of moderator, fissile material and absorber of slow neutrons. The calculations were carried out using the code MCNP.4a with nuclear data library ENDF/B5. In this construction neutrons spread predominantly in one direction multiplying in each next fissile layer, and they attenuate considerably in the opposite direction. In a calculated construction, multiplication factor of one cascade is about 1.5 and multiplication factor of whole construction composed of n cascades is 1.5{sup n}. Calculated keff value is 0.9 for one cascade and does not exceed 0.98 for a system containing any number of cascades. Therefore the assembly is always sub-critical and therefore it is safe in respect of criticality. There was considered using such a sub-critical assembly to create a powerful neutron fluence for neutron boron-capturing therapy. The system merits and demerits were discussed. (authors)

  6. Neutron Transport Associated with the Galactic Cosmic Ray Cascade

    Science.gov (United States)

    Singleterry, Robert Clay, Jr.

    Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with B scRYNTRN, a computer program written by the High Energy Physics Division of N scASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. B scRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As N scASA Langley improves B scRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the F_{rm N} method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs M scGSLAB and M scGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The E scNDF/B V database is used to generate the total and scattering

  7. TRIPOLI-3: a neutron/photon Monte Carlo transport code

    Energy Technology Data Exchange (ETDEWEB)

    Nimal, J.C.; Vergnaud, T. [Commissariat a l' Energie Atomique, Gif-sur-Yvette (France). Service d' Etudes de Reacteurs et de Mathematiques Appliquees

    2001-07-01

    The present version of TRIPOLI-3 solves the transport equation for coupled neutron and gamma ray problems in three dimensional geometries by using the Monte Carlo method. This code is devoted both to shielding and criticality problems. The most important feature for particle transport equation solving is the fine treatment of the physical phenomena and sophisticated biasing technics useful for deep penetrations. The code is used either for shielding design studies or for reference and benchmark to validate cross sections. Neutronic studies are essentially cell or small core calculations and criticality problems. TRIPOLI-3 has been used as reference method, for example, for resonance self shielding qualification. (orig.)

  8. Implementation of the quasi-static method for neutron transport

    Energy Technology Data Exchange (ETDEWEB)

    Alcaro, Fabio; Dulla, Sandra; Ravetto, Piero, E-mail: fabio.alcaro@polito.it, E-mail: sandra.dulla@polito.it, E-mail: piero.ravetto@polito.it [Dipartimento di Energetica, Politecnico di Torino (Italy); Le Tellier, Romain; Suteau, Christophe, E-mail: romain.le-tellier@cea.fr, E-mail: christophe.suteau@cea.fr [CEA, DEN, DER/SPRC/LEPh, Cadarache, Saint Paul-lez-Durance (France)

    2011-07-01

    The study of the dynamic behavior of next generation nuclear reactors is a fundamental aspect for safety and reliability assessments. Despite the growing performances of modern computers, the full solution of the neutron Boltzmann equation in the time domain is still an impracticable task, thus several approximate dynamic models have been proposed for the simulation of nuclear reactor transients; the quasi-static method represents the standard tool currently adopted for the space-time solution of neutron transport problems. All the practical applications of this method that have been proposed contain a major limit, consisting in the use of isotropic quantities, such as scalar fluxes and isotropic external neutron sources, being the only data structures available in most deterministic transport codes. The loss of the angular information produces both inaccuracies in the solution of the kinetic model and the inconsistency of the quasi-static method itself. The present paper is devoted to the implementation of a consistent quasi-static method. The computational platform developed by CEA in Cadarache has been used for the creation of a kinetic package to be coupled with the existing SNATCH solver, a discrete-ordinate multi-dimensional neutron transport solver, employed for the solution of the steady-state Boltzmann equation. The work aims at highlighting the effects of the angular treatment of the neutron flux on the transient analysis, comparing the results with those produced by the previous implementations of the quasi-static method. (author)

  9. STABILITY OF P2 METHODS FOR NEUTRON TRANSPORT EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    袁光伟; 沈智军; 沈隆钧; 周毓麟

    2002-01-01

    In this paper the P2 approximation to the one-group planar neutron transport theory is discussed. The stability of the solutions for P2 equations with general boundary conditions, including the Marshak boundary condition, is proved. Moreover,the stability of the up-wind difference scheme for the P2 equation is demonstrated.

  10. Graphical User Interface for Simplified Neutron Transport Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Randolph; Carter, Leland L

    2011-07-18

    A number of codes perform simple photon physics calculations. The nuclear industry is lacking in similar tools to perform simplified neutron physics shielding calculations. With the increased importance of performing neutron calculations for homeland security applications and defense nuclear nonproliferation tasks, having an efficient method for performing simple neutron transport calculations becomes increasingly important. Codes such as Monte Carlo N-particle (MCNP) can perform the transport calculations; however, the technical details in setting up, running, and interpreting the required simulations are quite complex and typically go beyond the abilities of most users who need a simple answer to a neutron transport calculation. The work documented in this report resulted in the development of the NucWiz program, which can create an MCNP input file for a set of simple geometries, source, and detector configurations. The user selects source, shield, and tally configurations from a set of pre-defined lists, and the software creates a complete MCNP input file that can be optionally run and the results viewed inside NucWiz.

  11. Neutron shielding evaluation for a small fuel transport case

    CERN Document Server

    Coeck, M; Vanhavere, F

    2002-01-01

    We investigated the effectiveness of a small neutron shield configuration for the transportation of fresh MOX fuel rods in an experimental facility, this in order to reduce the dose received by the personnel. Monte Carlo simulations using the Tripoli and MCNP4B code were applied. Different configurations were studied, starting from the bare fuel rod positioned on an iron plate up to a fuel rod covered by a box-shaped shield made of different materials such as polyethylene, polyethylene with boron and polyethylene with a cadmium layer. We compared the neutron spectra for the different cases and calculated the corresponding ambient equivalent dose rate H*(10).

  12. Development of Library Processing System for Neutron Transport Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Song, J. S.; Park, S. Y.; Kim, H. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)] (and others)

    2008-12-15

    A system for library generation was developed for the lattice neutron transport program for pressurized water reactor core analysis. The system extracts multi energy group nuclear data for requested nuclides from ENDF/B whose data are based on continuous energy, generates hydrogen equivalent factor and resonance integral table as functions of temperature and background cross section for resonance nuclides, generates subgroup data for the lattice program to treat resonance exactly as possible, and generates multi-group neutron library file including nuclide depletion data for use of the lattice program.

  13. Recent improvements to a transportable neutron spectrometer (TNS)

    CERN Document Server

    Weaver, J A; Peyton, A J; Roskell, J

    2002-01-01

    This paper reviews the design, operation and future development of a transportable neutron spectrometer (TNS). Analogue signal processing techniques are used to condition the signals from an array of radiation sensors, comprising five gas-filled sensors and a hydrogenous oil-filled scintillator. This high reliance on analogue signal processing techniques is because of the nano-second rise time of the pulses produced from the sensor array. The analogue circuitry requires a high degree of expertise from the operator and frequent instrument calibration. An overview of the present instrument will be given together with a description of how the raw data from the individual sensor channels are combined to give a continuous neutron energy spectrum. Digital processing techniques are now being applied to the TNS to handle some of the more complex analogue functions, particularly neutron/gamma-ray pulse-shape discrimination for the photo-scintillator column. Potential advantages of this approach are on qualities such a...

  14. Computational programs for shielding calculation with transport of one dimensional and monoenergetic S{sub N}; Aplicativo computacional para calculos de blindagem com modelo de transporte S{sub N} unidimensional e monoenergetico

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Carlos Eduardo A.; Barros, Ricardo C., E-mail: ceanunes@iprj.uerj.b, E-mail: rcbarros@pq.cnpq.b [Universidade do Estado, Nova Friburgo, RJ (Brazil). Inst. Politecnico. Dept. de Modelagem Computacional

    2009-07-01

    This paper describes a computational program for result simulation of neutron transport problems at one velocity with isotropic scattering in Cartesian onedimensional geometry. Describing the physical modelling, the next phase is a mathematical modelling of the physical problem for simulation of the neutron distribution. The mathematical modelling uses the linearized Boltzmann equation which represents a balance among the production and loss of particles. The formulation of the discrete ordinates S{sub N} consists of discretization of angular variables at N directions (discrete ordinates), and using a set of angular quadratures for the approximation of integral terms of scattering sources. The S{sub N} equations are numerically solved. This work describes three numerical methods: diamond difference, step and characteristic step. The paper also presents numerical results for illustration of the efficiency of the developed program

  15. Electron transport through nuclear pasta in magnetized neutron stars

    CERN Document Server

    Yakovlev, D G

    2015-01-01

    We present a simple model for electron transport in a possible layer of exotic nuclear clusters (in the so called nuclear pasta layer) between the crust and liquid core of a strongly magnetized neutron star. The electron transport there can be strongly anisotropic and gyrotropic. The anisotropy is produced by different electron effective collision frequencies along and across local symmetry axis in domains of exotic ordered nuclear clusters and by complicated effects of the magnetic field. We also calculate averaged kinetic coefficients in case local domains are freely oriented. Possible applications of the obtained results and open problems are outlined.

  16. A transportable neutron radiography system based on a SbBe neutron source

    Science.gov (United States)

    Fantidis, J. G.; Nicolaou, G. E.; Tsagas, N. F.

    2009-07-01

    A transportable neutron radiography system, incorporating a SbBe neutron source, has been simulated using the MCNPX code. Design provisions have allowed two radiography systems to be utilised using the same SbBe neutron source. In this respect, neutron radiographies can be carried out using the photoneutrons produced when the 124Sb is surrounded by the Be target. Alternatively, γ-radiography can be utilised with the photons from the 124Sb with the target removed. Appropriate collimators were simulated for each of the radiography modes. Apart from Be, the materials considered were compatible with the European Union Directive on 'Restriction of Hazardous Substances' (RoHS) 2002/95/EC, hence excluding the use of cadmium and lead. Bismuth was chosen as the material for γ-radiation shielding and the proposed system allowed a maximum activity of the 124Sb up to 1.85×1013 Bq. The system simulated allows different object sizes to be studied with a wide range of radiography parameters.

  17. Beam-transport optimization for cold-neutron spectrometer

    Directory of Open Access Journals (Sweden)

    Nakajima Kenji

    2015-01-01

    Full Text Available We report the design of the beam-transport system (especially the vertical geometry for a cold-neutron disk-chopper spectrometer AMATERAS at J-PARC. Based on the elliptical shape, which is one of the most effective geometries for a ballistic mirror, the design was optimized to obtain, at the sample position, a neutron beam with high flux without serious degrading in divergence and spacial homogeneity within the boundary conditions required from actual spectrometer construction. The optimum focal point was examined. An ideal elliptical shape was modified to reduce its height without serious loss of transmission. The final result was adapted to the construction requirements of AMATERAS. Although the ideas studied in this paper are considered for the AMATERAS case, they can be useful also to other spectrometers in similar situations.

  18. Benchmarking of neutron production of heavy-ion transport codes

    Energy Technology Data Exchange (ETDEWEB)

    Remec, I. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6172 (United States); Ronningen, R. M. [Michigan State Univ., National Superconductiong Cyclotron Laboratory, East Lansing, MI 48824-1321 (United States); Heilbronn, L. [Univ. of Tennessee, 1004 Estabrook Rd., Knoxville, TN 37996-2300 (United States)

    2011-07-01

    Document available in abstract form only, full text of document follows: Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required. (authors)

  19. Utilization of low voltage D-T neutron generators in neutron physics studies

    Energy Technology Data Exchange (ETDEWEB)

    Singkarat, S.

    1995-08-01

    In a small nuclear laboratory of a developing country a low voltage D-T neutron generator can be a very useful scientific apparatus. Such machines have been used successfully for more than 40 years in teaching and scientific research. The original continuous mode 150-kV D-T neutron generator has been modified to have also a capability of producing 2-ns pulsed neutrons. Together with a carefully designed 10 m long flight path collimator and shielding of a 25 cm diameter {center_dot} 10 cm thick BC-501 neutron detector, the pulsing system was successfully used for measuring the double differential cross-section (DDX) of natural iron for 14.1-MeV neutron from the angle of 30 deg to 150 deg in 10 deg steps. In order to extend the utility of the generator, two methods for converting the almost monoenergetic 14-MeV neutrons to monoenergetic neutrons of lower energy were proposed and tested. The first method uses a pulsed neutron generator and the second method uses an ordinary continuous mode generator. The latter method was successfully used to measure the scintillation light output of a 1.4 cm diameter spherical NE-213 scintillation detector. The neutron generator has also been used in the continuous search for improved neutron detection techniques. There is a proposal, based on Monte Carlo calculations, of using a scintillation fiber for a fast neutron spectrometer. Due to the slender shape of the fiber, the pattern of produced light gives a peak in the pulse height spectrum instead of the well-known rectangular-like distribution, when the fiber is bombarded end-on by a beam of 14-MeV neutrons. Experimental investigations were undertaken. Detailed investigations on the light transportation property of a short fiber were performed. The predicted peak has not yet been found but the fiber detector may be developed as a directional discrimination fast neutron detector. 18 refs.

  20. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device.

    Science.gov (United States)

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J

    2015-09-11

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)(3)He and D(d,n)(3)He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the (9)Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  1. Establishment and Verification of MCNP Neutron Transport Model About Tianwan Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Qi

    2012-01-01

    <正>In order to calculating the neutron flux in the surveillance box and reactor pressure vessel of the Tianwan NPP, we need to build up the neutron transport model by using the Monte Carlo code MCNP. The core of the NPP is very complicated for modeling so we put forward some assumptions that can simplify the neutron transport model. A lot of calculation works have been done to prove that the assumptions are right and suitable.

  2. Lattice Boltzmann solution of the transient Boltzmann transport equation in radiative and neutron transport.

    Science.gov (United States)

    Wang, Yahui; Yan, Liming; Ma, Yu

    2017-06-01

    Applications of the transient Boltzmann transport equation (BTE) have undergone much investigation, such as radiative heat transfer and neutron transport. This paper provides a lattice Boltzmann model to efficiently resolve the multidimensional transient BTE. For a higher angular resolution, enough transport directions are considered while the transient BTE in each direction is treated as a conservation law equation and solved independently. Both macroscopic equations recovered from a Chapman-Enskog expansion and simulated results of typical benchmark problems show not only the second-order accuracy but also the flexibility and applicability of the proposed lattice Boltzmann model. This approach may contribute a powerful technique for the parallel simulation of large-scale engineering and some alternative perspectives for solving the nonlinear transport problem further.

  3. Cosmic-ray neutron transport at a forest field site

    DEFF Research Database (Denmark)

    Andreasen, Mie; Jensen, Karsten Høgh; Desilets, Darin

    2017-01-01

    parameters describing the subsurface to match measured height profiles and time series of thermal and epithermal neutron intensities at a field site in Denmark. Overall, modeled thermal and epithermal neutron intensities are in satisfactory agreement with measurements; however, the choice of forest canopy...... conceptualization is found to be significant. Modeling results show that the effect of canopy interception, soil chemistry and dry bulk density of litter and mineral soil on neutron intensity is small. On the other hand, the neutron intensity decreases significantly with added litter-layer thickness, especially...... for epithermal neutron energies. Forest biomass also has a significant influence on the neutron intensity height profiles at the examined field site, altering both the shape of the profiles and the ground-level thermal-to-epithermal neutron ratio. This ratio increases with increasing amounts of biomass...

  4. Interfacing MCNPX and McStas for simulation of neutron transport

    OpenAIRE

    Klinkby, Esben Bryndt; Lauritzen, Bent; Nonbøl, Erik; Willendrup, Peter Kjær; Filges, Uwe; Wohlmuther, Michael; Gallmeier, Franz X.

    2013-01-01

    Simulations of target-moderator-reflector system at spallation sources are conventionally carried out using Monte Carlo codes such as MCNPX[1] or FLUKA[2, 3] whereas simulations of neutron transport from the moderator and the instrument response are performed by neutron ray tracing codes such as McStas[4, 5, 6, 7]. The coupling between the two simulation suites typically consists of providing analytical fits of MCNPX neutron spectra to McStas. This method is generally successful but has limit...

  5. Behavior of neutrons under different thicknesses of moderation; Comportamiento de los neutrones bajo diferentes espesores de moderacion

    Energy Technology Data Exchange (ETDEWEB)

    Baltazar R, A. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Programa de Doctorado en Ingenieria y Tecnologia Aplicada, 98068 Zacatecas, Zac. (Mexico); Medina C, D.; Soto B, T. G. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Programa de Doctorado en Ciencias Basicas, 98068 Zacatecas, Zac. (Mexico); Vega C, H. R., E-mail: raigosa.antonio@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2016-10-15

    Neutrons occur naturally, regardless of whether they are obtained as a by-product of other reactions or intentionally, mainly as a by-product of the interaction of cosmic rays with the nuclei of the atmosphere, and in anthropogenic or artificial form with neutron generators, nuclear reactors, radioisotope sources, etc. Due to their high radiobiological efficiency is important measure them in order to estimate the effective dose in occupationally exposed personnel and the public in general. This dose depends on the amount of neutrons and their energy; in order to reduce neutron energy, light materials based on H, D, C, Be are used which moderate and thermalize them. The objective of this work was to determine the behavior of monoenergetic sources of neutrons in their transport within polyethylene of different thicknesses. The study was carried out using Monte Carlo methods with the code MCNP5, where 23 monoenergetic sources of I E(-9) were used at 20 MeV by influencing the neutrons on various polyethylene surfaces whose thickness was varied from 5.08 to 30.48 cm and the total neutron flux was estimated, as well as its spectrum when crossing the various thicknesses used in the study. (Author)

  6. Interfacing MCNPX and McStas for simulation of neutron transport

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Lauritzen, Bent; Nonbøl, Erik

    2013-01-01

    Simulations of target-moderator-reflector system at spallation sources are conventionally carried out using Monte Carlo codes such as MCNPX[1] or FLUKA[2, 3] whereas simulations of neutron transport from the moderator and the instrument response are performed by neutron ray tracing codes such as Mc...

  7. Transport calculation of thermal and cold neutrons using NMTC/JAERI-MCNP4A code system

    Energy Technology Data Exchange (ETDEWEB)

    Iga, Kiminori [Kyushu Univ., Fukuoka (Japan); Takada, Hiroshi; Nagao, Tadashi

    1998-01-01

    In order to investigate the applicability of the NMTC/JAERI-MCNP4A code system to the neutronics design study in the neutron science research project of JAERI, transport calculations of thermal and cold neutrons are performed with the code system on a spallation neutron source composed of light water cooled tantalum target with a moderator and a reflector system. The following neutronic characteristics are studied in the calculation : the variation of the intensity of neutrons emitted from a light water moderator or a liquid hydrogen with/without the B{sub 4}C decoupler, which are installed to produce sharp pulse, and that dependent on the position of external source neutrons in the tantalum target. The calculated neutron energy spectra are reproduced well by the semi-empirical formula with the parameter values reliable in physical meanings. It is found to be necessary to employ proper importance sampling technique in the statistics. It is confirmed from this work that the NMTC/JAERI-MCNP4A code system is applicable to the neutronics design study of spallation neutron sources proposed for the neutron science research project. (author)

  8. Neutron and photon transport calculations in fusion system. 2

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    On the application of MCNP to the neutron and {gamma}-ray transport calculations for fusion reactor system, the wide range design calculation has been carried out in the engineering design activities for the international thermonuclear fusion experimental reactor (ITER) being developed jointly by Japan, USA, EU and Russia. As the objects of shielding calculation for fusion reactors, there are the assessment of dose equivalent rate for living body shielding and the assessment of the nuclear response for the soundness of in-core structures. In the case that the detailed analysis of complicated three-dimensional shapes is required, the assessment using MCNP has been carried out. Also when the nuclear response of peripheral equipment due to the gap streaming between blanket modules is evaluated with good accuracy, the calculation with MCNP has been carried out. The analyses of the shieldings for blanket modules and NBI port are explained, and the examples of the results of analyses are shown. In the blanket modules, there are penetrating holes and continuous gap. In the case of the NBI port, shielding plug cannot be installed. These facts necessitate the MCNP analysis with high accuracy. (K.I.)

  9. PHISICS multi-group transport neutronic capabilities for RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    Epiney, A.; Rabiti, C.; Alfonsi, A.; Wang, Y.; Cogliati, J.; Strydom, G. [Idaho National Laboratory (INL), 2525 N. Fremont Ave., Idaho Falls, ID 83402 (United States)

    2012-07-01

    PHISICS is a neutronic code system currently under development at INL. Its goal is to provide state of the art simulation capability to reactor designers. This paper reports on the effort of coupling this package to the thermal hydraulic system code RELAP5. This will enable full prismatic core and system modeling and the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5 (NESTLE). The paper describes the capabilities of the coupling and illustrates them with a set of sample problems. (authors)

  10. Transport of ultracold neutrons through a mirror system with surface roughness as a velocity filter

    CERN Document Server

    Chizhova, L A; Jenke, T; Cronenberg, G; Geltenbort, P; Abele, H; Burgdörfer, J

    2012-01-01

    We perform classical Monte Carlo simulations of ultracold neutron transport through an absorbing-reflecting mirror system in the Earth's gravitational field. We show that the underlying mixed phase space of regular skipping motion and random motion due to disorder scattering can be exploited to realize a velocity filter for ultracold neutrons. The range of velocities selected is controlled by geometric parameters of the wave guide. Possible applications include investigations of transport and scattering dynamics in confined systems.

  11. VVER-440 Ex-Core Neutron Transport Calculations by MCNP-5 Code and Comparison with Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Borodkin, Pavel; Khrennikov, Nikolay [Scientific and Engineering Centre for Nuclear and Radiation Safety (SEC NRS) Malaya Krasnoselskaya ul., 2/8, bld. 5, 107140 Moscow (Russian Federation)

    2008-07-01

    Ex-core neutron transport calculations are needed to evaluate radiation loading parameters (neutron fluence, fluence rate and spectra) on the in-vessel equipment, reactor pressure vessel (RPV) and support constructions of VVER type reactors. Due to these parameters are used for reactor equipment life-time assessment, neutron transport calculations should be carried out by precise and reliable calculation methods. In case of RPVs, especially, of first generation VVER-440s, the neutron fluence plays a key role in the prediction of RPV lifetime. Main part of VVER ex-core neutron transport calculations are performed by deterministic and Monte-Carlo methods. This paper deals with precise calculations of the Russian first generation VVER-440 by MCNP-5 code. The purpose of this work was an application of this code for expert calculations, verification of results by comparison with deterministic calculations and validation by neutron activation measured data. Deterministic discrete ordinates DORT code, widely used for RPV neutron dosimetry and many times tested by experiments, was used for comparison analyses. Ex-vessel neutron activation measurements at the VVER-440 NPP have provided space (in azimuth and height directions) and neutron energy (different activation reactions) distributions data for experimental (E) validation of calculated results. Calculational intercomparison (DORT vs. MCNP-5) and comparison with measured values (MCNP-5 and DORT vs. E) have shown agreement within 10-15% for different space points and reaction rates. The paper submits a discussion of results and makes conclusions about practice use of MCNP-5 code for ex-core neutron transport calculations in expert analysis. (authors)

  12. Neutron interaction and their transport with bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Esther Kalpana, E-mail: esther.kalpanarani@gmail.com [Department of Physics JNT University, Nachupally, Karimnagar, Telangana, 500055 (India); Radhika, K., E-mail: radhikanit@gmail.com [Department of Humanities and Applied Sciences, Talla Padmavathi College of Engineering, Warangal, Telangana, 506004 (India)

    2015-05-15

    In the current paper an attempt was made to study and provide fundamental information about neutron interactions that are important to nuclear material measurements. The application of this study is explained about macroscopic interactions with bulk compound materials through a program in DEV C++ language which is done by enabling interaction of neutrons in nature. The output of the entire process depends upon the random number (i.e., incident neutron number), thickness of the material and mean free path as input parameters. Further the current study emphasizes on the usage of materials in shielding.

  13. Comparison of 2D and 3D Neutron Transport Analyses on Yonggwang Unit 3 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, Aoung Jae; Kim, Byoung Chul; Lim, Mi Joung; Kim, Kyung Sik; Jeon, Young Kyou [Korea Reactor Integrity Surveillance Technology, Daejeon (Korea, Republic of); Yoo, Choon Sung [Korea Atomic Energy Research Institutes, Daejeon (Korea, Republic of)

    2012-10-15

    10 CFR Part 50 Appendix H requires periodical surveillance program in the reactor vessel (RV) belt line region of light water nuclear power plant to check vessel integrity resulting from the exposure to neutron irradiation and thermal environment. Exact exposure analysis of the neutron fluence based on right modeling and simulations is the most important in the evaluation. Traditional 2 dimensional (D) and 1D synthesis methodologies have been widely applied to evaluate the fast neutron (E > 1.0 MeV) fluence exposure to RV. However, 2D and 1D methodologies have not provided accurate fast neutron fluence evaluation at elevations far above or below the active core region. RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries) program for 3D geometries calculation was therefore developed both by Westinghouse Electronic Company, USA and Korea Reactor Integrity Surveillance Technology (KRIST) for the analysis of In-Vessel Surveillance Test and Ex-Vessel Neutron Dosimetry (EVND). Especially EVND which is installed at active core height between biological shielding material and concrete also evaluates axial neutron fluence by placing three dosimetries each at Top, Middle and Bottom part of the angle representing maximum neutron fluence. The EVND programs have been applied to the Korea Nuclear Plants. The objective of this study is therefore to compare the 3D and the 2D Neutron Transport Calculations and Analyses on the Yonggwang unit 3 Reactor as an example.

  14. MCNPX Monte Carlo simulations of particle transport in SiC semiconductor detectors of fast neutrons

    Science.gov (United States)

    Sedlačková, K.; Zat'ko, B.; Šagátová, A.; Pavlovič, M.; Nečas, V.; Stacho, M.

    2014-05-01

    The aim of this paper was to investigate particle transport properties of a fast neutron detector based on silicon carbide. MCNPX (Monte Carlo N-Particle eXtended) code was used in our study because it allows seamless particle transport, thus not only interacting neutrons can be inspected but also secondary particles can be banked for subsequent transport. Modelling of the fast-neutron response of a SiC detector was carried out for fast neutrons produced by 239Pu-Be source with the mean energy of about 4.3 MeV. Using the MCNPX code, the following quantities have been calculated: secondary particle flux densities, reaction rates of elastic/inelastic scattering and other nuclear reactions, distribution of residual ions, deposited energy and energy distribution of pulses. The values of reaction rates calculated for different types of reactions and resulting energy deposition values showed that the incident neutrons transfer part of the carried energy predominantly via elastic scattering on silicon and carbon atoms. Other fast-neutron induced reactions include inelastic scattering and nuclear reactions followed by production of α-particles and protons. Silicon and carbon recoil atoms, α-particles and protons are charged particles which contribute to the detector response. It was demonstrated that although the bare SiC material can register fast neutrons directly, its detection efficiency can be enlarged if it is covered by an appropriate conversion layer. Comparison of the simulation results with experimental data was successfully accomplished.

  15. Spin diffusive modes and thermal transport in neutron star crusts

    CERN Document Server

    Sedrakian, Armen

    2015-01-01

    In this contribution we first review a method for obtaining the collective modes of pair-correlated neutron matter as found in a neutron star inner crust. We discuss two classes of modes corresponding to density and spin perturbations with energy spectra $\\omega = \\omega_0 + \\alpha q^2$, where $\\omega_0 = 2\\Delta$ is the threshold frequency and $\\Delta$ is the gap in the neutron fluid spectrum. For characteristic values of Landau parameters in neutron star crusts the exitonic density modes have $\\alpha 0$ and they exist above $\\omega_0$ which implies that these modes are damped. As an application of these findings we compute the thermal conductivity due to spin diffusive modes and show that it scales as $T^{1/2} \\exp(-2\\omega_0/T)$ in the case where their two-by-two scattering cross-section is weakly dependent on temperature.

  16. Measurements of the neutron activation cross sections for Bi and Co at 386 MeV.

    Science.gov (United States)

    Yashima, H; Sekimoto, S; Ninomiya, K; Kasamatsu, Y; Shima, T; Takahashi, N; Shinohara, A; Matsumura, H; Satoh, D; Iwamoto, Y; Hagiwara, M; Nishiizumi, K; Caffee, M W; Shibata, S

    2014-10-01

    Neutron activation cross sections for Bi and Co at 386 MeV were measured by activation method. A quasi-monoenergetic neutron beam was produced using the (7)Li(p,n) reaction. The energy spectrum of these neutrons has a high-energy peak (386 MeV) and a low-energy tail. Two neutron beams, 0° and 25° from the proton beam axis, were used for sample irradiation, enabling a correction for the contribution of the low-energy neutrons. The neutron-induced activation cross sections were estimated by subtracting the reaction rates of irradiated samples for 25° irradiation from those of 0° irradiation. The measured cross sections were compared with the findings of other studies, evaluated in relation to nuclear data files and the calculated data by Particle and Heavy Ion Transport code System code.

  17. Spherical harmonics method for neutron transport equation based on unstructured-meshes

    Institute of Scientific and Technical Information of China (English)

    CAO Liang-Zhi; WU Hong-Chun

    2004-01-01

    Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical harmonics function is used to expand the angular flux. A set of differential equations about the spatial variable, which are coupled with each other, can be obtained. They are solved iteratively by using the finite element method on unstructured-meshes. A two-dimension transport calculation program is coded according to the model. The numerical results of some benchmark problems demonstrate that this method can give high precision results and avoid the ray effect very well.

  18. Discrete ordinates method for three-dimensional neutron transport equation based on unstructured-meshes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A discrete ordinates method for a threedimensional first-order neutron transport equation based on unstructured-meshes that avoids the singularity of the second-order neutron transport equation in void regions was derived.The finite element variation equation was obtained using the least-squares method.A three-dimensional transport calculation code was developed.Both the triangular-z and the tetrahedron elements were included.The numerical results of some benchmark problems demonstrated that this method can solve neutron transport problems in unstructuredmeshes very well.For most problems,the error of the eigenvalue and the angular flux is less than 0.3% and 3.0% respectively.

  19. How to polarise all neutrons in one beam: a high performance polariser and neutron transport system

    Science.gov (United States)

    Rodriguez, D. Martin; Bentley, P. M.; Pappas, C.

    2016-09-01

    Polarised neutron beams are used in disciplines as diverse as magnetism,soft matter or biology. However, most of these applications often suffer from low flux also because the existing neutron polarising methods imply the filtering of one of the spin states, with a transmission of 50% at maximum. With the purpose of using all neutrons that are usually discarded, we propose a system that splits them according to their polarisation, flips them to match the spin direction, and then focuses them at the sample. Monte Carlo (MC) simulations show that this is achievable over a wide wavelength range and with an outstanding performance at the price of a more divergent neutron beam at the sample position.

  20. Neutron cross-section probability tables in TRIPOLI-3 Monte Carlo transport code

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, S.H.; Vergnaud, T.; Nimal, J.C. [Commissariat a l`Energie Atomique, Gif-sur-Yvette (France). Lab. d`Etudes de Protection et de Probabilite

    1998-03-01

    Neutron transport calculations need an accurate treatment of cross sections. Two methods (multi-group and pointwise) are usually used. A third one, the probability table (PT) method, has been developed to produce a set of cross-section libraries, well adapted to describe the neutron interaction in the unresolved resonance energy range. Its advantage is to present properly the neutron cross-section fluctuation within a given energy group, allowing correct calculation of the self-shielding effect. Also, this PT cross-section representation is suitable for simulation of neutron propagation by the Monte Carlo method. The implementation of PTs in the TRIPOLI-3 three-dimensional general Monte Carlo transport code, developed at Commissariat a l`Energie Atomique, and several validation calculations are presented. The PT method is proved to be valid not only in the unresolved resonance range but also in all the other energy ranges.

  1. Neutron transport calculation for Activation Evaluation for Decommissioning of PET cyclotron Facility

    Science.gov (United States)

    Nobuhara, Fumiyoshi; Kuroyanagi, Makoto; Masumoto, Kazuyoshi; Nakamura, Hajime; Toyoda, Akihiro; Takahashi, Katsuhiko

    2017-09-01

    In order to evaluate the state of activation in a cyclotron facility used for the radioisotope production of PET diagnostics, we measured the neutron flux by using gold foils and TLDs. Then, the spatial distribution of neutrons and induced activity inside the cyclotron vault were simulated with the Monte Calro calculation code for neutron transport and DCHAIN-SP for activation calculation. The calculated results are in good agreement with measured values within factor 3. Therefore, the adaption of the advanced evaluation procedure for activation level is proved to be important for the planning of decommissioning of these facilities.

  2. Neutron and Photon Transport in Sea-Going Cargo Containers

    Energy Technology Data Exchange (ETDEWEB)

    Pruet, J; Descalle, M; Hall, J; Pohl, B; Prussin, S G

    2005-02-09

    Factors affecting sensing of small quantities of fissionable material in large sea-going cargo containers by neutron interrogation and detection of {beta}-delayed photons are explored. The propagation of variable-energy neutrons in cargos, subsequent fission of hidden nuclear material and production of the {beta}-delayed photons, and the propagation of these photons to an external detector are considered explicitly. Detailed results of Monte Carlo simulations of these stages in representative cargos are presented. Analytical models are developed both as a basis for a quantitative understanding of the interrogation process and as a tool to allow ready extrapolation of the results to cases not specifically considered here.

  3. Development of deterministic transport methods for low energy neutrons for shielding in space

    Science.gov (United States)

    Ganapol, Barry

    1993-09-01

    Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with BRYNTRN, a computer program written by the High Energy Physics Division of NASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. BRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As NASA Langley improves BRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the FN method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs MGSLAB and MGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The ENDF/B V database is used to generate the total and scattering cross sections for neutrons in

  4. Improved Algorithms and Coupled Neutron-Photon Transport for Auto-Importance Sampling Method

    CERN Document Server

    Wang, Xin; Qiu, Rui; Li, Chun-Yan; Liang, Man-Chun; Zhang, Hui; Li, Jun-Li

    2016-01-01

    Auto-Importance Sampling (AIS) method is a Monte Carlo variance reduction technique proposed by Tsinghua University for deep penetration problem, which can improve computational efficiency significantly without pre-calculations for importance distribution. However AIS method is only validated with several basic deep penetration problems of simple geometries and cannot be used for coupled neutron-photon transport. This paper firstly presented the latest algorithm improvements for AIS method including particle transport, fictitious particles creation and adjustment, fictitious surface geometry, random number allocation and calculation of estimated relative error, which made AIS method applicable to complicated deep penetration problem. Then, a coupled Neutron-Photon Auto-Importance Sampling (NP-AIS) method was proposed to apply AIS method with the improved algorithms in coupled neutron-photon Monte Carlo transport. Finally, the NUREG/CR-6115 PWR benchmark model was calculated with the method of geometry splitti...

  5. Least-squares finite element discretizations of neutron transport equations in 3 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Manteuffel, T.A [Univ. of Colorado, Boulder, CO (United States); Ressel, K.J. [Interdisciplinary Project Center for Supercomputing, Zurich (Switzerland); Starkes, G. [Universtaet Karlsruhe (Germany)

    1996-12-31

    The least-squares finite element framework to the neutron transport equation introduced in is based on the minimization of a least-squares functional applied to the properly scaled neutron transport equation. Here we report on some practical aspects of this approach for neutron transport calculations in three space dimensions. The systems of partial differential equations resulting from a P{sub 1} and P{sub 2} approximation of the angular dependence are derived. In the diffusive limit, the system is essentially a Poisson equation for zeroth moment and has a divergence structure for the set of moments of order 1. One of the key features of the least-squares approach is that it produces a posteriori error bounds. We report on the numerical results obtained for the minimum of the least-squares functional augmented by an additional boundary term using trilinear finite elements on a uniform tesselation into cubes.

  6. Neutron and photon transport uncertainties of deep penetration in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Jatuff, Fabian E. [INVAP S.E., San Carlos de Bariloche (Argentina)

    1996-07-01

    We describe the results obtained for the characterization of neutron and photon fields of the graphite thermal column of a 10-MW MTR-type research reactor, together with the mandatory Verification and Validation (V and V) procedure. The graphite thermal column exhibits a relatively small cross sectional are (50 cm X 50 cm) and a large depth ({approx}140cm), representing a difficult deep-penetration problem. The calculation line relied on estimations made the Monte Carlo MCNP-4.2 code. The Validation and Verification (V and V) procedure required: mandatory norms and an auditable path; ANISN/VITAMIN-C (deterministic) calculations for comparison with MCNP; identification of all approximations used, together with the method of justification; explicit statement of parameters for comparison, and statement of the areas of applicability; parametric studies concerning impurities and transverse leakage effects; statement of biases and uncertainties. The results showed a restricted range of applicability ({approx}60 cm) for fast and epithermal neutron fluxes, therefore needing a careful extrapolation to deeper locations. The transverse leakage of neutrons has a greater effect on the diffusion of thermal neutrons when compared to impurities of up to 5 ppm of natural boron. In addition, it is discussed the nature of the biases and uncertainty bands calculated. (author)

  7. The Effect of Anisotropic Scatter on Atmospheric Neutron Transport

    Science.gov (United States)

    2015-03-26

    slab geometry, two studies were conducted exploring the relative effect of anisotropic scatter as compared to isotropic scatter in the center of mass... anisotropic scatter. In order to address this question, first anisotropic scatter was implemented, then verified, and finally, the measurement of the... measured value. The relative error between neutron counts in isotropic and anisotropic time- integrated energy bins, isotropic anisotropicrel

  8. Quantifying moisture transport in cementitious materials using neutron radiography

    Science.gov (United States)

    Lucero, Catherine L.

    A portion of the concrete pavements in the US have recently been observed to have premature joint deterioration. This damage is caused in part by the ingress of fluids, like water, salt water, or deicing salts. The ingress of these fluids can damage concrete when they freeze and expand or can react with the cementitious matrix causing damage. To determine the quality of concrete for assessing potential service life it is often necessary to measure the rate of fluid ingress, or sorptivity. Neutron imaging is a powerful method for quantifying fluid penetration since it can describe where water has penetrated, how quickly it has penetrated and the volume of water in the concrete or mortar. Neutrons are sensitive to light atoms such as hydrogen and thus clearly detect water at high spatial and temporal resolution. It can be used to detect small changes in moisture content and is ideal for monitoring wetting and drying in mortar exposed to various fluids. This study aimed at developing a method to accurately estimate moisture content in mortar. The common practice is to image the material dry as a reference before exposing to fluid and normalizing subsequent images to the reference. The volume of water can then be computed using the Beer-Lambert law. This method can be limiting because it requires exact image alignment between the reference image and all subsequent images. A model of neutron attenuation in a multi-phase cementitious composite was developed to be used in cases where a reference image is not available. The attenuation coefficients for water, un-hydrated cement, and sand were directly calculated from the neutron images. The attenuation coefficient for the hydration products was then back-calculated. The model can estimate the degree of saturation in a mortar with known mixture proportions without using a reference image for calculation. Absorption in mortars exposed to various fluids (i.e., deionized water and calcium chloride solutions) were investigated

  9. Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method

    CERN Document Server

    2002-01-01

    This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.

  10. Numerical solution of the time dependent neutron transport equation by the method of the characteristics

    Science.gov (United States)

    Talamo, Alberto

    2013-05-01

    This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps.

  11. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    Energy Technology Data Exchange (ETDEWEB)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France); Méchin, Laurence [CNRS, UCBN, Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen, 14050 Caen (France); Hamel, Matthieu [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France)

    2016-08-21

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  12. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    Science.gov (United States)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-08-01

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  13. In situ neutron depth profiling: A powerful method to probe lithium transport in micro-batteries

    NARCIS (Netherlands)

    Oudenhoven, J.F.M.; Labohm, F.; Mulder, M.; Niessen, R.A.H.; Mulder, F.M.; Notten, P.H.L.

    2011-01-01

    In situ neutron depth profiling (NDP) offers the possibility to observe lithium transport inside micro-batteries during battery operation. It is demonstrated that NDP results are consistent with the results of electrochemical measurements, and that the use of an enriched6LiCoO2 cathode offers more i

  14. The neutron transport code DTF-Traca users manual and input data

    Energy Technology Data Exchange (ETDEWEB)

    Ahnert, C.

    1979-07-01

    This is a users manual of the neutron transport code DTF-TRACA, which is a version of the original DTF-IV with some modifications made at JEN. A detailed input data descriptions is given. The new options developed at JEN are included too. (Author) 18 refs.

  15. The adjoint neutron transport equation and the statistical approach for its solution

    CERN Document Server

    Saracco, Paolo; Ravetto, Piero

    2016-01-01

    The adjoint equation was introduced in the early days of neutron transport and its solution, the neutron importance, has ben used for several applications in neutronics. The work presents at first a critical review of the adjoint neutron transport equation. Afterwards, the adjont model is constructed for a reference physical situation, for which an analytical approach is viable, i.e. an infinite homogeneous scattering medium. This problem leads to an equation that is the adjoint of the slowing-down equation that is well-known in nuclear reactor physics. A general closed-form analytical solution to such adjoint equation is obtained by a procedure that can be used also to derive the classical Placzek functions. This solution constitutes a benchmark for any statistical or numerical approach to the adjoint equation. A sampling technique to evaluate the adjoint flux for the transport equation is then proposed and physically interpreted as a transport model for pseudo-particles. This can be done by introducing appr...

  16. Post-merger evolution of a neutron star-black hole binary with neutrino transport

    CERN Document Server

    Foucart, Francois; Roberts, Luke; Duez, Matthew D; Haas, Roland; Kidder, Lawrence E; Ott, Christian D; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela

    2015-01-01

    We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated general relativistic truncated moment formalism for neutrino transport. We describe our implementation of the moment formalism and important tests of our code, before studying the formation phase of a disk after a black hole-neutron star merger. We use as initial data an existing general relativistic simulation of the merger of a neutron star of 1.4 solar mass with a black hole of 7 solar mass and dimensionless spin a/M=0.8. Comparing with a simpler leakage scheme for the treatment of the neutrinos, we find noticeable differences in the neutron to proton ratio in and around the disk, and in the neutrino luminosity. We find that the electron neutrino luminosity is much lower in the transport simulations, and that the remnant is less neutron-rich. The spatial distribution of the neutrinos is significantly affected by relativistic effects. Over the short timescale e...

  17. Transport simulation and image reconstruction for fast-neutron detection of explosives and narcotics

    Energy Technology Data Exchange (ETDEWEB)

    Micklich, B.J.; Fink, C.L.; Sagalovsky, L.

    1995-07-01

    Fast-neutron inspection techniques show considerable promise for explosive and narcotics detection. A key advantage of using fast neutrons is their sensitivity to low-Z elements (carbon, nitrogen, and oxygen), which are the primary constituents of these materials. We are currently investigating two interrogation methods in detail: Fast-Neutron Transmission Spectroscopy (FNTS) and Pulsed Fast-Neutron Analysis (PFNA). FNTS is being studied for explosives and narcotics detection in luggage and small containers for which the transmission ratio is greater than about 0.01. The Monte-Carlo radiation transport code MCNP is being used to simulate neutron transmission through a series of phantoms for a few (3-5) projection angles and modest (2 cm) resolution. Areal densities along projection rays are unfolded from the transmission data. Elemental abundances are obtained for individual voxels by tomographic reconstruction, and these reconstructed elemental images are combined to provide indications of the presence or absence of explosives or narcotics. PFNA techniques are being investigated for detection of narcotics in cargo containers because of the good penetration of the fast neutrons and the low attenuation of the resulting high-energy gamma-ray signatures. Analytic models and Monte-Carlo simulations are being used to explore the range of capabilities of PFNA techniques and to provide insight into systems engineering issues. Results of studies from both FNTS and PFNA techniques are presented.

  18. OECD/NEA benchmark for time-dependent neutron transport calculations without spatial homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jason, E-mail: jason.hou@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Ivanov, Kostadin N. [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Boyarinov, Victor F.; Fomichenko, Peter A. [National Research Centre “Kurchatov Institute”, Kurchatov Sq. 1, Moscow (Russian Federation)

    2017-06-15

    Highlights: • A time-dependent homogenization-free neutron transport benchmark was created. • The first phase, known as the kinetics phase, was described in this work. • Preliminary results for selected 2-D transient exercises were presented. - Abstract: A Nuclear Energy Agency (NEA), Organization for Economic Co-operation and Development (OECD) benchmark for the time-dependent neutron transport calculations without spatial homogenization has been established in order to facilitate the development and assessment of numerical methods for solving the space-time neutron kinetics equations. The benchmark has been named the OECD/NEA C5G7-TD benchmark, and later extended with three consecutive phases each corresponding to one modelling stage of the multi-physics transient analysis of the nuclear reactor core. This paper provides a detailed introduction of the benchmark specification of Phase I, known as the “kinetics phase”, including the geometry description, supporting neutron transport data, transient scenarios in both two-dimensional (2-D) and three-dimensional (3-D) configurations, as well as the expected output parameters from the participants. Also presented are the preliminary results for the initial state 2-D core and selected transient exercises that have been obtained using the Monte Carlo method and the Surface Harmonic Method (SHM), respectively.

  19. Ageing of a neutron shielding used in transport/storage casks

    Energy Technology Data Exchange (ETDEWEB)

    Nizeyiman, Fidele; Alami, Aatif; Issard, Herve; Bellenger, Veronique [TN International, 1 rue des herons, Montigny le Bretonneux, 78054 Saint Quentin en Yvelines (France); Laboratoire PIMM, Arts and Metiers ParisTech, 151 Bd de l' Hopital, 75013 Paris (France)

    2012-07-11

    In radioactive materials transport/storage casks, a mineral-filled vinylester composite is used for neutron shielding which relies on its hydrogen and boron atoms content. During cask service life, this composite is mainly subjected to three types of ageing: hydrothermal ageing, thermal oxidation and neutron irradiation. The aim of this study is to investigate the effect of hydrothermal ageing on the properties and chemical composition of this polymer composite. At high temperature (120 Degree-Sign C and 140 Degree-Sign C), the main consequence is the strong decrease of mechanical properties induced by the filler/matrix debonding.

  20. A 2-D/3-D cartesian geometry non-conforming spherical harmonic neutron transport solver

    Energy Technology Data Exchange (ETDEWEB)

    Van Criekingen, S. [Laboratoire J.-L. Lions, Universite Pierre et Marie Curie, 175 rue du Chevaleret, 75013 Paris (France)]. E-mail: vancriekingen@ann.jussieu.fr

    2007-03-15

    A new 2-D/3-D transport core solver for the time-independent Boltzmann transport equation is presented. This solver, named FIESTA, is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux into spherical harmonics (P {sub N} method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous scalar flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations discretized using Raviart-Thomas finite elements. Encouraging numerical results are presented.

  1. Noninvasive neutron scattering measurements reveal slower cholesterol transport in model lipid membranes.

    Science.gov (United States)

    Garg, S; Porcar, L; Woodka, A C; Butler, P D; Perez-Salas, U

    2011-07-20

    Proper cholesterol transport is essential to healthy cellular activity and any abnormality can lead to several fatal diseases. However, complete understandings of cholesterol homeostasis in the cell remains elusive, partly due to the wide variability in reported values for intra- and intermembrane cholesterol transport rates. Here, we used time-resolved small-angle neutron scattering to measure cholesterol intermembrane exchange and intramembrane flipping rates, in situ, without recourse to any external fields or compounds. We found significantly slower transport kinetics than reported by previous studies, particularly for intramembrane flipping where our measured rates are several orders of magnitude slower. We unambiguously demonstrate that the presence of chemical tags and extraneous compounds employed in traditional kinetic measurements dramatically affect the system thermodynamics, accelerating cholesterol transport rates by an order of magnitude. To our knowledge, this work provides new insights into cholesterol transport process disorders, and challenges many of the underlying assumptions used in most cholesterol transport studies to date.

  2. Development of high-intensity deuterium-deuterium and deuterium-trittium neutron sources and neutron filters for medical and industrial applications

    Science.gov (United States)

    Verbeke, Jerome Maurice

    This thesis consists of three main parts. The first part is related to boron neutron capture therapy (BNCT), the second part to boron neutron capture synovectomy (BNCS), and the third part to the neutron generator development. A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of BNCT. Two figures-of-merit---the absorbed skin dose and the absorbed tumor dose at a given depth in the brain---are used to measure the neutron beam quality. Based on the results of this study, moderators, reflectors and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions D-D and D-T down to a suitable energy spectrum. Two different computational models have been used to study the dose distribution in the brain. A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy for treatment of rheumatoid arthritis. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that thermal neutron beams are optimal for treatment. Computation of the dose distribution in the knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. The third part describes the development of high-intensity D-D and D-T neutron generators. Thick target neutron yield computations have been performed to estimate the neutron yield of titanium and scandium targets. With an average deuteron beam current of 1 A and an energy of 120 keV, a neutron production of about 1014 n/s can be estimated for a tritiated target. In mixed deuteron/triton beam operation, a beam current of 2 A at 150 keV is required for the same neutron output. Despite this lower neutron production, this mode of operation is

  3. Reference neutron transport calculation note for Korea nuclear power plants with 3-loop PWR reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Cheol; Chang, Ki Oak

    1997-05-01

    Reactor pressure vessel (RPV) steels are subjected to neutron irradiation at a temperature of about 290 deg C. This radiation exposure alters the mechanical properties, leading to a shift of the brittle-to-ductile transition temperature toward higher temperatures and to a diminution of the rupture energy as determined by Charpy V-notch tests. This radiation embrittlement is one of the important aging factors of nuclear power plants. U.S. NRC recommended the basic requirements for the determination of the pressure vessel fluence by regulatory guide DG-1025 in order to reduce the uncertainty in the determination of neutron fluence calculation and measurements. The determination of the pressure vessel fluence is based on both calculations and measurements. The fluence prediction is made with a calculation and the measurements are used to qualify the calculational methodology. Because of the importance and the difficulty of these calculations, the method`s qualification by comparison to measurement must be made to ensure a reliable and accurate vessel fluence determination. This reference calculation note is to provide a series of forward and adjoint neutron transport calculations for use in the evaluation of neutron dosimetry from surveillance capsule irradiations at 3-loop PWR reactor as well as for use in the determination of the neutron exposure of the reactor vessel wall in accordance with U.S Regulatory Guide DG-1025 requirements. The calculations of the pressure vessel fluence consist of the following steps; (1) Determination of the geometrical and material input data, (2) Determination of the core neutron source, and (3) Propagation of the neutron fluence from the core to the vessel and into the cavity. (author). 12 tabs., 3 figs., 7 refs.

  4. Interfacing MCNPX and McStas for simulation of neutron transport

    Energy Technology Data Exchange (ETDEWEB)

    Klinkby, Esben, E-mail: esbe@dtu.dk [DTU Nutech, Technical University of Denmark, DTU Risø Campus, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); ESS Design Update Programme (Denmark); Lauritzen, Bent; Nonbøl, Erik [DTU Nutech, Technical University of Denmark, DTU Risø Campus, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); ESS Design Update Programme (Denmark); Kjær Willendrup, Peter [DTU Physics, Technical University of Denmark, DTU Lyngby Campus, Anker Engelunds Vej 1, DK-2800 Kgs. Lyngby (Denmark); ESS Design Update Programme (Denmark); Filges, Uwe; Wohlmuther, Michael [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); ESS Design Update Programme (Switzerland); Gallmeier, Franz X. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2013-02-01

    Simulations of target-moderator-reflector system at spallation sources are conventionally carried out using Monte Carlo codes such as MCNPX (Waters et al., 2007 [1]) or FLUKA (Battistoni et al., 2007; Ferrari et al., 2005 [2,3]) whereas simulations of neutron transport from the moderator and the instrument response are performed by neutron ray tracing codes such as McStas (Lefmann and Nielsen, 1999; Willendrup et al., 2004, 2011a,b [4–7]). The coupling between the two simulation suites typically consists of providing analytical fits of MCNPX neutron spectra to McStas. This method is generally successful but has limitations, as it e.g. does not allow for re-entry of neutrons into the MCNPX regime. Previous work to resolve such shortcomings includes the introduction of McStas inspired supermirrors in MCNPX. In the present paper different approaches to interface MCNPX and McStas are presented and applied to a simple test case. The direct coupling between MCNPX and McStas allows for more accurate simulations of e.g. complex moderator geometries, backgrounds, interference between beam-lines as well as shielding requirements along the neutron guides.

  5. Interfacing MCNPX and McStas for simulation of neutron transport

    Science.gov (United States)

    Klinkby, Esben; Lauritzen, Bent; Nonbøl, Erik; Kjær Willendrup, Peter; Filges, Uwe; Wohlmuther, Michael; Gallmeier, Franz X.

    2013-02-01

    Simulations of target-moderator-reflector system at spallation sources are conventionally carried out using Monte Carlo codes such as MCNPX (Waters et al., 2007 [1]) or FLUKA (Battistoni et al., 2007; Ferrari et al., 2005 [2,3]) whereas simulations of neutron transport from the moderator and the instrument response are performed by neutron ray tracing codes such as McStas (Lefmann and Nielsen, 1999; Willendrup et al., 2004, 2011a,b [4-7]). The coupling between the two simulation suites typically consists of providing analytical fits of MCNPX neutron spectra to McStas. This method is generally successful but has limitations, as it e.g. does not allow for re-entry of neutrons into the MCNPX regime. Previous work to resolve such shortcomings includes the introduction of McStas inspired supermirrors in MCNPX. In the present paper different approaches to interface MCNPX and McStas are presented and applied to a simple test case. The direct coupling between MCNPX and McStas allows for more accurate simulations of e.g. complex moderator geometries, backgrounds, interference between beam-lines as well as shielding requirements along the neutron guides.

  6. Studies of the Production and Transport of Highly Polarized Ultracold Neutrons for the UCNA Experiment

    Science.gov (United States)

    Holley, A. T.

    2007-10-01

    The goal of the UCNA experiment is to determine the angular correlation between the electron momentum and the neutron spin (the beta-asymmetry) in neutron decay using polarized ultracold neutrons (UCN). The experimental strategy is to transport UCN into a decay volume through a 7T static magnetic field using the magnetic potential to polarize the UCN. The initial UCN spin can then be reversed via an rf adiabatic spin-flipper in a 1T field region whose gradient is tailored to optimize the adiabatic spin-flipper's performance. The spin-flipper, which also allows in situ measurement of the UCN depolarization rate, is a resonant `bird-cage' cavity capable of producing rf fields in excess of 5G at 30Mhz. In order to minimize the UCN depolarization rate, UCN guides are constructed of diamond-like carbon films on quartz tubing, a technology which has been demonstrated to produce less than 3x10-3 depolarizations per bounce. The performance of this system will be described, and compared to expectations from detailed Monte Carlo transport models. The implications for high precision measurements of polarized ultracold neutrons will also be discussed.

  7. Collocation method for the solution of the neutron transport equation with both symmetric and asymmetric scattering

    Energy Technology Data Exchange (ETDEWEB)

    Morel, J.E.

    1981-01-01

    A collocation method is developed for the solution of the one-dimensional neutron transport equation in slab geometry with both symmetric and polarly asymmetric scattering. For the symmetric scattering case, it is found that the collocation method offers a combination of some of the best characteristics of the finite-element and discrete-ordinates methods. For the asymmetric scattering case, it is found that the computational cost of cross-section data processing under the collocation approach can be significantly less than that associated with the discrete-ordinates approach. A general diffusion equation treating both symmetric and asymmetric scattering is developed and used in a synthetic acceleration algorithm to accelerate the iterative convergence of collocation solutions. It is shown that a certain type of asymmetric scattering can radically alter the asymptotic behavior of the transport solution and is mathematically equivalent within the diffusion approximation to particle transport under the influence of an electric field. The method is easily extended to other geometries and higher dimensions. Applications exist in the areas of neutron transport with highly anisotropic scattering (such as that associated with hydrogenous media), charged-particle transport, and particle transport in controlled-fusion plasmas. 23 figures, 6 tables.

  8. Parametric injection for monoenergetic electron acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, A; Takano, K; Hotta, E; Nemoto, K [Department of Energy Sciences Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8502 Japan (Japan); Zhidkov, A [Central Research Instistute of Electric Power Industry 2-6-1 Nagasaka Yokosuka Kanagawa 240-0196 Japan (Japan); Nakajima, K [High Energy Accelerator Research Organization, KEK 1-1 Oho Tsukuba Ibaraki 305-0801 Japan (Japan)], E-mail: blue-ayu@plasma.es.titech.ac.jp

    2008-05-01

    Electrons are accelerated in the laser wakefield (LWFA). This mechanism has been studied by 2D or 3D Particle In Cell simulation. However, how the electrons are injected in the wakefield is not understood. In this paper, we consider about the process of self -injection and propose new scheme. When plasma electron density modulates, parametric resonance of electron momentum is induced. The parametric resonance depends on laser waist modulation. We carried out 2D PIC simulation with the initial condition decided from resonance condition. Moreover, we analyze experimental result that generated 200-250 MeV monoenergetic electron beam with 400TW intense laser in CAEP in China.

  9. Monte Carlo Neutrino Transport Through Remnant Disks from Neutron Star Mergers

    CERN Document Server

    Richers, S; O'Connor, Evan; Fernandez, Rodrigo; Ott, Christian

    2015-01-01

    We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket.org/srichers/sedonu. The code calculates the energy- and angle-dependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. We apply this method to snapshots from two dimensional simulations of accretion disks left behind by binary neutron star mergers, varying the input physics and comparing to the results obtained with a leakage scheme for the case of a central black hole and a central hypermassive neutron star. Neutrinos are guided away from the densest regions of the disk and escape preferentially around 45 degrees from the equatorial plane. Neutrino heating is strengthened by MC transport a few scale heights above the disk midplane near the innermost stable circular orbit, potentiall...

  10. Calibration and Monte Carlo modelling of neutron long counters

    CERN Document Server

    Tagziria, H

    2000-01-01

    The Monte Carlo technique has become a very powerful tool in radiation transport as full advantage is taken of enhanced cross-section data, more powerful computers and statistical techniques, together with better characterisation of neutron and photon source spectra. At the National Physical Laboratory, calculations using the Monte Carlo radiation transport code MCNP-4B have been combined with accurate measurements to characterise two long counters routinely used to standardise monoenergetic neutron fields. New and more accurate response function curves have been produced for both long counters. A novel approach using Monte Carlo methods has been developed, validated and used to model the response function of the counters and determine more accurately their effective centres, which have always been difficult to establish experimentally. Calculations and measurements agree well, especially for the De Pangher long counter for which details of the design and constructional material are well known. The sensitivit...

  11. Applying Advanced Neutron Transport Calculations for Improving Fuel Performance Codes

    Energy Technology Data Exchange (ETDEWEB)

    Botazzoli, P.; Luzzi, L. [Politecnico di Milano, Department of Energy, Nuclear Engineering Division - CeSNEF, Milano (Italy); Schubert, A.; Van Uffelen, P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe (Germany); Haeck, W. [Institute de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France)

    2009-06-15

    TRANSURANUS is a computer code for the thermal and mechanical analysis of fuel rods in nuclear reactors. As part of the code, the TUBRNP model calculates the local concentration of the actinides (U, Pu, Am, Cm), the main fission products (Xe, Kr, Cs and Nd) and {sup 4}He produced during the irradiation as a function of the radial position across a fuel pellet (radial profiles). These local quantities are required for the determination of the local power density, the local burn-up, and the source term of fission products and other inert gases. In previous works the neutronic code ALEPH has been used to validate the models for the actinides and fission products concentrations in UO{sub 2} fuels. A similar approach has been adopted in the present work for verifying the Helium production. The present paper focuses on the modelling of the Helium production in PWR oxide fuels (MOX and UO{sub 2}). A reliable prediction of the Helium production and release in LWR oxide fuels is of great interest in case of increasing burn-up, linear heat generation rates and Plutonium content. The contribution of the Helium released plays a fundamental role in the gap pressure and subsequently in the mechanical behaviour of the fuel rod, in particular during the storage of the high burn-up spent fuel. Helium is produced in oxide fuels by three main paths: (i) alpha decay of the actinides (the main contribution is due to {sup 242}Cm, {sup 238}Pu and {sup 244}Cm); (ii) (n,{alpha}) reactions; and (iii) ternary fission. In the present work, the contributions due to ternary fission and the (n,{alpha}) reaction on {sup 16}O as well as some refinements in the {sup 241}Am burn-up chain have been included in TUBRNP. The VESTA neutronic code has been used for the validation of the He production model. The generic VESTA Monte Carlo depletion interface developed at IRSN allows us to couple different Monte Carlo codes with a depletion module. It currently allows for combining the ORIGEN 2.2 isotope

  12. Development of a monoenergetic ultraslow antiproton beam source for high-precision investigation

    Directory of Open Access Journals (Sweden)

    N. Kuroda

    2012-02-01

    Full Text Available The ASACUSA collaboration developed an ultraslow antiproton beam source, monoenergetic ultraslow antiproton source for high-precision investigation (MUSASHI, consisting of an electromagnetic trap with a liquid He free superconducting solenoid and a low energy antiproton beam transport line. The MUSASHI was capable of trapping and cooling more than 1×10^{7} antiprotons and extracting them as an ultraslow antiproton beam with energy of 150–250 eV.

  13. Numerical research on the anisotropic transport of thermal neutron in heterogeneous porous media with micron X-ray computed tomography

    OpenAIRE

    Yong Wang; Wenzheng Yue; Mo Zhang

    2016-01-01

    The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those ...

  14. The FN method for anisotropic scattering in neutron transport theory: the critical slab problem.

    Science.gov (United States)

    Gülecyüz, M. C.; Tezcan, C.

    1996-08-01

    The FN method which has been applied to many physical problems for isotropic and anisotropic scattering in neutron transport theory is extended for problems for extremely anisotropic scattering. This method depends on the Placzek lemma and the use of the infinite medium Green's function. Here the Green's function for extremely anisotropic scattering which was expressed as a combination of the Green's functions for isotropic scattering is used to solve the critical slab problem. It is shown that the criticality condition is in agreement with the one obtained previously by reducing the transport equation for anisotropic scattering to isotropic scattering and solving using the FN method.

  15. A portable, parallel, object-oriented Monte Carlo neutron transport code in C++

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.R.; Cummings, J.C. [Los Alamos National Lab., NM (United States); Nolen, S.D. [Texas A and M Univ., College Station, TX (United States)]|[Los Alamos National Lab., NM (United States)

    1997-05-01

    We have developed a multi-group Monte Carlo neutron transport code using C++ and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and {alpha}-eigenvalues and is portable to and runs parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities of MC++ are discussed, along with physics and performance results on a variety of hardware, including all Accelerated Strategic Computing Initiative (ASCI) hardware. Current parallel performance indicates the ability to compute {alpha}-eigenvalues in seconds to minutes rather than hours to days. Future plans and the implementation of a general transport physics framework are also discussed.

  16. Modelling of neutron and photon transport in iron and concrete radiation shieldings by the Monte Carlo method - Version 2

    CERN Document Server

    Žukauskaite, A; Plukiene, R; Plukis, A

    2007-01-01

    Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 – γ-ray beams (1-10 MeV), HIMAC and ISIS-800 – high energy neutrons (20-800 MeV) transport in iron and concrete. The results were then compared with experimental data.

  17. Neutron and gamma ray transport calculations in shielding system

    Energy Technology Data Exchange (ETDEWEB)

    Masukawa, Fumihiro; Sakamoto, Hiroki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In the shields for radiation in nuclear facilities, the penetrating holes of various kinds and irregular shapes are made for the reasons of operation, control and others. These penetrating holes and gaps are filled with air or the substances with relatively small shielding performance, and radiation flows out through them, which is called streaming. As the calculation techniques for the shielding design or analysis related to the streaming problem, there are the calculations by simplified evaluation, transport calculation and Monte Carlo method. In this report, the example of calculation by Monte Carlo method which is represented by MCNP code is discussed. A number of variance reduction techniques which seem effective for the analysis of streaming problem were tried. As to the investigation of the applicability of MCNP code to streaming analysis, the object of analysis which are the concrete walls without hole and with horizontal hole, oblique hole and bent oblique hole, the analysis procedure, the composition of concrete, and the conversion coefficient of dose equivalent, and the results of analysis are reported. As for variance reduction technique, cell importance was adopted. (K.I.)

  18. Improved algorithms and coupled neutron-photon transport for auto-importance sampling method

    Science.gov (United States)

    Wang, Xin; Li, Jun-Li; Wu, Zhen; Qiu, Rui; Li, Chun-Yan; Liang, Man-Chun; Zhang, Hui; Gang, Zhi; Xu, Hong

    2017-01-01

    The Auto-Importance Sampling (AIS) method is a Monte Carlo variance reduction technique proposed for deep penetration problems, which can significantly improve computational efficiency without pre-calculations for importance distribution. However, the AIS method is only validated with several simple examples, and cannot be used for coupled neutron-photon transport. This paper presents improved algorithms for the AIS method, including particle transport, fictitious particle creation and adjustment, fictitious surface geometry, random number allocation and calculation of the estimated relative error. These improvements allow the AIS method to be applied to complicated deep penetration problems with complex geometry and multiple materials. A Completely coupled Neutron-Photon Auto-Importance Sampling (CNP-AIS) method is proposed to solve the deep penetration problems of coupled neutron-photon transport using the improved algorithms. The NUREG/CR-6115 PWR benchmark was calculated by using the methods of CNP-AIS, geometry splitting with Russian roulette and analog Monte Carlo, respectively. The calculation results of CNP-AIS are in good agreement with those of geometry splitting with Russian roulette and the benchmark solutions. The computational efficiency of CNP-AIS for both neutron and photon is much better than that of geometry splitting with Russian roulette in most cases, and increased by several orders of magnitude compared with that of the analog Monte Carlo. Supported by the subject of National Science and Technology Major Project of China (2013ZX06002001-007, 2011ZX06004-007) and National Natural Science Foundation of China (11275110, 11375103)

  19. Neutron, electron and photon transport in ICF tragets in direct and fast ignition

    Directory of Open Access Journals (Sweden)

    A. Parvazian

    2005-12-01

    Full Text Available Fusion energy due to inertial confinement has progressed in the last few decades. In order to increase energy efficiency in this method various designs have been presented. The standard scheme for direct ignition and fast ignition fuel targets are considered. Neutrons, electrons and photons transport in targets containing different combinations of Li and Be are calculated in both direct and fast ignition schemes. To compress spherical multilayer targets having fuel in the central part, they are irradiated by laser or heavy ion beams. Neutrons energy deposition in the target is considered using Monte Carlo method code MCNP. A significant amount of neutrons energy is deposited in the target which resulted in growing fusion reactions rates. It is found that Beryllium compared to Lithium is more important. In an introductory consideration of relativistic electron beam transport into central part of a fast ignition target, we have calculated electron energy deposition in highly dense D-T fuel and Beryllium layer of the target. It has been concluded that a fast ignition scheme is preferred to direct ignition because of the absence of hydrodynamic instability.

  20. Monte Carlo transport simulation for a long counter neutron detector employed as a cosmic rays induced neutron monitor at ground level

    Energy Technology Data Exchange (ETDEWEB)

    Pazianotto, Mauricio Tizziani; Carlson, Brett Vern [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil); Federico, Claudio Antonio; Goncalez, Odair Lelis [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil). Instituto de Estudos Avancados

    2011-07-01

    Full text: Great effort is required to understand better the cosmic radiation (CR) dose received by sensitive equipment, on-board computers and aircraft crew members at Brazil airspace, because there is a large area of South America and Brazil subject to the South Atlantic Anomaly (SAA). High energy neutrons are produced by interactions between primary cosmic ray and atmospheric atoms, and also undergo moderation resulting in a wider spectrum of energy ranging from thermal energies (0:025eV ) to energies of several hundreds of MeV. Measurements of the cosmic radiation dose on-board aircrafts need to be followed with an integral flow monitor on the ground level in order to register CR intensity variations during the measurements. The Long Counter (LC) neutron detector was designed as a directional neutron flux meter standard because it presents fairly constant response for energy under 10MeV. However we would like to use it as a ground based neutron monitor for cosmic ray induced neutron spectrum (CRINS) that presents an isotropic fluency and a wider spectrum of energy. The LC was modeled and tested using a Monte Carlo transport simulation for irradiations with known neutron sources ({sup 241}Am-Be and {sup 251}Cf) as a benchmark. Using this geometric model its efficiency was calculated to CRINS isotropic flux, introducing high energy neutron interactions models. The objective of this work is to present the model for simulation of the isotropic neutron source employing the MCNPX code (Monte Carlo N-Particle eXtended) and then access the LC efficiency to compare it with experimental results for cosmic ray neutrons measures on ground level. (author)

  1. Geant4 simulations of the neutron production and transport in the n_TOF spallation target

    Science.gov (United States)

    Lerendegui-Marco, J.; Cortés-Giraldo, M. A.; Guerrero, C.; Quesada, J. M.

    2016-11-01

    The neutron production and transport in the spallation target of the n_TOF facility at CERN has been simulated with Geant4. The results obtained with the different hadronic Physics Lists provided by Geant4 have been compared with the experimental neutron flux in n_TOF-EAR1. The best overall agreement in both the absolute value and the energy dependence of the flux from thermal to 1GeV, is obtained with the INCL++ model coupled with the Fritiof Model(FTFP). This Physics List has been thus used to simulate and study the main features of the new n_TOF-EAR2 beam line, currently in its commissioning phase.

  2. CAD-Based Monte Carlo Neutron Transport KSTAR Analysis for KSTAR

    Science.gov (United States)

    Seo, Geon Ho; Choi, Sung Hoon; Shim, Hyung Jin

    2017-09-01

    The Monte Carlo (MC) neutron transport analysis for a complex nuclear system such as fusion facility may require accurate modeling of its complicated geometry. In order to take advantage of modeling capability of the computer aided design (CAD) system for the MC neutronics analysis, the Seoul National University MC code, McCARD, has been augmented with a CAD-based geometry processing module by imbedding the OpenCASCADE CAD kernel. In the developed module, the CAD geometry data are internally converted to the constructive solid geometry model with help of the CAD kernel. An efficient cell-searching algorithm is devised for the void space treatment. The performance of the CAD-based McCARD calculations are tested for the Korea Superconducting Tokamak Advanced Research device by comparing with results of the conventional MC calculations using a text-based geometry input.

  3. THE COMMISSIONING PLAN FOR THE SPALLATION NEUTRON SOURCE RING AND TRANSPORT LINES.

    Energy Technology Data Exchange (ETDEWEB)

    RAPARIA,D.BLASKIEWICZ,M.LEE,Y.Y.WEI,J.ET AL.

    2004-03-10

    The Spallation Neutron Source (SNS) accelerator systems will provide a 1 GeV, 1.44 MW proton beam to a liquid mercury target for neutron production. In order to satisfy the accelerator systems' portion of the Critical Decision 4 (CD-4) commissioning goal (which marks the completion of the construction phase of the project), a beam pulse with intensity greater than 1 x 10{sup 13} protons must be accumulated in the ring, extracted in a single turn and delivered to the target. A commissioning plan has been formulated for bringing into operation and establishing nominal operating conditions for the various ring and transport line subsystems as well as for establishing beam conditions and parameters which meet the commissioning goal.

  4. Curved finite elements and acceleration for the neutron transport; Elements finis courbes et acceleration pour le transport de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Moller, J.Y.

    2012-01-10

    To model the nuclear reactors, the stationary linear Boltzmann equation is solved. After discretizing the energy and the angular variables, the hyperbolic equation is numerically solved with the discontinuous finite element method. The MINARET code uses this method on a triangular unstructured mesh in order to deal with complex geometries (like containing arcs of circle). However, the meshes with straight edges only approximate such geometries. With curved edges, the mesh fits exactly to the geometry, and in some cases, the number of triangles decreases. The main task of this work is the study of finite elements on curved triangles with one or several curved edges. The choice of the basis functions is one of the main points for this kind of finite elements. We obtained a convergence result under the assumption that the curved triangles are not too deformed in comparison with the associated straight triangles. Furthermore, a code has been written to treat triangles with one, two or three curved edges. Another part of this work deals with the acceleration of transport calculations. Indeed, the problem is solved iteratively, and, in some cases, can converge really slowly. A DSA (Diffusion Synthetic Acceleration) method has been implemented using a technique from interior penalty methods. A Fourier analysis in 1D and 2D allows to estimate the acceleration for infinite periodical media, and to check the stability of the numerical scheme when strong heterogeneities exist. (author) [French] La modelisation des reacteurs nucleaires repose sur la resolution de l'equation de Boltzmann lineaire. Nous nous sommes interesses a la resolution spatiale de la forme stationnaire de cette equation. Apres discretisation en energie et en angle, l'equation hyperbolique est resolue numeriquement par la methode des elements finis discontinus. Le solveur MINARET utilise cette methode sur un maillage triangulaire non structure afin de pouvoir traiter des geometries complexes

  5. Coupling of neutron transport equations. First results; Couplage d`equations en transport neutronique. premiere approche 1D monocinetique

    Energy Technology Data Exchange (ETDEWEB)

    Bal, G.

    1995-07-01

    To achieve whole core calculations of the neutron transport equation, we have to follow this 2 step method: space and energy homogenization of the assemblies; resolution of the homogenized equation on the whole core. However, this is no more valid when accidents occur (for instance depressurization causing locally strong heterogeneous media). One solution consists then in coupling two kinds of resolutions: a fine computation on the damaged cell (fine mesh, high number of energy groups) coupled with a coarse one everywhere else. We only deal here with steady state solutions (which already live in 6D spaces). We present here two such methods: The coupling by transmission of homogenized sections and the coupling by transmission of boundary conditions. To understand what this coupling is, we first restrict ourselves to 1D with respect to space in one energy group. The first two chapters deal with a recall of basic properties of the neutron transport equation. We give at chapter 3 some indications of the behaviour of the flux with respect to the cross sections. We present at chapter 4 some couplings and give some properties. Chapter 5 is devoted to a presentation of some numerical applications. (author). 9 refs., 7 figs.

  6. Thermal-to-fusion neutron convertor and Monte Carlo coupled simulation of deuteron/triton transport and secondary products generation

    Science.gov (United States)

    Wang, Guan-bo; Liu, Han-gang; Wang, Kan; Yang, Xin; Feng, Qi-jie

    2012-09-01

    Thermal-to-fusion neutron convertor has being studied in China Academy of Engineering Physics (CAEP). Current Monte Carlo codes, such as MCNP and GEANT, are inadequate when applied in this multi-step reactions problems. A Monte Carlo tool RSMC (Reaction Sequence Monte Carlo) has been developed to simulate such coupled problem, from neutron absorption, to charged particle ionization and secondary neutron generation. "Forced particle production" variance reduction technique has been implemented to improve the calculation speed distinctly by making deuteron/triton induced secondary product plays a major role. Nuclear data is handled from ENDF or TENDL, and stopping power from SRIM, which described better for low energy deuteron/triton interactions. As a validation, accelerator driven mono-energy 14 MeV fusion neutron source is employed, which has been deeply studied and includes deuteron transport and secondary neutron generation. Various parameters, including fusion neutron angle distribution, average neutron energy at different emission directions, differential and integral energy distributions, are calculated with our tool and traditional deterministic method as references. As a result, we present the calculation results of convertor with RSMC, including conversion ratio of 1 mm 6LiD with a typical thermal neutron (Maxwell spectrum) incidence, and fusion neutron spectrum, which will be used for our experiment.

  7. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    Science.gov (United States)

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew

    2016-12-01

    A consistent "2D/1D" neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.

  8. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Benjamin, E-mail: collinsbs@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Stimpson, Shane, E-mail: stimpsonsg@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Kelley, Blake W., E-mail: kelleybl@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Young, Mitchell T.H., E-mail: youngmit@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Kochunas, Brendan, E-mail: bkochuna@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Graham, Aaron, E-mail: aarograh@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Larsen, Edward W., E-mail: edlarsen@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Downar, Thomas, E-mail: downar@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Godfrey, Andrew, E-mail: godfreyat@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States)

    2016-12-01

    A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.

  9. Preliminary study on CAD-based method of characteristics for neutron transport calculation

    CERN Document Server

    Chen, Zhen-Ping; Sun, Guang-Yao; Song, Jing; Hao, Li-Juan; Hu, Li-Qin; Wu, Yi-Can

    2013-01-01

    The method of characteristics (MOC) is widely used for neutron transport calculation in recent decades. However, the key problem determining whether MOC can be applied in highly heterogeneous geometry is how to combine an effective geometry modeling method with it. Most of the existing MOC codes conventionally describe the geometry model just by lines and arcs with extensive input data. Thus they have difficulty in geometry modeling and ray tracing for complicated geometries. In this study, a new method making use of a CAD-based automatic modeling tool MCAM which is a CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport developed by FDS Team in China was introduced for geometry modeling and ray tracing of particle transport to remove those limitations. The diamond -difference scheme was applied to MOC to reduce the spatial discretization errors of the flat flux approximation. Based on MCAM and MOC, a new MOC code was developed and integrated into SuperMC system, whic h is a Super ...

  10. Evaluation of Hylife-II and Sombrero using 175- and 566- group neutron transport and activation cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, D; Latkowski, J; Sanz, J

    1999-06-18

    Recent modifications to the TART Monte Carlo neutron and photon transport code enable calculation of 566-group neutron spectra. This expanded group structure represents a significant improvement over the 50- and 175-group structures that have been previously available. To support use of this new capability, neutron activation cross section libraries have been created in the 175- and 566-group structures starting from the FENDL/A-2.0 pointwise data. Neutron spectra have been calculated for the first walls of the HYLIFE-II and SOMBRERO inertial fusion energy power plant designs and have been used in subsequent neutron activation calculations. The results obtained using the two different group structures are compared to each other as well as to those obtained using a 175-group version of the EAF3.1 activation cross section library.

  11. Evaluation of HYLIFE-II and Sombrero using 175- and 566-group neutron transport and activation cross sections

    CERN Document Server

    Latkowski, J F; Sanz, J

    2000-01-01

    Recent modifications to the TART Monte Carlo neutron and photon transport code allow enable calculation of 566-group neutron spectra. This expanded group structure represents a significant improvement over the 50- and 175-group structures that have been previously available. To support use of this new capability, neutron activation cross-section libraries have been created in the 175- and 566-group structures starting from the FENDL/A-2.0 pointwise data. Neutron spectra have been calculated for the first walls of the HYLIFE-II and Sombrero inertial fusion energy power plant designs and have been used in subsequent neutron activation calculations. The results obtained using the two different group structures are compared with each other as well as to those obtained using a 175-group version of the EAF3.1 activation cross-section library.

  12. Hybrid Parallel Programming Models for AMR Neutron Monte-Carlo Transport

    Science.gov (United States)

    Dureau, David; Poëtte, Gaël

    2014-06-01

    This paper deals with High Performance Computing (HPC) applied to neutron transport theory on complex geometries, thanks to both an Adaptive Mesh Refinement (AMR) algorithm and a Monte-Carlo (MC) solver. Several Parallelism models are presented and analyzed in this context, among them shared memory and distributed memory ones such as Domain Replication and Domain Decomposition, together with Hybrid strategies. The study is illustrated by weak and strong scalability tests on complex benchmarks on several thousands of cores thanks to the petaflopic supercomputer Tera100.

  13. Modeling of neutron and photon transport in iron and concrete radiation shields by using Monte Carlo method

    CERN Document Server

    Žukauskaitėa, A; Plukienė, R; Ridikas, D

    2007-01-01

    Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 (AVF cyclotron of Research Center of Nuclear Physics, Osaka University, Japan) – γ-ray beams (1-10 MeV), HIMAC (heavy-ion synchrotron of the National Institute of Radiological Sciences in Chiba, Japan) and ISIS-800 (ISIS intensive spallation neutron source facility of the Rutherford Appleton laboratory, UK) – high energy neutron (20-800 MeV) transport in iron and concrete. The calculation results were then compared with experimental data.compared with experimental data.

  14. Calculation of neutron fluence to dose equivalent conversion coefficients using GEANT4; Calculo de coeficientes de fluencia de neutrons para equivalente de dose individual utilizando o GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Rosane M.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Mauricio, CLaudia L.P.; Silva, Livia K. da; Pessanha, Paula R., E-mail: rosanemribeiro@oi.com.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    Fluence to dose equivalent conversion coefficients provide the basis for the calculation of area and personal monitors. Recently, the ICRP has started a revision of these coefficients, including new Monte Carlo codes for benchmarking. So far, little information is available about neutron transport below 10 MeV in tissue-equivalent (TE) material performed with Monte Carlo GEANT4 code. The objective of this work is to calculate neutron fluence to personal dose equivalent conversion coefficients, H{sub p} (10)/Φ, with GEANT4 code. The incidence of monoenergetic neutrons was simulated as an expanded and aligned field, with energies ranging between thermal neutrons to 10 MeV on the ICRU slab of dimension 30 x 30 x 15 cm{sup 3}, composed of 76.2% of oxygen, 10.1% of hydrogen, 11.1% of carbon and 2.6% of nitrogen. For all incident energy, a cylindrical sensitive volume is placed at a depth of 10 mm, in the largest surface of the slab (30 x 30 cm{sup 2}). Physic process are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles which reach the sensitive volume. Results obtained are thus compared with values published in ICRP 74. Neutron fluence in the sensitive volume was calculated for benchmarking. The Monte Carlo GEANT4 code was found to be appropriate to calculate neutron doses at energies below 10 MeV correctly. (author)

  15. Neutron Beams from Deuteron Breakup at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, M.A.; Ahle, L.; Bleuel, D.L.; Bernstein, L.; Braquest, B.R.; Cerny, J.; Heilbronn, L.H.; Jewett, C.C.; Thompson, I.; Wilson, B.

    2007-07-31

    Accelerator-based neutron sources offer many advantages, in particular tunability of the neutron beam in energy and width to match the needs of the application. Using a recently constructed neutron beam line at the 88-Inch Cyclotron at LBNL, tunable high-intensity sources of quasi-monoenergetic and broad spectrum neutrons from deuteron breakup are under development for a variety of applications.

  16. Multi-mirror imaging optics for low-loss transport of divergent neutron beams and tailored wavelength spectra

    CERN Document Server

    Zimmer, Oliver

    2016-01-01

    A neutron optical transport system is proposed which comprises nested short elliptical mirrors located halfway between two common focal points M and M'. It images cold neutrons from a diverging beam or a source with finite size at M by single reflections onto a spot of similar size at M'. Direct view onto the neutron source is blocked by a central absorber with little impact on the transported solid angle. Geometric neutron losses due to source size can be kept small using modern supermirrors and distances M-M' of a few tens of metres. Very short flat mirrors can be used in practical implementations. Transport with a minimum of reflections remedies losses due to multiple reflections that are common in long elliptical neutron guides. Moreover, well-defined reflection angles lead to new possibilities for enhancing the spectral quality of primary beams, such as clear-cut discrimination of short neutron wavelengths or beam monochromation using bandpass supermirrors. Multi-mirror imaging systems may thus complemen...

  17. A Deterministic-Monte Carlo Hybrid Method for Time-Dependent Neutron Transport Problems

    Energy Technology Data Exchange (ETDEWEB)

    Justin Pounders; Farzad Rahnema

    2001-10-01

    A new deterministic-Monte Carlo hybrid solution technique is derived for the time-dependent transport equation. This new approach is based on dividing the time domain into a number of coarse intervals and expanding the transport solution in a series of polynomials within each interval. The solutions within each interval can be represented in terms of arbitrary source terms by using precomputed response functions. In the current work, the time-dependent response function computations are performed using the Monte Carlo method, while the global time-step march is performed deterministically. This work extends previous work by coupling the time-dependent expansions to space- and angle-dependent expansions to fully characterize the 1D transport response/solution. More generally, this approach represents and incremental extension of the steady-state coarse-mesh transport method that is based on global-local decompositions of large neutron transport problems. An example of a homogeneous slab is discussed as an example of the new developments.

  18. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, Jerome M.

    1999-12-14

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only.

  19. Calibration of CR-39 with monoenergetic protons

    Science.gov (United States)

    Xiaojiao, Duan; Xiaofei, Lan; Zhixin, Tan; Yongsheng, Huang; Shilun, Guo; Dawei, Yang; Naiyan, Wang

    2009-10-01

    Calibration of solid state nuclear track detector CR-39 was carried out with very low-energy monoenergetic protons of 20-100 keV from a Cockcroft Walton accelerator. To reduce the beam of the proton from the accelerator, a novel method was adopted by means of a high voltage pulse generator. The irradiation time of the proton beam on each CR-39 sheet was shortened to one pulse with duration of 100 ns, so that very separated proton tracks around 104 cm-2 can be irradiated and observed and measured on the surface of the CR-39 detector after etching. The variations of track diameter with etching time as well as with proton energy response curve has been carefully calibrated for the first time in this very low energy region. The calibration shows that the optical limit for the observation of etched tracks of protons in CR-39 is about or a little lower that 20 keV, above which the proton tracks can be seen clearly and the response curve can be used to distinguish protons from the other ions and determine the energy of the protons. The extension of response curve of protons from traditionally 20 to 100 keV in CR-39 is significant in retrieving information of protons produced in the studies of nuclear physics, plasma physics, ultrahigh intensity laser physics and laser acceleration.

  20. MONTE CARLO NEUTRINO TRANSPORT THROUGH REMNANT DISKS FROM NEUTRON STAR MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Richers, Sherwood; Ott, Christian D. [TAPIR, Mailcode 350-17, Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Kasen, Daniel; Fernández, Rodrigo [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States); O’Connor, Evan [Department of Physics, Campus Code 8202, North Carolina State University, Raleigh, NC 27695 (United States)

    2015-11-01

    We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket.org/srichers/sedonu. The code calculates the energy- and angle-dependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. We apply this method to snapshots from two-dimensional simulations of accretion disks left behind by binary neutron star mergers, varying the input physics and comparing to the results obtained with a leakage scheme for the cases of a central black hole and a central hypermassive neutron star. Neutrinos are guided away from the densest regions of the disk and escape preferentially around 45° from the equatorial plane. Neutrino heating is strengthened by MC transport a few scale heights above the disk midplane near the innermost stable circular orbit, potentially leading to a stronger neutrino-driven wind. Neutrino cooling in the dense midplane of the disk is stronger when using MC transport, leading to a globally higher cooling rate by a factor of a few and a larger leptonization rate by an order of magnitude. We calculate neutrino pair annihilation rates and estimate that an energy of 2.8 × 10{sup 46} erg is deposited within 45° of the symmetry axis over 300 ms when a central BH is present. Similarly, 1.9 × 10{sup 48} erg is deposited over 3 s when an HMNS sits at the center, but neither estimate is likely to be sufficient to drive a gamma-ray burst jet.

  1. Analytical synthetic methods of solution of neutron transport equation with diffusion theory approaches energy multigroup; Metodos sinteticos analiticos de solucao da equacao de transporte de neutrons com aproximacoes da teoria da difusao multigrupo de energia

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Pedro Gabriel B.; Leite, Michel C.A.; Barros, Ricardo C., E-mail: pgbmoraes@gmail.com, E-mail: chell_leite@hotmail.com, E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Departamento de Modelagem Computacional

    2013-07-01

    In this work we developed a software to model and generate results in tables and graphs of one-dimensional neutron transport problems in multi-group formulation of energy. The numerical method we use to solve the problem of neutron diffusion is analytic, thus eliminating the truncation errors that appear in classical numerical methods, e.g., the method of finite differences. This numerical analytical method increases the computational efficiency, since they are not refined spatial discretization necessary because for any spatial discretization grids used, the numerical result generated for the same point of the domain remains unchanged unless the rounding errors of computational finite arithmetic. We chose to develop a computational application in MatLab platform for numerical computation and program interface is simple and easy with knobs. We consider important to model this neutron transport problem with a fixed source in the context of shielding calculations of radiation that protects the biosphere, and could be sensitive to ionizing radiation.

  2. Laser-driven γ-ray, positron, and neutron source from ultra-intense laser-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Tatsufumi, E-mail: t-nakamura@fit.ac.jp [Fukuoka Institute of Technology, Fukuoka, Fukuoka 811-0295 (Japan); Hayakawa, Takehito [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1106 (Japan)

    2015-08-15

    In ultra-intense laser-matter interactions, γ-rays are effectively generated via the radiation reaction effect. Since a significant fraction of the laser energy is converted into γ-rays, understanding of the energy transport inside of the target is important. We have developed a Particle-in-Cell code which includes generation of the γ-rays, their energy transport, and photo-nuclear reactions. Using the code, we have investigated the characteristics of the quantum beams generated by the transport of the laser-driven γ-rays. It is shown that collimated, mono-energetic positron beams with hundreds of MeV are generated by using thick targets. Neutron beams are also effectively generated by using beryllium targets via photo-nuclear reactions. These lead to the proposal of quantum beam sources of γ-rays, positrons, and neutrons with distinctive characters, which are selectively generated by choosing target conditions.

  3. Neutron transport with the method of characteristics for 3-D full core boiling water reactor applications

    Science.gov (United States)

    Thomas, Justin W.

    2006-12-01

    The Numerical Nuclear Reactor (NNR) is a code suite that is being developed to provide high-fidelity multi-physics capability for the analysis of light water nuclear reactors. The focus of the work here is to extend the capability of the NNR by incorporation of the neutronics module, DeCART, for Boiling Water Reactor (BWR) applications. The DeCART code has been coupled to the NNR fluid mechanics and heat transfer module STAR-CD for light water reactor applications. The coupling has been accomplished via an interface program, which is responsible for mapping the STAR-CD and DeCART meshes, managing communication, and monitoring convergence. DeCART obtains the solution of the 3-D Boltzmann transport equation by performing a series of 2-D modular ray tracing-based method of characteristics problems that are coupled within the framework of 3-D coarse-mesh finite difference. The relatively complex geometry and increased axial heterogeneity found in BWRs are beyond the modeling capability of the original version of DeCART. In this work, DeCART is extended in three primary areas. First, the geometric capability is generalized by extending the modular ray tracing scheme and permitting an unstructured mesh in the global finite difference kernel. Second, numerical instabilities, which arose as a result of the severe axial heterogeneity found in BWR cores, have been resolved. Third, an advanced nodal method has been implemented to improve the accuracy of the axial flux distribution. In this semi-analytic nodal method, the analytic solution to the transverse-integrated neutron diffusion equation is obtained, where the nonhomogeneous neutron source was first approximated by a quartic polynomial. The successful completion of these three tasks has allowed the application of the coupled DeCART/STAR-CD code to practical BWR problems.

  4. Global Error Bounds for the Petrov-Galerkin Discretization of the Neutron Transport Equation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, B; Brown, P; Greenbaum, A; Machorro, E

    2005-01-21

    In this paper, we prove that the numerical solution of the mono-directional neutron transport equation by the Petrov-Galerkin method converges to the true solution in the L{sup 2} norm at the rate of h{sup 2}. Since consistency has been shown elsewhere, the focus here is on stability. We prove that the system of Petrov-Galerkin equations is stable by showing that the 2-norm of the inverse of the matrix for the system of equations is bounded by a number that is independent of the order of the matrix. This bound is equal to the length of the longest path that it takes a neutron to cross the domain in a straight line. A consequence of this bound is that the global error of the Petrov-Galerkin approximation is of the same order of h as the local truncation error. We use this result to explain the widely held observation that the solution of the Petrov-Galerkin method is second accurate for one class of problems, but is only first order accurate for another class of problems.

  5. Using the transportable, computer-operated, liquid-scintillator fast-neutron spectrometer system

    Energy Technology Data Exchange (ETDEWEB)

    Thorngate, J.H.

    1988-11-01

    When a detailed energy spectrum is needed for radiation-protection measurements from approximately 1 MeV up to several tens of MeV, organic-liquid scintillators make good neutron spectrometers. However, such a spectrometer requires a sophisticated electronics system and a computer to reduce the spectrum from the recorded data. Recently, we added a Nuclear Instrument Module (NIM) multichannel analyzer and a lap-top computer to the NIM electronics we have used for several years. The result is a transportable fast-neutron spectrometer system. The computer was programmed to guide the user through setting up the system, calibrating the spectrometer, measuring the spectrum, and reducing the data. Measurements can be made over three energy ranges, 0.6--2 MeV, 1.1--8 MeV, or 1.6--16 MeV, with the spectrum presented in 0.1-MeV increments. Results can be stored on a disk, presented in a table, and shown in graphical form. 5 refs., 51 figs.

  6. Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-12-15

    Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.

  7. NUMERICAL SIMULATION OF SINGLE-GROUP, STEADY STATE AND ISOTROPIC NEUTRON TRANSPORT EQUATION IN DIFFUSIVE REGIMES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The single-group,steadystate,isotropic for mofthe neutron transport equationis given by[1]Ω·+σtI-σsPψ(x,Ω)=q(x,Ω)(x,Ω)∈D×Sψ(x,Ω)=g(x,Ω)x∈Din={x∈D,γ(x)·Ω<0(1)whereσtis the total cross section,σSis the scatteringcross section,andψ(x,Ω)is the angular flux to bedeter mined for all pointsx∈D,D Rn(n=2,3)and all possible travel directionsΩ,ΩS(Sis a u-nit disk or a unit sphere),γ(x)denotes the out wardunit nor mal atx∈D,Idenotes the identity opera-tor,the operatorPis defined by[Pψ](x)=∫Sψ(x,Ω)dΩ(2)Whenσt→∞,andσσ...

  8. GPU-based high performance Monte Carlo simulation in neutron transport

    Energy Technology Data Exchange (ETDEWEB)

    Heimlich, Adino; Mol, Antonio C.A.; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Inteligencia Artificial Aplicada], e-mail: cmnap@ien.gov.br

    2009-07-01

    Graphics Processing Units (GPU) are high performance co-processors intended, originally, to improve the use and quality of computer graphics applications. Since researchers and practitioners realized the potential of using GPU for general purpose, their application has been extended to other fields out of computer graphics scope. The main objective of this work is to evaluate the impact of using GPU in neutron transport simulation by Monte Carlo method. To accomplish that, GPU- and CPU-based (single and multicore) approaches were developed and applied to a simple, but time-consuming problem. Comparisons demonstrated that the GPU-based approach is about 15 times faster than a parallel 8-core CPU-based approach also developed in this work. (author)

  9. Design of the low energy beam transport line for the China spallation neutron source

    Institute of Scientific and Technical Information of China (English)

    LI Jin-Hai; OUYANG Hua-Fu; FU Shi-Nian; ZHANG Sua-Shun; HE Wei

    2008-01-01

    The design of the China Spallation Neutron Source (CSNS) low-energy beam transport (LEBT) line, which locates between the ion source and the radio-frequency quadrupole (RFQ), has been completed with the TRACE3D code. The design aims at perfect matching, primary chopping, a small emittance growth and sufficient space for beam diagnostics. The line consists of three solenoids, three vacuum chambers, two steering magnets and a pre-chopper. The total length of LEBT is about 1.74 m. This LEBT is designed to transfer 20 mA of H-pulsed beam from the ion source to the RFQ. An induction cavity is adopted as the pre-chopper.The electrostatic octupole steerer is discussed as a candidate. A four-quadrant aperture for beam scraping and beam position monitoring is designed.

  10. Magnetometry and transport data complement polarized neutron reflectometry in magnetic depth profiling

    Science.gov (United States)

    Wang, Yi; He, Xi; Mukherjee, T.; Fitzsimmons, M. R.; Sahoo, S.; Binek, Ch.

    2011-11-01

    Exchange coupled magnetic hard layer/soft layer thin films show a variety of complex magnetization reversal mechanisms depending on the hierarchy of interaction strengths within and between the films. Magnetization reversal can include uniform rotation, soft layer biasing, as well as exchange spring behavior. We investigate the magnetization reversal of a CoPt/Permalloy/Ta/Permalloy heterostructure. Here, Stoner-Wohlfarth-type uniform magnetization rotation of the virtually free Permalloy layer and exchange spring behavior of the strongly pinned Permalloy layer are found in the same sample. We investigate the complex magnetization reversal by polarized neutron reflectometry, magnetometry, and magneto-transport. The synergy of combining these experimental methods together with theoretical modeling is key to obtain the complete quantitative depth resolved information of the magnetization reversal processes for a multilayer of mesoscopic thickness.

  11. Magnetometry and transport data complement polarized neutron reflectometry in magnetic depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yi; He Xi; Mukherjee, T.; Binek, Ch. [Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, Jorgenson Hall, University of Nebraska, Lincoln, Nebraska 68588-0111 (United States); Fitzsimmons, M. R. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Sahoo, S. [Seagate Technology, Minneapolis, Minnesota 55435 (United States)

    2011-11-15

    Exchange coupled magnetic hard layer/soft layer thin films show a variety of complex magnetization reversal mechanisms depending on the hierarchy of interaction strengths within and between the films. Magnetization reversal can include uniform rotation, soft layer biasing, as well as exchange spring behavior. We investigate the magnetization reversal of a CoPt/Permalloy/Ta/Permalloy heterostructure. Here, Stoner-Wohlfarth-type uniform magnetization rotation of the virtually free Permalloy layer and exchange spring behavior of the strongly pinned Permalloy layer are found in the same sample. We investigate the complex magnetization reversal by polarized neutron reflectometry, magnetometry, and magneto-transport. The synergy of combining these experimental methods together with theoretical modeling is key to obtain the complete quantitative depth resolved information of the magnetization reversal processes for a multilayer of mesoscopic thickness.

  12. TART97 a coupled neutron-photon 3-D, combinatorial geometry Monte Carlo transport code

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, D.E.

    1997-11-22

    TART97 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo transport code. This code can on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART97 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART97 is distributed on CD. This CD contains on- line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART97 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART97 and its data riles.

  13. Anisotropic scattering treatment for the neutron transport equation with primal finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Akherraz, B.; Fedon-Magnaud, C.; Lautard, J.J.; Sanchez, R. [Commissariat a l`Energie Atomique, Gif-sur-Yvette (France)

    1995-07-01

    Three approaches are presented to treat anisotropic scattering in neutron transport. The approaches are based on the even-odd-parity flux formalism and yield three different second-order equations for the even-parity flux. The first one is based on the total elimination of the odd-parity flux of the second-order equation. In the other two approaches, anisotropic scattering contributions are homogenized and incorporated into the collision term. The numerical solutions of these equations are implemented in the CRONOS code for pressurized water reactor core calculations and are done with a finite element spatial approximation and the discrete ordinates methods (S{sub N}) for the angular variable. Numerical results are presented for critical problems (k{sub eff}) in x-y geometry. Comparisons with the APOLLO2 assembly code show the accuracy and the efficiency of the proposed algorithms.

  14. Numerical research on the anisotropic transport of thermal neutron in heterogeneous porous media with micron X-ray computed tomography

    Science.gov (United States)

    Wang, Yong; Yue, Wenzheng; Zhang, Mo

    2016-06-01

    The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those unreacted thermal neutrons by an array detector on the other side of the model. Therefore, the anisotropy of pore structure can be imaged by the amount of received thermal neutrons, due to the difference of rock matrix and pore-filling fluids in the macroscopic reaction cross section (MRCS). The new model has been verified by the consistent between the simulated data and the pore distribution from X-ray CT. The results show that the evaluation of porosity can be affected by the anisotropy of media. Based on the research, a new formula is developed to describe the correlation between the resolution of array detectors and the quality of imaging. The formula can be further used to analyze the critical resolution and the suitable number of thermal neutrons emitted in each simulation. Unconventionally, we find that a higher resolution cannot always lead to a better image.

  15. Active neutron methods for nuclear safeguards applications using Helium-4 gas scintillation detectors

    Science.gov (United States)

    Lewis, Jason M.

    Active neutron methods use a neutron source to interrogate fissionable material. In this work a 4He gas scintillation fast neutron detection system is used to measure neutrons created by the interrogation. Three new applications of this method are developed: spent nuclear fuel assay, fission rate measurement, and special nuclear material detection. Three active neutron methods are included in this thesis. First a non-destructive plutonium assay technique called Multispectral Active Neutron Interrogation Analysis is developed. It is based on interrogating fuel with neutrons at several different energies. The induced fission rates at each interrogation energy are compared with results from a neutron transport model of the irradiation geometry in a system of equations to iteratively solve the inverse problem for isotopic composition. The model is shown to converge on the correct composition for a material with 3 different fissionable components, a representative neutron absorber, and any neutron transparent material such as oxygen in a variety of geometries. Next an experimental fission rate measurement technique is developed using 4He gas scintillation fast neutron detector. Several unique features of this detector allow it to detect and provide energy information on fast neutrons with excellent gamma discrimination efficiency. The detector can measure induced fission rate by energetically differentiating between interrogation neutrons and higher energy fission neutrons. The detector response to a mono-energetic deuterium-deuterium fusion neutron generator and a 252Cf source are compared to examine the difference in detected energy range. Finally we demonstrate a special nuclear material detection technique by detecting an unambiguous fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium neutron generator and a high pressure 4He gas fast neutron scintillation detector. Energy histograms resulting from this

  16. A Decisive Disappearance Search at High-$\\Delta m^2$ with Monoenergetic Muon Neutrinos

    CERN Document Server

    Axani, S; Conrad, JM; Shaevitz, MH; Spitz, J; Wongjirad, T

    2015-01-01

    "KPipe" is a proposed experiment which will study muon neutrino disappearance for a sensitive test of the $\\Delta m^2\\sim1 \\mathrm{eV}^2$ anomalies, possibly indicative of one or more sterile neutrinos. The experiment is to be located at the J-PARC Materials and Life Science Facility's spallation neutron source, which represents the world's most intense source of charged kaon decay-at-rest monoenergetic (236 MeV) muon neutrinos. The detector vessel, designed to measure the charged current interactions of these neutrinos, will be 3 m in diameter and 120 m long, extending radially at a distance of 32 m to 152 m from the source. This design allows a sensitive search for $\

  17. Summary report for ITER task - D10: Update and implementation of neutron transport and activation codes and processed libraries

    Energy Technology Data Exchange (ETDEWEB)

    Attaya, H.

    1995-01-01

    The primary goal of this task is to provide the capabilities in the activation code RACC, to treat pulsed operation modes. In addition, it is required that the code utilizes the same spatial mesh and geometrical models as employed in the one or multidimensional neutron transport codes used in ITER design. This would ensure the use of the same neutron flux generated by those codes to calculate the different activation parameters. It is also required to have the capabilities for generating graphical outputs for the calculated activation parameters.

  18. On-the-fly Neutron Tomography of Water Transport into Lupine Roots

    Science.gov (United States)

    Zarebanadkouki, Mohsen; Carminati, Andrea; Kaestner, Anders; Mannes, David; Morgano, Manuel; Peetermans, Steven; Lehmann, Eberhard; Trtik, Pavel

    Measurement and visualization of water flow in soil and roots is essential for understanding of how roots take up water from soils. Such information would allow for the optimization of irrigation practices and for the identification of the optimal traits for the capture of water, in particular when water is scarce. However, measuring water flow in roots growing in soil is challenging. The previous 2D experiments (Zarebanadkouki et al., 2012) have not been sufficient for understanding the water transport across the root and therefore we employed an on-the-fly tomography technique with temporal resolution of three minutes. In this paper, we show that the series of on-the-fly neutron tomographic experiments performed on the same sample allow for monitoring the three-dimensional spatial distribution of D2O across the root tissue. The obtained data will allow us to calculate the convective and diffusive transport properties across root tissue and to estimate the relative importance of different pathways of water across the root tissue.

  19. The TORT three-dimensional discrete ordinates neutron/photon transport code (TORT version 3)

    Energy Technology Data Exchange (ETDEWEB)

    Rhoades, W.A.; Simpson, D.B.

    1997-10-01

    TORT calculates the flux or fluence of neutrons and/or photons throughout three-dimensional systems due to particles incident upon the system`s external boundaries, due to fixed internal sources, or due to sources generated by interaction with the system materials. The transport process is represented by the Boltzman transport equation. The method of discrete ordinates is used to treat the directional variable, and a multigroup formulation treats the energy dependence. Anisotropic scattering is treated using a Legendre expansion. Various methods are used to treat spatial dependence, including nodal and characteristic procedures that have been especially adapted to resist numerical distortion. A method of body overlay assists in material zone specification, or the specification can be generated by an external code supplied by the user. Several special features are designed to concentrate machine resources where they are most needed. The directional quadrature and Legendre expansion can vary with energy group. A discontinuous mesh capability has been shown to reduce the size of large problems by a factor of roughly three in some cases. The emphasis in this code is a robust, adaptable application of time-tested methods, together with a few well-tested extensions.

  20. MCNP: a general Monte Carlo code for neutron and photon transport

    Energy Technology Data Exchange (ETDEWEB)

    Forster, R.A.; Godfrey, T.N.K.

    1985-01-01

    MCNP is a very general Monte Carlo neutron photon transport code system with approximately 250 person years of Group X-6 code development invested. It is extremely portable, user-oriented, and a true production code as it is used about 60 Cray hours per month by about 150 Los Alamos users. It has as its data base the best cross-section evaluations available. MCNP contains state-of-the-art traditional and adaptive Monte Carlo techniques to be applied to the solution of an ever-increasing number of problems. Excellent user-oriented documentation is available for all facets of the MCNP code system. Many useful and important variants of MCNP exist for special applications. The Radiation Shielding Information Center (RSIC) in Oak Ridge, Tennessee is the contact point for worldwide MCNP code and documentation distribution. A much improved MCNP Version 3A will be available in the fall of 1985, along with new and improved documentation. Future directions in MCNP development will change the meaning of MCNP to Monte Carlo N Particle where N particle varieties will be transported.

  1. Analytical calculations of neutron slowing down and transport in the constant-cross-section problem

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D.G.

    1978-04-01

    Aspects of the problem of neutron slowing down and transport in an infinite medium consisting of a single nuclide that scatters elastically and isotropically and has energy-independent cross sections were investigated. The method of singular eigenfunctions was applied to the Boltzmann Equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. A new sufficient condition for the convergence of the coefficients of the expansion of the scattering kernel in Legendre polynomials was rigorously derived for this energy-dependent problem. Formulas were obtained for the lethargy-dependent spatial moments of the scalar flux that are valid for medium to large lethargies. Use was made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations were aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use was also made of the methods of combinatorial analysis and of computer evaluation of complicated sequences of manipulations. For the case of no absorption it was possible to obtain for materials of any atomic weight explicit corrections to the age-theory formulas for the spatial moments M/sub 2n/(u) of the scalar flux that are valid through terms of the order of u/sup -5/. The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, represent one of the end products of this investigation. In addition, an exact expression for the second spatial moment, M/sub 2/(u), valid for arbitrary (constant) absorption, was derived. It is now possible to calculate analytically and rigorously the ''age'' for the constant-cross-section problem for arbitrary (constant) absorption and nuclear mass. 5 figures, 1 table.

  2. A Complex-Geometry Validation Experiment for Advanced Neutron Transport Codes

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg; Anthony W. LaPorta; Joseph W. Nielsen; James Parry; Mark D. DeHart; Samuel E. Bays; William F. Skerjanc

    2013-11-01

    The Idaho National Laboratory (INL) has initiated a focused effort to upgrade legacy computational reactor physics software tools and protocols used for support of core fuel management and experiment management in the Advanced Test Reactor (ATR) and its companion critical facility (ATRC) at the INL.. This will be accomplished through the introduction of modern high-fidelity computational software and protocols, with appropriate new Verification and Validation (V&V) protocols, over the next 12-18 months. Stochastic and deterministic transport theory based reactor physics codes and nuclear data packages that support this effort include MCNP5[1], SCALE/KENO6[2], HELIOS[3], SCALE/NEWT[2], and ATTILA[4]. Furthermore, a capability for sensitivity analysis and uncertainty quantification based on the TSUNAMI[5] system has also been implemented. Finally, we are also evaluating the Serpent[6] and MC21[7] codes, as additional verification tools in the near term as well as for possible applications to full three-dimensional Monte Carlo based fuel management modeling in the longer term. On the experimental side, several new benchmark-quality code validation measurements based on neutron activation spectrometry have been conducted using the ATRC. Results for the first four experiments, focused on neutron spectrum measurements within the Northwest Large In-Pile Tube (NW LIPT) and in the core fuel elements surrounding the NW LIPT and the diametrically opposite Southeast IPT have been reported [8,9]. A fifth, very recent, experiment focused on detailed measurements of the element-to-element core power distribution is summarized here and examples of the use of the measured data for validation of corresponding MCNP5, HELIOS, NEWT, and Serpent computational models using modern least-square adjustment methods are provided.

  3. Combined transport, magnetization and neutron scattering study of correlated iridates and iron pnictide superconductors

    Science.gov (United States)

    Dhital, Chetan

    The work performed within this thesis is divided into two parts, each focusing primarily on the study of magnetic phase behavior using neutron scattering techniques. In first part, I present transport, magnetization, and neutron scattering studies of materials within the iridium oxide-based Ruddelsden-Popper series [Srn+1IrnO3n+1] compounds Sr 3Ir2O7 (n=2) and Sr2IrO4 (n=1). This includes a comprehensive study of the doped bilayer system Sr 3(Ir1-xRux )2O7. In second part, I present my studies of the effect of uniaxial pressure on magnetic and structural phase behavior of the iron-based high temperature superconductor Ba(Fe1-xCox)2As2. Iridium-based 5d transition metal oxides host rather unusual electronic/magnetic ground states due to strong interplay between electronic correlation, lattice structure and spin-orbit effects. Out of the many oxides containing iridium, the Ruddelsden-Popper series [Srn+1IrnO 3n+1] oxides are some of the most interesting systems to study both from the point of view of physics as well as from potential applications. My work is focused on two members of this series Sr3Ir2O 7 (n=2) and Sr2IrO4 (n=1). In particular, our combined transport, magnetization and neutron scattering studies of Sr 3Ir2O7 (n=2) showed that this system exhibits a complex coupling between charge transport and magnetism. The spin magnetic moments form a G-type antiferromagnetic structure with moments oriented along the c-axis, with an ordered moment of 0.35+/-0.06 muB/Ir. I also performed experiments doping holes in this bilayer Sr3(Ir1-xRu x)2O7 system in order to study the role of electronic correlation in these materials. Our results show that the ruthenium-doped holes remain localized within the Jeff=1/2 Mott insulating background of Sr3Ir2O7, suggestive of 'Mott blocking' and the presence of strong electronic correlation in these materials. Antiferromagnetic order however survives deep into the metallic regime with the same ordering q-vector, suggesting an

  4. Quantum transport equation for systems with rough surfaces and its application to ultracold neutrons in a quantizing gravity field

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, M.; Meyerovich, A. E., E-mail: Alexander-Meyerovich@uri.edu [University of Rhode Island, Department of Physics (United States)

    2014-12-15

    We discuss transport of particles along random rough surfaces in quantum size effect conditions. As an intriguing application, we analyze gravitationally quantized ultracold neutrons in rough waveguides in conjunction with GRANIT experiments (ILL, Grenoble). We present a theoretical description of these experiments in the biased diffusion approximation for neutron mirrors with both one- and two-dimensional (1D and 2D) roughness. All system parameters collapse into a single constant which determines the depletion times for the gravitational quantum states and the exit neutron count. This constant is determined by a complicated integral of the correlation function (CF) of surface roughness. The reliable identification of this CF is always hindered by the presence of long fluctuation-driven correlation tails in finite-size samples. We report numerical experiments relevant for the identification of roughness of a new GRANIT waveguide and make predictions for ongoing experiments. We also propose a radically new design for the rough waveguide.

  5. A Novel Algorithm for Solving the Multidimensional Neutron Transport Equation on Massively Parallel Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Azmy, Yousry

    2014-06-10

    We employ the Integral Transport Matrix Method (ITMM) as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells' fluxes and between the cells' and boundary surfaces' fluxes. The main goals of this work are to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and parallel performance of the developed methods with increasing number of processes, P. The fastest observed parallel solution method, Parallel Gauss-Seidel (PGS), was used in a weak scaling comparison with the PARTISN transport code, which uses the source iteration (SI) scheme parallelized with the Koch-baker-Alcouffe (KBA) method. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method- even without acceleration/preconditioning-is completitive for optically thick problems as P is increased to the tens of thousands range. For the most optically thick cells tested, PGS reduced execution time by an approximate factor of three for problems with more than 130 million computational cells on P = 32,768. Moreover, the SI-DSA execution times's trend rises generally more steeply with increasing P than the PGS trend. Furthermore, the PGS method outperforms SI for the periodic heterogeneous layers (PHL) configuration problems. The PGS method outperforms SI and SI-DSA on as few as P = 16 for PHL problems and reduces execution time by a factor of ten or more for all problems considered with more than 2 million computational cells on P = 4.096.

  6. Parametric fits to 1-D neutron transport calculations for lithium-vanadium fusion power plant blankets in cylindrical and spherical geometries

    Energy Technology Data Exchange (ETDEWEB)

    Petzoldt, R.W.; Perkins, L.J.

    1995-06-16

    The authors performed 1-D coupled, neutron-gamma transport calculations for lithium-vanadium blankets and lithium-sodium cauldron pot blankets in cylindrical and spherical geometries. Parametric fits to the data are supplied for subsequent use in systems code models. Scaling relationships are given for various neutronics parameters of interest, including: tritium breeding ratio, neutron energy multiplication, magnet dose rates, magnet heating rates, and integrated magnet fluence.

  7. Neutron scattering studies of structure, hydrothermal stability and transport in porous silica catalyst supports

    Science.gov (United States)

    Pollock, Rachel A.

    Mesoporous materials are interesting as catalyst supports, because molecules can move efficiently in and out of the pore network, but they must be stable in water if they are to be used for the production of biofuels. Before investigating hydrothermal stability and transport properties, the pore structure of SBA-15 was characterized using small angle neutron scattering (SANS) and non-local density functional theory (NLDFT) analysis of nitrogen sorption isotherms. A new Contrast Matching SANS method, using a range of probe molecules to directly probe the micropore size, gave a pore size distribution onset of 6 ± 0.2 Å, consistent with cylindrical pores formed from polymer template strands that unravel into the silica matrix. Diffraction intensity analysis of SANS measurements, combined with pore size distributions calculated from NLDFT, showed that the secondary pores are distributed relatively uniformly throughout the silica framework. The hydrothermal stability of SBA-15 was evaluated using a post-calcination hydrothermal treatment in both liquid and vapor phase water. The results were consistent with a degradation mechanism in which silica dissolves from regions of small positive curvature, e.g. near the entrance to the secondary pores, and is re-deposited deeper into the framework. Under water treatment at 115 °C, the mesopore diameter increases and the intra-wall void fraction decreases significantly. The behavior is similar for steam treatment, but occurs more slowly, suggesting that transport is faster when condensation occurs in the pores. Quasielastic neutron scattering (QENS) measurements of methane in SBA-15 probed the rotational and translational motion as a function of temperature and loading. A qualitative analysis of the QENS data suggested that for the initial dose of methane at 100 K, the self diffusion constant is similar in magnitude to literature values for methane in ZSM-5 and Y-zeolite, showing that the secondary pores trap methane and limit

  8. Generation of monoenergetic ion beams with a laser accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Pfotenhauer, Sebastian M.

    2009-01-29

    A method for the generation of monoenergetic proton and ion beams from a laser-based particle accelerator is presented. This method utilizes the unique space-charge effects occurring during relativistic laser-plasma interactions on solid targets in combination with a dot-like particle source. Due to this unique interaction geometry, MeV proton beams with an intrinsically narrow energy spectrum were obtained, for the first time, from a micrometer-scale laser accelerator. Over the past three years, the acceleration scheme has been consistently improved to enhance both the maximum particle energy and the reliability of the setup. The achieved degree of reliability allowed to derive the first scaling laws specifically for monoenergetic proton beams. Furthermore, the acceleration scheme was expanded on other target materials, enabling the generation of monoenergetic carbon beams. The experimental work was strongly supported by the parallel development of a complex theoretical model, which fully accounts for the observations and is in excellent agreement with numerical simulations. The presented results have an extraordinarily broad scope way beyond the current thesis: The availability of monoenergetic ion beams from a compact laser-plasma beam source - in conjunction with the unique properties of laser-produced particle beams - addresses a number of outstanding applications in fundamental research, material science and medical physics, and will help to shape a new generation of accelerators. (orig.)

  9. A time-dependent neutron transport method of characteristics formulation with time derivative propagation

    Science.gov (United States)

    Hoffman, Adam J.; Lee, John C.

    2016-02-01

    A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.

  10. Transport and mixing of r-process elements in neutron star binary merger blast waves

    CERN Document Server

    Montes, Gabriela; Naiman, Jill; Shen, Sijing; Lee, William H

    2016-01-01

    The r-process nuclei are robustly synthesized in the material ejected during a neutron star binary merger (NSBM), as tidal torques transport angular momentum and energy through the outer Lagrange point in the form of a vast tidal tail. If NSBM are indeed solely responsible for the solar system r- process abundances, a galaxy like our own would require to host a few NSBM per million years, with each event ejecting, on average, about 5x10^{-2} M_sun of r-process material. Because the ejecta velocities in the tidal tail are significantly larger than in ordinary supernovae, NSBM deposit a comparable amount of energy into the interstellar medium (ISM). In contrast to extensive efforts studying spherical models for supernova remnant evolution, calculations quantifying the impact of NSBM ejecta in the ISM have been lacking. To better understand their evolution in a cosmological context, we perform a suite of three-dimensional hydrodynamic simulations with optically-thin radiative cooling of isolated NSBM ejecta expa...

  11. Inversion of Source and Transport Parameters of Relativistic SEPs from Neutron Monitor Data

    Science.gov (United States)

    Agueda, Neus; Bütikofer, Rolf; Vainio, Rami; Heber, Bernd; Afanasiev, Alexander; Malandraki, Olga E.

    2016-04-01

    We present a new methodology to study the release processes of relativistic solar energetic particles (SEPs) based on the direct inversion of Ground Level Enhancements (GLEs) observed by the worldwide network of neutron monitors (NMs). The new approach makes use of several models, including: the propagation of relativistic SEPs from the Sun to the Earth, their transport in the Earth's magnetosphere and atmosphere, as well as the detection of the nucleon component of the secondary cosmic rays by ground based NMs. The combination of these models allows us to compute the expected ground-level NM counting rates for a series of instantaneous releases from the Sun. The amplitudes of the source components are then inferred by fitting the NM observations with the modeled NM counting rate increases. Within the HESPERIA project, we will develop the first software package for the direct inversion of GLEs and we will make it freely available for the solar and heliospheric communities. Acknowledgement: This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.

  12. Measurement and simulation of the response function of time of flight enhanced diagnostics neutron spectrometer for beam ion studies at EAST tokamak

    Science.gov (United States)

    Peng, X. Y.; Chen, Z. J.; Zhang, X.; Du, T. F.; Hu, Z. M.; Ge, L. J.; Zhang, Y. M.; Sun, J. Q.; Gorini, G.; Nocente, M.; Tardocchi, M.; Hu, L. Q.; Zhong, G. Q.; Pu, N.; Lin, S. Y.; Wan, B. N.; Li, X. Q.; Zhang, G. H.; Chen, J. X.; Fan, T. S.

    2016-11-01

    The 2.5 MeV TOFED (Time-Of-Flight Enhanced Diagnostics) neutron spectrometer with a double-ring structure has been installed at Experimental Advanced Superconducting Tokamak (EAST) to perform advanced neutron emission spectroscopy diagnosis of deuterium plasmas. This work describes the response function of the TOFED spectrometer, which is evaluated for the fully assembled instrument in its final layout. Results from Monte Carlo simulations and dedicated experiments with pulsed light sources are presented and used to determine properties of light transport from the scintillator. A GEANT4 model of the TOFED spectrometer was developed to calculate the instrument response matrix. The simulated TOFED response function was successfully benchmarked against measurements of the time-of-flight spectra for quasi-monoenergetic neutrons in the energy range of 1-4 MeV. The results are discussed in relation to the capability of TOFED to perform beam ion studies on EAST.

  13. TRIPOLI capabilities proved by a set of solved problems. [Monte Carlo neutron and gamma ray transport code

    Energy Technology Data Exchange (ETDEWEB)

    Vergnaud, T.; Nimal, J.C. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France))

    1990-01-01

    The three-dimensional polycinetic Monte Carlo particle transport code TRIPOLI has been under development in the French Shielding Laboratory at Saclay since 1965. TRIPOLI-1 began to run in 1970 and became TRIPOLI-2 in 1978: since then its capabilities have been improved and many studies have been performed. TRIPOLI can treat stationary or time dependent problems in shielding and in neutronics. Some examples of solved problems are presented to demonstrate the many possibilities of the system. (author).

  14. The application of the Monte-Carlo neutron transport code MCNP to a small "nuclear battery" system

    OpenAIRE

    Puigdellívol Sadurní, Roger

    2009-01-01

    The project consist in calculate the keff to a small nuclear battery. The code Monte- Carlo neutron transport code MCNP is used to calculate the keff. The calculations are done at the beginning of life to know the capacity of the core becomes critical in different conditions. These conditions are the study parameters that determine the criticality of the core. These parameters are the uranium enrichment, the coated particles (TRISO) packing factor and the size of the core. More...

  15. New Frontier in Probing Fluid Transport in Low-Permeability Geomedia: Applications of Elastic and Inelastic Neutron Scattering

    Science.gov (United States)

    Ding, M.; Hjelm, R.; Sussman, A. J.

    2016-12-01

    Low-permeability geomedia are prevalent in subsurface environments. They have become increasingly important in a wide range of applications such as CO2-sequestration, hydrocarbon recovery, enhanced geothermal systems, legacy waste stewardship, high-level radioactive waste disposal, and global security. The flow and transport characteristics of low-permeability geomedia are dictated by their exceedingly low permeability values ranging from 10-6 to 10-12 darcy with porosities dominated by nanoscale pores. Developing new characterization methods and robust computational models that allow estimation of transport properties of low-permeability geomedia has been identified as a critical basic research and technology development need for controlling subsurface and fluids flow. Due to its sensibility to hydrogen and flexible sample environment, neutron based elastic and inelastic scattering can, through various techniques, interrogate all the nanoscale pores in the sample whether they are fluid accessible or not, and readily characterize interfacial waters. In this presentation, we will present two studies revealing the effects of nanoscale pore confinement on fluid dynamics in geomedia. In one study, we use combined (ultra-small)/small-angle elastic neutron scatterings to probe nanoporous features responses in geological materials to transport processes. In the other study, incoherent inelastic neutron scattering was used to distingwish between intergranular pore water and fluid inclusion moisture in bedded rock salt, and to explore their thermal stablibility. Our work demonstrates that neutron based elastic and inelastic scatterings are techniques of choice for in situ probing hydrocarbon and water behavior in nanoporous materials, providing new insights into water-rock interaction and fluids transport in low-permeability geomaterials.

  16. Neutron transport in hexagonal reactor cores modeled by trigonal-geometry diffusion and simplified P{sub 3} nodal methods

    Energy Technology Data Exchange (ETDEWEB)

    Duerigen, Susan

    2013-05-15

    The superior advantage of a nodal method for reactor cores with hexagonal fuel assemblies discretized as cells consisting of equilateral triangles is its mesh refinement capability. In this thesis, a diffusion and a simplified P{sub 3} (or SP{sub 3}) neutron transport nodal method are developed based on trigonal geometry. Both models are implemented in the reactor dynamics code DYN3D. As yet, no other well-established nodal core analysis code comprises an SP{sub 3} transport theory model based on trigonal meshes. The development of two methods based on different neutron transport approximations but using identical underlying spatial trigonal discretization allows a profound comparative analysis of both methods with regard to their mathematical derivations, nodal expansion approaches, solution procedures, and their physical performance. The developed nodal approaches can be regarded as a hybrid NEM/AFEN form. They are based on the transverse-integration procedure, which renders them computationally efficient, and they use a combination of polynomial and exponential functions to represent the neutron flux moments of the SP{sub 3} and diffusion equations, which guarantees high accuracy. The SP{sub 3} equations are derived in within-group form thus being of diffusion type. On this basis, the conventional diffusion solver structure can be retained also for the solution of the SP{sub 3} transport problem. The verification analysis provides proof of the methodological reliability of both trigonal DYN3D models. By means of diverse hexagonal academic benchmark and realistic detailed-geometry full-transport-theory problems, the superiority of the SP{sub 3} transport over the diffusion model is demonstrated in cases with pronounced anisotropy effects, which is, e.g., highly relevant to the modeling of fuel assemblies comprising absorber material.

  17. Some results on the neutron transport and the coupling of equations; Quelques resultats sur le transport neutronique et le couplage d`equations

    Energy Technology Data Exchange (ETDEWEB)

    Bal, G. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)

    1997-12-31

    Neutron transport in nuclear reactors is well modeled by the linear Boltzmann transport equation. Its resolution is relatively easy but very expensive. To achieve whole core calculations, one has to consider simpler models, such as diffusion or homogeneous transport equations. However, the solutions may become inaccurate in particular situations (as accidents for instance). That is the reason why we wish to solve the equations on small area accurately and more coarsely on the remaining part of the core. It is than necessary to introduce some links between different discretizations or modelizations. In this note, we give some results on the coupling of different discretizations of all degrees of freedom of the integral-differential neutron transport equation (two degrees for the angular variable, on for the energy component, and two or three degrees for spatial position respectively in 2D (cylindrical symmetry) and 3D). Two chapters are devoted to the coupling of discrete ordinates methods (for angular discretization). The first one is theoretical and shows the well posing of the coupled problem, whereas the second one deals with numerical applications of practical interest (the results have been obtained from the neutron transport code developed at the R and D, which has been modified for introducing the coupling). Next, we present the nodal scheme RTN0, used for the spatial discretization. We show well posing results for the non-coupled and the coupled problems. At the end, we deal with the coupling of energy discretizations for the multigroup equations obtained by homogenization. Some theoretical results of the discretization of the velocity variable (well-posing of problems), which do not deal directly with the purposes of coupling, are presented in the annexes. (author). 34 refs.

  18. Analytical solution of neutron transport equation in an annular reactor with a rotating pulsed source; Resolucao analitica da equacao de transporte de neutrons em um reator anelar com fonte pulsada rotativa

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Paulo Cleber Mendonca

    2002-12-01

    In this study, an analytical solution of the neutron transport equation in an annular reactor is presented with a short and rotating neutron source of the type S(x) {delta} (x- Vt), where V is the speed of annular pulsed reactor. The study is an extension of a previous study by Williams [12] carried out with a pulsed source of the type S(x) {delta} (t). In the new concept of annular pulsed reactor designed to produce continuous high flux, the core consists of a subcritical annular geometry pulsed by a rotating modulator, producing local super prompt critical condition, thereby giving origin to a rotating neutron pulse. An analytical solution is obtained by opening up of the annular geometry and applying one energy group transport theory in one dimension using applied mathematical techniques of Laplace transform and Complex Variables. The general solution for the flux consists of a fundamental mode, a finite number of harmonics and a transient integral. A condition which limits the number of harmonics depending upon the circumference of the annular geometry has been obtained. Inverse Laplace transform technique is used to analyse instability condition in annular reactor core. A regenerator parameter in conjunction with perimeter of the ring and nuclear properties is used to obtain stable and unstable harmonics and to verify if these exist. It is found that the solution does not present instability in the conditions stated in the new concept of annular pulsed reactor. (author)

  19. Transport calculation of neutrons leaked to the surroundings of the facilities by the JCO criticality accident in Tokai-mura.

    Science.gov (United States)

    Imanaka, T

    2001-09-01

    A transport calculation of the neutrons leaked to the environment by the JCO criticality accident was carried out based on three-dimensional geometrical models of the buildings within the JCO territory. Our work started from an initial step to simulate the leakage process of neutrons from the precipitation tank, and proceeded to a step to calculate the neutron propagation throughout the JCO facilities. The total fission number during the accident in the precipitation tank was evaluated to be 2.5 x 10(18) by comparing the calculated neutron-induced activities per 235U fission with the measured values in a stainless-steel net sample taken 2 m from the precipitation tank. Shield effects by various structures within the JCO facilities were evaluated by comparing the present results with a previous calculation using two-dimensional models which suppose a point source of the fission spectrum in the air above the ground without any shield structures. The shield effect by the precipitation tank, itself, was obtained to be a factor of 3. The shield factor by the conversion building varied between 1.1 and 2, depending on the direction from the building. The shield effect by the surrounding buildings within the JCO territory was between I and 5, also depending on the direction.

  20. Transport in fuel cells: Electrochemical impedance spectroscopy and neutron imaging studies

    Science.gov (United States)

    Aaron, Douglas Scott

    This dissertation focuses on two powerful methods of performing in-situ studies of transport limitations in fuel cells. The first is electrochemical impedance spectroscopy (EIS) while the second is neutron imaging. Three fuel cell systems are studied in this work: polymer electrolyte membrane fuel cells (PEMFCs), microbial fuel cells (MFCs) and enzyme fuel cells (EFCs). The first experimental section of this dissertation focuses on application of EIS and neutron imaging to an operating PEMFC. The effects of cathode-side humidity and flow rate, as well as cell temperature and a transient response to cathode-side humidity, were studied for a PEMFC via EIS. It was found that increased air humidity in the cathode resulted in greatly reduced cathode resistance as well as a significant reduction in membrane resistance. The anode resistance was only slightly reduced in this case. Increased air flow rate was observed to have little effect on any resistance in the PEMFC, though slight reductions in both the anode and the cathode were observed. Increased cell temperature resulted in decreased cathode and anode resistances. Finally, the transient response to increased humidity exhibited unstable behavior for both the anode and the cathode resistances and the PEMFC power output. Neutron imaging allowed the calculation of water content throughout the PEMFC, showing a maximum in water content at the cathode gas diffusion layer - membrane interface. The second experimental section of this dissertation delves into the world of microbial fuel cells. Multiple long-term observations of changes in internal resistances were performed and illustrated the reduction in anode resistance as the bacterial community was established. Over this same time period, the cathode resistance was observed to have increased; these two phenomena suggest that the anode improved over time while the cathode suffered from degradation. Increased anode fluid ionic strength and flow rate both led to significant

  1. Note: A monoenergetic proton backlighter for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rygg, J. R.; LePape, S.; Bachmann, B.; Khan, S. F.; Sayre, D. B. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Zylstra, A. B.; Séguin, F. H.; Gatu-Johnson, M.; Lahmann, B. J.; Petrasso, R. D.; Sio, H. W. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Craxton, R. S.; Garcia, E. M.; Kong, Y. Z.; McKenty, P. W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Rinderknecht, H. G. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Rosenberg, M. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-11-15

    A monoenergetic, isotropic proton source suitable for proton radiography applications has been demonstrated at the National Ignition Facility (NIF). A deuterium and helium-3 gas-filled glass capsule was imploded with 39 kJ of laser energy from 24 of NIF’s 192 beams. Spectral, spatial, and temporal measurements of the 15-MeV proton product of the {sup 3}He(d,p){sup 4}He nuclear reaction reveal a bright (10{sup 10} protons/sphere), monoenergetic (ΔE/E = 4%) spectrum with a compact size (80 μm) and isotropic emission (∼13% proton fluence variation and <0.4% mean energy variation). Simultaneous measurements of products produced by the D(d,p)T and D(d,n){sup 3}He reactions also show 2 × 10{sup 10} isotropically distributed 3-MeV protons.

  2. Laser-driven shock acceleration of monoenergetic ion beams

    CERN Document Server

    Fiuza, F; Boella, E; Fonseca, R A; Silva, L O; Haberberger, D; Tochitsky, S; Gong, C; Mori, W B; Joshi, C

    2012-01-01

    We show that monoenergetic ion beams can be accelerated by moderate Mach number collisionless, electrostatic shocks propagating in a long scale-length exponentially decaying plasma profile. Strong plasma heating and density steepening produced by an intense laser pulse near the critical density can launch such shocks that propagate in the extended plasma at high velocities. The generation of a monoenergetic ion beam is possible due to the small and constant sheath electric field associated with the slowly decreasing density profile. The conditions for the acceleration of high-quality, energetic ion beams are identified through theory and multidimensional particle-in-cell simulations. The scaling of the ion energy with laser intensity shows that it is possible to generate $\\sim 200$ MeV proton beams with state-of-the-art 100 TW class laser systems.

  3. Note: A monoenergetic proton backlighter for the National Ignition Facility

    Science.gov (United States)

    Rygg, J. R.; Zylstra, A. B.; Séguin, F. H.; LePape, S.; Bachmann, B.; Craxton, R. S.; Garcia, E. M.; Kong, Y. Z.; Gatu-Johnson, M.; Khan, S. F.; Lahmann, B. J.; McKenty, P. W.; Petrasso, R. D.; Rinderknecht, H. G.; Rosenberg, M. J.; Sayre, D. B.; Sio, H. W.

    2015-11-01

    A monoenergetic, isotropic proton source suitable for proton radiography applications has been demonstrated at the National Ignition Facility (NIF). A deuterium and helium-3 gas-filled glass capsule was imploded with 39 kJ of laser energy from 24 of NIF's 192 beams. Spectral, spatial, and temporal measurements of the 15-MeV proton product of the 3He(d,p)4He nuclear reaction reveal a bright (1010 protons/sphere), monoenergetic (ΔE/E = 4%) spectrum with a compact size (80 μm) and isotropic emission (˜13% proton fluence variation and <0.4% mean energy variation). Simultaneous measurements of products produced by the D(d,p)T and D(d,n)3He reactions also show 2 × 1010 isotropically distributed 3-MeV protons.

  4. A 2D/1D coupling neutron transport method based on the matrix MOC and NEM methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.; Zheng, Y.; Wu, H.; Cao, L. [School of Nuclear Science and Technology, Xi' an Jiaotong University, No. 28, Xianning West Road, Xi' an, Shaanxi 710049 (China)

    2013-07-01

    A new 2D/1D coupling method based on the matrix MOC method (MMOC) and nodal expansion method (NEM) is proposed for solving the three-dimensional heterogeneous neutron transport problem. The MMOC method, used for radial two-dimensional calculation, constructs a response matrix between source and flux with only one sweep and then solves the linear system by using the restarted GMRES algorithm instead of the traditional trajectory sweeping process during within-group iteration for angular flux update. Long characteristics are generated by using the customization of commercial software AutoCAD. A one-dimensional diffusion calculation is carried out in the axial direction by employing the NEM method. The 2D and ID solutions are coupled through the transverse leakage items. The 3D CMFD method is used to ensure the global neutron balance and adjust the different convergence properties of the radial and axial solvers. A computational code is developed based on these theories. Two benchmarks are calculated to verify the coupling method and the code. It is observed that the corresponding numerical results agree well with references, which indicates that the new method is capable of solving the 3D heterogeneous neutron transport problem directly. (authors)

  5. Generating monoenergetic proton beam by using circularly polarlzed laser

    Institute of Scientific and Technical Information of China (English)

    LIU Bi-Cheng; YAN Xue-Qing; LIN Chen; Lu Yuan-Rong; GUO Zhi-Yu; FANG Jia-Xun; SHENG Zheng-Ming; LI Yu-Tong; CHEN Jia-Er

    2009-01-01

    The interaction of ultrashort intense circularly polarized laser with ultra thin overdense foil is studied by particle-in-cell simulation and analytic model.It is found that with the balance between pondermotive force and electrostatic force,highly quasi-monoenergetic proton beam can be generated by Phase Stable Acceleration(PSA)process.As in conventional accelerators,ion will be accelerated and bunched up in the longitudinal direction at the same time.

  6. Development And Implementation Of Photonuclear Cross-section Data For Mutually Coupled Neutron-photon Transport Calculations In The Monte Carlo N-particle (mcnp) Radiation Transport Code

    CERN Document Server

    White, M C

    2000-01-01

    The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron tran...

  7. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  8. Development of MCNPX-ESUT computer code for simulation of neutron/gamma pulse height distribution

    Science.gov (United States)

    Abolfazl Hosseini, Seyed; Vosoughi, Naser; Zangian, Mehdi

    2015-05-01

    In this paper, the development of the MCNPX-ESUT (MCNPX-Energy Engineering of Sharif University of Technology) computer code for simulation of neutron/gamma pulse height distribution is reported. Since liquid organic scintillators like NE-213 are well suited and routinely used for spectrometry in mixed neutron/gamma fields, this type of detectors is selected for simulation in the present study. The proposed algorithm for simulation includes four main steps. The first step is the modeling of the neutron/gamma particle transport and their interactions with the materials in the environment and detector volume. In the second step, the number of scintillation photons due to charged particles such as electrons, alphas, protons and carbon nuclei in the scintillator material is calculated. In the third step, the transport of scintillation photons in the scintillator and lightguide is simulated. Finally, the resolution corresponding to the experiment is considered in the last step of the simulation. Unlike the similar computer codes like SCINFUL, NRESP7 and PHRESP, the developed computer code is applicable to both neutron and gamma sources. Hence, the discrimination of neutron and gamma in the mixed fields may be performed using the MCNPX-ESUT computer code. The main feature of MCNPX-ESUT computer code is that the neutron/gamma pulse height simulation may be performed without needing any sort of post processing. In the present study, the pulse height distributions due to a monoenergetic neutron/gamma source in NE-213 detector using MCNPX-ESUT computer code is simulated. The simulated neutron pulse height distributions are validated through comparing with experimental data (Gohil et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 664 (2012) 304-309.) and the results obtained from similar computer codes like SCINFUL, NRESP7 and Geant4. The simulated gamma pulse height distribution for a 137Cs

  9. Neutron diffraction and electrical transport studies on the incommensurate magnetic phase transition in holmium at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Sarah [University of Alabama, Birmingham; Uhoya, Walter [University of Alabama, Birmingham; Tsoi, Georgiy [University of Alabama, Birmingham; Wenger, Lowell E [University of Alabama, Birmingham; Vohra, Yogesh [University of Alabama, Birmingham; Chesnut, Gary Neal [University of Alabama, Birmingham; Weir, S. T. [Lawrence Livermore National Laboratory (LLNL); Tulk, Christopher A [ORNL; Moreira Dos Santos, Antonio F [ORNL

    2012-01-01

    Neutron diffraction and electrical transport measurements have been made on the heavy rare earth metal holmium at high pressures and low temperatures in order to elucidate its transition from a paramagnetic (PM) to a helical antiferromagnetic (AFM) ordered phase as a function of pressure. The electrical resistance measurements show a change in the resistance slope as the temperature is lowered through the antiferromagnetic Neel temperature. The temperature of this antiferromagnetic transition decreases from approximately 122 K at ambient pressure at a rate of -4.9 K GPa(-1) up to a pressure of 9 GPa, whereupon the PM-to-AFM transition vanishes for higher pressures. Neutron diffraction measurements as a function of pressure at 89 and 110 K confirm the incommensurate nature of the phase transition associated with the antiferromagnetic ordering of the magnetic moments in a helical arrangement and that the ordering occurs at similar pressures as determined from the resistance results for these temperatures.

  10. Visualization of root water uptake: quantification of deuterated water transport in roots using neutron radiography and numerical modeling.

    Science.gov (United States)

    Zarebanadkouki, Mohsen; Kroener, Eva; Kaestner, Anders; Carminati, Andrea

    2014-10-01

    Our understanding of soil and plant water relations is limited by the lack of experimental methods to measure water fluxes in soil and plants. Here, we describe a new method to noninvasively quantify water fluxes in roots. To this end, neutron radiography was used to trace the transport of deuterated water (D2O) into roots. The results showed that (1) the radial transport of D2O from soil to the roots depended similarly on diffusive and convective transport and (2) the axial transport of D2O along the root xylem was largely dominated by convection. To quantify the convective fluxes from the radiographs, we introduced a convection-diffusion model to simulate the D2O transport in roots. The model takes into account different pathways of water across the root tissue, the endodermis as a layer with distinct transport properties, and the axial transport of D2O in the xylem. The diffusion coefficients of the root tissues were inversely estimated by simulating the experiments at night under the assumption that the convective fluxes were negligible. Inverse modeling of the experiment at day gave the profile of water fluxes into the roots. For a 24-d-old lupine (Lupinus albus) grown in a soil with uniform water content, root water uptake was higher in the proximal parts of lateral roots and decreased toward the distal parts. The method allows the quantification of the root properties and the regions of root water uptake along the root systems.

  11. 脉冲中子-裂变中子探测铀黄饼的MCNP模拟%The Monte Carlo N particle transport code simulation of pulsed neutron-fission neutron uranium yellowcake exploration

    Institute of Scientific and Technical Information of China (English)

    张坤明; 张雄杰; 瞿金辉; 汤彬

    2015-01-01

    利用MCNP程序模拟研究脉冲中子-裂变中子探测铀黄饼,采用脉冲式中子源,利用氦三管中子探测器记录裂变中子,得到铀黄饼中的铀含量信息。通过对14 MeV脉冲中子源和产生的裂变中子在不同铀含量模型中的输运计算,分析了裂变中子与铀含量的关系。结果表明:利用裂变超热中子衰减时间谱,可以确定铀黄饼中的铀含量;通过对热中子衰减时间谱进行校正,可以提高铀黄饼中铀含量计算结果的准确度。%The Monte Carlo N particle transport code ( MCNP ) is used to simulate how to explore the uranium yel⁃lowcake by using the pulsed neutron⁃fission neutron ( PNFN) method. In order to obtain uranium yellowcake quan⁃titation, pulsed neutron source was used, prompt fission neutrons were detected by using the neutron detector. Un⁃der the condition of different uranium quantitation models, the transport of the 14 MeV pulsed neutron source and the released fission neutron were calculated. On the basis of these, the relationship between fission neutron and ura⁃nium quantitation was studied. The results show that using the epithermal neutron time decay spectrum, the urani⁃um yellowcake quantitation can be determined; the precision of the uranium yellowcake quantitation could be in⁃creased by the correction of thermal neutron time decay spectrum.

  12. 3-D Deep Penetration Neutron Imaging of Thick Absorgin and Diffusive Objects Using Transport Theory

    Energy Technology Data Exchange (ETDEWEB)

    Ragusa, Jean; Bangerth, Wolfgang

    2011-08-01

    here explores the inverse problem of optical tomography applied to heterogeneous domains. The neutral particle transport equation was used as the forward model for how neutral particles stream through and interact within these heterogeneous domains. A constrained optimization technique that uses Newtons method served as the basis of the inverse problem. Optical tomography aims at reconstructing the material properties using (a) illuminating sources and (b) detector readings. However, accurate simulations for radiation transport require that the particle (gamma and/or neutron) energy be appropriate discretize in the multigroup approximation. This, in turns, yields optical tomography problems where the number of unknowns grows (1) about quadratically with respect to the number of energy groups, G, (notably to reconstruct the scattering matrix) and (2) linearly with respect to the number of unknown material regions. As pointed out, a promising approach could rely on algorithms to appropriately select a material type per material zone rather than G2 values. This approach, though promising, still requires further investigation: (a) when switching from cross-section values unknowns to material type indices (discrete integer unknowns), integer programming techniques are needed since derivative information is no longer available; and (b) the issue of selecting the initial material zoning remains. The work reported here proposes an approach to solve the latter item, whereby a material zoning is proposed using one-group or few-groups transport approximations. The capabilities and limitations of the presented method were explored; they are briefly summarized next and later described in fuller details in the Appendices. The major factors that influenced the ability of the optimization method to reconstruct the cross sections of these domains included the locations of the sources used to illuminate the domains, the number of separate experiments used in the reconstruction, the

  13. An analytical discrete ordinates solution for a nodal model of a two-dimensional neutron transport problem

    Energy Technology Data Exchange (ETDEWEB)

    Filho, J. F. P. [Institute de Matematica, Estatistica e Fisica, Universidade Federal do Rio Grande, Av. Italia, s/n, 96203-900 Rio Grande, RS (Brazil); Barichello, L. B. [Institute de Matematica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91509-900 Porto Alegre, RS (Brazil)

    2013-07-01

    In this work, an analytical discrete ordinates method is used to solve a nodal formulation of a neutron transport problem in x, y-geometry. The proposed approach leads to an important reduction in the order of the associated eigenvalue systems, when combined with the classical level symmetric quadrature scheme. Auxiliary equations are proposed, as usually required for nodal methods, to express the unknown fluxes at the boundary introduced as additional unknowns in the integrated equations. Numerical results, for the problem defined by a two-dimensional region with a spatially constant and isotropically emitting source, are presented and compared with those available in the literature. (authors)

  14. High-energy neutron dosimetry with superheated drop detectors

    Energy Technology Data Exchange (ETDEWEB)

    D' Errico, F.; Agosteo, S.; Sannikov, A.V.; Silari, M

    2002-07-01

    A systematic analysis of the response of dichlorodifluoromethane superheated drop detectors was performed in the 46-133 MeV energy range. Experiments with quasi-monoenergetic neutron beams were performed at the Universite Catholique de Leuvain-la-Neuve, Belgium and the Svedberg Laboratory, Sweden, while tests in a broad field were performed at CERN. To determine the response of the detectors to the high-energy beams, the spectra of incident neutrons were folded over functions modelled after the cross sections for the production of heavy ions from the detector elements. The cross sections for fluorine and chlorine were produced in this work by means of the Monte Carlo high-energy transport code HADRON based on the cascade exciton model of nuclear interactions. The new response data permit the interpretation of measurements at high-energy accelerators and on high-altitude commercial flights, where a 30-50% under-response had been consistently recorded with respect to neutron dose equivalent. The introduction of a 1 cm lead shell around the detectors effectively compensates most of the response defect. (author)

  15. TARTNP: a coupled neutron--photon Monte Carlo transport code. [10-/sup 9/ to 20 MeV; in LLL FORTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Plechaty, E.F.; Kimlinger, J.R.

    1976-07-04

    A Monte Carlo code was written that calculates the transport of neutrons, photons, and neutron-induced photons. The cross sections of these particles are derived from TARTNP's data base, the Evaluated Nuclear Data Library. The energy range of the neutron data in the Library is 10/sup -9/ MeV to 20 MeV; the photon energy range is 1 keV to 20 MeV. One of the chief advantages of the code is its flexibility: it allows up to 17 different kinds of output to be evaluated in the same problem.

  16. The effect of biological shielding on fast neutron and photon transport in the VVER-1000 mock-up model placed in the LR-0 reactor.

    Science.gov (United States)

    Košťál, Michal; Cvachovec, František; Milčák, Ján; Mravec, Filip

    2013-05-01

    The paper is intended to show the effect of a biological shielding simulator on fast neutron and photon transport in its vicinity. The fast neutron and photon fluxes were measured by means of scintillation spectroscopy using a 45×45 mm(2) and a 10×10 mm(2) cylindrical stilbene detector. The neutron spectrum was measured in the range of 0.6-10 MeV and the photon spectrum in 0.2-9 MeV. The results of the experiment are compared with calculations. The calculations were performed with various nuclear data libraries.

  17. Heterogeneity of solid neutron-star matter: transport coefficients and neutrino emissivity

    CERN Document Server

    Jones, P B

    2004-01-01

    Calculations of weak-interaction transition rates and of nuclear formation enthalpies show that in isolated neutron stars, the solid phase, above the neutron-drip threshold, is amorphous and heterogeneous in nuclear charge. The neutrino emissivities obtained are very dependent on the effects of proton shell structure but may be several orders of magnitude larger than the electron bremsstrahlung neutrino-pair emissivity at temperatures of 10^9 K. In this phase, electrical and thermal conductivities are much smaller than for a homogeneous bcc lattice. In particular, the reduced electrical conductivity, which is also temperature-independent, must have significant consequences for the evolution of high-multipole magnetic fields in neutron stars.

  18. Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    White, Morgan C. [Univ. of Florida, Gainesville, FL (United States)

    2000-07-01

    The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second

  19. Resolution of the neutron transport equation by massively parallel computer in the Cronos code; Resolution sur ordinateur parallele de l`equation de transport en approximation dans le code Cronos

    Energy Technology Data Exchange (ETDEWEB)

    Zardini, D.M.

    1996-12-31

    The feasibility of neutron transport problems parallel resolution by CRONOS code`s SN module is here studied. In this report we give the first data about the parallel resolution by angular variable decomposition of the transport equation. Problems about parallel resolution by spatial variable decomposition and memory stage limits are also explained here. (author). 9 refs.

  20. Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2.

    Science.gov (United States)

    Wongthai, Printip; Hagiwara, Kohei; Miyoshi, Yurika; Wiriyasermkul, Pattama; Wei, Ling; Ohgaki, Ryuichi; Kato, Itsuro; Hamase, Kenji; Nagamori, Shushi; Kanai, Yoshikatsu

    2015-03-01

    The efficacy of boron neutron capture therapy relies on the selective delivery of boron carriers to malignant cells. p-Boronophenylalanine (BPA), a boron delivery agent, has been proposed to be localized to cells through transporter-mediated mechanisms. In this study, we screened aromatic amino acid transporters to identify BPA transporters. Human aromatic amino acid transporters were functionally expressed in Xenopus oocytes and examined for BPA uptake and kinetic parameters. The roles of the transporters in BPA uptake were characterized in cancer cell lines. For the quantitative assessment of BPA uptake, HPLC was used throughout the study. Among aromatic amino acid transporters, ATB(0,+), LAT1 and LAT2 were found to transport BPA with Km values of 137.4 ± 11.7, 20.3 ± 0.8 and 88.3 ± 5.6 μM, respectively. Uptake experiments in cancer cell lines revealed that the LAT1 protein amount was the major determinant of BPA uptake at 100 μM, whereas the contribution of ATB(0,+) became significant at 1000 μM, accounting for 20-25% of the total BPA uptake in MCF-7 breast cancer cells. ATB(0,+), LAT1 and LAT2 transport BPA at affinities comparable with their endogenous substrates, suggesting that they could mediate effective BPA uptake in vivo. The high and low affinities of LAT1 and ATB(0,+), respectively, differentiate their roles in BPA uptake. ATB(0,+), as well as LAT1, could contribute significantly to the tumor accumulation of BPA at clinical dose.

  1. The coupling of the neutron transport application RATTLESNAKE to the nuclear fuels performance application BISON under the MOOSE framework

    Energy Technology Data Exchange (ETDEWEB)

    Gleicher, Frederick N.; Williamson, Richard L.; Ortensi, Javier; Wang, Yaqi; Spencer, Benjamin W.; Novascone, Stephen R.; Hales, Jason D.; Martineau, Richard C.

    2014-10-01

    The MOOSE neutron transport application RATTLESNAKE was coupled to the fuels performance application BISON to provide a higher fidelity tool for fuel performance simulation. This project is motivated by the desire to couple a high fidelity core analysis program (based on the self-adjoint angular flux equations) to a high fidelity fuel performance program, both of which can simulate on unstructured meshes. RATTLESNAKE solves self-adjoint angular flux transport equation and provides a sub-pin level resolution of the multigroup neutron flux with resonance treatment during burnup or a fast transient. BISON solves the coupled thermomechanical equations for the fuel on a sub-millimeter scale. Both applications are able to solve their respective systems on aligned and unaligned unstructured finite element meshes. The power density and local burnup was transferred from RATTLESNAKE to BISON with the MOOSE Multiapp transfer system. Multiple depletion cases were run with one-way data transfer from RATTLESNAKE to BISON. The eigenvalues are shown to agree well with values obtained from the lattice physics code DRAGON. The one-way data transfer of power density is shown to agree with the power density obtained from an internal Lassman-style model in BISON.

  2. TRIPOLI: a general Monte Carlo code, present state and future prospects. [Neutron and gamma ray transport

    Energy Technology Data Exchange (ETDEWEB)

    Nimal, J.C.; Vergnaud, T. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France))

    1990-01-01

    This paper describes the most important features of the Monte Carlo code TRIPOLI-2. This code solves the Boltzmann equation in three-dimensional geometries for coupled neutron and gamma rays problems. A particular emphasis is devoted to the biasing techniques, which are very important for deep penetration. Future developments in TRIPOLI are described in the conclusion. (author).

  3. Dosimetric effects of beam size and collimation of epithermal neutrons for boron neutron capture therapy.

    Science.gov (United States)

    Yanch, J C; Harling, O K

    1993-08-01

    A series of studies of "ideal" beams has been carried out using Monte Carlo simulation with the goal of providing guidance for the design of epithermal beams for boron neutron capture therapy (BNCT). An "ideal" beam is defined as a monoenergetic, photon-free source of neutrons with user-specified size, shape and angular dependence of neutron current. The dosimetric behavior of monoenergetic neutron beams in an elliptical phantom composed of brain-equivalent material has been assessed as a function of beam diameter and neutron emission angle (beam angle), and the results are reported here. The simulation study indicates that substantial differences exist in the dosimetric behavior of small and large neutron beams (with respect to the phantom) as a function of the extent of beam collimation. With a small beam, dose uniformity increases as the beam becomes more isotropic (less collimated); the opposite is seen with large beams. The penetration of thermal neutrons is enhanced as the neutron emission angle is increased with a small beam; again the opposite trend is seen with large beams. When beam size is small, the dose delivered per neutron is very dependent on the extent of beam collimation; this does not appear to be the case with a larger beam. These trends in dose behavior are presented graphically and discussed in terms of their effect on several figures of merit, the advantage depth, the advantage ratio, and the advantage depth-dose rate. Tables giving quick summaries of these results are provided.

  4. 3-D Deep Penetration Neutron Imaging of Thick Absorgin and Diffusive Objects Using Transport Theory

    Energy Technology Data Exchange (ETDEWEB)

    Ragusa, Jean; Bangerth, Wolfgang

    2011-08-01

    here explores the inverse problem of optical tomography applied to heterogeneous domains. The neutral particle transport equation was used as the forward model for how neutral particles stream through and interact within these heterogeneous domains. A constrained optimization technique that uses Newtons method served as the basis of the inverse problem. Optical tomography aims at reconstructing the material properties using (a) illuminating sources and (b) detector readings. However, accurate simulations for radiation transport require that the particle (gamma and/or neutron) energy be appropriate discretize in the multigroup approximation. This, in turns, yields optical tomography problems where the number of unknowns grows (1) about quadratically with respect to the number of energy groups, G, (notably to reconstruct the scattering matrix) and (2) linearly with respect to the number of unknown material regions. As pointed out, a promising approach could rely on algorithms to appropriately select a material type per material zone rather than G2 values. This approach, though promising, still requires further investigation: (a) when switching from cross-section values unknowns to material type indices (discrete integer unknowns), integer programming techniques are needed since derivative information is no longer available; and (b) the issue of selecting the initial material zoning remains. The work reported here proposes an approach to solve the latter item, whereby a material zoning is proposed using one-group or few-groups transport approximations. The capabilities and limitations of the presented method were explored; they are briefly summarized next and later described in fuller details in the Appendices. The major factors that influenced the ability of the optimization method to reconstruct the cross sections of these domains included the locations of the sources used to illuminate the domains, the number of separate experiments used in the reconstruction, the

  5. Analysis of the neutrons dispersion in a semi-infinite medium based in transport theory and the Monte Carlo method; Analisis de la dispersion de neutrones en un medio semi-infinito en base a teoria de transporte y el metodo de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Arreola V, G. [IPN, Escuela Superior de Fisica y Matematicas, Posgrado en Ciencias Fisicomatematicas, area en Ingenieria Nuclear, Unidad Profesional Adolfo Lopez Mateos, Edificio 9, Col. San Pedro Zacatenco, 07730 Mexico D. F. (Mexico); Vazquez R, R.; Guzman A, J. R., E-mail: energia.arreola.uam@gmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2012-10-15

    In this work a comparative analysis of the results for the neutrons dispersion in a not multiplicative semi-infinite medium is presented. One of the frontiers of this medium is located in the origin of coordinates, where a neutrons source in beam form, i.e., {mu}{omicron}=1 is also. The neutrons dispersion is studied on the statistical method of Monte Carlo and through the unidimensional transport theory and for an energy group. The application of transport theory gives a semi-analytic solution for this problem while the statistical solution for the flow was obtained applying the MCNPX code. The dispersion in light water and heavy water was studied. A first remarkable result is that both methods locate the maximum of the neutrons distribution to less than two mean free trajectories of transport for heavy water, while for the light water is less than ten mean free trajectories of transport; the differences between both methods is major for the light water case. A second remarkable result is that the tendency of both distributions is similar in small mean free trajectories, while in big mean free trajectories the transport theory spreads to an asymptote value and the solution in base statistical method spreads to zero. The existence of a neutron current of low energy and toward the source is demonstrated, in contrary sense to the neutron current of high energy coming from the own source. (Author)

  6. Monoenergetic proton emission from nuclear reaction induced by high intensity laser-generated plasmaa)

    Science.gov (United States)

    Torrisi, L.; Cavallaro, S.; Cutroneo, M.; Giuffrida, L.; Krasa, J.; Margarone, D.; Velyhan, A.; Kravarik, J.; Ullschmied, J.; Wolowski, J.; Szydlowski, A.; Rosinski, M.

    2012-02-01

    A 1016 W/cm2 Asterix laser pulse intensity, 1315 nm at the fundamental frequency, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD2 targets placed inside a high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deutons and carbon ions emission with energy of up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deutons may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD2 targets can be employed to be irradiated by the plasma-accelerated deutons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  7. Monoenergetic proton emission from nuclear reaction induced by high intensity laser-generated plasma.

    Science.gov (United States)

    Torrisi, L; Cavallaro, S; Cutroneo, M; Giuffrida, L; Krasa, J; Margarone, D; Velyhan, A; Kravarik, J; Ullschmied, J; Wolowski, J; Szydlowski, A; Rosinski, M

    2012-02-01

    A 10(16) W∕cm(2) Asterix laser pulse intensity, 1315 nm at the fundamental frequency, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD(2) targets placed inside a high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deutons and carbon ions emission with energy of up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deutons may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD(2) targets can be employed to be irradiated by the plasma-accelerated deutons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  8. Monoenergetic proton emission from nuclear reaction induced by high intensity laser-generated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L. [INFN-LNS Via S. Sofia 44, 95123 Catania (Italy); Dip.to di Fisica, Universita di Messina, V.le F.S. D' Alcontres 31, 98166 S. Agata, Messina (Italy); Cavallaro, S.; Giuffrida, L. [INFN-LNS Via S. Sofia 44, 95123 Catania (Italy); Cutroneo, M. [Dip.to di Fisica, Universita di Messina, V.le F.S. D' Alcontres 31, 98166 S. Agata, Messina (Italy); Krasa, J.; Margarone, D.; Velyhan, A.; Ullschmied, J. [Institute of Physics, ASCR, v.v.i., 182 21 Prague 8 (Czech Republic); Kravarik, J. [Czech Technical University, Faculty of Electro-Engineering, Prague (Czech Republic); Wolowski, J.; Szydlowski, A.; Rosinski, M. [Institute of Plasma Physics and Laser Microfusion, IPPLM, 23 Hery Str., 01-497 Warsaw (Poland)

    2012-02-15

    A 10{sup 16} W/cm{sup 2} Asterix laser pulse intensity, 1315 nm at the fundamental frequency, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD{sub 2} targets placed inside a high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deutons and carbon ions emission with energy of up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deutons may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD{sub 2} targets can be employed to be irradiated by the plasma-accelerated deutons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  9. Decisive disappearance search at high Δ m2 with monoenergetic muon neutrinos

    Science.gov (United States)

    Axani, S.; Collin, G.; Conrad, J. M.; Shaevitz, M. H.; Spitz, J.; Wongjirad, T.

    2015-11-01

    "KPipe" is a proposed experiment which will study muon neutrino disappearance for a sensitive test of the Δ m2˜1 eV2 anomalies, possibly indicative of one or more sterile neutrinos. The experiment is to be located at the J-PARC Materials and Life Science Experimental Facility's spallation neutron source, which represents the world's most intense source of charged kaon decay-at-rest monoenergetic (236 MeV) muon neutrinos. The detector vessel, designed to measure the charged-current interactions of these neutrinos, will be 3 m in diameter and 120 m long, extending radially at a distance of 32 to 152 m from the source. This design allows a sensitive search for νμ disappearance associated with currently favored light sterile neutrino models and features the ability to reconstruct the neutrino oscillation wave within a single, extended detector. The required detector design, technology, and costs are modest. The KPipe measurements will be robust since they depend on a known energy neutrino source with low expected backgrounds. Further, since the measurements rely only on the measured rate of detected events as a function of distance, with no required knowledge of the initial flux and neutrino interaction cross section, the results will be largely free of systematic errors. The experimental sensitivity to oscillations, based on a shape-only analysis of the L /E distribution, will extend an order of magnitude beyond present experimental limits in the relevant high-Δ m2 parameter space.

  10. Measurement of cross sections for the scattering of neutrons in the energy range from 2 MeV to 4 MeV with the {sup 15}N(p,n) reaction as neutron source; Messung von Wirkungsquerschnitten fuer die Streuung von Neutronen im Energiebereich von 2 MeV bis 4 MeV mit der {sup 15}N(p,n)-Reaktion als Neutronenquelle

    Energy Technology Data Exchange (ETDEWEB)

    Poenitz, Erik

    2010-04-26

    In future nuclear facilities, the materials lead and bismuth can play a more important role than in today's nuclear reactors. Reliable cross section data are required for the design of those facilities. In particular the neutron transport in the lead spallation target of an Accelerator-Driven Subcritical Reactor strongly depends on the inelastic neutron scattering cross sections in the energy region from 0.5 MeV to 6 MeV. In the recent 20 years, elastic and inelastic neutron scattering cross sections were measured with high precision for a variety of elements at the PTB time-of-flight spectrometer. The D(d,n) reaction was primarily used for the production of neutrons. Because of the Q value of the reaction and the available deuteron energies, neutrons in the energy range from 6 MeV to 16 MeV can be produced. For the cross section measurement at lower energies, however, another neutron producing reaction is required. The {sup 15}N(p,n){sup 15}O reaction was chosen, as it allows the production of monoenergetic neutrons with up to 5.7MeV energy. In this work, the {sup 15}N(p,n) reaction was studied with focus on the suitability as a source for monoenergetic neutrons in scattering experiments. This includes the measurement of differential cross sections for the neutron producing reaction and the choice of optimum target conditions. Differential elastic and inelastic neutron scattering cross sections were measured for lead at four energies in the region from 2 MeV to 4 MeV incident neutron energy using the time-of-flight technique. A lead sample with natural isotopic composition was used. NE213 liquid scintillation detectors with well-known detection efficiencies were used for the detection of the scattered neutrons. Angle-integrated cross sections were determined by a Legendre polynomial expansion using least-squares methods. Additionally, measurements were carried out for isotopically pure {sup 209}Bi and {sup 181}Ta samples at 4 MeV incident neutron energy

  11. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.

  12. Monoenergetic positron beam at the reactor based positron source at FRM-II

    Science.gov (United States)

    Hugenschmidt, C.; Kögel, G.; Repper, R.; Schreckenbach, K.; Sperr, P.; Straßer, B.; Triftshäuser, W.

    2002-05-01

    The principle of the in-pile positron source at the Munich research reactor FRM-II is based on absorption of high energy prompt γ-rays from thermal neutron capture in 113Cd. For this purpose, a cadmium cap is placed inside the tip of the inclined beam tube SR-11 in the moderator tank of the reactor, where an undisturbed thermal neutron flux up to 2×10 14n cm-2 s-1 is expected. Inside the cadmium cap a structure of platinum foils is placed for converting high energy γ-radiation into positron-electron pairs. Due to the negative positron work function, moderation in annealed platinum leads to emission of monoenergetic positrons. Therefore, platinum will also be used as moderator, since its moderation property seems to yield long-term stability under reactor conditions and it is much easier to handle than tungsten. Model calculations were performed with SIMION-7.0w to optimise geometry and potential of Pt-foils and electrical lenses. It could be shown that the potentials between the Pt-foils must be chosen in the range of 1-10 V to extract moderated positrons. After successive acceleration to 5 keV by four electrical lenses the beam is magnetically guided in a solenoid field of 7.5 mT resulting in a beam diameter of about 25 mm. An intensity of about 10 10 slow positrons per second is expected in the primary positron beam. Outside of the reactor shield a W(1 0 0) single crystal remoderation stage will lead to an improvement of the positron beam brilliance before the positrons are guided to the experimental facilities.

  13. Fast Neutron Transport in the Biological Shielding Model and Other Regions of the VVER-1000 Mock-Up on the LR-0 Research Reactor

    Science.gov (United States)

    Košťál, Michal; Milčák, Ján; Cvachovec, František; Jánský, Bohumil; Rypar, Vojtěch; Juříček, Vlastimil; Novák, Evžen; Egorov, Alexander; Zaritskiy, Sergey

    2016-02-01

    A set of benchmark experiments was carried out in the full scale VVER-1000 mock-up on the reactor LR-0 in order to validate neutron transport calculation methodologies and to perform the optimization of the shape and locations of neutron flux operation monitors channels inside the shielding of the new VVER-1000 type reactors. Compared with previous experiments on the VVER-1000 mock-up on the reactor LR-0, the fast neutron spectra were measured in the extended neutron energy interval (0.1-10 MeV) and new calculations were carried out with the MCNPX code using various nuclear data libraries (ENDF/B VII.0, JEFF 3.1, JENDL 3.3, JENDL 4, ROSFOND 2009, and CENDL 3.1). Measurements and calculations were carried out at different points in the mock-up. The calculation and experimental data are compared.

  14. Fast Neutron Transport in the Biological Shielding Model and Other Regions of the VVER-1000 Mock-Up on the LR-0 Research Reactor

    Directory of Open Access Journals (Sweden)

    Košťál Michal

    2016-01-01

    Full Text Available A set of benchmark experiments was carried out in the full scale VVER-1000 mock-up on the reactor LR-0 in order to validate neutron transport calculation methodologies and to perform the optimization of the shape and locations of neutron flux operation monitors channels inside the shielding of the new VVER-1000 type reactors. Compared with previous experiments on the VVER-1000 mock-up on the reactor LR-0, the fast neutron spectra were measured in the extended neutron energy interval (0.1–10 MeV and new calculations were carried out with the MCNPX code using various nuclear data libraries (ENDF/B VII.0, JEFF 3.1, JENDL 3.3, JENDL 4, ROSFOND 2009, and CENDL 3.1. Measurements and calculations were carried out at different points in the mock-up. The calculation and experimental data are compared.

  15. Multi-domain/multi-method numerical approach for neutron transport equation; Couplage de methodes et decomposition de domaine pour la resolution de l'equation du transport des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, E

    2004-12-15

    A new methodology for the solution of the neutron transport equation, based on domain decomposition has been developed. This approach allows us to employ different numerical methods together for a whole core calculation: a variational nodal method, a discrete ordinate nodal method and a method of characteristics. These new developments authorize the use of independent spatial and angular expansion, non-conformal Cartesian and unstructured meshes for each sub-domain, introducing a flexibility of modeling which is not allowed in today available codes. The effectiveness of our multi-domain/multi-method approach has been tested on several configurations. Among them, one particular application: the benchmark model of the Phebus experimental facility at Cea-Cadarache, shows why this new methodology is relevant to problems with strong local heterogeneities. This comparison has showed that the decomposition method brings more accuracy all along with an important reduction of the computer time.

  16. Parallel computing for homogeneous diffusion and transport equations in neutronics; Calcul parallele pour les equations de diffusion et de transport homogenes en neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Pinchedez, K

    1999-06-01

    Parallel computing meets the ever-increasing requirements for neutronic computer code speed and accuracy. In this work, two different approaches have been considered. We first parallelized the sequential algorithm used by the neutronics code CRONOS developed at the French Atomic Energy Commission. The algorithm computes the dominant eigenvalue associated with PN simplified transport equations by a mixed finite element method. Several parallel algorithms have been developed on distributed memory machines. The performances of the parallel algorithms have been studied experimentally by implementation on a T3D Cray and theoretically by complexity models. A comparison of various parallel algorithms has confirmed the chosen implementations. We next applied a domain sub-division technique to the two-group diffusion Eigen problem. In the modal synthesis-based method, the global spectrum is determined from the partial spectra associated with sub-domains. Then the Eigen problem is expanded on a family composed, on the one hand, from eigenfunctions associated with the sub-domains and, on the other hand, from functions corresponding to the contribution from the interface between the sub-domains. For a 2-D homogeneous core, this modal method has been validated and its accuracy has been measured. (author)

  17. Neutron diffraction and electrical transport studies on magnetic ordering in terbium at high pressures and low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Sarah [University of Alabama, Birmingham; Montgomery, Jeffrey M [University of Alabama, Birmingham; Tsoi, Georgiy [University of Alabama, Birmingham; Vohra, Yogesh [University of Alabama, Birmingham; Chesnut, Gary Neal [University of Alabama, Birmingham; Weir, S. T. [Lawrence Livermore National Laboratory (LLNL); Tulk, Christopher A [ORNL; Moreira Dos Santos, Antonio F [ORNL

    2013-01-01

    Neutron diffraction and electrical transport measurements have been carried out on the heavy rare-earth metal terbium at high pressures and low temperatures in order to elucidate the onset of ferromagnetic (FM) order as a function of pressure. The electrical resistance measurements show a change in slope as the temperature is lowered through the FM Curie temperature. The temperature of this FM transition decreases at a rate of-16.7 K/GPa up to a pressure of 3.6 GPa, at which point the onset of FM order is suppressed. The neutron diffraction measurements as a function of pressure at temperatures ranging from 90 to 290 K confirm that the change of slope in the resistance is associated with the FM ordering, since this occurs at pressures similar to those determined from the resistance results at these temperatures. A disappearance of FM ordering was observed as the pressure is increased above 3.6 GPa and is correlated with the phase transition from the ambient hexagonal close packed structure to an -Sm-type structure at high pressures.

  18. Benchmark solutions for transport in $d$-dimensional Markov binary mixtures

    CERN Document Server

    Larmier, Coline; Malvagi, Fausto; Mazzolo, Alain; Zoia, Andrea

    2016-01-01

    Linear particle transport in stochastic media is key to such relevant applications as neutron diffusion in randomly mixed immiscible materials, light propagation through engineered optical materials, and inertial confinement fusion, only to name a few. We extend the pioneering work by Adams, Larsen and Pomraning \\cite{benchmark_adams} (recently revisited by Brantley \\cite{brantley_benchmark}) by considering a series of benchmark configurations for mono-energetic and isotropic transport through Markov binary mixtures in dimension $d$. The stochastic media are generated by resorting to Poisson random tessellations in $1d$ slab, $2d$ extruded, and full $3d$ geometry. For each realization, particle transport is performed by resorting to the Monte Carlo simulation. The distributions of the transmission and reflection coefficients on the free surfaces of the geometry are subsequently estimated, and the average values over the ensemble of realizations are computed. Reference solutions for the benchmark have never be...

  19. ACCELERATING FUSION REACTOR NEUTRONICS MODELING BY AUTOMATIC COUPLING OF HYBRID MONTE CARLO/DETERMINISTIC TRANSPORT ON CAD GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Biondo, Elliott D [ORNL; Ibrahim, Ahmad M [ORNL; Mosher, Scott W [ORNL; Grove, Robert E [ORNL

    2015-01-01

    Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNce reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).

  20. TART98 a coupled neutron-photon 3-D, combinatorial geometry time dependent Monte Carlo Transport code

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, D E

    1998-11-22

    TART98 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART98 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART98 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART98 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART98 and its data files.

  1. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thatar Vento, V., E-mail: Vladimir.ThatarVento@gmail.com [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina); Bergueiro, J.; Cartelli, D. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina)

    2011-12-15

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  2. Measurement of neutron energy spectrum at the radial channel No. 4 of the Dalat reactor

    OpenAIRE

    Son, Pham Ngoc; Tan, Vuong Huu

    2016-01-01

    Introduction Several compositions of neutron filters have been installed at the channel No. 4 of the Dalat research reactor to produce quasi-monoenergetic neutron beams. However, this neutron facility has been proposed to enhance the quality of the experimental instruments, and to characterize the neutron spectrum parameters for new filtered neutron beams of 2 keV, 24 keV, 59 keV and 133 keV. Case description In order to meet the demand of neutron spectrum information for calculation and desi...

  3. Spectroscopy of Neutrons Produced by (p,n) Reactions on Lithium

    Science.gov (United States)

    Wielopolski, Lucian; Powell, J.; Ludewig, H.; Raparia, D.; Alessi, J.; Han, Guoping

    1997-05-01

    Alternative to nuclear reactors, epithermal neutron source are being developed for Boron Neutron Capture Therapy (BNCT). Ideally, BNCT requires mono-energetic neutrons from about 1eV to 20keV depending on the tumor depth in brain. Accelerator based filtered neutron beams for BNCT produce continuous neutron spectra that need to be optimised. Neutron spectra resulting from bombarding Li target with protons, with various energies, were measured using proton recoil proportional counters. These spectra were analysed using the PSNS and HEPRO codes. The results from both analysis and Monte Carlo simulations are presented and the issues involved with either of the codes are discussed.

  4. MONSTER: a TOF Spectrometer for β-delayed Neutron Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, T., E-mail: trino.martinez@ciemat.es [Centro de Investigaciones Energéticas, MedioAmbientales y Tecnológicas, CIEMAT, Madrid 28040 (Spain); Cano-Ott, D.; Castilla, J.; Garcia, A.R.; Marin, J.; Martinez, G.; Mendoza, E.; Santos, C.; Tera, F.J.; Villamarin, D. [Centro de Investigaciones Energéticas, MedioAmbientales y Tecnológicas, CIEMAT, Madrid 28040 (Spain); Agramunt, J.; Algora, A.; Domingo, C.; Jordan, M.D.; Rubio, B.; Taín, J.L. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia (Spain); Bhattacharya, C.; Banerjee, K.; Bhattacharya, S.; Roy, P. [Variable Energy Cyclotron Centre (VECC), Kolkata (India); and others

    2014-06-15

    β-delayed neutron (DN) data, including emission probabilities, Pn, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.

  5. MONSTER: a TOF Spectrometer for β-delayed Neutron Spectroscopy

    Science.gov (United States)

    Martínez, T.; Cano-Ott, D.; Castilla, J.; Garcia, A. R.; Marin, J.; Martinez, G.; Mendoza, E.; Santos, C.; Tera, F. J.; Villamarin, D.; Agramunt, J.; Algora, A.; Domingo, C.; Jordan, M. D.; Rubio, B.; Taín, J. L.; Bhattacharya, C.; Banerjee, K.; Bhattacharya, S.; Roy, P.; Meena, J. K.; Kundu, S.; Mukherjee, G.; Ghosh, T. K.; Rana, T. K.; Pandey, R.; Saxena, A.; Behera, B.; Penttilä, H.; Jokinen, A.; Rinta-Antila, S.; Guerrero, C.; Ovejero, M. C.

    2014-06-01

    β-delayed neutron (DN) data, including emission probabilities, Pn, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.

  6. MONSTER: a TOF Spectrometer for beta-delayed Neutron Spetroscopy

    CERN Document Server

    Martinez, T; Castilla, J; Garcia, A R; Marin, J; Martinez, G; Mendoza, E; Santos, C; Tera, F; Jordan, M D; Rubio, B; Tain, J L; Bhattacharya, C; Banerjee, K; Bhattacharya, S; Roy, P; Meena, J K; Kundu, S; Mukherjee, G; Ghosh, T K; Rana, T K; Pandey, R; Saxena, A; Behera, B; Penttila, H; Jokinen, A; Rinta-Antila, S; Guerrero, C; Ovejero, M C; Villamarin, D; Agramunt, J; Algora, A

    2014-01-01

    Beta-delayed neutron (DN) data, including emission probabilities, P-n, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.

  7. Monoenergetic electron parameters in a spheroid bubble model

    Institute of Scientific and Technical Information of China (English)

    H.Sattarian; Sh.Rahmatallahpur; T.Tohidi

    2013-01-01

    A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived.The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal models and it explains the mono-energetic electron trajectory more accurately,especially at the relativistic region.The maximum energy of electrons is calculated and it is shown that the maximum energy of the spheroid model is less than that of the spherical model.The electron energy spectrum is also calculated and it is found that the energy distribution ratio of electrons △E/E for the spheroid model under the conditions reported here is half that of the spherical model and it is in good agreement with the experimental value in the same conditions.As a result,the quasi-mono-energetic electron output beam interacting with the laser plasma can be more appropriately described with this model.

  8. Neutron beam test of barium fluoride crystal for dark matter direct detection

    Science.gov (United States)

    Guo, C.; Ma, X. H.; Wang, Z. M.; Bao, J.; Dai, C. J.; Guan, M. Y.; Liu, J. C.; Li, Z. H.; Ren, J.; Ruan, X. C.; Yang, C. G.; Yu, Z. Y.; Zhong, W. L.

    2016-10-01

    In order to test the capabilities of Barium Fluoride (BaF2) crystal for dark matter direct detection, nuclear recoils are studied with mono-energetic neutron beam. The energy spectra of nuclear recoils, quenching factors for elastic scattering neutrons and discrimination capability between neutron inelastic scattering events and γ events are obtained for various recoil energies of the F content in BaF2.

  9. Neutron Beam Tests of Barium Fluoride Crystal for Dark Matter Direct Detection

    CERN Document Server

    Guo, Cong; Wang, Zhimin; Bao, Jie; Dai, Changjiang; Guan, Mengyun; Liu, Jinchang; Li, Zuhao; Ren, Jie; Ruan, Xichao; Yang, Changgen; Yu, Zeyuan; Zhong, Weili

    2016-01-01

    In order to test the capabilities of Barium Fluoride (BaF2) Crystal for dark matter direct detection, nuclear recoils are studied with mono-energetic neutron beam. The energy spectra of nuclear recoils, quenching factors for elastic scattering neutrons and discrimination capability between neutron inelastic scattering events and {\\gamma} events are obtained for various recoil energies of the F content in BaF2.

  10. Detecting energy dependent neutron capture distributions in a liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Balmer, Matthew J.I., E-mail: m.balmer@lancaster.ac.uk [Department of Engineering, Lancaster University, LA1 4YR (United Kingdom); Gamage, Kelum A.A. [Department of Engineering, Lancaster University, LA1 4YR (United Kingdom); Taylor, Graeme C. [Neutron Metrology Group, National Physical Laboratory, Teddington, TW11 0LW (United Kingdom)

    2015-03-11

    A novel technique is being developed to estimate the effective dose of a neutron field based on the distribution of neutron captures in a scintillator. Using Monte Carlo techniques, a number of monoenergetic neutron source energies and locations were modelled and their neutron capture response was recorded. Using back propagation Artificial Neural Networks (ANN) the energy and incident direction of the neutron field was predicted from the distribution of neutron captures within a {sup 6}Li-loaded liquid scintillator. Using this proposed technique, the effective dose of {sup 252}Cf, {sup 241}AmBe and {sup 241}AmLi neutron fields was estimated to within 30% for four perpendicular angles in the horizontal plane. Initial theoretical investigations show that this technique holds some promise for real-time estimation of the effective dose of a neutron field.

  11. Solution of the Neutron transport equation in hexagonal geometry using strongly discontinuous nodal schemes; Solucion de la Ecuacion de transporte de neutrones en geometria hexagonal usando esquemas nodales fuertemente discontinuos

    Energy Technology Data Exchange (ETDEWEB)

    Mugica R, C.A.; Valle G, E. del [IPN, ESFM, Departamento de Ingenieria Nuclear, 07738 Mexico D.F. (Mexico)]. e-mail: cmugica@ipn.mx

    2005-07-01

    In 2002, E. del Valle and Ernest H. Mund developed a technique to solve numerically the Neutron transport equations in discrete ordinates and hexagonal geometry using two nodal schemes type finite element weakly discontinuous denominated WD{sub 5,3} and WD{sub 12,8} (of their initials in english Weakly Discontinuous). The technique consists on representing each hexagon in the union of three rhombuses each one of which it is transformed in a square in the one that the methods WD{sub 5,3} and WD{sub 12,8} were applied. In this work they are solved the mentioned equations of transport using the same discretization technique by hexagon but using two nodal schemes type finite element strongly discontinuous denominated SD{sub 3} and SD{sub 8} (of their initials in english Strongly Discontinuous). The application in each case as well as a reference problem for those that results are provided for the effective multiplication factor is described. It is carried out a comparison with the obtained results by del Valle and Mund for different discretization meshes so much angular as spatial. (Author)

  12. Analytical Tests for Ray Effect Errors in Discrete Ordinate Methods for Solving the Neutron Transport Equation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, B

    2004-03-22

    This paper contains three analytical solutions of transport problems which can be used to test ray-effect errors in the numerical solutions of the Boltzmann Transport Equation (BTE). We derived the first two solutions and the third was shown to us by M. Prasad. Since this paper is intended to be an internal LLNL report, no attempt was made to find the original derivations of the solutions in the literature in order to cite the authors for their work.

  13. Study on neutron beam probe. Study on the focused neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kotajima, Kyuya; Suzuki, K.; Fujisawa, M.; Takahashi, T.; Sakamoto, I. [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Wakabayashi, T.

    1998-03-01

    A monoenergetic focused neutron beam has been produced by utilizing the endoenergetic heavy ion reactions on hydrogen. To realize this, the projectile heavy ion energy should be taken slightly above the threshold energy, so that the excess energy converted to the neutron energy should be very small. In order to improve the capability of the focused neutron beam, some hydrogen stored metal targets have also been tested. Separating the secondary heavy ions (associated particles) from the primary ions (accelerated particles) by using a dipole magnet, a rf separator, and a particle identification system, we could directly count the produced neutrons. This will leads us to the possibility of realizing the standard neutron field which had been the empty dream of many neutron-related researchers in the world. (author)

  14. Laser Acceleration of Quasi-Monoenergetic Protons via Radiation Pressure Driven Thin Foil

    Science.gov (United States)

    Liu, Chuan S.; Shao, Xi; Eliasson, Bengt; Liu, T. C.; Dudnikova, Galina; Sagdeev, Roald Z.

    2011-01-01

    We present a theoretical and simulation study of laser acceleration of quasi-monoenergetic protons in a thin foil irradiated by high intensity laser light. The underlying physics of radiation pressure acceleration (RPA) is discussed, including the importance of optimal thickness and circularly polarized light for efficient acceleration of ions to quasi-monoenergetic beams. Preliminary two-dimensional simulation studies show that certain parameter regimes allow for stabilization of the Rayleigh-Taylor instability and possibility of acceleration of monoenergetic ions to an excess of 200 MeV, making them suitable for important applications such as medical cancer therapy and fast ignition.

  15. Trade Study for Neutron Transport at Low Earth Orbit: Adding Fidelity to DIORAMA

    Energy Technology Data Exchange (ETDEWEB)

    McClanahan, Tucker Caden [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wakeford, Daniel Tyler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-22

    The Distributed Infrastructure Offering Real-Time Access to Modeling and Analysis (DIORAMA) software provides performance modeling capabilities of the United States Nuclear Detonation Detection System (USNDS) with a focus on the characterization of Space-Based Nuclear Detonation Detection (SNDD) instrument performance [1]. A case study was done to add the neutron propagation capabilities of DIORAMA to low earth orbit (LEO), and compare the back-calculated incident energy from the time-of- ight (TOF) spectrum with the scored incident energy spectrum. As the scoring altitude lowers, the time increase due to scattering takes up much more of the fraction of total TOF; whereas at geosynchronous earth orbit (GEO), the time increase due to scattering is a negligible fraction of the total TOF [2]. The scattering smears out the TOF enough to make the back-calculation of the initial energy spectrum from the TOF spectrum very convoluted.

  16. Neutron transport-burnup code MCORGS and its application in fusion fission hybrid blanket conceptual research

    Science.gov (United States)

    Shi, Xue-Ming; Peng, Xian-Jue

    2016-09-01

    Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.

  17. Design of a high-current low-energy beam transport line for an intense D-T/D-D neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaolong, E-mail: luxl@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Wang, Junrun [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Zhang, Yu; Li, Jianyi; Xia, Li; Zhang, Jie; Ding, Yanyan; Jiang, Bing; Huang, Zhiwu; Ma, Zhanwen; Wei, Zheng [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Qian, Xiangping; Xu, Dapeng; Lan, Changlin [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Yao, Zeen, E-mail: zeyao@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2016-03-01

    An intense D-T/D-D neutron generator is currently being developed at the Lanzhou University. The Cockcroft–Walton accelerator, as a part of the neutron generator, will be used to accelerate and transport the high-current low-energy beam from the duoplasmatron ion source to the rotating target. The design of a high-current low-energy beam transport (LEBT) line and the dynamics simulations of the mixed beam were carried out using the TRACK code. The results illustrate that the designed beam line facilitates smooth transportation of a deuteron beam of 40 mA, and the number of undesired ions can be reduced effectively using two apertures.

  18. a Theoretical Model of a Superheated Liquid Droplet Neutron Detector.

    Science.gov (United States)

    Harper, Mark Joseph

    Neutrons can interact with the atoms in superheated liquid droplets which are suspended in a viscous matrix material, resulting in the formation of charged recoil ions. These ions transfer energy to the liquid, sometimes resulting in the droplets vaporizing and producing observable bubbles. Devices employing this mechanism are known as superheated liquid droplet detectors, or bubble detectors. The basis of bubble detector operation is identical to that of bubble chambers, which have been well characterized by researchers such as Wilson, Glaser, Seitz, and others since the 1950's. Each of the microscopic superheated liquid droplets behaves like an independent bubble chamber. This dissertation presents a theoretical model which considers the three principal aspects of detector operation: nuclear reactions, charged particle energy deposition, and thermodynamic bubble formation. All possible nuclear reactions were examined and those which could reasonably result in recoil ions sufficiently energetic to vaporize a droplet were analyzed in detail. Feasible interactions having adequate cross sections include elastic and inelastic scattering, n-proton, and n-alpha reactions. Ziegler's TRansport of Ions in Matter (TRIM) code was used to calculate the ions' stopping powers in various compounds based on the ionic energies predicted by standard scattering distributions. If the ions deposit enough energy in a small enough volume then the entire droplet will vaporize without further energy input. Various theories as to the vaporization of droplets by ionizing radiation were studied and a novel method of predicting the critical (minimum) energy was developed. This method can be used to calculate the minimum required stopping power for the ion, from which the threshold neutron energy is obtainable. Experimental verification of the model was accomplished by measuring the response of two different types of bubble detectors to monoenergetic thermal neutrons, as well as to neutrons

  19. Transport theory calculation for a heterogeneous multi-assembly problem by characteristics method with direct neutron path linking technique

    Energy Technology Data Exchange (ETDEWEB)

    Kosaka, Shinya; Saji, Etsuro [In-Core Fuel Management System Department, Toden Software, Inc., Tokyo (Japan)

    2000-12-01

    A characteristics transport theory code, CHAPLET, has been developed for the purpose of making it practical to perform a whole LWR core calculation with the same level of calculational model and accuracy as that of an ordinary single assembly calculation. The characteristics routine employs the CACTUS algorithm for drawing ray tracing lines, which assists the two key features of the flux solution in the CHAPLET code. One is the direct neutron path linking (DNPL) technique which strictly connects angular fluxes at each assembly interface in the flux solution separated between assemblies. Another is to reduce the required memory storage by sharing the data related to ray tracing among assemblies with the same configuration. For faster computation, the coarse mesh rebalance (CMR) method and the Aitken method were incorporated in the code and the combined use of both methods showed the most promising acceleration performance among the trials. In addition, the parallelization of the flux solution was attempted, resulting in a significant reduction in the wall-clock time of the calculation. By all these efforts, coupled with the results of many verification studies, a whole LWR core heterogeneous transport theory calculation finally became practical. CHAPLET is thought to be a useful tool which can produce the reference solutions for analyses of an LWR (author)

  20. Analysis of a HP-refinement method for solving the neutron transport equation using two error estimators

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, D.; Le Tellier, R.; Suteau, C., E-mail: damien.fournier@cea.fr, E-mail: romain.le-tellier@cea.fr, E-mail: christophe.suteau@cea.fr [CEA, DEN, DER/SPRC/LEPh, Cadarache, Saint Paul-lez-Durance (France); Herbin, R., E-mail: raphaele.herbin@cmi.univ-mrs.fr [Laboratoire d' Analyse et de Topologie de Marseille, Centre de Math´ematiques et Informatique (CMI), Universit´e de Provence, Marseille Cedex (France)

    2011-07-01

    The solution of the time-independent neutron transport equation in a deterministic way invariably consists in the successive discretization of the three variables: energy, angle and space. In the SNATCH solver used in this study, the energy and the angle are respectively discretized with a multigroup approach and the discrete ordinate method. A set of spatial coupled transport equations is obtained and solved using the Discontinuous Galerkin Finite Element Method (DGFEM). Within this method, the spatial domain is decomposed into elements and the solution is approximated by a hierarchical polynomial basis in each one. This approach is time and memory consuming when the mesh becomes fine or the basis order high. To improve the computational time and the memory footprint, adaptive algorithms are proposed. These algorithms are based on an error estimation in each cell. If the error is important in a given region, the mesh has to be refined (h−refinement) or the polynomial basis order increased (p−refinement). This paper is related to the choice between the two types of refinement. Two ways to estimate the error are compared on different benchmarks. Analyzing the differences, a hp−refinement method is proposed and tested. (author)

  1. Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E

    2008-10-24

    Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.

  2. Simulation studies of the ion beam transport system in a compact electrostatic accelerator-based D-D neutron generator

    Directory of Open Access Journals (Sweden)

    Das Basanta Kumar

    2014-01-01

    Full Text Available The study of an ion beam transport mechanism contributes to the production of a good quality ion beam with a higher current and better beam emittance. The simulation of an ion beam provides the basis for optimizing the extraction system and the acceleration gap for the ion source. In order to extract an ion beam from an ion source, a carefully designed electrode system for the required beam energy must be used. In our case, a self-extracted penning ion source is used for ion generation, extraction and acceleration with a single accelerating gap for the production of neutrons. The characteristics of the ion beam extracted from this ion source were investigated using computer code SIMION 8.0. The ion trajectories from different locations of the plasma region were investigated. The simulation process provided a good platform for a study on optimizing the extraction and focusing system of the ion beam transported to the required target position without any losses and provided an estimation of beam emittance.

  3. The bidimensional neutron transport code TWOTRAN-GG. Users manual and input data TWOTRAN-TRACA version; El codigo de transporte bidimensional TWOTRAN-GG. Manual de usuario y datos de entrada version TWOTRAN-TRACA

    Energy Technology Data Exchange (ETDEWEB)

    Ahnert, C.; Aragones, J. M.

    1981-07-01

    This Is a users manual of the neutron transport code TWOTRAN-TRACA, which is a version of the original TWOTRAN-GG from the Los Alamos Laboratory, with some modifications made at JEN. A detailed input data description is given as well as the new modifications developed at JEN. (Author) 8 refs.

  4. Monte Carlo methods of neutron beam design for neutron capture therapy at the MIT Research Reactor (MITR-II).

    Science.gov (United States)

    Clement, S D; Choi, J R; Zamenhof, R G; Yanch, J C; Harling, O K

    1990-01-01

    Monte Carlo methods of coupled neutron/photon transport are being used in the design of filtered beams for Neutron Capture Therapy (NCT). This method of beam analysis provides segregation of each individual dose component, and thereby facilitates beam optimization. The Monte Carlo method is discussed in some detail in relation to NCT epithermal beam design. Ideal neutron beams (i.e., plane-wave monoenergetic neutron beams with no primary gamma-ray contamination) have been modeled both for comparison and to establish target conditions for a practical NCT epithermal beam design. Detailed models of the 5 MWt Massachusetts Institute of Technology Research Reactor (MITR-II) together with a polyethylene head phantom have been used to characterize approximately 100 beam filter and moderator configurations. Using the Monte Carlo methodology of beam design and benchmarking/calibrating our computations with measurements, has resulted in an epithermal beam design which is useful for therapy of deep-seated brain tumors. This beam is predicted to be capable of delivering a dose of 2000 RBE-cGy (cJ/kg) to a therapeutic advantage depth of 5.7 cm in polyethylene assuming 30 micrograms/g 10B in tumor with a ten-to-one tumor-to-blood ratio, and a beam diameter of 18.4 cm. The advantage ratio (AR) is predicted to be 2.2 with a total irradiation time of approximately 80 minutes. Further optimization work on the MITR-II epithermal beams is expected to improve the available beams.

  5. NIST Calibration of a Neutron Spectrometer ROSPEC.

    Science.gov (United States)

    Heimbach, Craig

    2006-01-01

    A neutron spectrometer was acquired for use in the measurement of National Institute of Standards and Technology neutron fields. The spectrometer included options for the measurement of low and high energy neutrons, for a total measurement range from 0.01 eV up to 17 MeV. The spectrometer was evaluated in calibration fields and was used to determine the neutron spectrum of an Americium-Beryllium neutron source. The calibration fields used included bare and moderated (252)Cf, monoenergetic neutron fields of 2.5 MeV and 14 MeV, and a thermal-neutron beam. Using the calibration values determined in this exercise, the spectrometer gives a good approximation of the neutron spectrum, and excellent values for neutron fluence, for all NIST calibration fields. The spectrometer also measured an Americium-Beryllium neutron field in a NIST exposure facility and determined the field quite well. The spectrometer measured scattering effects in neutron spectra which previously could be determined only by calculation or integral measurements.

  6. The use of symbolic computation in radiative, energy, and neutron transport calculations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, J.I.

    1997-09-01

    This investigation used sysmbolic manipulation in developing analytical methods and general computational strategies for solving both linear and nonlinear, regular and singular integral and integro-differential equations which appear in radiative and mixed-mode energy transport. Contained in this report are seven papers which present the technical results as individual modules.

  7. Monoenergetic computed tomography reconstructions reduce beam hardening artifacts from dental restorations.

    Science.gov (United States)

    Stolzmann, Paul; Winklhofer, Sebastian; Schwendener, Nicole; Alkadhi, Hatem; Thali, Michael J; Ruder, Thomas D

    2013-09-01

    The aim of this study was to assess the potential of monoenergetic computed tomography (CT) images to reduce beam hardening artifacts in comparison to standard CT images of dental restoration on dental post-mortem CT (PMCT). Thirty human decedents (15 male, 58 ± 22 years) with dental restorations were examined using standard single-energy CT (SECT) and dual-energy CT (DECT). DECT data were used to generate monoenergetic CT images, reflecting the X-ray attenuation at energy levels of 64, 69, 88 keV, and at an individually adjusted optimal energy level called OPTkeV. Artifact reduction and image quality of SECT and monoenergetic CT were assessed objectively and subjectively by two blinded readers. Subjectively, beam artifacts decreased visibly in 28/30 cases after monoenergetic CT reconstruction. Inter- and intra-reader agreement was good (k = 0.72, and k = 0.73 respectively). Beam hardening artifacts decreased significantly with increasing monoenergies (repeated-measures ANOVA p < 0.001). Artifact reduction was greatest on monoenergetic CT images at OPTkeV. Mean OPTkeV was 108 ± 17 keV. OPTkeV yielded the lowest difference between CT numbers of streak artifacts and reference tissues (-163 HU). Monoenergetic CT reconstructions significantly reduce beam hardening artifacts from dental restorations and improve image quality of post-mortem dental CT.

  8. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    Science.gov (United States)

    Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-11-05

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p){sup 16}N reaction using {sup 14}N-MeV neutrons produced at the neutron source via the {sup 3}H(d,n){sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes. 15 figs.

  9. Applicability of the two-angle differential method to response measurement of neutron-sensitive devices at the RCNP high-energy neutron facility

    Science.gov (United States)

    Masuda, Akihiko; Matsumoto, Tetsuro; Iwamoto, Yosuke; Hagiwara, Masayuki; Satoh, Daiki; Sato, Tatsuhiko; Iwase, Hiroshi; Yashima, Hiroshi; Nakane, Yoshihiro; Nishiyama, Jun; Shima, Tatsushi; Tamii, Atsushi; Hatanaka, Kichiji; Harano, Hideki; Nakamura, Takashi

    2017-03-01

    Quasi-monoenergetic high-energy neutron fields induced by 7Li(p,n) reactions are used for the response evaluation of neutron-sensitive devices. The quasi-monoenergetic high-energy field consists of high-energy monoenergetic peak neutrons and unwanted continuum neutrons down to the low-energy region. A two-angle differential method has been developed to compensate for the effect of the continuum neutrons in the response measurements. In this study, the two-angle differential method was demonstrated for Bonner sphere detectors, which are typical examples of moderator-based neutron-sensitive detectors, to investigate the method's applicability and its dependence on detector characteristics. Experiments were performed under 96-387 MeV quasi-monoenergetic high-energy neutron fields at the Research Center for Nuclear Physics (RCNP), Osaka University. The measurement results for large high-density polyethylene (HDPE) sphere detectors agreed well with Monte Carlo calculations, which verified the adequacy of the two-angle differential method. By contrast, discrepancies were observed in the results for small HDPE sphere detectors and metal-induced sphere detectors. The former indicated that detectors that are particularly sensitive to low-energy neutrons may be affected by penetrating neutrons owing to the geometrical features of the RCNP facility. The latter discrepancy could be consistently explained by a problem in the evaluated cross-section data for the metals used in the calculation. Through those discussions, the adequacy of the two-angle differential method was experimentally verified, and practical suggestions were made pertaining to this method.

  10. Accurate Least-Squares P$_N$ Scaling based on Problem Optical Thickness for solving Neutron Transport Problems

    CERN Document Server

    Zheng, Weixiong

    2016-01-01

    In this paper, we present an accurate and robust scaling operator based on material optical thickness (OT) for the least-squares spherical harmonics (LSP$_N$) method for solving neutron transport problems. LSP$_N$ without proper scaling is known to be erroneous in highly scattering medium, if the optical thickness of the material is large. A previously presented scaling developed by Manteuffel, et al.\\ does improve the accuracy of LSP$_N$, in problems where the material is optically thick. With the method, however, essentially no scaling is applied in optically thin materials, which can lead to an erroneous solution with presence of highly scattering medium. Another scaling approach, called the reciprocal-removal (RR) scaled LSP$_N$, which is equivalent to the self-adjoint angular flux (SAAF) equation, has numerical issues in highly-scattering materials due to a singular weighting. We propose a scaling based on optical thickness that improves the solution in optically thick media while avoiding the singularit...

  11. State of the art of electronic personal dosimeters for neutrons

    Science.gov (United States)

    d'Errico, Francesco; Luszik-Bhadra, Marlies; Lahaye, Thierry

    2003-06-01

    Despite a widely recognised need, electronic devices for personal dosimetry of neutrons or mixed neutron-photon fields are still far less established than systems for photon or beta radiations. A large research project is in progress to evaluate different methods currently used or under development for electronic personal dosimetry in mixed neutron-photon fields. The study includes testing in calibration fields as well as in representative workplaces of the nuclear industry. This paper describes the commercial and laboratory systems under investigation and their response characteristics. These were determined so far with measurements using ISO standard monoenergetic beams up to 19 MeV at the PTB in Braunschweig, Germany.

  12. Development and characterization of a high sensitivity segmented Fast Neutron Spectrometer (FaNS-2)

    Science.gov (United States)

    Langford, T. J.; Beise, E. J.; Breuer, H.; Heimbach, C. R.; Ji, G.; Nico, J. S.

    2016-01-01

    We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2.

  13. Limits on the Efficiency of Event-Based Algorithms for Monte Carlo Neutron Transport

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Paul K.; Siegel, Andrew R.

    2017-04-16

    The traditional form of parallelism in Monte Carlo particle transport simulations, wherein each individual particle history is considered a unit of work, does not lend itself well to data-level parallelism. Event-based algorithms, which were originally used for simulations on vector processors, may offer a path toward better utilizing data-level parallelism in modern computer architectures. In this study, a simple model is developed for estimating the efficiency of the event-based particle transport algorithm under two sets of assumptions. Data collected from simulations of four reactor problems using OpenMC was then used in conjunction with the models to calculate the speedup due to vectorization as a function of two parameters: the size of the particle bank and the vector width. When each event type is assumed to have constant execution time, the achievable speedup is directly related to the particle bank size. We observed that the bank size generally needs to be at least 20 times greater than vector size in order to achieve vector efficiency greater than 90%. When the execution times for events are allowed to vary, however, the vector speedup is also limited by differences in execution time for events being carried out in a single event-iteration. For some problems, this implies that vector effciencies over 50% may not be attainable. While there are many factors impacting performance of an event-based algorithm that are not captured by our model, it nevertheless provides insights into factors that may be limiting in a real implementation.

  14. Neutron area monitor with TLD pairs

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A.; Borja H, C. G.; Valero L, C.; Hernandez D, V. M.; Vega C, H. R., E-mail: ing_karen_guzman@yahoo.com.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10. Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2011-11-15

    The response of a passive neutron area monitor with pairs of thermoluminescent dosimeters has been calculated using the Monte Carlo code MCNP5. The response was calculated for one TLD 600 located at the center of a polyethylene cylinder, as moderator. When neutrons collide with the moderator lose their energy reaching the TLD with thermal energies where the ambient dose equivalent is calculated. The response was calculated for 47 monoenergetic neutron sources ranging from 1E(-9) to 20 MeV. Response was calculated using two irradiation geometries, one with an upper source and another with a lateral source. For both irradiation schemes the response was calculated with the TLDs in two positions, one parallel to the source and another perpendicular to the source. The advantage of this passive neutron monitor area is that can be used in locations with intense, pulsed and mixed radiation fields. (Author)

  15. Analysis and development of spatial hp-refinement methods for solving the neutron transport equation; Analyse et developpement de methodes de raffinement hp en espace pour l'equation de transport des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, D.

    2011-10-10

    The different neutronic parameters have to be calculated with a higher accuracy in order to design the 4. generation reactor cores. As memory storage and computation time are limited, adaptive methods are a solution to solve the neutron transport equation. The neutronic flux, solution of this equation, depends on the energy, angle and space. The different variables are successively discretized. The energy with a multigroup approach, considering the different quantities to be constant on each group, the angle by a collocation method called SN approximation. Once the energy and angle variable are discretized, a system of spatially-dependent hyperbolic equations has to be solved. Discontinuous finite elements are used to make possible the development of hp-refinement methods. Thus, the accuracy of the solution can be improved by spatial refinement (h-refinement), consisting into subdividing a cell into sub-cells, or by order refinement (p-refinement), by increasing the order of the polynomial basis. In this thesis, the properties of this methods are analyzed showing the importance of the regularity of the solution to choose the type of refinement. Thus, two error estimators are used to lead the refinement process. Whereas the first one requires high regularity hypothesis (analytical solution), the second one supposes only the minimal hypothesis required for the solution to exist. The comparison of both estimators is done on benchmarks where the analytic solution is known by the method of manufactured solutions. Thus, the behaviour of the solution as a regard of the regularity can be studied. It leads to a hp-refinement method using the two estimators. Then, a comparison is done with other existing methods on simplified but also realistic benchmarks coming from nuclear cores. These adaptive methods considerably reduces the computational cost and memory footprint. To further improve these two points, an approach with energy-dependent meshes is proposed. Actually, as the

  16. OVERVIEW OF MONO-ENERGETIC GAMMA-RAY SOURCES & APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hartemann, F V; Albert, F; Anderson, G G; Anderson, S G; Bayramian, A J; Betts, S M; Chu, T S; Cross, R R; Ebbers, C A; Fisher, S E; Gibson, D J; Ladran, A S; Marsh, R A; Messerly, M J; O' Neill, K L; Semenov, V A; Shverdin, M Y; Siders, C W; McNabb, D P; Barty, C P; Vlieks, A E; Jongewaard, E N; Tantawi, S G; Raubenheimer, T O

    2010-05-18

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. This MEGa-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence. In conclusion, we have optimized the design of a high brightness Compton scattering gamma-ray source, specifically designed for NRF applications. Two different parameters sets have been considered: one where the number of photons scattered in a single shot reaches approximately 7.5 x 10{sup 8}, with a focal spot size around 8 {micro}m; in the second set, the spectral brightness is optimized by using a 20 {micro}m spot size, with 0.2% relative bandwidth.

  17. Impact of Monoenergetic Photon Sources on Nonproliferation Applications Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, Cameron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ludewigt, Bernhard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Valentine, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quiter, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Descalle, Marie-Anne [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Warren, Glen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kinlaw, Matt [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chichester, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, Cameron [Univ. of Michigan, Ann Arbor, MI (United States); Pozzi, Sara [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-03-01

    Near-monoenergetic photon sources (MPSs) have the potential to improve sensitivity at greatly reduced dose in existing applications and enable new capabilities in other applications, particularly where passive signatures do not penetrate or are insufficiently accurate. MPS advantages include the ability to select energy, energy spread, flux, and pulse structures to deliver only the photons needed for the application, while suppressing extraneous dose and background. Some MPSs also offer narrow angular divergence photon beams which can target dose and/or mitigate scattering contributions to image contrast degradation. Current bremsstrahlung photon sources (e.g., linacs and betatrons) produce photons over a broad range of energies, thus delivering unnecessary dose that in some cases also interferes with the signature to be detected and/or restricts operations. Current sources must be collimated (reducing flux) to generate narrow divergence beams. While MPSs can in principle resolve these issues, they remain at relatively low TRL status. Candidate MPS technologies for nonproliferation applications are now being developed, each of which has different properties (e.g. broad vs. narrow angular divergence). Within each technology, source parameters trade off against one another (e.g. flux vs. energy spread), representing a large operation space. This report describes a broad survey of potential applications, identification of high priority applications, and detailed simulations addressing those priority applications. Requirements were derived for each application, and analysis and simulations were conducted to define MPS parameters that deliver benefit. The results can inform targeting of MPS development to deliver strong impact relative to current systems.

  18. Coupled multi-group neutron photon transport for the simulation of high-resolution gamma-ray spectroscopy applications

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Kimberly A. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2009-08-01

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples.

  19. Measurements of double-differential neutron emission cross sections of Nb and Bi for 11.5 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ibaraki, Masanobu; Matsuyama, Shigeo; Soda, Daisuke; Baba, Mamoru; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    Double-differential neutron emission cross sections (DDXs) of Nb and Bi have been measured for 11.5MeV neutrons using the {sup 15N}(d,n){sup 16}O quasi-monoenergetic neutron source at Tohoku University 4.5MV Dynamitron facility. For En`>6MeV, DDXs were measured by the conventional TOF method (single-TOF:S-TOF). For En`<6MeV, where the S-TOF spectra were distorted by the background neutrons, we adopted a double-TOF method (D-TOF). By applying D-TOF method, we obtained DDXs down to 1MeV. (author)

  20. Neutron induced bystander effect among zebrafish embryos

    Science.gov (United States)

    Ng, C. Y. P.; Kong, E. Y.; Kobayashi, A.; Suya, N.; Uchihori, Y.; Cheng, S. H.; Konishi, T.; Yu, K. N.

    2015-12-01

    The present paper reported the first-ever observation of neutron induced bystander effect (NIBE) using zebrafish (Danio rerio) embryos as the in vivo model. The neutron exposure in the present work was provided by the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Chiba, Japan. Two different strategies were employed to induce NIBE, namely, through directly partnering and through medium transfer. Both results agreed with a neutron-dose window (20-50 mGy) which could induce NIBE. The lower dose limit corresponded to the threshold amount of neutron-induced damages to trigger significant bystander signals, while the upper limit corresponded to the onset of gamma-ray hormesis which could mitigate the neutron-induced damages and thereby suppress the bystander signals. Failures to observe NIBE in previous studies were due to using neutron doses outside the dose-window. Strategies to enhance the chance of observing NIBE included (1) use of a mono-energetic high-energy (e.g., between 100 keV and 2 MeV) neutron source, and (2) use of a neutron source with a small gamma-ray contamination. It appeared that the NASBEE facility used in the present study fulfilled both conditions, and was thus ideal for triggering NIBE.

  1. Neutron spectrum unfolding using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico)]. E-mail: rvega@cantera.reduaz.mx

    2004-07-01

    An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using a large set of neutron spectra compiled by the International Atomic Energy Agency. These include spectra from iso- topic neutron sources, reference and operational neutron spectra obtained from accelerators and nuclear reactors. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and correspondent spectrum was used as output during neural network training. The network has 7 input nodes, 56 neurons as hidden layer and 31 neurons in the output layer. After training the network was tested with the Bonner spheres count rates produced by twelve neutron spectra. The network allows unfolding the neutron spectrum from count rates measured with Bonner spheres. Good results are obtained when testing count rates belong to neutron spectra used during training, acceptable results are obtained for count rates obtained from actual neutron fields; however the network fails when count rates belong to monoenergetic neutron sources. (Author)

  2. Neutron bound beta-decay: BOB

    Energy Technology Data Exchange (ETDEWEB)

    McAndrew, Josephine, E-mail: j.mcandrew@tum.de; Paul, Stephan; Emmerich, Ralf [TUM, Physik-Department (Germany); Engels, Ralf [Forschungszentrum Juelich, Institut Fuer Kernphysik (Germany); Fierlinger, Peter [TUM, Excellence Cluster Universe (Germany); Gabriel, Mirko; Gutsmiedl, Erwin; Mellenthin, Johannes; Schoen, Johannes; Schott, Wolfgang; Ulrich, Andreas; Grueenauer, Florian [TUM, Physik-Department (Germany); Roehrmoser, Anton [FRMII (Germany)

    2012-05-15

    An experiment to observe the bound beta-decay (BOB) of the free neutron into a hydrogen atom and an electron anti-neutrino is described. The hyperfine spin state population of the monoenergetic hydrogen atom yields the neutrino left-handedness or possible right-handed admixture as well as possible small scalar and tensor contributions to the weak force. The BOB H(2s) hyperfine states can be separated with a Lamb-Shift Spin Filter. These monoenergetic H(2s) atoms are ionised into H{sup -} by charge exchanging within an argon cell. These ions are then separated using an adaptation of a MAC-E Filter. A first experiment is proposed at the FRMII high thermal-neutron flux beam reactor SR6 through-going beam tube, where we will seek to observe this rare neutron decay-mode for the first time and determine the branching ratio. After successful completion, the hyperfine spin state population will be determined, possibly at the ILL high-flux beam reactor through-going beam tube H6-H7, where the thermal neutron flux is a factor of four larger.

  3. Development and Characterization of a High Sensitivity Segmented Fast Neutron Spectrometer (FaNS-2)

    CERN Document Server

    Langford, T J; Breuer, H; Heimbach, C R; Ji, G; Nico, J S

    2015-01-01

    We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and $^3$He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a $^3$He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated $^{252}$Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra...

  4. Development and application of neutron transport methods and uncertainty analyses for reactor core calculations. Technical report; Entwicklung und Einsatz von Neutronentransportmethoden und Unsicherheitsanalysen fuer Reaktorkernberechnungen. Technischer Bericht

    Energy Technology Data Exchange (ETDEWEB)

    Zwermann, W.; Aures, A.; Bernnat, W.; and others

    2013-06-15

    This report documents the status of the research and development goals reached within the reactor safety research project RS1503 ''Development and Application of Neutron Transport Methods and Uncertainty Analyses for Reactor Core Calculations'' as of the 1{sup st} quarter of 2013. The superordinate goal of the project is the development, validation, and application of neutron transport methods and uncertainty analyses for reactor core calculations. These calculation methods will mainly be applied to problems related to the core behaviour of light water reactors and innovative reactor concepts. The contributions of this project towards achieving this goal are the further development, validation, and application of deterministic and stochastic calculation programmes and of methods for uncertainty and sensitivity analyses, as well as the assessment of artificial neutral networks, for providing a complete nuclear calculation chain. This comprises processing nuclear basis data, creating multi-group data for diffusion and transport codes, obtaining reference solutions for stationary states with Monte Carlo codes, performing coupled 3D full core analyses in diffusion approximation and with other deterministic and also Monte Carlo transport codes, and implementing uncertainty and sensitivity analyses with the aim of propagating uncertainties through the whole calculation chain from fuel assembly, spectral and depletion calculations to coupled transient analyses. This calculation chain shall be applicable to light water reactors and also to innovative reactor concepts, and therefore has to be extensively validated with the help of benchmarks and critical experiments.

  5. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system

    Science.gov (United States)

    Verma, Rishi; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag

    2016-09-01

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ˜10 kJ is segregated into four modules of ˜2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA-600 kA (corresponding to charging voltage range of 14 kV-18 kV) in a quarter time period of ˜2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar-11 mbar at ˜17 kV/550 kA discharge. At ˜7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ˜4 × 109 neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ˜2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.

  6. Investigation of Isfahan miniature neutron source reactor (MNSR) for boron neutron capture therapy by MCNP simulation

    OpenAIRE

    S. Z. Kalantari; H Tavakoli; Nami, M.

    2015-01-01

    One of the important neutron sources for Boron Neutron Capture Therapy (BNCT) is a nuclear reactor. It needs a high flux of epithermal neutrons. The optimum conditions of the neutron spectra for BNCT are provided by the International Atomic Energy Agency (IAEA). In this paper, Miniature Neutron Source Reactor (MNSR) as a neutron source for BNCT was investigated. For this purpose, we designed a Beam Shaping Assembly (BSA) for the reactor and the neutron transport from the core of the reactor t...

  7. Measurement of neutron inelastic scattering cross section of {sup 238}U

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Takako; Baba, Mamoru; Ibaraki, Masanobu; Sanami, Toshiya; Win, Than; Hirasawa, Yoshitaka; Matsuyama, Shigeo; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan)

    1998-03-01

    Neutron scattering from the 0{sup +}, 2{sup +} (1-st) and 4{sup +} (2nd) levels of {sup 238}U was measured for incident energies between 0.4 and 0.85 MeV at the Tohoku University 4.5 MV Dynamitron facility, using the time-of-flight (TOF) method with monoenergetic pulsed neutrons by the {sup 7}Li(p,n) reaction. The results are presented in comparison with other experimental data and evaluated data. (author)

  8. Detection of special nuclear material by observation of delayed neutrons with a novel fast neutron composite detector

    Science.gov (United States)

    Mayer, Michael; Nattress, Jason; Barhoumi Meddeb, Amira; Foster, Albert; Trivelpiece, Cory; Rose, Paul; Erickson, Anna; Ounaies, Zoubeida; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material is crucial to countering nuclear terrorism and proliferation, but its detection is challenging. By observing the emission of delayed neutrons, which is a unique signature of nuclear fission, the presence of nuclear material can be inferred. We report on the observation of delayed neutrons from natural uranium by using monoenergetic photons and neutrons to induce fission. An interrogating beam of 4.4 MeV and 15.1 MeV gamma-rays and neutrons was produced using the 11B(d,n-γ)12C reaction and used to probe different targets. Neutron detectors with complementary Cherenkov detectors then discriminate material undergoing fission. A Li-doped glass-polymer composite neutron detector was used, which displays excellent n/ γ discrimination even at low energies, to observe delayed neutrons from uranium fission. Delayed neutrons have relatively low energies (~0.5 MeV) compared to prompt neutrons, which makes them difficult to detect using recoil-based detectors. Neutrons were counted and timed after the beam was turned off to observe the characteristic decaying time profile of delayed neutrons. The expected decay of neutron emission rate is in agreement with the common parametrization into six delayed neutron groups.

  9. Bremsstrahlung versus Monoenergetic Photon Dose and Photonuclear Stimulation Comparisons At Long Standoff Distances

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Jones; J.W. Sterbentz; W.Y. Yoon

    2009-06-01

    Energetic photon sources with energies greater than 6 MeV continue to be recognized as viable source for various types of inspection applications, especially those related to nuclear and/or explosive material detection. These energetic photons can be produced as a continuum of energies (i.e., bremsstrahlung distribution) or as a set of one or more discrete photon energies (i.e., monoenergetic distribution). This paper will provide a follow-on extension of the photon dose comparison presented at the 9th International Conference on Applications of Nuclear Techniques (June 2008). The latter paper showed the comparative advantages and disadvantages of the photon doses provided by these two energetic interrogation sources and highlighted the higher energy advantage of the bremsstrahlung source, especially at long standoff distances (i.e., distance from source to the inspected object). Specifically, this paper will pursue this higher energy photon inspection advantage (up to 100 MeV) by providing dose and stimulated photonuclear interaction predictions for air and an infinitely dilute interrogated material (used for comparative interaction rate assessments since it excludes material self-shielding) as the interrogation object positioned forward on the inspection beam axis at increasing standoff distances. In addition to the direct energetic photon-induced stimulation, the predictions will identify the importance of any secondary downscattered/attenuated source-term effects arising from the photon transport in the intervening atmosphere. *Supported in part by the Defense Threat Reduction Agency and Department of Energy (DOE) Idaho Operations Office under Contract Number DE-AC07-05ID14517.

  10. An analytical representation for the solution of neutron kinetic transport equation in slab-geometry multigroup discrete ordinates formulation

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschewski, Fernanda K.; Segatto, Cynthia F., E-mail: fernandasls_89@hotmail.com, E-mail: cynthia.segatto@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada; Barros, Ricardo C., E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Departamento de Modelagem Computacional

    2015-07-01

    Presented here is a decomposition method based on series representation of the group angular fluxes and delayed neutron precursors in smoothly continuous functions for energy multigroups, slab-geometry discrete ordinates kinetics equations supplemented with a prescribed number of delayed neutron precursors. Numerical results to a non-reflected sub-critical slab stabilized by steady-state sources are given to illustrate the accuracy and efficiency of the o offered method. (author)

  11. Neutron emission spectroscopy of DT plasmas at enhanced energy resolution with diamond detectors

    Science.gov (United States)

    Giacomelli, L.; Nocente, M.; Rebai, M.; Rigamonti, D.; Milocco, A.; Tardocchi, M.; Chen, Z. J.; Du, T. F.; Fan, T. S.; Hu, Z. M.; Peng, X. Y.; Hjalmarsson, A.; Gorini, G.

    2016-11-01

    This work presents measurements done at the Peking University Van de Graaff neutron source of the response of single crystal synthetic diamond (SD) detectors to quasi-monoenergetic neutrons of 14-20 MeV. The results show an energy resolution of 1% for incoming 20 MeV neutrons, which, together with 1% detection efficiency, opens up to new prospects for fast ion physics studies in high performance nuclear fusion devices such as SD neutron spectrometry of deuterium-tritium plasmas heated by neutral beam injection.

  12. Tracking techniques for the characteristics method applied to the resolution of the neutrons transport equation in multi scale domains; Techniques de tracage pour la methode des caracteristiques appliquee a la resolution de l'equation du transport des neutrons en domaines multi-dimensionnels

    Energy Technology Data Exchange (ETDEWEB)

    Fevotte, F. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DEN/DANS/DM2S/SERMA), 91 - Gif sur Yvette (France)

    2008-07-01

    At the various stages of a nuclear reactor's life, numerous studies are needed to guaranty the safety and efficiency of the design, analyse the fuel cycle, prepare the dismantlement, and so on. Due to the extreme difficulty to take extensive and accurate measurements in the reactor core, most of these studies are numerical simulations. The complete numerical simulation of a nuclear reactor involves many types of physics: neutronics, thermal hydraulics, materials, control engineering, Among these, the neutron transport simulation is one of the fundamental steps, since it allows computation - among other things - of various fundamental values such as the power density (used in thermal hydraulics computations) or fuel burn-up. The neutron transport simulation is based on the Boltzmann equation, which models the neutron population inside the reactor core. Among the various methods allowing its numerical solution, much interest has been devoted in the past few years to the Method of Characteristics in unstructured meshes (MOC), since it offers a good accuracy and operates in complicated geometries. The aim of this work is to propose improvements of the calculation scheme bound on the two dimensions MOC, in order to decrease the needed resources number. (A.L.B.)

  13. Narcotics detection using fast-neutron interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Micklich, B.J.; Fink, C.L.

    1995-12-31

    Fast-neutron interrogation techniques are being investigated for detection of narcotics in luggage and cargo containers. This paper discusses two different fast-neutron techniques. The first uses a pulsed accelerator or sealed-tube source to produce monoenergetic fast neutrons. Gamma rays characteristic of carbon and oxygen are detected and the elemental densities determined. Spatial localization is accomplished by either time of flight or collimators. This technique is suitable for examination of large containers because of the good penetration of the fast neutrons and the low attenuation of the high-energy gamma rays. The second technique uses an accelerator to produce nanosecond pulsed beams of deuterons that strike a target to produce a pulsed beam of neutrons with a continuum of energies. Elemental distributions are obtained by measuring the neutron spectrum after the source neutrons pass through the items being interrogated. Spatial variation of elemental densities is obtained by tomographic reconstruction of projection data obtained for three to five angles and relatively low (2 cm) resolution. This technique is best suited for examination of luggage or small containers with average neutron transmissions greater than about 0.01. Analytic and Monte-Carlo models are being used to investigate the operational characteristics and limitations of both techniques.

  14. Non-Destructive Spent Fuel Characterization with Semi-Conducting Gallium Arsinde Neutron Imaging Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Douglas S. McGregor; Holly K. Gersch; Jeffrey D. Sanders; John C. Lee; Mark D. Hammig; Michael R. Hartman; Yong Hong Yang; Raymond T. Klann; Brian Van Der Elzen; John T. Lindsay; Philip A. Simpson

    2002-01-30

    High resistivity bulk grown GaAs has been used to produce thermal neutron imaging devices for use in neutron radiography and characterizing burnup in spent fuel. The basic scheme utilizes a portable Sb/Be source for monoenergetic (24 keV) neutron radiation source coupled to an Fe filter with a radiation hard B-coated pixellated GaAs detector array as the primary neutron detector. The coated neutron detectors have been tested for efficiency and radiation hardness in order to determine their fitness for the harsh environments imposed by spent fuel. Theoretical and experimental results are presented, showing detector radiation hardness, expected detection efficiency and the spatial resolution from such a scheme. A variety of advanced neutron detector designs have been explored, with experimental results achieving 13% thermal neutron detection efficiency while projecting the possibility of over 30% thermal neutron detection efficiency.

  15. Measurement of the neutron spectrum of a Pu-C source with a liquid scintillator

    Institute of Scientific and Technical Information of China (English)

    WANG Song-Lin; HUANG Han-Xiong; RUAN Xi-Chao; LI Xia; BAO Jie; NIE Yang-So; ZHONG Qi-Ping; ZHOU Zu-Ying; KONG Xiang-Zhong

    2009-01-01

    The neutron response function for a BC501A liquid scintillator (LS) has been measured using a series of monoenergetic neutrons produced by the p-T reaction. The proton energies were chosen such as to produce neutrons in the energy range of 1 to 20 MeV. The principles of the technique of unfolding a neutron energy spectrum by using the measured neutron response function and the measured Pulse Height (PH) spectrum is briefly described. The PH spectrum of neutrons from the Pu-C source, which will be used for the calibration of the reactor antineutrino detectors for the Daya Bay neutrino experiment, was measured and analyzed to get the neutron energy spectrum. Simultaneously the neutron energy spectrum of an Am-Be source was measured and compared with other measurements as a check of the result for the Pu-C source. Finally, an error analysis and a discussion of the results are given.

  16. Overview of recent experimental works on high energy neutron shielding

    CERN Document Server

    Nakamura, T; Yashima, H; Yonai, S

    2004-01-01

    Several experiments on high energy neutron shielding have recently been performed using medium to high energy accelerators of energies above 20 MeV. Below 100 MeV, the benchmark experiments have been done using 25 and 35 MeV p-Li quasi-monoenergetic neutrons at the Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Japan, 43 and 68 MeV p-Li quasi-monoenergetic neutrons at the Azimuthally Varying Field (AVF) cyclotron facility, TIARA of Japan Atomic Energy Research Institute (JAERI). Above 100 MeV, the neutron shielding experiments have been done using 800 MeV protons at ISIS, Rutherford Appleton laboratory (RAL), England, 400 MeV/nucleon carbon ions at the heavy ion medical accelerator facility, HIMAC of National Institute of Radiological Sciences (NIRS), Japan, 500 MeV protons at the spallation neutron source facility, KEK spallation neutron source facility (KENS) of High Energy Accelerator Research Organization (KEK), Japan, 500 MeV protons at the accelerator facility, TRIUMF, Canada, 1.6 to 24 G...

  17. Passive neutron area monitor with TLD pairs

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A.; Borja H, C. G.; Valero L, C.; Hernandez D, V. M.; Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2012-06-15

    The response of a passive neutron area monitor with pairs of thermoluminescent dosimeters (TLD) has been calculated using the Monte Carlo code MCNP5. The response was calculated for one TLD 600 located at the center of a polyethylene moderator. The response was calculated for 47 monoenergetic neutron sources ranging from 1E(-9) to 20 MeV. Response was calculated using two irradiation geometries, one with an upper source and another with a lateral source. For both irradiation schemes the response was calculated with the TLD in two positions, one parallel to the source and another perpendicular to the source. The advantage of this passive neutron monitor area is that can be used in locations with intense, pulsed and mixed radiation fields like those in radiotherapy vault rooms with linear accelerators. (Author)

  18. Methods for Neutron Spectrometry

    Science.gov (United States)

    Brockhouse, Bertram N.

    1961-01-09

    The appropriate theories and the general philosophy of methods of measurement and treatment of data neutron spectrometry are discussed. Methods of analysis of results for liquids using the Van Hove formulation, and for crystals using the Born-von Karman theory, are reviewed. The most useful of the available methods of measurement are considered to be the crystal spectrometer methods and the pulsed monoenergetic beam/time-of-flight method. Pulsed-beam spectrometers have the advantage of higher counting rates than crystal spectrometers, especially in view of the fact that simultaneous measurements in several counters at different angles of scattering are possible in pulsed-beam spectrometers. The crystal spectrometer permits several valuable new types of specialized experiments to be performed, especially energy distribution measurements at constant momentum transfer. The Chalk River triple-axis crystal-spectrometer is discussed, with reference to its use in making the specialized experiments. The Chalk River rotating crystal (pulsed-beam) spectrometer is described, and a comparison of this type instrument with other pulsed-beam spectrometers is made. A partial outline of the theory of operation of rotating-crystal spectrometers is presented. The use of quartz-crystal filters for fast neutron elimination and for order elimination is discussed. (auth)

  19. The relative diffusive transport rate of SrI2 in water changes over the nanometer length scale as measured by coherent quasielastic neutron scattering.

    Science.gov (United States)

    Rubinson, Kenneth A; Faraone, Antonio

    2016-05-14

    X-ray and neutron scattering have been used to provide insight into the structures of ionic solutions for over a century, but the probes have covered distances shorter than 8 Å. For the non-hydrolyzing salt SrI2 in aqueous solution, a locally ordered lattice of ions exists that scatters slow neutrons coherently down to at least 0.1 mol L(-1) concentration, where the measured average distance between scatterers is over 18 Å. To investigate the motions of these scatterers, coherent quasielastic neutron scattering (CQENS) data on D2O solutions with SrI2 at 1, 0.8, 0.6, and 0.4 mol L(-1) concentrations was obtained to provide an experimental measure of the diffusive transport rate for the motion between pairs of ions relative to each other. Because CQENS measures the motion of one ion relative to another, the frame of reference is centered on an ion, which is unique among all diffusion measurement methods. We call the measured quantity the pairwise diffusive transport rate Dp. In addition to this ion centered frame of reference, the diffusive transport rate can be measured as a function of the momentum transfer q, where q = (4π/λ)sin θ with a scattering angle of 2θ. Since q is related to the interion distance (d = 2π/q), for the experimental range 0.2 Å(-1)≤q≤ 1.0 Å(-1), Dp is, then, measured over interion distances from 40 Å to ≈6 Å. We find the measured diffusional transport rates increase with increasing distance between scatterers over the entire range covered and interpret this behavior to be caused by dynamic coupling among the ions. Within the model of Fickian diffusion, at the longer interionic distances Dp is greater than the Nernst-Hartley value for an infinitely dilute solution. For these nm-distance diffusional transport rates to conform with the lower, macroscopically measured diffusion coefficients, we propose that local, coordinated counter motion of at least pairs of ions is part of the transport process.

  20. Why pinning by surface irregularities can explain the peak effect in transport properties and neutron diffraction results in NbSe2 and Bi-2212 crystals?

    Indian Academy of Sciences (India)

    Charles Simon; Alain Pautrat; Christophe Goupil; Joseph Scola; Patrice Mathieu; Annie Brûlet; Antoine Ruyter; M J Higgins; Shobo Bhattacharya; D Plessis

    2006-01-01

    The existence of a peak effect in transport properties (a maximum of the critical current as function of magnetic field) is a well-known but still intriguing feature of Type II superconductors such as NbSe2 and Bi-2212. Using a model of pinning by surface irregularities in anisotropic superconductors, we have developed a calculation of the critical current which allows estimating quantitatively the critical current in both the high critical current phase and the low critical current phase. The only adjustable parameter of this model is the angle of the vortices at the surface. The agreement between the measurements and the model is really very impressive. In this framework, the anomalous dynamical properties close to the peak effect is due to coexistence of two different vortex states with different critical currents. Recent neutron diffraction data in NbSe2 crystals in the presence of transport current support this point of view.

  1. An analytical approach for a nodal formulation of a two-dimensional fixed-source neutron transport problem in heterogeneous medium

    Energy Technology Data Exchange (ETDEWEB)

    Basso Barichello, Liliane; Dias da Cunha, Rudnei [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst. de Matematica; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada

    2015-05-15

    A nodal formulation of a fixed-source two-dimensional neutron transport problem, in Cartesian geometry, defined in a heterogeneous medium, is solved by an analytical approach. Explicit expressions, in terms of the spatial variables, are derived for averaged fluxes in each region in which the domain is subdivided. The procedure is an extension of an analytical discrete ordinates method, the ADO method, for the solution of the two-dimensional homogeneous medium case. The scheme is developed from the discrete ordinates version of the two-dimensional transport equation along with the level symmetric quadrature scheme. As usual for nodal schemes, relations between the averaged fluxes and the unknown angular fluxes at the contours are introduced as auxiliary equations. Numerical results are in agreement with results available in the literature.

  2. Neutron Scattering Differential Cross Sections for 12C

    Science.gov (United States)

    Byrd, Stephen T.; Hicks, S. F.; Nickel, M. T.; Block, S. G.; Peters, E. E.; Ramirez, A. P. D.; Mukhopadhyay, S.; McEllistrem, M. T.; Yates, S. W.; Vanhoy, J. R.

    2016-09-01

    Because of the prevalence of its use in the nuclear energy industry and for our overall understanding of the interactions of neutrons with matter, accurately determining the effects of fast neutrons scattering from 12C is important. Previously measured 12C inelastic neutron scattering differential cross sections found in the National Nuclear Data Center (NNDC) show significant discrepancies (>30%). Seeking to resolve these discrepancies, neutron inelastic and elastic scattering differential cross sections for 12C were measured at the University of Kentucky Acceleratory Laboratory for incident neutron energies of 5.58, 5.83, and 6.04 MeV. Quasi mono-energetic neutrons were scattered off an enriched 12C target (>99.99%) and detected by a C6D6 liquid scintillation detector. Time-of-flight (TOF) techniques were used to determine scattered neutron energies and allowed for elastic/inelastic scattering distinction. Relative detector efficiencies were determined through direct measurements of neutrons produced by the 2H(d,n) and 3H(p,n) source reactions, and absolute normalization factors were found by comparing 1H scattering measurements to accepted NNDC values. This experimental procedure has been successfully used for prior neutron scattering measurements and seems well-suited to our current objective. Significant challenges were encountered, however, with measuring the neutron detector efficiency over the broad incident neutron energy range required for these measurements. Funding for this research was provided by the National Nuclear Security Administration (NNSA).

  3. Measurement of the Surface and Underground Neutron Spectra with the UMD/NIST Fast Neutron Spectrometers

    Science.gov (United States)

    Langford, Thomas J.

    The typical fast neutron detector falls into one of two categories, Bonner sphere spectrometers and liquid scintillator proton recoil detectors. These two detector types have traditionally been used to measure fast neutrons at the surface and in low background environments. The cosmogenic neutron spectrum and flux is an important parameter for a number of experimental efforts, including procurement of low background materials and the prediction of electronic device faults. Fast neutrons can also cause problems for underground low-background experiments, through material activation or signals that mimic rare events. Current detector technology is not sufficient to properly characterize these backgrounds. To this end, the University of Maryland and the National Institute of Standards and Technology designed, developed, and deployed two Fast Neutron Spectrometers (FaNS) comprised of plastic scintillator and 3He proportional counters. The detectors are based upon capture-gated spectroscopy, a technique that demands a delayed coincidence between a neutron scatter and the resulting neutron capture after thermalization. This technique provides both particle identification and knowledge that the detected neutron fully thermalized. This improves background rejection capabilities and energy resolution. Presented are the design, development, and deployment of FaNS-1 and FaNS-2. Both detectors were characterized using standard fields at NIST, including calibrated 252Cf neutron sources and two monoenergetic neutron generators. Measurements of the surface fast neutron spectrum and flux have been made with both detectors, which are compared with previous measurements by traditional detectors. Additionally, FaNS-1 was deployed at the Kimballton Underground Research Facility (KURF) in Ripplemead, VA. A measurement of the fast neutron spectrum and flux at KURF is presented as well. FaNS-2 is currently installed in a shallow underground laboratory where it is measuring the muon

  4. Evaluation of D(d,n)3 He reaction neutron source models for BNCT irradiation system design

    Institute of Scientific and Technical Information of China (English)

    YAO Ze'en; LUO Peng; Tooru KOBAYASHI; Gerard BENGUA

    2007-01-01

    A mathematical method was developed to calculatc the yield.energy spectrum and angular distribution of neutrons from D(d,n)3 He(D-D)reaction in a thick deuterium-titanium target for incident deuterons in energies lower than 1.0MeV.The data of energy spectrum and angular distribution wefe applied to set up the neutron source model for the beam-shaping-assembly(BSA)design of Boron-Neutron-Capture-Therapy(BNCT)using MCNP-4C code.Three cases of D-D neutron source corresponding to incident deuteron energy of 1000.400 and 150 kaV were investigated.The neutron beam characteristics were compared with the model of a 2.45 MeV mono-energetic and isotropic neutron source using an example BSA designed for BNCT irradiation.The results show significant differences in the neutron beam characteristics,particularly the fast neutron component and fast neutron dose in air,between the non-isotropic neutron source model and the 2.5 MeV mono-energetic and isotropic neutron source model.

  5. Evaluation of the response of a neutron detector of the Long-Counter type using a Monte Carlo transport simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pazianotto, Mauricio Tizziani; Goncalez, Odair Lelis; Federico, Claudio Antonio [Centro Tecnico Aeroespacial (IEAv/CTA), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados; Carlson, Brett Vern [Centro Tecnico Aeroespacial (ITA/CTA), Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica

    2010-07-01

    Full text: The Institute for Advanced Studies (IEAv) is developing activities to study the dose levels of ionizing radiation from cosmic rays (CR) received by aircraft crews, sensitive equipment (on-board computers, for example) and embedded electronics in Brazilian airspace. Neutrons generated by the interaction of CR with the atmosphere are the dominant particles in the dose accumulation in electronic circuits and aircraft crews at flight altitude. Their production has a very broad energy spectrum, ranging from thermal neutrons (0.025eV ) to neutrons of several hundreds of MeV , making their detection a very difficult process. To observe the temporal variation in flow during the measurements, a detector of the Long Counter (LC) type is being used. This detector is designed to measure the one-way flow of neutrons with constant response over a wide energy range (thermal to 20 MeV ). However, to measure cosmic rays, the flow of which is non-directional, the dependence of the response on the angle of incidence, as well as energy, should be properly investigated. The objective of this study is to assess the angular response of the neutron detector (Long Counter) using the code MCNP5 (Monte Carlo N-Particle) and to compare it with the experimental data previously obtained with a {sup 241}Am-Be source at a distance of 1.66 m from the geometric center of the detector, varying the angle of incidence from 00 to 3600 in intervals of 150. The simulation was performed by modeling in detail the structure and materials of the LC, as well as the experimental arrangement for irradiation. The results of the simulation present reasonable agreement with the experimental data. This agreement shows that the modeling of the geometry of the source-detector system is adequate. The next step is to develop a model of neutron detection for the higher energy present in cosmic radiation fields, for which the experimental calibration is not so easily achievable. (author)

  6. Neutron spectroscopy with scintillation detectors using wavelets

    Science.gov (United States)

    Hartman, Jessica

    The purpose of this research was to study neutron spectroscopy using the EJ-299-33A plastic scintillator. This scintillator material provided a novel means of detection for fast neutrons, without the disadvantages of traditional liquid scintillation materials. EJ-299-33A provided a more durable option to these materials, making it less likely to be damaged during handling. Unlike liquid scintillators, this plastic scintillator was manufactured from a non-toxic material, making it safer to use, as well as easier to design detectors. The material was also manufactured with inherent pulse shape discrimination abilities, making it suitable for use in neutron detection. The neutron spectral unfolding technique was developed in two stages. Initial detector response function modeling was carried out through the use of the MCNPX Monte Carlo code. The response functions were developed for a monoenergetic neutron flux. Wavelets were then applied to smooth the response function. The spectral unfolding technique was applied through polynomial fitting and optimization techniques in MATLAB. Verification of the unfolding technique was carried out through the use of experimentally determined response functions. These were measured on the neutron source based on the Van de Graff accelerator at the University of Kentucky. This machine provided a range of monoenergetic neutron beams between 0.1 MeV and 24 MeV, making it possible to measure the set of response functions of the EJ-299-33A plastic scintillator detector to neutrons of specific energies. The response of a plutonium-beryllium (PuBe) source was measured using the source available at the University of Nevada, Las Vegas. The neutron spectrum reconstruction was carried out using the experimentally measured response functions. Experimental data was collected in the list mode of the waveform digitizer. Post processing of this data focused on the pulse shape discrimination analysis of the recorded response functions to remove the

  7. Using Neutron Radiography to Quantify Water Transport and the Degree of Saturation in Entrained Air Cement Based Mortar

    Science.gov (United States)

    Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.

  8. Performance of a PADC personal neutron dosemeter at simulated and real workplace fields of the nuclear industry.

    Science.gov (United States)

    Fiechtner, A; Boschung, M; Wernli, C

    2007-01-01

    In the framework of the EVIDOS (Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields) project, funded by the EC, measurements with PADC personal neutron dosemeters were carried out at several workplace fields of the nuclear industry and at simulated workplace fields. The measured personal neutron dose equivalents of the PADC personal neutron dosemeter are compared with values that were assessed within the EVIDOS project by other partners. The detection limits for different spectra types are given. In cases were the neutron dose was too low to be measured by the PADC personal neutron dosemeter, the response is estimated by convoluting the responses to monoenergetic neutrons with the dose energy distribution measured within EVIDOS. The advantages and limitations of the PADC personal neutron dosemeter are discussed.

  9. Neutron spectrometry with artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Rodriguez, J.M.; Mercado S, G.A. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico); Iniguez de la Torre Bayo, M.P. [Universidad de Valladolid, Valladolid (Spain); Barquero, R. [Hospital Universitario Rio Hortega, Valladolid (Spain); Arteaga A, T. [Envases de Zacatecas, S.A. de C.V., Zacatecas (Mexico)]. e-mail: rvega@cantera.reduaz.mx

    2005-07-01

    An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using 129 neutron spectra. These include isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra from mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-bin ned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and the respective spectrum was used as output during neural network training. After training the network was tested with the Bonner spheres count rates produced by a set of neutron spectra. This set contains data used during network training as well as data not used. Training and testing was carried out in the Mat lab program. To verify the network unfolding performance the original and unfolded spectra were compared using the {chi}{sup 2}-test and the total fluence ratios. The use of Artificial Neural Networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)

  10. Multiple quasi-monoenergetic electron beams from laser-wakefield acceleration with spatially structured laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.; Li, M. H.; Li, Y. F.; Wang, J. G.; Tao, M. Z.; Han, Y. J.; Zhao, J. R.; Huang, K.; Yan, W. C.; Ma, J. L.; Li, Y. T. [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Chen, L. M., E-mail: lmchen@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, D. Z. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Chen, Z. Y. [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621999 (China); Sheng, Z. M. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Zhang, J. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-08-15

    By adjusting the focus geometry of a spatially structured laser pulse, single, double, and treble quasi-monoenergetic electron beams were generated, respectively, in laser-wakefield acceleration. Single electron beam was produced as focusing the laser pulse to a single spot. While focusing the laser pulse to two spots that are approximately equal in energy and size and intense enough to form their own filaments, two electron beams were produced. Moreover, with a proper distance between those two focal spots, three electron beams emerged with a certain probability owing to the superposition of the diffractions of those two spots. The energy spectra of the multiple electron beams are quasi-monoenergetic, which are different from that of the large energy spread beams produced due to the longitudinal multiple-injection in the single bubble.

  11. Observation of monoenergetic protons from a near-critical gas target tailored by a hydrodynamic shock

    Science.gov (United States)

    Chen, Y.-H.; Helle, M. H.; Ting, A.; Gordon, D. F.; Polyanskiy, M. N.; Pogorelsky, I.; Babzien, M.; Najmudin, Z.

    2015-05-01

    We present our recent experimental results of monoenergetic protons accelerated from the interaction of an intense terawatt CO2 laser pulse with a near-critical hydrogen gas target, with its density profile tailored by a hydrodynamic shock. A 5-ns Nd:YAG laser pulse is focused onto a piece of stainless steel foil mounted at the front edge of the gas jet nozzle orifice. The ablation launches a spherical shock into the near-critical gas column, which creates a sharp density gradient at the front edge of the target, with ~ 6X local density enhancement up to several times of critical density within ~<100 microns. With such density profile, we have obtained monoenergetic proton beams with good shot-to-shot reproducibility and energies up to 1.2 MeV.

  12. Neutron ambient dosimetry with superheated drop (bubble) detectors

    Energy Technology Data Exchange (ETDEWEB)

    d`Errico, F.; Noccioni, P. [Pisa Univ. (Italy). Dipt. di Costruzioni Meccaniche e Nucleari; Alberts, W.G.; Dietz, E.; Siebert, B.R.L. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Gualdrini, G. [ENEA, Bologna (Italy); Kurkdjian, J. [CEA Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Inst. de Protection et de Surete Nucleaire

    1996-12-31

    A prototype neutron area monitor was developed which improves the performance of superheated drop detectors based on halocarbon-12. The detectors are thermally controlled: this removes external temperature effects while ensuring a dose equivalent response optimised with respect to its energy dependence. The system was first characterised through calibrations with monoenergetic neutron beams. In the intermediate energy range, where experimental investigations were not possible, Monte Carlo response calculations were carried out. The prototype was then extensively tested by means of simulated and in-field irradiations with broad neutron spectra. All these tests indicated a remarkably constant dose equivalent response regardless of the neutron energy distributions. The current device is a fairly delicate system which can be operated reliably when environmental conditions are not extreme. Nevertheless, when it was possible to employ it, this monitor demonstrated an accuracy far superior to that of conventional meters used in routine surveillance. (author).

  13. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  14. Two-Colour Free Electron Laser with Wide Frequency Separation using a Single Monoenergetic Electron Beam

    CERN Document Server

    Campbell, L T; Reiche, S

    2014-01-01

    Studies of a broad bandwidth, two-colour FEL amplifier using one monoenergetic electron beam are presented. The two-colour FEL interaction is achieved using a series of undulator modules alternately tuned to two well-separated resonant frequencies. Using the broad bandwidth FEL simulation code Puffin, the electron beam is shown to bunch strongly and simultaneously at the two resonant frequencies. Electron bunching components are also generated at the sum and difference of the resonant frequencies.

  15. Value of monoenergetic dual-energy CT (DECT) for artefact reduction from metallic orthopedic implants in post-mortem studies

    Energy Technology Data Exchange (ETDEWEB)

    Filograna, Laura [University of Zurich, Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, Zurich (Switzerland); Catholic University of Rome, School of Medicine, University Hospital ' ' A. Gemelli' ' , Department of Radiological Sciences, Rome (Italy); Magarelli, Nicola; Leone, Antonio; Bonomo, Lorenzo [Catholic University of Rome, School of Medicine, University Hospital ' ' A. Gemelli' ' , Department of Radiological Sciences, Rome (Italy); Guggenberger, Roman; Winklhofer, Sebastian [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Thali, Michael John [University of Zurich, Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, Zurich (Switzerland)

    2015-09-15

    The aim of this ex vivo study was to assess the performance of monoenergetic dual-energy CT (DECT) reconstructions to reduce metal artefacts in bodies with orthopedic devices in comparison with standard single-energy CT (SECT) examinations in forensic imaging. Forensic and clinical impacts of this study are also discussed. Thirty metallic implants in 20 consecutive cadavers with metallic implants underwent both SECT and DECT with a clinically suitable scanning protocol. Extrapolated monoenergetic DECT images at 64, 69, 88, 105, 120, and 130 keV and individually adjusted monoenergy for optimized image quality (OPTkeV) were generated. Image quality of the seven monoenergetic images and of the corresponding SECT image was assessed qualitatively and quantitatively by visual rating and measurements of attenuation changes induced by streak artefact. Qualitative and quantitative analyses showed statistically significant differences between monoenergetic DECT extrapolated images and SECT, with improvements in diagnostic assessment in monoenergetic DECT at higher monoenergies. The mean value of OPTkeV was 137.6 ± 4.9 with a range of 130 to 148 keV. This study demonstrates that monoenergetic DECT images extrapolated at high energy levels significantly reduce metallic artefacts from orthopedic implants and improve image quality compared to SECT examination in forensic imaging. (orig.)

  16. Calibration of Cherenkov detectors for monoenergetic photon imaging in active interrogation applications

    Science.gov (United States)

    Rose, P. B.; Erickson, A. S.

    2015-11-01

    Active interrogation of cargo containers using monoenergetic photons offers a rapid and low-dose approach to search for shielded special nuclear materials. Cherenkov detectors can be used for imaging of the cargo provided that gamma ray energies used in interrogation are well resolved, as the case in 11B(d,n-γ)12C reaction resulting in 4.4 MeV and 15.1 MeV photons. While an array of Cherenkov threshold detectors reduces low energy background from scatter while providing the ability of high contrast transmission imaging, thus confirming the presence of high-Z materials, these detectors require a special approach to energy calibration due to the lack of resolution. In this paper, we discuss the utility of Cherenkov detectors for active interrogation with monoenergetic photons as well as the results of computational and experimental studies of their energy calibration. The results of the studies with sources emitting monoenergetic photons as well as complex gamma ray spectrum sources, for example 232Th, show that calibration is possible as long as the energies of photons of interest are distinct.

  17. Automation of angular movement of the arm neutron diffractometer; Automatizacion del movimiento angular del brazo del difractometro de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F.; Herrera A, E.; Quintana C, G. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Torres R, C. E.; Reyes V, M., E-mail: fortunato.aguilar@inin.gob.mx [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, Metepec, Estado de Mexico (Mexico)

    2015-09-15

    A technique to determine the crystal structure of some materials is the neutron diffraction. This technique consists on placing the material in question in a monoenergetic neutron beam obtained by neutron diffraction in a monochromator crystal. The neutron energy depends of the diffraction angle. The Instituto Nacional de Investigaciones Nucleares has a neutron diffractometer and monochromator crystals of pyrolytic graphite. This crystal can be selecting the neutron energy depending on the angle of diffraction in the glass. The radiation source for the neutron diffractometer is the TRIGA Mark III reactor of the Nuclear Center Dr. Nabor Carrillo Flores. During their operation are also obtained besides neutrons, β and γ radiation. The interest is to have thermal neutrons, so fast neutrons and γ rays are removed using appropriate shielding. The average neutron fluxes of the radial port RE2 of neutron diffractometer at power 1 MW are: heat flow 2,466 x 10{sup 8} n cm{sup -2} sec{sup -1} and fast flow 1,239 x 10{sup 8} n cm{sup -2} sec{sup -1}. The neutron detector is housed in a shield mounted on a mechanical linkage with which the diffraction angle is selected, and therefore the energy of the neutrons. The movement of this joint was performed by the equipment operator manually, so that accuracy to select the diffraction angle was not good and the process rather slow. Therefore a mechanical system was designed, automated by means of a motor as an actuator, a system of force transmission and an electronic control in order that the operator will schedule the diffraction angles and allow the count in the neutrons detection system in a simple manner. (Author)

  18. The possibility to use `energy plus transmutation' set-up for neutron production and transport benchmark studies

    Indian Academy of Sciences (India)

    V Wagner; A Krása; M Majerla; F Křížek; O Svoboda; A Kugler; J Adam; V M Tsoupko-Sitnikov; M I Krivopustov; I V Zhuk; W Westmeier

    2007-02-01

    The set-up `energy plus transmutation', consisting of a thick lead target and a natural uranium blanket, was irradiated by relativistic proton beams with the energy from 0.7 GeV up to 2 GeV. Neutron field was measured in different places of this set-up using different activation detectors. The possibilities of using the obtained data for benchmark studies are analyzed in this paper. Uncertainties of experimental data are shown and discussed. The experimental data are compared with results of simulation with MCNPX code.

  19. MCNPX simulations of the silicon carbide semiconductor detector response to fast neutrons from D-T nuclear reaction

    Science.gov (United States)

    Sedlačková, Katarína; Šagátová, Andrea; Zat'ko, Bohumír; Nečas, Vladimír; Solar, Michael; Granja, Carlos

    2016-09-01

    Silicon Carbide (SiC) has been long recognized as a suitable semiconductor material for use in nuclear radiation detectors of high-energy charged particles, gamma rays, X-rays and neutrons. The nuclear interactions occurring in the semiconductor are complex and can be quantified using a Monte Carlo-based computer code. In this work, the MCNPX (Monte Carlo N-Particle eXtended) code was employed to support detector design and analysis. MCNPX is widely used to simulate interaction of radiation with matter and supports the transport of 34 particle types including heavy ions in broad energy ranges. The code also supports complex 3D geometries and both nuclear data tables and physics models. In our model, monoenergetic neutrons from D-T nuclear reaction were assumed as a source of fast neutrons. Their energy varied between 16 and 18.2 MeV, according to the accelerating voltage of the deuterons participating in D-T reaction. First, the simulations were used to calculate the optimum thickness of the reactive film composed of High Density PolyEthylene (HDPE), which converts neutral particles to charged particles and thusly enhancing detection efficiency. The dependency of the optimal thickness of the HDPE layer on the energy of the incident neutrons has been shown for the inspected energy range. Further, from the energy deposited by secondary charged particles and recoiled ions, the detector response was modeled and the effect of the conversion layer on detector response was demonstrated. The results from the simulations were compared with experimental data obtained for a detector covered by a 600 and 1300 μm thick conversion layer. Some limitations of the simulations using MCNPX code are also discussed.

  20. Measurements of neutron spallation cross section. 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Imamura, M.; Nakao, N.; Shibata, S.; Uwamino, Y.; Nakanishi, N.; Tanaka, Su.

    1997-03-01

    Neutron spallation cross section of {sup 59}Co(n,xn){sup 60-x}Co, {sup nat}Cu(n,sp){sup 56}Mn, {sup nat}Cu(n,sp){sup 58}Co, {sup nat}Cu(n,xn){sup 60}Cu, {sup nat}Cu(n,xn){sup 61}Cu and {sup nat}Cu(n,sp){sup 65}Ni was measured in the quasi-monoenergetic p-Li neutron fields in the energy range above 40 MeV which have been established at three AVF cyclotron facilities of (1) INS of Univ. of Tokyo, (2) TIARA of JAERI and (3) RIKEN. Our experimental data were compared with the ENDF/B-VI high energy file data by Fukahori and the calculated cross section data by Odano. (author)

  1. On an analytical representation of the solution of the one-dimensional transport equation for a multi-group model in planar geometry

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Julio C.L.; Vilhena, Marco T.; Bodmann, Bardo E.J., E-mail: julio.lombaldo@ufrgs.br, E-mail: mtmbvilhena@gmail.com, E-mail: bardo.bodmann@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Matematica Pura e Aplicada; Dulla, Sandra; Ravetto, Piero, E-mail: sandra.dulla@polito.it, E-mail: piero.ravetto@polito.it [Dipartimento di Energia, Politecnico di Torino, Piemonte (Italy)

    2015-07-01

    In this work we generalize the solution of the one-dimensional neutron transport equation to a multi- group approach in planar geometry. The basic idea of this work consists in consider the hierarchical construction of a solution for a generic number G of energy groups, starting from a mono-energetic solution. The hierarchical method follows the reasoning of the decomposition method. More specifically, the additional terms from adding energy groups is incorporated into the recursive scheme as source terms. This procedure leads to an analytical representation for the solution with G energy groups. The recursion depth is related to the accuracy of the solution, that may be evaluated after each recursion step. The authors present a heuristic analysis of stability for the results. Numerical simulations for a specific example with four energy groups and a localized pulsed source. (author)

  2. Unfolding the fast neutron spectra of a BC501A liquid scintillation detector using GRAVEL method

    CERN Document Server

    Chen, Yonghao; Lei, Jiarong; An, Li; Zhang, Xiaodong; Shao, Jianxiong; Zheng, Pu; Wang, Xinhua

    2013-01-01

    Accurate knowledge of the neutron energy spectra is useful in basic research and applications. The overall procedure of measuring and unfolding the fast neutron energy spectra with BC501A liquid scintillation detector is described. The recoil proton spectrum of Am-Be neutrons was obtained experimentally. With the NRESP7 code, the response matrix of detector was simulated. Combining the recoil proton spectrum and response matrix, the unfolding of neutron spectra was performed by GRAVEL iterative algorithm. A MatLab program based on the GRAVEL method was developed. The continuous neutron spectrum of Am-Be source and monoenergetic neutron spectrum of D-T source have been unfolded successfully and are in good agreement with their standard reference spectra. The unfolded Am-Be spectrum are more accurate than the spectra unfolded by artificial neural networks in recent years.

  3. Unfolding the fast neutron spectra of a BC501A liquid scintillation detector using GRAVEL method

    Science.gov (United States)

    Chen, YongHao; Chen, XiMeng; Lei, JiaRong; An, Li; Zhang, XiaoDong; Shao, JianXiong; Zheng, Pu; Wang, XinHua

    2014-10-01

    Accurate knowledge of the neutron energy spectra is useful in basic research and applications. The overall procedure of measuring and unfolding the fast neutron energy spectra with BC501A liquid scintillation detector is described. The recoil proton spectrum of 241Am-Be neutrons was obtained experimentally. With the NRESP7 code, the response matrix of detector was simulated. Combining the recoil proton spectrum and response matrix, the unfolding of neutron spectra was performed by GRAVEL iterative algorithm. A MatLab program based on the GRAVEL method was developed. The continuous neutron spectrum of 241Am-Be source and monoenergetic neutron spectrum of D-T source have been unfolded successfully and are in good agreement with their standard reference spectra. The unfolded 241Am-Be spectrum are more accurate than the spectra unfolded by artificial neural networks in recent years.

  4. Characterisation of spherical recoil proton proportional counters used for neutron spectrometry

    CERN Document Server

    Pichenot, G; Gressier, V; Guldbakke, S; Itie, C; Klein, H; Knauf, K; Lebreton, L; Loeb, S; Pochon-Guerin, L; Schlegel, D J; Sosaat, W

    2002-01-01

    The Institute for Protection and Nuclear Safety (IPSN) standard neutron detector in the energy range 60-800 keV is a spherical proportional counter of HARWELL type SP2 nominally filled with 300 kPa hydrogen. It was characterised in the monoenergetic neutron fields of PTB at the energies of 144, 250 and 565 keV, where the neutron energy and fluence were determined with the PTB reference instruments. The neutron fields produced at the same energies with the accelerator facility of Bruyeres-le-Chatel were then investigated with the calibrated SP2 counter and various PTB instruments in order to determine the mean energy and the neutron fluence. The energy scale and a neutron fluence monitor were calibrated.

  5. Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models.

    Science.gov (United States)

    Goorley, J T; Kiger, W S; Zamenhof, R G

    2002-02-01

    As clinical trials of Neutron Capture Therapy (NCT) are initiated in the U.S. and other countries, new treatment planning codes are being developed to calculate detailed dose distributions in patient-specific models. The thorough evaluation and comparison of treatment planning codes is a critical step toward the eventual standardization of dosimetry, which, in turn, is an essential element for the rational comparison of clinical results from different institutions. In this paper we report development of a reference suite of computational test problems for NCT dosimetry and discuss common issues encountered in these calculations to facilitate quantitative evaluations and comparisons of NCT treatment planning codes. Specifically, detailed depth-kerma rate curves were calculated using the Monte Carlo radiation transport code MCNP4B for four different representations of the modified Snyder head phantom, an analytic, multishell, ellipsoidal model, and voxel representations of this model with cubic voxel sizes of 16, 8, and 4 mm. Monoenergetic and monodirectional beams of 0.0253 eV, 1, 2, 10, 100, and 1000 keV neutrons, and 0.2, 0.5, 1, 2, 5, and 10 MeV photons were individually simulated to calculate kerma rates to a statistical uncertainty of neutron beam with a broad neutron spectrum, similar to epithermal beams currently used or proposed for NCT clinical trials, was computed for all models. The thermal neutron, fast neutron, and photon kerma rates calculated with the 4 and 8 mm voxel models were within 2% and 4%, respectively, of those calculated for the analytical model. The 16 mm voxel model produced unacceptably large discrepancies for all dose components. The effects from different kerma data sets and tissue compositions were evaluated. Updating the kerma data from ICRU 46 to ICRU 63 data produced less than 2% difference in kerma rate profiles. The depth-dose profile data, Monte Carlo code input, kerma factors, and model construction files are available

  6. Measurements of response functions of EJ-299-33A plastic scintillator for fast neutrons

    Science.gov (United States)

    Hartman, J.; Barzilov, A.; Peters, E. E.; Yates, S. W.

    2015-12-01

    Monoenergetic neutron response functions were measured for an EJ-299-33A plastic scintillator. The 7-MV Van de Graaff accelerator at the University of Kentucky Accelerator Laboratory was used to produce proton and deuteron beams for reactions with gaseous tritium and deuterium targets, yielding monoenergetic neutrons by means of the 3H(p,n)3He, 2H(d,n)3He, and 3H(d,n)4He reactions. The neutron energy was selected by tuning the charged-particle's energy and using the angular dependence of the neutron emission. The resulting response functions were measured for 0.1-MeV steps in neutron energy from 0.1 MeV to 8.2 MeV and from 12.2 MeV to 20.2 MeV. Experimental data were processed using a procedure for digital pulse-shape discrimination, which allowed characterization of the response functions of the plastic scintillator to neutrons only. The response functions are intended for use in neutron spectrum unfolding methods.

  7. Neutron area monitor with passive detector

    Energy Technology Data Exchange (ETDEWEB)

    Valero L, C.; Guzman G, K. A.; Borja H, C. G.; Hernandez D, V. M.; Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2012-06-15

    Using Monte Carlo method the responses of a passive neutron monitor area has been calculated. To detect thermal neutrons the monitor has a gold foil that is located at the center of a polyethylene cylinder. Impinging neutrons are moderated by polyethylene nuclei reaching the gold foil with the energy to induce activation through the reaction {sup 197}Au(n, {gamma}) {sup 198}Au. The {sup 198}Au decays emitting 0.411 MeV gamma rays with a half life of 2.7 days. The induced activity is intended to be measured with a gamma-ray spectrometer with a 3'' {phi} x 3'' NaI(Tl) scintillator and the saturation activity is correlated to the ambient dose equivalent. The response was calculated for 47 monoenergetic neutron sources ranging from 1 x 10{sup -9} to 20 MeV. Calculated fluence response was compared with the response of neutron monitor area LB 6411. (Author)

  8. Comparative study of Monte Carlo particle transport code PHITS and nuclear data processing code NJOY for recoil cross section spectra under neutron irradiation

    Science.gov (United States)

    Iwamoto, Yosuke; Ogawa, Tatsuhiko

    2017-04-01

    Because primary knock-on atoms (PKAs) create point defects and clusters in materials that are irradiated with neutrons, it is important to validate the calculations of recoil cross section spectra that are used to estimate radiation damage in materials. Here, the recoil cross section spectra of fission- and fusion-relevant materials were calculated using the Event Generator Mode (EGM) of the Particle and Heavy Ion Transport code System (PHITS) and also using the data processing code NJOY2012 with the nuclear data libraries TENDL2015, ENDF/BVII.1, and JEFF3.2. The heating number, which is the integral of the recoil cross section spectra, was also calculated using PHITS-EGM and compared with data extracted from the ACE files of TENDL2015, ENDF/BVII.1, and JENDL4.0. In general, only a small difference was found between the PKA spectra of PHITS + TENDL2015 and NJOY + TENDL2015. From analyzing the recoil cross section spectra extracted from the nuclear data libraries using NJOY2012, we found that the recoil cross section spectra were incorrect for 72Ge, 75As, 89Y, and 109Ag in the ENDF/B-VII.1 library, and for 90Zr and 55Mn in the JEFF3.2 library. From analyzing the heating number, we found that the data extracted from the ACE file of TENDL2015 for all nuclides were problematic in the neutron capture region because of incorrect data regarding the emitted gamma energy. However, PHITS + TENDL2015 can calculate PKA spectra and heating numbers correctly.

  9. Comparative study of Monte Carlo particle transport code PHITS and nuclear data processing code NJOY for recoil cross section spectra under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Yosuke, E-mail: iwamoto.yosuke@jaea.go.jp; Ogawa, Tatsuhiko

    2017-04-01

    Because primary knock-on atoms (PKAs) create point defects and clusters in materials that are irradiated with neutrons, it is important to validate the calculations of recoil cross section spectra that are used to estimate radiation damage in materials. Here, the recoil cross section spectra of fission- and fusion-relevant materials were calculated using the Event Generator Mode (EGM) of the Particle and Heavy Ion Transport code System (PHITS) and also using the data processing code NJOY2012 with the nuclear data libraries TENDL2015, ENDF/BVII.1, and JEFF3.2. The heating number, which is the integral of the recoil cross section spectra, was also calculated using PHITS-EGM and compared with data extracted from the ACE files of TENDL2015, ENDF/BVII.1, and JENDL4.0. In general, only a small difference was found between the PKA spectra of PHITS + TENDL2015 and NJOY + TENDL2015. From analyzing the recoil cross section spectra extracted from the nuclear data libraries using NJOY2012, we found that the recoil cross section spectra were incorrect for {sup 72}Ge, {sup 75}As, {sup 89}Y, and {sup 109}Ag in the ENDF/B-VII.1 library, and for {sup 90}Zr and {sup 55}Mn in the JEFF3.2 library. From analyzing the heating number, we found that the data extracted from the ACE file of TENDL2015 for all nuclides were problematic in the neutron capture region because of incorrect data regarding the emitted gamma energy. However, PHITS + TENDL2015 can calculate PKA spectra and heating numbers correctly.

  10. Using MCNP in the design of neutron sources and neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Hergenreder, Daniel F.; Lecot, Carlos A.; Lovotti, Osvaldo P. [INVAP S.A., San Carlos de Bariloche (Argentina). Nuclear Projects Department. Nuclear Engineering Division

    2002-07-01

    The calculation methodology used to design cold, thermal and hot neutron sources and their associated neutron beam transport systems is presented. The design goal is to evaluate the performance of the neutron sources, their beam tubes and neutron guides at specific experimental locations in the reactor hall as well as in the neutron hall. The Monte Carlo method is a unique and powerful tool to transport neutrons. Its use in a bootstrap scheme appears to be an appropriate solution for this type of system. The proper use of MCNP as the main tool leads to a fast and reliable method to perform calculations in a relatively short time with low statistical errors. (author)

  11. Response of a neutron monitor area with TLDs pairs

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A.; Borja H, C. G.; Valero L, C.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A., E-mail: ing_karen_guzman@yahoo.com.mx [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, Jose Gutierrez Abascal 2, E-28006 Madrid (Spain)

    2011-10-15

    The response of a passive neutron monitor area has been calculated using the Monte Carlo code MCNP5. The response was the amount of n({sup 6}Li, T){alpha} reactions occurring in a TLD-600 located at the center of a cylindrical polyethylene moderator. Fluence, (n, a) and H*(10) responses were calculated for 47 monoenergetic neutron sources. The H*(10) relative response was compared with responses of commercially available neutron monitors being alike. Due to {sup 6}Li cross section (n, {alpha}) reactions are mainly produced by thermal neutrons, however TLD-600 is sensitive to gamma-rays; to eliminate the signal due to photons monitor area was built to hold 2 pairs of TLD-600 and 2 pairs of TLD-700, thus from the difference between TLD-600 and TLD-700 readouts the net signal due to neutrons is obtained. The monitor area was calibrated at the Universidad Politecnica de Madrid using a {sup 241}AmBe neutron source; net TLD readout was compared with the H*(10) measured with a Bert hold Lb-6411. Performance of the neutron monitor area was determined through two independent experiments, in both cases the H*(10) was statistically equal to H*(10) measured with a Bert hold Lb-6411. Neutron monitor area with TLDs pairs can be used in working areas with intense, mixed and pulsed radiation fields. (Author)

  12. Benchmark solutions for transport in d-dimensional Markov binary mixtures

    Science.gov (United States)

    Larmier, Coline; Hugot, François-Xavier; Malvagi, Fausto; Mazzolo, Alain; Zoia, Andrea

    2017-03-01

    Linear particle transport in stochastic media is key to such relevant applications as neutron diffusion in randomly mixed immiscible materials, light propagation through engineered optical materials, and inertial confinement fusion, only to name a few. We extend the pioneering work by Adams, Larsen and Pomraning [1] (recently revisited by Brantley [2]) by considering a series of benchmark configurations for mono-energetic and isotropic transport through Markov binary mixtures in dimension d. The stochastic media are generated by resorting to Poisson random tessellations in 1 d slab, 2 d extruded, and full 3 d geometry. For each realization, particle transport is performed by resorting to the Monte Carlo simulation. The distributions of the transmission and reflection coefficients on the free surfaces of the geometry are subsequently estimated, and the average values over the ensemble of realizations are computed. Reference solutions for the benchmark have never been provided before for two- and three-dimensional Poisson tessellations, and the results presented in this paper might thus be useful in order to validate fast but approximated models for particle transport in Markov stochastic media, such as the celebrated Chord Length Sampling algorithm.

  13. Reconstruction of neutron spectra through neural networks; Reconstruccion de espectros de neutrones mediante redes neuronales

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E. [Cuerpo Academico de Radiobiologia, Estudios Nucleares, Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico)] e-mail: rvega@cantera.reduaz.mx [and others

    2003-07-01

    A neural network has been used to reconstruct the neutron spectra starting from the counting rates of the detectors of the Bonner sphere spectrophotometric system. A group of 56 neutron spectra was selected to calculate the counting rates that would produce in a Bonner sphere system, with these data and the spectra it was trained the neural network. To prove the performance of the net, 12 spectra were used, 6 were taken of the group used for the training, 3 were obtained of mathematical functions and those other 3 correspond to real spectra. When comparing the original spectra of those reconstructed by the net we find that our net has a poor performance when reconstructing monoenergetic spectra, this attributes it to those characteristic of the spectra used for the training of the neural network, however for the other groups of spectra the results of the net are appropriate with the prospective ones. (Author)

  14. General Design for CARR Neutron Guide System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A neutron guide system has been designed and partly installed at the China Advanced Research Reactor (CARR) to transport cold neutrons from the cold neutron source (CNS) to several instruments,which are situated in a separate guide hall of 30 m×60 m.

  15. Measurements of prompt gamma-rays from fast-neutron induced fission with the LICORNE directional neutron source

    CERN Document Server

    Wilson, J N; Halipre, P; Oberstedt, S; Oberstedt, A

    2014-01-01

    At the IPN Orsay we have developed a unique, directional, fast neutron source called LICORNE, intended initially to facilitate prompt fission gamma measurements. The ability of the IPN Orsay tandem accelerator to produce intense beams of $^7$Li is exploited to produce quasi-monoenergetic neutrons between 0.5 - 4 MeV using the p($^7$Li,$^7$Be)n inverse reaction. The available fluxes of up to 7 × 10$^7$ neutrons/second/steradian for the thickest hydrogen-rich targets are comparable to similar installations, but with two added advantages: (i) The kinematic focusing produces a natural neutron beam collimation which allows placement of gamma detectors adjacent to the irradiated sample unimpeded by source neutrons. (ii) The background of scattered neutrons in the experimental hall is drastically reduced. The dedicated neutron converter was commissioned in June 2013. Some preliminary results from the first experiment using the LICORNE neutron source at the IPN Orsay are presented. Prompt fission gamma rays from fas...

  16. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    Science.gov (United States)

    Lewis, J. M.; Kelley, R. P.; Murer, D.; Jordan, K. A.

    2014-07-01

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure 4He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the 4He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  17. Generation of quasi-monoenergetic carbon ions accelerated parallel to the plane of a sandwich target

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. W., E-mail: wang-jw@ile.osaka-u.ac.jp [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan); Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Murakami, M.; Weng, S. M. [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan); Xu, H. [National Laboratory for Parallel and Distributed Processing, School of Computer Science, National University of Defense Technology, Changsha 410073 (China); Ju, J. J.; Luan, S. X.; Yu, W. [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-12-15

    A new ion acceleration scheme, namely, target parallel Coulomb acceleration, is proposed in which a carbon plate sandwiched between gold layers is irradiated with intense linearly polarized laser pulses. The high electrostatic field generated by the gold ions efficiently accelerates the embedded carbon ions parallel to the plane of the target. The ion beam is found to be collimated by the concave-shaped Coulomb potential. As a result, a quasi-monoenergetic and collimated C{sup 6+}-ion beam with an energy exceeding 10 MeV/nucleon is produced at a laser intensity of 5 × 10{sup 19} W/cm{sup 2}.

  18. Isotope-specific detection of low density materials with mono-energetic (gamma)-rays

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F; Anderson, S G; Gibson, D J; Hagmann, C A; Johnson, M S; Messerly, M J; Semenov, V A; Shverdin, M Y; Tremaine, A M; Hartemann, F V; Siders, C W; McNabb, D P; Barty, C J

    2009-03-16

    The first demonstration of isotope-specific detection of a low-Z, low density object, shielded by a high-Z and high density material using mono-energetic gamma-rays is reported. Isotope-specific detection of LiH shielded by Pb and Al is accomplished using the nuclear resonance fluorescence line of {sup 7}Li at 0.478 MeV. Resonant photons are produced via laser-based Compton scattering. The detection techniques are general and the confidence level obtained is shown to be superior to that yielded by conventional x-ray/{gamma}-ray techniques in these situations.

  19. Development of neutron/gamma generators and a polymer semiconductor detector for homeland security applications

    Science.gov (United States)

    King, Michael Joseph

    Instrumentation development is essential to the advancement and success of homeland security systems. Active interrogation techniques that scan luggage and cargo containers for shielded special nuclear materials or explosives hold great potential in halting further terrorist attacks. The development of more economical, compact and efficient source and radiation detection devices will facilitate scanning of all containers and luggage while maintaining high-throughput and low-false alarms Innovative ion sources were developed for two novel, specialized neutron generating devices and initial generator tests were performed. In addition, a low-energy acceleration gamma generator was developed and its performance characterized. Finally, an organic semiconductor was investigated for direct fast neutron detection. A main part of the thesis work was the development of ion sources, crucial components of the neutron/gamma generator development. The use of an externally-driven radio-frequency antenna allows the ion source to generate high beam currents with high, mono-atomic species fractions while maintaining low operating pressures, advantageous parameters for neutron generators. A dual "S" shaped induction antenna was developed to satisfy the high current and large extraction area requirements of the high-intensity neutron generator. The dual antenna arrangement generated a suitable current density of 28 mA/cm2 at practical RF power levels. The stringent requirements of the Pulsed Fast Neutron Transmission Spectroscopy neutron generator necessitated the development of a specialized ten window ion source of toroidal shape with a narrow neutron production target at its center. An innovative ten antenna arrangement with parallel capacitors was developed for driving the multi-antenna arrangement and uniform coupling of RF power to all ten antennas was achieved. To address the desire for low-impact, low-radiation dose active interrogation systems, research was performed on mono-energetic

  20. DESCANT - The DEuterated SCintillator Array for Neutron Tagging

    Science.gov (United States)

    Bildstein, Vinzenz; Garrett, P. E.; Bandyopadhay, D.; Bangay, J.; Bianco, L.; Demand, G.; Hadinia, B.; Leach, K. G.; Sumithrarachchi, C.; Turko, J.; Wong, J.; Ashley, S. F.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Yates, S. W.; Vanhoy, J. R.; Ball, G. C.; Bishop, D. P.; Garnsworthy, A. B.; Hackman, G.; Pearson, C. J.; Shaw, B.; Saran, F.

    2016-09-01

    The DESCANT array at TRIUMF is designed to detect neutrons from RIB experiments. DESCANT is composed of 70 close-packed deuterated organic liquid scintillators coupled to digital fast read-out ADC modules. This configuration will permit online pulse-shape discrimination between neutron and γ-ray events. A prototype detector has been tested with monoenergetic neutrons at the accelerator laboratory of the University of Kentucky. A first commissioning experiment of the full array, using the decay of 145-146Cs, will be performed in August 2016. The results of the tests and a preliminary analysis of the commissioning experiment will be presented. Work supported by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, the National Research Council of Canada and the Canadian Research Chairs program.

  1. Discontinuous finite element and characteristics methods for neutrons transport equation solution in heterogeneous grids; Resolution de l'equation du transport des neutrons par les methodes des elements finis discontinus et des caracteristiques structurees appliquees a des maillages heterogenes

    Energy Technology Data Exchange (ETDEWEB)

    Masiello, E

    2006-07-01

    The principal goal of this manuscript is devoted to the investigation of a new type of heterogeneous mesh adapted to the shape of the fuel pins (fuel-clad-moderator). The new heterogeneous mesh guarantees the spatial modelling of the pin-cell with a minimum of regions. Two methods are investigated for the spatial discretization of the transport equation: the discontinuous finite element method and the method of characteristics for structured cells. These methods together with the new representation of the pin-cell result in an appreciable reduction of calculation points. They allow an exact modelling of the fuel pin-cell without spatial homogenization. A new synthetic acceleration technique based on an angular multigrid is also presented for the speed up of the inner iterations. These methods are good candidates for transport calculations for a nuclear reactor core. A second objective of this work is the application of method of characteristics for non-structured geometries to the study of double heterogeneity problem. The letters is characterized by fuel material with a stochastic dispersion of heterogeneous grains, and until now was solved with a model based on collision probabilities. We propose a new statistical model based on renewal-Markovian theory, which makes possible to take into account the stochastic nature of the problem and to avoid the approximations of the collision probability model. The numerical solution of this model is guaranteed by the method of characteristics. (author)

  2. Constitutive laws for the neutron density current

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186 Col. Vicentina, Mexico, D.F., 09340 (Mexico)], E-mail: gepe@xanum.uam.mx; Morales-Sandoval, Jaime B. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Mor. (Mexico); Vazquez-Rodriguez, Rodolfo [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186 Col. Vicentina, Mexico, D.F., 09340 (Mexico); Espinosa-Martinez, Erick-G. [Retorno Quebec 6, Col. Burgos de Cuernavaca 62580, Temixco, Mor. (Mexico)

    2008-10-15

    In this technical note, a fractional wave equation for the average neutron motion in nuclear reactor is considered. This representation covers the full spectrum of the average neutron transport behavior, i.e., Fickian and non-Fickian effects. The fractional diffusion model retains the main dynamic characteristics of the neutron motion in which the relaxation time associated with a rapid variation in the neutron flux contains a fractional exponent that can be manipulated to obtain the best representation of the neutron transport phenomena. The detrended fluctuation analysis (DFA) method is presented in this paper to estimate the fractional exponent.

  3. 3D Monte-Carlo transport calculations of whole slab reactor cores: validation of deterministic neutronic calculation routes

    Energy Technology Data Exchange (ETDEWEB)

    Palau, J.M. [CEA Cadarache, Service de Physique des Reacteurs et du Cycle, Lab. de Projets Nucleaires, 13 - Saint-Paul-lez-Durance (France)

    2005-07-01

    This paper presents how Monte-Carlo calculations (French TRIPOLI4 poly-kinetic code with an appropriate pre-processing and post-processing software called OVNI) are used in the case of 3-dimensional heterogeneous benchmarks (slab reactor cores) to reduce model biases and enable a thorough and detailed analysis of the performances of deterministic methods and their associated data libraries with respect to key neutron parameters (reactivity, local power). Outstanding examples of application of these tools are presented regarding the new numerical methods implemented in the French lattice code APOLLO2 (advanced self-shielding models, new IDT characteristics method implemented within the discrete-ordinates flux solver model) and the JEFF3.1 nuclear data library (checked against JEF2.2 previous file). In particular we have pointed out, by performing multigroup/point-wise TRIPOLI4 (assembly and core) calculations, the efficiency (in terms of accuracy and computation time) of the new IDT method developed in APOLLO2. In addition, by performing 3-dimensional TRIPOLI4 calculations of the whole slab core (few millions of elementary volumes), the high quality of the new JEFF3.1 nuclear data files and revised evaluations (U{sup 235}, U{sup 238}, Hf) for reactivity prediction of slab cores critical experiments has been stressed. As a feedback of the whole validation process, improvements in terms of nuclear data (mainly Hf capture cross-sections) and numerical methods (advanced quadrature formulas accounting validation results, validation of new self-shielding models, parallelization) are suggested to improve even more the APOLLO2-CRONOS2 standard calculation route. (author)

  4. Neutron Repulsion

    OpenAIRE

    Manuel, Oliver K.

    2011-01-01

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch...

  5. A {mu}TPC detector for the characterization of low energy neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Golabek, C., E-mail: cedric.golabek@irsn.fr [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Billard, J. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France); Allaoua, A. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Bosson, G.; Bourrion, O.; Grignon, C.; Guillaudin, O. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France); Lebreton, L., E-mail: lena.lebreton@irsn.fr [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Mayet, F. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France); Petit, M. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Richer, J.-P.; Santos, D. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France)

    2012-06-21

    The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20 MeV for metrological purposes. To be considered as a reference facility, fluence and energy distributions of neutron fields have to be determined by primary measurement standards. For this purpose, a micro Time Projection Chamber is being developed to be dedicated to measure neutron fields with energy ranging from 8 keV up to 1 MeV. In this work we present simulations showing that such a detector, which allows the measurement of the ionization energy and the 3D reconstruction of the recoil nucleus, provides the determination of neutron energy and fluence of these neutron fields.

  6. A {\\mu}-TPC detector for the characterization of low energy neutron fields

    CERN Document Server

    Golabek, C; Allaoua, A; Bosson, G; Bourrion, O; Grignon, C; Guillaudin, O; Lebreton, L; Mayet, F; Petit, M; Richer, J -P; Santos, D

    2012-01-01

    The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20 MeV for metrological purposes. To be considered as a reference facility, fluence and energy distributions of neutron fields have to be determined by primary measurement standards. For this purpose, a micro Time Projection Chamber is being developed to be dedicated to measure neutron fields with energy ranging from 8 keV up to 1 MeV. In this work we present simulations showing that such a detector, which allows the measurement of the ionization energy and the 3D reconstruction of the recoil nucleus, provides the determination of neutron energy and fluence of these neutron fields.

  7. A Bayesian method to estimate the neutron response matrix of a single crystal CVD diamond detector

    Energy Technology Data Exchange (ETDEWEB)

    Reginatto, Marcel; Araque, Jorge Guerrero; Nolte, Ralf; Zbořil, Miroslav; Zimbal, Andreas [Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig (Germany); Gagnon-Moisan, Francis [Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2015-01-13

    Detectors made from artificial chemical vapor deposition (CVD) single crystal diamond are very promising candidates for applications where high resolution neutron spectrometry in very high neutron fluxes is required, for example in fusion research. We propose a Bayesian method to estimate the neutron response function of the detector for a continuous range of neutron energies (in our case, 10 MeV ≤ E{sub n} ≤ 16 MeV) based on a few measurements with quasi-monoenergetic neutrons. This method is needed because a complete set of measurements is not available and the alternative approach of using responses based on Monte Carlo calculations is not feasible. Our approach uses Bayesian signal-background separation techniques and radial basis function interpolation methods. We present the analysis of data measured at the PTB accelerator facility PIAF. The method is quite general and it can be applied to other particle detectors with similar characteristics.

  8. Neutron logging tool readings and neutron parameters of formations

    Science.gov (United States)

    Czubek, Jan A.

    1995-03-01

    A case history of the calibration of neutron porosity tools is given in the paper. The calibration of neutron porosity tools is one of the most difficult, complicated, and time consuming tasks in the well logging operations in geophysics. A semi empirical approach to this problem is given in the paper. It is based on the correlation of the tool readings observed in known environments with the apparent neutron parameters sensed by the tools. The apparent neutron parameters are functions of the true neutron parameters of geological formations and of the borehole material, borehole diameter, and the tool position inside the borehole. The true integral neutron transport parameters are obtained by the multigroup diffusion approximation for slowing down of neutrons and by one thermal neutron group for the diffusion. In the latter, the effective neutron temperature is taken into account. The problem of the thermal neutron absorption cross section of rocks is discussed in detail from the point of view of its importance for the well logging results and for the experimental techniques being used.

  9. STEREO/SEPT observations of upstream particle events: almost monoenergetic ion beams

    Directory of Open Access Journals (Sweden)

    A. Klassen

    2009-05-01

    Full Text Available We present observations of Almost Monoenergetic Ion (AMI events in the energy range of 100–1200 keV detected with the Solar Electron and Proton Telescope (SEPT onboard both STEREO spacecraft. The energy spectrum of AMI events contain 1, 2, or 3 narrow peaks with the relative width at half maximum of 0.1–0.7 and their energy maxima varies for different events from 120 to 1200 keV. These events were detected close to the bow-shock (STEREO-A&B and to the magnetopause at STEREO-B as well as unexpectedly far upstream of the bow-shock and far away from the magnetotail at distances up to 1100 RE (STEREO-B and 1900 RE (STEREO-A. We discuss the origin of AMI events, the connection to the Earth's bow-shock and to the magnetosphere, and the conditions of the interplanetary medium and magnetosphere under which these AMI bursts occur. Evidence that the detected spectral peaks were caused by quasi-monoenergetic beams of protons, helium, and heavier ions are given. Furthermore, we present the spatial distribution of all AMI events from December 2006 until August 2007.

  10. LASER TECHNOLOGY FOR PRECISION MONOENERGETIC GAMMA-RAY SOURCE R&D AT LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Shverdin, M Y; Bayramian, A; Albert, F; Anderson, S G; Betts, S M; Chu, T S; Cross, R R; Gibson, D J; Marsh, R; Messerly, M; Phan, H; Prantil, M; Wu, S; Ebbers, C; Scarpetti, R D; Hartemann, F V; Siders, C W; McNabb, D P; Bonanno, R E; Barty, C P

    2010-04-20

    Generation of mono-energetic, high brightness gamma-rays requires state of the art lasers to both produce a low emittance electron beam in the linac and high intensity, narrow linewidth laser photons for scattering with the relativistic electrons. Here, we overview the laser systems for the 3rd generation Monoenergetic Gamma-ray Source (MEGa-ray) currently under construction at Lawrence Livermore National Lab (LLNL). We also describe a method for increasing the efficiency of laser Compton scattering through laser pulse recirculation. The fiber-based photoinjector laser will produce 50 {micro}J temporally and spatially shaped UV pulses at 120 Hz to generate a low emittance electron beam in the X-band RF photoinjector. The interaction laser generates high intensity photons that focus into the interaction region and scatter off the accelerated electrons. This system utilizes chirped pulse amplification and commercial diode pumped solid state Nd:YAG amplifiers to produce 0.5 J, 10 ps, 120 Hz pulses at 1064 nm and up to 0.2 J after frequency doubling. A single passively mode-locked Ytterbium fiber oscillator seeds both laser systems and provides a timing synch with the linac.

  11. Discontinuous isogeometric analysis methods for the first-order form of the neutron transport equation with discrete ordinate (SN) angular discretisation

    Science.gov (United States)

    Owens, A. R.; Welch, J. A.; Kópházi, J.; Eaton, M. D.

    2016-06-01

    In this paper two discontinuous Galerkin isogeometric analysis methods are developed and applied to the first-order form of the neutron transport equation with a discrete ordinate (SN) angular discretisation. The discontinuous Galerkin projection approach was taken on both an element level and the patch level for a given Non-Uniform Rational B-Spline (NURBS) patch. This paper describes the detailed dispersion analysis that has been used to analyse the numerical stability of both of these schemes. The convergence of the schemes for both smooth and non-smooth solutions was also investigated using the method of manufactured solutions (MMS) for multidimensional problems and a 1D semi-analytical benchmark whose solution contains a strongly discontinuous first derivative. This paper also investigates the challenges posed by strongly curved boundaries at both the NURBS element and patch level with several algorithms developed to deal with such cases. Finally numerical results are presented both for a simple pincell test problem as well as the C5G7 quarter core MOX/UOX small Light Water Reactor (LWR) benchmark problem. These numerical results produced by the isogeometric analysis (IGA) methods are compared and contrasted against linear and quadratic discontinuous Galerkin finite element (DGFEM) SN based methods.

  12. Analysis of space and energy homogenization techniques for the solving of the neutron transport equation in nuclear reactor; Analyse des techniques d'homogeneisation spatiale et energetique dans la resolution de l'equation du transport des neutrons dans les reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Magat, Ph

    1997-04-01

    Today neutron transport in PWR's core is routinely computed through the transport-diffusion(2 groups) scheme. This method gives satisfactory results for reactors operating in normal conditions but the 2 group diffusion approximation is unable to take into account interface effects or anisotropy. The improvement of this scheme is logically possible through the use of a simplified P{sub N} method (SP{sub N}) for the modeling of the core. The comparison between S{sub N} calculations and SP{sub N} calculations shows an excellent agreement on eigenvalues as well as on power maps. We can notice that: -) it is no use extending the development beyond P{sub 3}, there is no effect; -) the P{sub 1} development is adequate; and -) the P{sub 0} development is totally inappropriate. Calculations performed on the N4 core of the Chooz power plant have enabled us to compare diffusion operators with transport operators (SP{sub 1}, SP{sub 3}, SP{sub 5} and SP{sub 7}). These calculations show that the implementation of the SP{sub N} method is feasible but the extra-costs in computation times and memory are important. We recommend: SP{sub 5}P{sub 1} calculations for heterogeneous 2-dimension geometry and SP{sub 3}P{sub 1} calculations for the homogeneous 3-dimension geometry. (A.C.)

  13. Calculations of reactivity based in the solution of the Neutron transport equation in X Y geometry and Lineal perturbation theory; Calculos de reactividad basados en la solucion de la Ecuacion de transporte de neutrones en geometria XY y Teoria de perturbacion lineal

    Energy Technology Data Exchange (ETDEWEB)

    Valle G, E. del; Mugica R, C.A. [IPN, ESFM, Departamento de Ingenieria Nuclear, 07738 Mexico D.F. (Mexico)]. e-mail: cmugica@ipn.mx

    2005-07-01

    In our country, in last congresses, Gomez et al carried out reactivity calculations based on the solution of the diffusion equation for an energy group using nodal methods in one dimension and the TPL approach (Lineal Perturbation Theory). Later on, Mugica extended the application to the case of multigroup so much so much in one as in two dimensions (X Y geometry) with excellent results. Presently work is carried out similar calculations but this time based on the solution of the neutron transport equation in X Y geometry using nodal methods and again the TPL approximation. The idea is to provide a calculation method that allows to obtain in quick form the reactivity solving the direct problem as well as the enclosed problem of the not perturbed problem. A test problem for the one that results are provided for the effective multiplication factor is described and its are offered some conclusions. (Author)

  14. Neutron effective dose calculation behind concrete shielding of charged particle accelerators with energy up to 100 MeV

    CERN Document Server

    Alejnikov, V E; Krylov, A R

    2002-01-01

    Calculation data of neutron effective dose behind concrete shielding with thickness up to 3 meters is presented. The calculations have been performed by the Monte Carlo and phenomenological methods for monoenergetic neutrons with energy from 5 to 100 MeV as well as for neutron spectra produced by protons with energies of 30 and 72 MeV in thick targets. Comparison between calculations of neutron effective dose behind shielding using phenomenological approach and those by the Monte Carlo method normally shows agreement to within a factor of better than two, i.e. estimation of shielding thickness by those methods shall not exceed one half value layer of neutron effective dose attenuation in shielding. It amounts from 10 to 30 cm of concrete shielding for neutron energies and thickness of shields under consideration

  15. Solution of the neutron transport equation by the collision probability for 3D geometries; Resolution de l`equation du transport pour les neutrons par la methode des probabilites de collision dans le geometries 3D

    Energy Technology Data Exchange (ETDEWEB)

    Oujidi, B.

    1996-09-19

    The TDT code solves the multigroup transport equation by the interface current method for unstructured 2D geometries. This works presents the extension of TDT to the treatment of 3D geometries obtained by axial displacement of unstructured 2D geometries. Three-dimensional trajectories are obtained by lifting the 2D trajectories. The code allows for the definition of macro-domains in the axial direction to be used in the interface-current method. Specular and isotropic reflection or translations boundary conditions can be applied to the horizontal boundaries of the domain. Numerical studies have shown the need for longer trajectory cutoffs for trajectories intersecting horizontal boundaries. Numerical applications to the calculation of local power peaks are given in a second part for: the local destruction of a Pyrex absorbent and inter-assembly (UO{sub 2}-MOX) power distortion due to pellet collapsing at the top of the core. Calculations with 16 groups were performed by coupling TDT to the spectral code APOLLO2. One-group comparisons with the Monte Carlo code TRIMARAN2 are also given. (author). 30 refs.

  16. Solution of the neutron transport equation by the collision probability method for 3D geometries; Resolution de l`equation du transport par les neutrons par la methode des probabilites de collision dans les geometries 3D

    Energy Technology Data Exchange (ETDEWEB)

    Oujidi, B

    1996-09-19

    The TDT code solves the multigroup transport equation by the interface-current method for unstructured 2D geometries. This works presents the extension of TDT to the treatment of 3D geometries obtained by axial displacement of unstructured 2D geometries. Three-dimensional trajectories are obtained by lifting the 2D trajectories. The code allows for the definition of macro-domains in the axial direction to be used in interface-current method. Specular and isotropic reflection or translations boundary conditions can be applied to the horizontal boundaries of the domain. Numerical studies have shown the need for longer trajectory cutoffs for trajectories intersecting horizontal boundaries. Numerical applications to the calculation of local power peaks are given in a second part for: the local destruction of a Pyrex absorbent, inter-assembly (U02-MOX) power distortion due to pellet collapsing at the top of the core. Calculations with 16 groups were performed by coupling TDT to the spectral code APOLLO2. One-group comparisons with the Monte Carlo code TRIMARAN2 are also given. (author) 30 refs.

  17. Portable Neutron Generator with 9-Section Silicon $\\alpha $-Detector

    CERN Document Server

    Bystritsky, V M; Kadyshevskij, V G; Khasaev, T O; Kobzev, A P; Presnyakov, Yu K; Rogov,Yu N; Ryzhkov, V I; Sapozhnikov, M G; Sissakian, A N; Slepnev, V M; Zamyatin, N I

    2006-01-01

    The characteristics of the portable neutron generator with a built-in $\\alpha $-detector are presented. Based on the "tagged" neutron method (TNM) the generator ~is being used for identification of ~the hidden chemical compounds. One of the special features of such generators compared to generators traditionally used and produced in industry is that the generator is a source of monoenergetic "tagged" 14.1 MeV neutrons produced in the binary nuclear reaction $d+t \\to \\alpha $ (3.5 MeV) $+n$ (14.1~MeV). Unambiguous information about the time and direction of the neutron emitted from the target can be obtained by recording an $\\alpha $ particle by the multi-pixel $\\alpha $-detector placed inside the neutron tube. The study of the "tagged" neutron method (TNM) shows that the use of the ($\\alpha $--$\\gamma $) coincidence reduces the gamma background induced by scattered neutrons by a factor of more than 200, which allows the detection and identification of small quantities of explosives, drugs, and toxic agents. T...

  18. Studies of 54,56Fe Neutron Scattering Cross Sections

    Directory of Open Access Journals (Sweden)

    Hicks S. F.

    2015-01-01

    Full Text Available Elastic and inelastic neutron scattering differential cross sections and γ-ray production cross sections have been measured on 54,56Fe at several incident energies in the fast neutron region between 1.5 and 4.7 MeV. All measurements were completed at the University of Kentucky Accelerator Laboratory (UKAL using a 7-MV Model CN Van de Graaff accelerator, along with the neutron production and neutron and γ-ray detection systems located there. The facilities at UKAL allow the investigation of both elastic and inelastic scattering with nearly mono-energetic incident neutrons. Time-of-flight techniques were used to detect the scattered neutrons for the differential cross section measurements. The measured cross sections are important for fission reactor applications and also for testing global model calculations such as those found at ENDF, since describing both the elastic and inelastic scattering is important for determining the direct and compound components of the scattering mechanism. The γ-ray production cross sections are used to determine cross sections to unresolved levels in the neutron scattering experiments. Results from our measurements and comparisons to model calculations are presented.

  19. NeuLAND MRPC-based detector prototypes tested with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Caesar, C., E-mail: c.caesar@gsi.de [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Aumann, T. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Bemmerer, D. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Boretzky, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Elekes, Z. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); ATOMKI, Debrecen (Hungary); Gonzalez-Diaz, D.; Hehner, J.; Heil, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Kempe, M. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Maroussov, V. [Universitaet zu Koeln, Koeln (Germany); Nusair, O. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Al-Balqa Applied University, Salt (Jordan); Reifarth, R.; Rossi, D.; Simon, H. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Stach, D.; Wagner, A.; Yakorev, D. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Zilges, A. [ATOMKI, Debrecen (Hungary)

    2012-01-01

    Recent results from a first irradiation of multi-gap resistive plate chambers with fast neutrons are presented. The counters have been built at GSI and FZD. The experiment was performed at the 'The Svedberg Laboratory' (TSL) in Uppsala, Sweden, utilizing a quasi-monoenergetic neutron beam with an energy E{sub n}=175 MeV. For a 2 Multiplication-Sign 4 gap prototype operated at E=100 kV/cm, an efficiency of (0.77 {+-}0.33)% was measured.

  20. Experimental Study of Two-Neutron Correlation in 8He+%Experimental Study of Two-Neutron Correlation in 8He+

    Institute of Scientific and Technical Information of China (English)

    肖军; 叶沿林; 游海波; 杨再宏; 曹中鑫; 江栋兴; 郑涛; 华辉; 李智焕; 葛俞成; 李湘庆; 楼建玲; 李阔昂; 李奇特; 乔锐; 陈瑞九

    2012-01-01

    A neutron detector array was used in a breakup reaction experiment at RIKEN with an 82.5 MeV/u SHe beam impinging on the CH2 and C targets. The array was calibrated using the cosmic ray, the 7 ray from the 6He+Pb reaction and the mono-energetic neutrons from the 7Li(p, n)TBe(g.s.+0.43 MeV) reaction. The position resolution, timing resolution and neutron de- tection efficiency were obtained accordingly. Cross-talk rejection conditions were developed based on analysis of the data taken from the 7Li(p, n)TBe(g.s.+0.43 MeV) test experiment, and finally a preliminary two-neutron correlation function for the SHe breakup reaction was investigated.

  1. Experimental Neutron-Induced Fission Fragment Mass Yields of 232Th and 238U at Energies from 10 to 33 MeV

    CERN Document Server

    Simutkin, V D; Blomgren, J; Österlund, M; Bevilacqua, R; Ryzhov, I V; Tutin, G A; Yavshits, S G; Vaishnene, L A; Onegin, M S; Meulders, J P; Prieels, R

    2013-01-01

    Development of nuclear energy applications requires data for neutron-induced reactions for actinides in a wide neutron energy range. Here we describe measurements of pre-neutron emission fission fragment mass yields of 232Th and 238U at incident neutron energies from 10 to 33 MeV. The measurements were done at the quasi-monoenergetic neutron beam of the Louvain-la-Neuve cyclotron facility CYCLONE; a multi-section twin Frisch-gridded ionization chamber was used to detect fission fragments. For the peak neutron energies at 33, 45 and 60 MeV, the details of the data analysis and the experimental results have been published before and in this work we present data analysis in the low-energy tail of the neutron energy spectra. The preliminary measurement results are compared with available experimental data and theoretical predictions.

  2. Neutron Radiography

    Science.gov (United States)

    Heller, A. K.; Brenizer, J. S.

    Neutron radiography and its related two-dimensional (2D) neutron imaging techniques have been established as invaluable nondestructive inspection methods and quantitative measurement tools. They have been used in a wide variety of applications ranging from inspection of aircraft engine turbine blades to study of two-phase fluid flow in operating proton exchange membrane fuel cells. Neutron radiography is similar to X-ray radiography in that the method produces a 2D attenuation map of neutron radiation that has penetrated the object being examined. However, the images produced differ and are often complementary due to the differences between X-ray and neutron interaction mechanisms. The uses and types of 2D neutron imaging have expanded over the past 15 years as a result of advances in imaging technology and improvements in neutron generators/sources and computers. Still, high-intensity sources such as those from reactors and spallation neutron sources, together with conventional film radiography, remain the mainstay of high-resolution, large field-of-view neutron imaging. This chapter presents a summary of the history, methods, and related variations of neutron radiography techniques.

  3. Use of GEANT4 vs. MCNPX for the characterization of a boron-lined neutron detector

    Science.gov (United States)

    van der Ende, B. M.; Atanackovic, J.; Erlandson, A.; Bentoumi, G.

    2016-06-01

    This work compares GEANT4 with MCNPX in the characterization of a boron-lined neutron detector. The neutron energy ranges simulated in this work (0.025 eV to 20 MeV) are the traditional domain of MCNP simulations. This paper addresses the question, how well can GEANT4 and MCNPX be employed for detailed thermal neutron detector characterization? To answer this, GEANT4 and MCNPX have been employed to simulate detector response to a 252Cf energy spectrum point source, as well as to simulate mono-energetic parallel beam source geometries. The 252Cf energy spectrum simulation results demonstrate agreement in detector count rate within 3% between the two packages, with the MCNPX results being generally closer to experiment than are those from GEANT4. The mono-energetic source simulations demonstrate agreement in detector response within 5% between the two packages for all neutron energies, and within 1% for neutron energies between 100 eV and 5 MeV. Cross-checks between the two types of simulations using ISO-8529 252Cf energy bins demonstrates that MCNPX results are more self-consistent than are GEANT4 results, by 3-4%.

  4. Spectroscopic neutron radiography for a cargo scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Rahon, Jill [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); Danagoulian, Areg, E-mail: aregjan@mit.edu [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); MacDonald, Thomas D. [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); Hartwig, Zachary S. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); Lanza, Richard C. [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States)

    2016-06-01

    Detection of cross-border smuggling of illicit materials and contraband is a challenge that requires rapid, low-dose, and efficient radiographic technology. The work we describe here is derived from a technique which uses monoenergetic gamma rays from low energy nuclear reactions, such as {sup 11}B(d,nγ){sup 12}C, to perform radiographic analysis of shipping containers. Transmission ratios of multiple monoenergetic gamma lines resulting from several gamma producing nuclear reactions can be employed to detect materials of high atomic number (Z), the details of which will be described in a separate paper. Inherent in this particular nuclear reaction is the production of fast neutrons which could enable neutron radiography and further characterization of the effective-Z of the cargo, especially within the range of lower Z. Previous research efforts focused on the use of total neutron counts in combination with X-ray radiography to characterize the hydrogenous content of the cargo. We present a technique of performing transmitted neutron spectral analysis to reconstruct the effective Z and potentially the density of the cargo. This is made possible by the large differences in the energy dependence of neutron scattering cross-sections between hydrogenous materials and those of higher Z. These dependencies result in harder transmission spectra for hydrogenous cargoes than those of non-hydrogenous cargoes. Such observed differences can then be used to classify the cargo based on its hydrogenous content. The studies presented in this paper demonstrate that such techniques are feasible and can provide a contribution to cargo security, especially when used in concert with gamma radiography.

  5. Spectroscopic neutron radiography for a cargo scanning system

    Science.gov (United States)

    Rahon, Jill; Danagoulian, Areg; MacDonald, Thomas D.; Hartwig, Zachary S.; Lanza, Richard C.

    2016-06-01

    Detection of cross-border smuggling of illicit materials and contraband is a challenge that requires rapid, low-dose, and efficient radiographic technology. The work we describe here is derived from a technique which uses monoenergetic gamma rays from low energy nuclear reactions, such as 11B(d,nγ)12C, to perform radiographic analysis of shipping containers. Transmission ratios of multiple monoenergetic gamma lines resulting from several gamma producing nuclear reactions can be employed to detect materials of high atomic number (Z), the details of which will be described in a separate paper. Inherent in this particular nuclear reaction is the production of fast neutrons which could enable neutron radiography and further characterization of the effective-Z of the cargo, especially within the range of lower Z. Previous research efforts focused on the use of total neutron counts in combination with X-ray radiography to characterize the hydrogenous content of the cargo. We present a technique of performing transmitted neutron spectral analysis to reconstruct the effective Z and potentially the density of the cargo. This is made possible by the large differences in the energy dependence of neutron scattering cross-sections between hydrogenous materials and those of higher Z. These dependencies result in harder transmission spectra for hydrogenous cargoes than those of non-hydrogenous cargoes. Such observed differences can then be used to classify the cargo based on its hydrogenous content. The studies presented in this paper demonstrate that such techniques are feasible and can provide a contribution to cargo security, especially when used in concert with gamma radiography.

  6. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  7. Fission Product Yields of 233U, 235U, 238U and 239Pu in Fields of Thermal Neutrons, Fission Neutrons and 14.7-MeV Neutrons

    Science.gov (United States)

    Laurec, J.; Adam, A.; de Bruyne, T.; Bauge, E.; Granier, T.; Aupiais, J.; Bersillon, O.; Le Petit, G.; Authier, N.; Casoli, P.

    2010-12-01

    The yields of more than fifteen fission products have been carefully measured using radiochemical techniques, for 235U(n,f), 239Pu(n,f) in a thermal spectrum, for 233U(n,f), 235U(n,f), and 239Pu(n,f) reactions in a fission neutron spectrum, and for 233U(n,f), 235U(n,f), 238U(n,f), and 239Pu(n,f) for 14.7 MeV monoenergetic neutrons. Irradiations were performed at the EL3 reactor, at the Caliban and Prospero critical assemblies, and at the Lancelot electrostatic accelerator in CEA-Valduc. Fissions were counted in thin deposits using fission ionization chambers. The number of fission products of each species were measured by gamma spectrometry of co-located thick deposits.

  8. Suppression of multiple ion bunches and generation of monoenergetic ion beams in laser foil-plasma

    Institute of Scientific and Technical Information of China (English)

    Zhang Shan; Xie Bai-Song; Hong Xue-Ren; Wu Hai-Cheng; Aimierding Aimidula; Zhao Xue-Yan; Liu Ming-Ping

    2011-01-01

    In one-dimensional particle-in-cell simulations, this paper shows that the formation of multiple ion bunches is disadvantageous to the generation of monoenergetic ion beams and can be suppressed by choosing an optimum target thickness in the radiation pressure acceleration mechanism by a circularly polarised laser pulse. As the laser pulse becomes intense, the optimum target thickness obtained by a non-relativistic treatment is no longer adequate. Considering the relativistic Doppler-shifted pressure, it proposes a relativistic formulation to determine the optimum target thickness. The theoretical predictions agree with the simulation results well. The model is also valid for two-dimensional cases. The accelerated ion beams can be compelled to be more stable by choosing the optimum target thickness when they exhibit some unstable behaviours.

  9. Native cation vacancies in Si-doped AlGaN studied by monoenergetic positron beams

    Science.gov (United States)

    Uedono, A.; Tenjinbayashi, K.; Tsutsui, T.; Shimahara, Y.; Miyake, H.; Hiramatsu, K.; Oshima, N.; Suzuki, R.; Ishibashi, S.

    2012-01-01

    Native defects in Si-doped AlGaN grown by metalorganic vapor phase epitaxy were probed by monoenergetic positron beams. Doppler broadening spectra of the annihilation radiation and positron lifetimes were measured, and these were compared with results obtained using first-principles calculation. For Si-doped AlxGa1-xN (4 × 1017 Si/cm3), the vacancy-type defects were introduced at above x = 0.54, and this was attributed to the transition of the growth mode to the Stranski-Krastanov mechanism from the Frank-van der Merwe mechanism. For Si-doped Al0.6Ga0.4N, the vacancy concentration increased with increasing Si concentration, and the major defect species was identified as Al vacancies. A clear correlation between the suppression of cathodoluminescence and the defect concentration was obtained, suggesting the cation vacancies act as nonradiative centers in AlGaN.

  10. Quasi-monoenergetic positron beam generation from ultra-intense laser-matter interactions

    Science.gov (United States)

    Nakamura, Tatsufumi; Hayakawa, Takehito

    2016-10-01

    In ultra-intense laser-matter interactions in which the radiation reaction effect plays an important role, γ-rays are effectively generated that are intense, collimated, and of short duration. These γ-rays propagate through the target, which results in the electron-positron pair creation caused by the interaction of the γ-rays with the nuclear electric fields. The positron beam thus generated has several unique features; it is quasi-monoenergetic in nature with a peak energy of hundreds of MeV, well collimated, and of ultra-short duration. Based on the numerical simulations, the dependences of the number and monochromaticity of the positrons on the laser and target parameters are explored, which leads to the proposal of a new type of the laser-driven positron source.

  11. Performance of an elliptically tapered neutron guide

    Science.gov (United States)

    Mühlbauer, Sebastian; Stadlbauer, Martin; Böni, Peter; Schanzer, Christan; Stahn, Jochen; Filges, Uwe

    2006-11-01

    Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics.

  12. Performance of an elliptically tapered neutron guide

    Energy Technology Data Exchange (ETDEWEB)

    Muehlbauer, Sebastian [Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany)]. E-mail: sebastian.muehlbauer@frm2.tum.de; Stadlbauer, Martin [Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany); Boeni, Peter [Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany); Schanzer, Christan [Labor fuer Neutronenstreuung, Paul Scherrer Institut, CH-5232 Villingen PSI (Switzerland); Stahn, Jochen [Labor fuer Neutronenstreuung, Paul Scherrer Institut, CH-5232 Villingen PSI (Switzerland); Filges, Uwe [Labor fuer Neutronenstreuung, Paul Scherrer Institut, CH-5232 Villingen PSI (Switzerland)

    2006-11-15

    Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics.

  13. Microdosimetry calculations for monoenergetic electrons using Geant4-DNA combined with a weighted track sampling algorithm

    Science.gov (United States)

    Famulari, Gabriel; Pater, Piotr; Enger, Shirin A.

    2017-07-01

    The aim of this study was to calculate microdosimetric distributions for low energy electrons simulated using the Monte Carlo track structure code Geant4-DNA. Tracks for monoenergetic electrons with kinetic energies ranging from 100 eV to 1 MeV were simulated in an infinite spherical water phantom using the Geant4-DNA extension included in Geant4 toolkit version 10.2 (patch 02). The microdosimetric distributions were obtained through random sampling of transfer points and overlaying scoring volumes within the associated volume of the tracks. Relative frequency distributions of energy deposition f(>E)/f(>0) and dose mean lineal energy (\\bar{y}D ) values were calculated in nanometer-sized spherical and cylindrical targets. The effects of scoring volume and scoring techniques were examined. The results were compared with published data generated using MOCA8B and KURBUC. Geant4-DNA produces a lower frequency of higher energy deposits than MOCA8B. The \\bar{y}D values calculated with Geant4-DNA are smaller than those calculated using MOCA8B and KURBUC. The differences are mainly due to the lower ionization and excitation cross sections of Geant4-DNA for low energy electrons. To a lesser extent, discrepancies can also be attributed to the implementation in this study of a new and fast scoring technique that differs from that used in previous studies. For the same mean chord length (\\bar{l} ), the \\bar{y}D calculated in cylindrical volumes are larger than those calculated in spherical volumes. The discrepancies due to cross sections and scoring geometries increase with decreasing scoring site dimensions. A new set of \\bar{y}D values has been presented for monoenergetic electrons using a fast track sampling algorithm and the most recent physics models implemented in Geant4-DNA. This dataset can be combined with primary electron spectra to predict the radiation quality of photon and electron beams.

  14. Initial results from a multiple monoenergetic gamma radiography system for nuclear security

    Science.gov (United States)

    O'Day, Buckley E.; Hartwig, Zachary S.; Lanza, Richard C.; Danagoulian, Areg

    2016-10-01

    The detection of assembled nuclear devices and concealed special nuclear materials (SNM) such as plutonium or uranium in commercial cargo traffic is a major challenge in mitigating the threat of nuclear terrorism. Currently available radiographic and active interrogation systems use ∼1-10 MeV bremsstrahlung photon beams. Although simple to build and operate, bremsstrahlung-based systems deliver high radiation doses to the cargo and to potential stowaways. To eliminate problematic issues of high dose, we are developing a novel technique known as multiple monoenergetic gamma radiography (MMGR). MMGR uses ion-induced nuclear reactions to produce two monoenergetic gammas for dual-energy radiography. This allows us to image the areal density and effective atomic number (Zeff) of scanned cargo. We present initial results from the proof-of-concept experiment, which was conducted at the MIT Bates Research and Engineering Center. The purpose of the experiment was to assess the capabilities of MMGR to measure areal density and Zeff of container cargo mockups. The experiment used a 3.0 MeV radiofrequency quadrupole accelerator to create sources of 4.44 MeV and 15.11 MeV gammas from the 11B(d,nγ)12C reaction in a thick natural boron target; the gammas are detected by an array of NaI(Tl) detectors after transmission through cargo mockups . The measured fluxes of transmitted 4.44 MeV and 15.11 MeV gammas were used to assess the areal density and Zeff. Initial results show that MMGR is capable of discriminating the presence of high-Z materials concealed in up to 30 cm of iron shielding from low- and mid-Z materials present in the cargo mockup.

  15. Accelerator Based Neutron Beams for Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  16. Method to determine the strength of a neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Chacon R, A.; Mercado, G.A. [UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Depto. Ingenieria Nuclear, Universidad Politecnica de Madrid, (Spain)

    2006-07-01

    The use of a gamma-ray spectrometer with a 3 {phi} x 3 NaI(Tl) detector, with a moderator sphere has been studied in the aim to measure the neutron fluence rate and to determine the source strength. Moderators with a large amount of hydrogen are able to slowdown and thermalize neutrons; once thermalized there is a probability that thermal neutron to be captured by hydrogen producing 2.22 MeV prompt gamma-ray. The pulse-height spectrum collected in a multicharmel analyzer shows a photopeak around 2.22 MeV whose net area is proportional to total neutron fluence rate and to the neutron source strength. The characteristics of this system were determined by a Monte Carlo study using the MCNP 4C code, where a detailed model of the Nal(Tl) was utilized. As moderators 3, 5, and 10 inches-diameter spheres where utilized and the response was calculated for monoenergetic and isotopic neutrons sources. (Author)

  17. Evaluation of energy responses for neutron dose-equivalent meters made in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, J. E-mail: saegusa@popsvr.tokai.jaeri.go.jp; Yoshizawa, M.; Tanimura, Y.; Yoshida, M.; Yamano, T.; Nakaoka, H

    2004-01-01

    Energy responses of three types of Japanese neutron dose-equivalent (DE) meters were evaluated by Monte Carlo simulations and measurements. The energy responses were evaluated for thermal neutrons, monoenergetic neutrons with energies up to 15.2 MeV, and also for neutrons from such radionuclide sources as {sup 252}Cf and {sup 241}Am-Be. The calculated results were corroborated with the measured ones. The angular dependence of the response and the DE response were also evaluated. As a result, reliable energy responses were obtained by careful simulations of the proportional counter, moderator and absorber of the DE meters. Furthermore, the relationship between pressure of counting gas and response of the DE meter was discussed. By using the obtained responses, relations between predicted readings of the DE meters and true DE values were studied for various workplace spectra.

  18. Theoretical study and calculation of the response of a fast neutron dosemeter based on track detection

    Energy Technology Data Exchange (ETDEWEB)

    Decossas, J.L.; Vareille, J.C.; Moliton, J.P.; Teyssier, J.L. (Limoges Univ., 87 (France). Lab. d' Electronique des Polymeres sous Faisceaux Ioniques)

    1983-01-01

    A fast neutron dosemeter is generally composed of a radiator in which n-p elastic scattering occurs and a detector which registers protons. A theoretical study, and the calculation (FORTRAN program) of the response of such a dosemeter is presented involving two steps: 1) The proton flux emerging from a thick radiator on which monoenergetic neutrons are normally incident is studied. This is characterised by its energy spectrum depending on the neutron energy and on the radiator thickness. 2) Proton detection being achieved with a solid state nuclear track detector whose performance is known, the number of registered tracks are calculated. The dosemeter sensitivity (tracks cm/sup -2/. Sv/sup -1/) is deduced. Then, the calculations show that it is possible to optimise the radiator thickness to obtain the smallest variation in sensitivity with neutron energy. The theoretical results are in good agreement with the experimental ones found in the literature.

  19. The prediction and measurement of microdosimetric spectra relating to neutron cancer therapy

    CERN Document Server

    Taylor, G C

    2003-01-01

    The primary aim of this work has been to characterise the beam of the MRC's high energy neutron cancer therapy cyclotron at the Clatterbridge Hospital, Bebington, the Wirral, by measuring a series of microdosimetric spectra for a variety of irradiation conditions. In order to interpret the variation between these spectra, so that the underlying physics of the neutron beam could be determined, it was necessary to identify the most influential factors in the production of microdosimetric responses. Experimental procedures were tested in a series of measurements using 14 and 15 MeV monoenergetic neutrons from the Birmingham Dynamitron; these were instrumental in establishing the rigorous calibration regime necessary for the Clatterbridge measurement programme. The (analytical) predictive code NESLES was used to investigate the effect on microdosimetric spectra of having a low energy neutron component in the primary beam,, and also to highlight the shortcomings of the tissue-equivalent media used in microdosimetr...

  20. p-Terphenyl: An alternative to liquid scintillators for neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Sardet, A., E-mail: alix.sardet@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Varignon, C.; Laurent, B.; Granier, T. [CEA, DAM, DIF, F-91297 Arpajon (France); Oberstedt, A. [CEA, DAM, DIF, F-91297 Arpajon (France); Fundamental Physics, Chalmers University of Technology, S-41296 Göteborg (Sweden)

    2015-08-21

    A detailed characterization of doped paraterphenyl (p-Terphenyl) neutron detectors was obtained by means of γ-sources and a {sup 252}Cf fission chamber. The intrinsic timing resolution, the energy resolution up to 2 MeV{sub ee}, and the electron-equivalent energy calibration were determined using γ-sources. The neutron time-of-flight spectrum from the spontaneous fission of {sup 252}Cf provided information on the proton energy calibration, the light output function, and the intrinsic neutron detection efficiency between 0 and 8 MeV for a threshold of 250 keV. Measurements of the latter were also performed using monoenergetic neutron beams. The applied experimental methods were cross-checked using two BC501A scintillation detectors, which were previously calibrated at the Physikalisch-Technische Bundesanstalt in Braunschweig, Germany. Results were compared to Monte-Carlo simulations performed using NRESP7 and NEFF7 codes.

  1. Optimization of a sup 6 LiF bolometric neutron detector

    CERN Document Server

    Silver, C S; Piccirillo, L; Timbie, P T; Zhou, J W

    2002-01-01

    The optimization of a sup 6 LiF bolometer for neutron spectroscopy applications has been accomplished with a series of 12 different detectors. This type of detector is similar to X-ray bolometers, which have been extensively studied, and the absorber has a high neutron capture cross-section. Each bolometer was irradiated with alpha particles to investigate its response to thermal pulses. The best resolution obtained with this series of bolometers was 39 keV FWHM at 5.3 MeV. One of the bolometers was calibrated with monoenergetic neutrons, and its thermal properties are derived from measurements over a range of temperatures. We discuss the considerations involved in optimizing a sup 6 LiF bolometer for different types of neutron applications.

  2. New Multi-group Transport Neutronics (PHISICS) Capabilities for RELAP5-3D and its Application to Phase I of the OECD/NEA MHTGR-350 MW Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard Strydom; Cristian Rabiti; Andrea Alfonsi

    2012-10-01

    PHISICS is a neutronics code system currently under development at the Idaho National Laboratory (INL). Its goal is to provide state of the art simulation capability to reactor designers. The different modules for PHISICS currently under development are a nodal and semi-structured transport core solver (INSTANT), a depletion module (MRTAU) and a cross section interpolation (MIXER) module. The INSTANT module is the most developed of the mentioned above. Basic functionalities are ready to use, but the code is still in continuous development to extend its capabilities. This paper reports on the effort of coupling the nodal kinetics code package PHISICS (INSTANT/MRTAU/MIXER) to the thermal hydraulics system code RELAP5-3D, to enable full core and system modeling. This will enable the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5-3D (NESTLE). In the second part of the paper, an overview of the OECD/NEA MHTGR-350 MW benchmark is given. This benchmark has been approved by the OECD, and is based on the General Atomics 350 MW Modular High Temperature Gas Reactor (MHTGR) design. The benchmark includes coupled neutronics thermal hydraulics exercises that require more capabilities than RELAP5-3D with NESTLE offers. Therefore, the MHTGR benchmark makes extensive use of the new PHISICS/RELAP5-3D coupling capabilities. The paper presents the preliminary results of the three steady state exercises specified in Phase I of the benchmark using PHISICS/RELAP5-3D.

  3. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  4. RCPO1 - A Monte Carlo program for solving neutron and photon transport problems in three dimensional geometry with detailed energy description and depletion capability

    Energy Technology Data Exchange (ETDEWEB)

    Ondis, L.A., II; Tyburski, L.J.; Moskowitz, B.S.

    2000-03-01

    The RCP01 Monte Carlo program is used to analyze many geometries of interest in nuclear design and analysis of light water moderated reactors such as the core in its pressure vessel with complex piping arrangement, fuel storage arrays, shipping and container arrangements, and neutron detector configurations. Written in FORTRAN and in use on a variety of computers, it is capable of estimating steady state neutron or photon reaction rates and neutron multiplication factors. The energy range covered in neutron calculations is that relevant to the fission process and subsequent slowing-down and thermalization, i.e., 20 MeV to 0 eV. The same energy range is covered for photon calculations.

  5. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    films or films with magnetic properties. The reason is the peculiar property of neutron light since the mass of a neutron is close to the one of a proton, and since it bears a magnetic moment. The optical properties of matter, when interacting with neutrons, are described by a refractive index......Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... to hundreds of nanometers. Thickness resolution for flat surfaces is in the range of few Ǻngstrøm, and as a peculiar benefit, the presence and properties of buried interfaces are accessible. Focus here will be on neutron reflectometry, a technique that is unique in applications involving composite organic...

  6. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    CERN Document Server

    Bergmann, Benedikt; Caicedo, Ivan; Kierstead, James; Takai, Helio; Frojdh, Erik

    2016-01-01

    In this study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated. The data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.

  7. Advanced Neutron Source (ANS) Project

    Science.gov (United States)

    Campbell, J. H.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  8. Measurement of neutron energy spectra and neutron dose rates from {sup 7}Li(p,n){sup 7}Be reaction induced on thin LiF target

    Energy Technology Data Exchange (ETDEWEB)

    Atanackovic, Jovica, E-mail: atanacjz@gmail.com [Ontario Power Generation, Whitby, ON, Canada L1N 9E3 (Canada); Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Canada K0J 1J0 (Canada); Matysiak, Witold [University of Florida Proton Therapy Institute, Jacksonville, FL 32206 (United States); Dubeau, Jacques; Witharana, Sampath [DETEC, Gatineau, QC, Canada J8T 4J1 (Canada); Waker, Anthony [University of Ontario Institute of Technology, Oshawa, ON, Canada L1H 7K4 (Canada)

    2015-02-21

    The measurements of neutron energy spectra and neutron dose rates were performed using the KN Van de Graaff accelerator, located at the McMaster University Accelerator Laboratory (MAL). Protons were accelerated on the thin lithium fluoride (LiF) target and produced mono-energetic neutrons which were measured using three different spectrometers: Bonner Sphere Spectrometer (BSS), Nested Neutron Spectrometer (NNS), and Rotational Proton Recoil Spectrometer (ROSPEC). The purpose of this work is (1) measurement and quantification of low energy accelerator neutron fields in terms of neutron fluence and dose, (2) comparison of results obtained by three different instruments, (3) comparison of measurements with Monte Carlo simulations based on theoretical neutron yields from {sup 7}Li(p,n){sup 7}Be nuclear reaction, and (4) comparison of results obtained using different neutron spectral unfolding methods. The nominal thickness of the LiF target used in the experiment was 50μg/cm{sup 2}, which corresponds to the linear thickness of 0.19μm and results in approximately 6 keV energy loss for the proton energies used in the experiment (2.2, 2.3, 2.4 and 2.5 MeV). For each of the proton energies, neutron fluence per incident proton charge was measured and several dosimetric quantities of interest in radiation protection were derived. In addition, theoretical neutron yield calculations together with the results of Monte Carlo (MCNP) modeling of the neutron spectra are reported. Consistent neutron fluence spectra were obtained with three detectors and good agreement was observed between theoretically calculated and measured neutron fluences and derived dosimetric quantities for investigated proton energies at 2.3, 2.4 and 2.5 MeV. In the case of 2.2 MeV, some plausibly explainable discrepancies were observed.

  9. Neutron Transmission through Sapphire Crystals

    DEFF Research Database (Denmark)

    Sapphire crystals are excellent filters of fast neutrons, while at the same time exhibit moderate to very little absorption at smaller energies. We have performed an extensive series of measurements in order to quantify the above effect. Alongside our experiments, we have performed a series...... of simulations, in order to reproduce the transmission of cold neutrons through sapphire crystals. Those simulations were part of the effort of validating and improving the newly developed interface between the Monte-Carlo neutron transport code MCNP and the Monte Carlo ray-tracing code McStas....

  10. Neutron scattering and hydrogen storage

    Directory of Open Access Journals (Sweden)

    A.J. Ramirez-Cuesta

    2009-11-01

    Full Text Available Hydrogen has been identified as a fuel of choice for providing clean energy for transport and other applications across the world and the development of materials to store hydrogen efficiently and safely is crucial to this endeavour. Hydrogen has the largest scattering interaction with neutrons of all the elements in the periodic table making neutron scattering ideal for studying hydrogen storage materials. Simultaneous characterisation of the structure and dynamics of these materials during hydrogen uptake is straightforward using neutron scattering techniques. These studies will help us to understand the fundamental properties of hydrogen storage in realistic conditions and hence design new hydrogen storage materials.

  11. A single-shot nanosecond neutron pulsed technique for the detection of fissile materials

    Science.gov (United States)

    Gribkov, V.; Miklaszewski, R. A.; Chernyshova, M.; Scholz, M.; Prokopovicz, R.; Tomaszewski, K.; Drozdowicz, K.; Wiacek, U.; Gabanska, B.; Dworak, D.; Pytel, K.; Zawadka, A.

    2012-07-01

    A novel technique with the potential of detecting hidden fissile materials is presented utilizing the interaction of a single powerful and nanosecond wide neutron pulse with matter. The experimental system is based on a Dense Plasma Focus (DPF) device as a neutron source generating pulses of almost mono-energetic 2.45 MeV and/or 14.0 MeV neutrons, a few nanoseconds in width. Fissile materials, consisting of heavy nuclei, are detected utilizing two signatures: firstly by measuring those secondary fission neutrons which are faster than the elastically scattered 2.45 MeV neutrons of the D-D reaction in the DPF; secondly by measuring the pulses of the slower secondary fission neutrons following the pulse of the fast 14 MeV neutrons from the D-T reaction. In both cases it is important to compare the measured spectrum of the fission neutrons induced by the 2.45 MeV or 14 MeV neutron pulse of the DPF with theoretical spectra obtained by mathematical simulation. Therefore, results of numerical modelling of the proposed system, using the MCNP5 and the FLUKA codes are presented and compared with experimental data.

  12. An accurate and portable solid state neutron rem meter

    Energy Technology Data Exchange (ETDEWEB)

    Oakes, T.M. [Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO (United States); Bellinger, S.L. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS (United States); Miller, W.H. [Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO (United States); Missouri University Research Reactor, Columbia, MO (United States); Myers, E.R. [Department of Physics, University of Missouri, Kansas City, MO (United States); Fronk, R.G.; Cooper, B.W [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS (United States); Sobering, T.J. [Electronics Design Laboratory, Kansas State University, KS (United States); Scott, P.R. [Department of Physics, University of Missouri, Kansas City, MO (United States); Ugorowski, P.; McGregor, D.S; Shultis, J.K. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS (United States); Caruso, A.N., E-mail: carusoan@umkc.edu [Department of Physics, University of Missouri, Kansas City, MO (United States)

    2013-08-11

    Accurately resolving the ambient neutron dose equivalent spanning the thermal to 15 MeV energy range with a single configuration and lightweight instrument is desirable. This paper presents the design of a portable, high intrinsic efficiency, and accurate neutron rem meter whose energy-dependent response is electronically adjusted to a chosen neutron dose equivalent standard. The instrument may be classified as a moderating type neutron spectrometer, based on an adaptation to the classical Bonner sphere and position sensitive long counter, which, simultaneously counts thermalized neutrons by high thermal efficiency solid state neutron detectors. The use of multiple detectors and moderator arranged along an axis of symmetry (e.g., long axis of a cylinder) with known neutron-slowing properties allows for the construction of a linear combination of responses that approximate the ambient neutron dose equivalent. Variations on the detector configuration are investigated via Monte Carlo N-Particle simulations to minimize the total instrument mass while maintaining acceptable response accuracy—a dose error less than 15% for bare {sup 252}Cf, bare AmBe, an epi-thermal and mixed monoenergetic sources is found at less than 4.5 kg moderator mass in all studied cases. A comparison of the energy dependent dose equivalent response and resultant energy dependent dose equivalent error of the present dosimeter to commercially-available portable rem meters and the prior art are presented. Finally, the present design is assessed by comparison of the simulated output resulting from applications of several known neutron sources and dose rates.

  13. Measurement of neutron dose with an organic liquid scintillator coupled with a spectrum weight function

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E.; Endo, A.; Yamaguchi, Y.; Yoshizawa, M.; Nakamura, T.; Shiomi, T

    2002-07-01

    A dose evaluation method for neutrons in the energy range of a few MeV to 100 MeV has been developed using a spectrum weight function (G-function), which is applied to an organic liquid scintillator of 12.7 cm in diameter and 12.7 cm in length. The G-function that converts the pulse height spectrum of the scintillator into the ambient dose equivalent, H*(10), was calculated by an unfolding method using successive approximation of the response function of the scintillator and the ambient dose equivalent per unit neutron fluence (H*(10) conversion coefficients) of ICRP 74. To verify the response function of the scintillator and the value of H*(10) evaluated by the G-function, pulse height spectra of the scintillator were measured in some different neutron fields, which have continuous energy, monoenergetic and quasi-monoenergetic spectra. Values of H*(10) estimated using the G-function and pulse height spectra of the scintillator were compared with those calculated using neutron energy spectra. These doses agreed with each other. From the results, it was concluded that H*(10) can be evaluated directly from the pulse height spectrum of the scintillator by applying the G-function proposed in this study. (author)

  14. High-energy response of the PRESCILA and WENDI-II neutron rem meters.

    Science.gov (United States)

    Olsher, Richard H; McLean, Thomas D

    2008-01-01

    WENDI-II was designed at the Los Alamos National Laboratory (LANL) specifically as a wide-range rem meter, suitable for applications at particle accelerators, with response extension to 5 GeV. PRESCILA was also designed at LANL, mainly as a lightweight alternative to traditional rem meters, but has shown excellent response characteristics above 20 MeV. This Note summarises measurements performed over a span of 4 y to characterise the high-energy neutron response (>20 MeV) of these meters to several hundred million electron volts. High-energy quasi-monoenergetic beams utilised as part of this study were produced by the cyclotron facilities at the Université Catholique de Louvain (33 and 60 MeV) and the T. Svedberg Laboratory ( 46, 95, 143 and 173 MeV). In addition, measurements were also conducted at the Los Alamos Neutron Science Center, 800 MeV spallation neutron source, in broad energy fields with an average energy of 345 MeV. For the sake of completeness, data collected between 2.5 and 19 MeV in monoenergetic neutron fields at the German Physikalisch-Technische Bundesanstalt (PTB) facility are also included in this study.

  15. Neutron transport in random media

    Energy Technology Data Exchange (ETDEWEB)

    Makai, M. [KFKI Atomic Energy Research Institute, Budapest (Hungary)

    1996-08-01

    The survey reviews the methods available in the literature which allow a discussion of corium recriticality after a severe accident and a characterization of the corium. It appears that to date no one has considered the eigenvalue problem, though for the source problem several approaches have been proposed. The mathematical formulation of a random medium may be approached in different ways. Based on the review of the literature, we can draw three basic conclusions. The problem of static, random perturbations has been solved. The static case is tractable by the Monte Carlo method. There is a specific time dependent case for which the average flux is given as a series expansion.

  16. Generation of quasi-monoenergetic protons from a double-species target driven by the radiation pressure of an ultraintense laser pulse

    Science.gov (United States)

    Pae, Ki Hong; Kim, Chul Min; Nam, Chang Hee

    2016-03-01

    In laser-driven proton acceleration, generation of quasi-monoenergetic proton beams has been considered a crucial feature of the radiation pressure acceleration (RPA) scheme, but the required difficult physical conditions have hampered its experimental realization. As a method to generate quasi-monoenergetic protons under experimentally viable conditions, we investigated using double-species targets of controlled composition ratio in order to make protons bunched in the phase space in the RPA scheme. From a modified optimum condition and three-dimensional particle-in-cell simulations, we showed by varying the ion composition ratio of proton and carbon that quasi-monoenergetic protons could be generated from ultrathin plane targets irradiated with a circularly polarized Gaussian laser pulse. The proposed scheme should facilitate the experimental realization of ultrashort quasi-monoenergetic proton beams for unique applications in high field science.

  17. Self-Injection and Acceleration of Monoenergetic Electron Beams from Laser Wakefield Accelerators in a Highly Relativistic Regime

    Institute of Scientific and Technical Information of China (English)

    H. Yoshitama; WEN Xian-Lun; WEN Tian-Shu; WU Yu-Chi; ZHANG Bao-San; ZHU Qi-Hua; HUANG Xiao-Jun; AN Wei-Min; HUNG Wen-Hui; TANG Chuan-Xiang; LIN Yu-Zheng; T. Kameshima; WANG Xiao-Dong; CHEN Li-Ming; H. Kotaki; M. Kando; K. Nakajima; GU Yu-Qiu; GUO Yi; JIAO Chun-Ye; LIU Hong-Jie; PENG Han-Sheng; TANG Chuan-Ming; WANG Xiao-Dong

    2008-01-01

    @@ Self-injection and acceleration of monoenergetic electron beams from laser wakefield accelerators are first in-vestigated in the highly relativistic regime, using 100 TW class, 27 fs laser pulses. Quasi-monoenergetic multi-bunched beams with energies as high as multi-hundredMeV are observed with simultaneous measurements of side-scattering emissions that indicate the formation of self-channelling and self-injection of electrons into a plasma wake, referred to as a 'bubble'. The three-dimensional particle-in-cell simulations confirmed multiple self-injection of electron bunches into the bubble and their beam acceleration with gradient of 1.5 GeV/cm.

  18. Numerical Study of Injection Mechanisms for Generation of Mono-Energetic Femtosecond Electron Bunch from the Plasma Cathode

    CERN Document Server

    Ohkubo, Takeru; Zhidkov, Alexei

    2005-01-01

    Acceleration gradients of up to the order of 100GV/m and mono-energetic electron bunch up to 200MeV have recently been observed in several plasma cathode experiments. However, mechanisms of self-injection in plasma are not sufficiently clarified, presently. In this study, we carried out 2D PIC simulation to reveal the mechanisms of mono-energetic femtosecond electron bunch generation. We found two remarkable conditions for the generation: electron density gradient at vacuum-plasma interface and channel formation in plasma. Steep electron density gradient (~ plasma wave length) causes rapid injection and produces an electron bunch with rather high charge and less than 100fs duration. The channel formation guides an injected laser pulse and decreases the threshold of laser self-focusing, which leads to high electric field necessary for wave-breaking injection.

  19. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams

    Directory of Open Access Journals (Sweden)

    Rahman WN

    2014-05-01

    Full Text Available Wan Nordiana Rahman,1,2 Stéphanie Corde,3,4 Naoto Yagi,5 Siti Aishah Abdul Aziz,1 Nathan Annabell,2 Moshi Geso21School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia; 2Division of Medical Radiation, School of Medical Sciences, Royal Melbourne Institute of Technology, Bundoora, VIC, 3Radiation Oncology, Prince of Wales Hospital, High Street, Randwick, 4Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia; 5Japanese Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, JapanAbstract: Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30–100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3

  20. Beta-Decay Study of ^{150}Er, ^{152}Yb, and ^{156}Yb: Candidates for a Monoenergetic Neutrino Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Estevez Aguado, M. E. [CSIC-Universidad de Valencia; Algora, A. [CSIC-Universidad de Valencia; Rubio, B. [CSIC-Universidad de Valencia; Bernabeu, J. [CSIC-Universidad de Valencia; Nacher, E. [CSIC-Universidad de Valencia; Tain, J. L. [CSIC-Universidad de Valencia; Gadea, A. [CSIC-Universidad de Valencia; Agramunt, J. [CSIC-Universidad de Valencia; Burkard, K. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Hueller, W. [GSI-Hemholtzzentrum fur Schwerionenforschung, Darmstadt, Germany; Doring, J. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Kirchner, R. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Mukha, I. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Plettner, C. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Roeckl, E. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Grawe, H. [GSI-Hemholtzzentrum fur Schwerionenforschung, Darmstadt, Germany; Collatz, R. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Hellstrom, M. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Cano-Ott, D. [CIEMAT, Madrid; Karny, M. [University of Warsaw; Janas, Z. [University of Warsaw; Gierlik, M. [University of Warsaw; Plochocki, A. [University of Warsaw; Rykaczewski, Krzysztof Piotr [ORNL; Batist, L. [Petersburg Nuclear Physics Institute, Gatchina, Russia; Moroz, F. [Petersburg Nuclear Physics Institute, Gatchina, Russia; Wittman, V. [Petersburg Nuclear Physics Institute, Gatchina, Russia; Blazhev, A. [University of Cologne; Valiente, J. J. [INFN, Laboratori Nazionali di Legnaro, Italy; Espinoza, C. [CFPT-IST, Lisbon

    2011-01-01

    The beta decays of ^{150}Er, ^{152}Yb, and ^{156}Yb nuclei are investigated using the total absorption spectroscopy technique. These nuclei can be considered possible candidates for forming the beam of a monoenergetic neutrino beam facility based on the electron capture (EC) decay of radioactive nuclei. Our measurements confirm that for the cases studied, the EC decay proceeds mainly to a single state in the daughter nucleus.

  1. Neutron capture and (n,2n) measurements on 241Am

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, D; Jandel, M; Bredeweg, T; Bond, E; Clement, R; Couture, A; Haight, R; O' Donnell, J; Reifarth, R; Ullmann, J; Wilhelmy, J; Wouters, J; Tonchev, A; Hutcheson, A; Angell, C; Crowell, A; Fallin, B; Hammond, S; Howell, C; Karowowski, H; Kelley, J; Pedroni, R; Tornow, W; Macri, R; Agvaanluvsan, U; Becker, J; Dashdorj, D; Stoyer, M; Wu, C

    2007-07-18

    We report on a set of neutron-induced reaction measurements on {sup 241}Am which are important for nuclear forensics and advanced nuclear reactor design. Neutron capture measurements have been performed on the DANCE detector array at the Los Alamos Neutron Scattering CEnter (LANSCE). In general, good agreement is found with the most recent data evaluations up to an incident neutron energy of {approx} 300 keV where background limits the measurement. Using mono-energetic neutrons produced in the {sup 2}H(d,n){sup 3}He reaction at Triangle University Nuclear Laboratory (TUNL), we have measured the {sup 241}Am(n,2n) excitation function from threshold (6.7 MeV) to 14.5 MeV using the activation method. Good agreement is found with previous measurements, with the exception of the three data points reported by Perdikakis et al. around 11 MeV, where we obtain a much lower cross section that is more consistent with theoretical estimates.

  2. Organ and effective dose conversion coefficients for a sitting female hybrid computational phantom exposed to monoenergetic protons in idealized irradiation geometries

    Science.gov (United States)

    Alves, M. C.; Santos, W. S.; Lee, Choonsik; Bolch, Wesley E.; Hunt, John G.; Carvalho Júnior, A. B.

    2014-12-01

    The conversion coefficients (CCs) relate protection quantities, mean absorbed dose (DT) and effective dose (E), with physical radiation field quantities, such as fluence (Φ). The calculation of CCs through Monte Carlo simulations is useful for estimating the dose in individuals exposed to radiation. The aim of this work was the calculation of conversion coefficients for absorbed and effective doses per fluence (DT/ Φ and E/Φ) using a sitting and standing female hybrid phantom (UFH/NCI) exposure to monoenergetic protons with energy ranging from 2 MeV to 10 GeV. The radiation transport code MCNPX was used to develop exposure scenarios implementing the female UFH/NCI phantom in sitting and standing postures. Whole-body irradiations were performed using the recommended irradiation geometries by ICRP publication 116 (AP, PA, RLAT, LLAT, ROT and ISO). In most organs, the conversion coefficients DT/Φ were similar for both postures. However, relative differences were significant for organs located in the abdominal region, such as ovaries, uterus and urinary bladder, especially in the AP, RLAT and LLAT geometries. Anatomical differences caused by changing the posture of the female UFH/NCI phantom led an attenuation of incident protons with energies below 150 MeV by the thigh of the phantom in the sitting posture, for the front-to-back irradiation, and by the arms and hands of the phantom in the standing posture, for the lateral irradiation.

  3. Calculations of Neutron and y Transport through Rare-earth Doped Polymer%中子、γ射线在稀土-高分子材料中的输运

    Institute of Scientific and Technical Information of China (English)

    呼延雪莹; 胡碧涛

    2011-01-01

    A series of shielding analyses have been performed to estimate the material composition and optimum thickness required for a new radiation shield with various rare-earth doped polymer and heavy metal mixtures.The neutron and y photon fluxes have been calculated by Monte Carlo N-Particle(MCNP) transport code.The results indicate that the relative fluxes of y photon and neutron in both traditional and new composite materials follow an exponential decay rule with the distance of penetration.It can be seen that the composite material consisting of rare-earth doped polymer and heavy metal has stronger neutron shielding performance than lead-boron polyethylene,but weaker y shielding effectiveness than W-Ni alloy.It isalso found that materials with more components of rare earth elements don't always provide better neutron shielding performance.%为研究新型复合屏蔽材料的最佳厚度与各种成分最佳配比,用MCNP计算了中子、γ射线在稀土-高分子与重金属复合材料中的通量.对中子、γ射线在屏蔽体中变化规律进行了深入探索,同传统复合屏蔽材料的屏蔽性能进行了对比.结果表明,中子和γ射线通过屏蔽体时,其强度遵循指数衰减规律.新型屏蔽材料对中子的屏蔽效果均优于铅硼聚乙烯,对γ射线的屏蔽效果均劣于W-Ni合金,且并非稀土含量越高,材料对中子辐射屏蔽能力越强.

  4. Monte-Carlo simulations of elastically backscattered neutrons from hidden explosives using three different neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    ElAgib, I. [College of Science, King Saud University, P.O. Box 2455 (Saudi Arabia)], E-mail: elagib@ksu.edu.sa; Elsheikh, N. [College of Applied and Industrial Science, University of Juba, Khartoum, P.O. Box 321 (Sudan); AlSewaidan, H. [College of Science, King Saud University, P.O. Box 2455 (Saudi Arabia); Habbani, F. [Faculty of Science, Physics Department, University of Khartoum, Khartoum, P.O. Box 321 (Sudan)

    2009-01-15

    Calculations of elastically backscattered (EBS) neutrons from hidden explosives buried in soil were performed using Monte-Carlo N-particle transport code MCNP5. Three different neutron sources were used in the study. The study re-examines the performance of the neutron backscattering methods in providing identification of hidden explosives through their chemical composition. The EBS neutron energy spectra of fast and slow neutrons of the major constituent elements in soil and an explosive material in form of TNT have shown definite structures that can be used for the identification of a buried landmine.

  5. Cyclotron-based neutron source for BNCT

    Science.gov (United States)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-01

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation & treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8×109 neutrons/cm2/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with 10B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  6. Cyclotron-based neutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  7. Z-dependence of thick-target bremsstrahlung produced by monoenergetic low-energy electrons

    Science.gov (United States)

    Czarnecki, S.; Short, A.; Williams, S.

    2016-07-01

    The dependence of thick-target bremsstrahlung emitted by low-energy beams of monoenergetic electrons on the atomic number of the target material has been investigated experimentally for incident electron energies of 4.25 keV and 5.00 keV using thick aluminum, copper, silver, tungsten, and gold targets. Experimental data suggest that the intensity of the thick-target bremsstrahlung emitted is more strongly dependent on the atomic number of the target material for photons with energies that are approximately equal to the energy of the incident electrons than at lower energies, and also that the dependence of thick-target bremsstrahlung on the atomic number of the target material is stronger for incident electrons of higher energies than for incident electrons of lower energies. The results of the experiments are compared to the results of simulations performed using the PENELOPE program (which is commonly used in medical physics) and to thin-target bremsstrahlung theory, as well. Comparisons suggest that the experimental dependence of thick-target bremsstrahlung on the atomic number of the target material may be slightly stronger than the results of the PENELOPE code suggest.

  8. Dark Matter Searches for Monoenergetic Neutrinos Arising from Stopped Meson Decay in the Sun

    CERN Document Server

    Rott, Carsten; Kumar, Jason; Yaylali, David

    2015-01-01

    Dark matter can be gravitationally captured by the Sun after scattering off solar nuclei. Annihilations of the dark matter trapped and accumulated in the centre of the Sun could result in one of the most detectable and recognizable signals for dark matter. Searches for high-energy neutrinos produced in the decay of annihilation products have yielded extremely competitive constraints on the spin-dependent scattering cross sections of dark matter with nuclei. Recently, the low energy neutrino signal arising from dark-matter annihilation to quarks which then hadronize and shower has been suggested as a competitive and complementary search strategy. These high-multiplicity hadronic showers give rise to a large amount of pions which will come to rest in the Sun and decay, leading to a unique sub-GeV neutrino signal. We here improve on previous works by considering the monoenergetic neutrino signal arising from both pion and kaon decay. We consider searches at liquid scintillation, liquid argon, and water Cherenkov...

  9. Exploring new features of neutrino oscillations with very low energy monoenergetic neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Vergados, J.D., E-mail: Vergados@cc.uoi.g [University of Ioannina, Ioannina, GR 45110 (Greece); Novikov, Yu.N. [Petersburg Nuclear Physics Institute, 188300, Gatchina (Russian Federation)

    2010-11-01

    In the present work we propose to study neutrino oscillations employing sources of monoenergetic neutrinos following electron capture by the nucleus. Since the neutrino energy is very low the smaller of the two oscillation lengths, L{sub 23}, appearing in this electronic neutrino disappearance experiment can be so small that the full oscillation can take place inside the detector and one may determine very accurately the neutrino oscillation parameters. Since in this case the oscillation probability is proportional to sin{sup 2}2{theta}{sub 13}, one can measure or set a better limit on the unknown parameter {theta}{sub 13}. This is quite important, since, if this mixing angle vanishes, there is not going to be CP violation in the leptonic sector. The best way to detect it is by measuring electron recoils in neutrino-electron scattering. One, however, has to pay the price that the expected counting rates are very small. Thus one needs a very intensive neutrino source and a large detector with as low as possible energy threshold and high energy and position resolution. Both spherical gaseous and cylindrical liquid detectors are studied. Different source candidates are considered.

  10. Vacancy-type defects induced by grinding of Si wafers studied by monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Yoshihara, Nakaaki [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Mizushima, Yoriko [Devices and Materials Labs Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Kim, Youngsuk [ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Disco Corporation, Ota, Tokyo 143-8580 (Japan); Nakamura, Tomoji [Devices and Materials Labs Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); Ohba, Takayuki [ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Oshima, Nagayasu; Suzuki, Ryoichi [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2014-10-07

    Vacancy-type defects introduced by the grinding of Czochralski-grown Si wafers were studied using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and the lifetime spectra of positrons showed that vacancy-type defects were introduced in the surface region (<98 nm), and the major defect species were identified as (i) relatively small vacancies incorporated in dislocations and (ii) large vacancy clusters. Annealing experiments showed that the defect concentration decreased with increasing annealing temperature in the range between 100 and 500°C. After 600–700°C annealing, the defect-rich region expanded up to about 170 nm, which was attributed to rearrangements of dislocation networks, and a resultant emission of point defects toward the inside of the sample. Above 800°C, the stability limit of those vacancies was reached and they started to disappear. After the vacancies were annealed out (900°C), oxygen-related defects were the major point defects and they were located at <25 nm.

  11. SEE Measurements and Simulations Using Mono-Energetic GeV-Energy Hadron Beams

    CERN Document Server

    Alia, Ruben Garcia; Brugger, Markus; Roed, Ketil; Uznanski, Slawosz; Wrobel, Frederic; Ferlet-Cavrois, Veronique; Danzeca, Salvatore; Saigne, Frederic; Spiezia, Giovanni

    2013-01-01

    Single Event Upset (SEU) measurements were performed on the ESA SEU Monitor using mono-energetic GeV-energy hadron beams available in the North Experimental Area at CERN. A 400 GeV proton beam in the H4IRRAD test area and a 120 GeV mixed pion and proton beam at the CERN-EU high Energy Reference Field facility (CERF) were used for this purpose. The resulting cross section values are presented and discussed as well as compared to the several hundred MeV case (typical for standard test facilities) from a physical interaction perspective with the intention of providing a more general understanding of the behavior. Moreover, the implications of the cross section dependence with energy above the several hundred MeV range are analyzed for different environments. In addition, analogous measurements are proposed for Single Event Latchup (SEL), motivated by discussed simulation results. Finally, a brief introduction of the future CHARM (CERN High-energy AcceleratoR Mixed facility) test installation is included.

  12. An angular multigrid method for computing mono-energetic particle beams in Flatland

    Science.gov (United States)

    Börgers, Christoph; MacLachlan, Scott

    2010-04-01

    Beams of microscopic particles penetrating scattering background matter play an important role in several applications. The parameter choices made here are motivated by the problem of electron-beam cancer therapy planning. Mathematically, a steady particle beam penetrating matter, or a configuration of several such beams, is modeled by a boundary value problem for a Boltzmann equation. Grid-based discretization of such a problem leads to a system of algebraic equations. This system is typically very large because of the large number of independent variables in the Boltzmann equation—six if no dimension-reducing assumptions other than time independence are made. If grid-based methods are to be practical for these problems, it is therefore necessary to develop very fast solvers for the discretized problems. For beams of mono-energetic particles interacting with a passive background, but not with each other, in two space dimensions, the first author proposed such a solver, based on angular domain decomposition, some time ago. Here, we propose and test an angular multigrid algorithm for the same model problem. Our numerical experiments show rapid, grid-independent convergence. For high-resolution calculations, our method is substantially more efficient than the angular domain decomposition method. In addition, unlike angular domain decomposition, the angular multigrid method works well even when the angular diffusion coefficient is fairly large.

  13. Overview of Mono-Energetic Gamma-Ray Sources and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hartemann, Fred; /LLNL, Livermore; Albert, Felicie; /LLNL, Livermore; Anderson, Scott; /LLNL, Livermore; Barty, Christopher; /LLNL, Livermore; Bayramian, Andy; /LLNL, Livermore; Chu, Tak Sum; /LLNL, Livermore; Cross, R.; /LLNL, Livermore; Ebbers, Chris; /LLNL, Livermore; Gibson, David; /LLNL, Livermore; Marsh, Roark; /LLNL, Livermore; McNabb, Dennis; /LLNL, Livermore; Messerly, Michael; /LLNL, Livermore; Shverdin, Miroslav; /LLNL, Livermore; Siders, Craig; /LLNL, Livermore; Jongewaard, Erik; /SLAC; Raubenheimer, Tor; /SLAC; Tantawi, Sami; /SLAC; Vlieks, Arnold; /SLAC; Semenov, Vladimir; /UC, Berkeley

    2012-06-25

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.

  14. N-V-related fluorescence of the monoenergetic high-energy electron-irradiated diamond nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Remes, Z. [Faculty of Biomedical Engineering, Czech Technical University, Kladno (Czech Republic); Czech Academy of Sciences, Praha (Czech Republic). Institute of Physics; Micova, J. [Faculty of Biomedical Engineering, Czech Technical University, Kladno (Czech Republic); Czech Academy of Sciences, Praha (Czech Republic). Institute of Physics; Institute of Chemistry, Slovak Academy of Sciences, Bratislava (Slovakia); Krist, P.; Chvatil, D. [Czech Academy of Sciences, Rez (Czech Republic). Department of Accelerators; Effenberg, R. [University of Chemistry and Technology, Prague (Czech Republic); Nesladek, M. [Hasselt University, Institute for Materials Research, Diepenbeek (Belgium); IMOMEC, IMEC, Diepenbeek (Belgium)

    2015-11-15

    Fluorescent diamond nanoparticles (FND) have recently been introduced as promising luminescent probes for bioimaging to compete with more commonly used fluorophores and quantum dots. In this work, we investigate the formation of NV color centers in diamond nanocrystallites using monoenergetic electrons. A large quantity (1.4 g) of FNDs has been irradiated in the cyclic relativistic electron accelerator (Microtron) with the surface charge up to 3C/cm{sup 2} using collimated accelerated electrons extracted with monochromatic energies 6-25 MeV. The nitrogen-vacancy (NV) color centers have been activated by the high temperature vacuum annealing followed by the oxidation and sonification to remove sp2 carbon from the surface and to form stable colloid solutions with the concentration 1 mg/ml and the electro-kinetic (zeta) potential about -35 mV. The steady state fluorescence spectra show that the fluorescence yield increases linearly with the surface charge irradiation. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Dark matter searches for monoenergetic neutrinos arising from stopped meson decay in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Rott, Carsten; In, Seongjin [Department of Physics, Sungkyunkwan University,Suwon, 440-746 (Korea, Republic of); Kumar, Jason [Department of Physics & Astronomy, University of Hawai’i,Honolulu, HI, 96822 (United States); Yaylali, David [Department of Physics, University of Arizona,Tucson, AZ, 85721 (United States); Department of Physics, University of Maryland,College Park, MD, 20742 (United States)

    2015-11-24

    Dark matter can be gravitationally captured by the Sun after scattering off solar nuclei. Annihilations of the dark matter trapped and accumulated in the centre of the Sun could result in one of the most detectable and recognizable signals for dark matter. Searches for high-energy neutrinos produced in the decay of annihilation products have yielded extremely competitive constraints on the spin-dependent scattering cross sections of dark matter with nuclei. Recently, the low energy neutrino signal arising from dark-matter annihilation to quarks which then hadronize and shower has been suggested as a competitive and complementary search strategy. These high-multiplicity hadronic showers give rise to a large amount of pions which will come to rest in the Sun and decay, leading to a unique sub-GeV neutrino signal. We here improve on previous works by considering the monoenergetic neutrino signal arising from both pion and kaon decay. We consider searches at liquid scintillation, liquid argon, and water Cherenkov detectors and find very competitive sensitivities for few-GeV dark matter masses.

  16. Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays.

    Science.gov (United States)

    Zygmanski, Piotr; Sajo, Erno

    2016-01-01

    We review radiation transport and clinical beam modelling for gold nanoparticle dose-enhanced radiotherapy using X-rays. We focus on the nanoscale radiation transport and its relation to macroscopic dosimetry for monoenergetic and clinical beams. Among other aspects, we discuss Monte Carlo and deterministic methods and their applications to predicting dose enhancement using various metrics.

  17. Fast neutron spectroscopy with tensioned metastable fluid detectors

    Science.gov (United States)

    Grimes, T. F.; Taleyarkhan, R. P.

    2016-09-01

    This paper describes research into development of a rapid-turnaround, neutron-spectroscopy capable (gamma-beta blind), high intrinsic efficiency sensor system utilizing the tensioned metastable fluid detector (TMFD) architecture. The inability of prevailing theoretical models (developed successfully for the classical bubble chamber) to adequately predict detection thresholds for tensioned metastable fluid conditions is described. Techniques are presented to overcome these inherent shortcomings, leading thereafter, to allow successful neutron spectroscopy using TMFDs - via the newly developed Single Atom Spectroscopy (SAS) approach. SAS also allows for a unique means for rapidly determining neutron energy thresholds with TMFDs. This is accomplished by simplifying the problem of determining Cavitation Detection Events (CDEs) arising from neutron interactions with one in which several recoiling atom species contribute to CDEs, to one in which only one dominant recoil atom need be considered. The chosen fluid is Heptane (C7H16) for which only recoiling C atoms contribute to CDEs. Using the SAS approach, the threshold curve for Heptane was derived using isotope neutron source data, and then validated against experiments with mono-energetic (2.45/14 MeV) neutrons from D-D and D-T accelerators. Thereafter the threshold curves were used to produce the response matrix for various geometries. The response matrices were in turn combined with experimental data to recover the continuous spectra of fission (Cf-252) and (α,n) Pu-Be isotopic neutron sources via an unfolding algorithm. A generalized algorithm is also presented for performing neutron spectroscopy using any other TMFD fluid that meets the SAS approach assumptions.

  18. Fast neutron spectroscopy with tensioned metastable fluid detectors

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, T.F.; Taleyarkhan, R.P., E-mail: rusi@purdue.edu

    2016-09-11

    This paper describes research into development of a rapid-turnaround, neutron-spectroscopy capable (gamma-beta blind), high intrinsic efficiency sensor system utilizing the tensioned metastable fluid detector (TMFD) architecture. The inability of prevailing theoretical models (developed successfully for the classical bubble chamber) to adequately predict detection thresholds for tensioned metastable fluid conditions is described. Techniques are presented to overcome these inherent shortcomings, leading thereafter, to allow successful neutron spectroscopy using TMFDs – via the newly developed Single Atom Spectroscopy (SAS) approach. SAS also allows for a unique means for rapidly determining neutron energy thresholds with TMFDs. This is accomplished by simplifying the problem of determining Cavitation Detection Events (CDEs) arising from neutron interactions with one in which several recoiling atom species contribute to CDEs, to one in which only one dominant recoil atom need be considered. The chosen fluid is Heptane (C{sub 7}H{sub 16}) for which only recoiling C atoms contribute to CDEs. Using the SAS approach, the threshold curve for Heptane was derived using isotope neutron source data, and then validated against experiments with mono-energetic (2.45/14 MeV) neutrons from D-D and D-T accelerators. Thereafter the threshold curves were used to produce the response matrix for various geometries. The response matrices were in turn combined with experimental data to recover the continuous spectra of fission (Cf-252) and (α,n) Pu–Be isotopic neutron sources via an unfolding algorithm. A generalized algorithm is also presented for performing neutron spectroscopy using any other TMFD fluid that meets the SAS approach assumptions.

  19. Neutron spectroscopy by thermalization light yield measurement in a composite heterogeneous scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Shi, T.; Nattress, J.; Mayer, Michael F.; Lin, M-W; Jovanovic, Igor

    2016-12-11

    An exothermic neutron capture reaction can be used to uniquely identify neutrons in particle detectors. With the use of a capture-gated coincidence technique, the sequence of scatter events that lead to neutron thermalization prior to the neutron capture can also be used to measure neutron energy. We report on the measurement of thermalization light yield via a time-of-flight technique in a polyvinyl toluene-based scintillator EJ-290 within a heterogeneous composite detector that also includes 6Li-doped glass scintillator. The thermalization light output exhibits a strong correlation with neutron energy because of the preference for near-complete energy deposition prior to the 6Li(n,t)4He neutron capture reaction. The nonproportionality of the light yield from nuclear recoils contributes to the observed broadening of the distribution of thermalization light output. The nonproportional dependence of the scintillation light output in the EJ-290 scintillator as a function of proton recoil energy has been characterized in the range of 0.3–14.1 MeV via the Birks parametrization through a combination of time-of-flight measurement and previously conducted measurements with Monoenergetic neutron sources.

  20. Low energy neutron propagation in MCNPX and GEANT4

    CERN Document Server

    Lemrani, R; Gerbier, G; Kudryavtsev, V A; Robinson, M; Spooner, N J C

    2006-01-01

    Simulations of neutron background from rock for underground experiments are presented. Neutron propagation through two types of rock, lead and hydrocarbon material is discussed. The results show a reasonably good agreement between GEANT4, MCNPX and GEANT3 in transporting low-energy neutrons.

  1. Tracking techniques for the method of characteristics applied to the neutron transport problem in multi-dimensional domains; Techniques de tracage pour la methode des caracteristiques appliquee a la resolution de l'equation du transport des neutrons en domaines multi-dimensionnels

    Energy Technology Data Exchange (ETDEWEB)

    Fevotte, F

    2008-10-15

    In the past years, the Method of Characteristics (MOC) has become a popular tool for the numerical solution of the neutron transport equation. Among its most interesting advantages are its good precision over computing time ratio, as well as its ability to accurately describe complicated geometries using non structured meshes. In order to reduce the need for computing resources in the method of characteristics, we propose in this dissertation two lines of improvement. The first axis of development is based on an analysis of the transverse integration technique in the method of characteristics. Various limitations have been discerned in this regard, which we intend to correct by proposing a new variant of the method of characteristics. Through a better treatment of material discontinuities in the geometry, our aim is to increase the accuracy of the transverse integration formula in order to decrease the computing resources without sacrificing the quality of the results. This method has been numerically tested in order to show its interest. Analysing the numerical results obtained with this new method also allows better understanding of the transverse integration approximations. Another improvement comes from the observation that industrial reactor cores exhibit very complex structures, but are often partly composed of a lattice of geometrically identical cells or assemblies. We propose a systematic method taking advantage of repetitions in the geometry to reduce the storage requirements for geometric data. Based on the group theory, this method can be employed for all lattice geometries. We present some numerical results showing the interest of the method in industrial contexts. (author)

  2. Neutron Repulsion

    CERN Document Server

    Manuel, Oliver K

    2011-01-01

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding...

  3. Determination of light output function and angle dependent correction for a stilbene crystal scintillation neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, W. E-mail: hansen@metrs1.mw.tu-dresden.de; Richter, D

    2002-01-01

    In addition to liquid NE213 scintillators also stilbene solid crystals are applied traditionally for fast neutron spectrometry. A proper evaluation of experimental data provides a precise determination of the nonlinear light output function for the given scintillator/photomultiplier combination, and for stilbene additionally an adequate correction of the anisotropy effect. Calibration experiments with monoenergetic neutrons (1.2, 2.5, 5.0, 13.95, 14.8, 19.0 MeV) and various neutron incidence angles were carried out at the accelerator facility of the PTB Braunschweig for two cylindrical scintillators (diameter 30 mm x 25 mm, diameter 10 mm x 10 mm). An improved analytic light output function as well as an adequate angle dependent correction function were derived.

  4. Neutron transmission benchmark problems for iron and concrete shields in low, intermediate and high energy proton accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hayashi, Katsumi [and others

    1996-09-01

    Benchmark problems were prepared for evaluating the calculation codes and the nuclear data for accelerator shielding design by the Accelerator Shielding Working Group of the Research Committee on Reactor Physics in JAERI. Four benchmark problems: transmission of quasi-monoenergetic neutrons generated by 43 MeV and 68 MeV protons through iron and concrete shields at TIARA of JAERI, neutron fluxes in and around an iron beam stop irradiated by 500 MeV protons at KEK, reaction rate distributions inside a thick concrete shield irradiated by 6.2 GeV protons at LBL, and neutron and hadron fluxes inside an iron beam stop irradiated by 24 GeV protons at CERN are compiled in this document. Calculational configurations and neutron reaction cross section data up to 500 MeV are provided. (author)

  5. Response function of single crystal synthetic diamond detectors to 1-4 MeV neutrons for spectroscopy of D plasmas

    Science.gov (United States)

    Rebai, M.; Giacomelli, L.; Milocco, A.; Nocente, M.; Rigamonti, D.; Tardocchi, M.; Camera, F.; Cazzaniga, C.; Chen, Z. J.; Du, T. F.; Fan, T. S.; Giaz, A.; Hu, Z. M.; Marchi, T.; Peng, X. Y.; Gorini, G.

    2016-11-01

    A Single-crystal Diamond (SD) detector prototype was installed at Joint European Torus (JET) in 2013 and the achieved results have shown its spectroscopic capability of measuring 2.5 MeV neutrons from deuterium plasmas. This paper presents measurements of the SD response function to monoenergetic neutrons, which is a key point for the development of a neutron spectrometer based on SDs and compares them with Monte Carlo simulations. The analysis procedure allows for a good reconstruction of the experimental results. The good pulse height energy resolution (equivalent FWHM of 80 keV at 2.5 MeV), gain stability, insensitivity to magnetic field, and compact size make SDs attractive as compact neutron spectrometers of high flux deuterium plasmas, such as for instance those needed for the ITER neutron camera.

  6. Relativistically Induced Transparency Acceleration (RITA) - laser-plasma accelerated quasi-monoenergetic GeV ion-beams with existing lasers?

    Science.gov (United States)

    Sahai, Aakash A.

    2013-10-01

    Laser-plasma ion accelerators have the potential to produce beams with unprecedented characteristics of ultra-short bunch lengths (100s of fs) and high bunch-charge (1010 particles) over acceleration length of about 100 microns. However, creating and controlling mono-energetic bunches while accelerating to high-energies has been a challenge. If high-energy mono-energetic beams can be demonstrated with minimal post-processing, laser (ω0)-plasma (ωpe) ion accelerators may be used in a wide-range of applications such as cancer hadron-therapy, medical isotope production, neutron generation, radiography and high-energy density science. Here we demonstrate using analysis and simulations that using relativistic intensity laser-pulses and heavy-ion (Mi ×me) targets doped with a proton (or light-ion) species (mp ×me) of trace density (at least an order of magnitude below the cold critical density) we can scale up the energy of quasi-mono-energetically accelerated proton (or light-ion) beams while controlling their energy, charge and energy spectrum. This is achieved by controlling the laser propagation into an overdense (ω0 <ωpeγ = 1) increasing plasma density gradient by incrementally inducing relativistic electron quiver and thereby rendering them transparent to the laser while the heavy-ions are immobile. Ions do not directly interact with ultra-short laser that is much shorter in duration than their characteristic time-scale (τp <<√{mp} /ω0 <<√{Mi} /ω0). For a rising laser intensity envelope, increasing relativistic quiver controls laser propagation beyond the cold critical density. For increasing plasma density (ωpe2 (x)), laser penetrates into higher density and is shielded, stopped and reflected where ωpe2 (x) / γ (x , t) =ω02 . In addition to the laser quivering the electrons, it also ponderomotively drives (Fp 1/γ∇za2) them forward longitudinally, creating a constriction of snowplowed e-s. The resulting longitudinal e--displacement from laser

  7. Monoenergetic source of kilodalton ions from Taylor cones of ionic liquids

    Science.gov (United States)

    Larriba, C.; Castro, S.; Fernandez de la Mora, J.; Lozano, P.

    2007-04-01

    The ionic liquid ion sources (ILISs) recently introduced by Lozano and Martinez Sanchez [J. Colloid Interface Sci. 282, 415 (2005)], based on electrochemically etched tungsten tips as emitters for Taylor cones of ionic liquids (ILs), have been tested with ionic liquids [A+B-] of increasing molecular weight and viscosity. These ILs have electrical conductivities well below 1S/m and were previously thought to be unsuitable to operate in the purely ionic regime because their Taylor cones produce mostly charged drops from conventional capillary tube sources. Strikingly, all the ILs tried on ILIS form charged beams composed exclusively of small ions and cluster ions A+(AB)n or B-(AB)n, with abundances generally peaking at n =1. Particularly interesting are the positive and negative ion beams produced from the room temperature molten salts 1-methyl-3-pentylimidazolium tris(pentafluoroethyl) trifluorophosphate (C5MI-(C2F5)3PF3) and 1-ethyl-3-methylimidazolium bis(pentafluoroethyl) sulfonylimide (EMI-(C2F5SO3)2N). We extend to these heavier species the previous conclusions from Lozano and Martinez Sanchez on the narrow energy distributions of the ion beams. In combination with suitable ILs, this source yields nanoamphere currents of positive and negative monoenergetic molecular ions with masses exceeding 2000amu. Potential applications are in biological secondary ion mass spectrometry, chemically assisted high-resolution ion beam etching, and electrical propulsion. Advantages of the ILISs versus similar liquid metal ion sources include the possibility to form negative as well as positive ion beams and a much wider range of ion compositions and molecular masses.

  8. Neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Heger, G. [Rheinisch-Westfaelische Technische Hochschule Aachen, Inst. fuer Kristallographie, Aachen (Germany)

    1996-12-31

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs.

  9. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  10. The measurement of neutron and neutron induced photon spectra in fusion reactor related assemblies

    CERN Document Server

    Unholzer, S; Klein, H; Seidel, K

    2002-01-01

    The spectral neutron and photon fluence (or flux) measured outside and inside of assemblies related to fusion reactor constructions are basic quantities of fusion neutronics. The comparison of measured spectra with the results of MCNP neutron and photon transport calculations allows a crucial test of evaluated nuclear data as generally used in fusion applications to be carried out. The experiments concern mixed neutron/photon fields with about the same intensity of the two components. An NE-213 scintillation spectrometer, well described by response matrices for both neutrons and photons, is used as proton-recoil and Compton spectrometer. The experiments described here in more detail address the background problematic of two applications, an iron benchmark experiment with an ns-pulsed neutron source and a deep penetration mock-up experiment for the investigation of the ITER in-board shield system. The measured spectral neutron and photon fluences are compared with spectra calculated with the MCNP code on the b...

  11. System of adjoint P1 equations for neutron moderation; Sistema de equacoes P1 adjuntas para a moderacao de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2000-07-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, this procedure is questioned and the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. (author)

  12. Principles and status of neutron-based inspection technologies

    Science.gov (United States)

    Gozani, Tsahi

    2011-06-01

    Nuclear based explosive inspection techniques can detect a wide range of substances of importance for a wide range of objectives. For national and international security it is mainly the detection of nuclear materials, explosives and narcotic threats. For Customs Services it is also cargo characterization for shipment control and customs duties. For the military and other law enforcement agencies it could be the detection and/or validation of the presence of explosive mines, improvised explosive devices (IED) and unexploded ordnances (UXO). The inspection is generally based on the nuclear interactions of the neutrons (or high energy photons) with the various nuclides present and the detection of resultant characteristic emissions. These can be discrete gamma lines resulting from the thermal neutron capture process (n,γ) or inelastic neutron scattering (n,n'γ) occurring with fast neutrons. The two types of reactions are generally complementary. The capture process provides energetic and highly penetrating gamma rays in most inorganic substances and in hydrogen, while fast neutron inelastic scattering provides relatively strong gamma-ray signatures in light elements such as carbon and oxygen. In some specific important cases unique signatures are provided by the neutron capture process in light elements such as nitrogen, where unusually high-energy gamma ray is produced. This forms the basis for key explosive detection techniques. In some cases the elastically scattered source (of mono-energetic) neutrons may provide information on the atomic weight of the scattering elements. The detection of nuclear materials, both fissionable (e.g., 238U) and fissile (e.g., 235U), are generally based on the fissions induced by the probing neutrons (or photons) and detecting one or more of the unique signatures of the fission process. These include prompt and delayed neutrons and gamma rays. These signatures are not discrete in energy (typically they are continua) but temporally

  13. Neutron noise computation using panda deterministic code

    Energy Technology Data Exchange (ETDEWEB)

    Humbert, Ph. [CEA Bruyeres le Chatel (France)

    2003-07-01

    PANDA is a general purpose discrete ordinates neutron transport code with deterministic and non deterministic applications. In this paper we consider the adaptation of PANDA to stochastic neutron counting problems. More specifically we consider the first two moments of the count number probability distribution. In a first part we will recall the equations for the single neutron and source induced count number moments with the corresponding expression for the excess of relative variance or Feynman function. In a second part we discuss the numerical solution of these inhomogeneous adjoint time dependent transport coupled equations with discrete ordinate methods. Finally, numerical applications are presented in the third part. (author)

  14. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Edward H. Seabury

    2008-08-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  15. The application of metal artifact reduction (MAR) in CT scans for radiation oncology by monoenergetic extrapolation with a DECT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Schwahofer, Andrea [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Clinical Center Vivantes, Neukoelln (Germany). Dept. of Radiotherapy and Oncology; Baer, Esther [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Kuchenbecker, Stefan; Kachelriess, Marc [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiology; Grossmann, J. Guenter [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Ortenau Klinikum Offenburg-Gengenbach (Germany). Dept. of Radiooncology; Sterzing, Florian [Heidelberg Univ. (Germany). Dept. of Radiation Oncology; German Cancer Research Center, Heidelberg (Germany). Dept. of Radiotherapy

    2015-07-01

    Metal artifacts in computed tomography CT images are one of the main problems in radiation oncology as they introduce uncertainties to target and organ at risk delineation as well as dose calculation. This study is devoted to metal artifact reduction (MAR) based on the monoenergetic extrapolation of a dual energy CT (DECT) dataset. In a phantom study the CT artifacts caused by metals with different densities: aluminum (ρ{sub Al} = 2.7 g/cm{sup 3}), titanium (ρ{sub Ti} = 4.5 g/cm{sup 3}), steel (ρ{sub steel} = 7.9 g/cm{sup 3}) and tungsten (ρ{sub W} = 19.3 g/cm{sup 3}) have been investigated. Data were collected using a clinical dual source dual energy CT (DECT) scanner (Siemens Sector Healthcare, Forchheim, Germany) with tube voltages of 100 kV and 140 kV (Sn). For each tube voltage the data set in a given volume was reconstructed. Based on these two data sets a voxel by voxel linear combination was performed to obtain the monoenergetic data sets. The results were evaluated regarding the optical properties of the images as well as the CT values (HU) and the dosimetric consequences in computed treatment plans. A data set without metal substitute served as the reference. Also, a head and neck patient with dental fillings (amalgam ρ = 10 g/cm{sup 3}) was scanned with a single energy CT (SECT) protocol and a DECT protocol. The monoenergetic extrapolation was performed as described above and evaluated in the same way. Visual assessment of all data shows minor reductions of artifacts in the images with aluminum and titanium at a monoenergy of 105 keV. As expected, the higher the densities the more distinctive are the artifacts. For metals with higher densities such as steel or tungsten, no artifact reduction has been achieved. Likewise in the CT values, no improvement by use of the monoenergetic extrapolation can be detected. The dose was evaluated at a point 7 cm behind the isocenter of a static field. Small improvements (around 1%) can be seen with 105 ke

  16. The application of metal artifact reduction (MAR) in CT scans for radiation oncology by monoenergetic extrapolation with a DECT scanner.

    Science.gov (United States)

    Schwahofer, Andrea; Bär, Esther; Kuchenbecker, Stefan; Grossmann, J Günter; Kachelrieß, Marc; Sterzing, Florian

    2015-12-01

    Metal artifacts in computed tomography CT images are one of the main problems in radiation oncology as they introduce uncertainties to target and organ at risk delineation as well as dose calculation. This study is devoted to metal artifact reduction (MAR) based on the monoenergetic extrapolation of a dual energy CT (DECT) dataset. In a phantom study the CT artifacts caused by metals with different densities: aluminum (ρ Al=2.7 g/cm(3)), titanium (ρ Ti=4.5 g/cm(3)), steel (ρ steel=7.9 g/cm(3)) and tungsten (ρ W=19.3g/cm(3)) have been investigated. Data were collected using a clinical dual source dual energy CT (DECT) scanner (Siemens Sector Healthcare, Forchheim, Germany) with tube voltages of 100 kV and 140 kV(Sn). For each tube voltage the data set in a given volume was reconstructed. Based on these two data sets a voxel by voxel linear combination was performed to obtain the monoenergetic data sets. The results were evaluated regarding the optical properties of the images as well as the CT values (HU) and the dosimetric consequences in computed treatment plans. A data set without metal substitute served as the reference. Also, a head and neck patient with dental fillings (amalgam ρ=10 g/cm(3)) was scanned with a single energy CT (SECT) protocol and a DECT protocol. The monoenergetic extrapolation was performed as described above and evaluated in the same way. Visual assessment of all data shows minor reductions of artifacts in the images with aluminum and titanium at a monoenergy of 105 keV. As expected, the higher the densities the more distinctive are the artifacts. For metals with higher densities such as steel or tungsten, no artifact reduction has been achieved. Likewise in the CT values, no improvement by use of the monoenergetic extrapolation can be detected. The dose was evaluated at a point 7 cm behind the isocenter of a static field. Small improvements (around 1%) can be seen with 105 keV. However, the dose uncertainty remains of the order of 10

  17. Calibration of a neutron detector based on single event upset of SRAM memories

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, C., E-mail: carles.domingo@uab.ca [Departament de Fisica, Univ. Autonoma de Barcelona, E-08193 Bellaterra (Spain); Gomez, F. [Dpto. de Particulas, Univ. de Santiago, 15782 Santiago de Compostela (Spain); Sanchez-Doblado, F. [Dpto. de Fisiologia Medica y Biofisica, Univ. de Sevilla, 41009 Sevilla (Spain); Servicio de Radiofisica, Hospital Univ. Virgen Macarena, 41009 Sevilla (Spain); Hartmann, G.H. [DKFZ E0400, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Amgarou, K.; Garcia-Fuste, M.J. [Departament de Fisica, Univ. Autonoma de Barcelona, E-08193 Bellaterra (Spain); Romero, M.T. [Dpto. de Fisiologia Medica y Biofisica, Univ. de Sevilla, 41009 Sevilla (Spain); Boettger, R.; Nolte, R.; Wissmann, F.; Zimbal, A.; Schuhmacher, H. [PTB, Bundesallee 100, 38116 Braunschweig (Germany)

    2010-12-15

    One of the challenges of measuring neutron fluences around medical linacs is the fact that the scattered photon fluence is important and higher than the surrounding neutron leakage fluence. Additionally most electron accelerators are pulsed, with repetition rates of the order of hundreds of Hertz, while the pulse duration is in the microsecond range. For this reason, neutron fluence around RT linacs is usually measured through passive methods, with the inconvenience of their time consuming analysis. A new neutron detector, based on the relation between Single Event Upsets (SEU) in digital SRAM memories and the existing thermal neutron fluence, has been developed. This work reports the calibration results of prototypes of this detector, obtained from exposures to the Physikalisch-Technische Bundesanstalt in Braunschweig (PTB) moderated {sup 252}Cf source, to PTB quasi-monoenergetic neutron beams of 0.565 MeV, 1.2 MeV, 5 MeV, 8 MeV and 14.8 MeV, and to the GKSS thermal neutron beam.

  18. Measurement of the differential neutron-deuteron scattering cross section in the energy range from 100 keV to 600 keV using a proportional counter

    CERN Document Server

    Nolte, R; Plompen, A; Röttger, S

    2014-01-01

    The angular distribution of neutron-deuteron scattering was investigated using the proportional counter P2 simultaneously as scattering target and detector for the recoil deuterons. The measurements were carried out using monoenergetic neutrons in the energy range from 150 keV to 500 keV. Various techniques were employed to reduce distortions of the experimental pulse-height distribution by photon-induced events. The experimental data were compared with realistic simulations which were carried out using different evaluated data sets. This comparison allows to conclude on inconsistencies in the evaluations.

  19. Evaluation of monoenergetic late iodine enhancement dual-energy computed tomography for imaging of chronic myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Wichmann, Julian L.; Kerl, J.M.; Frellesen, Claudia; Bodelle, Boris; Lehnert, Thomas; Vogl, Thomas J.; Bauer, Ralf W. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Arbaciauskaite, Ruta [Lithuanian University of Health Sciences, Department of Cardiology, Kaunas (Lithuania); Monsefi, Nadejda [University Hospital Frankfurt, Department of Thoracic and Cardiovascular Surgery, Frankfurt (Germany)

    2014-06-15

    To evaluate image quality and diagnostic accuracy of selective monoenergetic reconstructions of late iodine enhancement (LIE) dual-energy computed tomography (DECT) for imaging of chronic myocardial infarction (CMI). Twenty patients with a history of coronary bypass surgery underwent cardiac LIE-DECT and late gadolinium enhancement (LGE) magnetic resonance imaging (MRI). LIE-DECT images were reconstructed as selective monoenergetic spectral images with photon energies of 40, 60, 80, and 100 keV and the standard linear blending setting (M{sub 0}.6). Images were assessed for late enhancement, transmural extent, signal characteristics and subjective image quality. Seventy-nine myocardial segments (23 %) showed LGE. LIE-DECT detected 76 lesions. Images obtained at 80 keV and M{sub 0}.6 showed a high signal-to-noise ratio (15.9; 15.1), contrast-to-noise ratio (4.2; 4.0) and sensitivity (94.9 %; 92.4 %) while specificity was identical (99.6 %). Differences between these series were not statistically significant. Transmural extent of LIE was overestimated in both series (80 keV: 40 %; M{sub 0}.6: 35 %) in comparison to MRI. However, observers preferred 80 keV in 13/20 cases (65 %, κ = 0.634) over M{sub 0}.6 (4/20 cases) regarding subjective image quality. Post-processing of LIE-DECT data with selective monoenergetic reconstructions at 80 keV significantly improves subjective image quality while objective image quality shows no significant difference compared to standard linear blending. (orig.)

  20. Neutron tomography

    Science.gov (United States)

    Crump, James C., III; Richards, Wade J.; Shields, Kevin C.

    1995-07-01

    The McClellan Nuclear Radiation Center's (MNRC) staff in conjunction with a Cooperative Research and Development Agreement (CRDA) with the U.C. Santa Barbara facility has developed a system that can be used for aircraft inspection of jet engine blades. The problem was to develop an inspection system that can detect very low concentrations of hydrogen (i.e., greater than 100 ppm) in metal matricies. Specifically in Titanium alloy jet engine blades. Entrapment and precipitation of hydrogen in metals is an undesirable phenomenon which occurs in many alloys of steel and titanium. In general, metals suffer a loss of mechanical properties after long exposures to hydrogen, especially at high temperatures and pressures, thereby becoming embrittled. Neutron radiography has been used as a nondestructive testing technique for many years. Neutrons, because of their unique interactions with materials, are especially useful in the detection of hydrogen. They have an extremely high interaction cross section for low atomic number nuclei (i.e., hydrogen). Thus hydrogen in a metal matrix can be visualized using neutrons. Traditional radiography is sensitive to the total attenuation integrated over the path of radiation through the material. Increased sensitivity and quantitative cross section resolution can be obtained using three-dimensional volumetric imaging techniques such as tomography. The solution used to solve the problem was to develop a neutron tomography system. The neutron source is the McClellan Nuclear Radiation Center's 1 MW TRIGA reactor. This paper describes the hardware used in the system as well as some of the preliminary results.

  1. Directional Searches at DUNE for Sub-GeV Monoenergetic Neutrinos Arising from Dark Matter Annihilation in the Sun

    CERN Document Server

    Rott, Carsten; Kumar, Jason; Yaylali, David

    2016-01-01

    We consider the use of directionality in the search for monoenergetic sub-GeV neutrinos arising from the decay of stopped kaons, which can be produced by dark matter annihilation in the core of the Sun. When these neutrinos undergo charged-current interactions with a nucleus at a neutrino detector, they often eject a proton which is highly peaked in the forward direction. The direction of this track can be measured at DUNE, allowing one to distinguish signal from background by comparing on-source and off-source event rates. We find that directional information can enhance the signal to background ratio by up to a factor of 5.

  2. Directional searches at DUNE for sub-GeV monoenergetic neutrinos arising from dark matter annihilation in the Sun

    Science.gov (United States)

    Rott, Carsten; In, Seongjin; Kumar, Jason; Yaylali, David

    2017-01-01

    We consider the use of directionality in the search for monoenergetic sub-GeV neutrinos arising from the decay of stopped kaons, which can be produced by dark matter annihilation in the core of the Sun. When these neutrinos undergo charged-current interactions with a nucleus at a neutrino detector, they often eject a proton which is highly peaked in the forward direction. The direction of this track can be measured at DUNE, allowing one to distinguish signal from background by comparing on-source and off-source event rates. We find that directional information can enhance the signal to background ratio by up to a factor of 5.

  3. Neutron Exposures in Human Cells: Bystander Effect and Relative Biological Effectiveness

    Science.gov (United States)

    Seth, Isheeta; Schwartz, Jeffrey L.; Stewart, Robert D.; Emery, Robert; Joiner, Michael C.; Tucker, James D.

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (pbystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0±0.13 for micronuclei and 5.8±2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety. PMID:24896095

  4. Neutron exposures in human cells: bystander effect and relative biological effectiveness.

    Science.gov (United States)

    Seth, Isheeta; Schwartz, Jeffrey L; Stewart, Robert D; Emery, Robert; Joiner, Michael C; Tucker, James D

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (pbystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0 ± 0.13 for micronuclei and 5.8 ± 2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety.

  5. Optimizing window settings for improved presentation of virtual monoenergetic images in dual-energy computed tomography.

    Science.gov (United States)

    Fu, Wanyi; Marin, Daniele; Ramirez-Giraldo, Juan Carlos; Choudhury, Kingshuk Roy; Solomon, Justin; Schabel, Christoph; Patel, Bhavik N; Samei, Ehsan

    2017-08-04

    Dual-energy computed tomography virtual monoenergetic imaging (VMI) at 40 keV exhibits superior contrast-to-noise ratio (CNR), although practicing radiologists do not consistently prefer it over VMI at 70 keV due to high perceivable noise. We hypothesize that the presentation of 40 keV VMI may be compromised using window settings (i.e., window-and-level values [W-L values]) designed for conventional single-energy CT. This study aimed to devise optimum window settings that reduce the apparent noise and utilize the high CNR of 40 keV VMI, in order to improve the conspicuity of hypervascular liver lesions. Three W-L value adjustment methods were investigated to alter the presentation of 40 keV VMI. To harness the high CNR of 40 keV VMI, the methods were designed to achieve (a) liver histogram distribution, (b) lesion-to-liver contrast, or (c) liver background noise comparable to those perceived in 70 keV VMI. This IRB-approved study included 18 patient abdominal datasets reconstructed at 40 and 70 keV. For each patient, the W-L values were determined using the three methods. For each of the images with default or adjusted W-L values, the noise, contrast, and CNR were calculated in terms of both display space and native CT number (referred to as HU) space. An observer study was performed to compare the 40 keV images with the three adjusted W-L values, and 40 and 70 keV images with default W-L values in terms of noise, contrast, and diagnostic preference. A comparison was also made in terms of the applicability of using patient-specific or patient-averaged W-L values. Using the default W-L values, 40 keV VMI exhibited higher HU CNR than 70 keV VMI by 24.6 ± 14.9% (P VMI dataset image quality by improving the actual display CNR. © 2017 American Association of Physicists in Medicine.

  6. Assessment of Impact of Monoenergetic Photon Sources on Prioritized Nonproliferation Applications: Simulation Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, Cameron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ludewigt, Bernhard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Valentine, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quiter, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Descalle, Marie-Anne [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Warren, Glen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kinlaw, Matt [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chichester, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, Cameron [Univ. of Michigan, Ann Arbor, MI (United States); Pozzi, Sara [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-12-30

    Near-monoenergetic photon sources (MPSs) have the potential to improve sensitivity at greatly reduced dose in existing applications and enable new capabilities in other applications. MPS advantages include the ability to select energy, energy spread, flux, and pulse structures to deliver only the photons needed for the application, while suppressing extraneous dose and background. Some MPSs also offer narrow divergence photon beams which can target dose and/or mitigate scattering contributions to image contrast degradation. Current broad-band, bremsstrahlung photon sources (e.g., linacs and betatrons) deliver unnecessary dose that in some cases also interferes with the signature to be detected and/or restricts operations, and must be collimated (reducing flux) to generate narrow divergence beams. While MPSs can in principle resolve these issues, they are technically challenging to produce. Candidate MPS technologies for nonproliferation applications are now being developed, each of which have different properties (e.g. broad divergence vs. narrow). Within each technology, source parameters trade off against one another (e.g. flux vs. energy spread), representing a large operation space. To guide development, requirements for each application of interest must be defined and simulations conducted to define MPS parameters that deliver benefit relative to current systems. The present project conducted a broad assessment of potential nonproliferation applications where MPSs may provide new capabilities or significant performance enhancement (reported separately), which led to prioritization of several applications for detailed analysis. The applications prioritized were: cargo screening and interdiction of Special Nuclear Materials (SNM), detection of hidden SNM, treaty/dismantlement verification, and spent fuel dry storage cask content verification. High resolution imaging for stockpile stewardship was considered as a sub-area of the treaty topic, as it is also of

  7. Au, Bi, Co and Nb cross-section measured by quasimonoenergetic neutrons from p + {sup 7}Li reaction in the energy range of 18–36 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Majerle, M., E-mail: majerle@ujf.cas.cz; Bém, P.; Novák, J.; Šimečková, E.; Štefánik, M.

    2016-09-15

    Au, Bi, Co and Nb samples were irradiated several times with quasi-monoenergetic neutrons from p + {sup 7}Li reaction in the energy range of 18–36 MeV. The activities of the samples were measured with the HPGe detector and the reaction rates were calculated. The cross-sections were extracted using the SAND-II method with the reference cross-sections from the EAF-2010 database. The uncertainties of the final results are discussed.

  8. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    to hundreds of nanometers. Thickness resolution for flat surfaces is in the range of few Ǻngstrøm, and as a peculiar benefit, the presence and properties of buried interfaces are accessible. Focus here will be on neutron reflectometry, a technique that is unique in applications involving composite organic...... of desired information. In the course, an introduction into the method and an overview on selected instruments at large scale facilities will be presented. Examples will be given that illustrate the potential of the method, mostly based on organic films. Results from the investigation of layered films...... and the detection on nanoscopic roughnesses will be shown. The potential of neutron reflectometry is not only of academic origin. It may turn out to be useful in the design and development of new functional materials even though it will never develop into a standard method to be applied in the product control...

  9. SIXTH ERDA WORKSHOP ON PERSONNEL NEUTRON DOSIMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Vallario, E. J.; Hankins, D. E.; Bramson, P. E.

    1977-07-11

    earlier work had indicated. Initial work with an experimental Harshaw CaF:thulium TLD shows some promise. This TLD exhibits a double-humped glow peak (150°C and 240°C), which may permit separation of neutron and gamma components from a single TLD chip. There was a plea for uniformity in neutron-to-dose conversion factors. A typical example of 120% differences between commonly used factors was cited. Perhaps it i s time for a new look at the problem by an international standards-setting group. Measurement of neutron spectra around facilities would be easier with a good, portable multichannel analyzer. Dr. Harry Ing may have one. It has 64 channels in a 6 - in. x 8 - in. x 2 1/2-in. package (including the display) and is battery powered. A new intermediate energy neutron source is available at Berkeley Nuclear Laboratories (UK). An SbBe source in a water-filled boron ball was reported to produce a neutron spectrum centered around 1/2 keV. Additional efforts of this type coupled with the "monoenergetic" sources available at the National Bureau of Standards will permit significant improvement in neutron dosimeter calibrations.

  10. Measurement of accelerator neutron radiation field spectrum by Extended Range Neutron Multisphere Spectrometers and unfolding program

    CERN Document Server

    Li, Guanjia; Ma, Zhongjian; Guo, Siming; Yan, Mingyang; Shi, Haoyu; Xu, Chao

    2015-01-01

    This paper described a measurement of accelerator neutron radiation field at a transport beam line of Beijing-TBF. The experiment place was be selected around a Faraday Cup with a graphite target impacted by electron beam at 2.5GeV. First of all, we simulated the neutron radiation experiment by FLUKA. Secondly, we chose six appropriate ERNMS according to their neutron fluence response function to measure the neutron count rate. Then the U_M_G package program was be utilized to unfolding experiment data. Finally, we drew a comparison between the unfolding with the simulation spectrum and made an analysis about the result.

  11. A Monte Carlo study of monoenergetic and polyenergetic normalized glandular dose (DgN) coefficients in mammography

    Science.gov (United States)

    Sarno, Antonio; Mettivier, Giovanni; Di Lillo, Francesca; Russo, Paolo

    2017-01-01

    We investigated the influence of model assumptions in GEANT4 Monte Carlo (MC) simulations for the calculation of monoenergetic and polyenergetic normalized glandular dose coefficients (DgN) in mammography, focussing on the effect of the skin thickness and composition, of the role of compression paddles and of the bremsstrahlung processes. We showed that selecting a skin thickness of 4 mm instead of 1.45 mm produced DgN values with deviations from 9% to 32% for x-ray spectra routinely adopted in mammography. Consideration of the bremsstrahlung radiation had a weak influence on monoenergetic DgN. Simulations (in the range 8-40 kVp) which included consideration of bremsstrahlung radiation, a skin thickness of 1.45 mm and a 2 mm thick compression paddles produced polyenergetic DgN coefficients up to 19% higher than corresponding literature data. Adding a 2 mm thick adipose layer between the skin layer and the radiosensitive portion of the breast produces polyenergetic DgN values up to 15% higher than those routinely adopted. These findings provide a quantitative estimate of the influence of model parameters on the calculation of the mean glandular dose in mammography.

  12. Cooling neutrons using non-dispersive magnetic excitations

    CERN Document Server

    Zimmer, Oliver

    2014-01-01

    A new method is proposed for cooling neutrons by inelastic magnetic scattering in weakly absorbing, cold paramagnetic systems. Kinetic neutron energy is removed in constant decrements determined by the Zeeman energy of paramagnetic atoms or ions in an external magnetic field, or by zero-field level splittings in magnetic molecules. Analytical solutions of the stationary neutron transport equation are given using inelastic neutron scattering cross sections derived in an appendix. They neglect any inelastic process except the paramagnetic scattering and hence still underestimate very-cold neutron densities. Molecular oxygen with its triplet ground state appears particularly promising, notably as a host in fully deuterated oxygen-clathrate hydrate, or more exotically, in dry oxygen-He4 van der Waals clusters. At a neutron temperature about 6 K, for which neutron conversion to ultra-cold neutrons by single-phonon emission in pure superfluid He4 works best, conversion rates due to paramagnetic scattering in the cl...

  13. Neutron shielding performance of water-extended polyester

    Energy Technology Data Exchange (ETDEWEB)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M. [Zacatecas Univ. Autonoma, Nuclear Studies (Mexico); Vega Carrillo, H.R.; Hernandez-Davila, V.M. [Zacatecas Univ. Autonoma, Electric Engineering Academic Units (Mexico); Gallego, E.; Lorente, A. [Madrid Univ. Politecnica, cNuclear Engineering Department (Mexico)

    2006-07-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester (WEP) was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (MCNP code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a {sup 252}Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  14. Characterizing ICF Neutron Scintillation Diagnostics on the nTOF line at SUNY Geneseo

    Science.gov (United States)

    Lawson-Keister, Pat; Padawar-Curry, Jonah; Visca, Hannah; Fletcher, Kurt; Padalino, Stephen; Sangster, T. Craig; Regan, Sean

    2015-11-01

    Neutron scintillator diagnostics for ICF and HEDP can be characterized using the neutron time-of-flight (nTOF) line on Geneseo's 1.7 MV tandem Pelletron accelerator. Neutron signals can be differentiated from gamma signals by employing coincidence methods. A 1.8-MeV beam of deuterons incident on a deuterated polyethylene target produces neutrons via the 2H(d,n)3He reaction. Neutrons emerging at a lab angle of 88° have an energy of 2.96 MeV; the 3He ions associated with these neutrons are detected at a scattering angle of 43° using a surface barrier detector. The time of flight of the neutron can be measured by using the 3He detection as a ``start'' signal and the scintillation detection as a ``stop'' signal. This time of flight requirement is used to identify the 2.96-MeV neutron signals in the scintillator. To measure the light curve produced by these monoenergetic neutrons, two photomultiplier (PMT) tubes are attached to the scintillator. The full aperture PMT establishes the nTOF coincidence. The other PMT is fitted with a pinhole to collect single events. The time between the full aperture PMT signal and the arrival of the signal in the pinhole PMT is used to determine the light curve for the scintillator. This system will enable the neutron response of various scintillators to be compared. Supported in part by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  15. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  16. Coupling calculation of CFD-ACE computational fluid dynamics code and DeCART whole-core neutron transport code for development of numerical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Hwan; Seo, Kyong Won; Chun, Tae Hyun; Kim, Kang Seog

    2005-03-15

    Code coupling activities have so far focused on coupling the neutronics modules with the CFD module. An interface module for the CFD-ACE/DeCART coupling was established as an alternative to the original STAR-CD/DeCART interface. The interface module for DeCART/CFD-ACE was validated by single-pin model. The optimized CFD mesh was decided through the calculation of multi-pin model. It was important to consider turbulent mixing of subchannels for calculation of fuel temperature. For the parallel calculation, the optimized decompose process was necessary to reduce the calculation costs and setting of the iteration and convergence criterion for each code was important, too.

  17. Design of a new IRSN thermal neutron field facility using Monte-Carlo simulations.

    Science.gov (United States)

    Lacoste, V

    2007-01-01

    The Institute for Radiological Protection and Nuclear Safety owns a graphite-moderated AmBe neutron field facility, SIGMA, that has to be reconstructed. Monte-Carlo simulations were performed to study the design of a new thermal facility based on IRSN existing facilities. Studies related to an update version of SIGMA concerned the enhancement of the thermal neutrons contribution to the dose equivalent. Calculations were mainly performed for a (252)Cf neutron source distribution located at the centre of a graphite moderator block. A quasi-pure thermal neutron field was obtained with a 2.4 x 2.4 x 2.4-m(3) block of graphite. A second acceptable neutron field was obtained with 3.3-MeV mono-energetic neutrons created by a 400-kV accelerator coupled to a graphite assembly of 1.5 x 1.5 x 1.5 m(3). The characteristics of the studied thermal fields with the requirement for a reference calibration field are compared, and the advantages and drawbacks of the different producing methods are discussed.

  18. Numerical and experimental results of the operational neutron dosemeter 'Saphydose-N'.

    Science.gov (United States)

    Lahaye, T; Chau, Q; Ménard, S; Ndontchueng-Moyo, M; Bolognese-Milsztajn, T; Rannou, A

    2004-01-01

    Since 1993, the Institute for Radiological Protection and Nuclear Safety (IRSN) has lead, in association with Electricité de France (EDF), a R&D study of a neutron personal electronic dosemeter. This dosemeter, called 'Saphydose-N', is manufactured by the SAPHYMO company. This paper presents first the optimisation of some detector components using Monte Carlo calculations, and second the test of the manufactured Saphydose-N under radiation following the IEC 1323 standard's recommendations for active personal neutron dosemeters. The measurements with the manufactured dosemeter were performed on the one hand at PTB (Physikalisch-Technische Bundesanstalt) in mono-energetic neutron fields and, on the other hand at IRSN in neutron fields generated by a thermal facility (SIGMA), radionuclide ISO sources and a realistic spectrum (CANEL/T400). The manufactured dosemeter Saphydose-N was also tested during measurement campaigns of the European programme EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields') at different nuclear workplaces. The study showed that Saphydose-N complies with the recommendations of standard IEC 1323 and can be used at any workplace with no previous knowledge of the neutron field characteristics.

  19. Understanding inelastically scattered neutrons from water on a time-of-flight small-angle neutron scattering (SANS) instrument

    CERN Document Server

    Doa, Changwoo; Stanley, Christopher; Gallmeier, Franz X; Doucet, Mathieu; Smith, Gregory S

    2013-01-01

    It is generally assumed by most of the small-angle neutron scattering (SANS) user community that a neutrons energy is unchanged during SANS measurements. Here, the scattering from water, specifically light water, was measured on the EQ-SANS instrument, a time-of-flight SANS instrument located at the Spallation Neutron Source of Oak Ridge National Laboratory. A significant inelastic process was observed in the TOF spectra of neutrons scattered from water. Analysis of the TOF spectra from the sample showed that the scattered neutrons have energies consistent with room-temperature thermal energies (~20 meV) regardless of the incident neutron energy. With the aid of Monte Carlo particle transport simulations, we conclude that the thermalization process within the sample results in faster neutrons that arrive at the detector earlier than expected based on the incident neutron energies. This thermalization process impacts the measured SANS intensities in a manner that will ultimately be sample- and temperature-depe...

  20. Measurements of the neutron brightness from a phase II solid methane moderator at the LENS neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Shin Yunchang, E-mail: yunchang.shin@yale.ed [Department of Physics, Indiana University Bloomington, IN 47408 (United States); Department of Physics, Yale University, New Haven, CT 06511 (United States); Lavelle, C.M.; Mike Snow, W.; Baxter, David V.; Tong Xin; Yan Haiyang [Department of Physics, Indiana University Bloomington, IN 47408 (United States); Leuschner, Mark [ProCure 420 North Walnut Street Bloomington, IN 47404 (United States)

    2010-08-21

    Measurements of the neutron brightness from a solid methane moderator were performed at the Low Energy Neutron Source (LENS) at the Indiana University Cyclotron Facility (IUCF) to characterize the source and to test our new neutron scattering model of phase II solid methane . A time-of-flight method was used to measure the neutron energy spectrum from the moderator in the energy range of 0.1 meV {approx}1eV. Neutrons were counted with a high efficiency {sup 3}He detector. The solid methane in the moderator occupied phase II and the energy spectra were measured at 20 K and 4 K. We tested our newly developed scattering kernels for phase II solid methane by calculating the neutron brightness expected from the methane moderator at the LENS neutron source using MCNP (Monte Carlo N-particle Transport Code). Within the accuracy of our approximate approach, our model correctly predicts the neutron brightness at both temperatures.

  1. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  2. Pulse-shape discrimination of the new plastic scintillators in neutron-gamma mixed field using fast digitizer card

    Science.gov (United States)

    Jančář, A.; Kopecký, Z.; Dressler, J.; Veškrna, M.; Matěj, Z.; Granja, C.; Solar, M.

    2015-11-01

    Recently invented plastic scintillator EJ-299-33 enables pulse-shape discrimination (PSD) and thus measurement of neutron and photon spectra in mixed fields. In this work we compare the PSD properties of EJ-299-33 plastic and the well-known NE-213 liquid scintillator in monoenergetic neutron fields generated by the Van de Graaff accelerator using the 3H(d, n)4He reaction. Pulses from the scintillators are processed by a newly developed digital measuring system employing the fast digitizer card. This card contains two AD converters connected to the measuring computer via 10 Gbps optical ethernet. The converters operate with a resolution of 12 bits and have two differential inputs with a sampling frequency 1 GHz. The resulting digital channels with different gains are merged into one composite channel with a higher digital resolution in a wide dynamic range of energies. Neutron signals are fully discriminated from gamma signals. Results are presented.

  3. Determination of the Neutron Fluence, the Beam Characteristics and the Backgrounds at the CERN-PS TOF Facility

    CERN Multimedia

    Leal, L C; Kitis, G; Guber, K H; Quaranta, A; Koehler, P E

    2002-01-01

    In the scope of our programme we propose to start in July 2000 with measurements on elements of well known cross sections, in order to check the reliability of the whole experimental installation at the CERN-TOF facility. These initial exploratory measurements will provide the key-parameters required for the further experimentation at the CERN-TOF neutron beam. The neutron fluence and energy resolution will be determined as a function of the neutron kinetic energy by reproducing standard capture and fission cross sections. The measurements of capture cross sections on elements with specific cross section features will allow to us to disentangle the different components of backgrounds and estimate their level in the experimental area. The time-energy calibration will be determined and monitored with a set of monoenergetic filters as well as by the measurements of elements with resonance-dominated cross sections. Finally, in this initial phase the behaviour of several detectors scheduled in successive measureme...

  4. Study of particle size distribution and formation mechanism of radioactive aerosols generated in high-energy neutron fields

    CERN Document Server

    Endo, A; Noguchi, H; Tanaka, S; Iida, T; Furuichi, S; Kanda, Y; Oki, Y

    2003-01-01

    The size distributions of sup 3 sup 8 Cl, sup 3 sup 9 Cl, sup 8 sup 2 Br and sup 8 sup 4 Br aerosols generated by irradiations of argon and krypton gases containing di-octyl phthalate (DOP) aerosols with 45 MeV and 65 MeV quasi-monoenergetic neutrons were measured in order to study the formation mechanism of radioactive particles in high energy radiation fields. The effects of the size distribution of the radioactive aerosols on the size of the added DOP aerosols, the energy of the neutrons and the kinds of nuclides were studied. The observed size distributions of the radioactive particles were explained by attachment of the radioactive atoms generated by the neutron-induced reactions to the DOP aerosols. (author)

  5. Proposed low-energy absolute calibration of nuclear recoils in a dual-phase noble element TPC using D-D neutron scattering kinematics

    Science.gov (United States)

    Verbus, J. R.; Rhyne, C. A.; Malling, D. C.; Genecov, M.; Ghosh, S.; Moskowitz, A. G.; Chan, S.; Chapman, J. J.; de Viveiros, L.; Faham, C. H.; Fiorucci, S.; Huang, D. Q.; Pangilinan, M.; Taylor, W. C.; Gaitskell, R. J.

    2017-04-01

    We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an in situ measurement of the low-energy nuclear recoil response of the target media using the measured scattering angle between multiple neutron interactions within the detector volume. The low-energy reach and reduced systematics of this calibration have particular significance for the low-mass WIMP sensitivity of several leading dark matter experiments. Multiple strategies for improving this calibration technique are discussed, including the creation of a new type of quasi-monoenergetic neutron source with a minimum possible peak energy of 272 keV. We report results from a time-of-flight-based measurement of the neutron energy spectrum produced by an Adelphi Technology, Inc. DD108 neutron generator, confirming its suitability for the proposed nuclear recoil calibration.

  6. Proposed low-energy absolute calibration of nuclear recoils in a dual-phase noble element TPC using D-D neutron scattering kinematics

    CERN Document Server

    Verbus, J R; Malling, D C; Genecov, M; Ghosh, S; Moskowitz, A G; Chan, S; Chapman, J J; de Viveiros, L; Faham, C H; Fiorucci, S; Huang, D Q; Pangilinan, M; Taylor, W C; Gaitskell, R J

    2016-01-01

    We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an $\\textit{in situ}$ measurement of the low-energy nuclear recoil response of the target media using the measured scattering angle between multiple neutron interactions within the detector volume. The low-energy reach and reduced systematics of this calibration have particular significance for the low-mass WIMP sensitivity of several leading dark matter experiments. Multiple strategies for improving this calibration technique are discussed, including the creation of a new type of quasi-monoenergetic 272 keV neutron source. We report results from a time-of-flight based measurement of the neutron energy spectrum produced by an Adelphi Technology, Inc. DD108 neutron generator, confirming its suitability for the proposed nuclear recoil calibration.

  7. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  8. Development of compact accelerator neutron source

    Directory of Open Access Journals (Sweden)

    Letourneau Alain

    2017-01-01

    Full Text Available There is a worldwide growing interest for small-scale and reduced-cost neutron sources not based on nuclear fission. High-intensity proton or deuteron beams impinging on light materials could be used to produce such neutron sources with intensities or brightness comparable to nuclear reactor for dedicated experiments. To develop such technologies several key technological issues have to be addressed. Among them the neutron production and the maximization of the neutron extraction and transport to the instrument is a key parameter for the design of high-brightness sources adapted for the required application. This issue have to be addressed with validated and predictive Monte-Carlo simulations. In this paper we present preliminary results on the use of Geant4 in the context of Compact Accelerator based Neutron Source (CANS developments.

  9. Measurement of Fission Product Yields from Fast-Neutron Fission

    Science.gov (United States)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  10. Status of neutron beam utilization at the Dalat nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dien, Nguyen Nhi; Hai, Nguyen Canh [Nuclear Research Institute, Dalat (Viet Nam)

    2003-03-01

    The 500-kW Dalat nuclear research reactor was reconstructed from the USA-made 250-kW TRIGA Mark II reactor. After completion of renovation and upgrading, the reactor has been operating at its nominal power since 1984. The reactor is used mainly for radioisotope production, neutron activation analysis, neutron beam researches and reactor physics study. In the framework of the reconstruction and renovation project of the 1982-1984 period, the reactor core, the control and instrumentation system, the primary and secondary cooling systems, as well as other associated systems were newly designed and installed by the former Soviet Union. Some structures of the reactor, such as the reactor aluminum tank, the graphite reflector, the thermal column, horizontal beam tubes and the radiation concrete shielding have been remained from the previous TRIGA reactor. As a typical configuration of the TRIGA reactor, there are four neutron beam ports, including three radial and one tangential. Besides, there is a large thermal column. Until now only two-neutron beam ports and the thermal column have been utilized. Effective utilization of horizontal experimental channels is one of the important research objectives at the Dalat reactor. The research program on effective utilization of these experimental channels was conducted from 1984. For this purpose, investigations on physical characteristics of the reactor, neutron spectra and fluxes at these channels, safety conditions in their exploitation, etc. have been carried out. The neutron beams, however, have been used only since 1988. The filtered thermal neutron beams at the tangential channel have been extracted using a single crystal silicon filter and mainly used for prompt gamma neutron activation analysis (PGNAA), neutron radiography (NR) and transmission experiments (TE). The filtered quasi-monoenergetic keV neutron beams using neutron filters at the piercing channel have been used for nuclear data measurements, study on

  11. Giant electromagnetic vortex and MeV monoenergetic electrons generated by short laser pulses in underdense plasma near quarter critical density region.

    Science.gov (United States)

    Zhidkov, Alexei; Nemoto, Koshichi; Nayuki, Takuya; Oishi, Yuji; Fuji, Takashi

    2007-07-01

    Very efficient generation of monoenergetic, about 1MeV , electrons from underdense plasma with its electron density close to the critical, when irradiated by an intense femtosecond laser pulse, is found via two dimensional particle-in-cell simulation. The stimulated Raman scattering of a laser pulse with frequency omega300 keV .

  12. A direct-drive exploding-pusher implosion as the first step in development of a monoenergetic charged-particle backlighting platform at the National Ignition Facility

    Science.gov (United States)

    Rosenberg, M. J.; Zylstra, A. B.; Séguin, F. H.; Rinderknecht, H. G.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Waugh, C. J.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; LePape, S.; Ma, T.; Mackinnon, A. J.; Rygg, J. R.; Amendt, P. A.; Bellei, C.; Benedetti, L. R.; Berzak Hopkins, L.; Bionta, R. M.; Casey, D. T.; Divol, L.; Edwards, M. J.; Glenn, S.; Glenzer, S. H.; Hicks, D. G.; Kimbrough, J. R.; Landen, O. L.; Lindl, J. D.; MacPhee, A.; McNaney, J. M.; Meezan, N. B.; Moody, J. D.; Moran, M. J.; Park, H.-S.; Pino, J.; Remington, B. A.; Robey, H.; Rosen, M. D.; Wilks, S. C.; Zacharias, R. A.; McKenty, P. W.; Hohenberger, M.; Radha, P. B.; Edgell, D.; Marshall, F. J.; Delettrez, J. A.; Glebov, V. Yu.; Betti, R.; Goncharov, V. N.; Knauer, J. P.; Sangster, T. C.; Herrmann, H. W.; Hoffman, N. M.; Kyrala, G. A.; Leeper, R. J.; Olson, R. E.; Kilkenny, J. D.; Nikroo, A.

    2016-03-01

    A thin-glass-shell, D3He-filled exploding-pusher inertial confinement fusion implosion at the National Ignition Facility (NIF) has been demonstrated as a proton source that serves as a promising first step toward development of a monoenergetic proton, alpha, and triton backlighting platform at the NIF. Among the key measurements, the D3He-proton emission on this experiment (shot N121128) has been well-characterized spectrally, temporally, and in terms of emission isotropy, revealing a highly monoenergetic (ΔE / E ∼ 4 %) and isotropic source (~3% proton fluence variation and ~0.5% proton energy variation). On a similar shot (N130129, with D2 fill), the DD-proton spectrum has been obtained as well, illustrating that monoenergetic protons of multiple energies may be utilized in a single experiment. These results, and experiments on OMEGA, point toward future steps in the development of a precision, monoenergetic proton, alpha, and triton source that can readily be implemented at the NIF for backlighting a broad range of high energy density physics (HEDP) experiments in which fields and flows are manifest, and also utilized for studies of stopping power in warm dense matter and in classical plasmas.

  13. Photon Scattering from the Stable Even-Mass Mo Isotopes Below the Neutron-Separation Energy

    Science.gov (United States)

    Rusev, G.; Hutcheson, A.; Kwan, E.; Tonchev, A. P.; Tornow, W.; Angell, C.; Hammond, S.; Karwowski, H. J.; Kelley, J. H.; Schwengner, R.; Dönau, F.; Wagner, A.

    2008-10-01

    We present results from photon-scattering experiments on the stable even-mass molybdenum isotopes below the neutron-separation energy carried out with bremsstrahlung at the superconducting electron accelerator ELBE at the Research Center Dresden-Rossendorf in Germany, and with monoenergetic photon beams at the HIγS facility at TUNL. We applied statistical methods in order to correct for the branching and cascade transitions and to determine the photoabsorption cross section. The obtained results allowed us to extend the tail of the Giant Dipole Resonance below the (,) threshold down to 4 MeV. The photoabsorption cross sections deduced from the present experiments show that the dipole strength increases with the neutron number of the Mo isotopes. The experimental results are discussed in the frame of Quasiparticle-Random-Phase-Approximation in a deformed basis which describe the increasing strength as a result of the deformation.

  14. Response of CVD Diamond Detectors to 14 MeV Neutrons

    CERN Document Server

    Weiss, C; Gagnon-Moisan, F; Kasper, A; Lucke, A; Schuhmacher, H; Weierganz, M; Zimba, A

    2012-01-01

    A series of measurements was taken at the Physikalisch-Technische Bundesanstalt (PTB) Braunschweig [1] using the 14 MeV neutron beam at the Van der Graaf accelerator with chemical vapor deposition (CVD) diamond detectors, in preparation of an upcoming (n, ) cross-section measurement [2] at the CERN-n TOF experiment [3, 4]. A single-crystal (sCVD) as well as a poly-crystalline (pCVD) diamond detector were used for the measurements. The response of both materials to the mono-energetic neutron beam was studied, also with the prospect for future applications in plasma diagnostics for fusion research. The results of the measurements are presented in this report.

  15. Advanced Neutron Source (ANS) Project progress report

    Energy Technology Data Exchange (ETDEWEB)

    McBee, M.R.; Chance, C.M. (eds.) (Oak Ridge National Lab., TN (USA)); Selby, D.L.; Harrington, R.M.; Peretz, F.J. (Oak Ridge National Lab., TN (USA))

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

  16. RCP01: a Monte Carlo program for solving neutron and photon transport problems in three-dimensional geometry with detailed energy description (LWBR development program). [For CDC-6600 and -7600, in FORTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Candelore, N R; Gast, R C; Ondis, II, L A

    1978-08-01

    The RCP01 Monte Carlo program for the CDC-7600 and CDC-6600 performs fixed source or eigenfunction neutron reaction rate calculations, or photon reaction rate calculations, for complex geometries. The photon calculations may be linked to the neutron reaction rate calculations. For neutron calculations, the full energy range is treated as required for neutron birth by the fission process and the subsequent neutron slowing down and thermalization, i.e., 10 MeV to 0 eV; for photon calculations the same energy range is treated. The detailed cross sections required for the neutron or photon collision processes are provided by RCPL1. This report provides details of the various types of neutron and photon starts and collisions, the common geometry tracking, and the input required. 37 figures, 1 table.

  17. Experimental and numerical investigations of radiation characteristics of Russian portable/compact pulsed neutron generators: ING-031, ING-07, ING-06 and ING-10-20-120

    Energy Technology Data Exchange (ETDEWEB)

    Chernikova, D., E-mail: dina@nephy.chalmers.se [Chalmers University of Technology, Department of Applied Physics, Nuclear Engineering, Fysikgården 4, SE-412 96 Göteborg (Sweden); Romodanov, V.L.; Belevitin, A.G.; Afanas' ev, V.V.; Sakharov, V.K. [National Nuclear Research University/Moscow Engineering-Physics Institute (NIYaU MIFI), Moscow (Russian Federation); Bogolubov, E.P.; Ryzhkov, V.I.; Khasaev, T.O.; Sladkov, A.A.; Bitulev, A.A. [Dukhov All-Russia Research Institute of Automatics (VNIIA), Moscow (Russian Federation)

    2014-05-11

    The present paper discusses results of full-scale experimental and numerical investigations of influence of construction materials of portable pulsed neutron generators ING-031, ING-07, ING-06 and ING-10-20-120 (VNIIA, Russia) to their radiation characteristics formed during and after an operation (shutdown period). In particular, it is shown that an original monoenergetic isotropic angular distribution of neutrons emitted by TiT target changes into the significantly anisotropic angular distribution with a broad energy spectrum stretching to the thermal region. Along with the low-energetic neutron part, a significant amount of photons appears during the operation of generators. In the pulse mode of operation of neutron generator, a presence of the construction materials leads to the “tailing” of the original neutron pulse and the appearance of an accompanying photon pulse at ∼3ns after the instant neutron pulse. In addition to that, reactions of neutron capture and inelastic scattering lead to the creation of radioactive nuclides, such as {sup 58}Co, {sup 62}Cu, {sup 64}Cu and {sup 18}F, which form the so-called activation radiation. Thus, the selection of a portable neutron generator for a particular type of application has to be done considering radiation characteristics of the generator itself. This paper will be of interest to users of neutron generators, providing them with valuable information about limitations of a specific generator and with recommendations for improving the design and performance of the generator as a whole.

  18. Development and implementation of a finite element solution of the coupled neutron transport and thermoelastic equations governing the behavior of small nuclear assemblies

    Science.gov (United States)

    Wilson, Stephen Christian

    Small, highly enriched reactors designed for weapons effects simulations undergo extreme thermal transients during pulsed operations. The primary shutdown mechanism of these reactors---thermal expansion of fuel material---experiences an inertial delay resulting in a different value for the fuel temperature coefficient of reactivity during pulse operation as compared to the value appropriate for steady-state operation. The value appropriate for pulsed operation may further vary as a function of initial reactivity addition. Here we design and implement a finite element numerical method to predict the pulse operation behavior of Sandia Pulsed Reactor (SPR) II, SPR III, and a hypothetical spherical assembly with identical fuel properties without using operationally observed data in our model. These numerical results are compared to available SPR II and SPR III operational data. The numerical methods employed herein may be modified and expanded in functionality to provide both accurate characterization of the behavior of fast burst reactors of any common geometry or isotropic fuel material in the design phase, as well as a computational tool for general coupled thermomechanical-neutronics behavior in the solid state for any reactor type.

  19. Precision photo-induced cross-section measurements using the monoenergetic and polarized photon beams at HIγS

    Science.gov (United States)

    Tonchev, A. P.; Howell, C. R.; Kwan, E.; Rusev, G.; Tornow, W.; Kelley, J. H.; Huibregtse, C.; Hammond, S. L.; Vieira, D.; Wilhelmy, J. B.

    2009-10-01

    A research program has been initiated at TUNL to perform precision (γ,γ') and (γ,xn) cross-section measurements on actinide nuclei using the novel source of radiation at the High Intensity Gamma-ray Source (HIγS) facility. This facility provides nearly mono-energetic (E/E ± 2%) and intense (10^8 s-1) photon beams after the recent upgrade. A precision knowledge of photoinduced processes is of practical importance for new reactor technologies, nuclear transmutation, and nuclear forensics. Our recent photodisintegration cross section measurements on radioactive ^241Am targets in the energy range from 9 < Eγ < 16 MeV will be presented. The experimental data for the ^241Am(γ,n) reaction in the giant dipole resonance energy region will be compared with statistical nuclear-model calculations.

  20. Uniform heating of materials into the warm dense matter regime with laser-driven quasi-monoenergetic ion beams

    CERN Document Server

    Bang, W; Bradley, P A; Vold, E L; Boettger, J C; Fernández, J C

    2015-01-01

    In a recent experiment on the Trident laser facility, a laser-driven beam of quasi-monoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 eV and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable on Trident, with a finite energy spread of (delta E)/E ~ 20%, are expected to heat the targets more uniformly than a beam of 140 MeV aluminum ions with zero energy spread. The robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  1. Quasi-monoenergetic electron beams from a few-terawatt laser driven plasma acceleration using a nitrogen gas jet

    Science.gov (United States)

    Rao, B. S.; Moorti, A.; Chakera, J. A.; Naik, P. A.; Gupta, P. D.

    2017-06-01

    An experimental investigation on the laser plasma acceleration of electrons has been carried out using 3 TW, 45 fs duration titanium sapphire laser pulse interaction with a nitrogen gas jet at an intensity of 2 × 1018 W cm-2. We have observed the stable generation of a well collimated electron beam with divergence and pointing variation ˜10 mrad from nitrogen gas jet plasma at an optimum plasma density around 3 × 1019 cm-3. The energy spectrum of the electron beam was quasi-monoenergetic with an average peak energy and a charge around 25 MeV and 30 pC respectively. The results will be useful for better understanding and control of ionization injection and the laser wakefield acceleration (LWFA) of electrons in high-Z gases and also towards the development of practical LWFA for various applications including injectors for high energy accelerators.

  2. Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources

    Science.gov (United States)

    Barty, Christopher P.J.

    2013-02-05

    A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.

  3. Neutron source capability assessment for cumulative fission yields measurements

    Energy Technology Data Exchange (ETDEWEB)

    Descalle, M A; Dekin, W; Kenneally, J

    2011-04-06

    A recent analysis of high-quality cumulative fission yields data for Pu-239 published in the peer-reviewed literature showed that the quoted experimental uncertainties do not allow a clear statement on how the fission yields vary as a function of energy. [Prussin2009] To make such a statement requires a set of experiments with well 'controlled' and understood sources of experimental errors to reduce uncertainties as low as possible, ideally in the 1 to 2% range. The Inter Laboratory Working Group (ILWOG) determined that Directed Stockpile Work (DSW) would benefit from an experimental program with the stated goal to reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Following recent discussions between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), there is a renewed interest in developing a concerted experimental program to measure fission yields in a neutron energy range from thermal energy (0.025 eV) to 14 MeV with an emphasis on discrete energies from 0.5 to 4 MeV. Ideally, fission yields would be measured at single energies, however, in practice there are only 'quasi-monoenergetic' neutrons sources of finite width. This report outlines a capability assessment as of June 2011 of available neutron sources that could be used as part of a concerted experimental program to measure cumulative fission yields. In a framework of international collaborations, capabilities available in the United States, at the Atomic Weapons Establishment (AWE) in the United Kingdom and at the Commissariat Energie Atomique (CEA) in France are listed. There is a need to develop an experimental program that will reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Fission and monoenergetic neutron sources

  4. Calibration of a Bonner sphere extension (BSE) for high-energy neutron spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Howell, R.M., E-mail: rhowell@mdanderson.or [UT M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); Burgett, E.A. [Georgia Institute of Technology, 900 Atlantic Drive, Atlanta, GA (United States); Wiegel, B. [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Hertel, N.E. [Georgia Institute of Technology, 900 Atlantic Drive, Atlanta, GA (United States)

    2010-12-15

    In a recent work, we constructed modular multisphere system which expands upon the design of an existing, commercially available Bonner sphere system by adding concentric shells of copper, tungsten, or lead. Our modular multisphere system is referred to as the Bonner Sphere Extension (BSE). The BSE was tested in a high energy neutron beam (thermal to 800 MeV) at Los Alamos Neutron Science Center and provided improvement in the measurement of the neutron spectrum in the energy regions above 20 MeV when compared to the standard BSS (and). However, when the initial test of the system was carried out at LANSCE, the BSE had not yet been calibrated. Therefore the objective of the present study was to perform calibration measurements. These calibration measurements were carried-out using monoenergetic neutron ISO 8529-1 reference beams at the Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany. The following monoenergetic reference beams were used for these experiments: 14.8 MeV, 1.2 MeV, 565 keV, and 144 keV. Response functions for the BSE were calculated using the Monte Carlo N-Particle Code, eXtended (MCNPX). The percent difference between the measured and calculated responses was calculated for each sphere and energy. The difference between measured and calculated responses for individual spheres ranged between 7.9% and 16.7% and the arithmetic mean for all spheres was (10.9 {+-} 1.8)%. These sphere specific correction factors will be applied for all future measurements carried out with the BSE.

  5. Calibration of a Bonner sphere extension (BSE) for high-energy neutron spectrometry.

    Science.gov (United States)

    Howell, R M; Burgett, E A; Wiegel, B; Hertel, N E

    2010-12-01

    In a recent work, we constructed modular multisphere system which expands upon the design of an existing, commercially available Bonner sphere system by adding concentric shells of copper, tungsten, or lead. Our modular multisphere system is referred to as the Bonner Sphere Extension (BSE). The BSE was tested in a high energy neutron beam (thermal to 800 MeV) at Los Alamos Neutron Science Center and provided improvement in the measurement of the neutron spectrum in the energy regions above 20 MeV when compared to the standard BSS (Burgett, 2008 and Howell et al., 2009).However, when the initial test of the system was carried-out at LANSCE, the BSE had not yet been calibrated. Therefore the objective of the present study was to perform calibration measurements. These calibration measurements were carried out using monoenergetic neutron ISO 8529-1 reference beams at the Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany. The following monoenergetic reference beams were used for these experiments: 14.8 MeV, 1.2 MeV, 565 keV, and 144 keV. Response functions for the BSE were calculated using the Monte Carlo N-Particle Code, eXtended (MCNPX). The percent difference between the measured and calculated responses was calculated for each sphere and energy. The difference between measured and calculated responses for individual spheres ranged between 7.9 % and 16.7 % and the arithmetic mean for all spheres was (10.9 ± 1.8) %. These sphere specific correction factors will be applied for all future measurements carried-out with the BSE.

  6. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  7. Endoleaks after endovascular aortic aneurysm repair: Improved detection with noise-optimized virtual monoenergetic dual-energy CT.

    Science.gov (United States)

    Martin, Simon S; Wichmann, Julian L; Weyer, Hendrik; Scholtz, Jan-Erik; Leithner, Doris; Spandorfer, Adam; Bodelle, Boris; Jacobi, Volkmar; Vogl, Thomas J; Albrecht, Moritz H

    2017-09-01

    To assess image quality and diagnostic performance of a noise-optimized algorithm to reconstruct virtual monoenergetic images (VMI+) for the detection of endoleaks after endovascular abdominal aortic aneurysm repair (EVAR) using dual-energy CT angiography (DE-CTA). Seventy-five patients (42 men; 66.2±11.7years) underwent DE-CTA following EVAR. Arterial phase images were acquired in dual-energy mode for the reconstruction of standard linearly-blended M_0.5, VMI+ and traditional monoenergetic images (VMI) at 40-100keV in 10-keV intervals. Contrast-to-noise ratios (CNR) were calculated for the area of leakage in patients with endoleaks. Diagnostic accuracy for endoleak detection was evaluated by three blinded radiologists using the objectively best series for each reconstruction technique. Thirty-four out of 75 patients showed endoleaks. Quantitative image parameters were highest at 40-keV VMI+ (CNR, 21.3±11.1), compared to M_0.5 (CNR, 10.9±5.5) and all VMI series that showed highest values at 70keV (CNR, 13.5±6.6; all PVMI+ series, which was significantly higher (P≤0.039) compared to 70-keV VMI (0.914) and M_0.5 series (0.916). Noise-optimized VMI+ series at 40keV improve diagnostic accuracy for the detection and rule-out of endoleaks after EVAR. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Neutron Capture Nucleosynthesis

    CERN Document Server

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these results most of the nuclei can formed at medium neutron capture density environment e.g. in some kind of AGB stars. Besides these observations our model is capable to use educational purpose.

  9. Nuclear reactor neutron shielding