WorldWideScience

Sample records for monodisperse polymer microspheres

  1. Progress in Preparation of Monodisperse Polymer Microspheres

    Science.gov (United States)

    Zhang, Hongyan

    2017-12-01

    The monodisperse crosslinked polymer microspheres have attracted much attention because of their superior thermal and solvent resistance, mechanical strength, surface activity and adsorption properties. They are of wide prospects for using in many fields such as biomedicine, electronic science, information technology, analytical chemistry, standard measurement and environment protection etc. Functional polymer microspheres prepared by different methods have the outstanding surface property, quantum size effect and good potential future in applications with its designable structure, controlled size and large ratio of surface to volume. Scholars of all over the world have focused on this hot topic. The preparation method and research progress in functional polymer microspheres are addressed in the paper.

  2. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation.

    Science.gov (United States)

    Günal, Gülçin; Kip, Çiğdem; Eda Öğüt, S; İlhan, Hasan; Kibar, Güneş; Tuncel, Ali

    2018-02-01

    Monodisperse silica microspheres with bimodal pore-size distribution were proposed as a high performance sorbent for DNA isolation in batch fashion under equilibrium conditions. The proposed sorbent including both macroporous and mesoporous compartments was synthesized 5.1 μm in-size, by a "staged shape templated hydrolysis and condensation method". Hydrophilic polymer based sorbents were also obtained in the form of monodisperse-macroporous microspheres ca 5.5 μm in size, with different functionalities, by a developed "multi-stage microsuspension copolymerization" technique. The batch DNA isolation performance of proposed material was comparatively investigated using polymer based sorbents with similar morphologies. Among all sorbents tried, the best DNA isolation performance was achieved with the monodisperse silica microspheres with bimodal pore size distribution. The collocation of interconnected mesoporous and macroporous compartments within the monodisperse silica microspheres provided a high surface area and reduced the intraparticular mass transfer resistance and made easier both the adsorption and desorption of DNA. Among the polymer based sorbents, higher DNA isolation yields were achieved with the monodisperse-macroporous polymer microspheres carrying trimethoxysilyl and quaternary ammonium functionalities. However, batch DNA isolation performances of polymer based sorbents were significantly lower with respect to the silica microspheres.

  3. Preparation and characterization of monodisperse large-porous silica microspheres as the matrix for protein separation.

    Science.gov (United States)

    Xia, Hongjun; Wan, Guangping; Zhao, Junlong; Liu, Jiawei; Bai, Quan

    2016-11-04

    High performance liquid chromatography (HPLC) is a kind of efficient separation technology and has been used widely in many fields. Micro-sized porous silica microspheres as the most popular matrix have been used for fast separation and analysis in HPLC. In this paper, the monodisperse large-porous silica microspheres with controllable size and structure were successfully synthesized with polymer microspheres as the templates and characterized. First, the poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) microspheres (P GMA-EDMA ) were functionalized with tetraethylenepentamine (TEPA) to generate amino groups which act as a catalyst in hydrolysis of tetraethyl orthosilicate (TEOS) to form Si-containing low molecular weight species. Then the low molecular weight species diffused into the functionalized P GMA-EDMA microspheres by induction force of the amino groups to form polymer/silica hybrid microspheres. Finally, the organic polymer templates were removed by calcination, and the large-porous silica microspheres were obtained. The compositions, morphology, size distribution, specific surface area and pore size distribution of the porous silica microspheres were characterized by infrared analyzer, scanning-electron microscopy, dynamic laser scattering, the mercury intrusion method and thermal gravimetric analysis, respectively. The results show that the agglomeration of the hybrid microspheres can be overcome when the templates were functionalized with TEPA as amination reagent, and the yield of 95.7% of the monodisperse large-porous silica microspheres can be achieved with high concentration of polymer templates. The resulting large-porous silica microspheres were modified with octadecyltrichlorosilane (ODS) and the chromatographic evaluation was performed by separating the proteins and the digest of BSA. The baseline separation of seven kinds of protein standards was achieved, and the column delivered a better performance when separating BSA digests

  4. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    International Nuclear Information System (INIS)

    Cao Feng; Li Dongxu

    2010-01-01

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe 3+ , which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  5. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Cao Feng; Li Dongxu, E-mail: dongxuli@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu Nanjing 210009 (China)

    2010-03-15

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe{sup 3+}, which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  6. One-pot template-free synthesis of monodisperse hollow hydrogel microspheres and their resulting properties.

    Science.gov (United States)

    Lim, Hyung-Seok; Kwon, Eunji; Lee, Moonjoo; Moo Lee, Young; Suh, Kyung-Do

    2013-08-01

    Monodisperse poly(methacrylic acid/ethyleneglycoldimethacrylate) (MAA/EGDMA) hollow microcapsules, which exhibit pH-responsive behavior, are prepared by diffusion of cationic surfactants and hydrophobic interaction. During the association of the negatively charged hydrogel microspheres and an oppositely charged surfactant (cetyltrimethylammonium bromide, CTA(+)B), the hydrophobic polymer-surfactant complexes that form are separated from the internal water; consequently, a hollow structure can be formed. Confocal laser scanning microscopy, UV spectro-scopy and zeta potential are employed to study the formation of the hollow structure during the diffusion of the cationic surfactant. The controlled release behavior of methylene blue as a model drug from the as-prepared poly(MAA/EGDMA) microcapsules with a hollow structure is investigated under different pH conditions. The hollow structure can be retained, even during repetitive pH changes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Facile Synthesis of Mono-Dispersed Polystyrene (PS/Ag Composite Microspheres via Modified Chemical Reduction

    Directory of Open Access Journals (Sweden)

    Wen Zhu

    2013-12-01

    Full Text Available A modified method based on in situ chemical reduction was developed to prepare mono-dispersed polystyrene/silver (PS/Ag composite microspheres. In this approach; mono-dispersed PS microspheres were synthesized through dispersion polymerization using poly-vinylpyrrolidone (PVP as a dispersant at first. Then, poly-dopamine (PDA was fabricated to functionally modify the surfaces of PS microspheres. With the addition of [Ag(NH32]+ to the PS dispersion, [Ag(NH32]+ complex ions were absorbed and reduced to silver nanoparticles on the surfaces of PS-PDA microspheres to form PS/Ag composite microspheres. PVP acted both as a solvent of the metallic precursor and as a reducing agent. PDA also acted both as a chemical protocol to immobilize the silver nanoparticles at the PS surface and as a reducing agent. Therefore, no additional reducing agents were needed. The resulting composite microspheres were characterized by TEM, field emission scanning electron microscopy (FESEM, energy-dispersive X-ray spectroscopy (EDS, XRD, UV-Vis and surface-enhanced Raman spectroscopy (SERS. The results showed that Ag nanoparticles (NPs were homogeneously immobilized onto the PS microspheres’ surface in the presence of PDA and PVP. PS/Ag composite microspheres were well formed with a uniform and compact shell layer and were adjustable in terms of their optical property.

  8. Temperature influence in crystallinity of polymer microspheres

    International Nuclear Information System (INIS)

    Rezende, Cristiane de P.; Novack, Katia M.

    2011-01-01

    Drug delivery technology is evolving through the creation of new techniques of drug delivery effectively. The new methods used in drugs administration are based in microencapsulation process. Microsphere encapsulation modifies drug delivery bringing benefits and efficiency. In this work has been evaluated the influence of temperature in microspheres preparation. Microspheres were obtained by PMMA-co-PEG (COP) copolymer with indomethacin inserted in polymer matrix. Samples were characterized by SEM, DSC and XRD. SEM micrographs confirmed the formation of different sizes of microspheres and it was verified that higher temperatures make more crystalline microspheres. (author)

  9. Preparation of monodisperse porous silica particles using poly(glycidyl methacrylate) microspheres as a template

    Czech Academy of Sciences Publication Activity Database

    Grama, Silvia; Horák, Daniel

    2015-01-01

    Roč. 64, Suppl. 1 (2015), S11-S17 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : microspheres * monodisperse * silica Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.643, year: 2015 http://www.biomed.cas.cz/physiolres/pdf/64%20Suppl%201/64_S11.pdf

  10. Flow and Failure in Extension of Monodisperse Polymer Melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.

    is commonly referred to be of either brittle (e.g. cohesive type) or of liquid (e.g. necking type) nature. Here the focus will be on monodisperse polymers, to study numerically the sample flow dynamics in dual wind-up extensional rheometers. The computations are within the ideas of the microstructural......It is well known that failure or rupture phenomenon appears in the extension of polymer melts. These appear not only as failure in extension rheometers, but also as sharkskin, developments of holes in thin polymeric films etc. Sometime these ruptures appear spontaneous as well. The rupture...... 'interchain pressure' theory based on the molecular stress function constitutive model for the polymer melt flow. The purpose is twofold. Primarily to present to what extend the experimentally observed failure, appearing during or after (e.g. as a spontaneous failure) extension, can be explained within...

  11. Antifouling peptide dendrimer surface of monodisperse magnetic poly(glycidyl methacrylate) microspheres

    Czech Academy of Sciences Publication Activity Database

    Hlídková, Helena; Kotelnikov, Ilya; Pop-Georgievski, Ognen; Proks, Vladimír; Horák, Daniel

    2017-01-01

    Roč. 50, č. 4 (2017), s. 1302-1311 ISSN 0024-9297 R&D Projects: GA ČR(CZ) GC16-01128J; GA ČR(CZ) GA16-02702S; GA ČR(CZ) GJ15-09368Y Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : poly(glycidyl methacrylate) * magnetic microspheres * peptides Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 5.835, year: 2016

  12. New nanocomposite surfaces and thermal interface materials based on mesoscopic microspheres, polymers and graphene flakes

    Science.gov (United States)

    Dmitriev, Alex A.; Dmitriev, Alex S.; Makarov, Petr; Mikhailova, Inna

    2018-04-01

    In recent years, there has been a great interest in the development and creation of new functional energy mate-rials, including for improving the energy efficiency of power equipment and for effectively removing heat from energy devices, microelectronics and optoelectronics (power micro electronics, supercapacitors, cooling of processors, servers and data centers). In this paper, the technology of obtaining new nanocomposites based on mesoscopic microspheres, polymers and graphene flakes is considered. The methods of sequential production of functional materials from graphene flakes of different volumetric concentration using epoxy polymers, as well as the addition of monodisperse microspheres are described. Data are given on the measurement of the contact angle and thermal conductivity of these nanocomposites with respect to the creation of thermal interface materials for cooling devices of electronics, optoelectronics and power engineering.

  13. Spherical and polygonal shape of Au nanoparticles coated functionalized polymer microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ting; Li, Yingzhi; Zhang, Junxian; Qi, Yalong; Zhao, Xin; Zhang, Qinghua, E-mail: qhzhang@dhu.edu.cn

    2015-08-01

    Highlights: • PS/PPy with well-defined core/shell structures was prepared in aqueous solution. • Au NPs were coated on PS/PPy by the fixation and continuous growth process. • Mercapto-groups played a role in the number and morphology of Au shell. • PS/PPy/Au had homogeneous and dense Au coatings with different shape. - Abstract: Uniform polystyrene (PS)/polypyrrole (PPy) composite microspheres with well-defined core/shell structures are synthesized by chemical oxidative polymerization. Gold nanoparticles (Au NPs) are successfully coated on the surface of PS/PPy microspheres by means of electrostatic interactions due to the functionalized PPy coatings supplying sufficient amino groups and the additive of mercapto acetic acid. Furthermore, the as-prepared PS/PPy/Au microspheres serving as seeds facilitate Au NPs further growth by in situ reduction in HAuCl{sub 4} solution to obtain PS/PPy/Au spheres with the core/shell/shell structure. Morphology observation demonstrates that the monodisperse PS/PPy/Au microspheres compose of uniform cores and the compact coatings containing distinct two layers. X-ray diffraction and X-ray photoelectron spectroscope confirm the existence of PPy and Au on the surface of the composite spheres. This facile approach to preparing metal-coated polymer spheres supplies the potential applications in biosensors, electronics and medical diagnosis.

  14. PEGylation controls attachment and engulfment of monodisperse magnetic poly(2-hydroxyethyl methacrylate) microspheres by murine J774.2 macrophages

    Science.gov (United States)

    Horák, Daniel; Hlidková, Helena; Klyuchivska, Olga; Grytsyna, Iryna; Stoika, Rostyslav

    2017-12-01

    The first objective of this work was to prepare biocompatible magnetic polymer microspheres with reactive functional groups that could withstand nonspecific protein adsorption from biological media. Carboxyl group-containing magnetic poly(2-hydroxyethyl methacrylate) (mgt.PHEMA) microspheres ∼4 μm in size were prepared by multistage swelling polymerization, precipitation of iron oxide inside their pores, and coating with an α-methoxy-ω-amino poly(ethylene glycol) (CH3O-PEG750-NH2 or CH3O-PEG5,000-NH2)/α-amino-ω-t-Boc-amino poly(ethylene glycol) (H2N-PEG5,000-NH-t-Boc) mixture. The mgt.PHEMA@PEG microspheres contained ∼10 μmol COOH per g. Biocompatibility of the particles was evaluated by their treatment with human embryonic kidney cells of the HEK293 line. The microspheres did not interfere with the growth of these cells, suggesting that the particles can be considered non-toxic. A second goal of this study was to address on the interaction of the developed microspheres with macrophages that commonly eliminate foreign microbodies appearing in organisms. Murine J774.2 macrophages (J774.2) were cultured in the presence of the neat and PEGylated microspheres for 2 h. Mgt.PHEMA@PEG5,000 microspheres significantly adhered to the surface of J774.2 macrophages but were minimally engulfed. Due to these properties, the mgt.PHEMA@PEG microspheres might be useful for application in drug delivery systems and monitoring of the efficiency of phagocytosis.

  15. Facile preparation of hierarchically porous polymer microspheres for superhydrophobic coating

    Science.gov (United States)

    Gao, Jiefeng; Wong, Julia Shuk-Ping; Hu, Mingjun; Li, Wan; Li, Robert. K. Y.

    2013-12-01

    A facile method, i.e., nonsolvent assisted electrospraying, is proposed to fabricate hierarchically porous microspheres. The pore size on the microsphere surface ranges from a few tens to several hundred nanometers. Thermally and nonsolvent induced phase separation as well as breath figure is responsible for the formation of the hierarchical structures with different nano-sized pores. The nonsolvent could not only induce phase separation, but also stabilize the interface between the droplet and air, which can prevent the droplet from strong deformation, and is therefore beneficial to the formation of regular and uniform microspheres. On the other hand, solvent evaporation, polymer diffusion and Coulomb fission during electrospraying influence the morphology of finally obtained products. In this paper, the influence of polymer concentration, the weight ratio between nonsolvent and polymer and the flowing rate on the morphology of the porous microsphere is carefully studied. The hierarchically porous microsphere significantly increases the surface roughness and thus the hydrophobicity, and the contact angle can reach as high as 152.2 +/- 1.2°. This nonsolvent assisted electrospraying opens a new way to fabricate superhydrophobic coating materials.A facile method, i.e., nonsolvent assisted electrospraying, is proposed to fabricate hierarchically porous microspheres. The pore size on the microsphere surface ranges from a few tens to several hundred nanometers. Thermally and nonsolvent induced phase separation as well as breath figure is responsible for the formation of the hierarchical structures with different nano-sized pores. The nonsolvent could not only induce phase separation, but also stabilize the interface between the droplet and air, which can prevent the droplet from strong deformation, and is therefore beneficial to the formation of regular and uniform microspheres. On the other hand, solvent evaporation, polymer diffusion and Coulomb fission during

  16. Nanomechanics of biocompatible hollow thin-shell polymer microspheres.

    Science.gov (United States)

    Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis

    2009-07-07

    The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.

  17. Functional energy nanocomposites surfaces based on mesoscopic microspheres, polymers and graphene flakes

    Science.gov (United States)

    Alekseev, S. A.; Dmitriev, A. S.; Dmitriev, A. A.; Makarov, P. G.; Mikhailova, I. A.

    2017-11-01

    In recent years, there has been a great interest in the development and creation of new functional energy materials, including for improving the energy efficiency of power equipment and for effectively removing heat from energy devices, microelectronics and optoelectronics (power micro electronics, supercapacitors, cooling of processors, servers and Data centers). In this paper, the technology of obtaining a new nanocomposite based on mesoscopic microspheres, polymers and graphene flakes is considered. The methods of sequential production of functional materials from graphite flakes of different volumetric concentration using polymers based on epoxy resins and polyimide, as well as the addition of a mesoscopic medium in the form of monodisperse microspheres are described. The data of optical and electron microscopy of such nanocomposites are presented, the main problems in the appearance of defects in such materials are described, the possibilities of their elimination by the selection of different concentrations and sizes of the components. Data are given on the measurement of the hysteresis of the contact angle and the evaporation of droplets on similar substrates. The results of studying the mechanical, electrophysical and thermal properties of such nanocomposites are presented. Particular attention is paid to the investigation of the thermal conductivity of these nanocomposites with respect to the creation of thermal interface materials for cooling devices of electronics, optoelectronics and power engineering.

  18. Dynamic dilution exponent in monodisperse entangled polymer solutions

    DEFF Research Database (Denmark)

    Shahid, T.; Huang, Qian; Oosterlinck, F.

    2017-01-01

    of concentration but also depends on the molar mass of the chains. While the proposed approach successfully explains the viscoelastic properties of a large number of semi-dilute solutions of polymers in their own oligomers, important discrepancies are found for semi-dilute entangled polymers in small-molecule......We study and model the linear viscoelastic properties of several entangled semi-dilute and concentrated solutions of linear chains of different molar masses and at different concentrations dissolved in their oligomers. We discuss the dilution effect of the oligomers on the entangled long chains....... In particular, we investigate the influence of both concentration and molar mass on the value of the effective dynamic dilution exponent determined from the level of the storage plateau at low and intermediate frequencies. We show that the experimental results can be quantitatively explained by considering...

  19. Monodisperse porous LiFePO4/C microspheres derived by microwave-assisted hydrothermal process combined with carbothermal reduction for high power lithium-ion batteries

    Science.gov (United States)

    Chen, Rongrong; Wu, Yixiong; Kong, Xiang Yang

    2014-07-01

    A microwave-assisted hydrothermal approach combined with carbothermal reduction has been developed to synthesize monodisperse porous LiFePO4/C microspheres, which possess the diameter range of 1.0-1.5 μm, high tap density of ∼1.3 g cm-3, and mesoporous characteristic with Brunauer-Emmett-Teller (BET) surface area of 30.6 m2 g-1. The obtained microspheres show meatball-like morphology aggregated by the carbon-coated LiFePO4 nanoparticles. The electrochemical impedance spectra (EIS) results indicate that carbon coating can effectively enhance both of the electronic and ionic conductivities for LiFePO4/C microspheres. The Li-ion diffusion coefficient of the LiFePO4/C microspheres calculated from the cyclic voltammetry (CV) curves is ∼6.25 × 10-9 cm2 s-1. The electrochemical performance can achieve about 100 and 90 mAh g-1 at 5C and 10C charge/discharge rates, respectively. As cathode material, the as-prepared LiFePO4/C microspheres show excellent rate capability and cycle stability, promising for high power lithium-ion batteries.

  20. Novel preparation of monodisperse poly(styrene-co-divinylbenzene) microspheres by controlled dispersion polymerization

    Czech Academy of Sciences Publication Activity Database

    Šálek, Petr; Horák, Daniel; Hromádková, Jiřina

    2018-01-01

    Roč. 60, č. 1 (2018), s. 9-15 ISSN 1560-0904 R&D Projects: GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : sized polystyrene particles * cross-linking * copolymerization Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 0.621, year: 2016 https://link.springer.com/article/10.1134/S1560090418010116

  1. DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns

    Science.gov (United States)

    Trinh, Tuan; Liao, Chenyi; Toader, Violeta; Barłóg, Maciej; Bazzi, Hassan S.; Li, Jianing; Sleiman, Hanadi F.

    2018-02-01

    As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs. Here, we present a method to transfer DNA patterns from a DNA cage to a polymeric nanoparticle encapsulated inside the cage in three dimensions. The resulting DNA-imprinted particles (DIPs), which are 'moulded' on the inside of the DNA cage, consist of a monodisperse crosslinked polymer core with a predetermined pattern of different DNA strands covalently 'printed' on their exterior, and further assemble with programmability and directionality. The number, orientation and sequence of DNA strands grafted onto the polymeric core can be controlled during the process, and the strands are addressable independently of each other.

  2. Temperature influence in crystallinity of polymer microspheres; Influencia da temperatura na cristalinidade de microesferas polimericas

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Cristiane de P.; Novack, Katia M., E-mail: knovack@iceb.ufop.br [Universidade Federal de Ouro Preto - UFOP, ICEB, DEQUI, Ouro Preto, MG (Brazil)

    2011-07-01

    Drug delivery technology is evolving through the creation of new techniques of drug delivery effectively. The new methods used in drugs administration are based in microencapsulation process. Microsphere encapsulation modifies drug delivery bringing benefits and efficiency. In this work has been evaluated the influence of temperature in microspheres preparation. Microspheres were obtained by PMMA-co-PEG (COP) copolymer with indomethacin inserted in polymer matrix. Samples were characterized by SEM, DSC and XRD. SEM micrographs confirmed the formation of different sizes of microspheres and it was verified that higher temperatures make more crystalline microspheres. (author)

  3. Polymer based microspheres of aceclofenac as sustained release parenterals for prolonged anti-inflammatory effect

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet; Sharma, Sumit; Sinha, VR, E-mail: sinha_vr@rediffmail.com

    2017-03-01

    Poly(lactic-co-glycolic acid) (PLGA) (75:25) and polycaprolactone (PCL) microspheres were fabricated for prolonged release of aceclofenac by parenteral administration. Microspheres encapsulating aceclofenac were designed to release the drug at controlled rate for around one month. Biodegradable microspheres were prepared by solvent emulsification evaporation method in different polymer:drug ratios (1:1, 2:1 and 3:1). After drug loading, PLGA and PCL microspheres showed a controlled size distribution with an average size of 11.75 μm and 3.81 μm respectively and entrapment efficiency in the range of 90 ± 0.72% to 91.06 ± 4.01% with PLGA and 83.01 ± 2.13% to 90.4 ± 2.11% with PCL. Scanning electron microscopy has confirmed good spherical structures of microspheres. The percent yield of biodegradable polymeric microspheres ranged between 30.95 ± 10.14% to 92.84 ± 3.15% and 47.33 ± 4.72% to 80 ± 3.60% for PLGA and PCL microspheres respectively. PLGA microspheres followed Higuchi release pattern while Korsmeyer-Peppas explained the release pattern of PCL microspheres. Stability studies of microspheres were also carried out by storing the preparations at 2-8 °C for 30, 60 and 90 days and evaluating them for entrapment efficiency, residual drug content and polymer drug compatability. In-vivo studies showed significant anti-inflammatory activity of microspheres upto 48 hours using the carrageenan induced rat paw oedema model. - Highlights: • PLGA and PCL polymeric microspheres for parenteral prolonged drug delivery system were formulated. • Polymeric microspheres were characterized physically and drug excipient incompatability. • Three months accelerated stability studies were carried for drug loaded polymeric microspheres. • Pharmacodynamic studies prove the rationality of sustained therapeutic effect of designed drug delivery system.

  4. Effect of various polymers concentrations on physicochemical properties of floating microspheres.

    Science.gov (United States)

    Jagtap, Y M; Bhujbal, R K; Ranade, A N; Ranpise, N S

    2012-11-01

    Floating microspheres have emerged as a potential candidate for gastroretentive drug delivery system. For developing a desired intragastric floatation system employing these microspheres, it is necessary to select an appropriate balance between buoyancy and drug releasing rate. These properties mainly depend on the polymers used in the formulation of the microspheres. Hence it is necessory to study the effect of these polymer concentrations on the various physicochemical properties of the microspheres. Floating microspheres were prepared by emulsion solvent evaporation technique utilising different polymers such as ethyl cellulose, Eudragit(®) RS and Eudragit(®) RL by dissolving them in a mixture of dichloromethane and methanol. Release modifiers studied were hydroxypropyl methylcellulose K4M, hydroxypropyl methylcellulose E50 LV and Eudragit(®) EPO. Prepared microspheres were analysed for particle size, surface morphology, entrapment efficiency, buoyancy, differential scanning calorimetry and in-vitro drug release. Ethyl cellulose and Eudragit(®) EPO resulted microspheres with high percentage yield, excellent spherical shape but had very less buoyancies with a high cumulative drug release. Ethyl cellulose microspheres prepared using hydroxypropyl methylcellulose K4M showed more sustained drug release and high buoyancies than that of the microspheres formulated with the hydroxypropyl methylcellulose E50 LV. Amongst these hydroxypropyl methylcellulose E50 LV showed good balance between buoyancy and the drug release.

  5. Robust platforms for creating organic-inorganic nanocomposite microspheres: decorating polymer microspheres containing mussel-inspired adhesion layers with inorganic nanoparticles.

    Science.gov (United States)

    Satoh, H; Saito, Y; Yabu, H

    2014-12-07

    We describe a method for creating robust and stable core-shell polymer microspheres decorated with inorganic (IO) nanoparticles (NPs) by a self-organization process and heterocoagulation using a mussel-inspired polymer adhesive layer between the IO NPs and the microspheres.

  6. Production of Monodisperse Cerium Oxide Microspheres with Diameters near 100 µm by Internal Gelation Sol-Gel Methods

    Energy Technology Data Exchange (ETDEWEB)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce

    2018-05-01

    Internal gelation sol-gel methods have used a variety of sphere forming methods in the past to produce metal oxide microspheres, but typically with poor control over the size uniformity at diameters near 100 µm. This work describes efforts to make and measure internal gelation, sol-gel microspheres with very uniform diameters in the 100 – 200 µm size range using a two-fluid nozzle. A custom apparatus was used to form aqueous droplets of sol-gel feed solutions in silicone oil and heat them to cause gelation of the spheres. Gelled spheres were washed, dried, and sintered prior to mounting on glass slides for optical imaging and analysis. Microsphere diameters and shape factors were determined as a function of silicone oil flow rate in a two-fluid nozzle and the size of a needle dispensing the aqueous sol-gel solution. Nine batches of microspheres were analyzed and had diameters ranging from 65.5 ± 2.4 µm for the smallest needle and fastest silicone oil flow rate to 211 ± 4.7 µm for the largest needle and slowest silicone oil flow rate. Standard deviations for measured diameters were less than 8% for all samples and most were less than 4%. Microspheres had excellent circularity with measured shape factors of 0.9 – 1. However, processing of optical images was complicated by shadow effects in the photoresist layer on glass slides and by overlapping microspheres. Based on calculated flow parameters, microspheres were produced in a simple dripping mode in the two-fluid nozzle. Using flow rates consistent with a simple dripping mode in a two-fluid nozzle configuration allows for very uniform oxide microspheres to be produced using the internal-gelation sol-gel method.

  7. Preparation of polymer microspheres by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Naka, Y.; Yamamoto, Y.; Yoshida, Y.; Tagawa, S.

    1995-01-01

    Cross-liking monomer, diethylene glycol dimethacrylate gives microspheres from organic solution by radiation-induced polymerization. /One of the remarkable result is that the number of the microspheres is not changing during the polymerization. Ethyl methacrylate, maleic anhydride, styrene and acrylamide are used as comonomers. These comonomers give the microspheres in the range of 0 to 0.4 as mol fractions. (author)

  8. Polymer blend microspheres for controlled drug release: the techniques for preparation and characterization: a review article.

    Science.gov (United States)

    Dasan, K Priya; Rekha, C

    2012-11-01

    The use of polymers and their microspheres in drug delivery is well known for they are being widely used in the field of drug delivery. The polymer entraps a drug which is to be released in a predesigned manner in the body through biodegradation. The blending of polymers is one way of modifying and enhancing the properties of polymer- based products which is also a cost effective procedure rather than developing a new product. The molecular weight of the polymer, the composition of the blend, the sphere porosity and size, and drug distribution are found to be controllable factors on which drug delivery depends. Polymer blends are obtained by allowing two polymers to combine as one material which has the advantage of two or more polymers. Polymer microspheres are small spherical particles with diameters in the micrometer range between 1μm to 1000μm which are manufactured from various natural and synthetic materials. Microspheres are used to administer medication in a rate- controlled manner and sometimes in a targeted manner. This review presents various polymer blend- combinations in different ratios, the different processing techniques adopted and the details of their characterization through examples found in a literature survey. The characterization of the different polymer blends or microspheres showed changes in structure, increase in drug loading, encapsulation efficiency, biocompatibility and low cytotoxicity.

  9. Tunable multicolor and enhanced red emission of monodisperse CaF2:Yb3+/Ho3+ microspheres via Mn2+ doping

    Science.gov (United States)

    Wang, Rui; Yuan, Maohui; Zhang, Chaofan; Wang, Hongyan; Xu, Xiaojun

    2018-05-01

    Transition metal ions (e.g. Mn2+) and lanthanide co-doped upconversion (UC) materials have attracted wide attention in recent years due to their promising application in multicolor display. Here, we report the hydrothermal synthesis and characterization of Mn2+ doped monodisperse CaF2:Yb3+/Ho3+ microspheres. The results of X-ray diffraction (XRD) revealed that Mn2+ doping does not change the cubic phase of CaF2 material but will lead to diffraction peaks shifting slightly towards higher angle due to the substitution of larger Ca2+ by the relatively smaller Mn2+. Under the excitation of 980 nm continuous wave (CW) laser, these microspheres exhibit green-yellow-red tuning colors and remarkable enhancement of both red to green ratio (R/G) and red to blue ratio (R/B) when increasing Mn2+ concentration from 0 to 30 mol%. The energy migration process between Ho3+ and Mn2+ was proposed and supported by time-decay and power dependence measurements of Ho3+ UC emission. These upconversion materials may have potential applications in optical devices, color display, nanoscale lasers and biomedical imaging.

  10. Streptavidin-modified monodispersed magnetic poly(2-hydroxyethyl methacrylate) microspheres as solid support in DNA-based molecular protocols

    Czech Academy of Sciences Publication Activity Database

    Salih, T.; Ahlford, A.; Nilsson, M.; Plichta, Zdeněk; Horák, Daniel

    2016-01-01

    Roč. 61, 1 April (2016), s. 362-367 ISSN 0928-4931 R&D Projects: GA MŠk 7E12054 EU Projects: European Commission(XE) 259796 - DIATOOLS Institutional support: RVO:61389013 Keywords : rolling circle amplification * DNA * magnetic microspheres Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.164, year: 2016

  11. Ibuprofen-loaded microspheres based on a co-polymer of Eudragit ...

    African Journals Online (AJOL)

    The objective of this study was to encapsulate ibuprofen in microspheres based on a co-polymer of Eudragit® RS100 and RL100 with a view to achieving a controlled release of the incorporated drug. The microparticles were prepared by an o/o emulsion-solvent evaporation method using varying polymer ratios and ...

  12. Polymer-coated albumin microspheres as carriers for intravascular tumour targeting of cisplatin.

    Science.gov (United States)

    Verrijk, R; Smolders, I J; McVie, J G; Begg, A C

    1991-01-01

    We used a poly-lactide-co-glycolide polymer (PLAGA 50:50) to formulate cisplatin (cDDP) into microspheres designed for intravascular administration. Two systems were developed. PLAGA-coated albumin microspheres and microspheres consisting of PLAGA only. PLAGA-coated microspheres displayed a mean diameter of 31.8 +/- 0.9 microns and a payload of 7.5% cDDP (w/w). Solid PLAGA microspheres exhibited a mean diameter of 19.4 +/- 0.6 microns and a payload of 20% cDDP. Release characteristics and in vitro effects on L1210 leukemia and B16 melanoma cell lines were investigated. Both types of microsphere overcame the initial rapid release of cDDP (burst effect), and PLAGA-coated albumin microspheres also showed a lag phase of approximately 30 min before cDDP release began. PLAGA-coated albumin microspheres released most of their payload through diffusion, and the coating eventually cracked after 7 days' incubation in saline supplemented with 0.1% Tween at 37 degrees C, enabling the release of any cDDP remaining. Effects of platinum, pre-released from PLAGA-coated albumin microspheres on the in vitro growth of L1210 cells were comparable with those of standard formulations (dissolved) of cDDP. Material released from non-drug-loaded PLAGA microspheres had no effect on L1210 cell growth, suggesting the absence of cytotoxic compounds in the matrix. The colony-forming ability of B16 cells was also equally inhibited by standard cDDP and pre-released drug. These studies show that formulation of cDDP in PLAGA-based microspheres prevents the rapid burst effect of cDDP seen in previous preparations and offers an improved system of administration for hepatic artery infusion or adjuvant therapy, enabling better clinical handling and the promise of a higher ratio of tumour tissue to normal tissue.

  13. Multiplexed fluorescent microarray for human salivary protein analysis using polymer microspheres and fiber-optic bundles.

    Science.gov (United States)

    Nie, Shuai; Benito-Peña, Elena; Zhang, Huaibin; Wu, Yue; Walt, David R

    2013-10-10

    Herein, we describe a protocol for simultaneously measuring six proteins in saliva using a fiber-optic microsphere-based antibody array. The immuno-array technology employed combines the advantages of microsphere-based suspension array fabrication with the use of fluorescence microscopy. As described in the video protocol, commercially available 4.5 μm polymer microspheres were encoded into seven different types, differentiated by the concentration of two fluorescent dyes physically trapped inside the microspheres. The encoded microspheres containing surface carboxyl groups were modified with monoclonal capture antibodies through EDC/NHS coupling chemistry. To assemble the protein microarray, the different types of encoded and functionalized microspheres were mixed and randomly deposited in 4.5 μm microwells, which were chemically etched at the proximal end of a fiber-optic bundle. The fiber-optic bundle was used as both a carrier and for imaging the microspheres. Once assembled, the microarray was used to capture proteins in the saliva supernatant collected from the clinic. The detection was based on a sandwich immunoassay using a mixture of biotinylated detection antibodies for different analytes with a streptavidin-conjugated fluorescent probe, R-phycoerythrin. The microarray was imaged by fluorescence microscopy in three different channels, two for microsphere registration and one for the assay signal. The fluorescence micrographs were then decoded and analyzed using a homemade algorithm in MATLAB.

  14. Synthetic Polymers at Interfaces: Monodisperse Emulsions Multiple Emulsions and Liquid Marbles

    Science.gov (United States)

    Sun, Guanqing

    The adsorption of polymeric materials at interfaces is an energetically favorable process which is investigated in much diversified fields, such as emulsions, bubbles, foams, liquid marbles. Pickering emulsion, which is emulsion stabilized by solid particles has been investigated for over one century and preparation of Pickering emulsion with narrow size distribution is crucial for both the theoretical study of the stabilization mechanism and practical application, such as templated fabrication of colloidosomes. The precise control over the size and functionality of polymer latices allows the preparation of monodisperse Pickering emulsions with desired sizes through SPG membrane emulsification at rather rapid rate compared to microfludic production. Double or multiple emulsions have long been investigated but its rapid destabilization has always been a major obstacle in applying them into practical applications. The modern living polymerization techniques allow us to prepare polymers with designed structure of block copolymers which makes it possible to prepare ultra-stable multiple emulsions. The precise tuning of the ratio of hydrophobic part over the hydrophilic can unveil the stabilization mechanism. Liquid marble is a new type of materials of which liquid droplets are coated by dry particles. The coating of an outer layer of dry particles renders the liquid droplets non-sticky at solid surface which is useful in transportation of small amount of liquid without leakage at extreme low friction force. The property of liquid marbles relies largely on the stabilizers and the drying condition of polymeric latices is shown to have great influence on the property of liquid marbles. Firstly, an introduction to the interfacial and colloidal science with special attention to topics on emulsions, multiple emulsion and liquid marbles is given in Chapter 1. The unique features of an interface and a discussion on the definition of colloids are introduced prior to the

  15. Synthesis of monodisperse silica microspheres and modification with diazoresin for mixed-mode ultra high performance liquid chromatography separations.

    Science.gov (United States)

    Cong, Hailin; Yu, Bing; Tian, Chao; Zhang, Shuai; Yuan, Hua

    2017-11-01

    Monodisperse silica particles with average diameters of 1.9-2.9 μm were synthesized by a modified Stöber method, in which tetraethyl orthosilicate was continuously supplied to the reaction mixture containing KCl electrolyte, water, ethanol, and ammonia. The obtained silica particles were modified by self-assembly with positively charged photosensitive diazoresin on the surface. After treatment with ultraviolet light, the ionic bonding between silica and diazoresin was converted into covalent bonding through a unique photochemistry reaction of diazoresin. Depending on the chemical structure of diazoresin and mobile phase composition, the diazoresin-modified silica stationary phase showed different separation mechanisms, including reversed phase and hydrophilic interactions. Therefore, a variety of baseline separation of benzene analogues and organic acids was achieved by using the diazoresin-modified silica particles as packing materials in ultra high performance liquid chromatography. According to the π-π interactional difference between carbon rings of fullerenes and benzene rings of diazoresin, C 60 and C 70 were also well separated by ultra-high performance liquid chromatography. Because it has a small size, the ∼2.5 μm monodisperse diazoresin-modified silica stationary phase shows ultra-high efficiency compared with the commercial C 18 -silica high-performance liquid chromatography stationary phase with average diameters of ∼5 μm. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Bland Embolization of Hepatocellular Carcinoma Using Superabsorbent Polymer Microspheres

    International Nuclear Information System (INIS)

    Osuga, Keigo; Hori, Shinichi; Hiraishi, Kumiko; Sugiura, Takashi; Hata, Yasuhiro; Higashihara, Hiroki; Maeda, Noboru; Tomoda, Kaname; Nakamura, Hironobu

    2008-01-01

    The purpose of this study was to investigate the clinical outcomes of bland embolization using superabsorbent polymer microspheres (SAP-TAE) as an initial therapeutic option for previously untreated hepatocellular carcinoma (HCC) ineligible for resection or ablation. Fifty-nine patients with previously untreated HCC unamenable to surgery or ablation underwent bland embolization using 100- to 200-μm reconstituted SAP particles (SAP-TAE) as the initial treatment. SAP-TAE was repeated as needed based on tumor response but was switched to chemoembolization when necessary to control residual or progressive tumor. Early tumor response was assessed by contrast-enhanced CT according to RECIST and EASL criteria 1 month after the initial SAP-TAE. The overall survival was calculated using the Kaplan-Meier method. The overall mean follow-up period was 30.6 months (range, 7-59 months). A total of 121 sessions of SAP-TAE were performed, with 1-5 sessions per patient (mean, 2.1 sessions). The mean period of repeated SAP-TAE was 15.6 months (range, 1-51 months), and it exceeded 1 and 2 years in 32 (54%) and 15 (25%) patients, respectively. Thirteen (22%) patients underwent repeated SAP-TAE alone, and the remaining 46 (78%) patients underwent subsequent chemoembolization. No major complication was observed and postembolization syndrome was minimal after SAP-TAE in all patients. Response rate was 14% and 66% by RECIST and EASL criteria, respectively. Overall survival rates were 100% and 83% at 1 and 2 years, respectively, and median survival time was 30 months. In conclusion, SAP-TAE was a safe and repeatable option as the induction therapy for HCC unamenable to surgery or ablation, despite the high incidence of converting to TACE during the total course.

  17. Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: One-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air

    International Nuclear Information System (INIS)

    Dong, Fan; Lee, S.C.; Wu, Zhongbiao; Huang, Yu; Fu, Min; Ho, Wing-Kei; Zou, Shichun; Wang, Bo

    2011-01-01

    Graphical abstract: Rose-like monodisperse hierarchical nitrogen doped (BiO) 2 CO 3 hollow microspheres fabricated by a one-pot template-free method exhibit excellent visible light photocatalytic activity and photochemical stability in the removal of NO in indoor air. The special hierarchical microstructure, the high charge separation efficiency and two-band-gap structure in all contribute to the outstanding photocatalytic performance. Highlights: → Rose-like monodisperse hierarchical (BiO) 2 CO 3 hollow microspheres are fabricated. → The (BiO) 2 CO 3 microspheres are self-assembled of single-crystalline nanosheets. → Nitrogen is in situ doped into the lattice of hierarchical (BiO) 2 CO 3 microspheres. → The (BiO) 2 CO 3 microspheres exhibit outstanding visible light activity for NO removal. → The (BiO) 2 CO 3 microspheres also exhibit high photochemical stability. - Abstract: Rose-like monodisperse hierarchical (BiO) 2 CO 3 hollow microspheres are fabricated by a one-pot template-free method for the first time based on hydrothermal treatment of ammonia bismuth citrate and urea in water. The microstructure and band structure of the as-prepared (BiO) 2 CO 3 superstructure are characterized in detail by X-ray diffraction, Raman spectroscopy, Fourier transform-infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, N 2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The monodisperse hierarchical (BiO) 2 CO 3 microspheres are constructed by the self-assembly of single-crystalline nanosheets. The aggregation of nanosheets result in the formation of three dimensional hierarchical framework containing mesopores and macropores, which is favorable for efficient transport of reaction molecules and harvesting of photo-energy. The result reveals the existence of special two-band-gap structure (3.25 and 2.0 eV) for (BiO) 2 CO 3 . The band gap of 3.25 eV is intrinsic and the

  18. Macrocyclic receptors immobilized to monodisperse porous polymer particles by chemical grafting and physical impregnation for strontium capture: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Du, Yi [Department of Chemical Engineering, Laboratory for Advanced Materials, Tsinghua University, Beijing (China); Lv, Dachao [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Ye, Gang, E-mail: yegang@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Wang, Jianchen [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China)

    2014-06-01

    Graphical abstract: Macrocyclic receptors grafted to monodisperse porous polymer particles for Sr(II) capture. - Highlights: • Synthesis of novel selective Sr adsorbent grafted with macrocyclic receptors. • New monodisperse porous polymer particles used to promote Sr adsorption. • Comparative study and discussion on adsorption behaviour and mechanism. • A chromatographic process proposed for Sr separation in simulated HLLW. - Abstract: Separation of strontium is of great significance for radioactive waste treatment and environmental remediation after nuclear accidents. In this work, a novel class of adsorbent (Crown-g-MPPPs) was synthesized by chemical grafting a macrocyclic ether receptor to monodisperse porous polymer particles (MPPPs) for strontium adsorption. Meanwhile, a counterpart material (Crown@MPPPs) with the receptor molecules immobilized to the MPPPs substrate by physical impregnation was prepared. To investigate how the immobilization manner and distribution of the receptors influence the adsorption ability, a comparative study on the adsorption behaviour of the two materials towards Sr(II) in HNO{sub 3} media was accomplished. Due to the shorter diffusion path and covalently-bonded structure, Crown-g-MPPPs showed faster adsorption kinetics and better stability for cycle use. While Crown@MPPPs had the advantages of facile synthesis and higher adsorption capacity, owing to the absence of conformational constraint to form complexation with Sr(II). Kinetic functions (Lagergren pseudo-first-order/pseudo-second-order functions) and adsorption isotherm models (Langmuir/Freundlich models) were used to fit the experimental data and examine the adsorption mechanism. On this basis, a chromatographic process was proposed by using Crown@MPPPs for an effective separation of Sr(II) (91%) in simulated high level liquid waste (HLLW)

  19. Crystallisation and structural studies of monodisperse nylon oligomers and related polymers

    International Nuclear Information System (INIS)

    Sikorski, P.T.

    2001-11-01

    Using electron and X-ray diffraction data, together with computerised molecular modeling, the structures of monodisperse nylon oligomers and related polymers have been investigated. Structural changes on heating were also studied. The molecules were crystallised from solution and their morphologies examined using optical and transmission electron microscopy. Lath-like lamellar crystals of the polyester poly-β-propiolactone were crystallised isothermally. The interpretation of the diffraction data with the use of molecular modeling led to the discovery of the new crystalline structure, the γ-structure. In the γ-structure, the polyester chain is in an all-trans conformation and the structure consists of a two-chain, basal-faced, orthorhombic unit cell. The setting angles, with respect to the a axis, are ± 51.5 deg for the corner and centre chains, respectively. The lamellae are 5 nm in thickness and the chains run orthogonal to the lamellar surface. The general fold direction is along the a-axis (long axis of the crystal) and the chain folds successively in the [110] and [11-bar0] directions. Three different nylon 4 6 oligomers were crystallised from solution using a range of crystallisation methods. The 4- and 8-amide molecules were found to form three-dimensional crystals, in which the crystal thickness was much greater than the molecular length. The structure was found to be different from the nylon 4 6 polymer reported previously. It was found that the type of hydrogen-bonded sheet formed by these molecules can influence the way in which these sheets stack to form crystals. In addition, a study of the 9-amide molecule showed that a particular type of hydrogen-bonded sheet, a-sheet, is preferred for nylon 4 6. This discovery suggests that an amide unit is found in the fold in the chain-folded nylon 4 6 polymer crystals, to allow the a-sheets to be formed. It is not a consequence of a need to form a stress-free fold. In the regular adjacent re-entry chain

  20. PEGylation controls attachment and engulfment of monodisperse magnetic poly(2-hydroxyethyl methacrylate) microspheres by murine J774.2 macrophages

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Hlídková, Helena; Klyuchivska, O.; Grytsyna, I.; Stoika, R.

    2017-01-01

    Roč. 426, 31 December (2017), s. 315-324 ISSN 0169-4332 R&D Projects: GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : poly(ethylene glycol) * poly(2-hydroxyethyl methacrylate) * magnetic Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.387, year: 2016

  1. An electromechanically coupled micro-sphere framework: application to the finite element analysis of electrostrictive polymers

    International Nuclear Information System (INIS)

    Thylander, Sara; Menzel, Andreas; Ristinmaa, Matti

    2012-01-01

    The number of industrial applications of electroactive polymers (EAPs) is increasing and, consequently, the need for reliable modelling frameworks for such materials as well as related robust simulation techniques continuously increases. In this context, we combine the modelling of non-linear electroelasticity with a computational micro-sphere formulation in order to simulate the behaviour of EAPs. The micro-sphere approach in general enables the use of physics-based constitutive models like, for instance, the so-called worm-like chain model. By means of the micro-sphere formulation, scalar-valued micromechanical constitutive relations can conveniently be extended to a three-dimensional continuum setting. We discuss several electromechanically coupled numerical examples and make use of the finite element method to solve inhomogeneous boundary value problems. The incorporated material parameters are referred to experimental data for an electrostrictive polymer. The numerical examples show that the coupled micro-sphere formulation combined with the finite element method results in physically sound simulations that mimic the behaviour of an electrostrictive polymer. (paper)

  2. Preparation of monodisperse curcumin-imprinted polymer by precipitation polymerization and its application for the extraction of curcuminoids from Curcuma longa L.

    Science.gov (United States)

    Kitabatake, Tomoko; Tabo, Hiromi; Matsunaga, Hisami; Haginaka, Jun

    2013-08-01

    A monodisperse molecularly imprinted polymer (MIP) for curcumin was first prepared by precipitation polymerization using methacrylamide (MAM) and 4-vinylpyridine as functional co-monomers, divinylbenzene as a crosslinker, and a mixture of acetonitrile and toluene as a porogen. The use of MAM as the co-monomer resulted in the formation of a monodisperse MIP and non-imprinted polymer (NIP). MIP and NIP, respectively, were monodispersed with a narrow particle size distribution (3.3 ± 0.09 and 3.5 ± 0.10 μm). In addition to shape recognition, hydrophobic and hydrogen-bonding interactions affected the retention and molecular-recognition of curcumin on the MIP. The MIP for curcumin could extract curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) in Curcuma longa L.

  3. Lanthanide-containing polymer microspheres by multiple-stage dispersion polymerization for highly multiplexed bioassays.

    Science.gov (United States)

    Abdelrahman, Ahmed I; Dai, Sheng; Thickett, Stuart C; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A

    2009-10-28

    We describe the synthesis and characterization of metal-encoded polystyrene microspheres by multiple-stage dispersion polymerization with diameters on the order of 2 mum and a very narrow size distribution. Different lanthanides were loaded into these microspheres through the addition of a mixture of lanthanide salts (LnCl(3)) and excess acrylic acid (AA) or acetoacetylethyl methacrylate (AAEM) dissolved in ethanol to the reaction after about 10% conversion of styrene, that is, well after the particle nucleation stage was complete. Individual microspheres contain ca. 10(6)-10(8) chelated lanthanide ions, of either a single element or a mixture of elements. These microspheres were characterized one-by-one utilizing a novel mass cytometer with an inductively coupled plasma (ICP) ionization source and time-of-flight (TOF) mass spectrometry detection. Microspheres containing a range of different metals at different levels of concentration were synthesized to meet the requirements of binary encoding and enumeration encoding protocols. With four different metals at five levels of concentration, we could achieve a variability of 624, and the strategy we report should allow one to obtain much larger variability. To demonstrate the usefulness of element-encoded beads for highly multiplexed immunoassays, we carried out a proof-of-principle model bioassay involving conjugation of mouse IgG to the surface of La and Tm containing particles and its detection by an antimouse IgG bearing a metal-chelating polymer with Pr.

  4. Immunocapture of CD133-positive cells from human cancer cell lines by using monodisperse magnetic poly(glycidyl methacrylate) microspheres containing amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, Wei-Chih [Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhisung 621, Taiwan (China); Horák, Daniel, E-mail: horak@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Plichta, Zdeněk [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Lee, Wen-Chien [Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhisung 621, Taiwan (China)

    2014-01-01

    Magnetic poly(glycidyl methacrylate)-based macroporous microspheres with an average particle size of 4.2 μm were prepared using a modified multi-step swelling polymerization method and by introducing amino functionality on their surfaces. Antibody molecules were oxidized on their carbohydrate moieties and bound to the amino-containing magnetic microspheres via a site-directed procedure. CD133-positive cells could be effectively captured from human cancer cell lines (HepG2, HCT116, MCF7, and IMR-32) by using magnetic microspheres conjugated to an anti-human CD133 antibody. After further culture, the immunocaptured CD133-expressing cells from IMR-32 proliferated and gradually detached from the magnetic microspheres. Flow-cytometric analysis confirmed the enrichment of CD133-expressing cells by using the antibody-bound magnetic microspheres. Such microspheres suitable for immunocapture are very promising for cancer diagnosis because the CD133-expressing cells in cancer cell lines have been suggested to be cancer stem cells. - Highlights: • Multi-step swelling polymerization produced poly(glycidyl methacrylate) microspheres. • Anti-human CD133 antibodies were bound to the amino-containing magnetic microspheres. • CD133-positive cells were effectively captured from human cancer cell lines. • Immunocaptured CD133-expressing cells proliferated and were detached from microspheres. • Enrichment of CD133-expressing cells was confirmed by flow-cytometric analysis.

  5. Self-Templated Stepwise Synthesis of Monodispersed Nanoscale Metalated Covalent Organic Polymers for In Vivo Bioimaging and Photothermal Therapy.

    Science.gov (United States)

    Shi, Yanshu; Deng, Xiaoran; Bao, Shouxin; Liu, Bei; Liu, Bin; Ma, Ping'an; Cheng, Ziyong; Pang, Maolin; Lin, Jun

    2017-09-05

    Size- and shape-controlled growth of nanoscale microporous organic polymers (MOPs) is a big challenge scientists are confronted with; meanwhile, rendering these materials for in vivo biomedical applications is still scarce. In this study, a monodispersed nanometalated covalent organic polymer (MCOP, M=Fe, Gd) with sizes around 120 nm was prepared by a self-templated two-step solution-phase synthesis method. The metal ions (Fe 3+ , Gd 3+ ) played important roles in generating a small particle size and in the functionalization of the products during the reaction with p-phenylenediamine (Pa). The resultant Fe-Pa complex was used as a template for the subsequent formation of MCOP following the Schiff base reaction with 1,3,5-triformylphloroglucinol (Tp). A high tumor suppression efficiency for this Pa-based COP is reported for the first time. This study demonstrates the potential use of MCOP as a photothermal agent for photothermal therapy (PTT) and also provides an alternative route to fabricate nano-sized MCOPs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Combining Pickering Emulsion Polymerization with Molecular Imprinting to Prepare Polymer Microspheres for Selective Solid-Phase Extraction of Malachite Green

    Directory of Open Access Journals (Sweden)

    Weixin Liang

    2017-08-01

    Full Text Available Malachite green (MG is currently posing a carcinogenic threat to the safety of human lives; therefore, it is highly desirable to develop an effective method for fast trace detection of MG. Herein, for the first time, this paper presents a systematic study on polymer microspheres, being prepared by combined Pickering emulsion polymerization and molecular imprinting, to detect and purify MG. The microspheres, molecularly imprinted with MG, show enhanced adsorption selectivity to MG, despite a somewhat lowered adsorption capacity, as compared to the counterpart without molecular imprinting. Structural features and adsorption performance of these microspheres are elucidated by different characterizations and kinetic and thermodynamic analyses. The surface of the molecularly imprinted polymer microspheres (M-PMs exhibits regular pores of uniform pore size distribution, endowing M-PMs with impressive adsorption selectivity to MG. In contrast, the microspheres without molecular imprinting show a larger average particle diameter and an uneven porous surface (with roughness and a large pore size, causing a lower adsorption selectivity to MG despite a higher adsorption capacity. Various adsorption conditions are investigated, such as pH and initial concentration of the solution with MG, for optimizing the adsorption performance of M-PMs in selectively tackling MG. The adsorption kinetics and thermodynamics are deeply discussed and analyzed, so as to provide a full picture of the adsorption behaviors of the polymer microspheres with and without the molecular imprinting. Significantly, M-PMs show promising solid-phase extraction column applications for recovering MG in a continuous extraction manner.

  7. Effect of cross-linked biodegradable polymers on sustained release of sodium diclofenac-loaded microspheres

    Directory of Open Access Journals (Sweden)

    Avik Kumar Saha

    2013-12-01

    Full Text Available The objective of this study was to formulate an oral sustained release delivery system of sodium diclofenac(DS based on sodium alginate (SA as a hydrophilic carrier in combination with chitosan (CH and sodium carboxymethyl cellulose (SCMC as drug release modifiers to overcome the drug-related adverse effects and to improve bioavailability. Microspheres of DS were prepared using an easy method of ionotropic gelation. The prepared beads were evaluated for mean particle size, entrapment efficiency, swelling capacity, erosion and in-vitro drug release. They were also subjected to various studies such as Fourier Transform Infra-Red Spectroscopy (FTIR for drug polymer compatibility, Scanning Electron Microscopy for surface morphology, X-ray Powder Diffraction Analysis (XRD and Differential Scanning Calorimetric Analysis (DSC to determine the physical state of the drug in the beads. The addition of SCMC during the preparation of polymeric beads resulted in lower drug loading and prolonged release of the DS. The release profile of batches F5 and F6 showed a maximum drug release of 96.97 ± 0.356% after 8 h, in which drug polymer ratio was decreased. The microspheres of sodium diclofenac with the polymers were formulated successfully. Analysis of the release profiles showed that the data corresponds to the diffusion-controlled mechanism as suggested by Higuchi.

  8. Microfluidic Fabrication of Porous Polymer Microspheres: Dual Reactions in Single Droplets

    KAUST Repository

    Gong, Xiuqing

    2009-06-16

    We report the microfluidic fabrication of macroporous polymer microspheres via the simultaneous reactions within single droplets, induced by LTV irradiation. The aqueous phase of the reaction is the decomposition of H 2O2 to yield oxygen, whereas the organic phase is the polymerization of NO A 61, ethylene glycol dimethacrylate (EGDMA), and tri (propylene glycol) diacrylate (TPGDA) precursors. We first used a liquid polymer precursor to encapsulate a multiple number of magnetic Fe3O 4 colloidal suspension (MCS) droplets in a core-shell structure, for the purpose of studying the number of such encapsulated droplets that can be reliably controlled through the variation of flow rates. It was found that the formation of one shell with one, two, three, or more encapsulated droplets is possible. Subsequently, the H2O2 solution was encapsulated in the same way, after which we investigated its decomposition under UV irradiation, which simultaneously induces the polymerization of the encapsulating shell. Because the H2O2 decomposition leads to the release of oxygen, porous microspheres were obtained from a combined H2O2 decomposition/polymer precursor polymerization reaction. The multiplicity of the initially encapsulated H2O 2 droplets ensures the homogeneous distribution of the pores. The pores inside the micrometer-sized spheres range from several micrometers to tens of micrometers, and the maximum internal void volume fraction can attain 70%, similar to that of high polymerized high internal phase emulsion (polyHIPE). © 2009 American Chemical Society.

  9. Preparation and unique electrical behaviors of monodispersed hybrid nanorattles of metal nanocores with hairy electroactive polymer shells.

    Science.gov (United States)

    Cai, Tao; Zhang, Bin; Chen, Yu; Wang, Cheng; Zhu, Chun Xiang; Neoh, Koon-Gee; Kang, En-Tang

    2014-03-03

    A versatile template-assisted strategy for the preparation of monodispersed rattle-type hybrid nanospheres, encapsulating a movable Au nanocore in the hollow cavity of a hairy electroactive polymer shell (Au@air@PTEMA-g-P3HT hybrid nanorattles; PTEMA: poly(2-(thiophen-3-yl)ethyl methacrylate; P3HT: poly(3-hexylthiophene), was reported. The Au@silica core-shell nanoparticles, prepared by the modified Stöber sol-gel process on Au nanoparticle seeds, were used as templates for the synthesis of Au@silica@PTEMA core-double shell nanospheres. Subsequent oxidative graft polymerization of 3-hexylthiophene from the exterior surface of the Au@silica@PTEMA core-double shell nanospheres allowed the tailoring of surface functionality with electroactive P3HT brushes (Au@silica@PTEMA-g-P3HT nanospheres). The Au@air@ PTEMA-g-P3HT hybrid nanorattles were obtained after etching of the silica interlayer by HF. The as-prepared nanorattles were dispersed into an electrically insulating polystyrene matrix and for the first time used to fabricate nonvolatile memory devices. As a result, unique electrical behaviors, including insulator behavior, write-once-read-many-times and rewritable memory effects, and conductor behavior as well, were observed in the Al/Au@air@PTEMA-g-P3HT+PS/ITO (ITO: indium-tin oxide) sandwich thin-film devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Evaluation of {sup 211}At-labelled monodisperse polymer particles in vivo: comparison of different specific activities

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R.H.; Hoff, Per; Alstad, Jorolf [Oslo Univ., Chemistry Dept., Oslo (Norway); Varaas, Tone; De Vos, L.N.; Nustad, Kjell [Norwegian Radium Hospital, Central Lab., Oslo (Norway); Vergote, I.B. [Norwegian Radium Hospital, Gynecologic Oncology Dept., Oslo (Norway)

    1996-09-01

    The {alpha}-particle emitter {sup 211}At was covalently coupled to 1.8 {mu}m aminated monodisperse polymer particles (MDPP) and used to irradiate the intraperitoneal cavity in mice with disseminated tumour cells. Specific activity has previously been shown to influence the therapeutic efficacy of {alpha}-particle emitting compounds and the therapeutic efficacy of {sup 211}At-MDPP with various specific activity was therefore investigated. Groups of mice (10 animals per group) were treated with intraperitoneal injections of 100 kBq of {sup 211}At-MDPP with specific activities of 0.19, 0.55, 1.7, 5.0, 15, and 45 MBq/mg. A significantly prolonged survival was observed in the treated groups compared to the control group (from 19 to 26 days vs. 12 days, median). The difference in survival between the {sup 211}At-MDPP treated groups was not significant, but some animals with short survival were observed in the groups that had received the 0.19, 15 and 45 MBq/mg preparations. K13 monoclonal antibody values, which are an indicator of tumour growth, were high in some animals in the 15 and 45 MBq/mg groups (day 7 values). (author).

  11. Macrocyclic receptors immobilized to monodisperse porous polymer particles by chemical grafting and physical impregnation for strontium capture: a comparative study.

    Science.gov (United States)

    Song, Yang; Du, Yi; Lv, Dachao; Ye, Gang; Wang, Jianchen

    2014-06-15

    Separation of strontium is of great significance for radioactive waste treatment and environmental remediation after nuclear accidents. In this work, a novel class of adsorbent (Crown-g-MPPPs) was synthesized by chemical grafting a macrocyclic ether receptor to monodisperse porous polymer particles (MPPPs) for strontium adsorption. Meanwhile, a counterpart material (Crown@MPPPs) with the receptor molecules immobilized to the MPPPs substrate by physical impregnation was prepared. To investigate how the immobilization manner and distribution of the receptors influence the adsorption ability, a comparative study on the adsorption behaviour of the two materials towards Sr(II) in HNO3 media was accomplished. Due to the shorter diffusion path and covalently-bonded structure, Crown-g-MPPPs showed faster adsorption kinetics and better stability for cycle use. While Crown@MPPPs had the advantages of facile synthesis and higher adsorption capacity, owing to the absence of conformational constraint to form complexation with Sr(II). Kinetic functions (Lagergren pseudo-first-order/pseudo-second-order functions) and adsorption isotherm models (Langmuir/Freundlich models) were used to fit the experimental data and examine the adsorption mechanism. On this basis, a chromatographic process was proposed by using Crown@MPPPs for an effective separation of Sr(II) (91%) in simulated high level liquid waste (HLLW). Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Synthesis and Characterization of Molecular Imprinting Polymer Microspheres of Piperine: Extraction of Piperine from Spiked Urine

    Directory of Open Access Journals (Sweden)

    Rachel Marcella Roland

    2016-01-01

    Full Text Available Molecularly imprinted polymer (MIP microspheres for Piperine were synthesized by precipitation polymerization with a noncovalent approach. In this research Piperine was used as a template, acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, and 2,2′-azobisisobutyronitrile (AIBN as an initiator and acetonitrile as a solvent. The imprinted and nonimprinted polymer particles were characterized by using Fourier transform infrared spectroscopy (FT-IR and Scanning Electron Microscopy (SEM. The synthesized polymer particles were further evaluated for their rebinding efficiency by batch binding assay. The highly selected imprinted polymer for Piperine was MIP 3 with a composition (molar ratio of 0.5 : 3 : 8, template : monomer : cross-linker, respectively. The MIP 3 exhibits highest binding capacity (84.94% as compared to other imprinted and nonimprinted polymers. The extraction efficiency of highly selected imprinted polymer of Piperine from spiked urine was above 80%.

  13. Experiments with polymer coated microspheres irradiated by the Shiva laser system

    International Nuclear Information System (INIS)

    Auerbach, J.M.; Manes, K.R.; Matthews, D.L.

    1979-01-01

    Polymer coated spherical targets have been irradiated by the Shiva laser system in an effort to compress the contained 10 mg/cc DT fuel to super liquid densities. Glass microspheres of 140 μm ID and 5 μm wall thickness with polymer coatings 15 μm to 100 μm thick have been irradiated with laser pulses of 4 kilojoules in 200 psec FWHM. Target performance was diagnosed with neutron yield measurements, radiochemistry, Argon line imaging, and x-ray imaging techniques. Ball in plate targets achieved greater implosion symmetry than free-standing ball targets. With yields of 10 7 to 10 8 neutrons, targets reached DT fuel compressions of several times liquid density

  14. Evaluation of poly(ethylene glycol)-coated monodispersed magnetic poly(2-hydroxyethyl methacrylate) and poly(glycidyl methacrylate) microspheres by PCR

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Hlídková, Helena; Trachtová, Š.; Šlouf, Miroslav; Rittich, B.; Španová, A.

    2015-01-01

    Roč. 68, July (2015), s. 687-696 ISSN 0014-3057 R&D Projects: GA ČR GAP206/12/0381; GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : magnetic microspheres * poly(ethylene glycol) * real-time PCR Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.485, year: 2015

  15. Immunocapture of CD133-positive cells from human cancer cell lines by using monodisperse magnetic poly(glycidyl methacrylate) microspheres containing amino groups

    Czech Academy of Sciences Publication Activity Database

    Kuan, W.-C.; Horák, Daniel; Plichta, Zdeněk; Lee, W.-C.

    2014-01-01

    Roč. 34, 1 January (2014), s. 193-200 ISSN 0928-4931 R&D Projects: GA ČR GCP207/12/J013 Institutional support: RVO:61389013 Keywords : magnetic * poly(glycidyl methacrylate) * microspheres Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.088, year: 2014

  16. Use of specific polysaccharide-immobilized monodisperse poly(glycidyl methacrylate) core-silica shell microspheres for affinity purification of lectins

    Czech Academy of Sciences Publication Activity Database

    Antonyuk, V.; Grama, Silvia; Plichta, Zdeněk; Magorivska, I.; Horák, Daniel; Stoika, R.

    2015-01-01

    Roč. 29, č. 5 (2015), s. 783-787 ISSN 0269-3879 Institutional support: RVO:61389013 Keywords : polysaccharide-immobilized microspheres * core-silica shell with amino groups * yeast mannan Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.729, year: 2015

  17. Thermal evolution of structure and photocatalytic activity in polymer microsphere templated TiO{sub 2} microbowls

    Energy Technology Data Exchange (ETDEWEB)

    Erdogan, Deniz Altunoz; Polat, Meryem [Department of Chemistry, Bilkent University, 06800 Ankara (Turkey); Garifullin, Ruslan; Guler, Mustafa O. [Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara (Turkey); Ozensoy, Emrah, E-mail: ozensoy@fen.bilkent.edu.tr [Department of Chemistry, Bilkent University, 06800 Ankara (Turkey)

    2014-07-01

    Polystyrene cross-linked divinyl benzene (PS-co-DVB) microspheres were used as an organic template in order to synthesize photocatalytic TiO{sub 2} microspheres and microbowls. Photocatalytic activity of the microbowl surfaces were demonstrated both in the gas phase via photocatalytic NO(g) oxidation by O{sub 2}(g) as well as in the liquid phase via Rhodamine B degradation. Thermal degradation mechanism of the polymer template and its direct influence on the TiO{sub 2} crystal structure, surface morphology, composition, specific surface area and the gas/liquid phase photocatalytic activity data were discussed in detail. With increasing calcination temperatures, spherical polymer template first undergoes a glass transition, covering the TiO{sub 2} film, followed by the complete decomposition of the organic template to yield TiO{sub 2} exposed microbowl structures. TiO{sub 2} microbowl systems calcined at 600 °C yielded the highest per-site basis photocatalytic activity. Crystallographic and electronic properties of the TiO{sub 2} microsphere surfaces as well as their surface area play a crucial role in their ultimate photocatalytic activity. It was demonstrated that the polymer microsphere templated TiO{sub 2} photocatalysts presented in the current work offer a promising and a versatile synthetic platform for photocatalytic DeNO{sub x} applications for air purification technologies.

  18. Magnetic poly(glycidyl methacrylate) microspheres for protein capture.

    Science.gov (United States)

    Koubková, Jana; Müller, Petr; Hlídková, Helena; Plichta, Zdeněk; Proks, Vladimír; Vojtěšek, Bořivoj; Horák, Daniel

    2014-09-25

    The efficient isolation and concentration of protein antigens from complex biological samples is a critical step in several analytical methods, such as mass spectrometry, flow cytometry and immunochemistry. These techniques take advantage of magnetic microspheres as immunosorbents. The focus of this study was on the development of new superparamagnetic polymer microspheres for the specific isolation of the tumor suppressor protein p53. Monodisperse macroporous poly(glycidyl methacrylate) (PGMA) microspheres measuring approximately 5 μm and containing carboxyl groups were prepared by multistep swelling polymerization of glycidyl methacrylate (GMA), 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA) and ethylene dimethylacrylate (EDMA) as a crosslinker in the presence of cyclohexyl acetate as a porogen. To render the microspheres magnetic, iron oxide was precipitated within their pores; the Fe content in the particles received ∼18 wt%. Nonspecific interactions between the magnetic particles and biological media were minimized by coating the microspheres with poly(ethylene glycol) (PEG) terminated by carboxyl groups. The carboxyl groups of the magnetic PGMA microspheres were conjugated with primary amino groups of mouse monoclonal DO-1 antibody using conventional carbodiimide chemistry. The efficiency of protein p53 capture and the degree of nonspecific adsorption on neat and PEG-coated magnetic microspheres were determined by western blot analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Albumin-coated monodisperse magnetic poly(glycidyl methacrylate) microspheres with immobilized antibodies: application to the capture of epithelial cancer cells

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Svobodová, Z.; Autebert, J.; Coudert, B.; Plichta, Zdeněk; Královec, K.; Bílková, Z.; Viovy, J.-L.

    101A, č. 1 (2013), s. 23-32 ISSN 1549-3296 R&D Projects: GA ČR GA203/09/0857; GA ČR GCP207/12/J013; GA MŠk 7E09109 EU Projects: European Commission(XE) 228980 - CAMINEMS Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : magnetism * microsphere * cells Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.841, year: 2013

  20. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide).

    Science.gov (United States)

    Lin, Dingchang; Liu, Wei; Liu, Yayuan; Lee, Hye Ryoung; Hsu, Po-Chun; Liu, Kai; Cui, Yi

    2016-01-13

    High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer-ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociation can also be achieved. All of these lead to good ionic conductivity (1.2 × 10(-3) S cm(-1) at 60 °C, 4.4 × 10(-5) S cm(-1) at 30 °C). At the same time, largely extended electrochemical stability window up to 5.5 V can be observed. We further demonstrated all-solid-state lithium batteries showing excellent rate capability as well as good cycling performance.

  1. Monodisperse magnetic poly(glycidyl methacrylate) microspheres for isolation of autoantibodies with affinity for the 46 kDa form of unconventional Myo1C present in autoimmune patients

    Czech Academy of Sciences Publication Activity Database

    Zasońska, Beata Anna; Hlídková, Helena; Petrovský, Eduard; Myronovskij, S.; Nehrych, T.; Negrych, N.; Shorobura, M.; Antonyuk, V.; Stoika, R.; Kit, Y.; Horák, Daniel

    2018-01-01

    Roč. 185, č. 5 (2018), s. 1-7, č. článku 262. ISSN 0026-3672 R&D Projects: GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:67985530 Keywords : magnetic microspheres * functionalization * affinity chromatography Subject RIV: CD - Macromolecular Chemistry; DE - Earth Magnetism, Geodesy, Geography (GFU-E) OBOR OECD: Polymer science; Physical geography (GFU-E) Impact factor: 4.580, year: 2016

  2. Surface modification of imprinted polymer microspheres with ultrathin hydrophilic shells to improve selective recognition of glutathione in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Song, Renyuan, E-mail: songrenyuan0726@163.com; Hu, Xiaoling; Guan, Ping; Li, Ji; Du, Chunbao; Qian, Liwei; Wang, Chaoli

    2016-03-01

    A universal, effective approach addressing the classical limitations of hydrophobic molecularly imprinted polymer (MIP) microspheres was described. Two water-compatible MIP microspheres with ultrathin hydrophilic shells were synthesized by controllable surface-graft polymerization using a charged monomer (methacrylic acid) and uncharged monomer (N-isopropylacrylamide) as the hydrophilic functional monomers for the recognition of glutathione in the aqueous medium. The morphological and chemical characteristics of the as-prepared water-compatible MIP microspheres were investigated by scanning electron microscopy, Fourier transform infrared spectroscopy and contact angle measurements. Their selective recognition properties were investigated by static binding tests and compared with those of the ungrafted MIP microspheres. The results of this study showed that the both as-prepared water-compatible MIP microspheres effectively decreased non-specific binding and enhanced the imprinting factor significantly, and the water-compatible MIP microspheres prepared using N-isopropylacrylamide as monomer exhibited a more remarkable recognition property. In addition, the thickness of surface-grafted hydrophilic layer was well controlled by adjusting the irradiation time to obtain the excellent recognition property. Finally, the applicability of the as-prepared water-compatible MIP microspheres as solid-phase extraction materials was investigated by competitive binding tests using a mixture of glutathione and its analogs. - Highlights: • Ultrathin hydrophilic shell was synthesized by controllable SIP approach. • Low nonspecific binding, high imprinting factor and selectivity were achieved. • Value of imprinting factor was controlled by adjusting irradiation time. • Selective solid-phase extraction of glutathione from a mixed solution of peptides.

  3. An affine microsphere approach to modeling strain-induced crystallization in rubbery polymers

    Science.gov (United States)

    Nateghi, A.; Dal, H.; Keip, M.-A.; Miehe, C.

    2018-01-01

    Upon stretching a natural rubber sample, polymer chains orient themselves in the direction of the applied load and form crystalline regions. When the sample is retracted, the original amorphous state of the network is restored. Due to crystallization, properties of rubber change considerably. The reinforcing effect of the crystallites stiffens the rubber and increases the crack growth resistance. It is of great importance to understand the mechanism leading to strain-induced crystallization. However, limited theoretical work has been done on the investigation of the associated kinetics. A key characteristic observed in the stress-strain diagram of crystallizing rubber is the hysteresis, which is entirely attributed to strain-induced crystallization. In this work, we propose a micromechanically motivated material model for strain-induced crystallization in rubbers. Our point of departure is constructing a micromechanical model for a single crystallizing polymer chain. Subsequently, a thermodynamically consistent evolution law describing the kinetics of crystallization on the chain level is proposed. This chain model is then incorporated into the affine microsphere model. Finally, the model is numerically implemented and its performance is compared to experimental data.

  4. Optimization of doxorubicin loading for superabsorbent polymer microspheres: in vitro analysis.

    Science.gov (United States)

    Liu, David M; Kos, Sebastian; Buczkowski, Andrzej; Kee, Stephen; Munk, Peter L; Klass, Darren; Wasan, Ellen

    2012-04-01

    This study was designed to establish the ability of super-absorbent polymer microspheres (SAP) to actively uptake doxorubicin and to establish the proof of principle of SAP's ability to phase transfer doxorubicin onto the polymer matrix and to elute into buffer with a loading method that optimizes physical handling and elution characteristics. Phase I: 50-100 μm SAP subject to various prehydration methods (normal saline 10 cc, hypertonic saline 4 cc, iodinated contrast 10 cc) or left in their dry state, and combined with 50 mg of clinical grade lyophilized doxorubicin reconstituted with various methods (normal saline 10 cc and 25 cc, sterile water 4 cc, iodinated contrast 5 cc) were placed in buffer and assessed based on loading, handling, and elution utilizing high-performance liquid chromatography (HPLC). Phase II: top two performing methods were subject to loading of doxorubicin (50, 75, 100 mg) in a single bolus (group A) or as a serial loading method (group B) followed by measurement of loading vs. time and elution vs. time. Phase I revealed the most effective loading mechanisms and easiest handling to be dry (group A) vs. normal saline prehydrated (group B) SAP with normal saline reconstituted doxorubicin (10 mg/mL) with loading efficiencies of 83.1% and 88.4%. Phase II results revealed unstable behavior of SAP with 100 mg of doxorubicin and similar loading/elution profiles of dry and prehydrated SAP, with superior handling characteristics of group B SAP at 50 and 75 mg. SAP demonstrates the ability to load and bulk phase transfer doxorubicin at 50 and 75 mg with ease of handling and optimal efficiency through dry loading of SAP.

  5. Optimization of Doxorubicin Loading for Superabsorbent Polymer Microspheres: in vitro Analysis

    International Nuclear Information System (INIS)

    Liu, David M.; Kos, Sebastian; Buczkowski, Andrzej; Kee, Stephen; Munk, Peter L.; Klass, Darren; Wasan, Ellen

    2012-01-01

    Purpose: This study was designed to establish the ability of super-absorbent polymer microspheres (SAP) to actively uptake doxorubicin and to establish the proof of principle of SAP’s ability to phase transfer doxorubicin onto the polymer matrix and to elute into buffer with a loading method that optimizes physical handling and elution characteristics. Methods: Phase I: 50–100 μm SAP subject to various prehydration methods (normal saline 10 cc, hypertonic saline 4 cc, iodinated contrast 10 cc) or left in their dry state, and combined with 50 mg of clinical grade lyophilized doxorubicin reconstituted with various methods (normal saline 10 cc and 25 cc, sterile water 4 cc, iodinated contrast 5 cc) were placed in buffer and assessed based on loading, handling, and elution utilizing high-performance liquid chromatography (HPLC). Phase II: top two performing methods were subject to loading of doxorubicin (50, 75, 100 mg) in a single bolus (group A) or as a serial loading method (group B) followed by measurement of loading vs. time and elution vs. time. Results: Phase I revealed the most effective loading mechanisms and easiest handling to be dry (group A) vs. normal saline prehydrated (group B) SAP with normal saline reconstituted doxorubicin (10 mg/mL) with loading efficiencies of 83.1% and 88.4%. Phase II results revealed unstable behavior of SAP with 100 mg of doxorubicin and similar loading/elution profiles of dry and prehydrated SAP, with superior handling characteristics of group B SAP at 50 and 75 mg. Conclusions: SAP demonstrates the ability to load and bulk phase transfer doxorubicin at 50 and 75 mg with ease of handling and optimal efficiency through dry loading of SAP.

  6. Preparation and thermodynamic stability of micron-sized, monodisperse composite polymer particles of disc-like shapes by seeded dispersion polymerization.

    Science.gov (United States)

    Fujibayashi, Teruhisa; Okubo, Masayoshi

    2007-07-17

    Micron-sized, monodisperse composite polymer particles having "disc-like" and "polyhedral" shapes were prepared by seeded dispersion polymerization of 2-ethylhexylmethacrylate (EHMA) with 2.67-mum-sized polystyrene (PS) seed particles in methanol/water media in the presence of droplets of various saturated hydrocarbons and evaporation of the hydrocarbon after the polymerization. Such nonspherical shapes were based on the volume reduction due to the evaporation. The primary factors influencing the particle shape seemed to be the absorption rate of the hydrocarbon into the resulting PS/poly(EHMA)/hydrocarbon composite particles during the polymerization, which affected the viscosities and the volumes of the PS and poly(EHMA) phases. It was found that the morphological development during the polymerization was retarded at "hamburger-like" morphology, which is a precursor of the disc-like particle, although this morphology is a thermodynamically metastable state.

  7. Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery.

    Science.gov (United States)

    Liu, Dongfei; Zhang, Hongbo; Herranz-Blanco, Bárbara; Mäkilä, Ermei; Lehto, Vesa-Pekka; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-05-28

    We report an advanced drug delivery platform for combination chemotherapy by concurrently incorporating two different drugs into microcompoistes with ratiometric control over the loading degree. Atorvastatin and celecoxib were selected as model drugs due to their different physicochemical properties and synergetic effect on colorectal cancer prevention and inhibition. To be effective in colorectal cancer prevention and inhibition, the produced microcomposite contained hypromellose acetate succinate, which is insoluble in acidic conditions but highly dissolving at neutral or alkaline pH conditions. Taking advantage of the large pore volume of porous silicon (PSi), atorvastatin was firstly loaded into the PSi matrix, and then encapsulated into the pH-responsive polymer microparticles containing celecoxib by microfluidics in order to obtain multi-drug loaded polymer/PSi microcomposites. The prepared microcomposites showed monodisperse size distribution, multistage pH-response, precise ratiometric controlled loading degree towards the simultaneously loaded drug molecules, and tailored release kinetics of the loaded cargos. This attractive microcomposite platform protects the payloads from being released at low pH-values, and enhances their release at higher pH-values, which can be further used for colon cancer prevention and treatment. Overall, the pH-responsive polymer/PSi-based microcomposite can be used as a universal platform for the delivery of different drug molecules for combination therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Polymer blends used to develop felodipine-loaded hollow microspheres for improved oral bioavailability.

    Science.gov (United States)

    Pi, Chao; Feng, Ting; Liang, Jing; Liu, Hao; Huang, Dongmei; Zhan, Chenglin; Yuan, Jiyuan; Lee, Robert J; Zhao, Ling; Wei, Yumeng

    2018-06-01

    Felodipine (FD) has been widely used in anti-hypertensive treatment. However, it has extremely low aqueous solubility and poor bioavailability. To address these problems, FD hollow microspheres as multiple-unit dosage forms were synthesized by a solvent diffusion evaporation method. Particle size of the hollow microspheres, types of ethylcellulose (EC), amounts of EC, polyvinyl pyrrolidone (PVP) and FD were investigated based on an orthogonal experiment of three factors and three levels. In addition, the release kinetics in vitro and pharmacokinetics in beagle dogs of the optimized FD hollow microspheres was investigated and compared with Plendil (commercial FD sustained-release tablets) as a single-unit dosage form. Results showed that the optimal formulation was composed of EC 10 cp :PVP:FD (0.9:0.16:0.36, w/w). The FD hollow microspheres were globular with a hollow structure and have high drug loading (17.69±0.44%) and floating rate (93.82±4.05%) in simulated human gastric fluid after 24h. Pharmacokinetic data showed that FD hollow microspheres exhibited sustained-release behavior and significantly improved relative bioavailability of FD compared with the control. Pharmacodynamic study showed that the FD hollow microspheres could effectively lower blood pressure. Therefore, these findings demonstrated that the hollow microspheres were an effective sustained-release delivery system for FD. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. CO2-assisted high pressure homogenization: a solvent-free process for polymeric microspheres and drug-polymer composites.

    Science.gov (United States)

    Kluge, Johannes; Mazzotti, Marco

    2012-10-15

    The study explores the enabling role of near-critical CO(2) as a reversible plasticizer in the high pressure homogenization of polymer particles, aiming at their comminution as well as at the formation of drug-polymer composites. First, the effect of near-critical CO(2) on the homogenization of aqueous suspensions of poly lactic-co-glycolic acid (PLGA) was investigated. Applying a pressure drop of 900 bar and up to 150 passes across the homogenizer, it was found that particles processed in the presence of CO(2) were generally of microspherical morphology and at all times significantly smaller than those obtained in the absence of a plasticizer. The smallest particles, exhibiting a median x(50) of 1.3 μm, were obtained by adding a small quantity of ethyl acetate, which exerts on PLGA an additional plasticizing effect during the homogenization step. Further, the study concerns the possibility of forming drug-polymer composites through simultaneous high pressure homogenization of the two relevant solids, and particularly the effect of near-critical CO(2) on this process. Therefore, PLGA was homogenized together with crystalline S-ketoprofen (S-KET), a non-steroidal anti-inflammatory drug, at a drug to polymer ratio of 1:10, a pressure drop of 900 bar and up to 150 passes across the homogenizer. When the process was carried out in the presence of CO(2), an impregnation efficiency of 91% has been reached, corresponding to 8.3 wt.% of S-KET in PLGA; moreover, composite particles were of microspherical morphology and significantly smaller than those obtained in the absence of CO(2). The formation of drug-polymer composites through simultaneous homogenization of the two materials is thus greatly enhanced by the presence of CO(2), which increases the efficiency for both homogenization and impregnation. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Photochemical decoration of gold nanoparticles on polymer stabilized magnetic microspheres for determination of adenine by surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Alula, Melisew Tadele; Yang, Jyisy

    2015-01-01

    Magnetic microspheres decorated with gold nanoparticles (AuNPs) were prepared and used for the determination of adenine by surface-enhanced Raman scattering (SERS). Magnetic particles were first synthesized by coprecipitation of solutions containing iron(II) and iron(III) ions with ammonium hydroxide. Subsequently, the magnetic particles were suspended into a solution of poly(divinylbenzene-co-methyl methacrylate) to yield polymer-stabilized magnetic microspheres. These were further decorated with AuNPs via a new photochemical reduction method. The magnetic microspheres were characterized by XRD patterns and SEM images. They are shown to represent highly SERS-active substrates by giving an enhancement by almost 7 orders of magnitude compared to conventional Raman spectroscopy. Several factors that affect the photochemical reduction to form the AuNPs were examined. It is found that the concentration of gold ion, UV irradiation time, and citrate concentration have more impact on the reaction rate than on the morphologies of the AuNPs. The gold-decorated magnetic microspheres are highly stable in aqueous solution and capable of concentrating nucleobases. A linear response of the SERS signal to adenine in concentrations up to 10 μM is found, with a linear regression coefficient of 0.997. The detection limit is estimated to a few hundreds of nM (at an SNR of 3). Based on its specific Raman peak at 734 cm −1 , adenine can be selectively determined without interference by other nucleobases, and a recovery higher than 95 % could be obtained. (author)

  11. Removal of Chromium(VI from Aqueous Solutions Using Fe3O4 Magnetic Polymer Microspheres Functionalized with Amino Groups

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2015-12-01

    Full Text Available Magnetic polymer microspheres (MPMs using glycidylmethacrylate (GMA as a functional monomer were synthesized in the presence of Fe3O4 nanoparticles via dispersion polymerization. After polymerization, the magnetic polymer microbeads were modified with ethylenediamine (EDA. The obtained ethylenediamine-functionalized magnetic microspheres (EDA-MPMs were characterized by scanning electron microscope (SEM, X-ray diffraction (XRD, vibrating-sample magnetometer (VSM and Fourier transform infrared (FT-IR spectroscopy. Then the EDA-MPMs were applied as adsorbents for the removal of Cr(VI from aqueous solution. Langmuir equation was appropriate to describe the experimental data. The maximum adsorption capacities obtained from the Langmuir model were 236.9, 242.1 and 253.2 mg/g at 298, 308 and 318 K, respectively. The Cr(VI adsorption equilibrium was established within 120 min and the adsorption kinetics was compatibly described by the pseudo-second order equation. The thermodynamic parameters (ΔG°, ΔH°, ΔS° of the sorption process revealed that the adsorption was spontaneous and was an endothermic process. The regeneration study demonstrated that the EDA-MPMs could be repeatedly utilized with no significant loss of adsorption efficiency.

  12. Monodisperse, molecularly imprinted polymers for creatinine by modified precipitation polymerization and their applications to creatinine assays for human serum and urine.

    Science.gov (United States)

    Miura, Chitose; Funaya, Noriko; Matsunaga, Hisami; Haginaka, Jun

    2013-11-01

    Molecularly imprinted polymers (MIPs) for creatinine were prepared by modified precipitation polymerization using methacrylic acid as a functional monomer and divinylbenzene as a crosslinker. The prepared MIPs were monodispersed with a narrow particle size distribution. Binding experiments and Scatchard analyses revealed that two classes of binding sites, high- and low-affinity sites, were formed on the MIPs. The retention and molecular-recognition properties of the MIPs were evaluated by hydrophilic interaction chromatography using a mixture of ammonium acetate buffer and acetonitrile as a mobile phase. With an increase of acetonitrile content, the retention factor of creatinine was increased on the MIP. In addition to shape recognition, hydrophilic interactions seemed to enhance the recognition of creatinine on the MIP. The MIPs' molecular-recognition ability was specific for creatinine; the structurally related compounds such as hydantoin, 1-methylhydantoin, 2-pyrrolidone, N-hydroxysuccinimide and creatine were not recognized. Furthermore, the creatinine concentrations in human serum and urine were successfully determined by direct injection of the deproteinized serum and diluted urine samples onto the MIP. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Experimental mixture design as a tool for the synthesis of antimicrobial selective molecularly imprinted monodisperse microbeads.

    Science.gov (United States)

    Benito-Peña, Elena; Navarro-Villoslada, Fernando; Carrasco, Sergio; Jockusch, Steffen; Ottaviani, M Francesca; Moreno-Bondi, Maria C

    2015-05-27

    The effect of the cross-linker on the shape and size of molecular imprinted polymer (MIP) beads prepared by precipitation polymerization has been evaluated using a chemometric approach. Molecularly imprinted microspheres for the selective recognition of fluoroquinolone antimicrobials were prepared in a one-step precipitation polymerization procedure using enrofloxacin (ENR) as the template molecule, methacrylic acid as functional monomer, 2-hydroxyethyl methacrylate as hydrophilic comonomer, and acetonitrile as the porogen. The type and amount of cross-linker, namely ethylene glycol dimethacrylate, divinylbenzene or trimethylolpropane trimethacrylate, to obtain monodispersed MIP spherical beads in the micrometer range was optimized using a simplex lattice design. Particle size and morphology were assessed by scanning electron microscopy, dynamic light scattering, and nitrogen adsorption measurements. Electron paramagnetic resonance spectroscopy in conjunction with a nitroxide as spin probe revealed information about the microviscosity and polarity of the binding sites in imprinted and nonimprinted polymer beads.

  14. Microencapsulation of chemotherapeutics into monodisperse and tunable biodegradable polymers via electrified liquid jets: control of size, shape, and drug release.

    Science.gov (United States)

    Fattahi, Pouria; Borhan, Ali; Abidian, Mohammad Reza

    2013-09-06

    This paper describes microencapsulation of antitumor agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, Carmustine) into biodegradable polymer poly(lactic-co-glycolic) acid (PLGA) using an electrojetting technique. The resulting BCNU-loaded PLGA microcapsules have significantly higher drug encapsulation efficiency, more tunable drug loading capacity, and (3) narrower size distribution than those generated using other encapsulation methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Morphogenesis and crystallization of ZnS microspheres by a soft template-assisted hydrothermal route: synthesis, growth mechanism, and oxygen sensitivity.

    Science.gov (United States)

    Yang, Liangbao; Han, Jun; Luo, Tao; Li, Minqiang; Huang, Jiarui; Meng, Fanli; Liu, Jinhuai

    2009-01-05

    Almost monodisperse ZnS microspheres have been synthesized on a large scale by a hydrothermal route, in which tungstosilicate acid (TSA) was used as a soft template. By controlling the reaction conditions, such as reaction temperature, pH value of the solutions, and the reaction medium, almost monodisperse microspheres can be synthesized. The structure of these microspheres is sensitive to the reaction conditions. The growth mechanism of these nearly monodisperse microspheres was examined. Oxygen sensing is realized from ZnS microspheres. The current through the ZnS microspheres under UV illumination increases as the oxygen concentration decreases.

  16. Effect of natural polymers on the survival of Lactobacillus casei encapsulated in alginate microspheres.

    Science.gov (United States)

    Rodrigues, Fábio J; Omura, Michele H; Cedran, Marina F; Dekker, Robert F H; Barbosa-Dekker, Aneli M; Garcia, Sandra

    2017-08-01

    Linseed and okra mucilages, the fungal exopolysaccharide botryosphaeran, and commercial fructo-oligosaccharides (FOS) were used to microencapsulate Lactobacillus casei LC-01 and L. casei BGP 93 in sodium alginate microspheres by the extrusion technique in calcium chloride. The addition of carbohydrate biopolymers from linseed, okra and the fungal exocellular (1 → 3)(1 → 6)-β-D-glucan, named botryosphaeran provided higher encapsulation efficiency (EE) (>93% and >86%) for L. casei LC 01 and L. casei BGP 93, respectively. The use of linseed, okra and botryosphaeran improved the stability of probiotics encapsulated in the microspheres during the storage period over 15 d at 5 °C when compared to microspheres formulated with sodium alginate alone as the main encapsulating agent (p ≤ 0.05). In in vitro gastrointestinal simulation tests, the use of FOS combined with linseed mucilage was shown to be more effective in protecting L. casei cells LC-01 and L. casei BGP 93.

  17. Embedding of Hollow Polymer Microspheres with Hydrophilic Shell in Nafion Matrix as Proton and Water Micro-Reservoir

    Directory of Open Access Journals (Sweden)

    Zhaolin Liu

    2012-08-01

    Full Text Available Assimilating hydrophilic hollow polymer spheres (HPS into Nafion matrix by a loading of 0.5 wt % led to a restructured hydrophilic channel, composed of the pendant sulfonic acid groups (–SO3H and the imbedded hydrophilic hollow spheres. The tiny hydrophilic hollow chamber was critical to retaining moisture and facilitating proton transfer in the composite membranes. To obtain such a tiny cavity structure, the synthesis included selective generation of a hydrophilic polymer shell on silica microsphere template and the subsequent removal of the template by etching. The hydrophilic HPS (100–200 nm possessed two different spherical shells, the styrenic network with pendant sulfonic acid groups and with methacrylic acid groups, respectively. By behaving as microreservoirs of water, the hydrophilic HPS promoted the Grotthus mechanism and, hence, enhanced proton transport efficiency through the inter-sphere path. In addition, the HPS with the –SO3H borne shell played a more effective role than those with the –CO2H borne shell in augmenting proton transport, in particular under low humidity or at medium temperatures. Single H2-PEMFC test at 70 °C using dry H2/O2 further verified the impactful role of hydrophilic HPS in sustaining higher proton flux as compared to pristine Nafion membrane.

  18. Synthesis of manganese coordination polymer microspheres for lithium-ion batteries with good cycling performance

    International Nuclear Information System (INIS)

    Fei, Hailong; Liu, Xin; Li, Zhiwei; Feng, Wenjing

    2015-01-01

    Highlights: • We achieve controllable synthesis of manganese 2,5-thiophene dicarboxylate microspheres with DMF and CTABr. • We perform research on changes in morphologies and crystalline structure. • It is a new anode material for lithium-ion batteries with high capacity and good cycle stability. - Abstract: A simple and versatile method for preparation of novel manganese 2,5-thiophene dicarboxylate microspheres is developed via a surfactant-assisted solvo-thermal route, which are found to be a new high-energy anode material for lithium-ion batteries. It shows better cycling performance and higher discharge capacity than its counterpart of irregular shapes. A reversible capacity was achieved as high as 645.7 mA h g −1 after 250 cycles at a current density of 400 mA g −1 . Furthermore, the coulombic efficiency can be close to 100% even after 650 charge-discharge cycles at a current density of 500 mA g −1

  19. Synthesis of caffeic acid molecularly imprinted polymer microspheres and high-performance liquid chromatography evaluation of their sorption properties.

    Science.gov (United States)

    Valero-Navarro, Angel; Gómez-Romero, María; Fernández-Sánchez, Jorge F; Cormack, Peter A G; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2011-10-14

    In the current work, a molecularly imprinted polymer (MIP) has been synthesised and used to enable the extraction of a naturally-occurring antioxidant from complex media. More specifically, we describe the first example of a caffeic acid (CA) MIP which has been synthesised in the form of well-defined polymer microspheres, and its use for the extraction of CA from fruit juice sample. The CA MIP was synthesised by precipitation polymerisation using 4-vinylpyridine as functional monomer, divinylbenzene-80 as crosslinker and acetonitrile:toluene (75/25, v/v) as porogen. The particle sizing and morphological characterisation of the polymers was carried out by means of scanning electron microscopy (narrow particle size distribution; ∼5 and 1.5 μm particle diameters for the MIP and NIP [non-imprinted polymer], respectively) and nitrogen sorption porosimetry (specific surface areas of 340 and 350 m(2)g(-1), and specific pore volumes of 0.17 and 0.19 cm(3)g(-1) for the MIP and NIP, respectively). The polymers were evaluated further by batch rebinding experiments, and from the derived isotherms their binding capacity and binding strength were determined (number of binding sites (N(K))=0.6 and 0.3 mmol g(-1) for the MIP and NIP, respectively, and apparent average adsorption constant (K(N))=10.0 and 1.6L mmol(-1) for the MIP and NIP, respectively). To evaluate the molecular recognition character of the MIP it was packed into a stainless steel column (50 mm × 4.6 mm i.d.) and evaluated as an HPLC-stationary phase. The mobile phase composition, flow rate, and the elution profile were then optimised in order to improve the peak shape without negatively affecting the imprinting factor (IF). Very interesting, promising properties were revealed. The imprinting factor (IF) under the optimised conditions was 11.9. Finally, when the imprinted LC column was used for the selective recognition of CA over eight related compounds, very good selectivity was obtained. This outcome enabled

  20. Characterization and Compatibility Studies of Different Rate Retardant Polymer Loaded Microspheres by Solvent Evaporation Technique: In Vitro-In Vivo Study of Vildagliptin as a Model Drug

    Directory of Open Access Journals (Sweden)

    Irin Dewan

    2015-01-01

    Full Text Available The present study has been performed to microencapsulate the antidiabetic drug of Vildagliptin to get sustained release of drug. The attempt of this study was to formulate and evaluate the Vildagliptin loaded microspheres by emulsion solvent evaporation technique using different polymers like Eudragit RL100, Eudragit RS100, Ethyl cellulose, and Methocel K100M. In vitro dissolution studies were carried out in 0.1 N HCl for 8 hours according to USP paddle method. The maximum and minimum drug release were observed as 92.5% and 68.5% from microspheres, respectively, after 8 hours. Release kinetics were studied in different mathematical release models to find out the linear relationship and release rate of drug. The SEM, DSC, and FTIR studies have been done to confirm good spheres and smooth surface as well as interaction along with drug and polymer. In this experiment, it is difficult to explain the exact mechanism of drug release. But the drug might be released by both diffusion and erosion as the correlation coefficient (R2 best fitted with Korsmeyer model and release exponent (n was 0.45–0.89. At last it can be concluded that all in vitro and in vivo experiments exhibited promising result to treat type II diabetes mellitus with Vildagliptin microspheres.

  1. Controlled release system for ametryn using polymer microspheres: Preparation, characterization and release kinetics in water

    International Nuclear Information System (INIS)

    Grillo, Renato; Pereira, Anderson do Espirito Santo; Ferreira Silva de Melo, Nathalie; Porto, Raquel Martins; Feitosa, Leandro Oliveira; Tonello, Paulo Sergio; Dias Filho, Newton L.; Rosa, Andre Henrique; Lima, Renata; Fraceto, Leonardo Fernandes

    2011-01-01

    The purpose of this work was to develop a modified release system for the herbicide ametryn by encapsulating the active substance in biodegradable polymer microparticles produced using the polymers poly(hydroxybutyrate) (PHB) or poly(hydroxybutyrate-valerate) (PHBV), in order to both improve the herbicidal action and reduce environmental toxicity. PHB or PHBV microparticles containing ametryn were prepared and the efficiencies of herbicide association and loading were evaluated, presenting similar values of approximately 40%. The microparticles were characterized by scanning electron microscopy (SEM), which showed that the average sizes of the PHB and PHBV microparticles were 5.92 ± 0.74 μm and 5.63 ± 0.68 μm, respectively. The ametryn release profile was modified when it was encapsulated in the microparticles, with slower and more sustained release compared to the release profile of pure ametryn. When ametryn was associated with the PHB and PHBV microparticles, the amount of herbicide released in the same period of time was significantly reduced, declining to 75% and 87%, respectively. For both types of microparticle (PHB and PHBV) the release of ametryn was by diffusion processes due to anomalous transport (governed by diffusion and relaxation of the polymer chains), which did not follow Fick's laws of diffusion. The results presented in this paper are promising, in view of the successful encapsulation of ametryn in PHB or PHBV polymer microparticles, and indications that this system may help reduce the impacts caused by the herbicide, making it an environmentally safer alternative.

  2. Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples

    International Nuclear Information System (INIS)

    Yang, Jiajia; Li, Yun; Wang, Jincheng; Sun, Xiaoli; Cao, Rong; Sun, Hao; Huang, Chaonan; Chen, Jiping

    2015-01-01

    Highlights: • BPA imprinted polymer microspheres were prepared by Pickering emulsion polymerization. • Regular spherical shape and narrow diameter distribution. • Good specific adsorption capacity for BPA. • Good class-selectivity and clean-up efficiency for bisphenols in human urine under SPE mode. • Good recoveries and sensitivity for bisphenols using the MIPMS-SPE coupled with HPLC-DAD method. - Abstract: The bisphenol A (BPA) imprinted polymer microspheres were prepared by simple Pickering emulsion polymerization. Compared to traditional bulk polymerization, both high yields of polymer and good control of particle sizes were achieved. The characterization results of scanning electron microscopy and nitrogen adsorption–desorption measurements showed that the obtained molecularly imprinted polymer microsphere (MIPMS) particles possessed regular spherical shape, narrow diameter distribution (30–60 μm), a specific surface area (S BET ) of 281.26 m 2 g −1 and a total pore volume (V t ) of 0.459 cm 3 g −1 . Good specific adsorption capacity for BPA was obtained in the sorption experiment and good class selectivity for BPA and its seven structural analogs (bisphenol F, bisphenol B, bisphenol E, bisphenol AF, bisphenol S, bisphenol AP and bisphenol Z) was demonstrated by the chromatographic evaluation experiment. The MIPMS as solid-phase extraction (SPE) packing material was then evaluated for extraction and clean-up of these bisphenols (BPs) from human urine samples. An accurate and sensitive analytical method based on the MIPMS-SPE coupled with HPLC-DAD has been successfully established for simultaneous determination of eight BPs from human urine samples with detection limits of 1.2–2.2 ng mL −1 . The recoveries of BPs for urine samples at two spiking levels (100 and 500 ng mL −1 for each BP) were in the range of 81.3–106.7% with RSD values below 8.3%

  3. Nanostructured TiO2 microspheres for dye-sensitized solar cells employing a solid state polymer electrolyte

    International Nuclear Information System (INIS)

    Jung, Hun-Gi; Nagarajan, Srinivasan; Kang, Yong Soo; Sun, Yang-Kook

    2013-01-01

    Bimodal mesoporous, anatase TiO 2 microspheres with particle sizes ranging from 0.3 to 2 μm were synthesized using a facile solvothermal method. The photovoltaic performance of TiO 2 microspheres in dye-sensitized solar cells (DSSCs) using a solid state electrolyte was investigated. The solid state electrolyte DSSC device based on the TiO 2 microspheres exhibits an energy conversion efficiency of 4.2%, which is greater than that of commercial P25 TiO 2 (3.6%). The higher photocurrent density was primarily achieved as a result of the greater specific surface area and pore size, which resulted in an increase in the dye uptake of the TiO 2 microspheres and easy transport of solid electrolyte through mesopores. In addition, the greater electron lifetime and superior light scattering ability also enhanced the photovoltaic performance of the TiO 2 microsphere-based, solid state DSSCs

  4. Degradation and protein release properties of microspheres prepared from biodegradable poly(lactide-co-glycolide) and ABA triblock copolymers: influence of buffer media on polymer erosion and bovine serum albumin release.

    Science.gov (United States)

    Bittner, B; Witt, C; Mäder, K; Kissel, T

    1999-08-05

    The aim of the present study was to investigate the influence of the chemical insertion of poly(ethylene oxide), PEO, into a poly(lactide-co-glycolide), PLG, backbone on the mechanisms of in vitro degradation and erosion of the polymer. For this purpose microspheres prepared by a modified W/O/W double emulsion technique using ABA triblock copolymers, consisting of PLG A-blocks attached to central PEO B-blocks were compared with microspheres prepared from PLG. Due to their molecular architecture the ABA triblock copolymers differed in their erosion and degradation behavior from PLG. Degradation occurred faster in the ABA polymers by cleavage of ester bonds inside the polymer backbone. Even erosion was shown to start immediately after incubation in different buffer media. By varying pH and ionic strength of the buffer it was found that both mass loss and molecular weight decay were accelerated in alkaline and acidic pH in the case of the ABA triblock copolymers. Although the pH of the medium had a moderate influence on the degradation of PLG, the molecular weight decay was not accompanied by a mass loss during the observation time. In a second set of experiments we prepared bovine serum albumin, BSA, loaded microspheres from both polymers. The release of BSA from ABA microspheres under in vitro conditions parallels the faster swelling and erosion rates. This could be confirmed by electron paramagnetic resonance, EPR, measurements with spin labeled albumin where an influx of buffer medium into the ABA microspheres was already observed within a few minutes. In contrast, PLG microspheres revealed a burst release without any erosion. The current study shows that the environmental conditions affected the degradation and erosion of the pure polymer microspheres in the same way as the release of the model protein. This leads to the conclusion that the more favorable degradation profile of the ABA triblock copolymers was responsible for the improvement of the release profile.

  5. Selective removal of diclofenac from contaminated water using molecularly imprinted polymer microspheres

    International Nuclear Information System (INIS)

    Dai Chaomeng; Geissen, Sven-Uwe; Zhang Yalei; Zhang Yongjun; Zhou Xuefei

    2011-01-01

    A molecularly imprinted polymer (MIP) was synthesized by precipitation polymerization using diclofenac (DFC) as a template. Binding characteristics of the MIP were evaluated using equilibrium binding experiments. Compared to the non-imprinted polymer (NIP), the MIP showed an outstanding affinity towards DFC in an aqueous solution with a binding site capacity (Q max ) of 324.8 mg/g and a dissociation constant (K d ) of 3.99 mg/L. The feasibility of removing DFC from natural water by the MIP was demonstrated by using river water spiked with DFC. Effects of pH and humic acid on the selectivity and adsorption capacity of MIP were evaluated in detail. MIP had better selectivity and higher adsorption efficiency for DFC as compared to that of powdered activated carbon (PAC). In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance, which is a definite advantage over single-use activated carbon. - Highlights: → A MIP was synthesized by precipitation polymerization using DFC as template. → The MIP had better selectivity and higher adsorption efficiency for DFC. → The MIP is an effective method for selective removal of DFC from complex water. → MIP reusability is a definite advantage over single-use activated carbon. - A diclofenac molecularly imprinted polymer synthesized by precipitation polymerization was used for the selective removal of diclofenac from contaminated water.

  6. Selective removal of diclofenac from contaminated water using molecularly imprinted polymer microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Dai Chaomeng [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Department of Environmental Technology, Chair of Environmental Process Engineering, Technical University of Berlin, Berlin (Germany); Geissen, Sven-Uwe, E-mail: sven.geissen@tu-berlin.de [Department of Environmental Technology, Chair of Environmental Process Engineering, Technical University of Berlin, Berlin (Germany); Zhang Yalei, E-mail: zhangyalei@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhang Yongjun [Department of Environmental Technology, Chair of Environmental Process Engineering, Technical University of Berlin, Berlin (Germany); Zhou Xuefei [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China)

    2011-06-15

    A molecularly imprinted polymer (MIP) was synthesized by precipitation polymerization using diclofenac (DFC) as a template. Binding characteristics of the MIP were evaluated using equilibrium binding experiments. Compared to the non-imprinted polymer (NIP), the MIP showed an outstanding affinity towards DFC in an aqueous solution with a binding site capacity (Q{sub max}) of 324.8 mg/g and a dissociation constant (K{sub d}) of 3.99 mg/L. The feasibility of removing DFC from natural water by the MIP was demonstrated by using river water spiked with DFC. Effects of pH and humic acid on the selectivity and adsorption capacity of MIP were evaluated in detail. MIP had better selectivity and higher adsorption efficiency for DFC as compared to that of powdered activated carbon (PAC). In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance, which is a definite advantage over single-use activated carbon. - Highlights: > A MIP was synthesized by precipitation polymerization using DFC as template. > The MIP had better selectivity and higher adsorption efficiency for DFC. > The MIP is an effective method for selective removal of DFC from complex water. > MIP reusability is a definite advantage over single-use activated carbon. - A diclofenac molecularly imprinted polymer synthesized by precipitation polymerization was used for the selective removal of diclofenac from contaminated water.

  7. Observation of Intravascular Changes of Superabsorbent Polymer Microsphere (SAP-MS) with Monochromatic X-Ray Imaging

    International Nuclear Information System (INIS)

    Tanimoto, Daigo; Ito, Katsuyoshi; Yamamoto, Akira; Sone, Teruki; Kobatake, Makito; Tamada, Tsutomu; Umetani, Keiji

    2010-01-01

    This study was designed to evaluate the intravascular transformation behavior of superabsorbent polymer microsphere (SAP-MS) in vivo macroscopically by using monochromatic X-ray imaging and to quantitatively compare the expansion rate of SAP-MS among different kinds of mixtures. Fifteen rabbits were used for our study and transcatheter arterial embolization (TAE) was performed for their auricular arteries using monochromatic X-ray imaging. We used three kinds of SAP-MS (particle diameter 100-150 μm) mixture as embolic spherical particles: SAP-MS(H) absorbed with sodium meglumine ioxaglate (Hexabrix 320), SAP-MS(V) absorbed with isosmolar contrast medium (Visipaque 270), and SAP-MS(S) absorbed with 0.9% sodium saline. The initial volume of SAP-MS particles just after TAE and its final volume 10 minutes after TAE in the vessel were measured to calculate the expansion rate (ER) (n = 30). Intravascular behavior of SAP-MS particles was clearly observed in real time at monochromatic X-ray imaging. Averaged initial volumes of SAP-MS (H) (1.24 x 10 7 μm 3 ) were significantly smaller (p 7 μm 3 ) and SAP-MS (S) (5.85 x 10 7 μm 3 ). Averaged final volumes of SAP-MS (H) were significantly larger than averaged initial volumes (4.41 x 10 7 μm 3 vs. 1.24 x 10 7 μm 3 ; p < 0.0001, ER = 3.55). There were no significant difference between averaged final volumes and averaged initial volumes of SAP-MS (V) and SAP-MS (S). SAP-MS (H), which first travels distally, reaches to small arteries, and then expands to adapt to the vessel lumen, is an effective particle as an embolic agent, causing effective embolization.

  8. Morphology control between microspheres and nanofibers by solvent-induced approach based on crosslinked phosphazene-containing materials

    International Nuclear Information System (INIS)

    Zhu Yan; Huang Xiaobin; Fu Jianwei; Wang Gang; Tang Xiaozhen

    2008-01-01

    Multi-morphology control between monodisperse microspheres and uniform nanofibers was successfully achieved by adjusting the ratio of solvent composition. Through the condensation polymerization between hexachlorocyclotriphosphazene and 4,4'-sulfonyldiphenol, the corresponding hybrid inorganic-organic materials appeared. The morphology of both microspheres and nanofibers contained excellent size and shape: the monodisperse microspheres with 0.7-0.9 μm in diameter and the uniform nanofibers with 60 nm in outer diameter. We applied the concept of three-dimensional Hansen solubility parameters for the initial explanation. The activity of the primary colloid particles and the solubility of triethylamine-hydrogen chloride crystal were considered as two factors for the mechanism explanation. This interesting research shows that the nano- and micro-materials with high crosslinked molecule structure and prepared by condensation polymerization can also achieve the morphology transition. It fills the blank in nano-morphology transition research and will provide great information for the research about the control of different morphology preparations based on polymer nanomaterials

  9. Thermal degradation process of poly (alpha-methylstyrene) microspheres coated with glow discharge polymer

    International Nuclear Information System (INIS)

    Zhang Zhanwen; Huang Yong; Tang Yongjian; Li Bo; Chen Sufen; He Zhibing

    2009-01-01

    Glow discharge polymer (GDP) shell was made by the decomposable mandrel technique using poly(alpha-methylstyrene) (PAMS) mandrel. The PAMS degradation rate and the GDP shell surface morphology at different equilibrium temperatures were investigated. Degradation rate was calculated from weight variation of PAMS before and after pyrolysis process. Experiment results indicate that the degradation rate decreases at the fixed equilibrium temperature and graded temperature can improve the rate. The degradation process has an effect on the GDP shell properties. The PAMS doesn't molten to flow liquid during degradation. But the degradation can reduce surface finish of GDP coatings. The GDP shell deffects are the result of the PAMS degradiation process. (authors)

  10. Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiajia [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Yun; Wang, Jincheng [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Sun, Xiaoli; Cao, Rong [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sun, Hao [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Department of Chemistry, Liaoning University, Shenyang 110000 (China); Huang, Chaonan [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jiping, E-mail: chenjp@dicp.ac.cn [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China)

    2015-05-04

    Highlights: • BPA imprinted polymer microspheres were prepared by Pickering emulsion polymerization. • Regular spherical shape and narrow diameter distribution. • Good specific adsorption capacity for BPA. • Good class-selectivity and clean-up efficiency for bisphenols in human urine under SPE mode. • Good recoveries and sensitivity for bisphenols using the MIPMS-SPE coupled with HPLC-DAD method. - Abstract: The bisphenol A (BPA) imprinted polymer microspheres were prepared by simple Pickering emulsion polymerization. Compared to traditional bulk polymerization, both high yields of polymer and good control of particle sizes were achieved. The characterization results of scanning electron microscopy and nitrogen adsorption–desorption measurements showed that the obtained molecularly imprinted polymer microsphere (MIPMS) particles possessed regular spherical shape, narrow diameter distribution (30–60 μm), a specific surface area (S{sub BET}) of 281.26 m{sup 2} g{sup −1} and a total pore volume (V{sub t}) of 0.459 cm{sup 3} g{sup −1}. Good specific adsorption capacity for BPA was obtained in the sorption experiment and good class selectivity for BPA and its seven structural analogs (bisphenol F, bisphenol B, bisphenol E, bisphenol AF, bisphenol S, bisphenol AP and bisphenol Z) was demonstrated by the chromatographic evaluation experiment. The MIPMS as solid-phase extraction (SPE) packing material was then evaluated for extraction and clean-up of these bisphenols (BPs) from human urine samples. An accurate and sensitive analytical method based on the MIPMS-SPE coupled with HPLC-DAD has been successfully established for simultaneous determination of eight BPs from human urine samples with detection limits of 1.2–2.2 ng mL{sup −1}. The recoveries of BPs for urine samples at two spiking levels (100 and 500 ng mL{sup −1} for each BP) were in the range of 81.3–106.7% with RSD values below 8.3%.

  11. Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples.

    Science.gov (United States)

    Yang, Jiajia; Li, Yun; Wang, Jincheng; Sun, Xiaoli; Cao, Rong; Sun, Hao; Huang, Chaonan; Chen, Jiping

    2015-05-04

    The bisphenol A (BPA) imprinted polymer microspheres were prepared by simple Pickering emulsion polymerization. Compared to traditional bulk polymerization, both high yields of polymer and good control of particle sizes were achieved. The characterization results of scanning electron microscopy and nitrogen adsorption-desorption measurements showed that the obtained molecularly imprinted polymer microsphere (MIPMS) particles possessed regular spherical shape, narrow diameter distribution (30-60 μm), a specific surface area (S(BET)) of 281.26 m(2) g(-1) and a total pore volume (V(t)) of 0.459 cm(3) g(-1). Good specific adsorption capacity for BPA was obtained in the sorption experiment and good class selectivity for BPA and its seven structural analogs (bisphenol F, bisphenol B, bisphenol E, bisphenol AF, bisphenol S, bisphenol AP and bisphenol Z) was demonstrated by the chromatographic evaluation experiment. The MIPMS as solid-phase extraction (SPE) packing material was then evaluated for extraction and clean-up of these bisphenols (BPs) from human urine samples. An accurate and sensitive analytical method based on the MIPMS-SPE coupled with HPLC-DAD has been successfully established for simultaneous determination of eight BPs from human urine samples with detection limits of 1.2-2.2 ng mL(-1). The recoveries of BPs for urine samples at two spiking levels (100 and 500 ng mL(-1) for each BP) were in the range of 81.3-106.7% with RSD values below 8.3%. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Review: microspheres for radioembolization therapy

    International Nuclear Information System (INIS)

    Zhao Mingqiang; Xu Shuhe

    2007-12-01

    Radioembolization of liver cancer has been proven to be an effective therapy in nuclear medicine. The yttrium-90 glass microspheres has been used to treat both primary and metastatic liver tumors in clinic which shown encouraging results. The preparation, stability, degradation and application for medical purpose of radioactive microspheres are reviewed. At first, the theory of radioem- bolization treating cancer is discussed; and then three major radiolabled micro- sphere materials are expounded: viz. glass, resin-based and polymer-based; Future improvements in the preparation and use of radioactive microspheres are prospected at last. (authors)

  13. Review: microspheres for radioembolization therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mingqiang, Zhao; Shuhe, Xu [China Inst. of Atomic Energy, Beijing (China)

    2007-12-15

    Radioembolization of liver cancer has been proven to be an effective therapy in nuclear medicine. The yttrium-90 glass microspheres has been used to treat both primary and metastatic liver tumors in clinic which shown encouraging results. The preparation, stability, degradation and application for medical purpose of radioactive microspheres are reviewed. At first, the theory of radioem- bolization treating cancer is discussed; and then three major radiolabled micro- sphere materials are expounded: viz. glass, resin-based and polymer-based; Future improvements in the preparation and use of radioactive microspheres are prospected at last. (authors)

  14. Thermo- and pH-responsive polymer brushes-grafted gigaporous polystyrene microspheres as a high-speed protein chromatography matrix.

    Science.gov (United States)

    Qu, Jian-Bo; Xu, Yu-Liang; Liu, Jun-Yi; Zeng, Jing-Bin; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo

    2016-04-08

    Dual thermo- and pH-responsive chromatography has been proposed using poly(N-isopropylacrylamide-co-butyl methacrylate-co-N,N-dimethylaminopropyl acrylamide) (P(NIPAM-co-BMA-co-DMAPAAM)) brushes grafted gigaporous polystyrene microspheres (GPM) as matrix. Atom transfer radical polymerization (ATRP) initiator was first coupled onto GPM through Friedel-Crafts acylation with 2-bromoisobutyryl bromide. The dual-responsive polymer brushes were then grafted onto GPM via surface-initiated ATRP. The surface composition, gigaporous structure, protein adsorption and dual-responsive chromatographic properties of the matrix (GPM-P(NIPAM-co-BMA-co-DMAPAAM) were characterized in detail. Results showed that GPM were successfully grafted with thermoresponsive cationic polymer brushes and that the gigaporous structure was well maintained. A column packed with GPM-P(NIPAM-co-BMA-co-DMAPAAM presented low backpressure, good permeability and appreciable thermo-responsibility. By changing pH of the mobile phase and temperature of the column in turn, the column can separate three model proteins at the mobile phase velocity up to 2528cmh(-1). A separation mechanism of this matrix was also proposed. All results indicate that the dual thermo- and pH-responsive chromatography matrix has great potentials in 'green' high-speed protein chromatography. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Evaluation of Controlled Release Theophylline Microspheres ...

    African Journals Online (AJOL)

    Erah

    High drug/polymer ratio, low processing temperature and low HLB value of ... Keywords: Microsphere, Emulsion solvent evaporation, Theophylline, Temperature, ... evaporation, stirring rate, viscosity of ... organic solvent is removed from the.

  16. Preparation and Characterization of Fluorescent SiO2 Microspheres

    Science.gov (United States)

    Xu, Cui; Zhang, Hao; Guan, Ruifang

    2018-01-01

    Fluorescent compound without typical fluorophores was synthesized with citric acid (CA) and aminopropyltriethoxysilane (APTS) firstly, and then it was grafted to the surface of the prepared SiO2 microspheres by chemical reaction. The fluorescent SiO2 microspheres with good fluorescent properties were obtained by optimizing the reaction conditions. And the morphology and structure of the fluorescent SiO2 microspheres have been characterized by scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy. The results showed that the preparation of fluorescent SiO2 microspheres have good monodispersity and narrow particle size distribution. Moreover, the fluorescent SiO2 microspheres can be applied to detect Fe3+ in aqueous solution, prepare fluorescent SiO2 rubber, and have potential to be applied in the fluorescent labeling and fingerprint appearing technique fields.

  17. Carboxyl-Functionalized Polymeric Microspheres Prepared by One-Stage Photoinitiated RAFT Dispersion Polymerization

    Directory of Open Access Journals (Sweden)

    Jianbo Tan

    2017-12-01

    Full Text Available Herein, we report a photoinitiated reversible addition-fragmentation chain transfer (RAFT dispersion copolymerization of methyl methacrylate (MMA and methyl methacrylic (MAA for the preparation of highly monodisperse carboxyl-functionalized polymeric microspheres. High rates of polymerization were observed, with more than 90% particle yields being achieved within 3 h of UV irradiation. Effects of reaction parameters (e.g., MAA concentration, RAFT agent concentration, photoinitiator concentration, and solvent composition were studied in detail, and highly monodisperse polymeric microspheres were obtained in most cases. Finally, silver (Ag composite microspheres were prepared by in situ reduction of AgNO3 using the carboxyl-functionalized polymeric microspheres as the template. The obtained Ag composite microspheres were able to catalyze the reduction of methylene blue (MB with NaBH4 as a reductant.

  18. Enhancement of cell-based therapeutic angiogenesis using a novel type of injectable scaffolds of hydroxyapatite-polymer nanocomposite microspheres.

    Directory of Open Access Journals (Sweden)

    Yohei Mima

    Full Text Available BACKGROUND: Clinical trials demonstrate the effectiveness of cell-based therapeutic angiogenesis in patients with severe ischemic diseases; however, their success remains limited. Maintaining transplanted cells in place are expected to augment the cell-based therapeutic angiogenesis. We have reported that nano-hydroxyapatite (HAp coating on medical devices shows marked cell adhesiveness. Using this nanotechnology, HAp-coated poly(l-lactic acid (PLLA microspheres, named nano-scaffold (NS, were generated as a non-biological, biodegradable and injectable cell scaffold. We investigate the effectiveness of NS on cell-based therapeutic angiogenesis. METHODS AND RESULTS: Bone marrow mononuclear cells (BMNC and NS or control PLLA microspheres (LA were intramuscularly co-implanted into mice ischemic hindlimbs. When BMNC derived from enhanced green fluorescent protein (EGFP-transgenic mice were injected into ischemic muscle, the muscle GFP level in NS+BMNC group was approximate fivefold higher than that in BMNC or LA+BMNC groups seven days after operation. Kaplan-Meier analysis demonstrated that NS+BMNC markedly prevented hindlimb necrosis (P<0.05 vs. BMNC or LA+BMNC. NS+BMNC revealed much higher induction of angiogenesis in ischemic tissues and collateral blood flow confirmed by three-dimensional computed tomography angiography than those of BMNC or LA+BMNC groups. NS-enhanced therapeutic angiogenesis and arteriogenesis showed good correlations with increased intramuscular levels of vascular endothelial growth factor and fibroblast growth factor-2. NS co-implantation also prevented apoptotic cell death of transplanted cells, resulting in prolonged cell retention. CONCLUSION: A novel and feasible injectable cell scaffold potentiates cell-based therapeutic angiogenesis, which could be extremely useful for the treatment of severe ischemic disorders.

  19. Monodisperse magnetite (Fe_3O_4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method

    International Nuclear Information System (INIS)

    Rezayan, Ali Hossein; Mousavi, Majid; Kheirjou, Somayyeh; Amoabediny, Ghasem; Ardestani, Mehdi Shafiee; Mohammadnejad, Javad

    2016-01-01

    In this study, magnetic nanoparticles (MNPs) were synthesized via co-precipitation method. To enhance the biocompatibility and colloidal stability of the synthesized nanoparticles, they were modified with carboxyl functionalized PEG via dopamine (DPA) linker. Both modified and unmodified Fe_3O_4 nanoparticles exhibited super paramagnetic behavior (particle size below 20 nm). The saturation magnetization (Ms) of PEGdiacid-modified Fe_3O_4 was 45 emu/g, which was less than the unmodified Fe_3O_4 nanoparticles (70 emu/g). This difference indicated that PEGdiacid polymer was immobilized on the surface of Fe_3O_4 nanoparticles successfully. To evaluate the efficiency of the resulting nanoparticles as contrast agents for magnetic resonance imaging (MRI), different concentration of MNPs and different value of echo time TE were investigated. The results showed that by increasing the concentration of the nanoparticles, transverse relaxation time (T_2) decreased, which subsequently resulted in MR signal enhancement. T_2-weighted MR images of the different concentration of MNPs in different value of echo time TE indicated that MR signal intensity increased with increase in TE value up to 66 and then remained constant. The cytotoxicity effect of the modified and unmodified nanoparticles was evaluated in three different concentrations (12, 60 and 312 mg l"−"1) on MDA-MB-231 cancer cells for 24 and 48 h. In both tested time (24 and 48 h) for all three samples, the modified nanoparticles had long life time than unmodified nanoparticles. Cellular uptake of modified MNPs was 80% and reduced to 9% by the unmodified MNPs. - Highlights: • Magnetic nanoparticles (MNPs) were synthesized via co-precipitation method. • MNPs were modified with carboxyl functionalized PEG via dopamine (DPA) linker. • Modified and unmodified Fe_3O_4 nanoparticles exhibited super paramagnetic behavior. • T_2 decrease as MNPs concentration increase, this led to MR signal enhancement. • Modified

  20. Monodisperse magnetite (Fe{sub 3}O{sub 4}) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method

    Energy Technology Data Exchange (ETDEWEB)

    Rezayan, Ali Hossein, E-mail: ahrezayan@ut.ac.ir [Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran (Iran, Islamic Republic of); Mousavi, Majid [Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran (Iran, Islamic Republic of); Kheirjou, Somayyeh [Department of Chemistry, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Amoabediny, Ghasem [School of Chemical Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Ardestani, Mehdi Shafiee [Department of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohammadnejad, Javad [Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran (Iran, Islamic Republic of)

    2016-12-15

    In this study, magnetic nanoparticles (MNPs) were synthesized via co-precipitation method. To enhance the biocompatibility and colloidal stability of the synthesized nanoparticles, they were modified with carboxyl functionalized PEG via dopamine (DPA) linker. Both modified and unmodified Fe{sub 3}O{sub 4} nanoparticles exhibited super paramagnetic behavior (particle size below 20 nm). The saturation magnetization (Ms) of PEGdiacid-modified Fe{sub 3}O{sub 4} was 45 emu/g, which was less than the unmodified Fe{sub 3}O{sub 4} nanoparticles (70 emu/g). This difference indicated that PEGdiacid polymer was immobilized on the surface of Fe{sub 3}O{sub 4} nanoparticles successfully. To evaluate the efficiency of the resulting nanoparticles as contrast agents for magnetic resonance imaging (MRI), different concentration of MNPs and different value of echo time TE were investigated. The results showed that by increasing the concentration of the nanoparticles, transverse relaxation time (T{sub 2}) decreased, which subsequently resulted in MR signal enhancement. T{sub 2}-weighted MR images of the different concentration of MNPs in different value of echo time TE indicated that MR signal intensity increased with increase in TE value up to 66 and then remained constant. The cytotoxicity effect of the modified and unmodified nanoparticles was evaluated in three different concentrations (12, 60 and 312 mg l{sup −1}) on MDA-MB-231 cancer cells for 24 and 48 h. In both tested time (24 and 48 h) for all three samples, the modified nanoparticles had long life time than unmodified nanoparticles. Cellular uptake of modified MNPs was 80% and reduced to 9% by the unmodified MNPs. - Highlights: • Magnetic nanoparticles (MNPs) were synthesized via co-precipitation method. • MNPs were modified with carboxyl functionalized PEG via dopamine (DPA) linker. • Modified and unmodified Fe{sub 3}O{sub 4} nanoparticles exhibited super paramagnetic behavior. • T{sub 2} decrease as MNPs

  1. Remote activation of a microactuator using a photo-responsive nanoparticle-polymer composite

    Science.gov (United States)

    Zeberoff, Anthony

    Stimulus response materials are a class of novel materials that are currently being explored in various technologies, including biomedical devices and components, food packaging, fabrics, energy harvesting and conversion, and other elementary components such as sensors and actuators. Hybrid organic-inorganic materials such as nanoparticle-polymer composites are attractive candidates as their properties can be significantly tuned for particular applications where selectivity and localized responses are critical factors. In this work we developed and optimized a photo-responsive microactuator that can operate selectively to a specific wavelength of light. The photo-responsive microactuator is comprised of monodispersed microspheres that contain gold nanoparticles. Upon irradiation, these microspheres transduce optical energy to thermal energy, driving a localized phase change in the matrix in which they are embedded. Our remotely powered microactuator can be further realized in applications where decoupling the physical connection of the energy/control source from the actuating component is necessary.

  2. Microspheres prepared with biodegradable PHBV and PLA polymers as prolonged-release system for ibuprofen: in vitro drug release and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Giovana Carolina Bazzo

    2012-12-01

    Full Text Available In this study, poly(hydroxybutyrate-co-hydroxyvalerate (PHBV and poly(l-lactide (PLA microspheres containing ibuprofen were prepared with the aim of prolonging the drug release. The oil-in-water (O/W emulsion solvent evaporation technique was used, varying the polymer ratio. All formulations provided spherical particles with drug crystals on the surface and a porous and rough polymeric matrix when PHBV was used and smooth external surface when prepared with PLA. The in vitro dissolution profiles show that the formulation containing PHBV/PLA at the proportion of 30/70 presented the best results in terms of prolonging the ibuprofen release. The analysis of the concentration of ibuprofen in the blood of rats showed that maximum levels were achieved at between one and two hours after administration of the immediate-release form (pure drug, while the prolonged microspheres led to a small amount of the drug being released within the first two hours and reached the maximum level after six hours of administration. It was concluded that it is possible to prolong the release of ibuprofen through its incorporation into PHBV/PLA microspheres.No presente estudo foram preparadas microesferas de poli(hidroxibutirato-co-hidroxivalerato (PHBV e poli(ácido láctico (PLA com o objetivo de prolongar a liberação do ibuprofeno, utilizado como fármaco modelo. Empregou-se o método de emulsificação e evaporação do solvente óleo em água (O/A, variando-se a proporção entre os polímeros. Todas as formulações originaram partículas esféricas com cristais de fármaco aderidos à superfície externa. As microesferas apresentaram superfície rugosa e porosa, quando o PHBV foi utilizado, e superfície externa lisa, quando preparadas com o PLA. Os perfis de dissolução in vitro evidenciaram que a formulação que continha PHBV/PLA na proporção de 30/70 apresentou melhores resultados para prolongar a liberação do ibuprofeno. Através da análise da concentra

  3. Photocatalytic reduction of CO{sub 2} into methanol and ethanol over conducting polymers modified Bi{sub 2}WO{sub 6} microspheres under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weili, E-mail: wldai81@126.com; Xu, Hai; Yu, Juanjuan; Hu, Xu; Luo, Xubiao, E-mail: luoxubiao@126.com; Tu, Xinman; Yang, Lixia

    2015-11-30

    Graphical abstract: - Highlights: • Conducting polymers modified Bi{sub 2}WO{sub 6} HHMS (CP/Bi{sub 2}WO{sub 6}) was successfully synthesized. • The introduction of CP decreases the recombination of photogenerated e{sup –}–h{sup +} pairs. • The PTh/Bi{sub 2}WO{sub 6} exhibites good stability and recyclability for CO{sub 2} photoreduction. • The possible photocatalytic mechanism was discussed and proposed. - Abstract: Bi{sub 2}WO{sub 6} hierarchical hollow microspheres (HHMS) modified with different conducting polymers (polyaniline, polypyrrole, and polythiophene) were successfully synthesized by ‘in situ’ deposition oxidative polymerization method, and evaluated as photocatalysts for the photocatalytic reduction of CO{sub 2} with H{sub 2}O to methanol and ethanol. It was found that the introduction of conducting polymers obviously decreased the recombination of photogenerated electron–hole pairs, thus promoting the photocatalytic activity of Bi{sub 2}WO{sub 6}. Among the as-fabricated photocatalysts, polythiophene modified Bi{sub 2}WO{sub 6} (PTh/Bi{sub 2}WO{sub 6}) exhibited the best photoelectronic and photocatalytic performance, due to the narrow band gap and good charge mobility of polythiophene. The results demonstrate that the methanol and ethanol yield over PTh/Bi{sub 2}WO{sub 6} was 56.5 and 20.5 μmol g{sub cat}{sup −1} in 4 h, respectively. The total yield of hydrocarbons is 2.8 times higher than that over pure Bi{sub 2}WO{sub 6}. It is noted that the catalyst exhibits good recyclability and stability. After five consecutive runs, the PTh/Bi{sub 2}WO{sub 6} catalyst shows no significant loss of photocatalytic activity. The possible photocatalytic mechanism was proposed which is beneficial for further improving the activity of photocatalysts. The approach described in this study provides a simple and reliable strategy for the rational design of efficient visible light-driven photocatalysts for photoreduction of CO{sub 2} to hydrocarbons.

  4. Study on the Degradation of Polylactide Microsphere In Vitro

    Institute of Scientific and Technical Information of China (English)

    HeYing; WeiShuli

    2001-01-01

    This report concentrated on the rules and mechanism of the degradation of polylactide and the microspheres. The rate of degradation was assessed with five methods: observation of microsphere surface morphology by SEM, determination of the weight loss of the microspheres, determination of the molecular mass of the polymers by GPC, determination of pH and determination of the contents of lactic acid by UV spectrophotometry. The degradation of polylactide microspheres showed two-phase characteristics. At the early stage of the degradation, the high molecular mass polymers were cleaved into lower molecular mass fractions and at the late stage, there was a period of erosion and weight loss of the microspheres. The degradation was much slower for polymers with a higher molecular mass. The polylactide degradation showed good regularity.

  5. Development and evaluation of floating microspheres of curcumin in ...

    African Journals Online (AJOL)

    Purpose: To prepare and evaluate floating microspheres of curcumin for prolonged gastric residence and to study their effect on alloxan-induced diabetic rats. Methods: Floating microsphere were prepared by emulsion-solvent diffusion method, using hydroxylpropyl methylcellulose, chitosan and Eudragit S 100 polymer in ...

  6. Development and Evaluation of Floating Microspheres of Curcumin ...

    African Journals Online (AJOL)

    Purpose: To prepare and evaluate floating microspheres of curcumin for prolonged gastric residence time and increased drug bioavailability. Methods: Floating microsphere were prepared by emulsion solvent diffusion method, using hydroxylpropyl methylcellulose (HPMC), ethyl cellulose (EC), Eudragit S 100 polymer in ...

  7. PLGA and PHBV Microsphere Formulations and Solid-State Characterization

    DEFF Research Database (Denmark)

    Yang, Chiming; Plackett, David; Needham, David

    2009-01-01

    To develop and characterize the solid-state properties of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) microspheres for the localized and controlled release of fusidic acid (FA). The effects of FA loading and polymer composition on the me...... of a DCM-FA-rich phase in the forming microsphere....

  8. Formulation and Evaluation of Microspheres Based on Gelatin ...

    African Journals Online (AJOL)

    Formulation and Evaluation of Microspheres Based on Gelatin-Mucin Admixtures for the Rectal Delivery of Cefuroxime Sodium. K C Ofokansi, M U Adikwu. Abstract. Purpose: Swellable microspheres based on polymers or their admixtures are frequently employed as drug delivery systems to achieve a controlled release ...

  9. Microradiographic microsphere manipulator

    International Nuclear Information System (INIS)

    Singleton, R.M.

    1980-01-01

    A method and apparatus are provided for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres

  10. Preparation of polystyrene microsphere with emulsion microencapsulation method

    International Nuclear Information System (INIS)

    Li Bo Zhang Lin; Zhang Zhganwen; You Dan; Wei Yun; Wang Chaoyang; Lin Bo; Shi Tao; Chu Qiaomei

    2003-01-01

    The preparation of hollow polystyrene microspheres that are used as inner shell of multi-shell plastic microspheres in the ICF experiments is focused on. The effects of surfactants, water-soluble polymer and electrolyte on the properties of resultant microspheres are studied. Based on these experiments, a fabricating procedure was established with which hollow microspheres were prepared with diameter about 150-3000 μm, wall thickness 0.8-15 μm and toughness Ra less than 4 nm. (authors)

  11. Current knowledge on biodegradable microspheres in drug delivery.

    Science.gov (United States)

    Prajapati, Vipul D; Jani, Girish K; Kapadia, Jinita R

    2015-08-01

    Biodegradable microspheres have gained popularity for delivering a wide variety of molecules via various routes. These types of products have been prepared using various natural and synthetic biodegradable polymers through suitable techniques for desired delivery of various challenging molecules. Selection of biodegradable polymers and technique play a key role in desired drug delivery. This review describes an overview of the fundamental knowledge and status of biodegradable microspheres in effective delivery of various molecules via desired routes with consideration of outlines of various compendial and non-compendial biodegradable polymers, formulation techniques and release mechanism of microspheres, patents and commercial biodegradable microspheres. There are various advantages of using biodegradable polymers including promise of development with different types of molecules. Biocompatibility, low dosage and reduced side effects are some reasons why usage biodegradable microspheres have gained in popularity. Selection of biodegradable polymers and formulation techniques to create microspheres is the biggest challenge in research. In the near future, biodegradable microspheres will become the eco-friendly product for drug delivery of various genes, hormones, proteins and peptides at specific site of body for desired periods of time.

  12. Preparation and In-vitro Evaluation of Metformin Microspheres Using ...

    African Journals Online (AJOL)

    . Methods: Metformin microspheres were prepared by non-aqueous solvent evaporation method using various polymers, including ethylcellulose (EC), hydroxypropyl methylcellulose (HPMC), carbopol 934P (CA) and chitosan (CH). The effect ...

  13. Aerosol fabrication methods for monodisperse nanoparticles

    Science.gov (United States)

    Jiang, Xingmao; Brinker, C Jeffrey

    2014-10-21

    Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

  14. From Single Microparticles to Microfluidic Emulsification: Fundamental Properties (Solubility, Density, Phase Separation from Micropipette Manipulation of Solvent, Drug and Polymer Microspheres

    Directory of Open Access Journals (Sweden)

    Koji Kinoshita

    2016-11-01

    Full Text Available The micropipette manipulation technique is capable of making fundamental single particle measurements and analyses. This information is critical for establishing processing parameters in systems such as microfluidics and homogenization. To demonstrate what can be achieved at the single particle level, the micropipette technique was used to form and characterize the encapsulation of Ibuprofen (Ibp into poly(lactic-co-glycolic acid (PLGA microspheres from dichloromethane (DCM solutions, measuring the loading capacity and solubility limits of Ibp in typical PLGA microspheres. Formed in phosphate buffered saline (PBS, pH 7.4, Ibp/PLGA/DCM microdroplets were uniformly solidified into Ibp/PLGA microparticles up to drug loadings (DL of 41%. However, at DL 50 wt% and above, microparticles showed a phase separated pattern. Working with single microparticles, we also estimated the dissolution time of pure Ibp microspheres in the buffer or in detergent micelle solutions, as a function of the microsphere size and compare that to calculated dissolution times using the Epstein-Plesset (EP model. Single, pure Ibp microparticles precipitated as liquid phase microdroplets that then gradually dissolved into the surrounding PBS medium. Analyzing the dissolution profiles of Ibp over time, a diffusion coefficient of 5.5 ± 0.2 × 10−6 cm2/s was obtained by using the EP model, which was in excellent agreement with the literature. Finally, solubilization of Ibp into sodium dodecyl sulfate (SDS micelles was directly visualized microscopically for the first time by the micropipette technique, showing that such micellization could increase the solubility of Ibp from 4 to 80 mM at 100 mM SDS. We also introduce a particular microfluidic device that has recently been used to make PLGA microspheres, showing the importance of optimizing the flow parameters. Using this device, perfectly smooth and size-homogeneous microparticles were formed for flow rates of 0.167 mL/h for

  15. Synthesis of core-shell molecularly imprinted polymer microspheres by precipitation polymerization for the inline molecularly imprinted solid-phase extraction of thiabendazole from citrus fruits and orange juice samples.

    Science.gov (United States)

    Barahona, Francisco; Turiel, Esther; Cormack, Peter A G; Martín-Esteban, Antonio

    2011-01-01

    In this work, the synthesis of molecularly imprinted polymer microspheres with narrow particle size distributions and core-shell morphology by a two-step precipitation polymerization procedure is described. Polydivinylbenzene (poly DVB-80) core particles were used as seed particles in the production of molecularly imprinted polymer shells by copolymerization of divinylbenzene-80 with methacrylic acid in the presence of thiabendazole (TBZ) and an appropriate porogen. Thereafter, polymer particles were packed into refillable stainless steel HPLC columns used in the development of an inline molecularly imprinted SPE method for the determination of TBZ in citrus fruits and orange juice samples. Under optimized chromatographic conditions, recoveries of TBZ within the range 81.1-106.4%, depending upon the sample, were obtained, with RSDs lower than 10%. This novel method permits the unequivocal determination of TBZ in the samples under study, according to the maximum residue levels allowed within Europe, in less than 20 min and without any need for a clean-up step in the analytical protocol. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Recent advances in polymeric microspheres for parenteral drug delivery--part 1.

    Science.gov (United States)

    Mao, Shirui; Guo, Chunqiang; Shi, Yi; Li, Luk Chiu

    2012-09-01

    Polymeric microspheres have been established as a valuable parenteral drug delivery system for sustained release of therapeutic agents via subcutaneous or intramuscular injection. Biodegradable polymers which are either synthetic or from natural sources are reviewed with respect to recent advances in exploring their applications for microsphere fabrications. New information on the impact of formulation variables on the properties of microspheres formed by an emulsion method was also presented. The characterization of microspheres using advanced physical analytical techniques was also reviewed and the utilization of the information in assessing in vivo performance of the product was also highlighted. The broad clinical use of microspheres for delivery of therapeutic agents in particular biologics such as proteins has not been realized commercially. The limited availability of biodegradable polymers with a long history of regulatory approval and the challenges in gaining regulatory approval of a new polymer have hindered the development of microspheres for parenteral drug delivery.

  17. STRUCTURING OF DIAMOND FILMS USING MICROSPHERE LITHOGRAPHY

    Directory of Open Access Journals (Sweden)

    Mária Domonkos

    2014-10-01

    Full Text Available In this study, the structuring of micro- and nanocrystalline diamond thin films is demonstrated. The structuring of the diamond films is performed using the technique of microsphere lithography followed by reactive ion etching. Specifically, this paper presents a four-step fabrication process: diamond deposition (microwave plasma assisted chemical vapor deposition, mask preparation (by the standard Langmuir-Blodgett method, mask modification and diamond etching. A self-assembled monolayer of monodisperse polystyrene (PS microspheres with close-packed ordering is used as the primary template. Then the PS microspheres and the diamond films are processed in capacitively coupled radiofrequency plasma  using different plasma chemistries. This fabrication method illustrates the preparation of large arrays of periodic and homogeneous hillock-like structures. The surface morphology of processed diamond films is characterized by scanning electron microscopy and atomic force microscope. The potential applications of such diamond structures in various fields of nanotechnology are also briefly discussed.

  18. Graphene Aerogel Templated Fabrication of Phase Change Microspheres as Thermal Buffers in Microelectronic Devices.

    Science.gov (United States)

    Wang, Xuchun; Li, Guangyong; Hong, Guo; Guo, Qiang; Zhang, Xuetong

    2017-11-29

    Phase change materials, changing from solid to liquid and vice versa, are capable of storing and releasing a large amount of thermal energy during the phase change, and thus hold promise for numerous applications including thermal protection of electronic devices. Shaping these materials into microspheres for additional fascinating properties is efficient but challenging. In this regard, a novel phase change microsphere with the design for electrical-regulation and thermal storage/release properties was fabricated via the combination of monodispersed graphene aerogel microsphere (GAM) and phase change paraffin. A programmable method, i.e., coupling ink jetting-liquid marbling-supercritical drying (ILS) techniques, was demonstrated to produce monodispersed graphene aerogel microspheres (GAMs) with precise size-control. The resulting GAMs showed ultralow density, low electrical resistance, and high specific surface area with only ca. 5% diameter variation coefficient, and exhibited promising performance in smart switches. The phase change microspheres were obtained by capillary filling of phase change paraffin inside the GAMs and exhibited excellent properties, such as low electrical resistance, high latent heat, well sphericity, and thermal buffering. Assembling the phase change microsphere into the microcircuit, we found that this tiny device was quite sensitive and could respond to heat as low as 0.027 J.

  19. Method of preparing Ru-immobilized polymer-supported catalyst for hydrogen generation from NaBH{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ching-Wen; Chen, Chuh-Yung; Huang, Yao-Hui [Department of Chemical Engineering, National Cheng Kung University, No.1, University Road, Tainan City 70101 (China)

    2009-03-15

    A method of preparing a polymer-supported catalyst for hydrogen generation is introduced in this article. This polymer-supported catalyst is the structure of ruthenium (Ru) nanoparticle immobilized on a monodisperse polystyrene (PSt) microsphere. The diameter of the Ru nanoparticle is around 16 nm, and the diameter of the PSt microsphere is 2.65 um. This preparation method is accomplished by two unique techniques: one is sodium lauryl sulfate/sodium formaldehyde sulfoxylate (SLS/SFS) interface-initiated system, the other is 2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester (GMA-IDA) chelating monomer. By taking advantage of these two techniques, Ru{sup 3+} ion will be chelated and then reduced to Ru{sup (0)} nanoparticle over PSt surface predominantly. The hydrolysis of alkaline sodium borohydride (NaBH{sub 4}) solution catalyzed by this Ru-immobilized polymer-supported catalyst is also examined in this article. It reveals that the hydrogen generation rate is 215.9 ml/min g-cat. in a diluted solution containing 1 wt.% NaBH{sub 4} and 1 wt.% NaOH, and this Ru-immobilized polymer-supported catalyst could be recycled during the reaction. (author)

  20. Microsphere-Based Rapamycin Delivery, Systemic Versus Local Administration in a Rat Model of Renal Ischemia/Reperfusion Injury

    NARCIS (Netherlands)

    Zandstra, Jurjen; van Beuge, Marike M.; Zuidema, Johan; Petersen, Arjen H.; Staal, Mark; Duque, Luisa F.; Rodriguez, Sergio; Lathuile, Audrey A. R.; Veldhuis, Gert J.; Steendam, Rob; Bank, Ruud A.; Popa, Eliane R.

    2015-01-01

    The increasing prevalence and treatment costs of kidney diseases call for innovative therapeutic strategies that prevent disease progression at an early stage. We studied a novel method of subcapsular injection of monodisperse microspheres, to use as a local delivery system of drugs to the kidney.

  1. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Farquar, G; Leif, R

    2009-07-15

    Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  2. Preparation of open porous polycaprolactone microspheres and their applications as effective cell carriers in hydrogel system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingchun [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China); Tan, Ke; Ye, Zhaoyang [State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China (China); Zhang, Yan, E-mail: zhang_yan@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China); Tan, Wensong [State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China (China); Lang, Meidong, E-mail: mdlang@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China)

    2012-12-01

    Common hydrogel, composed of synthetic polymers or natural polysaccharides could not support the adhesion of anchorage-dependent cells due to the lack of cell affinitive interface and high cell constraint. The use of porous polyester microspheres as cell-carriers and introduction of cell-loaded microspheres into the hydrogel system might overcome the problem. However, the preparation of the open porous microsphere especially using polycaprolactone (PCL) has been rarely reported. Here, the open porous PCL microspheres were fabricated via the combined emulsion/solvent evaporation and particle leaching method. The microspheres exhibited porous surface and inter-connective pore structure. Additionally, the pore structure could be easily controlled by adjusting the processing parameters. The surface pore size could be altered from 20 {mu}m to 80 {mu}m and the internal porosities were varied from 30% to 70%. The obtained microspheres were evaluated to delivery mesenchymal stem cells (MSCs) and showed the improved cell adhesion and growth when compared with the non-porous microspheres. Then, the MSCs loaded microspheres were introduced into agarose hydrogel. MSCs remained alive and sustained proliferation in microsphere/agarose composite in 5-day incubation while a decrement of MSCs viabilities was found in agarose hydrogel without microspheres. The results indicated that the microsphere/hydrogel composite had a great potential in cell therapy and injectable system for tissue regeneration. Highlights: Black-Right-Pointing-Pointer The open porous polycaprolactone microspheres were fabricated using paraffin as a porogen. Black-Right-Pointing-Pointer The microspheres exhibited porous surface and inter-connective pore structure. Black-Right-Pointing-Pointer The surface and internal pore size and porosity of microsphere could be controlled. Black-Right-Pointing-Pointer The porous microspheres exhibited an improved cell adhesion and proliferation. Black

  3. Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell.

    Science.gov (United States)

    Nagao, Daisuke; Yokoyama, Mikio; Yamauchi, Noriko; Matsumoto, Hideki; Kobayashi, Yoshio; Konno, Mikio

    2008-09-02

    Highly monodisperse particles composed of a magnetic silica core and fluorescent polymer shell were synthesized with a combined technique of heterocoagulation and soap-free emulsion polymerization. Prior to heterocoagulation, monodisperse, submicrometer-sized silica particles were prepared with the Stober method, and magnetic nanoparticles were prepared with a modified Massart method in which a cationic silane coupling agent of N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was added just after coprecipitation of Fe (2+) and Fe (3+). The silica particles with negative surface potential were heterocoagulated with the magnetic nanoparticles with positive surface potential. The magnetic silica particles obtained with the heterocoagulation were treated with sodium silicate to modify their surfaces with silica. In the formation of a fluorescent polymer shell onto the silica-coated magnetic silica cores, an amphoteric initiator of 2,2'-azobis[ N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was used to control the colloidal stability of the magnetic cores during the polymer coating. The polymerization of St in the presence of a hydrophobic fluorophore of pyrene could coat the cores with fluorescent polymer shells, resulting in monodisperse particles with a magnetic silica core and fluorescent polymer shell. Measurements of zeta potential for the composite particles in different pH values indicated that the composite particles had an amphoteric property originating from VA-057 initiator.

  4. Metallic coating of microspheres

    International Nuclear Information System (INIS)

    Meyer, S.F.

    1980-01-01

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates

  5. Yielding behavior and temperature-induced on-field oscillatory rheological studies in a novel MR suspension containing polymer-capped Fe{sub 3}Ni alloy microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Arief, Injamamul, E-mail: arif.inji.chem1986@gmail.com [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Mukhopadhyay, P.K. [LCMP, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700 106 (India)

    2017-05-01

    Magnetic Bimetallic alloy nanoparticles of 3d elements are known for their tunable shape, size and magnetic anisotropy and find extensive applications ranging from magneto-mechanical to biomedical devices. This paper reports the polyol-mediated synthesis of Fe-rich polyacrylic acid (PAA)-Fe{sub 3}Ni alloyed microspheres and its morphological and structural characterizations with scanning electron microscopy and X-ray diffraction studies. Magnetorheological fluid was prepared by dispersing the 10 vol% microparticles in silicone oil. The room temperature viscoelastic characterization of the fluid was performed under different magnetic fields. The field-dependent yield stresses were scaled using Klingenberg model and found that static yield stress was more accurately described by an ~M{sup 3} dependence, where M is particle magnetization. We proposed a multipolar contribution and ascertained the fact that simple dipolar description was insufficient to describe the trend in a complex rheological fluid. Temperature-dependent oscillatory rheological studies under various fields were also investigated. This demonstrated a strong temperature-induced thinning effect. The temperature-thinning in complex moduli and viscosity were more pronounced for the samples at higher magnetic field owing to quasi-solid behavior. - Highlights: • Novel one-pot chemical synthesis of Fe-rich PAA-Fe{sub 3}Ni microspheres. • Room temperature steady shear magnetorheology revealed viscoelastic behavior. • Rheometer magnetic fields can be replaced by powder particle magnetization (M) for better stress scaling. • Higher order scaling relations (~M{sup 3}) to particle magnetization (M) were observed for static yield stress. • Temperature-induced, field-dependent oscillatory rheology indicated pronounced thinning behavior, owing to predominantly quasi-solid behavior at high field density.

  6. Carbon microspheres as ball bearings in aqueous-based lubrication.

    Science.gov (United States)

    St Dennis, J E; Jin, Kejia; John, Vijay T; Pesika, Noshir S

    2011-07-01

    We present an exploratory study on a suspension of uniform carbon microspheres as a new class of aqueous-based lubricants. The surfactant-functionalized carbon microspheres (∼0.1 wt %) employ a rolling mechanism similar to ball bearings to provide low friction coefficients (μ ≈ 0.03) and minimize surface wear in shear experiments between various surfaces, even at high loads and high contact pressures. The size range, high monodispersity, and large yield stress of the C(μsphere), as well as the minimal environmental impact, are all desirable characteristics for the use of a C(μsphere)-SDS suspension as an alternative to oil-based lubricants in compatible devices and machinery.

  7. Performance evaluation of bipolar and tripolar excitations during nozzle-jetting-based alginate microsphere fabrication

    Science.gov (United States)

    Herran, C. Leigh; Huang, Yong; Chai, Wenxuan

    2012-08-01

    Microspheres, small spherical (polymeric) particles with or without second phase materials embedded or encapsulated, are important for many biomedical applications such as drug delivery and organ printing. Scale-up fabrication with the ability to precisely control the microsphere size and morphology has always been of great manufacturing interest. The objective of this work is to experimentally study the performance differences of bipolar and tripolar excitation waveforms in using drop-on-demand (DOD)-based single nozzle jetting for alginate microsphere fabrication. The fabrication performance has been evaluated based on the formability of alginate microspheres as a function of materials properties (sodium alginate and calcium chloride concentrations) and operating conditions. The operating conditions for each excitation include voltage rise/fall times, dwell times and excitation voltage amplitudes. Overall, the bipolar excitation is more robust in making spherical, monodispersed alginate microspheres as good microspheres for its wide working range of material properties and operating conditions, especially during the fabrication of highly viscous materials such as the 2% sodium alginate solution. For both bipolar and tripolar excitations, the sodium alginate concentration and the voltage dwell times should be carefully selected to achieve good microsphere formability.

  8. Performance evaluation of bipolar and tripolar excitations during nozzle-jetting-based alginate microsphere fabrication

    International Nuclear Information System (INIS)

    Leigh Herran, C; Huang, Yong; Chai, Wenxuan

    2012-01-01

    Microspheres, small spherical (polymeric) particles with or without second phase materials embedded or encapsulated, are important for many biomedical applications such as drug delivery and organ printing. Scale-up fabrication with the ability to precisely control the microsphere size and morphology has always been of great manufacturing interest. The objective of this work is to experimentally study the performance differences of bipolar and tripolar excitation waveforms in using drop-on-demand (DOD)-based single nozzle jetting for alginate microsphere fabrication. The fabrication performance has been evaluated based on the formability of alginate microspheres as a function of materials properties (sodium alginate and calcium chloride concentrations) and operating conditions. The operating conditions for each excitation include voltage rise/fall times, dwell times and excitation voltage amplitudes. Overall, the bipolar excitation is more robust in making spherical, monodispersed alginate microspheres as good microspheres for its wide working range of material properties and operating conditions, especially during the fabrication of highly viscous materials such as the 2% sodium alginate solution. For both bipolar and tripolar excitations, the sodium alginate concentration and the voltage dwell times should be carefully selected to achieve good microsphere formability. (paper)

  9. Optimization of sustained release aceclofenac microspheres using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Rameshwar K.; Naik, Jitendra B., E-mail: jitunaik@gmail.com

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14 ± 0.015% to 85.34 ± 0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12 h. The optimized microspheres formulation showed E.E. of 84.87 ± 0.005 with small error value (1.39). The low magnitudes of error and the significant value of R{sup 2} in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. - Highlights: • Aceclofenac microspheres

  10. Processing and Characterization of Sol-Gel Cerium Oxide Microspheres

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Zachary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Padilla Cintron, Cristina [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-27

    Of interest to space exploration and power generation, Radioisotope Thermoelectric Generators (RTGs) can provide long-term power to remote electronic systems without the need for refueling or replacement. Plutonium-238 (Pu-238) remains one of the more promising materials for thermoelectric power generation due to its high power density, long half-life, and low gamma emissions. Traditional methods for processing Pu-238 include ball milling irregular precipitated powders before pressing and sintering into a dense pellet. The resulting submicron particulates of Pu-238 quickly accumulate and contaminate glove boxes. An alternative and dust-free method for Pu-238 processing is internal gelation via sol-gel techniques. Sol-gel methodology creates monodisperse and uniform microspheres that can be packed and pressed into a pellet. For this study cerium oxide microspheres were produced as a surrogate to Pu-238. The similar electronic orbitals between cerium and plutonium make cerium an ideal choice for non-radioactive work. Before the microspheres can be sintered and pressed they must be washed to remove the processing oil and any unreacted substituents. An investigation was performed on the washing step to find an appropriate wash solution that reduced waste and flammable risk. Cerium oxide microspheres were processed, washed, and characterized to determine the effectiveness of the new wash solution.

  11. Insulin delivery through nasal route using thiolated microspheres.

    Science.gov (United States)

    Nema, Tarang; Jain, Ashish; Jain, Aviral; Shilpi, Satish; Gulbake, Arvind; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    The aim of the present study was to investigate the potential of developed thiolated microspheres for insulin delivery through nasal route. In the present study, cysteine was immobilized on carbopol using EDAC. A total of 269.93 µmol free thiol groups per gram polymer were determined. The prepared nonthiolated and thiolated microspheres were studied for particle shape, size, drug content, swellability, mucoadhesion and in vitro insulin release. The thiolated microspheres exhibited higher mucoadhesion due to formation of covalent bonds via disulfide bridges with the mucus gel layer. Drug permeation through goat nasal mucosa of nonthiolated and thiolated microspheres were found as 52.62 ± 2.4% and 78.85 ± 3.1% in 6 h, respectively. Thiolated microspheres bearing insulin showed better reduction in blood glucose level (BGL) in comparison to nonthiolated microspheres as 31.23 ± 2.12% and 75.25 ± 0.93% blood glucose of initial BGL were observed at 6 h after nasal delivery of thiolated and nonthiolated microspheres in streptozotocin-induced diabetic rabbits.

  12. INVESTIGATION OF DRUG RELEASE FROM BIODEGRADABLE PLG MICROSPHERES: EXPERIMENT AND THEORY

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS, MALCOLM J. [Los Alamos National Laboratory; BERCHANE, NADER S. [Los Alamos National Laboratory; CARSON, KENNETH H. [Los Alamos National Laboratory; RICE-FICHT, ALLISON C. [Los Alamos National Laboratory

    2007-01-30

    Piroxicam containing PLG microspheres having different size distributions were fabricated, and in vitro release kinetics were determined for each preparation. Based on the experimental results, a suitable mathematical theory has been developed that incorporates the effect of microsphere size distribution and polymer degradation on drug release. We show from in vitro release experiments that microsphere size has a significant effect on drug release rate. The initial release rate decreased with an increase in microsphere size. In addition, the release profile changed from first order to concave-upward (sigmoidal) as the system size was increased. The mathematical model gave a good fit to the experimental release data.

  13. Monodisperse microbeads of hypercrosslinked polystyrene for liquid and supercritical fluid chromatography

    Science.gov (United States)

    Tsyurupa, M. P.; Blinnikova, Z. K.; Il'in, M. M.; Davankov, V. A.; Parenago, O. O.; Pokrovskii, O. I.; Usovich, O. I.

    2015-11-01

    Monodisperse styrene-divinylbenzene (1 wt %) copolymer microbeads are obtained via the elaborate method of high-productivity precipitation polymerization. The crosslinking of this copolymer with chloromethyl methyl ether in the presence of Friedel-Crafts catalyst yields porous hypercrosslinked polymers with degrees of crosslinking that range from 200 to 500%. Microbead sorbents are shown to be suited for selective stationary phases for high-performance liquid chromatography and supercritical fluid chromatography.

  14. Pharmacodynamics of diclofenac from novel Eudragit entrapped microspheres.

    Science.gov (United States)

    Momoh, M A; Kenechukwu, F C; Adedokun, M O; Odo, C E; Attama, A A

    2014-05-01

    Effective clinical utilization of non-steroidal anti-inflammatory drugs such as diclofenac sodium (DS) is significantly limited by their ulcerogenic potential and poor bioavailability after oral administration, thus necessitating the need for a better carrier to minimize these obvious limitations. The objective of this study was to evaluate Eudragit® RS100/RL100 microspheres formulated by the solvent-evaporation technique for improved delivery of diclofenac. Three batches of (DF1, DF2 and DF3) microspheres were prepared using different ratios of Eudragit RS-100 and RL-100 polymers based on the solvent-evaporation method. The microspheres were characterized based on morphological properties, particle size analysis and encapsulation efficiency (EE%). In vitro release of DS was investigated in both 0.1 N HCl (pH 1.2) and phosphate-buffered saline (pH 7.4), while anti-inflammatory studies were evaluated in the rat model. Maximum EE% of 86.61 ± 0.11, 88.14 ± 0.16 and 85.50 ± 0.21 was obtained for DF1, DF2 and DF3, respectively. Discrete, smooth and brownish microspheres of size range 437 ± 0.01-479 ± 0.21 µm were obtained. Release of DS from the formulation depends on the polymer ratio. All the batches exhibited good anti-inflammatory activities. Microsphere formulations based on Eudragit® polymers would likely offer a reliable and alternative means of delivering DS orally.

  15. Glass microspheres for brachytherapy

    International Nuclear Information System (INIS)

    Prado, Miguel O.; Prastalo, Simon; Blaumann, Herman; Longhino, Juan M.; Repetto Llamazares, A.H.V.

    2007-01-01

    We developed the capacity to produce glass microspheres containing in their structure one or more radioactive isotopes useful for brachytherapy. We studied the various facts related with their production: (Rare earth) alumino silicate glass making, glass characterization, microspheres production, nuclear activation through (n,γ) nuclear reactions, mechanical characterization before and after irradiation. Corrosion tests in simulated human plasma and mechanical properties characterization were done before and after irradiation. (author) [es

  16. Microspheres of poly(ε-caprolactone) loaded Holmium-165: morphology and thermal degradation behavior

    International Nuclear Information System (INIS)

    Geraldes, Adriana Napoleao; Miyamoto, Douglas Massao; Lira, Raphael Arivar de; Osso Junior, Joao Alberto; Nascimento, Nanci; Azevedo, Mariangela de Burgos M. de

    2011-01-01

    Polycaprolactone (PCL), being one of the most important biocompatible and biodegradable aliphatic polyester, provides many potential biomedical. The preparation of biodegradable materials, polymer-based microspheres, is being developed by our group and the goal is to prepare and label with Ho-165 different polymer-based microspheres. The use of radionuclide-loaded microspheres is a promising treatment of liver malignancies. PCL microspheres can be loaded with holmium acetylacetonate (HoAcAc). PCL and PCL/HoAcAc microspheres were prepared by an emulsion solvent extraction/evaporation technique. The PCL/ HoAcAc microspheres were irradiated in a nuclear reactor IEA-R1 at IPEN/CNEN-SP to radionuclide activation. Gamma irradiation was performed at 25 and 50 kGy doses. The microspheres were evaluated by differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TG), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and con focal laser scanning microscopy (CLSM). In the CLSM images were observed emission in 488 nm characteristic of holmium. The SEM surface image of PCL/HoAcAc microspheres showed more roughness than PCL microspheres. TG of PCL/HoAcAc microspheres showed a substantial weight loss above 200 degree C, indicating decomposition of HoAcAc. The residual weight indicates the presence of Ho 2 O 3 . Gamma irradiation at 25 and 50 kGy doses had no effect on the PCL/HoAcAc microspheres, which indicates that the chemical composition of the microspheres had not change. (author)

  17. Microspheres of poly({epsilon}-caprolactone) loaded Holmium-165: morphology and thermal degradation behavior

    Energy Technology Data Exchange (ETDEWEB)

    Geraldes, Adriana Napoleao; Miyamoto, Douglas Massao; Lira, Raphael Arivar de; Osso Junior, Joao Alberto; Nascimento, Nanci; Azevedo, Mariangela de Burgos M. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Polycaprolactone (PCL), being one of the most important biocompatible and biodegradable aliphatic polyester, provides many potential biomedical. The preparation of biodegradable materials, polymer-based microspheres, is being developed by our group and the goal is to prepare and label with Ho-165 different polymer-based microspheres. The use of radionuclide-loaded microspheres is a promising treatment of liver malignancies. PCL microspheres can be loaded with holmium acetylacetonate (HoAcAc). PCL and PCL/HoAcAc microspheres were prepared by an emulsion solvent extraction/evaporation technique. The PCL/ HoAcAc microspheres were irradiated in a nuclear reactor IEA-R1 at IPEN/CNEN-SP to radionuclide activation. Gamma irradiation was performed at 25 and 50 kGy doses. The microspheres were evaluated by differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TG), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and con focal laser scanning microscopy (CLSM). In the CLSM images were observed emission in 488 nm characteristic of holmium. The SEM surface image of PCL/HoAcAc microspheres showed more roughness than PCL microspheres. TG of PCL/HoAcAc microspheres showed a substantial weight loss above 200 degree C, indicating decomposition of HoAcAc. The residual weight indicates the presence of Ho{sub 2}O{sub 3}. Gamma irradiation at 25 and 50 kGy doses had no effect on the PCL/HoAcAc microspheres, which indicates that the chemical composition of the microspheres had not change. (author)

  18. One-pot solvothermal route to self-assembly of cauliflower-shaped CdS microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Ge Ming [Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071 (China); Cui Yao [Institute of New Energy Material Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071 (China); Liu Lu, E-mail: liul@nankai.edu.cn [Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071 (China); Zhou Zhen, E-mail: zhouzhen@nankai.edu.cn [Institute of New Energy Material Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071 (China)

    2011-05-15

    Nearly monodispersed cauliflower-shaped CdS microspheres were prepared through a simple one-step solvothermal route on a large scale by employing sodium dodecyl sulfate (SDS) as the surfactant. Images by field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) indicate that cauliflower-shaped CdS microspheres with diameters in the range from 1.3 to 4.5 {mu}m are assembled by nanoparticles with an average diameter of approximately 30 nm. The possible formation mechanism of the cauliflower-shaped CdS microspheres was also proposed. The photovoltaic activity of cauliflower-shaped CdS architectures has been investigated, indicating that the as-obtained CdS microspheres exhibited higher photovoltaic performance in comparison with CdS nanoparticles.

  19. Formulation and characterization of ketoprofen embedded polycaprolactone microspheres using solvent evaporation method

    Directory of Open Access Journals (Sweden)

    Pankaj Wagh

    2015-07-01

    Full Text Available The purpose of this study was to prepare polymeric microspheres containing Ketoprofen (KFN by single emulsion [oil-in-water (o/w] solvent evaporation method. Polycaprolactone (PCL, biocompatible polymer, was used for the preparation of sustained released microspheres of KFN. A Plackett–Burman design was employed by using the Design-Expert® software (Version- 9.0.3.1, Stat-Ease Inc., Minneapolis, MN. Eleven factors out of six processing factors were investigated in order to enhance the encapsulation efficiency (EE of the microspheres. The resultant microspheres were characterized for their size, morphology, EE, and drug release. Imaging of particles was performed by field emission scanning electron microscopy. Interaction between the drug and polymers were investigated by Fourier transform infrared (FTIR spectroscopy, X-ray powder diffractometry (XRPD and Differential Scanning Calorimetry (DSC. Graphical and mathematical analyses of the design showed that concentration of factor PCL (B and varying speed (F, revolution per minute, rpm were significant negative effect on the EE and identified as the significant factor determining the EE of the microspheres. The microspheres showed high % EE (31.18 % to 96.81 %. The microspheres were found to be discrete, oval with porous surface. The FTIR analysis confirmed no interaction of KFN with the polymer. The XRPD revealed the dispersion of drug within microspheres formulation. Sustained drug release profile over 12 h was achieved by PCL polymer. In conclusion, polymeric microspheres containing KFN can be successfully prepared using the technique of experimental design, and these results helped in finding the optimum formulation variables for EE of microspheres.

  20. Method for sizing hollow microspheres

    Science.gov (United States)

    Farnum, E.H.; Fries, R.J.

    1975-10-29

    Hollow Microspheres may be effectively sized by placing them beneath a screen stack completely immersed in an ultrasonic bath containing a liquid having a density at which the microspheres float and ultrasonically agitating the bath.

  1. Formulation and Optimization of Celecoxib-Loaded Microspheres ...

    African Journals Online (AJOL)

    factors in the preparation of celecoxib-loaded microspheres. Methods: ... made with biodegradable polymers, are ... filtration on Whatman filter paper no.1 and washed 4 - 5 times with n-hexane [11]. The product was then air-dried at room.

  2. Formulation, evaluation and 3(2) full factorial design-based optimization of ondansetron hydrochloride incorporated taste masked microspheres.

    Science.gov (United States)

    Kharb, Vandana; Saharan, Vikas Anand; Dev, Kapil; Jadhav, Hemant; Purohit, Suresh

    2014-11-01

    Masking the bitter taste of Ondansetron hydrochloride (ONS) may improve palatability, acceptance and compliance of ONS products. ONS-loaded, taste-masked microspheres were prepared with a polycationic pH-sensitive polymer and 3(2) full factorial design (FFD) was applied to optimize microsphere batches. Solvent evaporation, in acetone--methanol/liquid paraffin system, was used to prepare taste-masked ONS microspheres. The effect of varying drug/polymer (D/P) ratios on microspheres characteristics were studied by 3(2) FFD. Desirability function was used to search the optimum formulation. Microspheres were evaluated by FTIR, XRD and DSC to examine interaction and effect of microencapsulation process. In vitro taste assessment approach based on bitterness threshold and drug release was used to assess bitterness scores. Prepared ONS microspheres were spherical and surface was wrinkled. ONS was molecularly dispersed in microspheres without any incompatibility with EE100. In hydrochloric acid buffer pH 1.2, ONS released completely from microsphere in just 10 min. Contrary to this, ONS release at initial 5 min from taste-masked microspheres was less than the bitterness threshold. Full factorial design and in vitro taste assessment approach, coupled together, was successfully applied to develop and optimize batches of ONS incorporated taste-masked microspheres.

  3. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres.

    Science.gov (United States)

    Mao, Shirui; Xu, Jing; Cai, Cuifang; Germershaus, Oliver; Schaper, Andreas; Kissel, Thomas

    2007-04-04

    Using fluorescein isothiocyanate labeled dextran (FITC-dextran 40, FD40) as a hydrophilic model compound, microspheres were prepared by a WOW double emulsion technique. Influence of process parameters on microsphere morphology and burst release of FD40 from PLGA microspheres was studied. Internal morphology of microspheres was investigated by stereological method via cryo-cutting technique and scanning electron microscopy (SEM). Drug distribution in microspheres was observed with confocal laser scanning microscopy (CLSM). Polymer nature (RG503 and RG503H) had significant influence on the micro-morphology of microspheres. Increase in continuous water phase volume (W2) led to increased surface porosity but decreased internal porosity. By increasing PVA concentration in the continuous phase from 0.1 to 1%, particle size changed marginally but burst release decreased from 12.2 to 5.9%. Internal porosity of microspheres decreased considerably with increasing polymer concentration. Increase in homogenization speed during the primary emulsion preparation led to decreased internal porosity. Burst release decreased with increasing drug loading but increased with drug molecular weight. Drug distribution in microspheres depended on preparation method. The porosity of microspheres decreased with time in the diffusion stage, but internal morphology had no influence on the release behavior in the bioerosion stage. In summary, surface porosity and internal morphology play a significant role in the release of hydrophilic macromolecules from biodegradable microspheres in the initial release phase characterized by pore diffusion.

  4. Development and optimization of enteric coated mucoadhesive microspheres of duloxetine hydrochloride using 3(2) full factorial design.

    Science.gov (United States)

    Setia, Anupama; Kansal, Sahil; Goyal, Naveen

    2013-07-01

    Microspheres constitute an important part of oral drug delivery system by virtue of their small size and efficient carrier capacity. However, the success of these microspheres is limited due to their short residence time at the site of absorption. The objective of the present study was to formulate and systematically evaluate in vitro performance of enteric coated mucoadhesive microspheres of duloxetine hydrochloride (DLX), an acid labile drug. DLX microspheres were prepared by simple emulsification phase separation technique using chitosan as carrier and glutaraldehyde as a cross-linking agent. Microspheres prepared were coated with eudragit L-100 using an oil-in-oil solvent evaporation method. Eudragit L-100was used as enteric coating polymer with the aim to release the drug in small intestine The microspheres prepared were characterized by particle size, entrapment efficiency, swelling index (SI), mucoadhesion time, in vitro drug release and surface morphology. A 3(2) full factorial design was employed to study the effect of independent variables polymer-to-drug ratio (X1) and stirring speed (X2) on dependent variables, particle size, entrapment efficiency, SI, in vitro mucoadhesion and drug release up to 24 h (t24). Microspheres formed were discrete, spherical and free flowing. The microspheres exhibited good mucoadhesive property and also showed high percentage entrapment efficiency. The microspheres were able to sustain the drug release up to 24 h. Thus, the prepared enteric coated mucoadhesive microspheres may prove to be a potential controlled release formulation of DLX for oral administration.

  5. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2011-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  6. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2010-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  7. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2012-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  8. [Preparation of citrulline microspheres by spray drying technique for colonic targeting].

    Science.gov (United States)

    Bahri, S; Zerrouk, N; Lassoued, M-A; Tsapis, N; Chaumeil, J-C; Sfar, S

    2014-03-01

    Citrulline is an amino acid that becomes essential in situations of intestinal insufficiency such as short bowel syndrome. It is therefore interesting to provide the patients with dosage forms for routing citrulline to the colon. The aim of this work is to formulate microspheres of citrulline for colonic targeting by the technique of spray drying. Eudragit(®) FS 30D was selected as polymer to encapsulate citrulline using the spray drying technique. Citrulline and Eudragit(®) FS 30D were dissolved in water and ethanol, respectively. The aqueous and the ethanolic solutions were then mixed in 1:2 (v/v) ratio. Microspheres were obtained by nebulizing the citrulline-Eudragit(®) FS 30D solution using a Mini spray dryer equipped with a 0.7mm nozzle. The microspheres have been formulated using citrulline and Eudragit(®) FS 30D. The size distribution of microspheres was determined by light diffraction. The morphology of the microspheres was studied by electron microscopy. Manufacturing yields, encapsulation rate and dissolution profiles were also studied. The microspheres obtained had a spherical shape with a smooth surface and a homogeneous size except for the microspheres containing the highest concentration of polymer (90 %). The formulation showed that the size and morphology of the microspheres are influenced by the polymer concentration. Manufacturing yields were about 51 % but encapsulation rate were always very high (above 90 %). The in vitro dissolution study showed that the use of the Eudragit(®) FS 30D under these conditions is not appropriate to change the dissolution profile of the citrulline. This technique has led to the formulation of microspheres with good physical properties in terms of morphology and size. The compression of the microspheres should help to control citrulline release for colonic targeting. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Preparation of alumina microspheres

    International Nuclear Information System (INIS)

    Santos, W.R. dos; Abrao, A.

    1980-01-01

    Inorganic exchangers are widely used for adsorption and column partition chromatography. The main difficulty of using commercial alumina (in powder) for column chromatography is related to its packing, and the operations through the column become diffcult and time-consuming; also it turns to be virtually impossible to use large dimension columns. In order to eliminate these problems, a process for the preparation of alumina micro-spheres was developed as an adaptation of a similar process used to prepare nuclear fuel microspheres (UO 2 , ThO 2 ). The flowsheet of this process is presented together with the analytical results of sphericity after calcination, granulometry, density and characterization by X-ray diffractometry. Solubility tests showed that the so-prepared microspheres are well resistant to strong acids and bases; retention tests showed their efficiency, mainly to copper. (C.L.B.) [pt

  10. Preparation of novel biodegradable ropivacaine microspheres and evaluation of their efficacy in sciatic nerve block in mice

    Directory of Open Access Journals (Sweden)

    Ni Q

    2016-08-01

    Full Text Available Qiang Ni, Wurong Chen, Lei Tong, Jue Cao, Chao Ji Department of Anesthesiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China Abstract: In this study, ropivacaine chitosan-loaded microspheres for subcutaneous administration were developed. The systems were characterized in terms of surface morphology, particle size, encapsulation efficiency, and in vitro release behavior. Results showed that the microspheres had drug loading rate of 7.3% and encapsulation efficiency of 91.2%, and their average diameter was 2.62±0.76 µm. The morphology study revealed that the microspheres are uniform monodispersed spheres and did not form aggregates in aqueous solution. It was clearly observed that the release profile of ropivacaine microspheres exhibited a biphasic pattern: the initial burst release within the first 2 hours and a following slower and sustained release over a long time. In vivo, a greater area under the plasma concentration–time curve from 0 to t (AUC0–t was obtained from the microspheres (4.27-fold, than from the injection group, which indicated that there was a significantly improved systemic exposure to ropivacaine. Pharmacodynamics result showed that preparing ropivacaine as microsphere preparation could not only extend the drug effect time but also decrease the administration dosage. Keywords: ropivacaine, chitosan, microspheres, in vitro release, pharmacodynamics

  11. Formulation, characterization and in vitro evaluation of theophylline-loaded Eudragit RS 100 microspheres prepared by an emulsion-solvent diffusion/evaporation technique.

    Science.gov (United States)

    Jelvehgari, Mitra; Barar, Jaleh; Valizadeh, Hadi; Shadrou, Sanam; Nokhodchi, Ali

    2011-01-01

    The aim was to prepare theophylline-loaded Eudragit RS 100 microsphere to achieve sustained release pattern with relatively high production yield. To this end, microspheres were prepared by oil/oil solvent evaporation method using an acetone-methanol mixture and liquid paraffin system containing aluminum tristearate. Drug release profiles were determined at pH 1.2 and 7.4. Morphology and solid state of microspheres were examined using SEM, DSC, X-ray powder diffraction (XRPD), and FT-IR. As the ratio of acetone/methanol increased during the preparation of microspheres the size of microsphere was reduced. The highest drug loading efficiency (87.21%) was obtained for the microsphere containing a high ratio of polymer to drug (6:1) and high volume of acetone. SEM studies showed that the microspheres are almost spherical with a few pores and cracks at surfaces. The FT-IR, XRPD and DSC results ruled out any chemical interaction between theophylline and Eudragit. The microspheres prepared with low ratio of polymer to drug (1:2) showed faster dissolution rate than those with high polymer to drug ratio. The ratio of polymer to drug and the volume of polymer solvent were found to be the key factors affecting the release profile which could lead to microspheres with desired release behavior.

  12. Chitosan microspheres in novel drug delivery systems.

    Science.gov (United States)

    Mitra, Analava; Dey, Baishakhi

    2011-07-01

    The main aim in the drug therapy of any disease is to attain the desired therapeutic concentration of the drug in plasma or at the site of action and maintain it for the entire duration of treatment. A drug on being used in conventional dosage forms leads to unavoidable fluctuations in the drug concentration leading to under medication or overmedication and increased frequency of dose administration as well as poor patient compliance. To minimize drug degradation and loss, to prevent harmful side effects and to increase drug bioavailability various drug delivery and drug targeting systems are currently under development. Handling the treatment of severe disease conditions has necessitated the development of innovative ideas to modify drug delivery techniques. Drug targeting means delivery of the drug-loaded system to the site of interest. Drug carrier systems include polymers, micelles, microcapsules, liposomes and lipoproteins to name some. Different polymer carriers exert different effects on drug delivery. Synthetic polymers are usually non-biocompatible, non-biodegradable and expensive. Natural polymers such as chitin and chitosan are devoid of such problems. Chitosan comes from the deacetylation of chitin, a natural biopolymer originating from crustacean shells. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer with excellent film-forming ability. Being of cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Hence chitosan has become a promising natural polymer for the preparation of microspheres/nanospheres and microcapsules. The techniques employed to microencapsulate with chitosan include ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation. This review focuses on the preparation, characterization of chitosan microspheres and their role in novel drug delivery systems.

  13. Silicon Microspheres Photonics

    International Nuclear Information System (INIS)

    Serpenguzel, A.

    2008-01-01

    Electrophotonic integrated circuits (EPICs), or alternatively, optoelectronic integrated circuit (OEICs) are the natural evolution of the microelectronic integrated circuit (IC) with the addition of photonic capabilities. Traditionally, the IC industry has been based on group IV silicon, whereas the photonics industry on group III-V semiconductors. However, silicon based photonic microdevices have been making strands in siliconizing photonics. Silicon microspheres with their high quality factor whispering gallery modes (WGMs), are ideal candidates for wavelength division multiplexing (WDM) applications in the standard near-infrared communication bands. In this work, we will discuss the possibility of using silicon microspheres for photonics applications in the near-infrared

  14. Oxaliplatin loaded PLAGA microspheres: design of specific release profiles.

    Science.gov (United States)

    Lagarce, F; Cruaud, O; Deuschel, C; Bayssas, M; Griffon-Etienne, G; Benoit, J

    2002-08-21

    Oxaliplatin loaded PLAGA microspheres have been prepared by solvent extraction process. Parameters affecting the release kinetics in vitro have been studied in order to design specific release profiles suitable for direct intra-tumoral injection. By varying the nature and the relative proportions of different polymers we managed to prepare microspheres with good encapsulation efficiency (75-90%) and four different release profiles: zero order kinetics (type II) and the classical sigmoïd release profile with three different sizes of plateau and burst. These results, if correlated with in vivo activity, are promising to enhance effectiveness of local tumor treatment.

  15. Mucoadhesive microspheres: a promising tool in drug delivery.

    Science.gov (United States)

    Patil, Sanjay B; Sawant, Krutika K

    2008-10-01

    Mucoadhesive polymers have recently gained interest among pharmaceutical scientists as a means of improving drug delivery by promoting the residence time and contact time of the dosage form with the mucous membranes. Mucoadhesion is the process whereby synthetic and natural polymers adhere to mucosal surfaces in the body. If these materials are then incorporated into pharmaceutical formulations, drug absorption by mucosal cells may be enhanced or the drug will be released at the site for an extended period of time. Microspheres, in general, have the potential to be used for targeted and controlled release drug delivery; however, coupling of mucoadhesive properties to microspheres has additional advantages like, a much more intimate contact with the mucus layer, efficient absorption and enhanced bioavailability of the drugs due to a high surface to volume ratio. The present review describes the potential applications of mucoadhesive microspheres as a novel carrier system to improve drug delivery by various routes of administration like buccal, oral, nasal, ocular, vaginal and rectal, either for systemic or for local effects. The mucoadhesive polymers, methods of preparation of microspheres and their in vitro and in vivo evaluation are also described.

  16. Safety of intradiscal injection and biocompatibility of polyester amide microspheres in a canine model predisposed to intervertebral disc degeneration

    NARCIS (Netherlands)

    Willems, Nicole; Mihov, George; Grinwis, Guy C M; van Dijk, Maarten; Schumann, Detlef; Bos, Clemens; Strijkers, Gustav J; Dhert, Wouter J A; Meij, Björn P; Creemers, Laura B.; Tryfonidou, Marianna A

    Repair of degenerated intervertebral discs (IVD) might be established via intradiscal delivery of biologic therapies. Polyester amide polymers (PEA) were evaluated for in vitro cytotoxicity and in vivo biocompatibility, and thereafter intradiscal application of PEA microspheres (PEAMs) in a canine

  17. Safety of intradiscal injection and biocompatibility of polyester amide microspheres in a canine model predisposed to intervertebral disc degeneration

    NARCIS (Netherlands)

    Willems, Nicole; Mihov, George; Grinwis, Guy C. M.; van Dijk, Maarten; Schumann, Detlef; Bos, Clemens; Strijkers, Gustav J.; Dhert, Wouter J. A.; Meij, Björn P.; Creemers, Laura B.; Tryfonidou, Marianna A.

    2017-01-01

    Repair of degenerated intervertebral discs (IVD) might be established via intradiscal delivery of biologic therapies. Polyester amide polymers (PEA) were evaluated for in vitro cytotoxicity and in vivo biocompatibility, and thereafter intradiscal application of PEA microspheres (PEAMs) in a canine

  18. Preparation and Characterization of Zein and Zein-Chitosan Microspheres with Great Prospective of Application in Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Vinícius Müller

    2011-01-01

    Full Text Available Biomaterials applied as carriers for controlled drug delivery offer many advantages over the conventional systems. Among them, the increase of treatment effectiveness and also a significant reduction of toxicity, due to their biodegradability property, are some special features. In this work, microspheres based on the protein Zein (ZN and ZN associated to the natural polymer Chitosan (CHI were prepared and characterized. The microspheres of ZN and ZN/CHI were characterized by FT-IR spectroscopy and thermal analysis, and the morphology was analyzed by SEM images. The results confirmed the incorporation of CHI within the ZN-based microspheres. The morphological analysis showed that the CHI added increased the microspheres porosity when compared to the ZN microspheres. The chemical and physical characterization and the morphological analysis allow inferring that ZN/CHI microspheres are good candidates to act as a carrier for controlled drug release.

  19. Development and optimization of enteric coated mucoadhesive microspheres of duloxetine hydrochloride using 32 full factorial design

    Science.gov (United States)

    Setia, Anupama; Kansal, Sahil; Goyal, Naveen

    2013-01-01

    Background: Microspheres constitute an important part of oral drug delivery system by virtue of their small size and efficient carrier capacity. However, the success of these microspheres is limited due to their short residence time at the site of absorption. Objective: The objective of the present study was to formulate and systematically evaluate in vitro performance of enteric coated mucoadhesive microspheres of duloxetine hydrochloride (DLX), an acid labile drug. Materials and Methods: DLX microspheres were prepared by simple emulsification phase separation technique using chitosan as carrier and glutaraldehyde as a cross-linking agent. Microspheres prepared were coated with eudragit L-100 using an oil-in-oil solvent evaporation method. Eudragit L-100was used as enteric coating polymer with the aim to release the drug in small intestine The microspheres prepared were characterized by particle size, entrapment efficiency, swelling index (SI), mucoadhesion time, in vitro drug release and surface morphology. A 32 full factorial design was employed to study the effect of independent variables polymer-to-drug ratio (X1) and stirring speed (X2) on dependent variables, particle size, entrapment efficiency, SI, in vitro mucoadhesion and drug release up to 24 h (t24). Results: Microspheres formed were discrete, spherical and free flowing. The microspheres exhibited good mucoadhesive property and also showed high percentage entrapment efficiency. The microspheres were able to sustain the drug release up to 24 h. Conclusion: Thus, the prepared enteric coated mucoadhesive microspheres may prove to be a potential controlled release formulation of DLX for oral administration. PMID:24167786

  20. Production of Monodisperse Nanoparticles and Application of Discrete-Monodisperse Model in Plasma Reactors

    International Nuclear Information System (INIS)

    Kim, Dong-Joo; Kim, Kyo-Seon; Zhao, Qian-Qiu

    2003-01-01

    The particle growth in plasma reactor were investigated by using the discrete-monodisperse (D-M) model for various process conditions. The monodisperse large sized particle distribution predicted by the D-M model are in good agreement with the large sized particles by the discrete-sectional model and also in the experiments by Shiratani et al. (1996). Some fractions of the small size particles are in a neutral state or even charged positively, but most of the large sized monodisperse particles are charged negatively. As the mass generation rate of monomers increases, the large sized particles grow more quickly and the production rate of nanoparticles of 100nm by plasma reactor increases. As the initial electron concentration or the monomer diameter increases, it takes longer time for the large sized particles to grow up to 100nm, but the large sized particle concentration of 100nm increases and the resulting production rate of large sized particles of 100nm increases. As the residence time increases, the time for the large sized particles to grow up to 100nm decreases and the large sized particle concentration of 100nm increases and, as a result, the production rate of large sized particles of 100nm increases. We propose that the plasma reactor can be a good candidate to produce monodisperse nanoparticles

  1. Particle size modeling and morphology study of chitosan/gelatin/nanohydroxyapatite nanocomposite microspheres for bone tissue engineering.

    Science.gov (United States)

    Bagheri-Khoulenjani, Shadab; Mirzadeh, Hamid; Etrati-Khosroshahi, Mohammad; Shokrgozar, Mohammad Ali

    2013-06-01

    In this study, nanocomposite microspheres based on chitosan/gelatin/nanohydroxyapatite were fabricated, and effects of the nanohydroxyapatite/biopolymer (chitosan/gelatin) weight ratio (nHA/P), stirring rate, chitosan concentration and biopolymer concentration on the particle size, and morphology of nanocomposite microspheres were investigated. Particle size of microspheres was modeled by design of experiments using the surface response method. Particle size, morphology of microspheres, and distribution of nanoparticles within the composite microspheres were evaluated using an optical microscope, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. X-ray diffraction and Fourier transform infrared spectroscopy were applied to study the physical and chemical characteristics of microspheres. Results showed that by modulating the nHA/P ratio, chitosan concentration, polymer concentration, and stirring rate, it is possible to fabricate microspheres in wide rages of particle size (5-150 μm). Analysis of variance confirmed that the modified quadratic model can be used to predict the particle size of nanocomposite microspheres within the design space. SEM studies showed that microspheres with different compositions had totally different morphologies from dense morphologies to porous ones. TEM images demonstrated that nanoparticles were distributed uniformly within the polymeric matrix. MTT assay and cell culture studies showed that microspheres with different compositions possessed good biocompatibility. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013. Copyright © 2012 Wiley Periodicals, Inc.

  2. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    Science.gov (United States)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  3. Dual Drug Loaded Biodegradable Nanofibrous Microsphere for Improving Anti-Colon Cancer Activity

    Science.gov (United States)

    Fan, Rangrang; Li, Xiaoling; Deng, Jiaojiao; Gao, Xiang; Zhou, Liangxue; Zheng, Yu; Tong, Aiping; Zhang, Xiaoning; You, Chao; Guo, Gang

    2016-06-01

    One of the approaches being explored to increase antitumor activity of chemotherapeutics is to inject drug-loaded microspheres locally to specific anatomic sites, providing for a slow, long term release of a chemotherapeutic while minimizing systemic exposure. However, the used clinically drug carriers available at present have limitations, such as their low stability, renal clearance and residual surfactant. Here, we report docetaxel (DOC) and curcumin (CUR) loaded nanofibrous microspheres (DOC + CUR/nanofibrous microspheres), self-assembled from biodegradable PLA-PEO-PPO-PEO-PLA polymers as an injectable drug carrier without adding surfactant during the emulsification process. The obtained nanofibrous microspheres are composed entirely of nanofibers and have an open hole on the shell without the assistance of a template. It was shown that these DOC + CUR/nanofibrous microspheres could release curcumin and docetaxel slowly in vitro. The slow, sustained release of curcumin and docetaxel in vivo may help maintain local concentrations of active drug. The mechanism by which DOC + CUR/nanofibrous microspheres inhibit colorectal peritoneal carcinomatosis might involve increased induction of apoptosis in tumor cells and inhibition of tumor angiogenesis. In vitro and in vivo evaluations demonstrated efficacious synergistic antitumor effects against CT26 of curcumin and docetaxel combined nanofibrous microspheres. In conclusion, the dual drug loaded nanofibrous microspheres were considered potentially useful for treating abdominal metastases of colorectal cancer.

  4. Carbidopa/levodopa-loaded biodegradable microspheres: in vivo evaluation on experimental Parkinsonism in rats.

    Science.gov (United States)

    Arica, Betül; Kaş, H Süheyla; Moghdam, Amir; Akalan, Nejat; Hincal, A Atilla

    2005-02-16

    The purpose of this study was to prepare and characterize injectable carbidopa (CD)/levodopa (LD)-loaded Poly(L-lactides) (L-PLA), Poly(D,L-lactides) (D,L-PLA) and Poly(D,L-lactide-co-glycolide) (PLAGA) microspheres for the intracerebral treatment of Parkinson's disease. The microspheres were prepared by solvent evaporation method. The polymers' (L-PLA, D,L-PLA and PLAGA) concentrations were 10% (w/w) in the organic phase; the emulsifiers [sodium carboxymethylcellulose (NaCMC):sodium oleate (SO) and Polyvinyl alcohol (PVA):SO mixture (4:1 w/v)] concentrations were 0.75% in the aqueous phase. Microspheres were analyzed for morphological characteristics, size distribution, drug loading and in vitro release. The release profile of CD/LD from microspheres was characterized in the range of 12-35% within the first hour of the in vitro release experiment. The efficiency of CD- and LD-encapsulated microspheres to striatal transplantation and the altering of apomorphine-induced rotational behavior in the 6-hydroxydopamine (6-OHDA) unilaterally lesioned rat model were also tested. 6-OHDA/CD-LD-loaded microsphere groups exhibited lower rotation scores than 6-OHDA/Blank microsphere groups as early as 1 week postlesion. These benefits continued throughout the entire experimental period and they were statistically significant during the 1, 2 and 8 weeks (p<0.05). CD/LD-loaded microspheres were specifically prepared to apply as an injectable dosage forms for brain implantation.

  5. Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon.

    Science.gov (United States)

    Rai, Gopal; Yadav, Awesh K; Jain, Narendra K; Agrawal, Govind P

    2016-01-01

    Objective of the present investigation was to prepare and evaluate the potential of enteric coated dextran microspheres for colon targeting of 5-fluorouracil (5-FU). Dextran microspheres were prepared by emulsification-crosslinking method and the formulation variables studied included different molecular weights of dextran, drug:polymer ratio, volume of crosslinking agent, stirring speed and time. Enteric coating (Eudragit S-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method using different coat:core ratios (4:1 or 8:1). Uncoated and coated dextran microspheres were characterized by particle size, surface morphology, entrapment efficiency, DSC, in vitro drug release in the presence of dextranase and 2% rat cecal contents. The release study of 5-FU from coated dextran microspheres was pH dependent. No release was observed at acidic pH; however, the drug was released quickly where Eudragit starts solublizing there was continuous release of drug from the microspheres. Organ distribution study was suggested that coated dextran microspheres retard the release of drug in gastric and intestinal pH environment and released of drug from microspheres in colon due to the degradation of dextran by colonic enzymes.

  6. Enteric-coated epichlorohydrin crosslinked dextran microspheres for site-specific delivery to colon.

    Science.gov (United States)

    Rai, Gopal; Yadav, Awesh K; Jain, Narendra K; Agrawal, Govind P

    2015-01-01

    Enteric-coated epichlorohydrin crosslinked dextran microspheres containing 5-Fluorouracil (5-FU) for colon drug delivery was prepared by emulsification-crosslinking method. The formulation variables studied includes different molecular weights of dextran, volume of crosslinking agent, stirring speed, time and temperature. Dextran microspheres showed mean entrapment efficiencies ranging between 77 and 87% and mean particle size ranging between 10 and 25 µm. About 90% of drug was released from uncoated dextran microspheres within 8 h, suggesting the fast release and indicated the drug loaded in uncoated microspheres, released before they reached colon. Enteric coating (Eudragit-S-100 and Eudragit-L-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method. The release study of 5-FU from coated dextran microspheres was complete retardation in simulated gastric fluid (pH 1.2) and once the coating layer of enteric polymer was dissolved at higher pH (7.4 and 6.8), a controlled release of the drug from the microspheres was observed. Further, the release of drug was found to be higher in the presence of dextranase and rat caecal contents, indicating the susceptibility of dextran microspheres to colonic enzymes. Organ distribution and pharmacokinetic study in albino rats was performed to establish the targeting potential of optimized formulation in the colon.

  7. Preparation of microspheres for slow release drug by radiation-induced suspension polymerization and their properties

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Asano, Masaharu; Kaetsu, Isao

    1982-01-01

    The polymer microspheres containing drugs as drug delivery system were made by means of suspension-polymerization by radiation at low temperature by using glass-forming monomers which have stable supercooling properties and large polymerizability at low temperature. The particle distribution depended on the kind of monomer. It was found that the entrapping yield of drug in polymer microspheres increased with increasing viscosity of monomer and that the maximum value on the particle size distribution curve was also shifted to large particle diameter side. In the case of trimethylolpropane trimethacrylate monomer (43 cps), TMPT, the entrapping yield of drug reached 74% and the maximum value in particle size distribution curve appeared in the neighborhood of 105 to 210 mu m ranges. On the other hand, those values in neopentyl glycol dimethacrylate monomer (4 cps) were 12% in former and 44 -- 105 mu m in the latter. The release phenomenon of drugs from polymer microspheres was investigated. for example, the cumulative amount of mitomycin C (water soluble drug) released from TMPT polymer microsphere was about 90% after 30-day dissolution, while in the case of water-insoluble drug such as testosterone the amount of release was about 49% after 40-day dissolution. In all cases, the release rate is constant during the experimental period. Therefore, it was concluded that the release of drugs from polymer microspheres obtained in this study is possible over the long periods. (author)

  8. Synthesis of magnetic polymeric microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2010-05-13

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  9. Synthesis of magnetic polymeric microspheres

    International Nuclear Information System (INIS)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I

    2010-01-01

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  10. Brownian dynamics simulations of insulin microspheres formation

    Science.gov (United States)

    Li, Wei; Chakrabarti, Amit; Gunton, James

    2010-03-01

    Recent experiments have indicated a novel, aqueous process of microsphere insulin fabrication based on controlled phase separation of protein from water-soluble polymers. We investigate the insulin microsphere crystal formation from insulin-PEG-water systems via 3D Brownian Dynamics simulations. We use the two component Asakura-Oosawa model to simulate the kinetics of this colloid polymer mixture. We first perform a deep quench below the liquid-crystal boundary that leads to fractal formation. We next heat the system to obtain a break-up of the fractal clusters and subsequently cool the system to obtain a spherical aggregation of droplets with a relatively narrow size distribution. We analyze the structure factor S(q) to identify the cluster dimension. S(q) crosses over from a power law q dependence of 1.8 (in agreement with DLCA) to 4 as q increases, which shows the evolution from fractal to spherical clusters. By studying the bond-order parameters, we find the phase transition from liquid-like droplets to crystals which exhibit local HCP and FCC order. This work is supported by grants from the NSF and Mathers Foundation.

  11. Preparation and properties of polyvinyl alcohol microspheres

    International Nuclear Information System (INIS)

    Campbell, J.H.; Grens, J.Z.; Poco, J.F.; Ives, B.H.

    1986-06-01

    Polyvinyl alcohol (PVA) microspheres, having a size range of ∼150- to 250-μm diameter with 1- to 5-μm wall thickness, have been fabricated using a solution droplet technique. The spheres were developed for possible use on the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) Program. PVA, a polymer chosen based on earlier survey work carried out at KMS Fusion, Inc., has good strength, low hydrogen permeability, is optically transparent, and water soluble. The latter property makes it safe and easy to use in our droplet generator system. A unique dual-orifice droplet generator was used to prepare the spheres. The droplet generator operating conditions and the column processing parameters were chosen using results from our 1-D model calculations as a guide. The polymer microsphere model is an extension of the model we developed to support the glass sphere production. After preparation, the spheres were physically characterized for surface quality, sphericity, wall thickness (and uniformity), and size. We also determined the buckling pressure for both uncoated and CH-coated spheres. Radiation stability to beta decay (from tritium) was evaluated by exposing the spheres to a 7-keV electron beam. The results from these and other physical property measurements are presented in this report

  12. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The start-up and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 and 103 kg/mole, and for three bidisperse polystyrene melts. The monodisperse melts show a maximum in the steady elongational viscosity vs. the elongational...

  13. The Generation And Properties Of Solid Monodisperse Aerosols Of ...

    African Journals Online (AJOL)

    A monodisperse aerosol generator (MAGE) was used to generate calibration or monodisperse aerosols containing stearic acid and carnauba wax. Some of the factors affecting the size of aerosol particles generated with the MAGE were determined. The factors include: temperature of operation of the MAGE, type and purity ...

  14. Facile dicyandiamide-mediated fabrication of well-defined CuO hollow microspheres and their catalytic application

    International Nuclear Information System (INIS)

    Yang Shengyang; Wang Caifeng; Chen Li; Chen Su

    2010-01-01

    Nearly monodisperse CuO hollow microspheres were successfully synthesized by a straightforward one-pot hydrothermal approach using dicyandiamide (DDA) as structure-guiding agent. The composition, structure and morphology of the products were investigated in detail, via a set of characterizations including X-ray diffraction (XRD) pattern, energy dispersive X-ray (EDX), scanning electron microscope (SEM), and transmission electron microscope (TEM). The results demonstrated that different copper sources and experimental procedures would significantly affect the shape or size of CuO products. A possible formation mechanism of CuO microspheres in this process was thoroughly discussed. Also, some other novel CuO microstructures were fabricated based on DDA-mediated synthetic route. DSC/TGA analysis revealed that as-prepared CuO microspheres can be explored as a promising additive to accelerate the thermal decomposition of ammonium perchlorate, a key oxidizer in composite solid propellants.

  15. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    farquar, G; Leif, R

    2008-09-12

    Biocompatible polymers with hydrolyzable chemical bonds are being used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres are being produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. The advantages and disadvantages of each method will be presented and discussed in greater detail along with fluorescent and charge properties of the aerosols. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  16. Contact electrification in aerosolized monodispersed silica microspheres quantified using laser based velocimetry

    DEFF Research Database (Denmark)

    Alois, Stefano; Merrison, Jonathan P.; Iversen, Jens Jacob

    2017-01-01

    interacting with the injector tube have been seen to become electrified with a relatively narrow range of surface charge concentration of around Q/4πr2 ~ −100 e-/µm2 (~ −0.02mC/m2) for all particle sizes. Several combinations of aerosol particle and injector tube composition were also investigated, some...... experiments (mC/m2). Possible explanations for this effect are discussed, including the possibility of field emission at the contact site. In the future this technique is intended also to be applied to particle-particle induced contact electrification and its material dependence....

  17. Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Weiwei [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China); Zhang, Yimei [Suzhou Research Academy of North China Electric Power University (China); Hou, Chen; Pan, Duo; He, Jianjun; Zhu, Hao, E-mail: zhuhao07@lzu.edu.cn [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China)

    2016-02-15

    This paper reported an immobilization of Candida rugosa lipase (CRL) onto PAMAM-dendrimer-grafted magnetic nanoparticles synthesized by a modified solvothermal reduction method. The dendritic magnetic nanoparticles were amply characterized by several instrumental measurements, and the CRL was covalently anchored on the three generation supports with glutaraldehyde as coupling reagent. The amount of immobilized enzyme was up to 150 mg/g support and the factors related with the enzyme activity were investigated. The immobilization of lipase improved their performance in wider ranges of pH and temperature. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with free enzyme and can be reused 10 cycles with the enzymatic activity remained above 90 %. The properties of lipase improved obviously after being immobilized on the dendritic supports. The inactive immobilized lipase could be regenerated with glutaraldehyde and Cu{sup 2+}, respectively. This synthetic strategy was facile and eco-friendly for applications in lipase immobilization.

  18. Monodisperse macroporous poly(glycidyl methacrylate) microspheres coated with silica: Design, preparation and characterization

    Czech Academy of Sciences Publication Activity Database

    Grama, Silvia; Plichta, Zdeněk; Trchová, Miroslava; Kovářová, Jana; Beneš, Milan J.; Horák, Daniel

    2014-01-01

    Roč. 77, April (2014), s. 11-17 ISSN 1381-5148 R&D Projects: GA MŠk EE2.3.30.0029 Institutional support: RVO:61389013 Keywords : multistep swelling polymerization * poly(glycidyl methacrylate) * poly(2,3-dihydroxypropyl methacrylate) Subject RIV: CE - Biochemistry Impact factor: 2.515, year: 2014

  19. Formulation and Evaluation of Microsphere Based Oro Dispersible Tablets of Itopride Hcl

    Directory of Open Access Journals (Sweden)

    S.S Agrawal

    2012-09-01

    Full Text Available Background The purpose of the present work is to mask the intensely bitter taste of Itopride HCl and to formulate an Oro dispersible tablet (ODT of the taste-masked drug by incorporation of microspheres in the tablets for use in specific populations viz. pediatrics, geriatrics and patients experiencing difficulty in swallowing.Methods:With this objective in mind, microspheres loaded with Itopride HCl were prepared by solvent evaporation method using acetone as solvent for pH-sensitive polymer, Eudragit EPO and light liquid paraffin as the encapsulating medium. The prepared microspheres were characterized with regard to yield, drug content, flow properties, particle size and size distribution, surface features, in vitro drug release and taste. The ODTs so prepared from these microspheres were evaluated for hardness, thickness, weight variation, friability, disintegration time, drug content, wetting time, water absorption ratio, moisture uptake, in vitro dispersion, in vitro disintegration, in vitro drug release and stability. Results:The average size of microspheres was found to be satisfactory in terms of the size and size distribution. Microspheres prepared were of a regular spherical shape. Comparison of the dissolution profiles of microspheres in different pH media showed that microspheres having drug: polymer ratio of 1:2 produced a retarding effect in simulated salivary fluid (pH 6.8 and were further used for formulation into ODTs after addition of suitable amounts of excipients such as superdisintegrant, diluent, sweetener and flavor of directly compressible grade. ConclusionsEffective taste-masking was achieved for Itopride HCl by way of preparation of microspheres and ODTs of acceptable characteristics.

  20. Formulation and evaluation of microsphere based oro dispersible tablets of itopride hcl

    Directory of Open Access Journals (Sweden)

    Shah Sanjay

    2012-09-01

    Full Text Available Abstract Background The purpose of the present work is to mask the intensely bitter taste of Itopride HCl and to formulate an Oro dispersible tablet (ODT of the taste-masked drug by incorporation of microspheres in the tablets for use in specific populations viz. pediatrics, geriatrics and patients experiencing difficulty in swallowing. Methods With this objective in mind, microspheres loaded with Itopride HCl were prepared by solvent evaporation method using acetone as solvent for pH-sensitive polymer, Eudragit EPO and light liquid paraffin as the encapsulating medium. The prepared microspheres were characterized with regard to yield, drug content, flow properties, particle size and size distribution, surface features, in vitro drug release and taste. The ODTs so prepared from these microspheres were evaluated for hardness, thickness, weight variation, friability, disintegration time, drug content, wetting time, water absorption ratio, moisture uptake, in vitro dispersion, in vitro disintegration, in vitro drug release and stability. Results The average size of microspheres was found to be satisfactory in terms of the size and size distribution. Microspheres prepared were of a regular spherical shape. Comparison of the dissolution profiles of microspheres in different pH media showed that microspheres having drug: polymer ratio of 1:2 produced a retarding effect in simulated salivary fluid (pH 6.8 and were further used for formulation into ODTs after addition of suitable amounts of excipients such as superdisintegrant, diluent, sweetener and flavor of directly compressible grade. Conclusions Effective taste-masking was achieved for Itopride HCl by way of preparation of microspheres and ODTs of acceptable characteristics.

  1. Formulation and evaluation of microsphere based oro dispersible tablets of itopride hcl.

    Science.gov (United States)

    Shah, Sanjay; Madan, Sarika; Agrawal, Ss

    2012-09-03

    The purpose of the present work is to mask the intensely bitter taste of Itopride HCl and to formulate an Oro dispersible tablet (ODT) of the taste-masked drug by incorporation of microspheres in the tablets for use in specific populations viz. pediatrics, geriatrics and patients experiencing difficulty in swallowing. With this objective in mind, microspheres loaded with Itopride HCl were prepared by solvent evaporation method using acetone as solvent for pH-sensitive polymer, Eudragit EPO and light liquid paraffin as the encapsulating medium. The prepared microspheres were characterized with regard to yield, drug content, flow properties, particle size and size distribution, surface features, in vitro drug release and taste. The ODTs so prepared from these microspheres were evaluated for hardness, thickness, weight variation, friability, disintegration time, drug content, wetting time, water absorption ratio, moisture uptake, in vitro dispersion, in vitro disintegration, in vitro drug release and stability. The average size of microspheres was found to be satisfactory in terms of the size and size distribution. Microspheres prepared were of a regular spherical shape. Comparison of the dissolution profiles of microspheres in different pH media showed that microspheres having drug: polymer ratio of 1:2 produced a retarding effect in simulated salivary fluid (pH 6.8) and were further used for formulation into ODTs after addition of suitable amounts of excipients such as superdisintegrant, diluent, sweetener and flavor of directly compressible grade. Effective taste-masking was achieved for Itopride HCl by way of preparation of microspheres and ODTs of acceptable characteristics.

  2. Logarithmic Exchange Kinetics in Monodisperse Copolymeric Micelles

    Science.gov (United States)

    García Daza, Fabián A.; Bonet Avalos, Josep; Mackie, Allan D.

    2017-06-01

    Experimental measurements of the relaxation kinetics of copolymeric surfactant exchange for micellar systems unexpectedly show a peculiar logarithmic decay. Several authors use polydispersity as an explanation for this behavior. However, in coarse-grained simulations that preserve microscopic details of the surfactants, we find evidence of the same logarithmic behavior. Since we use a strictly monodisperse distribution of chain lengths such a relaxation process cannot be attributed to polydispersity, but has to be caused by an inherent physical process characteristic of this type of system. This is supported by the fact that the decay is specifically logarithmic and not a power law with an exponent inherited from the particular polydispersity distribution of the sample. We suggest that the degeneracy of the energy states of the hydrophobic block in the core, which is broken on leaving the micelle, can qualitatively explain the broad distribution of energy barriers, which gives rise to the observed nonexponential relaxation.

  3. Synthesis and characterization of monodispersed silver nanoparticles

    Science.gov (United States)

    Jegatha Christy, A.; Umadevi, M.

    2012-09-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO3), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM).

  4. Synthesis and characterization of monodispersed silver nanoparticles

    International Nuclear Information System (INIS)

    Christy, A Jegatha; Umadevi, M

    2012-01-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO 3 ), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM). (paper)

  5. Synthesis and characterization of porous microspheres bearing pyrrolidone units

    Energy Technology Data Exchange (ETDEWEB)

    Maciejewska, M., E-mail: mmacieje@umcs.pl; Kołodyńska, D.

    2015-01-15

    Porous microspheres of glycydyl methacrylate (GMA) cross-linked with trimethylolpropane trimethacrylate (TRIM) were prepared with toluene as porogen by suspension-emulsion polymerization. With increasing molar ratio of the functional monomer to cross-linker, the epoxy group content increases significantly whereas the parameters of porous structure (specific surface area and total pore volume) decreases. In order to obtain adsorbents bearing functional groups the porous methacrylate network was modified by subsequent reaction with pyrrolidone. The materials were studied using elemental analysis, infrared spectroscopy, atomic force microscopy (AFM), attenuated total reflection (ATR) spectroscopy, Raman spectroscopy, thermal gravimetry. Additionally, polymers sorption capacity towards Cu(II) was investigated. - Highlights: • Porous microspheres with reactive epoxy group were synthesized. • Highly developed porous structure was created. • Pyrrolidone units were incorporated during ring–opening reaction. • Polymers sorption capacity towards Cu (II) was investigated.

  6. A facile method for preparing porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres.

    Science.gov (United States)

    Liu, Dong; Deng, Jianping; Yang, Wantai

    2014-01-01

    The first synthesis of porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres is reported, in which the core is constructed of chiral polymer and the shell is constructed of Fe3 O4 NPs. The microspheres integrate three significant concepts, "porosity", "chirality", and "magneticity", in one single microspheric entity. The microspheres consist of Fe3 O4 nanoparticles and porous optically active microspheres, and thus combine the advantages of both magnetic nanoparticles and porous optically active microspheres. The pore size and specific surface area of the microspheres are characterized by N2 adsorption, from which it is found that the composite microspheres possess a desirable porous structure. Circular dichroism and UV-vis absorption spectroscopy measurements demonstrate that the microspheres exhibit the expected optical activity. The microspheres also have high saturation magnetization of 14.7 emu g(-1) and rapid magnetic responsivity. After further optimization, these novel microspheres may potentially find applications in areas such as asymmetric catalysis, chiral adsorption, etc. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ketoprofen-loaded Eudragit RSPO microspheres: an influence of sodium carbonate on in vitro drug release and surface topology.

    Science.gov (United States)

    Pandit, Sachin S; Hase, Dinesh P; Bankar, Manish M; Patil, Arun T; Gaikwad, Naresh J

    2009-05-01

    Eudragit RSPO microspheres containing ketoprofen as model drug, prepared by solvent evaporation technique using acetone-liquid paraffin (heavy) solvent system were examined. Depending upon polymer concentration in the internal phase, microspheres of particle mean diameter (122.8, 213.6 and 309.5 μm) were obtained. The influence of surface washing of microspheres with n-hexane, i.e. untreated microspheres (UM) on the drug content, drug release and surface topology of microspheres were compared to those of microspheres washed with sodium carbonate, i.e. treated microspheres (TM) in order to make the non-encapsulated surface drug soluble. The significant reduction in encapsulation efficiency (p < 0.001) and drug content (p < 0.001) after treatment, in combination with the small crystalline peaks observed during XRD testing and lack of melting endotherm observed in DSC testing, suggests that the washing process actually removes a significant amount of drug (p < 0.001) from the surface and encapsulated near to the surface of the microsphere polymer matrix. Scanning electron microscopy (SEM) examination revealed that the removal of surface drug did not affect the size of microspheres but the topology of treated smallest microspheres was modified. The ketoprofen release profiles were examined in phosphate buffer pH 7.4, using USPXXIII paddle type dissolution apparatus. In general both UM and TM result in biphasic release patterns, but the initial burst effect (first release phase) of TM was lower than that of UM. The second release phase did not change for the bigger size but increased for the smallest microspheres, probably owing to the modification of matrix porosity.

  8. Preparation and flow cytometry of uniform silica-fluorescent dye microspheres.

    Science.gov (United States)

    Bele, Marjan; Siiman, Olavi; Matijević, Egon

    2002-10-15

    Uniform fluorescent silica-dye microspheres have been prepared by coating preformed monodispersed silica particles with silica layers containing rhodamine 6G or acridine orange. The resulting dispersions exhibit intense fluorescent emission between 500 and 600 nm, over a broad excitation wavelength range of 460 to 550 nm, even with exceedingly small amounts of dyes incorporated into the silica particles (10-30 ppm, expressed as weight of dye relative to weight of dry particles). The fluorescent particles can be prepared in micrometer diameters suitable for analyses using flow cytometry with 488-nm laser excitation.

  9. Co-loading and intestine-specific delivery of multiple antioxidants in pH-responsive microspheres based on TEMPO-oxidized polysaccharides

    NARCIS (Netherlands)

    Shi, Mengxuan; Bai, Jie; Zhao, Liyun; Yu, Xinrui; Liang, Jingjing; Liu, Ying; Norde, Willem; Li, Yuan

    2017-01-01

    In this study, pH-responsive microspheres loaded with multiple antioxidants were developed for intestine-specific delivery and exhibited synergistic activity. They consist of chitosan (CS)-coated microspheres made of TEMPO-oxidized Konjac glucomannan (OKGM) polymers, of which the carboxyl (COO−)

  10. Covalently coating dextran on macroporous polyglycidyl methacrylate microsphere enabled rapid protein chromatographic separation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongyue; Li, Qiang; Li, Juan; Zhou, Weiqing; Ye, Peili; Gao, Yang; Ma, Guanghui, E-mail: ghma@home.ipe.ac.cn; Su, Zhiguo

    2012-12-01

    Protein denaturation and nonspecific adsorption on polymer media as a chromatographic support have been a problem which needs to be overcome. Macroporous poly(glycidyl methacrylate-divinylbezene) (PGMA-DVB) microspheres prepared in this study were firstly covalently coated with dextran through a three-step method. The dextran was firstly adsorbed onto the microspheres and then covalently bound to the PGMA-DVB microsphere through ether bonds which were formed by hydroxyl group reacting with epoxy group at the presence of 4-(Dimethylamino) pyridine. Finally, the coating dextran layer was crosslinked by ethylene glycol diglycidyl ether to form the continuous network coating. The coated microspheres were characterized by Fourier transform infrared spectra, scanning electron microscope, mercury porosimetry measurements, laser scanning confocal microscope, and protein adsorption experiments. Results showed that PGMA-DVB microspheres coated with dextran successfully maintained the macroporous structure and high permeability. The backpressure was only 1.69 MPa at a high flow rate of 2891 cm/h. Consequently, the hydrophilicity and biocompatibility of modified microspheres were greatly improved, and the contact angle decreased from 184 Degree-Sign to 13 Degree-Sign , and nonspecific adsorption of proteins was decreased to little or none. The clad dextran coating with large amounts of hydroxyl group was easily derived to be various functional groups. The derived media have great potential applications in rapid protein chromatography. - Highlights: Black-Right-Pointing-Pointer Macroporous PGMA-DVB microspheres were covalently coated with dextran. Black-Right-Pointing-Pointer The hydrophilicity of the coated microspheres was significantly improved. Black-Right-Pointing-Pointer The irreversible adsorption of proteins was reduced to zero. Black-Right-Pointing-Pointer The coated microspheres can maintain the macropore structure. Black-Right-Pointing-Pointer The coated microspheres

  11. Covalently coating dextran on macroporous polyglycidyl methacrylate microsphere enabled rapid protein chromatographic separation

    International Nuclear Information System (INIS)

    Zhang, Rongyue; Li, Qiang; Li, Juan; Zhou, Weiqing; Ye, Peili; Gao, Yang; Ma, Guanghui; Su, Zhiguo

    2012-01-01

    Protein denaturation and nonspecific adsorption on polymer media as a chromatographic support have been a problem which needs to be overcome. Macroporous poly(glycidyl methacrylate–divinylbezene) (PGMA–DVB) microspheres prepared in this study were firstly covalently coated with dextran through a three-step method. The dextran was firstly adsorbed onto the microspheres and then covalently bound to the PGMA–DVB microsphere through ether bonds which were formed by hydroxyl group reacting with epoxy group at the presence of 4-(Dimethylamino) pyridine. Finally, the coating dextran layer was crosslinked by ethylene glycol diglycidyl ether to form the continuous network coating. The coated microspheres were characterized by Fourier transform infrared spectra, scanning electron microscope, mercury porosimetry measurements, laser scanning confocal microscope, and protein adsorption experiments. Results showed that PGMA–DVB microspheres coated with dextran successfully maintained the macroporous structure and high permeability. The backpressure was only 1.69 MPa at a high flow rate of 2891 cm/h. Consequently, the hydrophilicity and biocompatibility of modified microspheres were greatly improved, and the contact angle decreased from 184° to 13°, and nonspecific adsorption of proteins was decreased to little or none. The clad dextran coating with large amounts of hydroxyl group was easily derived to be various functional groups. The derived media have great potential applications in rapid protein chromatography. - Highlights: ► Macroporous PGMA–DVB microspheres were covalently coated with dextran. ► The hydrophilicity of the coated microspheres was significantly improved. ► The irreversible adsorption of proteins was reduced to zero. ► The coated microspheres can maintain the macropore structure. ► The coated microspheres were applied to rapid protein separation.

  12. Solid Phase Extraction of Trace Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) Ions in Beverages on Functionalized Polymer Microspheres Prior to Flame Atomic Absorption Spectrometric Determinations.

    Science.gov (United States)

    Berber, Hale; Alpdogan, Güzin

    2017-01-01

    In this study, poly(glycidyl methacrylate-methyl methacrylate-divinylbenzene) was synthesized in the form of microspheres, and then functionalized by 2-aminobenzothiazole ligand. The sorption properties of these functionalized microspheres were investigated for separation, preconcentration and determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions using flame atomic absorption spectrometry. The optimum pH values for quantitative sorption were 2 - 4, 5 - 8, 6 - 8, 4 - 6, 2 - 6 and 2 - 3 for Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II), respectively, and also the highest sorption capacity of the functionalized microspheres was found to be for Cu(II) with the value of 1.87 mmol g -1 . The detection limits (3σ; N = 6) obtained for the studied metals in the optimal conditions were observed in the range of 0.26 - 2.20 μg L -1 . The proposed method was successfully applied to different beverage samples for the determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions, with the relative standard deviation of <3.7%.

  13. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate).

    Science.gov (United States)

    Kempen, Diederik H R; Lu, Lichun; Kim, Choll; Zhu, Xun; Dhert, Wouter J A; Currier, Bradford L; Yaszemski, Michael J

    2006-04-01

    The ideal biomaterial for the repair of bone defects is expected to have good mechanical properties, be fabricated easily into a desired shape, support cell attachment, allow controlled release of bioactive factors to induce bone formation, and biodegrade into nontoxic products to permit natural bone formation and remodeling. The synthetic polymer poly(propylene fumarate) (PPF) holds great promise as such a biomaterial. In previous work we developed poly(DL-lactic-co-glycolic acid) (PLGA) and PPF microspheres for the controlled delivery of bioactive molecules. This study presents an approach to incorporate these microspheres into an injectable, porous PPF scaffold. Model drug Texas red dextran (TRD) was encapsulated into biodegradable PLGA and PPF microspheres at 2 microg/mg microsphere. Five porous composite formulations were fabricated via a gas foaming technique by combining the injectable PPF paste with the PLGA or PPF microspheres at 100 or 250 mg microsphere per composite formulation, or a control aqueous TRD solution (200 microg per composite). All scaffolds had an interconnected pore network with an average porosity of 64.8 +/- 3.6%. The presence of microspheres in the composite scaffolds was confirmed by scanning electron microscopy and confocal microscopy. The composite scaffolds exhibited a sustained release of the model drug for at least 28 days and had minimal burst release during the initial phase of release, as compared to drug release from microspheres alone. The compressive moduli of the scaffolds were between 2.4 and 26.2 MPa after fabrication, and between 14.9 and 62.8 MPa after 28 days in PBS. The scaffolds containing PPF microspheres exhibited a significantly higher initial compressive modulus than those containing PLGA microspheres. Increasing the amount of microspheres in the composites was found to significantly decrease the initial compressive modulus. The novel injectable PPF-based microsphere/scaffold composites developed in this study

  14. Monodisperse, submicrometer-scale platinum colloidal spheres with high electrocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lixue; Wang, Liang; Guo, Shaojun; Zhai, Junfeng; Dong, Shaojun; Wang, Erkang [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 130022 Jilin, Changchun (China)

    2009-02-15

    Monodisperse, submicrometer-scale platinum (Pt) colloidal spheres were prepared through a simple direct chemical reduction of p-phenylenediamine (PPD)-chloroplatinic acid (H{sub 2}PtCl{sub 6}) coordination polymer colloids. It was found that the prepared Pt colloids had the similar size and morphology with their coordination polymer precursors, and the prepared Pt colloids with rough surfaces were three-dimensional (3D) structured assemblies of high-density small Pt nanoparticles. The electrochemical experiments confirmed that the prepared Pt colloids possessed a high electrocatalytic activity towards mainly four-electron reduction of dioxygen to water, making the prepared Pt colloids potential candidates for the efficient cathode material in fuel cells. (author)

  15. Biodegradable microsphere-mediated cell perforation in microfluidic channel using femtosecond laser

    Science.gov (United States)

    Ishii, Atsuhiro; Ariyasu, Kazumasa; Mitsuhashi, Tatsuki; Heinemann, Dag; Heisterkamp, Alexander; Terakawa, Mitsuhiro

    2016-05-01

    The use of small particles has expanded the capability of ultrashort pulsed laser optoinjection technology toward simultaneous treatment of multiple cells. The microfluidic platform is one of the attractive systems that has obtained synergy with laser-based technology for cell manipulation, including optoinjection. We have demonstrated the delivery of molecules into suspended-flowing cells in a microfluidic channel by using biodegradable polymer microspheres and a near-infrared femtosecond laser pulse. The use of polylactic-co-glycolic acid microspheres realized not only a higher optoinjection ratio compared to that with polylactic acid microspheres but also avoids optical damage to the microfluidic chip, which is attributable to its higher optical intensity enhancement at the localized spot under a microsphere. Interestingly, optoinjection ratios to nucleus showed a difference for adhered cells and suspended cells. The use of biodegradable polymer microspheres provides high throughput optoinjection; i.e., multiple cells can be treated in a short time, which is promising for various applications in cell analysis, drug delivery, and ex vivo gene transfection to bone marrow cells and stem cells without concerns about residual microspheres.

  16. Characterization of a monodispersed aerosol exposure system for beagle dogs

    International Nuclear Information System (INIS)

    Cannon, W.C.; Herring, J.P.; Craig, D.K.

    1978-01-01

    A monodispersed aerosol exposure system for dogs is described and data are presented on aerosol depositions in the exposure system which could affect the aerosol presented to the animals by reducing the concentration and changing the particle size distribution

  17. A general approach for monodisperse colloidal perovskites, Chemistry of Materials

    NARCIS (Netherlands)

    Demirors, A.F.; Imhof, A.

    2009-01-01

    We describe a novel general method for synthesizing monodisperse colloidal perovskite particles at room temperature by postsynthesis addition of metal hydroxides to amorphous titania colloids. In previous work, we used titania particles to synthesize homogenously mixed silica-titania composite

  18. In-vitro studies of enteric coated diclofenac sodium-carboxymethylcellulose microspheres.

    Science.gov (United States)

    Arica, B; Arica, M Y; Kaş, H S; Hincal, A A; Hasirci, V

    1996-01-01

    MIcrospheres containing diclofenac sodium (DS) were prepared using carboxymethylcellulose (CMC) as the main support material (1.0, 2.0, 3.0% (w/v)) and aluminum chloride as the crosslinker. Drug to polymer ratios of 1:1, 1:2 and 1:4 were used to obtain a range of microspheres. The microspheres were then coated with an enteric coating material, Eudragit S-100, efficiency, % yield value, particle sizes an in-vitro dissolution behaviour were investigated. The surface of the enteric coated microspheres seemed to be all covered with Eudragit S-100 from scanning electron microscopy observation. It was also observed that increasing the CMC concentration led to an increase in the encapsulation efficiency, % yield value and particle size and decreased the release rate. Eudragit S-100 coating did not significantly alter the size but the release rate was significantly lower even when the lower concentration solution was used.

  19. Melatonin Nanoparticles Adsorbed to Polyethylene Glycol Microspheres as Activators of Human Colostrum Macrophages

    Directory of Open Access Journals (Sweden)

    Cristiane de Castro Pernet Hara

    2013-01-01

    Full Text Available The effectiveness of hormones associated with polymeric matrices has amplified the possibility of obtaining new drugs to activate the immune system. Melatonin has been reported as an important immunomodulatory agent that can improve many cell activation processes. It is possible that the association of melatonin with polymers could influence its effects on cellular function. Thus, this study verified the adsorption of the hormone melatonin to polyethylene glycol (PEG microspheres and analyzed its ability to modulate the functional activity of human colostrum phagocytes. Fluorescence microscopy and flow cytometry analyses revealed that melatonin was able to adsorb to the PEG microspheres. This system increased the release of superoxide and intracellular calcium. There was an increase of phagocytic and microbicidal activity by colostrum phagocytes when in the presence of melatonin adsorbed to PEG microspheres. The modified delivery of melatonin adsorbed to PEG microspheres may be an additional mechanism for its microbicidal activity and represents an important potential treatment for gastrointestinal infections of newborns.

  20. Melatonin Nanoparticles Adsorbed to Polyethylene Glycol Microspheres as Activators of Human Colostrum Macrophages

    International Nuclear Information System (INIS)

    Hara, C.D.C.P.; Honorio-Frana, A.C.; Fagundes, D.L.G.; Guimares, P.C.L.; Franca, E.L.

    2013-01-01

    The effectiveness of hormones associated with polymeric matrices has amplified the possibility of obtaining new drugs to activate the immune system. Melatonin has been reported as an important immunomodulatory agent that can improve many cell activation processes. It is possible that the association of melatonin with polymers could influence its effects on cellular function. Thus, this study verified the adsorption of the hormone melatonin to polyethylene glycol (PEG) microspheres and analyzed its ability to modulate the functional activity of human colostrum phagocytes. Fluorescence microscopy and flow cytometry analyses revealed that melatonin was able to adsorb to the PEG microspheres. This system increased the release of superoxide and intracellular calcium. There was an increase of phagocytic and microbicidal activity by colostrum phagocytes when in the presence of melatonin adsorbed to PEG microspheres. The modified delivery of melatonin adsorbed to PEG microspheres may be an additional mechanism for its microbicidal activity and represents an important potential treatment for gastrointestinal infections of newborns.

  1. Self-Assembly of pH-Responsive Microspheres for Intestinal Delivery of Diverse Lipophilic Therapeutics.

    Science.gov (United States)

    Zhou, Xing; Zhao, Yang; Chen, Siyu; Han, Songling; Xu, Xiaoqiu; Guo, Jiawei; Liu, Mengyu; Che, Ling; Li, Xiaohui; Zhang, Jianxiang

    2016-08-08

    Targeted delivery of therapeutics to the intestine is preferred for the management of many diseases due to its diverse advantages. Currently, there are still challenges in creating cost-effective and translational pH-responsive microspheres for intestinal delivery of various hydrophobic drugs. Herein we report a multiple noncovalent interactions-mediated assembly strategy in which carboxyl-bearing compounds (CBCs) are guest molecules, while poly(N-isopropylacrylamide) (PNIPAm) serves as a host polymer. Formation of microparticles and therapeutic packaging can be achieved simultaneously by this assembly approach, leading to well-shaped microspheres with extremely higher drug loading capacity as compared to microspheres based on two FDA-approved materials of poly(d,l-lactide-co-glycolide) (PLGA) and an enteric coating polymer EudragitS 100 (S100). Also, carboxyl-deficient hydrophobic drugs can be effectively entrapped. These assembled microspheres, with excellent reconstitution capability as well as desirable scalability, could selectively release drug molecules under intestinal conditions. By significantly enhancing drug dissolution/release in the intestine, these pH-responsive assemblies may notably improve the oral bioavailability of loaded therapeutics. Moreover, the assembled microspheres possessed superior therapeutic performance in rodent models of inflammation and tumor over the control microspheres derived from PLGA and S100. Therapy with newly developed microspheres did not cause undesirable side effects. Furthermore, in vivo evaluation in mice revealed the carrier material PNIPAm was safe for oral delivery at doses as high as 10 g/kg. Collectively, our findings demonstrated that this type of pH-responsive microsphere may function as superior and translational intestine-directed delivery systems for a diverse array of therapeutics.

  2. A novel monodisperse SiO2@C-dot for the rapid and facile identification of latent fingermarks using self-quenching resistant solid-state fluorescence.

    Science.gov (United States)

    Peng, Di; Liu, Xiang; Huang, Mengjun; Wang, Dan; Liu, Renlong

    2018-04-24

    Solid powder fluorescence shows great potential for application in medicine, biology, and engineering, especially in the identification of latent fingermarks in forensic science. However, conventional developing methods suffer from some drawbacks, such as low contrast, low sensitivity, low selectivity, and high toxicity. To conquer these challenges, novel SiO2@C-dot microspheres were prepared via a facile one-pot hydrothermal method by using citric acid as a carbon source and aminosilane as a nitrogen source. Interestingly, the results showed that the resultant powders possess good monodispersity, high fluorescence emission, and resistance to self-quenching. Additionally, the mechanism for the solid-state fluorescence of SiO2@C-dot compounds was also investigated. More importantly, the fingermarks on various surfaces, including transparent glasses, ceramic tiles, transparent plastics, aluminum alloys, plastic cards, painted woods, artificial leathers, and Chinese paper money, developed by the powders have indicated well-defined papillary ridges under a 365 nm UV lamp. The novel strategy of using monodisperse SiO2@C-dot microspheres as a fluorescent label for developing latent fingermarks showed greater advantages compared to conventional methods, which was also demonstrated using the automatic fingerprint identification system. It is simple, rapid, low-cost, nontoxic, and effective, and is expected to be a promising alternative for the development of latent fingerprints in forensic science.

  3. 聚合物微球固载的N-羟基邻苯二甲酰亚胺在分子氧氧化苯甲醇反应过程中的催化特性%Catalytic characteristics of N-hydroxyphthalimide immobilized on polymer microspheres in oxidation of benzyl alcohol by molecular oxygen

    Institute of Scientific and Technical Information of China (English)

    杨晓林; 黄建龙; 高保娇; 门吉英

    2015-01-01

    以甲基丙烯酸缩水甘油酯(GMA)和甲基丙烯酸甲酯(MMA)的交联共聚微球 GMA/MMA 为基质,经过几步大分子反应在微球表面合成与固载了 N-羟基邻苯二甲酰亚胺(NHPI),形成固载有 NHPI 的聚合物微球GMA/MMA-NHPI。将 GMA/MMA-NHPI 与 Co(OAc)2组成共催化体系,用于分子氧氧化苯甲醇的反应过程。研究结果表明,GMA/MMA-NHPI与Co(OAc)2所构成的共催化体系在温和条件(65℃和常压氧气)下可有效地实现苯甲醇的分子氧氧化过程,将其深度氧化为苯甲酸,显示出较好的催化活性和高的选择性(苯甲酸的选择性为96%)。主催化剂GMA/MMA-NHPI固载的NHPI与助催化剂Co(OAc)2适宜的摩尔比为20:1;主催化剂所含NHPI的摩尔分数为底物的10%时催化剂的用量比较适宜。固体催化剂GMA/MMA-NHPI还具有良好的再循环使用性能。%Crosslinked polymeric microspheres GMA/MMA of glycidyl methacrylate (GMA) and methyl methacrylate (MMA) were prepared, and then N-hydroxyphthalimide (NHPI) was synthesized and immobilized on GMA/MMA microspheres through several polymer reaction steps, resulting in the functionalized microspheres GMA/MMA-NHPI. The solid catalyst GMA/MMA-NHPI in combination with Co(OAc)2 was used in aerobic oxidation of benzyl alcohol. Experimental results showed that the composite catalyst consisting of GMA/MMA-NHPI and Co(OAc)2 could effectively catalyze aerobic oxidation of benzyl alcohol by molecular oxygen under mild conditions (65℃ and normal pressure). Benzyl alcohol was deeply oxidized to benzoic acid. Although benzyl alcohol conversion rate was not very high, catalytic activity was satisfactory and benzoic acid selectivity was as high as 96%. The appropriate molar ratio of immobilized NHPI on GMA/MMA-NHPI microspheres to Co(OAc)2 was 20:1, and the appropriate amount of GMA/MMA-NHPI was 10% (mol) of the substrate. The solid catalyst GMA/MMA-NHPI microspheres showed good recycling and reusing

  4. Influence of Sodium Alginate on Hypoglycemic Activity of Metformin Hydrochloride in the Microspheres Obtained by the Spray Drying

    Directory of Open Access Journals (Sweden)

    Marta Szekalska

    2016-01-01

    Full Text Available Alginate microspheres with metformin hydrochloride were prepared by the spray drying method in order to improve residence time of drug in the stomach. Nine formulations (F1–F9 with various drug : polymer ratio (1 : 2, 1 : 1, and 2 : 1 and different sodium alginate concentration (1%, 2%, and 3% were evaluated for size, morphology, drug loading, Zeta potential, and swelling degree. In vitro drug release, mathematical release profile, and physical state of microspheres were also evaluated. Optimal formulation characterized by the highest drug loading was formulation F6 (drug : polymer ratio 2 : 1 and 2% alginate solution. Based on glucose uptake in Saccharomyces cerevisiae cells and α-amylase inhibition tests, it could be concluded that alginate microspheres enhance hypoglycemic activity of metformin hydrochloride evaluated in vitro. Designed microspheres are promising as alternative, multicompartment dosage form for metformin hydrochloride delivery.

  5. Fabrication of Alkoxyamine-Functionalized Magnetic Core-Shell Microspheres via Reflux Precipitation Polymerization for Glycopeptide Enrichment

    Directory of Open Access Journals (Sweden)

    Meng Yu

    2016-03-01

    Full Text Available As a facile method to prepare hydrophilic polymeric microspheres, reflux precipitation polymerization has been widely used for preparation of polymer nanogels. In this article, we synthesized a phthalamide-protected N-aminooxy methyl acrylamide (NAMAm-p for preparation of alkoxyamine-functionalized polymer composite microspheres via reflux precipitation polymerization. The particle size and functional group density of the composite microspheres could be adjusted by copolymerization with the second monomers, N-isopropyl acrylamide, acrylic acid or 2-hydroxyethyl methacrylate. The resultant microspheres have been characterized by TEM, FT-IR, TGA and DLS. The experimental results showed that the alkoxyamine group density of the microspheres could reach as high as 1.49 mmol/g, and these groups showed a great reactivity with ketone/aldehyde compounds. With the aid of magnetic core, the hybrid microspheres could capture and magnetically isolate glycopeptides from the digested mixture of glycopeptides and non-glycopeptides at a 1:100 molar ratio. After that, we applied the composite microspheres to profile the glycol-proteome of a normal human serum sample, 95 unique glycopeptides and 64 glycoproteins were identified with these enrichment substrates in a 5 μL of serum sample.

  6. Preparation of polymethacrylic acid-grafted HEMA/PVP microspheres and preliminary study on basic protein adsorption.

    Science.gov (United States)

    Gao, Baojiao; Hu, Hongyan; Guo, Jianfeng; Li, Yanbin

    2010-06-01

    The crosslinked copolymeric microspheres (HEMA/NVP) of N-vinylpyrrolidone (NVP) and 2-hydroxyethyl methacrylate (HEMA) were prepared using inverse suspension polymerization method. Subsequently, the reaction of methacryloyl chloride with the hydroxyl groups on the surfaces of HEMA/NVP microspheres was performed, leading to the introduction of polymerisable double bonds onto the surfaces of microspheres HEMA/NVP. Afterward, methacrylic acid was allowed to be graft-polymerized on microspheres HEMA/NVP in the manner of "grafting from", resulting in the grafted microspheres PMAA-HEMA/NVP. The grafted microspheres PMAA-HEMA/NVP were fully characterized with several means. The graft-polymerization of MAA on microspheres HEMA/NVP was studied in detail, and the optimal reaction conditions were determined. Thereafter, the adsorption property of the grafted microspheres PMAA-HEMA/NVP for lysozyme as a basic protein model was preliminarily examined to explore the feasibility of removing deleterious basic protein such as density lipoprotein from blood. The experimental results indicate that the PMAA grafting degree on microspheres HEMA/NVP is limited because an enwinding polymer layer as a kinetic barrier on the surfaces of HEMA/NVP microspheres will be formed during the graft-polymerization, and block the graft-polymerization. In order to enhance PMAA grafting degree, reaction temperature, monomer concentration and the used amount of initiator should be effectively controlled. The experimental results also reveal that the grafted microspheres PMAA-HEMA/NVP possess very strong adsorption ability for lysozyme by right of strong electrostatic interaction. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Intracellular degradation of microspheres based on cross-linked dextran hydrogels or amphiphilic block copolymers: A comparative Raman microscopy study

    Science.gov (United States)

    van Manen, Henk-Jan; van Apeldoorn, Aart A; Verrijk, Ruud; van Blitterswijk, Clemens A; Otto, Cees

    2007-01-01

    Micro- and nanospheres composed of biodegradable polymers show promise as versatile devices for the controlled delivery of biopharmaceuticals. Whereas important properties such as drug release profiles, biocompatibility, and (bio)degradability have been determined for many types of biodegradable particles, information about particle degradation inside phagocytic cells is usually lacking. Here, we report the use of confocal Raman microscopy to obtain chemical information about cross-linked dextran hydrogel microspheres and amphiphilic poly(ethylene glycol)-terephthalate/poly(butylene terephthalate) (PEGT/PBT) microspheres inside RAW 264.7 macrophage phagosomes. Using quantitative Raman microspectroscopy, we show that the dextran concentration inside phagocytosed dextran microspheres decreases with cell incubation time. In contrast to dextran microspheres, we did not observe PEGT/PBT microsphere degradation after 1 week of internalization by macrophages, confirming previous studies showing that dextran microsphere degradation proceeds faster than PEGT/PBT degradation. Raman microscopy further showed the conversion of macrophages to lipid-laden foam cells upon prolonged incubation with both types of microspheres, suggesting that a cellular inflammatory response is induced by these biomaterials in cell culture. Our results exemplify the power of Raman microscopy to characterize microsphere degradation in cells and offer exciting prospects for this technique as a noninvasive, label-free optical tool in biomaterials histology and tissue engineering. PMID:17722552

  8. Copper Salts Mediated Morphological Transformation of Cu2O from Cubes to Hierarchical Flower-like or Microspheres and Their Supercapacitors Performances

    Science.gov (United States)

    Chen, Liang; Zhang, Yu; Zhu, Pengli; Zhou, Fengrui; Zeng, Wenjin; Lu, Daoqiang Daniel; Sun, Rong; Wong, Chingping

    2015-01-01

    Monodisperse Cu2O of different microstructures, such as cubes, flower-like, and microspheres, have been extensively synthesized by a simple polyol reduction method using different copper salts, i.e. (Cu(acac)2, Cu(OH)2, and Cu(Ac)2·H2O). The effects of copper salts on the morphology of Cu2O were investigated in details through various characterization methods, including X-ray diffraction, transmission electron microscopy, scanning electron microscopy and UV-Vis absorption spectra. The effects of morphology on the electrochemical properties were further studied. Among the different structures, Cu2O with the microspheric morphology shows the highest specific capacitance and the best cycling stability compared with those of the other two structures, thus bear larger volume charge during the electrochemical reaction due to the microspheres of small nanoparticles. PMID:25857362

  9. Chitosan magnetic microspheres for technological applications: Preparation and characterization

    International Nuclear Information System (INIS)

    Podzus, P.E.; Daraio, M.E.; Jacobo, S.E.

    2009-01-01

    One of the major applications of chitosan and its many derivatives are based on its ability to bind strongly heavy and toxic metal ions. In this study chitosan magnetic microspheres have been synthesized. Acetic acid (1%w/v) solution was used as solvent for the chitosan polymer solution (2%w/v) where magnetite nanoparticles were suspended in order to obtain a stable ferrofluid. Glutaraldehyde was used as cross-linker. The magnetic characteristic of these materials allows an easy removal after use if is necessary. The morphological characterization of the microspheres shows that they can be produced in the size range 800-1100 μm. The adsorption of Cu(II) onto chitosan-magnetite nanoparticles was studied in batch system. A second-order kinetic model was used to fit the kinetic data, leading to an equilibrium adsorption capacity of 19 mg Cu/g chitosan.

  10. Investigation of the parameters affecting the release of flurbiprofen from chitosan microspheres

    Directory of Open Access Journals (Sweden)

    Müşerref Günseli Yüksel Tilkan

    2018-04-01

    Full Text Available ABSTRACT Flurbiprofen (FLB, a NSAID, widely used for preventing pain generally for arthritis or dental problems. In this study, FLB loaded chitosan microspheres were prepared by ionotropic gelation method. In this method, microspheres were formed by dropping chitosan solutions containing FLB into sodium alginate solutions including sodium tripolyphosphate (TPP. A variety of formulation parameters like drug:polymer ratio, drug concentration, polymer’s molecular weight, polymer concentration, pH and the concentration of TPP solutions, drying method and stirring time were analyzed. The dissolution studies were performed in a shaking water bath in pH 7.4 phosphate buffer saline (PBS at 37 °C. Laser diffractometer was used for particle size analysis, and scanning electron microscope (SEM was used for morphological properties. Drug loading and loading efficiency were calculated by using UV spectrophotometer. The particles obtained were spherical with 0.7-1.3 mm size range, and the loading efficiency was approximately 21-79%. The dissolution studies conducted revealed that drug:polimer ratio and the polymer type and concentration affected the drug release from microspheres. It was observed that increasing the polymer concentration, polymer’s molecular weight and TPP concentration decreased the FLB release from microspheres, which was according to Higuchi kinetics.

  11. Gastroretentive Floating Microspheres of Silymarin: Preparation and ...

    African Journals Online (AJOL)

    Methods: Cellulose microspheres – formulated with hydroxylpropyl methylcellulose (HPMC) and ethyl cellulose (EC) – and Eudragit microspheres – formulated with Eudragit® S 100 (ES) and Eudragit® RL (ERL) - were prepared by an emulsion-solvent evaporation method. The floating microspheres were evaluated for flow ...

  12. Effect of gamma-irradiation on biodegradable microspheres loaded with rasagiline mesylate

    International Nuclear Information System (INIS)

    Fernandez, Marcos; Barcia, Emilia; Negro, Sofia

    2016-01-01

    In the present study, the influence of gamma-irradiation was evaluated on the physicochemical characteristics and in vitro release of rasagiline mesylate (RM), a selective MAO-B inhibitor used in Parkinson's disease, from poly(D,L-lactide-co-glycolide) (PLGA) microspheres. Microspheres were prepared using PLGA 50:50 by the solvent evaporation technique (O/W emulsion). Microspheres were sterilized by gamma-irradiation and their influence was assessed by scanning electron microscopy (SEM), laser light diffraction, differential scanning calorimetry (DSC), X-ray diffraction (XRD), gel permeation chromatography (GPC), encapsulation efficiency (EE) and in vitro drug release. Gamma-irradiation of RM-loaded microspheres did not affect EE, DSC and XRD patterns. After gamma-irradiation, changes on the surface were observed by SEM, but no significant difference in mean particle size was observed. GPC measurements showed a decrease in molecular weight of the polymer after five days of in vitro release. The similarity factor value between irradiated and non-irradiates microspheres was <50, indicating the non-similarity of the release profiles. The sterilization technique had an effect on the integrity of polymeric system, significantly affecting in vitro release of RM from PLGA microspheres. Therefore, from our results we conclude that gamma-irradiation is not a suitable sterilization procedure for this formulation

  13. Zwitterion-functionalized polymer microspheres as a sorbent for solid phase extraction of trace levels of V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II) prior to their determination by ICP-MS.

    Science.gov (United States)

    Jia, Xiaoyu; Gong, Dirong; Zhao, Junyi; Ren, Hongyun; Wang, Jiani; Zhang, Xian

    2018-03-19

    This paper describes the preparation of zwitterion-functionalized polymer microspheres (ZPMs) and their application to simultaneous enrichment of V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II) from environmental water samples. The ZPMs were prepared by emulsion copolymerization of ethyl methacrylate, 2-diethylaminoethyl methacrylate and triethylene glycol dimethyl acrylate followed by modification with 1,3-propanesultone. The components were analyzed by elemental analyses as well as Fourier transform infrared spectroscopy, and the structures were characterized by scanning electron microscopy and transmission electron microscopy. The ZPMs were packed into a mini-column for on-line solid-phase extraction (SPE) of the above metal ions. Following extraction with 40 mM NH 4 NO 3 and 0.5 M HNO 3 solution, the ions were quantified by ICP-MS. Under the optimized conditions, the enrichment factors (from a 40 mL sample) are up to 60 for the ions V(V), As(III), Sb(III) and Hg(II), and 55 for Cr(III) and Sn(IV). The detection limits are 1.2, 3.4, 1.0, 3.7, 2.1 and 1.6 ng L -1 for V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II), respectively, and the relative standard deviations (RSDs) are below 5.2%. The feasibility and accuracy of the method were validated by successfully analyzing six certified reference materials as well as lake, well and river waters. Graphical abstract Zwitterion-functionalized polymer microspheres (ZPMs) were prepared and packed into a mini-column for on-line solid-phase extraction (SPE) via pump 1. Then V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II) ions in environmental waters were eluted and submitted to ICP-MS via pump 2.

  14. Synthesis of SiCN@TiO2 core-shell ceramic microspheres via PDCs method

    Science.gov (United States)

    Liu, Hongli; Wei, Ning; Li, Jing; Zhang, Haiyuan; Chu, Peng

    2018-02-01

    A facile and effective polymer-derived ceramics (PDCs) emulsification-crosslinking-pyrolysis method was developed to fabricate SiCN@TiO2 core-shell ceramic microspheres with polyvinylsilazane (PVSZ) and tetrabutyl titanate (TBT) as precursors. The TBT: PVSZ mass ratios, emulsifier concentrations and the pyrolysis temperature were examined as control parameters to tune the size and morphology of microspheres. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the synthesized SiCN@TiO2 microspheres to be comprised of SiCN core coated with TiO2 crystals, with an average size of 0.88 μm when pyrolyzed at 1400 °C. The analysis of Fourier transform infrared spectroscopy (FT-IR), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) ensured that SiCN@TiO2 core-shell ceramic microspheres composed of rutile TiO2, β-SiC and Si3N4 crystalline phases, The thermal properties were characterized by thermogravimetric analysis (TGA). The obtained SiCN@TiO2 core-shell ceramic microspheres were the promising candidate of the infrared opacifier in silica aerogels and this technique can be extended to other preceramic polymers.

  15. Biodegradable polymeric microsphere-based drug delivery for inductive browning of fat

    Directory of Open Access Journals (Sweden)

    Chunhui eJiang

    2015-11-01

    Full Text Available Brown and beige adipocytes are potent therapeutic agents to increase energy expenditure and reduce risks of obesity and its affiliated metabolic symptoms. One strategy to increase beige adipocyte content is through inhibition of the evolutionarily conserved Notch signaling pathway. However, systemic delivery of Notch inhibitors is associated with off-target effects and multiple dosages of application further faces technical and translational challenges. Here, we report the development of a biodegradable polymeric microsphere-based drug delivery system for sustained, local release of a Notch inhibitor, DBZ. The microsphere-based delivery system was fabricated and optimized using an emulsion/solvent evaporation technique to encapsulate DBZ into poly(lactide-co-glycolide (PLGA, a commonly used biodegradable polymer for controlled drug release. Release studies revealed the ability of PLGA microspheres to release DBZ in a sustained manner. Co-culture of white adipocytes with and without DBZ-loaded PLGA microspheres demonstrated that the released DBZ retained its bioactivity, and effectively inhibited Notch and promoted browning of white adipocytes. Injection of these DBZ-loaded PLGA microspheres into mouse inguinal white adipose tissue (WAT depots resulted in browning in vivo. Our results provide the encouraging proof-of-principle evidence for the application of biodegradable polymers as a controlled release platform for delivery of browning factors, and pave the way for development of new translational therapeutic strategies for treatment of obesity.

  16. Optical properties of monodispersive FePt nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.; Lo, C.C.H. [Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Yu, A.C.C. [Sony Corporation, Sendai Technology Center, 3-4-1 Sakuragi, Miyagi 985-0842 (Japan); Fan, M. [Center for Sustainable Environmental Technologies, Iowa State University, Ames, IA 50011 (United States)

    2004-10-01

    The optical properties of monodispersive FePt nanoparticle films were investigated using spectroscopic ellipsometry in the energy range of 1.5 to 5.5 eV. The monodispersive FePt nanoparticle film was stabilized on a Si substrate by means of an organosilane coupling film, resulting in the formation of a (Si/SiO{sub 2}/APTS/FePt nanoparticles monolayer) structure. Multilayer optical models were employed to study the contribution of the FePt nanoparticles to the measured optical properties of the monodispersive FePt nanoparticle film, and to estimate the optical properties of the FePt nanoparticle layer. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. In vitro evaluation and intra-articular administration of biodegradable microspheres containing naproxen sodium.

    Science.gov (United States)

    Bozdağ, S; Caliş, S; Kaş, H S; Ercan, M T; Peksoy, I; Hincal, A A

    2001-01-01

    The dispersion of non-steroidal antiinflammatory drugs (NSAIDs) into biodegradable polymeric matrices have been accepted as a good approach for obtaining a therapeutic effect in a predetermined period of time meanwhile minimizing the side effects of NSAIDs. In the present study, it was aimed to prepare Naproxen Sodium (NS), (a NSAID) loaded microsphere formulation using natural Bovine Serum Albumin (BSA) and synthetic biodegradable polymers such as poly(lactide-co-glycolic acid) (PLGA) (50:50 MW 34,000 and 88,000 Da) for intra-articular administration, and to study the retention of the drug at the site of injection in the knee joint. NS incorporated microspheres were evaluated in vitro for particle size (the mean particle size; for BSA microspheres, 10.0 +/- 0.3 microm, for PLGA microspheres, 9.0 +/- 0.2 and 5.0 +/- 0.1 microm for MW 34,000 and 88,000 Da, respectively), yield value, drug loading, surface morphology and drug release. For in vivo studies, monoarticular arthritis was induced in the left knee joints of rabbits by using ovalbumin and Freund's Complete Adjuvant as antigen and adjuvant. A certain time (4 days) is allowed for the formation of arthritis in the knee joints, then the NS loaded microspheres were injected directly into the articular cavity. At specific time points, gamma scintigrams were obtained to determine the residence time of the microspheres in knee joints, in order to determine the most suitable formulation. This study indicated that PLGA, a synthetic polymer, is more promising than the natural type BSA microspheres for an effective cure of mono-articular arthritis in rabbits.

  18. Mucoadhesive microspheres for gastroretentive delivery of acyclovir: in vitro and in vivo evaluation.

    Science.gov (United States)

    Dhaliwal, Sumeet; Jain, Subheet; Singh, Hardevinder P; Tiwary, A K

    2008-06-01

    The aim of the present investigation was to evaluate the potential use of mucoadhesive microspheres for gastroretentive delivery of acyclovir. Chitosan, thiolated chitosan, Carbopol 71G and Methocel K15M were used as mucoadhesive polymers. Microsphere formulations were prepared using emulsion-chemical crosslinking technique and evaluated in vitro, ex-vivo and in-vivo. Gelatin capsules containing drug powder showed complete dissolution (90.5 +/- 3.6%) in 1 h. The release of drug was prolonged to 12 h (78.8 +/- 3.9) when incorporated into mucoadhesive microspheres. The poor bioavailability of acyclovir is attributed to short retention of its dosage form at the absorption sites (in upper gastrointestinal tract to duodenum and jejunum). The results of mucoadhesion study showed better retention of thiolated chitosan microspheres (8.0 +/- 0.8 h) in duodenal and jejunum regions of intestine. The results of qualitative and quantitative GI distribution study also showed significant higher retention of mucoadhesive microspheres in upper GI tract. Pharmacokinetic study revealed that administration of mucoadhesive microspheres could maintain measurable plasma concentration of acyclovir through 24 h, as compared to 5 h after its administration in solution form. Thiolated chitosan microsphere showed superiority over the other formulations as observed with nearly 4.0-fold higher AUC(0-24) value (1,090 +/- 51 ng h/ml) in comparison to drug solution (281 +/- 28 ng h/ml). Overall, the result indicated prolonged delivery with significant improvement in oral bioavailability of acyclovir from mucoadhesive microspheres due to enhanced retention in the upper GI tract.

  19. Microfluidic Fabrication of Morphology-Controlled Polymeric Microspheres of Blends of Poly(4-butyltriphenylamine and Poly(methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Saki Yoshida

    2018-04-01

    Full Text Available Multicomponent polymer particles with specific morphology are promising materials exhibiting novel functionality which cannot be obtained with single-component polymer particles. Particularly, the preparation of such kinds of polymer particles involving electrically or optically active conjugated polymers with uniform size is a challenging subject due to their intense demands. Here, microspheres of binary polymer blend consisting of poly(4-butyltriphenylamine (PBTPA/poly(methyl methacrylate (PMMA (1:1 in weight were produced via a microfluidic emulsification with a Y-shaped microreactor, and a subsequent solvent evaporation method. The flow rate of the dispersed phase (polymer solution was fixed to 7 µL/min, and 140 or 700 µL/min of the flow rate of the continuous phase (aqueous 0.6 wt % of poly(vinyl alcohol (PVA solution was utilized to produce the dispersion with different diameter. The concentration of dispersed phase was adjusted to 0.1 or 1.0 w/v%. Core-shell, Janus and dumbbell type microspheres were obtained dependent on the flow rate of continuous phase. Incomplete core-shell type microspheres were produced for the blend involving low molecular weight PMMA. Complex Janus and core-shell type microspheres were fabricated by the addition of sodium dodecyl sulfate (SDS to continuous phase. It is found that final morphologies are strongly dependent on the initial conditions of dispersion including the particle size suggesting that the morphologies are governed by the kinetical factors together with the conventionally accepted thermodynamic ones.

  20. Preparation and in vitro/in vivo characterization of curcumin microspheres intended to treat colon cancer

    Directory of Open Access Journals (Sweden)

    M Madhavi

    2012-01-01

    Full Text Available Objective: The objective of the present investigation was to prepare colon targeted curcumin microspheres using Eudragit S100 and evaluate the same for in vitro/in vivo properties. Materials and Methods: A "O/O solvent evaporation" technique was used in the preparation of microspheres. The influence of various process variables including stirring speed, drug:polymer ratio and percentage of emulsifier on the fabrication were investigated and the formulation was optimized. Prepared microspheres were evaluated for in vitro and in vivo properties. Surface morphology, particle size, percentage drug entrapment, percentage yield, drug polymer interaction, in vitro drug release in simulated gastrointestinal transit conditions and stability were the in vitro parameters investigated. Using an optimized formulation, drug release into the systemic circulation and organ distribution were investigated as in vivo parameters. In vivo parameters were estimated in male albino rats. Results: Curcumin microspheres of Eudragit S100 were successfully prepared using o/o solvent evaporation method. Microspheres prepared using 1:2 drug:polymer ratio, with a stirring speed of 1000 rpm, and using 1.0% w/v concentration of emulsifying agent was selected as an optimized formulation. The release studies with optimized formulation demonstrated that aqueous solubility of curcumin was enhanced by 8 times with the formulation. FTIR studies demonstrated no change in drug characteristics upon microsphere fabrication. The enhancement in solubility is thus due to the increase in the surface area of the drug substance and not due to a change of drug to a different physical state. This was further confirmed by scanning electron microsphere pictures. Drug release followed Korsmeyer and Peppas release model. Accelerated stability studies indicated that the drug is stable in the formulation for a period of atleast 14 weeks at room temperature. In vivo studies demonstrated a sustained

  1. Enzymatic transesterification of soybean oil with ethanol using lipases immobilized on highly crystalline PVA microspheres

    International Nuclear Information System (INIS)

    Bergamasco, Juliana; Araujo, Marcelo V. de; Vasconcellos, Adriano de; Luizon Filho, Roberto A.; Hatanaka, Rafael R.; Giotto, Marcus V.; Aranda, Donato A.G.; Nery, José G.

    2013-01-01

    Polyvinyl alcohol (PVA) microspheres with different degree of crystallinity were used as solid supports for Rhizomucor miehei lipase immobilization, and the enzyme-PVA complexes were used as biocatalysts for the transesterification of soybean oil to fatty acid ethyl esters (FAEE). The amounts of immobilized enzyme on the polymeric supports were similar for both the amorphous microspheres (PVA4) and the high crystalline microspheres (PVA25). However, the enzymatic activity of the immobilized enzymes was depended on the crystallinity degree of the PVA microspheres: enzymes immobilized on the PVA4 microspheres have shown low enzymatic activity (6.13 U mg −1 ), in comparison with enzymes immobilized on the high crystalline PVA25 microspheres (149.15 U mg −1 ). A synergistic effect was observed for the enzyme-PVA25 complex during the transesterification reaction of soybean oil to FAEE: transesterification reactions with free enzyme with the equivalent amount of enzyme that were immobilized onto the PVA25 microspheres (5.4 U) have yielded only 20% of FAEE, reactions with the pure highly crystalline microsphere PVA25 have not yielded FAEE, however reactions with the enzyme-PVA25 complexes have yielded 66.3% of FAEE. This synergistic effect of an immobilized enzyme on a polymeric support has not been observed before for transesterification reaction of triacylglycerides into FAEE. Based on ATR-FTIR, 23 Na- and 13 C-NMR-MAS spectroscopic data and the interaction of the polymeric network intermolecular hydrogen bonds with the lipases residual amino acids a possible explanation for this synergistic effect is provided. Highlights: • Rhizomucor miehei lipase was immobilized on PVA microspheres (PVA4, PVA12, PVA25). • Polymer-enzyme complex was characterized by XDR, SEM, ATR-FTIR, 13 C-CPMAS-NMR, 23 Na-MAS-NMR. • Polymer-enzymes (PVA12 and PVA25) enzymes yielded considerable amount of ethyl esters. • Synergistic effect was observed for the polymer-enzyme complexes

  2. Fiber-optic array using molecularly imprinted microspheres for antibiotic analysis.

    Science.gov (United States)

    Carrasco, Sergio; Benito-Peña, Elena; Walt, David R; Moreno-Bondi, María C

    2015-05-01

    In this article we describe a new class of high-density optical microarrays based on molecularly imprinted microsphere sensors that directly incorporate specific recognition capabilities to detect enrofloxacin (ENRO), an antibiotic widely used for both human and veterinary applications. This approach involves the preparation of highly cross-linked polymer microspheres by thermal precipitation-polymerization in the presence and absence of the target analyte ENRO to generate either molecularly imprinted (MIP) or non-imprinted polymer (NIP) microspheres, respectively. Each polymer type of tailor-made microsphere is fluorescently encoded with either coumarin-30 or tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(ii) dichloride [Ru(dip) 3 ]Cl 2 to enable the microspheres to be distinguished. The new MIP-based sensing platform utilizes an optical fiber bundle containing approximately 50 000 individual 3.1 μm diameter fibers that are chemically etched to create microwells in which MIP and NIP microspheres can be deposited and imaged using an epi-fluorescence microscope. The method enables multiplexed detection by independently addressing both types of beads through their separate light channels. The unique response to the presence of ENRO is manifested on the basis of a competitive immunoassay. A red-fluorescent dye-tagged ENRO, labeled with BODIPY® TR Cadaverine, competes with ENRO for specific binding sites. The developed immuno-like assay displayed a limit of detection (LOD) of 0.04 μM (10% binding inhibition) and a dynamic range of 0.29-21.54 μM (20-80% binding inhibition). The selectivity of the assay was evaluated by measuring the cross-reactivity of other fluoroquinolones (ciprofloxacin, norfloxacin, danofloxacin, and flumequine) and non-related antibiotics (penicillin G and doxycycline). This work demonstrates, for the first time, the applicability of MIPs, as an alternative to biomolecule receptors, for the development of multiplexed detection fiber

  3. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    Science.gov (United States)

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer

  4. Catastrophic failure of polymer melts during extension

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.

    2013-01-01

    Numerical flow modeling has been applied to study the break of monodisperse polymer melts during extension. These continuum mechanical based computations are within the ideas of the microstructural ’interchain pressure’ theory. Calculated breaks, a result of small initial sample imperfections, ag...

  5. Facile Preparation of Phosphotungstic Acid-Impregnated Yeast Hybrid Microspheres and Their Photocatalytic Performance for Decolorization of Azo Dye

    Directory of Open Access Journals (Sweden)

    Lan Chen

    2013-01-01

    Full Text Available Phosphotungstic acid (HPW-impregnated yeast hybrid microspheres were prepared by impregnation-adsorption technique through tuning pH of the aqueous yeast suspensions. The obtained products were characterized by field emission scanning electron microscopy (FE-SEM, energy dispersive spectrometry (EDS, X-ray diffraction (XRD, thermogravimetry-differential scanning calorimetry (TG-DSC, and ultraviolet-visible spectrophotometry (UV-Vis, respectively. FE-SEM and EDS ascertain that the HPW has been effectively introduced onto the surface of yeast, and the resulting samples retain ellipsoid shape, with the uniform size (length 4.5 ± 0.2 μm, width 3.0 ± 0.3 μm and good monodispersion. XRD pattern indicates that the main crystal structure of as-synthesized HPW@yeast microsphere is Keggin structure. TG-DTA states that the HPW in composites has better thermal stability than pure HPW. Fourier transform infrared spectroscopy (FT-IR elucidates that the functional groups or chemical bonds inherited from the pristine yeast cell were critical to the assembling of the composites. UV-Vis shows that the obtained samples have a good responding to UV light. The settling ability indicates that the hybrid microspheres possess an excellent suspension performance. In the test of catalytic activity, the HPW@yeast microsphere exhibits a high photocatalytic activity for the decoloration of Methylene blue and Congo red dye aqueous solutions, and there are a few activity losses after four cycles of uses.

  6. Preparation and evaluation of microspheres of xyloglucan and its thiolated xyloglucan derivative.

    Science.gov (United States)

    Sonawane, Savita; Bhalekar, Mangesh; Shimpi, Shamkant

    2014-08-01

    Xyloglucan is a natural polymer reported to possess mucoadhesive properties. To enhance the mucoadhesion potential, xyloglucan was thiolated with cysteine. The microspheres of xyloglucan were prepared using a biocompatible crosslinker sodium trimetaphosphate and it was optimized for formulation variables, namely polymer concentration, internal:external phase ratio and stirring speed using a Box-Behnken experimental design. The formulation was also optimized for performance parameters like entrapment, t80 and % mucoadhesion. The microspheres were characterized by Fourier transform infrared spectroscopy, DSC and SEM for the optimum formula and then were reproduced by replacing the xyloglucan with thiomer. The microspheres formed showed entrapment efficiency of about 80%, t80 of about 400min and % mucoadhesion of 60% while same for thiomer were 90%, 500min and 80% respectively. In oral glucose tolerance test protocol the thiomer microspheres showed significant reduction in blood glucose levels. Thus thiolated xyloglucan offers a better polymer for multiparticulate drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effects of Temperature and pH on Immobilized Laccase Activity in Conjugated Methacrylate-Acrylate Microspheres

    Directory of Open Access Journals (Sweden)

    Siti Zulaikha Mazlan

    2017-01-01

    Full Text Available Immobilization of laccase on the functionalized methacrylate-acrylate copolymer microspheres was studied. Poly(glycidyl methacrylate-co-n-butyl acrylate microspheres consisting of epoxy groups were synthesized using facile emulsion photocuring technique. The epoxy groups in poly(GMA-co-nBA microspheres were then converted to amino groups. Laccase immobilization is based on covalent binding via amino groups on the enzyme surface and aldehyde group on the microspheres. The FTIR spectra showed peak at 1646 cm−1 assigned to the conformation of the polymerization that referred to GMA and nBA monomers, respectively. After modification of the polymer, intensity of FTIR peaks assigned to the epoxy ring at 844 cm−1 and 904 cm−1 was decreased. The results obtained from FTIR exhibit a good agreement with the epoxy content method. The activity of laccase-immobilized microspheres increased upon increasing the epoxy content. Furthermore, poly(GMA-co-nBA microspheres revealed uniform size below 2 µm that contributes to large surface area of the microspheres to be used as a matrix, thus increasing the enzyme capacity and enzymatic reaction. Immobilized enzyme also shifted to higher pH and temperature compared to free enzyme.

  8. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers. 1. Influence of preparation techniques on particle characteristics and protein delivery.

    Science.gov (United States)

    Bezemer, J M; Radersma, R; Grijpma, D W; Dijkstra, P J; van Blitterswijk, C A; Feijen, J

    2000-07-03

    The entrapment of lysozyme in amphiphilic multiblock copolymer microspheres by emulsification and subsequent solvent removal processes was studied. The copolymers are composed of hydrophilic poly(ethylene glycol) (PEG) blocks and hydrophobic poly(butylene terephthalate) (PBT) blocks. Direct solvent extraction from a water-in-oil (w/o) emulsion in ethanol or methanol did not result in the formation of microspheres, due to massive polymer precipitation caused by rapid solvent extraction in these non-solvents. In a second process, microspheres were first prepared by a water-in-oil-in-water (w/o/w) emulsion system with 4% poly(vinyl alcohol) (PVA) as stabilizer in the external phase, followed by extraction of the remaining solvent. As non-solvents ethanol, methanol and mixtures of methanol and water were employed. However, the use of alcohols in the extraction medium resulted in microspheres which gave an incomplete lysozyme release at a non-constant rate. Complete lysozyme release was obtained from microspheres prepared by an emulsification-solvent evaporation method in PBS containing poly(vinyl pyrrolidone) (PVP) or PVA as stabilizer. PVA was most effective in stabilizing the w/o/w emulsion. Perfectly spherical microspheres were produced, with high protein entrapment efficiencies. These microspheres released lysozyme at an almost constant rate for approximately 28 days. The reproducibility of the w/o/w emulsion process was demonstrated by comparing particle characteristics and release profiles of three batches, prepared under similar conditions.

  9. Development and in vitro evaluation of diclofenac sodium loaded mucoadhesive microsphere with natural gum for sustained delivery.

    Science.gov (United States)

    Amin, Md Lutful; Jesmeen, Tasbira; Sutradhar, Kumar Bishwajit; Mannan, Md Abdul

    2013-12-01

    The objective of this study was to develop and evaluate mucoadhesive microsphere of diclofenac sodium with natural gums for sustained delivery. Guar gum and tragacanth were used along with sodium alginate as mucoadhesive polymers. Microspheres were formulated using orifice-ionic gelation method. Particle size, surface morphology, swelling study and drug entrapment efficiency of the prepared microspheres were determined. In vitro evaluation was carried out comprising of mucoadhesion and drug release study. The prepared microspheres were discrete and free flowing. Sodium alginate and natural gum, at a ratio of 1:0.25, showed good mucoadhesive property and they had high drug entrapment efficiencies. They also exhibited the best rate retarding effect among all the formulations. Drug entrapment efficiency of all the microspheres ranged from 80.42% to 91.67%. An inverse relationship was found between extent of crosslinking and drug release rate. Release rate was slow and extended in case of the formulations of 1:0.25 ratio (F1 and F3), releasing 68.36% and 70.56% drug respectively after 8 hours. Tragacanth-containing microspheres of F1 showed superiority over other formulations, with best mucoadhesive and rate retarding profile. The correlation value (r(2)) indicated that the drug release of all the formulations followed Higuchi's model. Overall, the results indicated that mucoadhesive microspheres containing natural gum can be promising in terms of prolonged delivery with good mucoadhesive action, targeting the absorption site to thrive oral drug delivery.

  10. Segmented block copolymers with monodisperse aramide end-segments

    NARCIS (Netherlands)

    Araichimani, A.; Gaymans, R.J.

    2008-01-01

    Segmented block copolymers were synthesized using monodisperse diaramide (TT) as hard segments and PTMO with a molecular weight of 2 900 g · mol-1 as soft segments. The aramide: PTMO segment ratio was increased from 1:1 to 2:1 thereby changing the structure from a high molecular weight multi-block

  11. Understanding Effect of Constraint Release Environment on End-to-End Vector Relaxation of Linear Polymer Chains

    KAUST Repository

    Shivokhin, Maksim E.; Read, Daniel J.; Kouloumasis, Dimitris; Kocen, Rok; Zhuge, Flanco; Bailly, Christian; Hadjichristidis, Nikolaos; Likhtman, Alexei E.

    2017-01-01

    of a linear probe chain. For this purpose we first validate the ability of the model to consistently predict both the viscoelastic and dielectric response of monodisperse and binary mixtures of type A polymers, based on published experimental data. We

  12. Development of Risperidone PLGA Microspheres

    Directory of Open Access Journals (Sweden)

    Susan D’Souza

    2014-01-01

    Full Text Available The aim of this study was to design and evaluate biodegradable PLGA microspheres for sustained delivery of Risperidone, with an eventual goal of avoiding combination therapy for the treatment of schizophrenia. Two PLGA copolymers (50 : 50 and 75 : 25 were used to prepare four microsphere formulations of Risperidone. The microspheres were characterized by several in vitro techniques. In vivo studies in male Sprague-Dawley rats at 20 and 40 mg/kg doses revealed that all formulations exhibited an initial burst followed by sustained release of the active moiety. Additionally, formulations prepared with 50 : 50 PLGA had a shorter duration of action and lower cumulative AUC levels than the 75 : 25 PLGA microspheres. A simulation of multiple dosing at weekly or 15-day regimen revealed pulsatile behavior for all formulations with steady state being achieved by the second dose. Overall, the clinical use of Formulations A, B, C, or D will eliminate the need for combination oral therapy and reduce time to achieve steady state, with a smaller washout period upon cessation of therapy. Results of this study prove the suitability of using PLGA copolymers of varying composition and molecular weight to develop sustained release formulations that can tailor in vivo behavior and enhance pharmacological effectiveness of the drug.

  13. Simultaneous Determination of Glass Transition Temperatures of Several Polymers.

    Science.gov (United States)

    He, Jiang; Liu, Wei; Huang, Yao-Xiong

    2016-01-01

    A simple and easy optical method is proposed for the determination of glass transition temperature (Tg) of polymers. Tg was determined using the technique of microsphere imaging to monitor the variation of the refractive index of polymer microsphere as a function of temperature. It was demonstrated that the method can eliminate most thermal lag and has sensitivity about six fold higher than the conventional method in Tg determination. So the determined Tg is more accurate and varies less with cooling/heating rate than that obtained by conventional methods. The most attractive character of the method is that it can simultaneously determine the Tg of several polymers in a single experiment, so it can greatly save experimental time and heating energy. The method is not only applicable for polymer microspheres, but also for the materials with arbitrary shapes. Therefore, it is expected to be broadly applied to different fundamental researches and practical applications of polymers.

  14. Cluster synthesis of monodisperse rutile-TiO2 nanoparticles and dielectric TiO2-vinylidene fluoride oligomer nanocomposites

    International Nuclear Information System (INIS)

    Balasubramanian, Balamurugan; Kraemer, Kristin L; Valloppilly, Shah R; Ducharme, Stephen; Sellmyer, David J

    2011-01-01

    The embedding of oxide nanoparticles in polymer matrices produces a greatly enhanced dielectric response by combining the high dielectric strength and low loss of suitable host polymers with the high electric polarizability of nanoparticles. The fabrication of oxide-polymer nanocomposites with well-controlled distributions of nanoparticles is, however, challenging due to the thermodynamic and kinetic barriers between the polymer matrix and nanoparticle fillers. In the present study, monodisperse TiO 2 nanoparticles having an average particle size of 14.4 nm and predominant rutile phase were produced using a cluster-deposition technique without high-temperature thermal annealing and subsequently coated with uniform vinylidene fluoride oligomer (VDFO) molecules using a thermal evaporation source, prior to deposition as TiO 2 -VDFO nanocomposite films on suitable substrates. The molecular coatings on TiO 2 nanoparticles serve two purposes, namely to prevent the TiO 2 nanoparticles from contacting each other and to couple the nanoparticle polarization to the matrix. Parallel-plate capacitors made of TiO 2 -VDFO nanocomposite film as the dielectric exhibit minimum dielectric dispersion and low dielectric loss. Dielectric measurements also show an enhanced effective dielectric constant in TiO 2 -VDFO nanocomposites as compared to that of pure VDFO. This study demonstrates for the first time a unique electroactive particle coating in the form of a ferroelectric VDFO that has high-temperature stability as compared to conventionally used polymers for fabricating dielectric oxide-polymer nanocomposites.

  15. Preparing microspheres of actinide nitrides from carbon containing oxide sols

    International Nuclear Information System (INIS)

    Triggiani, L.V.

    1975-01-01

    A process is given for preparing uranium nitride, uranium oxynitride, and uranium carboxynitride microspheres and the microspheres as compositions of matter. The microspheres are prepared from carbide sols by reduction and nitriding steps. (Official Gazette)

  16. Development of phosphate glass microspheres containing holmium for selective internal radiotherapy

    International Nuclear Information System (INIS)

    Barros Filho, Eraldo Cordeiro

    2016-01-01

    The selective internal radiotherapy is an alternative for some kinds of cancer as the hepatocellular carcinoma (HCC) or primary liver cancer treatment. In this treatment, glass or polymer microspheres containing radionuclides inside their structure are introduced in the liver through hepatic artery and trapped at the arterioles that feed the tumor. In this work, the development of phosphate glasses containing holmium for production of microspheres and their application in Brazil are proposed. The developed glasses presented suitable chemical durability, density of 2,7(3) g/cm 3 , high thermal stability and the impurities contained therein do not preclude the treatment. The microspheres were produced by the flame method and the gravitational fall method, and were characterized by means of several techniques to evaluate shape, average particle size, activity and biocompatibility suitable for selective internal radiotherapy. Based in the main results, the submission to in vivo tests is proposed. (author)

  17. Interaction between dimethyldioctadecylammonium bromide-modified PLGA microspheres and hyaluronic acid

    Science.gov (United States)

    Mulia, Kamarza; Devi, Krisanti, Elsa

    2017-02-01

    In application of intravitreal injection, an extended drug delivery system is desired so that the frequency of injection to treat diabetic retinopathy may be reduced. Poly(lactic-co-glycolic acid) polymer (PLGA) was used to encapsulate a model drug in the form of microspheres. The zeta potential of dimethyldioctadecylammonium bromide (DDAB)-modified PLGA microspheres in water was proportional to the DDAB concentration used in the preparation step, up to +57.8 mV. The scanning electron microscope pictures and the zeta potential data (SEM) confirmed that the surface of the PLGA has been modified by the cationic surfactant and that electrostatic interaction between the positively charged microspheres and the negatively charged vitreous were present.

  18. Chitosan microspheres loaded with holmium-165 produced by spray dryer for liver cancer therapy: preliminary experiments

    International Nuclear Information System (INIS)

    Miyamoto, Douglas Massao; Pires, Geovanna; Lira, Raphael A. de; Melo, Vitor H.S.; Nascimento, Nanci; Azevedo, Mariangela de Burgos M. de; Osso Junior, Joao Alberto

    2011-01-01

    Chitosan is a biopolymer of 2-deoxy-2-amino-D-glucose that is obtained by deacetylation of chitin. It's biocompatible, biodegradable, non toxic and has antitumor activity. Chitosan has many applications, such as their microparticles that can be used to treat prostate cancer, rheumatoid arthritis, and for liver tumor brachytherapy treatment. Our group is developing different biodegradable polymer-based microspheres loaded with holmium-165 for this purpose. The Chitosan microspheres were produced loaded with holmium (III) chloride, and not loaded with it, by Mini Spray Dryer procedure. The microspheres were evaluated by scanning electron microscopy, energy dispersive spectroscopy (EDS), confocal laser scanning microscopy, thermogravimetric analysis, particle size, and X-ray diffraction. The EDS analysis confirmed the holmium chloride presence into the prepared chitosan microparticles. (author)

  19. Chitosan microspheres loaded with holmium-165 produced by spray dryer for liver cancer therapy: preliminary experiments

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Douglas Massao; Pires, Geovanna; Lira, Raphael A. de; Melo, Vitor H.S.; Nascimento, Nanci; Azevedo, Mariangela de Burgos M. de, E-mail: douglas.miyamoto@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Osso Junior, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Radiofarmacia

    2011-07-01

    Chitosan is a biopolymer of 2-deoxy-2-amino-D-glucose that is obtained by deacetylation of chitin. It's biocompatible, biodegradable, non toxic and has antitumor activity. Chitosan has many applications, such as their microparticles that can be used to treat prostate cancer, rheumatoid arthritis, and for liver tumor brachytherapy treatment. Our group is developing different biodegradable polymer-based microspheres loaded with holmium-165 for this purpose. The Chitosan microspheres were produced loaded with holmium (III) chloride, and not loaded with it, by Mini Spray Dryer procedure. The microspheres were evaluated by scanning electron microscopy, energy dispersive spectroscopy (EDS), confocal laser scanning microscopy, thermogravimetric analysis, particle size, and X-ray diffraction. The EDS analysis confirmed the holmium chloride presence into the prepared chitosan microparticles. (author)

  20. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres

    International Nuclear Information System (INIS)

    Song, Kedong; Liu, Yingchao; Macedo, Hugo M.; Jiang, Lili; Li, Chao; Mei, Guanyu; Liu, Tianqing

    2013-01-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27–55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99 ± 2.51) %, (89.66 ± 0.66) % and (73.77 ± 3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24 ± 0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44 ± 1.81) × 10 −2 mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a

  1. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kedong, E-mail: kedongsong@dlut.edu.cn [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Liu, Yingchao [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Macedo, Hugo M. [Biological Systems Engineering Laboratory, Department of Chemical Engineering, Department of Chemical Engineering, South Kensington Campus, London SW7 2AZ (United Kingdom); Jiang, Lili; Li, Chao; Mei, Guanyu [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Liu, Tianqing, E-mail: liutq@dlut.edu.cn [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2013-04-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27–55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99 ± 2.51) %, (89.66 ± 0.66) % and (73.77 ± 3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24 ± 0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44 ± 1.81) × 10{sup −2} mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a

  2. Production of microspheres labeled with holmium-166 for liver cancer therapy: the preliminary experience at IPEN/CNEN-SP

    International Nuclear Information System (INIS)

    Costa, Renata F.; Azevedo, Mariangela B.M.; Nascimento, Nanci; Sene, Frank F.; Martinelli, Jose R.; Osso Junior, Joao A.

    2009-01-01

    Microspheres labeled with therapeutic radionuclides for malignancies of liver are widely used in many countries. The internal radionuclide therapy uses a permanently implanted device, such as Therasphere R or SIR-Spheres R , or a biodegradable device that provides structural support for the radionuclide of choice and causes the tumor reduction. Three different types of material supports have been investigated, i.e., biodegradable polymer-based, glass-based and resin-based microspheres. Nowadays there is a project concerning the labeling of these 3 materials with 166 Ho being developed at IPEN-CNEN/SP and coordinated by the Radiopharmacy Directory. 166 Ho(t 1/2 =26.8 h) is a beta minus emitter (E max =1.84 MeV), with right properties for radiotherapy and can be produced with the low power Brazilian Nuclear Reactor IEA-R1m. The aim of this work is to describe the stage of development of this project. The initial experience used resin-based microspheres, a cation exchange resin labeled with 166 Ho, it showed the essential characteristics for liver therapy. Preliminary results of the preparation of glass-based microspheres labeled with 165 Ho showed that 5% of Ho 2 O 3 was incorporated in an aluminosilicate glass, through the process of spheronization by flame, which produced spherical microspheres with 20-40μm particle size. The preparation of biodegradable material, polymer-based microspheres, is in its initial stage and the objective is to prepare and label with 165 Ho different polymer-based microspheres. These combined efforts have been done to offer a national radiotherapeutic product for the the Brazilian nuclear medicine community at fair value and also to offer a viable possibility of treatment for patients affected by liver malignancies. (author)

  3. Production of microspheres labeled with holmium-166 for liver cancer therapy: the preliminary experience at IPEN/CNEN-SP

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Renata F.; Azevedo, Mariangela B.M.; Nascimento, Nanci; Sene, Frank F.; Martinelli, Jose R.; Osso Junior, Joao A., E-mail: renatafcosta@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    Microspheres labeled with therapeutic radionuclides for malignancies of liver are widely used in many countries. The internal radionuclide therapy uses a permanently implanted device, such as Therasphere{sup R} or SIR-Spheres{sup R}, or a biodegradable device that provides structural support for the radionuclide of choice and causes the tumor reduction. Three different types of material supports have been investigated, i.e., biodegradable polymer-based, glass-based and resin-based microspheres. Nowadays there is a project concerning the labeling of these 3 materials with {sup 166}Ho being developed at IPEN-CNEN/SP and coordinated by the Radiopharmacy Directory. {sup 166}Ho(t{sub 1/2}=26.8 h) is a beta minus emitter (E{sub max}=1.84 MeV), with right properties for radiotherapy and can be produced with the low power Brazilian Nuclear Reactor IEA-R1m. The aim of this work is to describe the stage of development of this project. The initial experience used resin-based microspheres, a cation exchange resin labeled with {sup 166}Ho, it showed the essential characteristics for liver therapy. Preliminary results of the preparation of glass-based microspheres labeled with {sup 165}Ho showed that 5% of Ho{sub 2}O{sub 3} was incorporated in an aluminosilicate glass, through the process of spheronization by flame, which produced spherical microspheres with 20-40mum particle size. The preparation of biodegradable material, polymer-based microspheres, is in its initial stage and the objective is to prepare and label with {sup 165}Ho different polymer-based microspheres. These combined efforts have been done to offer a national radiotherapeutic product for the the Brazilian nuclear medicine community at fair value and also to offer a viable possibility of treatment for patients affected by liver malignancies. (author)

  4. Optimization of preparation method for ketoprofen-loaded microspheres consisting polymeric blends using simplex lattice mixture design

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sanjoy Kumar, E-mail: sanjoydasju@gmail.com; Khanam, Jasmina; Nanda, Arunabha

    2016-12-01

    In the present investigation, simplex lattice mixture design was applied for formulation development and optimization of a controlled release dosage form of ketoprofen microspheres consisting polymers like ethylcellulose and Eudragit{sup ®}RL 100; when those were formed by oil-in-oil emulsion solvent evaporation method. The investigation was carried out to observe the effects of polymer amount, stirring speed and emulsifier concentration (% w/w) on percentage yield, average particle size, drug entrapment efficiency and in vitro drug release in 8 h from the microspheres. Analysis of variance (ANOVA) was used to estimate the significance of the models. Based on the desirability function approach numerical optimization was carried out. Optimized formulation (KTF-O) showed close match between actual and predicted responses with desirability factor 0.811. No adverse reaction between drug and polymers were observed on the basis of Fourier transform infrared (FTIR) spectroscopy and Differential scanning calorimetric (DSC) analysis. Scanning electron microscopy (SEM) was carried out to show discreteness of microspheres (149.2 ± 1.25 μm) and their surface conditions during pre and post dissolution operations. The drug release pattern from KTF-O was best explained by Korsmeyer-Peppas and Higuchi models. The batch of optimized microspheres were found with maximum entrapment (~ 90%), minimum loss (~ 10%) and prolonged drug release for 8 h (91.25%) which may be considered as favourable criteria of controlled release dosage form. - Graphical abstract: Optimization of preparation method for ketoprofen-loaded microspheres consisting polymeric blends using simplex lattice mixture design. - Highlights: • Simplex lattice design was used to optimize ketoprofen-loaded microspheres. • Polymeric blend (Ethylcellulose and Eudragit® RL 100) was used. • Microspheres were prepared by oil-in-oil emulsion solvent evaporation method. • Optimized formulation depicted favourable

  5. Scalable synthesis of mesoporous titania microspheres via spray-drying method.

    Science.gov (United States)

    Pal, Manas; Wan, Li; Zhu, Yongheng; Liu, Yupu; Liu, Yang; Gao, Wenjun; Li, Yuhui; Zheng, Gengfeng; Elzatahry, Ahmed A; Alghamdi, Abdulaziz; Deng, Yonghui; Zhao, Dongyuan

    2016-10-01

    Mesoporous TiO2 has several potential applications due to its unique electronic and optical properties, although its structures and morphologies are typically difficult to tune because of its uncontrollable and fast sol-gel reaction. In this study we have coupled the template-directed-sol-gel-chemistry with the low-cost, scalable, and environmentally benign aerosol (spray-drying) one-pot preparation technique for the fabrication of hierarchically mesoporous TiO2 microspheres and Fe3O4@mesoporous TiO2-x microspheres in a large scale. Parameters during the pre-hydrolysis and spray-drying treatment were varied to successfully control the bead diameter, morphology, monodispersity, surface area and pore size for improving their effectiveness for better application. Unlike to the previous aerosol synthetic approaches, where mainly quite a high temperature gradient with the strict control of spray-drying precursor concentration is implied, our strategy is lying on comparatively low drying temperature with an additional post-ultrasonication (further hydrolysis and condensation) route of the pre-calcined TiO2 samples. As-synthesized mesoporous microspheres have a size distribution from 500nm to 5μm, specific surface areas ranging from 150 to 162m(2)g(-1) and mean pore sizes of several nanometers (4-6nm). Further Fe3O4@mesoporous TiO2-x microspheres were observed to show remarkable selective phosphopeptide-enrichment activity which might have significant importance in disease diagnosis and other biomedical applications. Copyright © 2016. Published by Elsevier Inc.

  6. Facile Fabrication of Urchin-like Polyaniline Microspheres for Electrochemical Energy Storage

    International Nuclear Information System (INIS)

    Wang, Yuan; Xu, Shaoqin; Liu, Wenfeng; Cheng, Huan; Chen, Shaoyun; Liu, Xueqing; Liu, Jiyan; Tai, Qidong; Hu, Chenglong

    2017-01-01

    Graphical abstract: The urchin-like polyaniline (i.e. PANI) microsphere was polymerized using the sulfonated polystyrene microspheres (i.e. SPS) as template. It showed large specific capacitance of 435 F g −1 at a scan rate of 10 mV s −1 , and also exhibited the good rate capability and the cycling stability with capacitance retentions of 93% after 1000 cycles. This facile approach is feasible and easy to fabricate microstructural conducting polymer for supercapacitor electrode materials. Display Omitted -- Highlights: •A novel route to fabricate urchin-like polyaniline (PANI) by polymeric template. •The specific capacitance of 435 Fg 1 was obtained when PANI acted as the electrode. •The cycling stability with capacitance retentions of 93% after 1000 cycles. -- Abstract: The urchin-like polyaniline (i.e. PANI) microsphere was polymerized using the sulfonated polystyrene microsphere (i.e. SPS) as template, and its structure was successfully conformed by the X-ray photoelectron spectrum, Raman spectrum, Ultraviolet-visible spectrum, and TGA thermogram. The urchin-like PANI microspheres with uniform diameter (1.5 μm) can be observed on scanning electron microscopy (SEM). Cyclic voltammetry and galvanostatic charge/discharge tests were carried out to investigate the electrochemical properties of as-prepared urchin-like PANI microspheres. It showed that the specific capacitance (SC) was 435 Fg −1 at a scan rate of 10 mV s −1 , and also exhibited good capability and cycling stability with capacitance retentions of 93% after 1000 cycles, which is superior or close to some individual PANI nanostructures and PANI composite materials. This facile approach is feasible and easy to fabricate microstructural conducting polymer for supercapacitor electrode materials.

  7. Chitosan Microspheres as Radiolabeled Delivery Devices

    International Nuclear Information System (INIS)

    Permtermsin, Chalermsin; Ngamprayad, Tippanan; Phumkhem, Sudkanung; Srinuttrakul, Wannee; Kewsuwan, Prartana

    2007-08-01

    Full text: This study optimized conditions for preparing, characterizing, radiolabeled of chitosan microspheres and the biodistribution of 99mTc-Chitosan microspheres after intravenous administration. Particle size distribution of the microspheres was determined by light scattering. Zeta potential was studied by dynamic light scattering and electrophoresis technique. Biodistribution studies were performed by radiolabeling using 99mTc. The results shown that geometric mean diameter of the microspheres was found to be 77.26?1.96 ?m. Microsphere surface charge of chitosan microspheres was positive charge and zeta potential was 25.80 ? 0.46 mV. The labeling efficiency for this condition was more than 95% and under this condition was stable for at least 6 h. Radioactivity

  8. Controlled Release from Recombinant Polymers

    Science.gov (United States)

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  9. Hydrophilic porous magnetic poly(GMA-MBAA-NVP) composite microspheres containing oxirane groups: An efficient carrier for immobilizing penicillin G acylase

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Ping; Su, Weiguang, E-mail: weiguangsu@nxu.edu.cn; Gu, Yaohua; Liu, Haifeng; Wang, Julan

    2015-03-15

    Magnetic hydrophilic polymeric microspheres containing oxirane groups were prepared by inverse suspension polymerization of glycidyl methacrylate (GMA), N, N′-methylene bisacrylamide (MBAA) and N-vinyl pyrrolidone (NVP) in the existence of formamide, which were denoted as magnetic poly(GMA-MBAA-NVP) microspheres. The magnetic poly(GMA-MBAA-NVP) microspheres were characterized by scanning electron microscopy (SEM), FT-IR spectroscopy, X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and so on. The results showed that poly(GMA-MBAA-NVP) microspheres possessed well spherical shape, narrow size distribution, abundant porous structure, reactive oxirane groups and superparamagnetic properties. Formamide used in the present work served as a modifier, a dispersant and a porogen to form final porous polymer microspheres. The penicillin G acylase (PGA) was covalently immobilized onto the magnetic microspheres through the reaction between the amino groups of enzyme and the oxirane groups on the microspheres for producing 6-aminopenicillanic acid (6-APA). The effects of GMA/NVP ratio and crosslink density on the activity of immobilized PGA were investigated. The highest apparent activity, enzyme loading and coupling yield of immobilized PGA were 821 IU/g, 65.3 mg/g and 42.3% respectively when the mass ratio of GMA/NVP was 1:1 and crosslink density was 60%. Compared with the free PGA, immobilized PGA showed a wider range of pH value and reaction temperature. The relative activity and reaction rate of immobilized PGA remained almost constant after 20 recycles. The magnetic poly(GMA-MBAA-NVP) microspheres would be very promising carriers for immobilizing enzymes in industrial application. - Highlights: • The magnetic poly(GMA-MBAA-NVP) microspheres were successfully synthesized. • Formamide served as a modifier, a dispersant and a porogen to form microspheres. • The magnetic microspheres were highly efficient carriers for immobilizing PGA. • Immobilized PGA

  10. In vitro Evaluation of Nateglinide-Loaded Microspheres Formulated ...

    African Journals Online (AJOL)

    Keywords: Nateglinide, Microspheres, Micromeritics, Drug release, Ionic ... Oral drug delivery systems (DDS) are commonly divided into immediate release and modified release systems. ..... Albumin Microspheres for Potential Intramuscular.

  11. Solvent/non-solvent sintering: a novel route to create porous microsphere scaffolds for tissue regeneration.

    Science.gov (United States)

    Brown, Justin L; Nair, Lakshmi S; Laurencin, Cato T

    2008-08-01

    Solvent/non-solvent sintering creates porous polymeric microsphere scaffolds suitable for tissue engineering purposes with control over the resulting porosity, average pore diameter, and mechanical properties. Five different biodegradable biocompatible polyphosphazenes exhibiting glass transition temperatures from -8 to 41 degrees C and poly (lactide-co-glycolide), (PLAGA) a degradable polymer used in a number of biomedical settings, were examined to study the versatility of the process and benchmark the process to heat sintering. Parameters such as: solvent/non-solvent sintering solution composition and submersion time effect the sintering process. PLAGA microsphere scaffolds fabricated with solvent/non-solvent sintering exhibited an interconnected porosity and pore size of 31.9% and 179.1 mum, respectively which was analogous to that of conventional heat sintered PLAGA microsphere scaffolds. Biodegradable polyphosphazene microsphere scaffolds exhibited a maximum interconnected porosity of 37.6% and a maximum compressive modulus of 94.3 MPa. Solvent/non-solvent sintering is an effective strategy for sintering polymeric microspheres, with a broad spectrum of glass transition temperatures, under ambient conditions making it an excellent fabrication route for developing tissue engineering scaffolds and drug delivery vehicles. (c) 2007 Wiley Periodicals, Inc.

  12. Preparation and Characterization of SiO2/SiCN Core-shell Ceramic Microspheres

    Directory of Open Access Journals (Sweden)

    ZHANG Hai-yuan

    2017-05-01

    Full Text Available The SiO2/PSN core-shell microspheres were prepared via an emulsion reaction combined with the polymer-derived ceramics (PDCs method using polysilazane (PSN in situ polymerization on the surface of SiO2 modified by silane coupling agents MPS, followed by pyrolysis process to obtain SiO2/SiCN core-shell ceramic microspheres. The effects of raw mass ratio, curing time and pyrolysis temperature on the formation and the morphology of core-shell microspheres were studied. The morphology, chemical composition and phase transformation were characterized by SEM, EDS, TEM, FT-IR and XRD. The results show that after reaction for 4h at 200℃, SiO2 completely coated PSN forms a core-shell microsphere with rough surface when the mass ratio of SiO2 and PSN is 1:4; when pyrolysis temperature is at 800-1200℃, amorphous SiO2/SiCN core-shell ceramic microspheres are prepared; at 1400℃, the amorphous phase partially crystallizes to produce SiO2, SiC and Si3N4 phase.

  13. Fiber-optic microsphere-based antibody array for the analysis of inflammatory cytokines in saliva.

    Science.gov (United States)

    Blicharz, Timothy M; Siqueira, Walter L; Helmerhorst, Eva J; Oppenheim, Frank G; Wexler, Philip J; Little, Frédéric F; Walt, David R

    2009-03-15

    Antibody microarrays have emerged as useful tools for high-throughput protein analysis and candidate biomarker screening. We describe here the development of a multiplexed microsphere-based antibody array capable of simultaneously measuring 10 inflammatory protein mediators. Cytokine-capture microspheres were fabricated by covalently coupling monoclonal antibodies specific for cytokines of interest to fluorescently encoded 3.1 microm polymer microspheres. An optical fiber bundle containing approximately 50,000 individual 3.1 microm diameter fibers was chemically etched to create microwells in which cytokine-capture microspheres could be deposited. Microspheres were randomly distributed in the wells to produce an antibody array for performing a multiplexed sandwich immunoassay. The array responded specifically to recombinant cytokine solutions in a concentration-dependent fashion. The array was also used to examine endogenous mediator patterns in saliva supernatants from patients with pulmonary inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD). This array technology may prove useful as a laboratory-based platform for inflammatory disease research and diagnostics, and its small footprint could also enable integration into a microfluidic cassette for use in point-of-care testing.

  14. Improvement of survival in C6 rat glioma model by a sustained drug release from localized PLGA microspheres in a thermoreversible hydrogel.

    Science.gov (United States)

    Ozeki, Tetsuya; Kaneko, Daiki; Hashizawa, Kosuke; Imai, Yoshihiro; Tagami, Tatsuaki; Okada, Hiroaki

    2012-05-10

    A local drug delivery system based on sustained drug release is an attractive approach to treat brain tumors. We have developed a novel device using drug-incorporated poly(lactic-co-glycolic acid) (PLGA) microspheres embedded in thermoreversible gelation polymer (TGP) formulation (drug/PLGA/TGP formulation). TGP forms a gel at body temperature but sol at room temperature. Therefore, when this formulation is injected into the brain tumor, the PLGA microspheres in TGP gel are localized at the injection site and do not diffuse throughout the brain tissue; eventually, sustained drug release from PLGA microspheres is achieved at the target site. In this study, two chemotherapeutic drugs (camptothecin (CPT) or vincristine (VCR)) were incorporated into PLGA microspheres to prepare drug/PLGA/TGP formulations. VCR/PLGA microspheres exhibited the higher encapsulation efficiency than CPT/PLGA microspheres (70.1% versus 30.1%). In addition, VCR/PLGA microspheres showed a higher sustained release profile than CPT/PLGA microspheres (54.5% versus 72.5% release, at 28 days). Therapeutic effect (mean survival) was evaluated in the C6 rat glioma model (control group, 18 days; CPT/PLGA/TGP treatment group, 24 days; VCR/PLGA/TGP treatment group, 33 days). In particular, the VCR/PLGA/TGP formulation produced long-term survivors (>60 days). Therefore, this formulation can be therapeutically effective formulation for the glioma therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Evaluation of radiolabelled microspheres as digesta markers

    International Nuclear Information System (INIS)

    Young, B.A.; Turner, B.V.; Dixon, A.E.; Exley, D.M.; Young, S.B.; Abidin, Z.

    1991-01-01

    The suitability of microspheres as markers for measuring digesta kinetics in sheep was examined. Microspheres offer advantages of uniformity of size and density, and stability during passage through the gastrointestinal tract. They are commercially available labelled with the choice of one of eleven different radionuclides and can be easily measured in digesta and faecal material. Tests comparing several types of digesta markers gave different measures of kinetic parameters when the measurements were made concurrently in the same sheep. However, concurrent measurements derived from use of microspheres were consistent. Microspheres offer a new alternative for digestive studies. (author). 19 refs, 4 tabs

  16. A co-flow-focusing monodisperse microbubble generator

    KAUST Repository

    Zhang, Jiaming; Li, Erqiang; Thoroddsen, Sigurdur T

    2014-01-01

    We use a simple and inexpensive microfluidic device, which is based on microscope glass slides and two tapered glass capillaries, to produce monodisperse microbubbles. The innermost capillary used for transporting the gas is inserted into the second capillary, with its 2 μm sharp tip aligned with the center of the converging-diverging throat of the second capillary. This configuration provides a small and smooth gas flow rate, and a high velocity gradient at the tube outlet. Highly monodisperse microbubbles with diameters ranging from 3.5 to 60 microns have been successfully produced at a rate of up to 40 kHz. A simple scaling law, which is based on the capillary number and liquid-to-gas flow rate ratio, successfully predicts the bubble size. © 2014 IOP Publishing Ltd.

  17. A co-flow-focusing monodisperse microbubble generator

    KAUST Repository

    Zhang, Jiaming

    2014-02-14

    We use a simple and inexpensive microfluidic device, which is based on microscope glass slides and two tapered glass capillaries, to produce monodisperse microbubbles. The innermost capillary used for transporting the gas is inserted into the second capillary, with its 2 μm sharp tip aligned with the center of the converging-diverging throat of the second capillary. This configuration provides a small and smooth gas flow rate, and a high velocity gradient at the tube outlet. Highly monodisperse microbubbles with diameters ranging from 3.5 to 60 microns have been successfully produced at a rate of up to 40 kHz. A simple scaling law, which is based on the capillary number and liquid-to-gas flow rate ratio, successfully predicts the bubble size. © 2014 IOP Publishing Ltd.

  18. Synthesis of Monodisperse Iron Oxide Nanoparticles without Surfactants

    Directory of Open Access Journals (Sweden)

    Xiao-Chen Yang

    2014-01-01

    Full Text Available Monodisperse iron oxide nanoparticles could be successfully synthesized with two kinds of precipitants through a precipitation method. As-prepared nanoparticles in the size around 10 nm with regular spherical-like shape were achieved by adjusting pH values. NaOH and NH3·H2O were used as two precipitants for comparison. The average size of nanoparticles with NH3·H2O precipitant got smaller and represented better dispersibility, while nanoparticles with NaOH precipitant represented better magnetic property. This work provided a simple method without using any organic solvents, organic metal salts, or surfactants which could easily obtain monodisperse nanoparticles with tunable morphology.

  19. The self-assembly of monodisperse nanospheres within microtubes

    International Nuclear Information System (INIS)

    Zheng Yuebing; Juluri, Bala Krishna; Huang, Tony Jun

    2007-01-01

    Self-assembled monodisperse nanospheres within microtubes have been fabricated and characterized. In comparison with colloidal crystals formed on planar substrates, colloidal nanocrystals self-assembled in microtubes demonstrate high spatial symmetry in their optical transmission and reflection properties. The dynamic self-assembly process inside microtubes is investigated by combining temporal- and spatial-spectrophotometric measurements. The understanding of this process is achieved through both experimentally recorded reflection spectra and finite difference time domain (FDTD)-based simulation results

  20. Laboratory evaluation of a vibrating orifice monodisperse aerosol generator

    International Nuclear Information System (INIS)

    Everitt, N.M.; Snelling, K.W.

    1985-02-01

    The Berglund-Liu vibrating orifice aerosol generator is capable of producing monodisperse particles in the diameter range 5 to 50 μm. Experiments have been carried out to set up and evaluate such a generator for the preparation of standard liquid (olive oil) and solid (methylene blue) aerosols in the size range 8 to 13 μm. Modifications have been made to the apparatus to improve its performance and increase its particle output. (author)

  1. Preparation and in vitro evaluation of xanthan gum facilitated superabsorbent polymeric microspheres.

    Science.gov (United States)

    Bhattacharya, Shiv Sankar; Mazahir, Farhan; Banerjee, Subham; Verma, Anurag; Ghosh, Amitava

    2013-10-15

    Interpenetrating polymer network (IPN) hydrogel microspheres of xanthan gum (XG) based superabsorbent polymer (SAP) and poly(vinyl alcohol) (PVA) were prepared by water-in-oil (w/o) emulsion crosslinking method for sustained release of ciprofloxacin hydrochloride (CIPRO). The microspheres were prepared with various ratios of hydrolyzed SAP to PVA and extent of crosslinking density. The prepared microspheres with loose and rigid surfaces were evidenced by scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the IPN formation. Differential scanning calorimetry (DSC) study was performed to understand the dispersion nature of drug after encapsulation. The in vitro drug release study was extensively evaluated depending on the process variables in both acidic and alkaline media. All the formulations exhibited satisfactory physicochemical and in vitro release characteristics. Release data indicated a non-Fickian trend of drug release from the formulations. Based on the results, this study suggest that CIPRO loaded IPN microspheres were suitable for sustained release application. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Resistance to Internal Damage and Scaling of Concrete Air Entrained By Microspheres

    Science.gov (United States)

    Molendowska, Agnieszka; Wawrzenczyk, Jerzy

    2017-10-01

    This paper report the test results of high strength concrete produced with slag cement and air entrained with polymer microspheres in three diameters. The study focused on determining the effects of the microsphere size and quantity on the air void structure and resistance to internal cracking and scaling of the concrete. The resistance to internal cracking was determined in compliance with the requirements of the modified ASTM C666 A method on beam specimens. The scaling resistance in a 3% NaCl solution was determined using the slab test in accordance with PKN-CEN/TS 12390-9:2007. The air void structure parameters were determined to PN-EN 480-11:1998. The study results indicate that the use of microspheres is an effective air entrainment method providing very good air void structure parameters. The results show high freeze-thaw durability of polymer microsphere-based concrete in exposure class XF3. The scaling resistance test confirms that it is substantially more difficult to protect concrete against scaling in the presence of the 3% NaCl solution (exposure class XF4). Concrete scaling is a complex phenomenon controlled by a number of independent factors.

  3. Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: State-of-the-art and challenges

    NARCIS (Netherlands)

    Ramazani, F.; Chen, Weiluan; van Nostrum, C.F.; Storm, Gerrit; Kiessling, F.; Lammers, Twan Gerardus Gertudis Maria; Hennink, W.E.; Kok, R.J.

    2016-01-01

    Poly(lactide-co-glycolide) (PLGA) microspheres are efficient delivery systems for controlled release of low molecular weight drugs as well as therapeutic macromolecules. The most common microencapsulation methods are based on emulsification procedures, in which emulsified droplets of polymer and

  4. RAFT polymerization of N,N-dimethylacrylamide from magnetic poly(2-hydroxyethyl methacrylate) microspheres to suppress nonspecific protein adsorption

    Czech Academy of Sciences Publication Activity Database

    Cao, X.; Horák, Daniel; An, Z.; Plichta, Zdeněk

    2016-01-01

    Roč. 54, č. 8 (2016), s. 1036-1043 ISSN 0887-624X R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : magnetic polymers * microspheres * N,N-dimethylacrylamide Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.952, year: 2016

  5. Glass microspheres for medical applications

    Science.gov (United States)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in 100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass microspheres, composed of micron-sized, metallic rhenium particles dispersed within a magnesium alumino borate glass matrix were produced by sintering ReO2 powder and glass frit at 1050°C. A 50 mg injection of radioactive rhenium glass

  6. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres.

    Science.gov (United States)

    Song, Kedong; Liu, Yingchao; Macedo, Hugo M; Jiang, Lili; Li, Chao; Mei, Guanyu; Liu, Tianqing

    2013-04-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27-55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99±2.51) %, (89.66±0.66) % and (73.77±3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24±0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44±1.81)×10(-2) mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a promising technique

  7. A facile approach to fabricate Au nanoparticles loaded SiO{sub 2} microspheres for catalytic reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi, E-mail: mingyitjucu@163.com [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Huang, Guanbo, E-mail: gbhuang2007@hotmail.com [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Li, Xianxian; Pang, Xiaobo [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Qiu, Haixia [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China)

    2015-07-15

    Hydrophilic and biocompatible macromolecules were used to improve and simplify the process for the fabrication of core/shell SiO{sub 2}@Au composite particles. The influence of polymers on the morphology of SiO{sub 2}@Au particles with different size of SiO{sub 2} cores was analyzed by transmission electron microscopy and scanning electron microscopy. The optical property of the SiO{sub 2}@Au particles was studied with UV–Vis spectroscopy. The results indicate that the structure and composition of macromolecules affect the morphology of Au layers on SiO{sub 2} microspheres. The SiO{sub 2}@Au particles prepared in the presence of polyvinyl alcohol (PVA) or polyvinylpyrrolidone (PVP) have thin and complete Au nanoshells owing to their inducing act in preferential growth of Au nanoparticles along the surface of SiO{sub 2} microspheres. SiO{sub 2}@Au particles can be also prepared from SiO{sub 2} microspheres modified with 3-aminopropyltrimethoxysilane in the presence of PVA or PVP. This offers a simple way to fabricate a Au layer on SiO{sub 2} or other microspheres. The SiO{sub 2}@Au particles demonstrated high catalytic activity in the reduction of 4-nitrophenol. - Highlights: • Facile direct deposition method for Au nanoparticles on silica microspheres. • Influence of different types of macromolecule on the formation of Au shell. • High catalytic performance of Au nanoparticles on silica microspheres.

  8. A facile approach to fabricate Au nanoparticles loaded SiO2 microspheres for catalytic reduction of 4-nitrophenol

    International Nuclear Information System (INIS)

    Tang, Mingyi; Huang, Guanbo; Li, Xianxian; Pang, Xiaobo; Qiu, Haixia

    2015-01-01

    Hydrophilic and biocompatible macromolecules were used to improve and simplify the process for the fabrication of core/shell SiO 2 @Au composite particles. The influence of polymers on the morphology of SiO 2 @Au particles with different size of SiO 2 cores was analyzed by transmission electron microscopy and scanning electron microscopy. The optical property of the SiO 2 @Au particles was studied with UV–Vis spectroscopy. The results indicate that the structure and composition of macromolecules affect the morphology of Au layers on SiO 2 microspheres. The SiO 2 @Au particles prepared in the presence of polyvinyl alcohol (PVA) or polyvinylpyrrolidone (PVP) have thin and complete Au nanoshells owing to their inducing act in preferential growth of Au nanoparticles along the surface of SiO 2 microspheres. SiO 2 @Au particles can be also prepared from SiO 2 microspheres modified with 3-aminopropyltrimethoxysilane in the presence of PVA or PVP. This offers a simple way to fabricate a Au layer on SiO 2 or other microspheres. The SiO 2 @Au particles demonstrated high catalytic activity in the reduction of 4-nitrophenol. - Highlights: • Facile direct deposition method for Au nanoparticles on silica microspheres. • Influence of different types of macromolecule on the formation of Au shell. • High catalytic performance of Au nanoparticles on silica microspheres

  9. Microsphere estimates of blood flow: Methodological considerations

    International Nuclear Information System (INIS)

    von Ritter, C.; Hinder, R.A.; Womack, W.; Bauerfeind, P.; Fimmel, C.J.; Kvietys, P.R.; Granger, D.N.; Blum, A.L.

    1988-01-01

    The microsphere technique is a standard method for measuring blood flow in experimental animals. Sporadic reports have appeared outlining the limitations of this method. In this study the authors have systematically assessed the effect of blood withdrawals for reference sampling, microsphere numbers, and anesthesia on blood flow estimates using radioactive microspheres in dogs. Experiments were performed on 18 conscious and 12 anesthetized dogs. Four blood flow estimates were performed over 120 min using 1 x 10 6 microspheres each time. The effects of excessive numbers of microspheres pentobarbital sodium anesthesia, and replacement of volume loss for reference samples with dextran 70 were assessed. In both conscious and anesthetized dogs a progressive decrease in gastric mucosal blood flow and cardiac output was observed over 120 min. This was also observed in the pancreas in conscious dogs. The major factor responsible for these changes was the volume loss due to the reference sample withdrawals. Replacement of the withdrawn blood with dextran 70 led to stable blood flows to all organs. The injection of excessive numbers of microspheres did not modify hemodynamics to a greater extent than did the injection of 4 million microspheres. Anesthesia exerted no influence on blood flow other than raising coronary flow. The authors conclude that although blood flow to the gastric mucosa and the pancreas is sensitive to the minor hemodynamic changes associated with the microsphere technique, replacement of volume loss for reference samples ensures stable blood flow to all organs over a 120-min period

  10. Thermal analysis of iron hydroxide microspheres

    International Nuclear Information System (INIS)

    Turcanu, C.N.; Cornescu, M.

    1979-03-01

    The thermal treatment is an important step in the preparative technology of the iron oxids microspheres with well established mechanical, physical and chemical characteristics. The first indications on the heating procedure have been obtained from the thermal analysis on iron hydroxide microspheres prepared by the support precipitation and internal gelification methods. (author)

  11. Encapsulated PDMS microspheres with reactive handles

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Ma, Baoguang; Li, Li

    2014-01-01

    , cured PDMS microspheres are coated with poly(methyl methacrylate) using a chemical process (solvent evaporation technique). Three solvents are used in three different experiments: dichloromethane, tetrahydrofuran, and acetone. The composition and morphology of the cured PDMS microspheres and PMMA coated...

  12. Microencapsulation and microspheres for food applications

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2015-01-01

    This book provides an update on the latest developments, challenges, and opportunities in the highly expanding field of microencapsulation and microspheres for food applications, examining the various types of microspheres and microcapsules essential to those who need to develop stable and

  13. U3O8 microspheres sintering kinetics

    International Nuclear Information System (INIS)

    Godoy, A.L.E.

    1986-01-01

    U 3 O 8 microspheres sintering kinetics was determined using a hot-stage optical microscopy apparatus, able to reach temperature up to 1350 0 C in controlled atmospheres. The sintered material had its microstructure analysed by optical and electron microscopy. The microspheres were characterized initialy utilizing X-ray diffractometry and thermogravimetry. The equation which describes the microspheres shrinkage in function of the time was obtained using finite difference analysis X-ray diffractometry indicated hexagonal structure for the microspheres main starting material, ammonium diuranate thermogravimetric analysis showed reduction of this material to U 3 O 8 at 600 0 C. Ceramography results showed 5 hours sintered microspheres grain sizes G vary with the temperature. Sintered U 3 O 8 micrographs compared with published results for UO 2 , indicate similar homogeneity microstructural characteristics and suggest the processed micorspheres to be potentially useful as nuclear fuels. (Author) [pt

  14. Magnetic susceptibility characterisation of superparamagnetic microspheres

    Science.gov (United States)

    Grob, David Tim; Wise, Naomi; Oduwole, Olayinka; Sheard, Steve

    2018-04-01

    The separation of magnetic materials in microsystems using magnetophoresis has increased in popularity. The wide variety and availability of magnetic beads has fuelled this drive. It is important to know the magnetic characteristics of the microspheres in order to accurately use them in separation processes integrated on a lab-on-a-chip device. To investigate the magnetic susceptibility of magnetic microspheres, the magnetic responsiveness of three types of Dynabeads microspheres were tested using two different approaches. The magnetophoretic mobility of individual microspheres is studied using a particle tracking system and the magnetization of each type of Dynabeads microsphere is measured using SQUID relaxometry. The magnetic beads' susceptibility is obtained at four different applied magnetic fields in the range of 38-70 mT for both the mobility and SQUID measurements. The susceptibility values in both approaches show a consistent magnetic field dependence.

  15. A simple method for encapsulating single cells in alginate microspheres allows for direct PCR and whole genome amplification.

    Directory of Open Access Journals (Sweden)

    Saharnaz Bigdeli

    Full Text Available Microdroplets are an effective platform for segregating individual cells and amplifying DNA. However, a key challenge is to recover the contents of individual droplets for downstream analysis. This paper offers a method for embedding cells in alginate microspheres and performing multiple serial operations on the isolated cells. Rhodobacter sphaeroides cells were diluted in alginate polymer and sprayed into microdroplets using a fingertip aerosol sprayer. The encapsulated cells were lysed and subjected either to conventional PCR, or whole genome amplification using either multiple displacement amplification (MDA or a two-step PCR protocol. Microscopic examination after PCR showed that the lumen of the occupied microspheres contained fluorescently stained DNA product, but multiple displacement amplification with phi29 produced only a small number of polymerase colonies. The 2-step WGA protocol was successful in generating fluorescent material, and quantitative PCR from DNA extracted from aliquots of microspheres suggested that the copy number inside the microspheres was amplified up to 3 orders of magnitude. Microspheres containing fluorescent material were sorted by a dilution series and screened with a fluorescent plate reader to identify single microspheres. The DNA was extracted from individual isolates, re-amplified with full-length sequencing adapters, and then a single isolate was sequenced using the Illumina MiSeq platform. After filtering the reads, the only sequences that collectively matched a genome in the NCBI nucleotide database belonged to R. sphaeroides. This demonstrated that sequencing-ready DNA could be generated from the contents of a single microsphere without culturing. However, the 2-step WGA strategy showed limitations in terms of low genome coverage and an uneven frequency distribution of reads across the genome. This paper offers a simple method for embedding cells in alginate microspheres and performing PCR on isolated

  16. Magnetic poly(glycidyl methacrylate) microspheres for Campylobacter jejuni detection in food

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Hochel, I.

    061, - (2005), s. 1-12 ISSN 1618-7229 R&D Projects: GA ČR(CZ) GA525/05/0311; GA ČR(CZ) GA525/02/0287 Institutional research plan: CEZ:AV0Z40500505 Keywords : magnetic * microspheres * glycidyl methacrylate Subject RIV: GM - Food Processing Impact factor: 0.926, year: 2005 http://www.e-polymers.org

  17. Magnetic hydrophilic poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) microspheres for DNA isolation from faeces

    Czech Academy of Sciences Publication Activity Database

    Trachtová, Š.; Obermajer, T.; Španová, A.; Matijašić, B. B.; Rogelj, I.; Horák, Daniel; Rittich, B.

    2012-01-01

    Roč. 555, č. 1 (2012), s. 263-270 ISSN 1542-1406. [International Conference on Frontiers of Polymers and Advanced Materials /11./. Pretoria, 22.05.2011-27.05.2011] R&D Projects: GA MŠk 2B06053 Institutional research plan: CEZ:AV0Z40500505 Keywords : DNA isolation * magnetic microspheres * mouse faeces Subject RIV: EE - Microbiology, Virology Impact factor: 0.530, year: 2012

  18. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2017-09-12

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  19. Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect Rapid Prototyping technique.

    Science.gov (United States)

    Tan, J Y; Chua, C K; Leong, K F

    2013-02-01

    Advanced scaffold fabrication techniques such as Rapid Prototyping (RP) are generally recognized to be advantageous over conventional fabrication methods in terms architectural control and reproducibility. Yet, most RP techniques tend to suffer from resolution limitations which result in scaffolds with uncontrollable, random-size pores and low porosity, albeit having interconnected channels which is characteristically present in most RP scaffolds. With the increasing number of studies demonstrating the profound influences of scaffold pore architecture on cell behavior and overall tissue growth, a scaffold fabrication method with sufficient architectural control becomes imperative. The present study demonstrates the use of RP fabrication techniques to create scaffolds having interconnected channels as well as controllable micro-size pores. Adopted from the concepts of porogen leaching and indirect RP techniques, the proposed fabrication method uses monodisperse microspheres to create an ordered, hexagonal closed packed (HCP) array of micro-pores that surrounds the existing channels of the RP scaffold. The pore structure of the scaffold is shaped using a single sacrificial construct which comprises the microspheres and a dissolvable RP mold that were sintered together. As such, the size of pores as well as the channel configuration of the scaffold can be tailored based on the design of the RP mold and the size of microspheres used. The fabrication method developed in this work can be a promising alternative way of preparing scaffolds with customized pore structures that may be required for specific studies concerning cell-scaffold interactions.

  20. Preparation methods for monodispersed garlic oil microspheres in water using the microemulsion technique and their potential as antimicrobials.

    Science.gov (United States)

    Zheng, Hua Ming; Li, Hou Bin; Wang, Da Wei; Liu, Dun

    2013-08-01

    Garlic oil is considered as a natural broad-spectrum antibiotic because of its well-known antimicrobial activity. However, the characteristics of easy volatility and poor aqueous solubility limit the application of garlic oil in industry. The purpose of the present work is to develop and evaluate an oil-free microemulsion by loading garlic oil in microemulsion system. Microemulsions were prepared with ethoxylated hydrogenated castor (Cremophor RH40) as surfactant, n-butanol (or ethanol) as cosurfactant, oleic acid-containing garlic oil as oil phase, and ultrapure water as water phase. The effects of the ratio of surfactant to cosurfactant and different oil concentration on the area of oil-in-water (O/W) microemulsion region in pseudoternary phase diagrams were investigated. The particle size and garlic oil encapsulation efficiency of the formed microemulsions with different formulations were also investigated. In addition, the antimicrobial activity in vitro against Escherichia coli and Staphylococcus aureus was assessed. The experimental results show that a stable microemulsion region can be obtained when the mass ratio of surfactant to cosurfactant is, respectively, 1:1, 2:1, and 3:1. Especially, when the mixture surfactants of RH40/n-butanol 2/1 (w/w) is used in the microemulsion formulation, the area of O/W microemulsion region is 0.089 with the particle size 13.29 to 13.85 nm and garlic oil encapsulation efficiency 99.5%. The prepared microemulsion solution exhibits remarkable antibacterial activity against S. aureus. © 2013 Institute of Food Technologists®

  1. Fabrication and characterization of tosyl-activated magnetic and nonmagnetic monodisperse microspheres for use in microfluic-based ferritin immunoassay

    Czech Academy of Sciences Publication Activity Database

    Reymond, F.; Vollet, Ch.; Plichta, Zdeněk; Horák, Daniel

    2013-01-01

    Roč. 29, č. 2 (2013), s. 532-542 ISSN 8756-7938 R&D Projects: GA MŠk 7E12053; GA ČR GAP503/10/0664 EU Projects: European Commission(XE) 246513 - NADINE Institutional support: RVO:61389013 Keywords : biosensors * electrochemistry * immunoassays Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.883, year: 2013

  2. Physicochemical characterization of spray-dried PLGA/PEG microspheres, and preliminary assessment of biological response.

    Science.gov (United States)

    Javiya, Curie; Jonnalagadda, Sriramakamal

    2016-09-01

    The use of spray-drying to prepare blended PLGA:PEG microspheres with lower immune detection. To study physical properties, polymer miscibility and alveolar macrophage response for blended PLGA:PEG microspheres prepared by a laboratory-scale spray-drying process. Microspheres were prepared by spray-drying 0-20% w/w ratios of PLGA 65:35 and PEG 3350 in dichloromethane. Particle size and morphology was studied using scanning electron microscopy. Polymer miscibility and residual solvent levels evaluated by thermal analysis (differential scanning calorimetry - DSC and thermogravimetric analysis - TGA). Immunogenicity was assessed in vitro by response of rat alveolar macrophages (NR8383) by the MTT-based cell viability assay and reactive oxygen species (ROS) detection. The spray dried particles were spherical, with a size range of about 2-3 µm and a yield of 16-60%. Highest yield was obtained at 1% PEG concentration. Thermal analysis showed a melting peak at 59 °C (enthalpy: 170.61 J/g) and a degradation-onset of 180 °C for PEG 3350. PLGA 65:35 was amorphous, with a Tg of 43 °C. Blended PLGA:PEG microspheres showed a delayed degradation-onset of 280 °C, and PEG enthalpy-loss corresponding to 15% miscibility of PEG in PLGA. NR8383 viability studies and ROS detection upon exposure to these cells suggested that blended PLGA:PEG microspheres containing 1 and 5% PEG are optimal in controling cell proliferation and activation. This research establishes the feasibility of using a spray-drying process to prepare spherical particles (2-3 µm) of molecularly-blended PLGA 65:35 and PEG 3350. A PEG concentration of 1-5% was optimal to maximize process yield, with minimal potential for immune detection.

  3. Influence of Sodium Alginate on Hypoglycemic Activity of Metformin Hydrochloride in the Microspheres Obtained by the Spray Drying

    OpenAIRE

    Szekalska, Marta; Wróblewska, Magdalena; Sosnowska, Katarzyna; Winnicka, Katarzyna

    2016-01-01

    Alginate microspheres with metformin hydrochloride were prepared by the spray drying method in order to improve residence time of drug in the stomach. Nine formulations (F1–F9) with various drug : polymer ratio (1 : 2, 1 : 1, and 2 : 1) and different sodium alginate concentration (1%, 2%, and 3%) were evaluated for size, morphology, drug loading, Zeta potential, and swelling degree. In vitro drug release, mathematical release profile, and physical state of microspheres were also evaluated. Op...

  4. Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Grass, M.E.; Kuhn, J.N.; Tao, F.; Habas, S.E.; Huang, W.; Yang, P.; Somorjai, G.A.

    2009-02-21

    Synthesis of monodisperse and shape-controlled colloidal inorganic nanocrystals (NCs) is of increasing scientific interest and technological significance. Recently, shape control of Pt, Pd, Ag, Au, and Rh NCs has been obtained by tuning growth kinetics in various solution-phase approaches, including modified polyol methods, seeded growth by polyol reduction, thermolysis of organometallics, and micelle techniques. Control of reduction kinetics of the noble metal precursors and regulation of the relative growth rates of low-index planes (i.e. {l_brace}100{r_brace} and {l_brace}111{r_brace}) via selective adsorption of selected chemical species are two keys for achieving shape modification of noble metal NCs. One application for noble metal NCs of well-defined shape is in understanding how NC faceting (determines which crystallographic planes are exposed) affects catalytic performance. Rh NCs are used in many catalytic reactions, including hydrogenation, hydroformylation, hydrocarbonylation, and combustion reactions. Shape manipulation of Rh NCs may be important in understanding how faceting on the nanoscale affects catalytic properties, but such control is challenging and there are fewer reports on the shape control of Rh NCs compared to other noble metals. Xia and coworkers obtained Rh multipods exhibiting interesting surface plasmonic properties by a polyol approach. The Somorjai and Tilley groups synthesized crystalline Rh multipods, cubes, horns and cuboctahedra, via polyol seeded growth. Son and colleagues prepared catalytically active monodisperse oleylamine-capped tetrahedral Rh NCs for the hydrogenation of arenes via an organometallic route. More recently, the Somorjai group synthesized sizetunable monodisperse Rh NCs using a one-step polyol technique. In this Communication, we report the highly selective synthesis of catalytically active, monodisperse Rh nanocubes of < 10 nm by a seedless polyol method. In this approach, Br{sup -} ions from trimethyl

  5. In vivo imaging of the morphology and changes in pH along the gastrointestinal tract of Japanese medaka by photonic band-gap hydrogel microspheres

    International Nuclear Information System (INIS)

    Du, Xuemin; Lei, Ngai-Yu; Hu, Peng; Lei, Zhang; Ong, Daniel Hock-Chun; Ge, Xuewu; Zhang, Zhicheng; Lam, Michael Hon-Wah

    2013-01-01

    Graphical abstract: -- Highlights: •Fabrication of pH-responsive photonic colloidal crystalline microspheres. •Specific photonic band-gap responses occurred in the pH range of 4–5. •Remarkably low in vivo toxicity to Japanese medaka (Oryzia latipes). •In vivo imaging of the morphology and pH along GI tract of Japanese medaka. •Demonstrates bio-imaging potentials of stimuli-responsive photonic materials. -- Abstract: Colloidal crystalline microspheres with photonic band-gap properties responsive to media pH have been developed for in vivo imaging purposes. These colloidal crystalline microspheres were constructed from monodispersed core–shell nano-size particles with poly(styrene-co-acrylic acid) (PS-co-PAA) cores and poly(acrylic acid-co-N-isopropylacrylamide) (PAA-co-PNIPAM) hydrogel shells cross-linked by N,N′-methylenebisacrylamide. A significant shift in the photonic band-gap properties of these colloidal crystalline microspheres was observed in the pH range of 4–5. This was caused by the discontinuous volume phase transition of the hydrogel coating, due to the protonation/deprotonation of its acrylic acid moieties, on the core–shell nano-sized particles within the microspheres. The in vivo imaging capability of these pH-responsive photonic microspheres was demonstrated on a test organism – Japanese medaka, Oryzia latipes – in which the morphology and change in pH along their gastrointestinal (GI) tracts were revealed under an ordinary optical microscope. This work illustrates the potential of stimuli-responsive photonic band-gap materials in tissue-/organ-level in vivo bio-imaging

  6. Magnetic SiO{sub 2} gel microspheres for arterial embolization hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhixia; Kawashita, Masakazu [Graduate School of Biomedical Engineering, Tohoku University, 6-6-11-1306-1, Aramaki-Aoba, Aoba-ku, Sendai 980-8579 (Japan); Araki, Norio [National Hospital Organization Kyoto Medical Center, Kyoto 612-8555 (Japan); Mitsumori, Michihide; Hiraoka, Masahiro [Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Doi, Masaaki, E-mail: zhixia@ecei.tohoku.ac.j, E-mail: zhixiali@hotmail.co [Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2010-12-15

    We have prepared magnetic SiO{sub 2} microspheres with a diameter of 20-30 {mu}m as thermoseeds for hyperthermia of cancer. These were prepared by directly introducing preformed magnetic iron oxide nanoparticles (IONPs) into microspheres of a SiO{sub 2} gel matrix derived from the hydrolysis of tetramethoxysilane (TMOS) in a water-in-oil (W/O) emulsion. Dimethylformamide (DMF) was used as a stabilizer, methanol (CH{sub 3}OH) as a dispersant and ammonia (NH{sub 4}OH) as the catalyst for the formation of the spherical particles in the aqueous phase of the W/O emulsion. The magnetic IONPs were synthesized hydrochemically in an aqueous system composed of ferrous chloride, sodium nitrate and sodium hydroxide. Mono-dispersed magnetic SiO{sub 2} gel microspheres with a diameter of approximately 20 {mu}m were successfully obtained by adding a determined amount of solution with a molar ratio of TMOS/DMF/CH{sub 3}OH/H{sub 2}O/NH{sub 4}OH = 1:1.4:9:20:0.03 to kerosene with a surfactant (sorbitan monooleate/sorbitan monostearate = 3:1 by weight ratio) that was 30 wt% of the total amount of the oil phase. These were estimated to contain up to 60 wt% of IONPs that consisted mainly of Fe{sub 3}O{sub 4} and showed a higher specific absorption rate (SAR = 27.9-43.8 W g{sup -1}) than that of the starting IONPs (SAR = 25.3 W g{sup -1}) under an alternating current magnetic field of 300 Oe and 100 kHz.

  7. Magnetic SiO2 gel microspheres for arterial embolization hyperthermia

    International Nuclear Information System (INIS)

    Li Zhixia; Kawashita, Masakazu; Araki, Norio; Mitsumori, Michihide; Hiraoka, Masahiro; Doi, Masaaki

    2010-01-01

    We have prepared magnetic SiO 2 microspheres with a diameter of 20-30 μm as thermoseeds for hyperthermia of cancer. These were prepared by directly introducing preformed magnetic iron oxide nanoparticles (IONPs) into microspheres of a SiO 2 gel matrix derived from the hydrolysis of tetramethoxysilane (TMOS) in a water-in-oil (W/O) emulsion. Dimethylformamide (DMF) was used as a stabilizer, methanol (CH 3 OH) as a dispersant and ammonia (NH 4 OH) as the catalyst for the formation of the spherical particles in the aqueous phase of the W/O emulsion. The magnetic IONPs were synthesized hydrochemically in an aqueous system composed of ferrous chloride, sodium nitrate and sodium hydroxide. Mono-dispersed magnetic SiO 2 gel microspheres with a diameter of approximately 20 μm were successfully obtained by adding a determined amount of solution with a molar ratio of TMOS/DMF/CH 3 OH/H 2 O/NH 4 OH = 1:1.4:9:20:0.03 to kerosene with a surfactant (sorbitan monooleate/sorbitan monostearate = 3:1 by weight ratio) that was 30 wt% of the total amount of the oil phase. These were estimated to contain up to 60 wt% of IONPs that consisted mainly of Fe 3 O 4 and showed a higher specific absorption rate (SAR = 27.9-43.8 W g -1 ) than that of the starting IONPs (SAR = 25.3 W g -1 ) under an alternating current magnetic field of 300 Oe and 100 kHz.

  8. Synthesis, characterisation and biomedical applications of curcumin conjugated chitosan microspheres.

    Science.gov (United States)

    Saranya, T S; Rajan, V K; Biswas, Raja; Jayakumar, R; Sathianarayanan, S

    2018-04-15

    Curcumin is a diaryl heptanoid of curcuminoids class obtained from Curcuma longa. It possesses various biological activities like anti-inflammatory, hypoglycemic, antioxidant, wound-healing, and antimicrobial activities. Chitosan is a biocompatible, biodegradable and non-toxic natural polymer which enhances the adhesive property of the skin. Chemical conjugation will leads to sustained release action and to enhance the bioavailability. This study aims to synthesis and characterize biocompatible curcumin conjugated chitosan microspheres for bio-medical applications. The Schiff base reaction was carried out for the preparation of curcumin conjugated chitosan by microwave method and it was characterised using FTIR and NMR. Curcumin conjugated chitosan microspheres (CCCMs) were prepared by wet milling solvent evaporation method. SEM analysis showed these CCCMs were 2-5μm spherical particles. The antibacterial activities of the prepared CCCMs were studied against Staphylococcus aureus and Escherichia coli, the zone of inhibition was 28mm and 23mm respectively. Antioxidant activity of the prepared CCCMs was also studied by DPPH and H 2 O 2 method it showed IC 50 esteem value of 216μg/ml and 228μg/ml, and anti-inflammatory activity results showed that CCCMs having IC 50 value of 45μg/ml. The results conclude that the CCCMs having a good antibacterial, antioxidant and anti-inflammatory activities. This, the prepared CCCMs have potential application in preventing skin infections. Copyright © 2017. Published by Elsevier B.V.

  9. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz; Hassager, Ole

    2005-01-01

    The startup and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 kg/mole (PS52K) and 103 kg/mole (PS103K), and for three bidisperse polystyrene melts. The bidisperse melts consist of PS103K or PS52K and a monodisperse...... (closed loop proportional regulator) using the laser in such a way that the stretch rate at the neck is kept constant. The rheometer has been described in more detail in (A. Bach, H.K. Rasmussen and O. Hassager, Journal of Rheology, 47 (2003) 429). PS390K show a decrease in the steady viscosity as a power......-law function of the elongational rate (A. Bach, K. Almdal, H.K. Rasmussen and O. Hassager, Macromolecules 36 (2003) 5174). PS52K and PS103K show that the steady viscosity has a maximum that is respectively 100% and 50% above 3 times the zero-shear-rate viscosity. The bidisperse melts show a significant...

  10. Enhanced performance of microfluidic soft pressure sensors with embedded solid microspheres

    Science.gov (United States)

    Shin, Hee-Sup; Ryu, Jaiyoung; Majidi, Carmel; Park, Yong-Lae

    2016-02-01

    The cross-sectional geometry of an embedded microchannel influences the electromechanical response of a soft microfluidic sensor to applied surface pressure. When a pressure is exerted on the surface of the sensor deforming the soft structure, the cross-sectional area of the embedded channel filled with a conductive fluid decreases, increasing the channel’s electrical resistance. This electromechanical coupling can be tuned by adding solid microspheres into the channel. In order to determine the influence of microspheres, we use both analytic and computational methods to predict the pressure responses of soft microfluidic sensors with two different channel cross-sections: a square and an equilateral triangular. The analytical models were derived from contact mechanics in which microspheres were regarded as spherical indenters, and finite element analysis (FEA) was used for simulation. For experimental validation, sensor samples with the two different channel cross-sections were prepared and tested. For comparison, the sensor samples were tested both with and without microspheres. All three results from the analytical models, the FEA simulations, and the experiments showed reasonable agreement confirming that the multi-material soft structure significantly improved its pressure response in terms of both linearity and sensitivity. The embedded solid particles enhanced the performance of soft sensors while maintaining their flexible and stretchable mechanical characteristic. We also provide analytical and experimental analyses of hysteresis of microfluidic soft sensors considering a resistive force to the shape recovery of the polymer structure by the embedded viscous fluid.

  11. Synthesis of polycaprolactone/nano hydroxyapatite microspheres; Sintese de microesferas de policaprolactona/nanohidroxiapatita

    Energy Technology Data Exchange (ETDEWEB)

    Sampaio, Greyce Y.H.; Souza, Mairly K. da S.; Melo, Rafaela Q. da C.; Carrodeguas, Raul G.; Fook, Marcus V.L., E-mail: greycesampaio@gmail.com [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil)

    2015-07-01

    Polycaprolactone(PCL)/nano hydroxyapatite(nHA) microspheres are advantageous material for manufacturing tridimensional scaffolds and formulating drug delivery systems for bone regeneration. The work was aimed to study the effect of processing variables on the properties of PCL/nHA microspheres. nHA was produced by precipitation method and was obtained calcium deficient nanoparticles consisted of nanorods (∼47 nm x ∼8 nm), according to the results of XRD, FTIR and TEM. PCL/nHA microspheres was produced by solid-in-oil-in-water emulsion solvent evaporation method. The variables studied were concentration of PCL (5,7.5 and 10 % w/v), nHA addition (17, 23 and 28.5% m/m) and surface treatment of nHA with stearic acid (AE). PCL/nHA microspheres were characterized by XRD, FTIR, SEM and TGA. The best result was obtained with a PCL concentration of 10% (w/v) and 23 % (m/m) of modified nHA. Solid PCL/nHA particles ranging 30-70 μm and containing 14 % of nHA dispersed in the polymer matrix were obtained, with agglomerates of nHA raging 5 -15 μm. These results suggest the promising use of this material in bone regeneration devices. (author)

  12. Phase transformation, morphology evolution and luminescence property variation in Y2O3: Eu hollow microspheres

    International Nuclear Information System (INIS)

    Wang, Qin; Guo, Jing; Jia, Wenjing; Liu, Baocang; Zhang, Jun

    2012-01-01

    Highlights: ► We report a general and facile method for the synthesis of Y 2 O 3 : Eu hollow microspheres. ► This method may be of great significance in the synthesis of many other hollow spherical materials. ► Phase, morphology and luminescence property were found to be strongly dependent on temperature and pH. ► The evolution process under various temperatures and pH values were discussed. ► The sample shows a strong red emission under short UV irradiation, and the lifetime is determined to be 7.0 ms. - Abstract: Y 2 O 3 : Eu hollow microspheres with average size of 500–600 nm have been successfully synthesized via a solvothermal method in the presence of sodium citrate as surfactant followed by a subsequent heat treatment process. High polymer F127(EO 106 PO 70 EO 106 ) served as a soft template in the formation of as prepared hollow microspheres. It is found that the pH values and the reaction temperature are two crucial factors in determining the phase, morphology and luminescence properties of the Y 2 O 3 : Eu hollow microspheres. Morphology evolution can be achieved by changing the pH and the reaction temperature. The properties of the Eu 3+ -doped Y 2 O 3 : Eu nanocrystals were characterized by XRD, FE-SEM, HR-TEM and UV–vis spectroscopy.

  13. Extraction and encapsulation of prodigiosin in chitosan microspheres for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Dozie-Nwachukwu, S.O. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), P.M.B 186, Garki, Abuja, Federal Capital Territory (Nigeria); Danyuo, Y. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Department of Materials Science and Engineering, Kwara State University, Malete (Nigeria); Obayemi, J.D. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Odusanya, O.S. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), P.M.B 186, Garki, Abuja, Federal Capital Territory (Nigeria); Malatesta, K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Soboyejo, W.O., E-mail: soboyejo@princeton.edu [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Princeton Institute of Science and Technology of Materials (PRISM), Bowen Hall, 70 Prospect Street, Princeton, NJ 08544 (United States)

    2017-02-01

    The encapsulation of drugs in polymeric materials has brought opportunities to the targeted delivery of chemotherapeutic agents. These polymeric delivery systems are capable of maximizing the therapeutic activity, as well as reducing the side effects of anti-cancer agents. Prodigiosin, a secondary metabolite extracted from the bacteria, Serratia marcescens, exhibits anti-cancer properties. Prodigiosin-loaded chitosan microspheres were prepared via water-in-oil (w/o) emulsion technique, using glutaraldehyde as a cross-linker. The morphologies of the microspheres were studied using scanning electron microscopy. The average sizes of the microspheres were between 40 μm and 60 μm, while the percentage yields ranged from 42 ± 2% to 55.5 ± 3%. The resulting encapsulation efficiencies were between 66.7 ± 3% and 90 ± 4%. The in-vitro drug release from the microspheres was characterized by zeroth order, first order and Higuchi and Korsmeyer-Peppas models. - Highlights: • Prodigiosin of ~ 92.8% purity was extracted from locally isolated Serratia marcescens. • This approach reduces the cost and ensure availability of drugs for cancer treatment. • High encapsulation efficiency which increased with increasing drug:polymer ratio • The percentage yield was generally poor due to the recovery process. • Prodigiosin greatly reduced the viability of the breast cancer cell line (MDA-MB-231).

  14. Binary breath figures for straightforward and controllable self-assembly of microspherical caps.

    Science.gov (United States)

    Gong, Jianliang; Xu, Bingang; Tao, Xiaoming; Li, Lei

    2016-05-11

    The intense interest surrounding asymmetrical microparticles originates from their unique anisotropic properties and promising applications. In this work, direct self-assembly of polymeric microspherical caps without the assistance of any additives has been achieved by using low-surface-tension methanol (MeOH) and high-surface-tension water as binary breath figures (BFs). With the evaporation of polystyrene (PS) solution containing low-boiling-point solvent in the binary vapors, the formed MeOH BFs could quickly diffuse into solution, while water BFs tended to remain at the solution surface. This led to the formation of a gradient nonsolvent layer at the vapor/solution interface, which induced the formation of nuclei and guided further asymmetrical growth of polymer particles. After the spontaneous removal of MeOH, water and residual solvent by evaporation, polymeric microspherical caps were left on the substrate. Through controlling the proportion of water introduced by adjusting the ratios of MeOH and water, polymeric microspherical caps with a range of controllable shapes (divided at different positions of a sphere) were successfully obtained. The formation mechanism was explained based on the difference of vapor pressure, surface tension and miscibility between the employed solvents and nonsolvents. A solvent possessing a high vapor pressure, low surface tension and good miscibility with MeOH contributed to the formation of microspherical caps. This flexible, green and straightforward technique is a nondestructive strategy, and avoids complicated work on design, preparation and removal of hard templates and additives.

  15. Enhanced in vitro dissolution of Iloperidone using Caesalpinia Pulcherrima mucoadhesive microspheres

    Directory of Open Access Journals (Sweden)

    Pradum Pundlikrao Ige

    2015-03-01

    Full Text Available The aim of the present investigation was to improve the solubility and dissolution rate of Iloperidone. Microspheres containing Iloperidone were prepared by spray drying using mucilage extracted from seeds of Caesalpinia pulcherrima. The novelty of this work is that, the extraction of mucilage and its usage for preparation of drug loaded microspheres. The prepared microspheres were characterized by SEM, DSC, XRPD, FTIR, 1H-NMR, particle size, drug content, entrapment efficiency, in vitro dissolution and ex vivo mucoadhesion. Based on particle size, drug content, ex vivo mucoadhesive strength and in vitro drug release, the best formulation was optimized. Percent entrapment efficiency and mean particle size for optimized formulation was found to be 73.49 and 3.27 ± 1.23 μm, respectively. More precisely, mucilage of C. pulcherrima could be significant carrier of (drug and polymer ratio 1:5 microspheres for the development of oral drug delivery.

  16. Extraction and encapsulation of prodigiosin in chitosan microspheres for targeted drug delivery

    International Nuclear Information System (INIS)

    Dozie-Nwachukwu, S.O.; Danyuo, Y.; Obayemi, J.D.; Odusanya, O.S.; Malatesta, K.; Soboyejo, W.O.

    2017-01-01

    The encapsulation of drugs in polymeric materials has brought opportunities to the targeted delivery of chemotherapeutic agents. These polymeric delivery systems are capable of maximizing the therapeutic activity, as well as reducing the side effects of anti-cancer agents. Prodigiosin, a secondary metabolite extracted from the bacteria, Serratia marcescens, exhibits anti-cancer properties. Prodigiosin-loaded chitosan microspheres were prepared via water-in-oil (w/o) emulsion technique, using glutaraldehyde as a cross-linker. The morphologies of the microspheres were studied using scanning electron microscopy. The average sizes of the microspheres were between 40 μm and 60 μm, while the percentage yields ranged from 42 ± 2% to 55.5 ± 3%. The resulting encapsulation efficiencies were between 66.7 ± 3% and 90 ± 4%. The in-vitro drug release from the microspheres was characterized by zeroth order, first order and Higuchi and Korsmeyer-Peppas models. - Highlights: • Prodigiosin of ~ 92.8% purity was extracted from locally isolated Serratia marcescens. • This approach reduces the cost and ensure availability of drugs for cancer treatment. • High encapsulation efficiency which increased with increasing drug:polymer ratio • The percentage yield was generally poor due to the recovery process. • Prodigiosin greatly reduced the viability of the breast cancer cell line (MDA-MB-231).

  17. Preparation of size-tunable, highly monodisperse PVP-protected Pt-nanoparticles by seed-mediated growth

    International Nuclear Information System (INIS)

    Koebel, Matthias M.; Jones, Louis C.; Somorjai, Gabor A.

    2008-01-01

    We demonstrate a preparative method which produces highly monodisperse Pt-nanoparticles of tunable size without the external addition of seed particles. Hexachloroplatinic acid is dosed slowly to an ethylene glycol solution at 120 o C and reduced in the presence of a stabilizing polymer poly-N-vinylpyrrolidone (PVP). Slow addition of the Pt-salt will first lead to the formation of nuclei (seeds) which then grow further to produce larger particles of any desired size between 3 and 8 nm. The amount of added hexachloroplatinic acid precursor controls the size of the final nanoparticle product. TEM was used to determine size and morphology and to confirm the crystalline nature of the nanoparticles. Good reproducibility of the technique was demonstrated. Above 7 nm, the particle shape and morphology changes suddenly indicating a change in the deposition selectivity of the Pt-precursor from (100) towards (111) crystal faces and breaking up of larger particles into smaller entities.

  18. Preparation and magnetic properties of magnetic photonic crystal by using monodisperse polystyrene covered Fe3O4 nanoparticles onto glass substrate

    Science.gov (United States)

    Azizi, Zahra Sadat; Tehranchi, Mohammad Mehdi; Vakili, Seyed Hamed; Pourmahdian, Saeed

    2018-05-01

    Engineering approach towards combined photonic band gap properties and magnetic/polymer composite particles, attract considerable attention of researchers due to their unique properties. In this research, two different magnetic particles were prepared by nearly monodisperse polystyrene spheres as bead with two concentrations of Fe3O4 nanoparticles to prepare magnetic photonic crystals (MPCs). The crystal surfaces and particles morphology were investigated employing scanning electron microscopy and transmission electron microscopy. The volume fraction of magnetic material embedded into colloidal spheres and their morphology was found to be a key parameter in the optical and magneto-optical properties of transparent MPC.

  19. Highly reusability surface loaded metal particles magnetic catalyst microspheres (MCM-MPs) for treatment of dye-contaminated water

    International Nuclear Information System (INIS)

    Liu, Ying; Zhang, Kun; Yin, Xiaoshuang; Yang, Wenzhong; Zhu, Hongjun

    2016-01-01

    The metal-deposited magnetic catalyst microspheres (MCM-MPs) were successfully synthesized by one facile, high yield and controllable approach. Here, the bare magnetic microspheres were firstly synthesized according to the solvothermal method. Then silica shell were coated on the surface of the magnetic microspheres via sol–gel method, and subsequently with surface modifying with amino in the purpose to form SiO_2–NH_2 shell. Thus, metal particles were easily adsorbed into the SiO_2–NH_2 shell and in-situ reduced by NaBH_4 solution. All the obtained products (MCM-Cu, MCM-Ag, MCM-Pd) which were monodisperse and constitutionally stable were exhibited high magnetization and excellent catalytic activity towards dyes solution reduction. The catalytic rate ratio of MCM-Pd: MCM-Cu: MCM-Ag could be 10:3:1. Besides, some special coordination compound Cu_2(OH)_3Br had been generated in the in-situ reduced process of MCM-Cu, which produced superior cyclical stability (>20 times) than that of MCM-Ag and MCM-Pd. In all, those highly reusability and great catalytic efficiency of MCM-MPs show promising and great potential for treatment of dye-contaminated water. - Graphical abstract: Surface loaded metal particles magnetic catalyst microspheres MCM-MPs for rapid decolorizing dye-contaminated water: Synthesis, characterization and possible mechanisms. - Highlights: • A simple and high yield synthetic method for fabricate multi MCM-MPs is proposed with adequately optimize. • The highest reusability of MCM-Cu is attribute to the coordination compounds Cu_2(OH)_3Br. • MCM-MPs show excellent catalytic properties under different situations for various dyes • The catalytic mechanism of MCM-MPs is presented.

  20. Highly reusability surface loaded metal particles magnetic catalyst microspheres (MCM-MPs) for treatment of dye-contaminated water

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying; Zhang, Kun, E-mail: kun4219@njtech.edu.cn; Yin, Xiaoshuang; Yang, Wenzhong; Zhu, Hongjun

    2016-04-01

    The metal-deposited magnetic catalyst microspheres (MCM-MPs) were successfully synthesized by one facile, high yield and controllable approach. Here, the bare magnetic microspheres were firstly synthesized according to the solvothermal method. Then silica shell were coated on the surface of the magnetic microspheres via sol–gel method, and subsequently with surface modifying with amino in the purpose to form SiO{sub 2}–NH{sub 2} shell. Thus, metal particles were easily adsorbed into the SiO{sub 2}–NH{sub 2} shell and in-situ reduced by NaBH{sub 4} solution. All the obtained products (MCM-Cu, MCM-Ag, MCM-Pd) which were monodisperse and constitutionally stable were exhibited high magnetization and excellent catalytic activity towards dyes solution reduction. The catalytic rate ratio of MCM-Pd: MCM-Cu: MCM-Ag could be 10:3:1. Besides, some special coordination compound Cu{sub 2}(OH){sub 3}Br had been generated in the in-situ reduced process of MCM-Cu, which produced superior cyclical stability (>20 times) than that of MCM-Ag and MCM-Pd. In all, those highly reusability and great catalytic efficiency of MCM-MPs show promising and great potential for treatment of dye-contaminated water. - Graphical abstract: Surface loaded metal particles magnetic catalyst microspheres MCM-MPs for rapid decolorizing dye-contaminated water: Synthesis, characterization and possible mechanisms. - Highlights: • A simple and high yield synthetic method for fabricate multi MCM-MPs is proposed with adequately optimize. • The highest reusability of MCM-Cu is attribute to the coordination compounds Cu{sub 2}(OH){sub 3}Br. • MCM-MPs show excellent catalytic properties under different situations for various dyes • The catalytic mechanism of MCM-MPs is presented.

  1. Controlled-release and preserved bioactivity of proteins from (self-assembled core-shell double-walled microspheres

    Directory of Open Access Journals (Sweden)

    Yuan W

    2012-01-01

    Full Text Available Weien Yuan1,2, Zhenguo Liu11Department of Neurology, Xinhua Hospital, affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 2School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: In order to address preserved protein bioactivities and protein sustained-release problems, a method for preparing double-walled microspheres with a core (protein-loaded nanoparticles with a polymer-suspended granule system-formed core and a second shell (a polymer-formed shell for controlled drug release and preserved protein bioactivities has been developed using (solid-in-oil phase-in-hydrophilic oil-in-water (S/O/Oh/W phases. The method, based on our previous microsphere preparation method (solid-in-oil phase-in-hydrophilic oil-in-water (S/O/Oh/W, employs different concentric poly(D,L-lactide-co-glycolide, poly(D,L-lactide, and protein-loaded nanoparticles to produce a suspended liquid which then self-assembles to form shell-core microspheres in the hydrophilic oil phase, which are then solidified in the water phase. Variations in the preparation parameters allowed complete encapsulation by the shell phase, including the efficient formation of a poly(D,L-lactide shell encapsulating a protein-loaded nanoparticle-based poly(D,L-lactide-co-glycolide core. This method produces core-shell double-walled microspheres that show controlled protein release and preserved protein bioactivities for 60 days. Based upon these results, we concluded that the core-shell double-walled microspheres might be applied for tissue engineering and therapy for chronic diseases, etc.Keywords: protein delivery, protein stability, core-shell microspheres, dextran nanoparticles

  2. Fabrication of flower-like tin/carbon composite microspheres as long-lasting anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tae-Woo [Department of Chemical Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Lim, Hyung-Seok [Department of WCU Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Park, Seong-Jin [Department of Chemical Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Sun, Yang-Kook [Department of WCU Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Suh, Kyung-Do, E-mail: kdsuh@hanyang.ac.kr [Department of Chemical Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2017-01-01

    In this work, we report the fabrication of the flower-like tin/carbon (Sn/C) composite microspheres using sulfonated semi-interpenetrating polystyrene (SPS) microspheres as a carbon precursor. The sulfonation degree of SPS has great effects on the resulting particle size, morphology, amount of introduced Sn, and the carbonization yield of the microspheres after heat treatment. The obtained Sn/C composite microspheres were characterized by scanning electron microscopy (SEM), focused-ion beam SEM, and X-ray diffraction. The flower-like Sn/C composite electrodes exhibited higher charge-discharge capacities than those of graphite as an anode material for a lithium ion battery. In addition, they show a long lasting cyclability, even through 400 cycles. - Highlights: • Tin nanocrystals are introduced in flower-like carbon spheres with many ripples. • Long lasting cyclability is exhibited at 1 C rate up to 400 cycles. • Tin content of composite spheres depends on chemical treatment of polymer microspheres.

  3. Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process.

    Science.gov (United States)

    Mingfei, Xing; Yaping, Wang; Jun, Li; Hua, Xu

    2016-03-15

    In this study, a novel process for detoxification and reutilization of waste cathode ray tube (CRT) funnel glass was developed by carbon thermal reduction enhanced acid leaching process. The key to this process is removal of lead from the CRT funnel glass and synchronous preparation of glass microspheres. Carbon powder was used as an isolation agent and a reducing agent. Under the isolation of the carbon powder, the funnel glass powder was sintered into glass microspheres. In thermal reduction, PbO in the funnel glass was first reduced to elemental Pb by carbon monoxide and then located on the surface of glass microspheres which can be removed easily by acid leaching. Experimental results showed that temperature, carbon adding amount and holding time were the major parameters that controlled lead removal rate. The maximum lead removal rate was 94.80% and glass microspheres that measured 0.73-14.74μm were obtained successfully by setting the temperature, carbon adding amount and holding time at 1200°C, 10% and 30min, respectively. The prepared glass microspheres may be used as fillers in polymer materials and abrasive materials, among others. Accordingly, this study proposed a practical and economical process for detoxification and recycling of waste lead-containing glass. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Preparation of a reproducible long-acting formulation of risperidone-loaded PLGA microspheres using microfluidic method.

    Science.gov (United States)

    Jafarifar, Elham; Hajialyani, Marziyeh; Akbari, Mona; Rahimi, Masoud; Shokoohinia, Yalda; Fattahi, Ali

    2017-09-01

    The aim of the present study is to prepare risperidone-loaded poly lactic-co-glycolic acid (PLGA) microspheres within microfluidic system and to achieve a formulation with uniform size and monotonic and reproducible release profile. In comparison to batch method, T-junction and serpentine chips were utilized and optimizing study was carried out at different processing parameters (e.g. PLGA and surfactant concentration and flow rates ratio of outer to inner phase). The computational fluid dynamic (CFD) modeling was performed, and loading and release study were carried out. CFD simulation indicates that increasing the flow rate of aqueous phase cause to decrease the droplet size, while the change in size of microspheres did not follow a specific pattern in the experimental results. The most uniform microspheres and narrowest standard deviation (66.79 μm ± 3.32) were achieved using T-junction chip, 1% polyvinylalcohol, 1% PLGA and flow rates ratio of 20. The microfluidic-assisted microspheres were more uniform with narrower size distribution. The release of risperidone from microspheres produced by the microfluidic method was more reproducible and closer to zero-order kinetic model. The release profile of formulation with 2:1 drug-to-polymer ratio was the most favorable release, in which 41.85% release could be achieved during 24 days.

  5. Fabrication of Phase-Change Polymer Colloidal Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Tianyi Zhao

    2014-01-01

    Full Text Available This paper presents the preparation of phase-change polymer colloidal photonic crystals (PCs by assembling hollow latex spheres encapsulated with dodecanol for the first time. The monodispersed hollow latex spheres were obtained by phase reversion of monodispersed core-shell latex spheres in the n-hexane, which dissolves the PS core and retains the PMMA/PAA shell. The as-prepared phase-change colloidal PCs show stable phase-change behavior. This fabrication of phase-change colloidal PCs would be significant for PC’s applications in functional coatings and various optic devices.

  6. PLGA/alginate composite microspheres for hydrophilic protein delivery

    International Nuclear Information System (INIS)

    Zhai, Peng; Chen, X.B.; Schreyer, David J.

    2015-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility

  7. PLGA/alginate composite microspheres for hydrophilic protein delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Peng [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Chen, X.B. [Department of Mechanical Engineering, University of Saskatchewan, S7N5A9 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Schreyer, David J., E-mail: david.schreyer@usask.ca [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada)

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility.

  8. Laser ablation synthesis of monodispersed magnetic alloy nanoparticles

    International Nuclear Information System (INIS)

    Seto, Takafumi; Koga, Kenji; Akinaga, Hiroyuki; Takano, Fumiyoshi; Orii, Takaaki; Hirasawa, Makoto

    2006-01-01

    Monodispersed CoPt alloy nanoparticles were synthesized by a pulsed laser ablation (PLA) technique coupled with a low-pressure operating differential mobility analyzer (LP-DMA). The CoPt alloy nanoparticles were generated by laser ablating a solid Co-Pt target. In CoPt alloy nanoparticles synthesized from a target with a Co composition of 75 at%, the nanoparticle surfaces were covered by an oxide layer and exhibited a core-shell structure. In contrast, no shell was observed in particles generated from a target with a Co:Pt ratio of 50:50 at%. According to an EDX analysis, the compositions of the individual nanoparticles were almost the same as that of the target material. Finally, the magnetic hysteresis loops of the CoPt alloy nanoparticles exhibited ferromagnetism

  9. Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method

    International Nuclear Information System (INIS)

    Shao-Peng, Zhu; Shao-Chun, Tang; Xiang-Kang, Meng

    2009-01-01

    Silver nanoparticles with an average size of about 20 nm are synthesized in a colloidal solution with the aid of microwave irradiation. Neither additional reductant nor stabilizer is required in this microwave-assisted method. The color of the colloidal solution is found to be dark green, different from the characteristic yellow of silver colloidal solutions. The silver nanoparticles in the colloidal solution have a narrow size distribution and large yield quantity. UV-visible absorption spectroscopy analysis reveals that the as-synthesized monodisperse silver nanoparticles have exceptional optical properties. Raman spectroscopy measurements demonstrate that these silver nanoparticles exhibit a notable surface-enhanced Raman scattering ability. (cross-disciplinary physics and related areas of science and technology)

  10. Laser ablation synthesis of monodispersed magnetic alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Takafumi, E-mail: t.seto@aist.go.jp; Koga, Kenji; Akinaga, Hiroyuki; Takano, Fumiyoshi; Orii, Takaaki; Hirasawa, Makoto [National Institute of Advanced Industrial Science and Technology (AIST), Research Consortium for Synthetic Nano-Function Materials Project (SYNAF) (Japan)

    2006-08-15

    Monodispersed CoPt alloy nanoparticles were synthesized by a pulsed laser ablation (PLA) technique coupled with a low-pressure operating differential mobility analyzer (LP-DMA). The CoPt alloy nanoparticles were generated by laser ablating a solid Co-Pt target. In CoPt alloy nanoparticles synthesized from a target with a Co composition of 75 at%, the nanoparticle surfaces were covered by an oxide layer and exhibited a core-shell structure. In contrast, no shell was observed in particles generated from a target with a Co:Pt ratio of 50:50 at%. According to an EDX analysis, the compositions of the individual nanoparticles were almost the same as that of the target material. Finally, the magnetic hysteresis loops of the CoPt alloy nanoparticles exhibited ferromagnetism.

  11. Monodisperse Magneto-Fluorescent Bifunctional Nanoprobes for Bioapplications

    Science.gov (United States)

    Zhang, Hongwang; Huang, Heng; Pralle, Arnd; Zeng, Hao

    2013-03-01

    We present the work on the synthesis of dye-doped monodisperse Fe/SiO2 core/shell nanoparticles as bifunctional probes for bioapplications. Magnetic nanoparticles (NP) have been widely studied as nano-probes for bio-imaging, sensing as well as for cancer therapy. Among all the NPs, Fe NPs have been the focus because they have very high magnetization. However, Fe NPs are usually not stable in ambient due to the fast surface oxidation of the NPs. On the other hand, dye molecules have long been used as probes for bio-imaging. But they are sensitive to environmental conditions. It requires passivation for both so that they can be stable for applications. In this work, monodisperse Fe NPs with sizes ranging from 13-20 nm have been synthesized through the chemical thermal-decomposition in a solution. Silica shells were then coated on the Fe NPs by a two-phase oil-in-water method. Dye molecules were first bonded to a silica precursor and then encapsulated into the silica shell during the coating process. The silica shells protect both the Fe NPs and dye molecules, which makes them as robust probes. The dye doped Fe/SiO2 core/shell NPs remain both highly magnetic and highly fluorescent. The stable dye doped Fe/SiO2NPs have been used as a dual functional probe for both magnetic heating and local nanoscale temperature sending, and their performance will be reported. Research supported by NSF DMR 0547036, DMR1104994.

  12. Interaction of polymer with discotic clay particles

    International Nuclear Information System (INIS)

    Auvray, L.; Lal, J.

    1999-01-01

    Normally synthetic well defined monodisperse discotic laponite clays are known to form a gel phase at mass concentrations as low as a few percent in distilled water. Hydrosoluble polymer polyethylene oxide was added to this intriguing clay system, it was observed that it either prevents gelation or slows it down extremely depending on the polymer weight, concentration or the laponite concentration. Small Angle Neutron scattering (SANS) was used to study these systems because only by isotopic labeling can the structure of the adsorbed polymer layers be determined. The contrast variation technique is specifically used to determine separately the different partial structure factors of the clay and polymer. In this way the signal of the adsorbed chains is separated from the signal of the free chains in the dilute regime. Attempts have also been made to characterize the structure in the concentrated regime of laponite with polymer

  13. DEGRADATION AND INTRAHEPATIC COMPATIBILITY OF ALBUMIN-HEPARIN CONJUGATE MICROSPHERES

    NARCIS (Netherlands)

    CREMERS, HFM; WOLF, RFE; BLAAUW, EH; SCHAKENRAAD, JM; LAM, KH; NIEUWENHUIS, P; VERRIJK, R; KWON, G; BAE, YH; KIM, SW; FEIJEN, J

    The in vitro degradation properties of glutaraldehyde cross-linked albumin and albumin-heparin conjugate microspheres (AMS and AHCMS respectively) were evaluated using light microscopy, turbidity measurements and heparin release determinations, showing that the microspheres are degraded by

  14. Novel local drug delivery system using thermoreversible gel in combination with polymeric microspheres or liposomes.

    Science.gov (United States)

    Arai, Takao; Benny, Ofra; Joki, Tatsuhiro; Menon, Lata G; Machluf, Marcelle; Abe, Toshiaki; Carroll, Rona S; Black, Peter M

    2010-04-01

    The purpose of our study was to evaluate the application of thermoreversible gelation polymer (TGP) as a local drug delivery system for malignant glioma. Polymeric microspheres or liposomes loaded with doxorubicin (sphere-dox or lipo-dox) were combined with TGP to provide continuous drug delivery of doxorubicin (dox) for kinetic release studies and cell viability assays on glioma cell lines in vitro. For in vivo studies, TGP loaded with dox alone (TGP-dox) was combined with sphere-dox or lipo-dox. Their antitumor effects on subcutaneous human glioma xenografts were evaluated in nude mice. In vitro, TGP combined with sphere-dox or lipo-dox released dox for up to 30 days. In vivo, TGP-dox combined with sphere-dox or lipo-dox inhibited subcutaneous glioma tumor growth until day 32 and day 38, respectively. TGP in combination with microspheres or liposomes successfully prolonged the release of dox and its antitumor effects.

  15. Biocompatibility of Polyhydroxybutyrate Microspheres: in vitro and in vivo Evaluation

    OpenAIRE

    Shishatskaya, Ekaterina I.; Voinova, Olga N.; Goreva, Anastasya V.; Mogilnaya, Olga A.; Volova, Tatiana G.

    2008-01-01

    Microspheres have been prepared from the resorbable linear polyester of β-hydroxybutyric acid (polyhydroxybutyrate, PHB) by the solvent evaporation technique and investigated in vitro and in vivo. Biocompatibility of the microspheres has been proved in tests in the culture of mouse fibroblast cell line NIH 3Т3 and in experiments on intramuscular implantation of the microspheres to Wistar rats for 3 months. Tissue response to the implantation of polymeric microspheres has been found to consist...

  16. Inhibition by local bupivacaine-releasing microspheres of acute postoperative pain from hairy skin incision.

    Science.gov (United States)

    Ohri, Rachit; Wang, Jeffrey Chi-Fei; Blaskovich, Phillip D; Pham, Lan N; Costa, Daniel S; Nichols, Gary A; Hildebrand, William P; Scarborough, Nelson L; Herman, Clifford J; Strichartz, Gary R

    2013-09-01

    Acute postoperative pain causes physiological deficits and slows recovery. Reduction of such pain by local anesthetics that are delivered for several days postoperatively is a desirable clinical objective, which is approached by a new formulation and applied in animal studies reported here. We subcutaneously injected a new formulation of poly-lactic-co-glycolic acid polymer microspheres, which provides steady drug release for 96+ hours into rats at the dorsal region 2 hours before surgery. A single 1.2-cm-long skin incision was followed by blunt dissection of skin away from the underlying fascia, and closed by 2 sutures, followed by 14 days of testing. Microspheres containing 5, 10, 20, and 40 mg bupivacaine were injected locally 2 hours before surgery; bupivacaine-free microspheres were the vehicle control, and bupivacaine HCl solution (0.5%), the positive control. Mechanical sensitivity was determined by the frequency of local muscle contractions to repeated pokes with nylon monofilaments (von Frey hairs) exerting 4 and 15 g forces, testing, respectively, allodynia and hyperalgesia, and by pinprick. Injection of bupivacaine microspheres (40 mg drug) into intact skin reduced responses to 15 g von Frey hairs for 6 hours and to pinprick for 36 hours. Respective reductions from bupivacaine HCl lasted for 3 and 2 hours. Skin incision and dissection alone caused mechanical allodynia and hyperalgesia for 14 days. Microspheres containing 20 or 40 mg bupivacaine suppressed postoperative hypersensitivity for up to 3 days, reduced integrated allodynia (area under curve of response versus time) over postoperative days 1 to 5 by 51% ± 20% (mean ± SE) and 78% ± 12%, and reduced integrated hyperalgesia by 55% ± 13% and 64% ± 11%, for the respective doses. Five and ten milligrams bupivacaine in microspheres and the 0.5% bupivacaine solution were ineffective in reducing postoperative hypersensitivity, as were 40 mg bupivacaine microspheres injected contralateral to the

  17. PCL-PDMS-PCL copolymer-based microspheres mediate cardiovascular differentiation from embryonic stem cells

    Science.gov (United States)

    Song, Liqing

    Poly-epsilon-caprolactone (PCL) based copolymers have received much attention as drug or growth factor delivery carriers and tissue engineering scaffolds due to their biocompatibility, biodegradability, and tunable biophysical properties. Copolymers of PCL and polydimethylsiloxane (PDMS) also have shape memory behaviors and can be made into thermoresponsive shape memory polymers for various biomedical applications such as smart sutures and vascular stents. However, the influence of biophysical properties of PCL-PDMS-PCL copolymers on stem cell lineage commitment is not well understood. In this study, PDMS was used as soft segments of varying length to tailor the biophysical properties of PCL-based co-polymers. While low elastic modulus (affected cardiovascular differentiation of embryonic stem cells, the range of 60-100 MPa PCL-PDMS-PCL showed little influence on the differentiation. Then different size (30-140 mum) of microspheres were fabricated from PCL-PDMS-PCL copolymers and incorporated within embryoid bodies (EBs). Mesoderm differentiation was induced using bone morphogenetic protein (BMP)-4 for cardiovascular differentiation. Differential expressions of mesoderm progenitor marker KDR and vascular markers CD31 and VE-cadherin were observed for the cells differentiated from EBs incorporated with microspheres of different size, while little difference was observed for cardiac marker alpha-actinin expression. Small size of microspheres (30 mum) resulted in higher expression of KDR while medium size of microspheres (94 mum) resulted in higher CD31 and VE-cadherin expression. This study indicated that the biophysical properties of PCL-based copolymers impacted stem cell lineage commitment, which should be considered for drug delivery and tissue engineering applications.

  18. Template synthesis of highly crystalline and monodisperse iron oxide pigments of nanosize

    International Nuclear Information System (INIS)

    Sreeram, Kalarical Janardhanan; Indumathy, Ramasamy; Rajaram, Ananthanarayanan; Nair, Balachandran Unni; Ramasami, Thirumalachari

    2006-01-01

    Synthesis of highly crystalline and monodisperse iron oxide nanoparticles is reported. The separation of Fe centers through site-specific binding to a polysaccharide-alginate matrix enables the generation of particles with a monodisperse or narrow size distribution character, resulting in transparent pigments. Site-specific interactions coupled with gel like character of alginate is proposed as the mechanism behind generation of lower particle sizes. Alginate-Fe complexes developed were subjected to heat treatment to provide for crystalline character and development of hematite (α-Fe 2 O 3 ). Conditions most ideal for achieving monodispersity and lower sizes have been optimized and confirmed through microscopic and photon correlation spectroscopic measurements

  19. Preparation and Characterization of Sugar Cane Wax Microspheres ...

    African Journals Online (AJOL)

    ... and characterize indomethacin (IM) microspheres prepared with sugar cane wax microsperes. Methods: Microspheres were prepared by melt-emulsified dispersion and cooling-induced solidification method. The microspheres were characterized by scanning electron microscopy (SEM) and differntial scanning calorimetry ...

  20. Flexible Microsphere-Embedded Film for Microsphere-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Xing, Cheng; Yan, Yinzhou; Feng, Chao; Xu, Jiayu; Dong, Peng; Guan, Wei; Zeng, Yong; Zhao, Yan; Jiang, Yijian

    2017-09-27

    Dielectric microspheres with extraordinary microscale optical properties, such as photonic nanojets, optical whispering-gallery modes (WGMs), and directional antennas, have drawn interest in many research fields. Microsphere-enhanced Raman spectroscopy (MERS) is an alternative approach for enhanced Raman detection by dielectric microstructures. Unfortunately, fabrication of microsphere monolayer arrays is the major challenge of MERS for practical applications on various specimen surfaces. Here we report a microsphere-embedded film (MF) by immersing a highly refractive microsphere monolayer array in the poly(dimethylsiloxane) (PDMS) film as a flexible MERS sensing platform for one- to three-dimensional (1D to 3D) specimen surfaces. The directional antennas and wave-guided whispering-gallery modes (WG-WGMs) contribute to the majority of Raman enhancement by the MFs. Moreover, the MF can be coupled with surface-enhanced Raman spectroscopy (SERS) to provide an extra >10-fold enhancement. The limit of detection is therefore improved for sensing of crystal violet (CV) and Sudan I molecules in aqueous solutions at concentrations down to 10 -7 M. A hybrid dual-layer microsphere enhancer, constructed by depositing a MF onto a microsphere monolayer array, is also demonstrated, wherein the WG-WGMs become dominant and boost the enhancement ratio >50-fold. The present work opens up new opportunities for design of cost-effective and flexible MERS sensing platforms as individual or associated techniques toward practical applications in ultrasensitive Raman detection.

  1. Biosensing by WGM Microspherical Resonators

    Directory of Open Access Journals (Sweden)

    Giancarlo C. Righini

    2016-06-01

    Full Text Available Whispering gallery mode (WGM microresonators, thanks to their unique properties, have allowed researchers to achieve important results in both fundamental research and engineering applications. Among the various geometries, microspheres are the simplest 3D WGM resonators; the total optical loss in such resonators can be extremely low, and the resulting extraordinarily high Q values of 108–109 lead to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. They can also be coated in order to better control their properties or to increase their functionality. Their very high sensitivity to changes in the surrounding medium has been exploited for several sensing applications: protein adsorption, trace gas detection, impurity detection in liquids, structural health monitoring of composite materials, detection of electric fields, pressure sensing, and so on. In the present paper, after a general introduction to WGM resonators, attention is focused on spherical microresonators, either in bulk or in bubble format, to their fabrication, characterization and functionalization. The state of the art in the area of biosensing is presented, and the perspectives of further developments are discussed.

  2. Hydrophilic porous magnetic poly(GMA-MBAA-NVP) composite microspheres containing oxirane groups: An efficient carrier for immobilizing penicillin G acylase

    Science.gov (United States)

    Xue, Ping; Su, Weiguang; Gu, Yaohua; Liu, Haifeng; Wang, Julan

    2015-03-01

    Magnetic hydrophilic polymeric microspheres containing oxirane groups were prepared by inverse suspension polymerization of glycidyl methacrylate (GMA), N, N‧-methylene bisacrylamide (MBAA) and N-vinyl pyrrolidone (NVP) in the existence of formamide, which were denoted as magnetic poly(GMA-MBAA-NVP) microspheres. The magnetic poly(GMA-MBAA-NVP) microspheres were characterized by scanning electron microscopy (SEM), FT-IR spectroscopy, X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and so on. The results showed that poly(GMA-MBAA-NVP) microspheres possessed well spherical shape, narrow size distribution, abundant porous structure, reactive oxirane groups and superparamagnetic properties. Formamide used in the present work served as a modifier, a dispersant and a porogen to form final porous polymer microspheres. The penicillin G acylase (PGA) was covalently immobilized onto the magnetic microspheres through the reaction between the amino groups of enzyme and the oxirane groups on the microspheres for producing 6-aminopenicillanic acid (6-APA). The effects of GMA/NVP ratio and crosslink density on the activity of immobilized PGA were investigated. The highest apparent activity, enzyme loading and coupling yield of immobilized PGA were 821 IU/g, 65.3 mg/g and 42.3% respectively when the mass ratio of GMA/NVP was 1:1 and crosslink density was 60%. Compared with the free PGA, immobilized PGA showed a wider range of pH value and reaction temperature. The relative activity and reaction rate of immobilized PGA remained almost constant after 20 recycles. The magnetic poly(GMA-MBAA-NVP) microspheres would be very promising carriers for immobilizing enzymes in industrial application.

  3. Monodispersed Zinc Oxide Nanoparticle-Dye Dyads and Triads

    Energy Technology Data Exchange (ETDEWEB)

    Gladfelter, Wayne L. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry; Blank, David A. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry; Mann, Kent R. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry

    2017-06-22

    events at a fundamental level. This was combined with the synthesis of a broad range of sensitizers that provide systematic variation of the energetics, excited state dynamics, structure and interfacial bonding. The key is that the monodisperse nature and high dispersibility of the ZnO NCs made these experiments reproducible; in essence, the measurements were on discrete molecular species rather than on the complicated mixtures that resulted from the typical fabrication of functional photovoltaic cells. The monodispersed nature of the NCs also allowed the use of quantum confinement to investigate the role of donor/acceptor energetic alignment in chemically identical systems. The results added significantly to our basic understanding of energy and charge transfer events at molecule-semiconductor interfaces and will help the R&D community realize zinc oxide's full potential in solar cell applications.

  4. Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions

    KAUST Repository

    Li, Erqiang; Zhang, Jiaming; Thoroddsen, Sigurdur T

    2013-01-01

    of expensive apparatus and a complex manufacturing procedure. Here, we report the design and fabrication of simple and inexpensive microfluidic devices based on microscope glass slides and pulled glass capillaries, for generating monodisperse multiple emulsions

  5. Application of monodisperse fibers and discs to evaluation of the aerodynamic particle sizer

    International Nuclear Information System (INIS)

    Hoover, M.D.; Lipowicz, P.J.; Hanson, R.W.; Yeh, H.C.; Casalnuovo, S.A.

    1988-01-01

    Monodisperse fibers, μm in width and lengths of 5, 10, 20, and 40 μm, as well as monodisperse discs, 2 4 8, or 12 μm in diameter, were prepared using an integrated circuit microchip fabrication technique. Particles were silicon dioxide with thickness of 1 μm. Examination of the particles using a scanning electron microscope showed that they were uniform in shape, with well-defined edges. The particles were suspended in distilled water and aerosolized with a Lovelace nebullizer. The monodisperse particles were used to evaluate the TSI Aerodynamic Particle Sizer (APS). Carbon fibers that were monodisperse in diameter (count median diameter 3.42 μm, geometric standard deviation 1.06) and polydisperse in length (count median length = 28 μm, geometric standard deviation 2.2) were also used. The APS was found to be insensitive to fiber length and only weakly sensitive to disc diameter. (author)

  6. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1995-04-18

    New, high strength glass microspheres filled with pressurized hydrogen exhibit densities which make them attractive for bulk hydrogen storage and transport. The membrane tensile stress at failure for our engineered glass microspheres is about 150,000 psi, permitting a threefold increase in pressure limit and storage capacity above commercial microspheres, which have been studied a decade ago and have been shown to fail at membrane stresses of 50,000 psi. Our analysis relating glass microspheres for hydrogen transport with infrastructure and economics, indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as pressurized tube transports and liquid hydrogen trailers.

  7. Facile and Scalable Synthesis of Monodispersed Spherical Capsules with a Mesoporous Shell

    KAUST Repository

    Qi, Genggeng

    2010-05-11

    Monodispersed HMSs with tunable particle size and shell thickness were successfully synthesized using relatively concentrated polystyrene latex templates and a silica precursor in a weakly basic ethanol/water mixture. The particle size of the capsules can vary from 100 nm to micrometers. These highly engineered monodispersed capsules synthesized by a facile and scalable process may find applications in drug delivery, catalysis, separationm or as biological and chemical microreactors. © 2010 American Chemical Society.

  8. A microsphere suspension model of metamaterial fluids

    Directory of Open Access Journals (Sweden)

    Qian Duan

    2017-05-01

    Full Text Available Drawing an analogy to the liquid phase of natural materials, we theoretically propose a microsphere suspension model to realize a metamaterial fluid with artificial electromagnetic indexes. By immersing high-ε, micrometer-sized dielectric spheres in a low-ε insulating oil, the structured fluid exhibits liquid-like properties from dispersing phase as well as the isotropic negative electromagnetic parameters caused by Mie resonances from dispersed microspheres. The work presented here will benefit the development of structured fluids toward metamaterials.

  9. Facile Synthesis of Monodisperse Gold Nanocrystals Using Virola oleifera

    Science.gov (United States)

    Milaneze, Bárbara A.; Oliveira, Jairo P.; Augusto, Ingrid; Keijok, Wanderson J.; Côrrea, Andressa S.; Ferreira, Débora M.; Nunes, Otalíbio C.; Gonçalves, Rita de Cássia R.; Kitagawa, Rodrigo R.; Celante, Vinícius G.; da Silva, André Romero; Pereira, Ana Claudia H.; Endringer, Denise C.; Schuenck, Ricardo P.; Guimarães, Marco C. C.

    2016-10-01

    The development of new routes and strategies for nanotechnology applications that only employ green synthesis has inspired investigators to devise natural systems. Among these systems, the synthesis of gold nanoparticles using plant extracts has been actively developed as an alternative, efficient, cost-effective, and environmentally safe method for producing nanoparticles, and this approach is also suitable for large-scale synthesis. This study reports reproducible and completely natural gold nanocrystals that were synthesized using Virola oleifera extract. V. oleifera resin is rich in epicatechin, ferulic acid, gallic acid, and flavonoids (i.e., quercetin and eriodictyol). These gold nanoparticles play three roles. First, these nanoparticles exhibit remarkable stability based on their zeta potential. Second, these nanoparticles are functionalized with flavonoids, and third, an efficient, economical, and environmentally friendly mechanism can be employed to produce green nanoparticles with organic compounds on the surface. Our model is capable of reducing the resin of V. oleifera, which creates stability and opens a new avenue for biological applications. This method does not require painstaking conditions or hazardous agents and is a rapid, efficient, and green approach for the fabrication of monodisperse gold nanoparticles.

  10. Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Michael Edward [Univ. of California, Berkeley, CA (United States)

    2008-09-01

    Model heterogeneous catalysts have been synthesized and studied to better understand how the surface structure of noble metal nanoparticles affects catalytic performance. In this project, monodisperse rhodium and platinum nanoparticles of controlled size and shape have been synthesized by solution phase polyol reduction, stabilized by polyvinylpyrrolidone (PVP). Model catalysts have been developed using these nanoparticles by two methods: synthesis of mesoporous silica (SBA-15) in the presence of nanoparticles (nanoparticle encapsulation, NE) to form a composite of metal nanoparticles supported on SBA-15 and by deposition of the particles onto a silicon wafer using Langmuir-Blodgett (LB) monolayer deposition. The particle shapes were analyzed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM) and the sizes were determined by TEM, X-ray diffraction (XRD), and in the case of NE samples, room temperature H2 and CO adsorption isotherms. Catalytic studies were carried out in homebuilt gas-phase reactors. For the nanoparticles supported on SBA-15, the catalysts are in powder form and were studied using the homebuilt systems as plug-flow reactors. In the case of nanoparticles deposited on silicon wafers, the same systems were operated as batch reactors. This dissertation has focused on the synthesis, characterization, and reaction studies of model noble metal heterogeneous catalysts. Careful control of particle size and shape has been accomplished though solution phase synthesis of Pt and Rh nanoparticles in order to elucidate further structure-reactivity relationships in noble metal catalysis.

  11. Albumin microspheres labeled with Ga-67 by chelation: concise communication

    International Nuclear Information System (INIS)

    Hnatowich, D.J.; Schlegel, P.

    1981-01-01

    Albumin microspheres have been synthesized with EDTA and DTPA chelating groups covalently bound to their surface. The microspheres may be labeled with Ga-67 at high yield (97 +- 2%) by transcomplexation from a 0.1 M Ga-67 acetate solution. With EDTA microspheres the resulting label dissociates only slightly after 24 hr in 50% plasma at 37 0 C, whereas with DTPA microspheres the label shows no detectable dissociation over this period. By contrast, microspheres without chelating groups lose their label virtually completely under these conditions. Following intravenous administration of sized Ga-67 DTPA microspheres in mice, about (84 +- 16)% of the activity localizes in the lungs at 5 min, with (60 +- 7)% remaining after 2 h. Since labeling is by chelation, the microspheres may also be tagged with other metallic radionuclides

  12. Acetylated starch of Ofada rice as a sustained polymer in ...

    African Journals Online (AJOL)

    Objectives: To formulate and evaluate repaglinide microspheres using acetylated starch of the indigenous rice species Oryza glaberrima Steud (Ofada) as polymer. Materials and Methods: Ofada rice starch was acetylated with acetic anhydride in pyridine (DS 2.68) and characterized for morphology (Scanning electron ...

  13. Synthesis of Y2O2S:Eu3+, Mg2+, Ti4+ hollow microspheres via homogeneous precipitation route

    Directory of Open Access Journals (Sweden)

    Peng-Fei Ai, Ying-Liang Liu, Li-Yuan Xiao, Hou-Jin Wang and Jian-Xin Meng

    2010-01-01

    Full Text Available A phosphorescent material in the form of Y2O2S:Eu3+, Mg2+, Ti4+ hollow microspheres was prepared by homogeneous precipitation using monodispersed carbon spheres as hard templates. Y2O3:Eu3+ hollow microspheres were first synthesized to serve as the precursor. Y2O2S:Eu3+, Mg2+, Ti4+ powders were obtained by calcinating the precursor in a CS2 atmosphere. The crystal structure, morphology and optical properties of the composites were characterized. X-ray diffraction measurements confirmed the purity of the Y2O2S phase. Electron microscopy observations revealed that the Y2O2S:Eu3+, Mg2+, Ti4+ particles inherited the hollow spherical shape from the precursor after being calcined in a CS2 atmosphere and that they had a diameter of 350–450 nm and a wall thickness of about 50–80 nm. After ultraviolet radiation at 265 or 325 nm for 5 min, the particles emitted strong red long-lifetime phosphorescence originating from Eu3+ ions. This phosphorescence is associated with the trapping of charge carriers by Ti4+ and Mg2+ ions.

  14. Molecularly imprinted polymer beads for nicotine recognition prepared by RAFT precipitation polymerization: a step forward towards multifunctionalities

    DEFF Research Database (Denmark)

    Zhou, Tongchang; Jørgensen, Lars; Mattebjerg, Maria Ahlm

    2014-01-01

    A nicotine imprinted polymer was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using methacrylic acid (MAA) as a functional monomer. The resulting molecularly imprinted polymers were monodispersed beads with an average diameter of 1.55 mm. The molecular...... selectivity of the imprinted polymer beads was evaluated by studying the uptake of nicotine and its structural analogs by the polymer beads. Equilibrium binding results indicate that the amount of nicotine bound to the imprinted polymer beads is significantly higher than that bound to the nonimprinted polymer...

  15. Alginate-Poly(ethylene glycol Hybrid Microspheres for Primary Cell Microencapsulation

    Directory of Open Access Journals (Sweden)

    Redouan Mahou

    2014-01-01

    Full Text Available The progress of medical therapies, which rely on the transplantation of microencapsulated living cells, depends on the quality of the encapsulating material. Such material has to be biocompatible, and the microencapsulation process must be simple and not harm the cells. Alginate-poly(ethylene glycol hybrid microspheres (alg-PEG-M were produced by combining ionotropic gelation of sodium alginate (Na-alg using calcium ions with covalent crosslinking of vinyl sulfone-terminated multi-arm poly(ethylene glycol (PEG-VS. In a one-step microsphere formation process, fast ionotropic gelation yields spherical calcium alginate gel beads, which serve as a matrix for simultaneously but slowly occurring covalent cross-linking of the PEG-VS molecules. The feasibility of cell microencapsulation was studied using primary human foreskin fibroblasts (EDX cells as a model. The use of cell culture media as polymer solvent, gelation bath, and storage medium did not negatively affect the alg-PEG-M properties. Microencapsulated EDX cells maintained their viability and proliferated. This study demonstrates the feasibility of primary cell microencapsulation within the novel microsphere type alg-PEG-M, serves as reference for future therapy development, and confirms the suitability of EDX cells as control model.

  16. High-Q microsphere resonators for angular velocity sensing in gyroscopes

    International Nuclear Information System (INIS)

    An, Panlong; Zheng, Yongqiu; Yan, Shubin; Xue, Chenyang; Liu, Jun; Wang, Wanjun

    2015-01-01

    A resonator gyroscope based on the Sagnac effect is proposed using a core unit that is generated by water-hydrogen flame melting. The relationship between the quality factor Q and diameter D is revealed. The Q factor of the spectral lines of the microsphere cavity coupling system, which uses tapered fibers, is found to be 10 6 or more before packaging with a low refractive curable ultraviolet polymer, although it drops to approximately 10 5 after packaging. In addition, a rotating test platform is built, and the transmission spectrum and discriminator curves of a microsphere cavity with Q of 3.22×10 6 are measured using a semiconductor laser (linewidth less than 1 kHz) and a real-time proportional-integral circuit tracking and feedback technique. Equations fitting the relation between the voltage and angular rotation rate are obtained. According to the experimentally measured parameters, the sensitivity of the microsphere-coupled system can reach 0.095 ∘ /s

  17. Fabrication of poly(o-anisidine) coated silica core-shell microspheres and their electrorheological response

    Science.gov (United States)

    Lee, Chul Joo; Choi, Hyoung Jin

    2017-11-01

    In this work, silica/poly(o-anisidine) (POA) core-shell structured microspheres were synthesized by coating the silica core surface with POA with a help of a chemical grafting agent, N-[(3-trimethoxylsilyl)-propyl] aniline. The synthesized silica microspheres were then applied as a polymer/inorganic composite particle-based electrorheological (ER) fluid. The morphology of the silica/POA microspheres was examined by using both transmission electron microscopy and scanning electron microscopy, while their thermal properties and chemical structure were checked by thermogravimetric analysis and Fourier-transform infrared spectroscopy, respectively. The ER properties of the silica/POA particle-based ER fluid were examined by using a Couette-type rotational rheometer equipped with a high-voltage power supplier and analyzed by the Bingham model and modified Mason number. In order to obtain additional information about the electrical polarization properties, the dielectric spectra were measured by an LCR meter and fitted by using the Cole-Cole equation. Furthermore, suspension stability of the ER fluid was tested using Turbiscan.

  18. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings.

    Science.gov (United States)

    Shen, Jie; Burgess, Diane J

    2012-01-17

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under "real-time" and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to "real-time" conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict "real-time" release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under "real-time" and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Formulation and evaluation of Bacillus coagulans-loaded hypromellose mucoadhesive microspheres.

    Science.gov (United States)

    Alli, Sk Md Athar

    2011-01-01

    Development of a novel delivery system has been attempted to deliver viable probiotic cells into the gut for a prolonged period of time while maintaining high numbers of viable cells within the formulation throughout the shelf-life of the product and during the gastrointestinal transit. Core mucoadhesive microspheres of Bacillus coagulans were developed employing several grades of hypromellose, a mucoadhesive polymer, following coacervation and phase separation technique and were subsequently enteric-coated with hypromellose phthalate. Microspheres were evaluated for percent yield; entrapment efficiency; in vitro swelling; surface morphology; particle size, size distribution, and zeta potential; flow property, mucoadhesion property by the ex vivo mucoadhesive strength test and the in vitro wash off test; in vitro release profile and release kinetic; in vivo probiotic activity; and stability. The values for the kinetic constant and regression coefficient of model-dependent approaches and the difference factor (f(1)), the similarity factor (f(2)), and the Rescigno index (ξ(1) and ξ(2)) of model independent approaches were determined for comparing in vitro dissolution profiles. Freeze dried B. coagulans cells were successfully formulated as enteric-coated mucoadhesive microspheres with satisfactory physical structure and yield. The viability of B. coagulans was maintained in the simulated gastric conditions and during processing; in simulated intestinal conditions exhibiting mucoadhesion, and controlling and extending the viable cell release following zero-order; and was satisfactorily stable at room temperature. Test results depict statistically significant effects of the hypromellose grade and their concentration on the performance and release profile of formulations.

  20. Photonic nanojet super-resolution in immersed ordered assembly of dielectric microspheres

    International Nuclear Information System (INIS)

    Geints, Y.E.; Zemlyanov, A.A.

    2017-01-01

    Highlights: • Ordered microassemblies of dielectric microspheres immersed in a transparent matrix exposed to a light wave produce an array of the “photonic nanojets” coupled through the field interference. • “Photonic nanojet” parameters depend on the inter-sphere gap and immersion depth. • Sphere microassembly can produce the jets with the sub-diffraction spatial resolution if the particles are loosely packed and semi-immersed. - Abstract: Specific spatially-localized optical field structure, which is often referred to as a photonic nanojet (PNJ), is formed in the near-field scattering area of non-absorbing dielectric micron-sized particle exposed to an optical radiation. By virtue of the finite-difference time-domain technique we numerically simulate the two-dimensional array of PNJs created by an ordered single-layer microassembly of glass microspheres immersed in a transparent polymer matrix. The behavior of the main PNJ parameters (length, diameter, and intensity) is analyzed subject to the immersion depth of the microparticles and cooperative interference effects of the neighboring microspheres. We show that depending on microassembly configuration, the PNJ quality can be significantly improved; in particular, the PNJ spatial resolution better than λ/5 can be achieved.

  1. Gastroretentive Floating Microspheres of Silymarin: Preparation and ...

    African Journals Online (AJOL)

    Erah

    simulated gastric fluid for at least 12 h, and, therefore, could potentially ... systems (GRFDDS) have a bulk density ... The objective of this work was to develop and characterise gastroretentive floating microspheres of silymarin which, following oral administration, would exhibit .... hydrochloric acid to maintain sink conditions.

  2. Structuring of diamond films using microsphere lithography

    Czech Academy of Sciences Publication Activity Database

    Domonkos, Mária; Ižák, Tibor; Štolcová, L.; Proška, J.; Demo, Pavel; Kromka, Alexander

    2014-01-01

    Roč. 54, č. 5 (2014), s. 320-324 ISSN 1210-2709 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : nanostructuring * diamond thin films * polystyrene microspheres * reactive ion etching * scanning electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  3. Method and apparatus for producing microspherical particles

    International Nuclear Information System (INIS)

    Egli, W.; Bailey, W.H.; Leary, D.F.; Lansley, R.J.

    1979-01-01

    This invention relates generally to a method and apparatus for producing microspherical particles and more particularly to a method and apparatus which are particularly useful in connection with the sol-gel process for the production of nuclear fuel kernels. (U.K.)

  4. MICROSPHERE SIZE INFLUENCES THE FOREIGN BODY REACTION

    NARCIS (Netherlands)

    Zandstra, J.; Hiemstra, C.; Petersen, A. H.; Zuidema, J.; van Beuge, M. M.; Rodriguez, S.; Lathuile, A. A. R.; Veldhuis, G. J.; Steendam, R.; Bank, R. A.; Popa, E. R.

    2014-01-01

    Biodegradable poly-(DL-lactide-co-glycolide) (PLGA) microspheres (MSP) are attractive candidate vehicles for site-specific or systemic sustained release of therapeutic compounds. This release may be altered by the host's foreign body reaction (FBR), which is dependent on the characteristics of the

  5. Beat-Frequency/Microsphere Medical Ultrasonic Imaging

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.; Pretlow, Robert A., III

    1995-01-01

    Medical ultrasonic imaging system designed to provide quantitative data on various flows of blood in chambers, blood vessels, muscles, and tissues of heart. Sensitive enough to yield readings on flows of blood in heart even when microspheres used as ultrasonic contrast agents injected far from heart and diluted by circulation of blood elsewhere in body.

  6. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  7. Controlled synthesis and magnetic properties of monodispersed ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Sumeet Kumar

    2015-02-01

    Full Text Available In the present study, monodispersed CeO2 nanoparticles (NPs of size 8.5 ± 1.0, 11.4 ± 1.0 and 15.4 ± 1.0 nm were synthesized using the sol-gel method. Size-dependent structural, optical and magnetic properties of as-prepared samples were investigated by X-ray diffraction (XRD, field emission scanning electron microscope (FE-SEM, high resolution transmission electron microscopy (HR-TEM, ultra-violet visible (UV-VIS spectroscopy, Raman spectroscopy and vibrating sample magnetometer (VSM measurements. The value of optical band gap is calculated for each particle size. The decrease in the value of optical band gap with increase of particle size may be attributed to the quantum confinement, which causes to produce localized states created by the oxygen vacancies due to the conversion of Ce4+ into Ce3+ at higher calcination temperature. The Raman spectra showed a peak at ∼461 cm-1 for the particle size 8.5 nm, which is attributed to the 1LO phonon mode. The shift in the Raman peak could be due to lattice strain developed due to variation in particle size. Weak ferromagnetism at room temperature is observed for each particle size. The values of saturation magnetization (Ms, coercivity (Hc and retentivity (Mr are increased with increase of particle size. The increase of Ms and Mr for larger particle size may be explained by increase of density of oxygen vacancies at higher calcination temperature. The latter causes high concentrations of Ce3+ ions activate more coupling between the individual magnetic moments of the Ce ions, leading to an increase of Ms value with the particle size. Moreover, the oxygen vacancies may also produce magnetic moment by polarizing spins of f electrons of cerium (Ce ions located around oxygen vacancies, which causes ferromagnetism in pure CeO2 samples.

  8. Monodisperse selenium-substituted hydroxyapatite: Controllable synthesis and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jianpeng [School of Civil Engineering, Xi' an University of Architecture and Technology, Shaanxi 710055 (China); Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an, 710069 (China); Zheng, Xiaoyan; Li, Hui; Fan, Daidi [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an, 710069 (China); Song, Zhanping [School of Civil Engineering, Xi' an University of Architecture and Technology, Shaanxi 710055 (China); Ma, Haixia [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an, 710069 (China); Hua, Xiufu, E-mail: hua_xiufu@163.com [Department of Scientific Research and Development, Tsinghua University, Beijing 100084 (China); Hui, Junfeng, E-mail: huijunfeng@126.com [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an, 710069 (China)

    2017-04-01

    Hydroxyapatite (HA) is the major inorganic component of natural bone tissue. As an essential trace element, selenium involves in antioxidation and anticancer of human body. So far, ion-doped hydroxyapatites (HAs) are widely investigated owing to their great applications in field of biomaterial, biological labeling. In this paper, series of monodisperse HA doped with SeO{sub 3}{sup 2−} (SeHA) was successfully synthesized based on the liquid–solid–solution (LSS) strategy. The obtained samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive spectrometer (EDS). The results indicated that the SeO{sub 3}{sup 2−} doping level of the Se/(P + Se) molar ratio of 0– 0.4 can be requisitely controlled, and the morphology of SeHA nanoparticles varied from nanorods to nanoneedles with increasing Se/(P + Se) molar ratio. Significantly, the as-synthesized SeHA nanocrystals exhibit a low cytotoxicity for osteoblastic cells, showing exciting potentials for application in artificial scaffold materials inhibiting of tumor growth in bone. - Highlights: • Series of SeO{sub 3}{sup 2−} doped HA nanorods or/and nanoneedles were successfully synthesized. • The morphology of the HA nanocrystals can be easily controlled by changing the Se/(P + Se) molar ratio. • The as-synthesized SeHA nanocrystals exhibit a low cytotoxicity for osteoblastic cells. • Showing exciting potentials for application in artificial scaffold materials inhibiting of tumor growth in bone.

  9. Formation of monodisperse mesoporous silica microparticles via spray-drying.

    Science.gov (United States)

    Waldron, Kathryn; Wu, Winston Duo; Wu, Zhangxiong; Liu, Wenjie; Selomulya, Cordelia; Zhao, Dongyuan; Chen, Xiao Dong

    2014-03-15

    In this work, a protocol to synthesize monodisperse mesoporous silica microparticles via a unique microfluidic jet spray-drying route is reported for the first time. The microparticles demonstrated highly ordered hexagonal mesostructures with surface areas ranging from ~900 up to 1500 m(2)/g and pore volumes from ~0.6 to 0.8 cm(3)/g. The particle size could be easily controlled from ~50 to 100 μm from the same diameter nozzle via changing the initial solute content, or changing the drying temperature. The ratio of the surfactant (CTAB) and silica (TEOS), and the amount of water in the precursor were found to affect the degree of ordering of mesopores by promoting either the self-assembly of the surfactant-silica micelles or the condensation of the silica as two competing processes in evaporation induced self-assembly. The drying rate and the curvature of particles also affected the self-assembly of the mesostructure. The particle mesostructure is not influenced by the inlet drying temperature in the range of 92-160 °C, with even a relatively low temperature of 92 °C producing highly ordered mesoporous microparticles. The spray-drying derived mesoporous silica microparticles, while of larger sizes and more rapidly synthesized, showed a comparable performance with the conventional mesoporous silica MCM-41 in controlled release of a dye, Rhodamine B, indicating that these spray dried microparticles could be used for the immobilisation and controlled release of small molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Monodisperse selenium-substituted hydroxyapatite: Controllable synthesis and biocompatibility

    International Nuclear Information System (INIS)

    Sun, Jianpeng; Zheng, Xiaoyan; Li, Hui; Fan, Daidi; Song, Zhanping; Ma, Haixia; Hua, Xiufu; Hui, Junfeng

    2017-01-01

    Hydroxyapatite (HA) is the major inorganic component of natural bone tissue. As an essential trace element, selenium involves in antioxidation and anticancer of human body. So far, ion-doped hydroxyapatites (HAs) are widely investigated owing to their great applications in field of biomaterial, biological labeling. In this paper, series of monodisperse HA doped with SeO 3 2− (SeHA) was successfully synthesized based on the liquid–solid–solution (LSS) strategy. The obtained samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive spectrometer (EDS). The results indicated that the SeO 3 2− doping level of the Se/(P + Se) molar ratio of 0– 0.4 can be requisitely controlled, and the morphology of SeHA nanoparticles varied from nanorods to nanoneedles with increasing Se/(P + Se) molar ratio. Significantly, the as-synthesized SeHA nanocrystals exhibit a low cytotoxicity for osteoblastic cells, showing exciting potentials for application in artificial scaffold materials inhibiting of tumor growth in bone. - Highlights: • Series of SeO 3 2− doped HA nanorods or/and nanoneedles were successfully synthesized. • The morphology of the HA nanocrystals can be easily controlled by changing the Se/(P + Se) molar ratio. • The as-synthesized SeHA nanocrystals exhibit a low cytotoxicity for osteoblastic cells. • Showing exciting potentials for application in artificial scaffold materials inhibiting of tumor growth in bone

  11. Synergism of Dewetting and Self-Wrinkling To Create Two-Dimensional Ordered Arrays of Functional Microspheres.

    Science.gov (United States)

    Han, Xue; Hou, Jing; Xie, Jixun; Yin, Jian; Tong, Yi; Lu, Conghua; Möhwald, Helmuth

    2016-06-29

    Here we report a simple, novel, yet robust nonlithographic method for the controlled fabrication of two-dimensional (2-D) ordered arrays of polyethylene glycol (PEG) microspheres. It is based on the synergistic combination of two bottom-up processes enabling periodic structure formation for the first time: dewetting and the mechanical wrinkle formation. The deterministic dewetting results from the hydrophilic polymer PEG on an incompatible polystyrene (PS) film bound to a polydimethylsiloxane (PDMS) substrate, which is directed both by a wrinkled template and by the template-directed in-situ self-wrinkling PS/PDMS substrate. Two strategies have been introduced to achieve synergism to enhance the 2-D ordering, i.e., employing 2-D in-situ self-wrinkling substrates and boundary conditions. As a result, we achieve highly ordered 2-D arrays of PEG microspheres with desired self-organized microstructures, such as the array location (e.g., selectively on the crest/in the valley of the wrinkles), diameter, spacing of the microspheres, and array direction. Additionally, the coordination of PEG with HAuCl4 is utilized to fabricate 2-D ordered arrays of functional PEG-HAuCl4 composite microspheres, which are further converted into different Au nanoparticle arrays. This simple versatile combined strategy could be extended to fabricate highly ordered 2-D arrays of other functional materials and achieve desirable properties and functionalities.

  12. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1994-04-20

    New, high-strength, hollow, glass microspheres filled with pressurized hydrogen exhibit storage densities which make them attractive for bulk hydrogen storage and transport. The hoop stress at failure of our engineered glass microspheres is about 150,000 psi, permitting a three-fold increase in pressure limit and storage capacity above commercial microspheres, which fail at wall stresses of 50,000 psi. For this project, microsphere material and structure will be optimized for storage capacity and charge/discharge kinetics to improve their commercial practicality. Microsphere production scale up will be performed, directed towards large-scale commercial use. Our analysis relating glass microspheres for hydrogen transport with infrastructure and economics` indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as hydride beds, cryocarbons and pressurized tube transports. For microspheres made from advanced materials and processes, analysis will also be performed to identify the appropriate applications of the microspheres considering property variables, and different hydrogen infrastructure, end use, production and market scenarios. This report presents some of the recent modelling results for large beds of glass microspheres in hydrogen storage applications. It includes plans for experiments to identify the properties relevant to large-bed hydrogen transport and storage applications, of the best, currently producible, glass microspheres. This work began in March, 1994. Project successes will be manifest in the matching of cur-rent glass microspheres with a useful application in hydrogen bulk transport and storage, and in developing microsphere materials and processes that increase the storage density and reduce the storage energy requirement.

  13. Polyacrolein with microspherical structure obtained by radiation-Initiation and base catalysis

    International Nuclear Information System (INIS)

    Usanmaz, A.; Dogan, R.D.

    1990-01-01

    Acrolein was polymerized by radiation and base catalyzed condensation. Radiation polymerization was carried in bulk form under vacuum and air atmosphere at several temperatures. The conversion reached close to 100 %, and polymers were free flowing white powders up to 5 % conversion at -15degC, up to 80 % at higher temperatures and up to 10 % in air atmosphere polymerization. Radiation polymerization from aqueous solutions of various pH and from acetone solutions gave white powder polymers with limiting conversions ranging from 10 to 18 % depending on the solution type or pH. The conversion at pH between 1, 5 to 8 gave minimum pH of 5 to 6. The base catalyzed polymerization at pH of 9 to 12 gave white powdered polymers changing to a yellowish colour with increase of pH. The limiting conversion was about 14 %. The nature of repeating units in the polymer chains was studied by IR and thermogravimetry. The polymers contained different repeating units randomly, and the aldehyde content was higher for radiation polymerization than base catalyzed polymerization. A scanning electron microscope investigation showed the powder polymers to have microspherical structures of various size depending on polymerization conditions. (author)

  14. Design and application of chitosan microspheres as oral and nasal vaccine carriers: an updated review

    Directory of Open Access Journals (Sweden)

    Islam MA

    2012-12-01

    Full Text Available Mohammad Ariful Islam,1–3,* Jannatul Firdous,1–3,* Yun-Jaie Choi,1 Cheol-Heui Yun,1–4 Chong-Su Cho1,21Department of Agricultural Biotechnology, 2Research Institute for Agriculture and Life Sciences, 3Center for Food and Bioconvergence, 4World Class University Biomodulation Program, Seoul National University, Seoul, South Korea*These authors contributed equally to this workAbstract: Chitosan, a natural biodegradable polymer, is of great interest in biomedical research due to its excellent properties including bioavailability, nontoxicity, high charge density, and mucoadhesivity, which creates immense potential for various pharmaceutical applications. It has gelling properties when it interacts with counterions such as sulfates or polyphosphates and when it crosslinks with glutaraldehyde. This characteristic facilitates its usefulness in the coating or entrapment of biochemicals, drugs, antigenic molecules as a vaccine candidate, and microorganisms. Therefore, chitosan together with the advance of nanotechnology can be effectively applied as a carrier system for vaccine delivery. In fact, chitosan microspheres have been studied as a promising carrier system for mucosal vaccination, especially via the oral and nasal route to induce enhanced immune responses. Moreover, the thiolated form of chitosan is of considerable interest due to its improved mucoadhesivity, permeability, stability, and controlled/extended release profile. This review describes the various methods used to design and synthesize chitosan microspheres and recent updates on their potential applications for oral and nasal delivery of vaccines. The potential use of thiolated chitosan microspheres as next-generation mucosal vaccine carriers is also discussed.Keywords: chitosan microspheres, oral, nasal, vaccine delivery, mucosal and systemic immune responses

  15. Histamine-imprinted microspheres: Comparison between conventional and raft-mediated polymerization techniques

    International Nuclear Information System (INIS)

    Romano, Edwin F. Jr.; So, Regina C.; Holdsworth, Clovia I.

    2015-01-01

    Molecularly imprinted microspheres (MIM) were synthesized via conventional free radical polymerization (CTP) and RAFT-mediated controlled radical polymerization (CRP) method using histamine as the template molecule. Optimal polymerization conditions were achieved using 4%(w/w) monomer feed concentration with 80=90% EGDMA as crosslinker, and histamine: MAA ratio of 1:4 in acetonitrile at 60°C for 24 hours. The size of CTP-M90 and CTP-M80 imprinted microspheres are comparable with that of RAFT polymer CRP-M80 at 264.5 ±12 nm in the swollen (DLS-DMSO) and collapsed state (SEM). For the CTP method, the presence of the template allows for a bigger particle size compared to the non-imprinted counterpart (NIM). Further, controlled growth was observed for the CRP technique, where the size of the imprinted microsphere, CRP-M80, is comparable to CRP-N80. The binding studies of CTP and CRP microspheres toward histamine were studied at concentrations well below biding with buffer concentration of 25mM at pH7. Results showed that the binding isotherms were found to conform to the Freundlich model. Moreover, results revealed that the difference in binding capacity (N) between MIM and NIM imparted by the imprinting process is significantly higher in CTP-80 (26 μmol/g) than both CTP-90 and CRP-80 (9 μmol/g). Non-competitive and competitive binding assays with L-histidine, imidazole, and tryptamine using CTP-80 and CRP-80 were also carried out. MIMs were shown to exhibit binding preference towards the template. (author)

  16. Formulation and evaluation of Bacillus coagulans-loaded hypromellose mucoadhesive microspheres

    Directory of Open Access Journals (Sweden)

    Alli SMA

    2011-03-01

    Full Text Available Sk Md Athar AlliDepartment of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, IndiaAbstract: Development of a novel delivery system has been attempted to deliver viable probiotic cells into the gut for a prolonged period of time while maintaining high numbers of viable cells within the formulation throughout the shelf-life of the product and during the gastrointestinal transit. Core mucoadhesive microspheres of Bacillus coagulans were developed employing several grades of hypromellose, a mucoadhesive polymer, following coacervation and phase separation technique and were subsequently enteric-coated with hypromellose phthalate. Microspheres were evaluated for percent yield; entrapment efficiency; in vitro swelling; surface morphology; particle size, size distribution, and zeta potential; flow property, mucoadhesion property by the ex vivo mucoadhesive strength test and the in vitro wash off test; in vitro release profile and release kinetic; in vivo probiotic activity; and stability. The values for the kinetic constant and regression coefficient of model-dependent approaches and the difference factor ( ƒ1, the similarity factor (ƒ2, and the Rescigno index (ξ1 and ξ 2 of model independent approaches were determined for comparing in vitro dissolution profiles. Freeze dried B. coagulans cells were successfully formulated as enteric-coated mucoadhesive microspheres with satisfactory physical structure and yield. The viability of B. coagulans was maintained in the simulated gastric conditions and during processing; in simulated intestinal conditions exhibiting mucoadhesion, and controlling and extending the viable cell release following zero-order; and was satisfactorily stable at room temperature. Test results depict statistically significant effects of the hypromellose grade and their concentration on the performance and release profile of formulations.Keywords: probiotics, B. coagulans, mucoadhesive, microspheres, extended-release

  17. Microsphere-Based Scaffolds Carrying Opposing Gradients of Chondroitin Sulfate and Tricalcium Phosphate

    Directory of Open Access Journals (Sweden)

    Vineet eGupta

    2015-07-01

    Full Text Available Extracellular matrix (ECM components such as chondroitin sulfate (CS and tricalcium phosphate (TCP serve as raw materials and thus spatial patterning of these raw materials may be leveraged to mimic the smooth transition of physical, chemical and mechanical properties at the bone-cartilage interface. We hypothesized that encapsulation of opposing gradients of these raw materials in high molecular weight poly(D,L-lactic-co-glycolic acid (PLGA microsphere-based scaffolds would enhance differentiation of rat bone marrow stromal cells (rBMSCs. The raw material encapsulation altered the microstructure of the microspheres and also influenced the cellular morphology that depended on the type of material encapsulated. Moreover, the mechanical properties of the raw material encapsulating microsphere-based scaffolds initially relied on the composition of the scaffolds and later on were primarily governed by the degradation of the polymer phase and newly synthesized extracellular matrix by the seeded cells. Furthermore, raw materials had a mitogenic effect on the seeded cells and led to increased glycosaminoglycan (GAG, collagen, and calcium content. Interestingly, the initial effects of raw material encapsulation on a per-cell basis might have been overshadowed by medium-regulated environment that appeared to favor osteogenesis. However, it is to be noted that in vivo, differentiation of the cells would be governed by the surrounding native environment. Thus, the results of this study demonstrated the potential of the raw materials in facilitating neo-tissue synthesis in microsphere-based scaffolds and perhaps in combination with bioactive signals, these raw materials may be able to achieve intricate cell differentiation profiles required for regenerating the osteochondral interface.

  18. In vitro evaluation of biodegradable microspheres with surface-bound ligands.

    Science.gov (United States)

    Keegan, Mark E; Royce, Sara M; Fahmy, Tarek; Saltzman, W Mark

    2006-02-21

    Protein ligands were conjugated to the surface of biodegradable microspheres. These microsphere-ligand conjugates were then used in two in vitro model systems to evaluate the effect of conjugated ligands on microsphere behavior. Microsphere retention in agarose columns was increased by ligands on the microsphere surface specific for receptors on the agarose matrix. In another experiment, conjugating the lectin Ulex europaeus agglutinin 1 to the microsphere surface increased microsphere adhesion to Caco-2 monolayers compared to control microspheres. This increase in microsphere adhesion was negated by co-administration of l-fucose, indicating that the increase in adhesion is due to specific interaction of the ligand with carbohydrate receptors on the cell surface. These results demonstrate that the ligands conjugated to the microspheres maintain their receptor binding activity and are present on the microsphere surface at a density sufficient to target the microspheres to both monolayers and three-dimensional matrices bearing complementary receptors.

  19. Development of phosphate glass microspheres containing holmium for selective internal radiotherapy; Desenvolvimento de microesferas de vidro fosfato contendo holmio para uso em radioterapia interna seletiva

    Energy Technology Data Exchange (ETDEWEB)

    Barros Filho, Eraldo Cordeiro

    2016-11-01

    The selective internal radiotherapy is an alternative for some kinds of cancer as the hepatocellular carcinoma (HCC) or primary liver cancer treatment. In this treatment, glass or polymer microspheres containing radionuclides inside their structure are introduced in the liver through hepatic artery and trapped at the arterioles that feed the tumor. In this work, the development of phosphate glasses containing holmium for production of microspheres and their application in Brazil are proposed. The developed glasses presented suitable chemical durability, density of 2,7(3) g/cm{sup 3}, high thermal stability and the impurities contained therein do not preclude the treatment. The microspheres were produced by the flame method and the gravitational fall method, and were characterized by means of several techniques to evaluate shape, average particle size, activity and biocompatibility suitable for selective internal radiotherapy. Based in the main results, the submission to in vivo tests is proposed. (author)

  20. Thermal insulation coating based on water-based polymer dispersion

    Directory of Open Access Journals (Sweden)

    Panchenko Iuliia

    2018-01-01

    Full Text Available For Russia, due to its long winter period, improvement of thermal insulation properties of envelope structures by applying thermal insulation paint and varnish coating to its inner surface is considered perspective. Thermal insulation properties of such coatings are provided by adding aluminosilicate microspheres and aluminum pigment to their composition. This study was focused on defining the effect of hollow aluminosilicate microspheres and aluminum pigment on the paint thermal insulation coating based on water-based polymer dispersion and on its optimum filling ratio. The optimum filling ratio was determined using the method of critical pigment volume concentration (CPVC. The optimum filling ratio was found equal to 55%.

  1. Optically Levitated Microspheres as a Probe for New Interactions

    Science.gov (United States)

    Rider, Alexander; Moore, David; Blakemore, Charles; Lu, Marie; Gratta, Giorgio

    2016-03-01

    We are developing novel techniques to probe new interactions at micron distances using optically levitated dielectric microspheres. Levitated microspheres are an ideal probe for short-range interactions because they are suspended using the radiation pressure at the focus of a laser beam, which means that the microspheres can be precisely manipulated and isolated from the surrounding environment at high vacuum. We have performed a search for unknown charged particles bound within the bulk of the microspheres. Currently, we are searching for the presence of a Chameleon field postulated to explain the presence of dark energy in the universe. In the future we plan to use optically levitated microspheres to search for micron length-scale gravity like interactions that could couple between a microsphere and another mass. We will present resent results from these experiments and plans for future searches for new interactions.

  2. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1995-02-28

    New, high strength glass microspheres filled with pressurized hydrogen exhibit densities which make them attractive for bulk hydrogen storage and transport. The membrane tensile stress at failure for engineered glass microspheres is about 150,000 psi, permitting a three-fold increase in pressure limit and storage capacity above commercial microspheres, which have been studied a decade ago and have been shown to fail at membrane stresses of 50,000 psi. This analysis relating glass microspheres for hydrogen transport with infrastructure and economics, indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as pressurized tube transports and liquid hydrogen trailers. This paper will describe the matching of current glass microspheres with the useful application in commercial hydrogen bulk transport and storage.

  3. Self assembly of SiO2-encapsulated carbon microsphere composites

    International Nuclear Information System (INIS)

    Yang Yongzhen; Song Jingjing; Han Yanxing; Guo Xingmei; Liu Xuguang; Xu Bingshe

    2011-01-01

    SiO 2 was firstly coated onto the surface of carbon microspheres (CMSs) using tetraethyl orthosilicate (TEOS) as precursor by Stoeber method. Then SiO 2 -encapsulated CMS (CMS-SiO 2 ) composites were self-assembled by vertical deposition, in which the effects of deposition temperature and suspension concentration on the quality of self-assembling film were investigated. Morphologies and structures of the samples were characterized by field emission scanning electron microscopy, Fourier transformation infrared spectrometry, X-ray diffraction and thermogravimetry. The results show that uniform CMS-SiO 2 composites with good mono-dispersion were prepared by Stober method with 0.5 g of CMSs, 2 mL of TEOS, 30 mL of ammonia and 12 h of reaction time, the CMSs-based films with ordered and denser structure were prepared by vertical deposition using CMS-SiO 2 composites as monodipersion spheres under suspension concentration of 1 wt% and deposition temperature of 50 deg. C. The ultraviolet-visible absorption measurement shows that the absorbance of CMS-SiO 2 composite films grew steadily with increasing suspension concentration.

  4. Enabling high-rate electrochemical flow capacitors based on mesoporous carbon microspheres suspension electrodes

    Science.gov (United States)

    Tian, Meng; Sun, Yueqing; Zhang, Chuanfang (John); Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2017-10-01

    Electrochemical flow capacitor (EFC) is a promising technology for grid energy storage, which combines the fast charging/discharging capability of supercapacitors with the scalable energy capacity of flow batteries. In this study, we report a high-power-density EFC using mesoporous carbon microspheres (MCMs) as suspension electrodes. By using a simple yet effective spray-drying technique, monodispersed MCMs with average particle size of 5 μm, high BET surface area of 1150-1267 m2 g-1, large pore volume of 2-4 cm3 g-1 and controllable mesopore size of 7-30 nm have been successfully prepared. The resultant MCMs suspension electrode shows excellent stability and considerable high capacitance of 100 F g-1 and good cycling ability (86% of initial capacitance after 10000 cycles). Specially, the suspension electrode exhibits excellent rate performance with 75% capacitance retention from 2 to 100 mV s-1, significantly higher than that of microporous carbon electrodes (20∼30%), due to the developed mesoporous channels facilitating for rapid ion diffusion. In addition, the electrochemical responses on both negative and positive suspension electrodes are studied, based on which an optimal capacitance matching between them is suggested for large-scale EFC unit.

  5. Beat frequency ultrasonic microsphere contrast agent detection system

    Science.gov (United States)

    Pretlow, III, Robert A. (Inventor); Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    1997-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  6. Microsphere formation in droplets using antisolvent vapour precipitation technique

    OpenAIRE

    Chew, Sean Jun Liang

    2017-01-01

    In previous studies, the antisolvent vapour precipitation method has been proven to produce uniformly sized lactose microspheres (1.0 µm) from a single droplet (1.2 mm diameter) at atmospheric pressure. These types of particles have potential applications in the pharmaceutical industry, especially due to their high dissolution rate. This project looked into the possibility of using antisolvent vapour precipitation to produce microspheres from finely atomised droplets. Microspheres in the sub-...

  7. Intestinal absorption of PLAGA microspheres in the rat.

    Science.gov (United States)

    Damgé, C; Aprahamian, M; Marchais, H; Benoit, J P; Pinget, M

    1996-12-01

    Rhodamine B-labelled poly (DL-lactide-co-glycolide) (PLAGA) microspheres of 2 different sizes, 1-5 microns and 5-10 microns, were administered as a single dose (1.44 x 10(9) and 1.83 x 10(8) particles, respectively) into the ileal lumen of adult rats. The content of rhodamine in the mesenteric vein and ileal lumen was analysed periodically from 10 min to 48 h as well as the distribution of microspheres in the intestinal mucosa and various other tissues. The concentration of rhodamine decreased progressively in the intestinal lumen and was negligible after 24 h. The number of microspheres in the mesenteric vein increased rapidly and reached a maximum after 4 h whatever the size of the particles. It then decreased progressively, but more rapidly with microspheres > 5 microns than with microspheres PLAGA microspheres mainly crossed the intestinal mucosa at the site of Peyer's patches where microspheres of 5 microns were retained in the ileal lumen. A few small microspheres were occasionally observed in the epithelial cells. Only the smallest particles were recovered in the liver, lymph nodes and spleen while basement membranes were always labelled. It is concluded that PLAGA microspheres could be useful for the oral delivery of antigens if their size is between 1 and 5 microns.

  8. Preparation of porous zirconia microspheres by internal gelation method

    International Nuclear Information System (INIS)

    Pathak, Sachin S.; Pius, I.C.; Bhanushali, R.D.; Rao, T.V. Vittal; Mukerjee, S.K.

    2008-01-01

    A modified internal gelation process for the preparation of porous zirconia microspheres has been developed. The conventional method has been modified by adding a surfactant in the feed broth. The effects of variation of surfactant concentration, washing techniques and temperature of calcination on the pore volume and the surface area of the microspheres have been studied. The conditions were optimized to obtain porous stable microspheres suitable for various applications. The microspheres were characterized by surface area analysis, pore volume analysis, thermogravimetric analysis and X-ray diffraction. The ion exchange behavior was studied using pH titration

  9. Photoluminescence and lasing in whispering gallery mode glass microspherical resonators

    Energy Technology Data Exchange (ETDEWEB)

    Ristić, D. [Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Molecular Physics, Bijenička c. 54, Zagreb (Croatia); Center of Excellence for Advanced Materials and Sensing Devices, Research unit New Functional Materials, Bijenička c. 54, Zagreb (Croatia); Berneschi, S.; Camerini, M. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Farnesi, D.; Pelli, S. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Centro Studi e Ricerche ' E. Fermi' , Piazza del Viminale 2, 00184 Roma (Italy); Trono, C. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Chiappini, A.; Chiasera, A.; Ferrari, M. [CSMFO Group, Istituto di Fotonica e Nanotecnologie, IFN-CNR, Via alla Cascata 56/C, 38050 Povo-Trento (Italy); Lukowiak, A. [Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, Wroclaw 50-950 (Poland); Dumeige, Y.; Féron, P. [Laboratoire d' Optronique, (CNRS-UMR 6082-Foton), ENSSAT, 6 rue de Kérampont, 22300 Lannion (France); Righini, G.C. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Centro Studi e Ricerche ' E. Fermi' , Piazza del Viminale 2, 00184 Roma (Italy); Soria, S., E-mail: s.soria@ifac.cnr.it [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Conti, G. Nunzi [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Centro Studi e Ricerche ' E. Fermi' , Piazza del Viminale 2, 00184 Roma (Italy)

    2016-02-15

    We report experimental results regarding the development of Er{sup 3+}-doped glass microspherical cavities for the fabrication of compact sources at 1.55 μm. We investigate several different approaches in order to fabricate the microspheres including direct melting of Er{sup 3+}-doped glass powders, synthesis of Er{sup 3+}-doped monolithic microspheres by drawing Er{sup 3+}-doped glass, and coating of silica microspheres with an Er{sup 3+}-doped sol–gel layer. Details of the different fabrication processes are presented together with the photoluminescence characterization in free space configuration of the microspheres and of the glass precursor. We have analyzed the photoluminescence spectra of the whispering gallery modes of the microspheres excited using evanescent coupling and we demonstrate tunable laser action in a wide range of wavelengths around 1.55 μm. As much as 90 μW of laser output power was measured in Er{sup 3+}-doped glass microspheres. - Highlights: • Different approaches in microsphere fabrication and various types of post-processing. • Trimming of photorefractive glass microsphere lasers with UV light. • Peak power record of 90 μW by pumping at 1480 nm.

  10. Microsphere based improved sunscreen formulation of ethylhexyl methoxycinnamate.

    Science.gov (United States)

    Gogna, Deepak; Jain, Sunil K; Yadav, Awesh K; Agrawal, G P

    2007-04-01

    Polymethylmethacrylate (PMMA) microspheres of ethylhexyl methoxycinnamate (EHM) were prepared by emulsion solvent evaporation method to improve its photostability and effectiveness as sunscreening agent. Process parameters like stirring speed and aqueous polyvinyl alcohol (PVA) concentration were analyzed in order to optimize the formulations. Shape and surface morphology of the microspheres were examined using scanning electron microscopy. Particle size of the microspheres was determined using laser diffraction particle size analyzer. The PMMA microspheres of EHM were incorporated in water-removable cream base. The in vitro drug release of EHM in pH 7.4 was performed using dialysis membrane. Thin layer chromatography was performed to determine photostability of EHM inside the microspheres. The formulations were evaluated for sun protection factor (SPF) and minimum erythema dose (MED) in albino rats. Cream base formulation containing microspheres prepared using EHM:PMMA in ratio of 1:3 (C(3)) showed slowest drug (EHM) release and those prepared with EHM: PMMA in ratio of 1:1 showed fastest release. The cream base formulations containing EHM loaded microspheres had shown better SPF (more than 16.0) as compared to formulation C(d) that contained 3% free EHM as sunscreen agent and showed SPF 4.66. These studies revealed that the incorporation of EHM loaded PMMA microspheres into cream base had greatly increased the efficacy of sunscreen formulation approximately four times. Further, photostability was also shown to be improved in PMMA microspheres.

  11. Low pressure gas filling of laser fusion microspheres

    International Nuclear Information System (INIS)

    Koo, J.C.; Dressler, J.L.; Hendricks, C.D.

    1979-01-01

    In our laser fusion microsphere production, large, thin gel-microspheres are formed before the chemicals are fused into glass. In this transient stage,, the gel-microspheres are found to be highly permeable to argon and many other inert gases. When the gel transforms to glass, the argon gas, for example, is trapped within to form argon filled, fusion target quality, glass microspheres. On the average, the partial pressure of the argon fills attained in this process is around 2 x 10 4 Pa at room temperature

  12. Sprayed microspheres of poly(lactic acid) obtained with calcium compounds

    International Nuclear Information System (INIS)

    Goncalves, Raquel P.; Picciani, Paulo H. de Souza; Dias, Marcos L.

    2011-01-01

    In this work PLLA and PDLA were synthesized using calcium methoxide (Ca(OMe) 2 ) as initiator. This compound shows good activity in the bulk polymerization of L-lactide (LLA) and D-lactide (DLA) producing polymers with average molecular weight up to 22,300 g/mol, but with microstructure containing a significant amount of estereoerros, as revealed by 13 C NMR. Block copolymers containing blocks of L-and D-lactic acid were also prepared, using the method of sequential addition of LLA and DLA in an attempt to obtain stereo complexes. Analyses of scanning electron microscopy (SEM) revealed that the polymers obtained with catalysts of calcium produced PLA microspheres with diameters of around 5 μm via electro spray technique. (author)

  13. The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies.

    Science.gov (United States)

    Borden, Mark; Attawia, Mohamed; Laurencin, Cato T

    2002-09-05

    A tissue engineering approach has been used to design three-dimensional synthetic matrices for bone repair. The osteoconductivity and degradation profile of a novel polymeric bone-graft substitute was evaluated in an in vitro setting. Using the copolymer poly(lactide-co-glycolide) [PLAGA], a sintering technique based on microsphere technology was used to fabricate three-dimensional porous scaffolds for bone regeneration. Osteoblasts and fibroblasts were seeded onto a 50:50 PLAGA scaffold. Morphologic evaluation through scanning electron microscopy demonstrated that both cell types attached and spread over the scaffold. Cells migrated through the matrix using cytoplasmic extensions to bridge the structure. Cross-sectional images indicated that cellular proliferation had penetrated into the matrix approximately 700 microm from the surface. Examination of the surfaces of cell/matrix constructs demonstrated that cellular proliferation had encompassed the pores of the matrix by 14 days of cell culture. With the aim of optimizing polymer composition and polymer molecular weight, a degradation study was conducted utilizing the matrix. The results demonstrate that degradation of the sintered matrix is dependent on molecular weight, copolymer ratio, and pore volume. From this data, it was determined that 75:25 PLAGA with an initial molecular weight of 100,000 has an optimal degradation profile. These studies show that the sintered microsphere matrix has an osteoconductive structure capable of functioning as a cellular scaffold with a degradation profile suitable for bone regeneration. Copyright 2002 Wiley Periodicals, Inc.

  14. Selective removal of 2,4-dichlorophenol from contaminated water using non-covalent imprinted microspheres

    International Nuclear Information System (INIS)

    Li Ying; Li Xin; Li Yuqi; Qi Jingyao; Bian Jiang; Yuan Yixing

    2009-01-01

    A molecularly imprinted polymer (MIP) for selective removal of 2,4-dichlorophenol (2,4-DCP) in water was prepared as microspheres by the reverse microemulsion polymerization method based on the non-covalent interactions between 2,4-DCP, oleic acid, and divinylbenzene in acetonitrile. Microspheres have been characterized by Fourier transform infrared spectrometer (FTIR) and energy dispersive X-ray spectrometer (EDS) studies with evidence of 2,4-DCP linkage in polymer particles and scanning electron microscopy (SEM) to study their morphological properties. The proper adsorption and selective recognition ability of the MIP were studied by an equilibrium-adsorption method. The MIP showed outstanding affinity towards 2,4-DCP in aqueous solution and the optimum pH value for binding has been found around the neutral range. The molecular recognition of 2,4-DCP was analyzed in detail by using molecular modeling software. In addition, by investigating the variation in the adsorption ability of the MIP, it clearly showed excellent reproducibility. - Molecular imprinting has potential as a remediation technology in water treatment.

  15. Histological Comparison of Kidney Tissue Following Radioembolization with Yttrium-90 Resin Microspheres and Embolization with Bland Microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Suresh de, E-mail: suresh.desilva@unsw.edu.au [Southern Radiology Group, Radiology Department Sutherland Hospital (Australia); Mackie, Simon [Western General Hospital, Department of Urology (United Kingdom); Aslan, Peter [St George Hospital, Department of Urology (Australia); Cade, David [Sirtex Technology Pty Ltd (Australia); Delprado, Warick [Douglass Hanly Moir Pathology (Australia)

    2016-12-15

    BackgroundIntra-arterial brachytherapy with yttrium-90 ({sup 90}Y) resin microspheres (radioembolization) is a procedure to selectively deliver high-dose radiation to tumors. The purpose of this research was to compare the radioembolic effect of {sup 90}Y-radioembolization versus the embolic effect of bland microspheres in the porcine kidney model.MethodsIn each of six pigs, ~25–33 % of the kidney volume was embolized with {sup 90}Y resin microspheres and an equivalent number of bland microspheres in the contralateral kidney. Kidney volume was estimated visually from contrast-enhanced fluoroscopy imaging. Morphologic and histologic analysis was performed 8–9 weeks after the procedure to assess the locations of the microspheres and extent of tissue necrosis from {sup 90}Y-radioembolization and bland embolization. A semi-quantified evaluation of the non-acute peri-particle and perivascular tissue reaction was conducted. All guidelines for the care and use of animals were followed.ResultsKidneys embolized with {sup 90}Y-radioembolization decreased in mass by 30–70 % versus the contralateral kidney embolized with bland microspheres. These kidneys showed significant necrosis/fibrosis, avascularization, and glomerular atrophy in the immediate vicinity of the {sup 90}Y resin microspheres. By contrast, glomerular changes were not observed, even with clusters of bland microspheres in afferent arterioles. Evidence of a foreign body reaction was recorded in some kidneys with bland microspheres, and subcapsular scarring/infarction only with the highest load (4.96 × 10{sup 6}) of bland microspheres.ConclusionThis study showed that radioembolization with {sup 90}Y resin microspheres produces localized necrosis/fibrosis and loss of kidney mass in a porcine kidney model. This result supports the study of {sup 90}Y resin microspheres for the localized treatment of kidney tumors.

  16. A novel route for synthesis and growth formation of metal oxides microspheres: Insights from V_2O_3 microspheres

    International Nuclear Information System (INIS)

    Zhang, Yifu; Huang, Chi; Meng, Changgong; Hu, Tao

    2016-01-01

    Highly polydisperse V_2O_3 solid microspheres with large specific surface area were successfully synthesized via a facile hydrothermal decomposition of VOC_2O_4 solution. The morphology and composition were characterized by scanning electron microscopy (SEM), Energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). V_2O_3 microspheres display an obvious Mott phase transition at −128.5 °C (cooling curve) and −114.5 °C (heating curve). Some parameters including the reaction temperature, concentration of VOC_2O_4, reaction time, surfactant, H_2C_2O_4 and precursor were briefly discussed to reveal the formation of V_2O_3 microspheres. It was found that the precursor is crucial for the fabrication of microsphere. A self-assembly growth mechanism was suggested to explain the growth process of microspheres and the autogenic CO and CO_2 gas served as the soft templates. Furthermore, this route was developed to synthesize different metal oxides microspheres, and it was found that AlO(OH), Fe_3O_4, Fe_2O_3, Co_3O_4, Cr_2O_3, MoO_2 and WO_3 microspheres were obtained. All the results showed this process was successfully explored as a methodology to synthesize different metal oxides microspheres using the gas as the templates by this facile hydrothermal route. - Highlights: • Highly uniform V_2O_3 solid microspheres were synthesized. • V_2O_3 microspheres display an obvious Mott phase transition. • The autogenic CO and CO_2 gas served as the soft templates for designed synthesis. • AlO(OH), Fe_3O_4, Fe_2O_3, Co_3O_4, Cr_2O_3, MoO_2 and WO_3 microspheres were obtained. • A methodology to synthesize different metal oxides microspheres was developed.

  17. Histological Comparison of Kidney Tissue Following Radioembolization with Yttrium-90 Resin Microspheres and Embolization with Bland Microspheres

    International Nuclear Information System (INIS)

    Silva, Suresh de; Mackie, Simon; Aslan, Peter; Cade, David; Delprado, Warick

    2016-01-01

    BackgroundIntra-arterial brachytherapy with yttrium-90 ("9"0Y) resin microspheres (radioembolization) is a procedure to selectively deliver high-dose radiation to tumors. The purpose of this research was to compare the radioembolic effect of "9"0Y-radioembolization versus the embolic effect of bland microspheres in the porcine kidney model.MethodsIn each of six pigs, ~25–33 % of the kidney volume was embolized with "9"0Y resin microspheres and an equivalent number of bland microspheres in the contralateral kidney. Kidney volume was estimated visually from contrast-enhanced fluoroscopy imaging. Morphologic and histologic analysis was performed 8–9 weeks after the procedure to assess the locations of the microspheres and extent of tissue necrosis from "9"0Y-radioembolization and bland embolization. A semi-quantified evaluation of the non-acute peri-particle and perivascular tissue reaction was conducted. All guidelines for the care and use of animals were followed.ResultsKidneys embolized with "9"0Y-radioembolization decreased in mass by 30–70 % versus the contralateral kidney embolized with bland microspheres. These kidneys showed significant necrosis/fibrosis, avascularization, and glomerular atrophy in the immediate vicinity of the "9"0Y resin microspheres. By contrast, glomerular changes were not observed, even with clusters of bland microspheres in afferent arterioles. Evidence of a foreign body reaction was recorded in some kidneys with bland microspheres, and subcapsular scarring/infarction only with the highest load (4.96 × 10"6) of bland microspheres.ConclusionThis study showed that radioembolization with "9"0Y resin microspheres produces localized necrosis/fibrosis and loss of kidney mass in a porcine kidney model. This result supports the study of "9"0Y resin microspheres for the localized treatment of kidney tumors.

  18. Neutron transmission measurements on hydrogen filled microspheres

    International Nuclear Information System (INIS)

    Dyrnjaja, Eva; Hummel, Stefan; Keding, Marcus; Smolle, Marie-Theres; Gerger, Joachim; Zawisky, Michael

    2014-01-01

    Hollow microspheres are promising candidates for future hydrogen storage technologies. Although the physical process for hydrogen diffusion through glass is well understood, measurements of static quantities (e.q. hydrogen pressure inside the spheres) as well as dynamic properties (e.g. diffusion rate of hydrogen through glass) are still difficult to handle due to the small size of the spheres (d≈15μm). For diffusion rate measurements, the long-term stability of the experiment is also mandatory due to the relatively slow diffusion rate. In this work, we present an accurate and long-term stable measurement technique for static and dynamic properties, using neutron radiography. Furthermore, possible applications for hydrogen filled microspheres within the scope of radiation issues are discussed

  19. Optical Microspherical Resonators for Biomedical Sensing

    Directory of Open Access Journals (Sweden)

    Giancarlo C. Righini

    2011-01-01

    Full Text Available Optical resonators play an ubiquitous role in modern optics. A particular class of optical resonators is constituted by spherical dielectric structures, where optical rays are total internal reflected. Due to minimal reflection losses and to potentially very low material absorption, these guided modes, known as whispering gallery modes, can confer the resonator an exceptionally high quality factor Q, leading to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. These attractive characteristics make these miniaturized optical resonators especially suited as laser cavities and resonant filters, but also as very sensitive sensors. First, a brief analysis is presented of the characteristics of microspherical resonators, of their fabrication methods, and of the light coupling techniques. Then, we attempt to overview some of the recent advances in the development of microspherical biosensors, underlining a number of important applications in the biomedical field.

  20. Aptamer Based Microsphere Biosensor for Thrombin Detection

    Directory of Open Access Journals (Sweden)

    Xudong Fan

    2006-08-01

    Full Text Available We have developed an optical microsphere resonator biosensor using aptamer asreceptor for the measurement of the important biomolecule thrombin. The sphere surface ismodified with anti-thrombin aptamer, which has excellent binding affinity and selectivityfor thrombin. Binding of the thrombin at the sphere surface is monitored by the spectralposition of the microsphere’s whispering gallery mode resonances. A detection limit on theorder of 1 NIH Unit/mL is demonstrated. Control experiments with non-aptameroligonucleotide and BSA are also carried out to confirm the specific binding betweenaptamer and thrombin. We expect that this demonstration will lead to the development ofhighly sensitive biomarker sensors based on aptamer with lower cost and higher throughputthan current technology.

  1. Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection.

    Science.gov (United States)

    Kamra, Tripta; Zhou, Tongchang; Montelius, Lars; Schnadt, Joachim; Ye, Lei

    2015-01-01

    Molecularly imprinted polymers (MIPs) have a predesigned molecular recognition capability that can be used to build robust chemical sensors. MIP-based chemical sensors allow label-free detection and are particularly interesting due to their simple operation. In this work we report the use of thiol-terminated MIP microspheres to construct surfaces for detection of a model organic analyte, nicotine, by surface enhanced Raman scattering (SERS). The nicotine-imprinted microspheres are synthesized by RAFT precipitation polymerization and converted into thiol-terminated microspheres through aminolysis. The thiol groups on the MIP surface allow the microspheres to be immobilized on a gold-coated substrate. Three different strategies are investigated to achieve surface enhanced Raman scattering in the vicinity of the imprinted sites: (1) direct sputtering of gold nanoparticles, (2) immobilization of gold colloids through the MIP's thiol groups, and (3) trapping of the MIP microspheres in a patterned SERS substrate. For the first time we show that large MIP microspheres can be turned into selective SERS surfaces through the three different approaches of assembly. The MIP-based sensing surfaces are used to detect nicotine to demonstrate the proof of concept. As synthesis and surface functionalization of MIP microspheres and nanoparticles are well established, the methods reported in this work are handy and efficient for constructing label-free chemical sensors, in particular for those based on SERS detection.

  2. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  3. Transcatheter Arterial Chemoembolization (TACE) of Colorectal Cancer Liver Metastases by Irinotecan-Eluting Microspheres in a Salvage Patient Population

    Energy Technology Data Exchange (ETDEWEB)

    Huppert, Peter, E-mail: huppert@klinikum-darmstadt.de [Klinikum Darmstadt GmbH, Department of Diagnostic and Interventional Radiology (Germany); Wenzel, Thorsten [Klinikum Darmstadt GmbH, Department of Medical Oncology (Germany); Wietholtz, Hubertus [Klinikum Darmstadt GmbH, Department of Gastroenterology (Germany)

    2013-05-14

    PurposeThis prospective study evaluated the effectiveness and safety of TACE using irinotecan loaded superabsorbent polymer (SAP) microspheres for treatment of colorectal cancer liver metastases (CCLM) in a salvage setting of patients.MethodsA total of 71 TACE procedures were performed in 29 patients with liver only or liver-dominant CCLM. In all patients, systemic chemotherapy before TACE had failed. Two hundred milligrams of irinotecan were loaded into 50–100 mg of SAP microspheres (HepaSphere™ Microspheres) considering tumor size and vascularization. TACE was performed selectively with respect to tumor distribution. Response was evaluated following RECIST and EASL criteria, respectively. Median follow-up after last TACE was 8 (range 1–54) months. All patients had died at time of analysis.ResultsAll TACE procedures were performed successfully; 35–400 mg (mean 168.3 mg) of irinotecan loaded in 13–100 mg (mean 48.3 mg) SAP microspheres were injected during individual sessions. No major complications occurred. Three, 6, and 12 months after first TACE complete and partial response was present in 72, 32 %, 0 of patients by EASL criteria and stable disease was seen in 86, 48, and 8 % with no complete and no partial response by RECIST criteria. Median overall survival after first TACE was 8 months, and median time to progression was 5 months. Median overall survival was longer in patients with limited (<25 %) compared with extensive (>50 %) intrahepatic disease (21 vs. 5 months, p < 0.005).ConclusionsTACE using irinotecan loaded SAP microspheres is safe and effective in terms of tumor necrosis. Survival benefit in a salvage setting seems to be limited in patients with advanced intrahepatic tumor load.

  4. Preparation and Comparative Characterization of Alginate-Made Microcapsules and Microspheres Containing Tomato, Seabuckthorn Juices and Pumpkin Oil

    Directory of Open Access Journals (Sweden)

    Florina Csernatoni

    2015-05-01

    Full Text Available Recent studies have shown the benefits of tomatoes, seabuckthorn juices and pumpkin oil, rich in bioactives with antioxidant capacity, in the prevention of prostate diseases. To stabilize their antioxidant activity, microencapsulation represent a good technological alternative, improving the stability and bioavailability of bioactive molecules ( phenolic derivatives, carotenoids, phytosterols, vitamins.   The aim of the study was to prepare and characterize microspheres and microcapsules based on emulsions made of natural polymers like Natrium alginate mixed with tomato and/or seabuckthorn juices, with or without pumpkin oil.  The viscosity of emulsions, the morphology of microcapsules and microspheres were characterized comparatively and the bioactives were monitored by UV-Vis spectrometry.  In the lipophilic extract there were identified, before and after encapsulation, different classes of compounds, from lipids, to phenolic acid derivatives, flavonoids and carotenoids. Carotenoids were the major components having concentrations from 9.16 up to 19.71 mg/100 g sample. The viscosity of  each emulsion including juices, oil and natrium alginate 2%, before encapsulation, showed differences, dependent on the oil addition and speed of homogenization. The macroscopic and microscopic structure of microspheres and microcapsules were comparatively evaluated. Both microspheres and microcapsules had external diameters  ranging from 750 to 900 μm and the microcapsules’ oily core of 150-180 μm. The results obtained from emulsion’s viscosity will be correlated with the rigidity and optimal release rate of bioactive molecules from microcapsules and microspheres.  Further studies are directed towards these aspects.

  5. Sputter coating of microspherical substrates by levitation

    Science.gov (United States)

    Lowe, A.T.; Hosford, C.D.

    Microspheres are substantially uniformly coated with metals or nonmetals by simltaneously levitating them and sputter coating them at total chamber pressures less than 1 torr. A collimated hole structure comprising a parallel array of upwardly projecting individual gas outlets is machined out to form a dimple. Glass microballoons,, which are particularly useful in laser fusion applications, can be substantially uniformly coated using the coating method and apparatus.

  6. Tailored synthesis of monodispersed nano/submicron porous silicon oxycarbide (SiOC) spheres with improved Li-storage performance as an anode material for Li-ion batteries

    Science.gov (United States)

    Shi, Huimin; Yuan, Anbao; Xu, Jiaqiang

    2017-10-01

    A spherical silicon oxycarbide (SiOC) material (monodispersed nano/submicron porous SiOC spheres) is successfully synthesized via a specially designed synthetic strategy involving pyrolysis of phenyltriethoxysilane derived pre-ceramic polymer spheres at 900 °C. In order to prevent sintering of the pre-ceramic polymer spheres upon heating, a given amount of hollow porous SiO2 nanobelts which are separately prepared from tetraethyl orthosilicate with CuO nanobelts as templates are introduced into the pre-ceramic polymer spheres before pyrolysis. This material is investigated as an anode for lithium-ion batteries in comparison with the large-size bulk SiOC material synthesized under the similar conditions but without hollow SiO2 nanobelts. The maximum reversible specific capacity of ca. 900 mAh g-1 is delivered at the current density of 100 mA g-1 and ca. 98% of the initial capacity is remained after 100 cycles at 100 mA g-1 for the SiOC spheres material, which are much superior to the bulk SiOC material. The improved lithium storage performance in terms of specific capacity and cyclability is attributed to its particular morphology of monodisperse nano/submicron porous spheres as well as its modified composition and microstructure. This SiOC material has higher Li-storage activity and better stability against volume expansion during repeated lithiation and delithiation cycling.

  7. Syringe-vacuum microfluidics: A portable technique to create monodisperse emulsions.

    Science.gov (United States)

    Abate, Adam R; Weitz, David A

    2011-03-16

    We present a simple method for creating monodisperse emulsions with microfluidic devices. Unlike conventional approaches that require bulky pumps, control computers, and expertise with device physics to operate devices, our method requires only the microfluidic device and a hand-operated syringe. The fluids needed for the emulsion are loaded into the device inlets, while the syringe is used to create a vacuum at the device outlet; this sucks the fluids through the channels, generating the drops. By controlling the hydrodynamic resistances of the channels using hydrodynamic resistors and valves, we are able to control the properties of the drops. This provides a simple and highly portable method for creating monodisperse emulsions.

  8. Ultrasound-driven Megahertz Faraday Waves for Generation of Monodisperse Micro Droplets and Applications

    Science.gov (United States)

    Tsai, Chen S.; Mao, Rong W.; Lin, Shih K.; Tsai, Shirley C.; Boss, Gerry; Brenner, Matt; Smaldone, Gerry; Mahon, Sari; Shahverdi, Kaveh; Zhu, Yun

    Our theoretical findings on instability of Faraday waves at megahertz (MHz) drive frequency and realization of silicon-based MHz multiple-Fourier horn ultrasonic nozzles (MFHUNs) together have enabled generation of mono-disperse droplets of controllable diameter (2.5-6.0 μm) at very low electrical drive power (generator has imminent application to pulmonary (inhalation) drug delivery and other potential applications. Here an update of advances on analysis and design of the MHz MFHUNs and the underlying physical mechanism for generation of mono-disperse micro droplets, and the nebulizer platform for application to detoxification of cyanide poisoning are presented.

  9. Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals.

    Science.gov (United States)

    Reese, Chad E; Asher, Sanford A

    2002-04-01

    We have developed emulsifier-free, emulsion polymerization recipes for the synthesis of highly charged, monodisperse latex particles of diameters between 500 and 1100 nm. These latexes consist of poly[styrene-(co-2-hydroxyethyl methacrylate)] spherical particles whose surfaces are functionalized with sulfate and carboxylic acid groups. These highly charged, monodisperse particles readily self-assemble into robust, three-dimensionally ordered crystalline colloidal array photonic crystals that Bragg diffract light in the near infrared spectral region. By altering the particle number density, the diffraction wavelength can be tuned from approximately 1000 to approximately 4000 nm.

  10. Glass microspheres covering film: first field evaluations

    International Nuclear Information System (INIS)

    Magnani, G.; Filippi, F.

    2006-01-01

    A trial was carried out to evaluate, in the North-Centre of Italy, the behaviour in field of a new plastic covering film, prepared with the inclusion of empty glass microspheres (Solex). The trial was conducted on tomato (Lycopersicon esculentum L.) and eggplant (Solanum melongena L.). The new film was compared to a covering film with the same optical (diffuse light) and constitutional (co-extruded three layers EVA-WPE) characteristics. Since the first results, the innovative film showed a better behaviour than the control one. It presented light and thermal conditions (lower temperature during the day and slightly higher temperature in the night, compared to the control film) that allowed a better growth and yield than the control film. The growth analysis of tomato showed that plants grown under glass microsphere film had an higher growth rate (dry weight/days) and thickness of leaves compared to the control one. The yield of tomato and eggplant presented an increase in plants cultivated under the innovative film, especially for number and weight of fruits. The commercial quality did not show any differences between the films, except for the flesh hardness of tomato: this could be explained with the fact that the glass microspheres film provides environmental conditions avoiding plant stress during some stages of its cycle [it

  11. Yttrium-90 microsphere induced gastrointestinal tract ulceration

    Directory of Open Access Journals (Sweden)

    Rikabi Ali A

    2008-09-01

    Full Text Available Abstract Background Radiomicrosphere therapy (RT utilizing yttrium-90 (90Y microspheres has been shown to be an effective regional treatment for primary and secondary hepatic malignancies. We sought to determine a large academic institution's experience regarding the extent and frequency of gastrointestinal complications. Methods Between 2004 and 2007, 27 patients underwent RT for primary or secondary hepatic malignancies. Charts were subsequently reviewed to determine the incidence and severity of GI ulceration. Results Three patients presented with gastrointestinal bleeding and underwent upper endoscopy. Review of the pretreatment angiograms showed normal vascular anatomy in one patient, sclerosed hepatic vasculature in a patient who had undergone prior chemoembolization in a second, and an aberrant left hepatic artery in a third. None had undergone prophylactic gastroduodenal artery embolization. Endoscopic findings included erythema, mucosal erosions, and large gastric ulcers. Microspheres were visible on endoscopic biopsy. In two patients, gastric ulcers were persistent at the time of repeat endoscopy 1–4 months later despite proton pump inhibitor therapy. One elderly patient who refused surgical intervention died from recurrent hemorrhage. Conclusion Gastrointestinal ulceration is a known yet rarely reported complication of 90Y microsphere embolization with potentially life-threatening consequences. Once diagnosed, refractory ulcers should be considered for aggressive surgical management.

  12. Adsorption behavior of protein onto siloxane microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu Bailing [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)]. E-mail: Blliuchem@hotmail.com; Cao Shunsheng [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Deng Xiaobo [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Li Songjun [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Luo Rong [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)

    2006-09-15

    The siloxane microspheres with core-shell structure (PMMA/PMPS) (MMA, methyl methacrylate; MPS, 3-methacryloxypropyl-trimethoxysilane) have been prepared by dispersion polymerization as described in our previous work. In this paper, the developed poly(MMA-MPS) microspheres, as a carrier, are used to investigate the adsorption behavior of bovine serum albumin (BSA) on them. The Langmuir and Freundlich models have been applied to describe the adsorption behavior. The experimental results indicated that the presence of PMPS evidently increases the adsorption rate and the amount of protein, and it also influences the interaction of BSA molecules. The adsorption of BSA on the poly(MMA-MPS) microspheres seems to be sensitive to pH and ionic strength. The fittings curves from Langmuir and Freundlich models showed that the adsorption was actually more complicated than ideal situation because one or more interactions were involved in the process. For understanding the electronic contribution, the Zeta potential was used to measure the reactive system before and after protein adsorption.

  13. Adsorption behavior of protein onto siloxane microspheres

    International Nuclear Information System (INIS)

    Liu Bailing; Cao Shunsheng; Deng Xiaobo; Li Songjun; Luo Rong

    2006-01-01

    The siloxane microspheres with core-shell structure (PMMA/PMPS) (MMA, methyl methacrylate; MPS, 3-methacryloxypropyl-trimethoxysilane) have been prepared by dispersion polymerization as described in our previous work. In this paper, the developed poly(MMA-MPS) microspheres, as a carrier, are used to investigate the adsorption behavior of bovine serum albumin (BSA) on them. The Langmuir and Freundlich models have been applied to describe the adsorption behavior. The experimental results indicated that the presence of PMPS evidently increases the adsorption rate and the amount of protein, and it also influences the interaction of BSA molecules. The adsorption of BSA on the poly(MMA-MPS) microspheres seems to be sensitive to pH and ionic strength. The fittings curves from Langmuir and Freundlich models showed that the adsorption was actually more complicated than ideal situation because one or more interactions were involved in the process. For understanding the electronic contribution, the Zeta potential was used to measure the reactive system before and after protein adsorption

  14. Magnetic poly(2-hydroxyethyl methacrylate) microspheres for affinity purification of monospecific anti-p46 kDa/Myo1C antibodies for early diagnosis of multiple sclerosis patients

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Hlídková, Helena; Kit, Y.; Antonyuk, V.; Myronovsky, S.; Stoika, R.

    2017-01-01

    Roč. 37, č. 2 (2017), s. 1-10, č. článku BSR20160526. ISSN 0144-8463 R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : poly(2-hydroxyethyl methacrylate) * magnetic microspheres * affinity purification Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.906, year: 2016

  15. The high surface energy of NiO {110} facets incorporated into TiO{sub 2} hollow microspheres by etching Ti plate for enhanced photocatalytic and photoelectrochemical activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Cui, Hongzhi, E-mail: cuihongzhi1965@163.com; Song, Xiaojie; Wei, Na; Tian, Jian, E-mail: jiantian@sdust.edu.cn

    2017-02-28

    Highlights: • NiO/TiO{sub 2} hollow microspheres were fabricated by etching Ti plate. • The incorporated NiO nanoparticles exposed high surface energy {110} facets. • The p–n junction catalysts improved photoelectrochemical and photocatalytic activity. • Using this synthesis strategy, other mixed semiconducting metal oxide microspheres. - Abstract: We present a rational design for the controllable synthesis of NiO/TiO{sub 2} hollow microspheres (NTHMs) with Ti plate via a one-pot template-free synthesis strategy. Specifically, to enhance the formation of hollow microspheres, part of the titanium source is provided by the Ti plate. The hollow spherical NiO/TiO{sub 2} particles possess unique microstructural characteristics, namely, a higher specific surface area (∼65.82 m{sup 2} g{sup −1}), a larger mesoporous structure (∼7.79 nm), and hierarchical nanoarchitectures connected with mesopores within the shell (monodispersed size of ∼1 μm and shell thickness of ∼80 nm). In addition, as a cocatalyst for improved catalytic activity, the incorporated NiO nanoparticles with exposed high surface energy {110} facets displayed an outstanding performance. It has been proven that this facile nanostructure possesses remarkably high photoelectrochemical and photocatalytic activities. The main mechanism for enhancement of photocatalytic activity is attributed to the construction of p-n junctions with an inner electric field between TiO{sub 2} and NiO, which can dramatically enhance the separation efficiency of the photogenerated electron-hole pairs. This strategy could be applied to fabricate mixed metal oxide hollow microspheres toward the photoelectrochemical catalysis.

  16. Subcritical CO{sub 2} sintering of microspheres of different polymeric materials to fabricate scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Bhamidipati, Manjari; Sridharan, BanuPriya [Bioengineering Graduate Program, University of Kansas, Lawrence, KS (United States); Scurto, Aaron M. [Bioengineering Graduate Program, University of Kansas, Lawrence, KS (United States); Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS (United States); Detamore, Michael S., E-mail: detamore@ku.edu [Bioengineering Graduate Program, University of Kansas, Lawrence, KS (United States); Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS (United States)

    2013-12-01

    The aim of this study was to use CO{sub 2} at sub-critical pressures as a tool to sinter 3D, macroporous, microsphere-based scaffolds for bone and cartilage tissue engineering. Porous scaffolds composed of ∼ 200 μm microspheres of either poly(lactic-co-glycolic acid) (PLGA) or polycaprolactone (PCL) were prepared using dense phase CO{sub 2} sintering, which were seeded with rat bone marrow mesenchymal stromal cells (rBMSCs), and exposed to either osteogenic (PLGA, PCL) or chondrogenic (PLGA) conditions for 6 weeks. Under osteogenic conditions, the PLGA constructs produced over an order of magnitude more calcium than the PCL constructs, whereas the PCL constructs had far superior mechanical and structural integrity (125 times stiffer than PLGA constructs) at week 6, along with twice the cell content of the PLGA constructs. Chondrogenic cell performance was limited in PLGA constructs, perhaps as a result of the polymer degradation rate being too high. The current study represents the first long-term culture of CO{sub 2}-sintered microsphere-based scaffolds, and has established important thermodynamic differences in sintering between the selected formulations of PLGA and PCL, with the former requiring adjustment of pressure only, and the latter requiring the adjustment of both pressure and temperature. Based on more straightforward sintering conditions and more favorable cell performance, PLGA may be the material of choice for microspheres in a CO{sub 2} sintering application, although a different PLGA formulation with the encapsulation of growth factors, extracellular matrix-derived nanoparticles, and/or buffers in the microspheres may be advantageous for achieving a more superior cell performance than observed here. - Highlights: • The first long-term culture of CO{sub 2}-sintered microsphere-based scaffolds. • Established important thermodynamic differences between sintering PLGA and PCL. • PCL sintering with CO{sub 2} required manipulation of both

  17. Determination of vitamin E acid succinate in biodegradable microspheres by reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Martínez Sancho, C; Herrero Vanrell, R; Negro, S

    2004-01-01

    A simple, rapid, and reproducible reversed-phase high-performance liquid chromatographic (HPLC) method is applied to the routine assay of vitamin E acid succinate in biodegradable microspheres. Vitamin E acid-succinate-containing poly-(D,L-lactic-co-glycolic acid) microspheres are prepared by the solvent evaporation method. The starting drug-polymer ratio is 1:10 (w/w) and the total amount of drug and polymer processed is always 440 mg. The content of vitamin E acid succinate in the microspheres is evaluated by HPLC. Chromatography is carried out isocratically at 25 degrees C +/- 0.5 degrees C on an Extrasil ODS-2 column with a mobile phase composed of methanol-water (97:3, v/v) (pH 5.6) at a flow rate of 2 mL/min and UV detection at 284 nm. Parameters such as linearity, limits of quantitation (LOQ) and detection (LOD), precision, accuracy, recovery, specificity, and ruggedness are studied as reported in the International Conference on Harmonization guidelines. The stability of vitamin E acid succinate is also studied with satisfactory results after 48 h at 25 degrees C. The method is selective and linear for drug concentrations in the range 15-210 micro g/mL. The LOQ and LOD are 15 and 3 micro g/mL, respectively. The results for accuracy studies are good. Values for coefficient of variation for intra- and interassay are 2.08% and 2.32%, respectively. The mean percentage of vitamin E acid succinate in the recovery studies is 99.52% +/- 0.81%. The mean loading efficiency for microspheres is 96.53% +/- 1.31%.

  18. Preparation of microspheres containing methyl methacrylate (MMA) with magnetic nanoparticles; Preparacao de microesferas contendo metacrilato de metila (PMMA) com nanoparticulas magneticas

    Energy Technology Data Exchange (ETDEWEB)

    Feuser, P.E.; Souza, M.N. de, E-mail: paulofeuser@hotmail.co, E-mail: nele@eq.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Quimica

    2010-07-01

    Magnetic nanoparticles have found many technological applications and has been intensively studied due to its special magnetic properties. In most biomedical applications, microspheres containing magnetic nanoparticles is used as a vehicle for transporting drugs, presenting several advantages when compared to other conventional methods. PMMA is a polymer which has biocompatibility and can be used for the encapsulation of magnetic nanoparticles, showing a great degree of saturation magnetization. PMMA microparticles containing magnetic nanoparticles were prepared by suspension polymerization. Polymers containing magnetic nanoparticles were characterized by X-ray diffraction (XRD), vibrating sample magnetization, thermogravimetric analysis, optical microscopy, chromatography gel permeation, analysis of particle size - malversizer 2000 (Malvern Instruments). The average size of magnetic nanoparticles was approximately 150 {mu}m and depending on the amount of magnetic nanoparticles in the reaction medium Mw of microspheres can be altered. (author)

  19. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  20. Controlling silk fibroin microspheres via molecular weight distribution

    International Nuclear Information System (INIS)

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui; Zhang, Ke-Qin

    2015-01-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K 2 HPO 4 –KH 2 PO 4 ). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength > 0.7 M and pH > 7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications. - Highlights: • MW distribution was changed by applying different dissolving methods of SF fiber. • Smaller and narrower MW distribution improves the quality of SF microspheres. • Size and polydispersity of microspheres increase as SF concentration increases. • Improved SF microspheres have potential in drug and gene delivery applications

  1. Toward quantum-limited position measurements using optically levitated microspheres

    International Nuclear Information System (INIS)

    Libbrecht, Kenneth G.; Black, Eric D.

    2004-01-01

    We propose the use of optically levitated microspheres as test masses in experiments aimed at reaching and potentially exceeding the standard quantum limit for position measurements. Optically levitated microspheres have low mass and are essentially free of suspension thermal noise, making them well suited for experimentally testing our understanding of quantum-limited measurements

  2. Toward quantum-limited position measurements using optically levitated microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Libbrecht, Kenneth G.; Black, Eric D

    2004-01-26

    We propose the use of optically levitated microspheres as test masses in experiments aimed at reaching and potentially exceeding the standard quantum limit for position measurements. Optically levitated microspheres have low mass and are essentially free of suspension thermal noise, making them well suited for experimentally testing our understanding of quantum-limited measurements.

  3. Preparation of mesoporous zirconia microspheres as inert matrix

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ting [State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Wang, Chen; Lv, Jinlong [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China)

    2016-12-01

    Mesoporous zirconia microspheres, with a diameter of 900 μm, were prepared as an inert accelerator driven system (ADS) transmutation element matrix by the sol-gel method. The purpose of mesopores is to improve the adsorption capacity of inert matrix fuel (IMF) for minor actinides. The study indicated that the mesoporous zirconia performance was improved after the microspheres were hydrothermally treated at 150 °C, the specific surface area increased from 28.29 m{sup 2}/g to 61.28 m{sup 2}/g, and hydrothermal treatment avoided the cracking of the microspheres. Pre-decomposition of the organics during the hydrothermal process stabilized the mesoporous structure. The average pore diameter of mesoporous microsphere was 14.3 nm. - Highlights: • Mesoporous zirconia microspheres with a diameter of 900 μm were prepared as ADS transmutation element inert matrix. • The mesoporous performance was improved after the microspheres were hydrothermally treated at 150 °C. • The specific surface area increased from 28.29 m{sup 2}/g to 61.28 m{sup 2}/g. • The hydrothermal treatment could avoid the cracking of the microspheres. • The specific surface area of mesoporous microsphere was 61.28 m{sup 2}/g and the average pore diameter was 14.3 nm.

  4. Antibacterial activity of ciprofloxacin-loaded zein microsphere films

    International Nuclear Information System (INIS)

    Fu Jianxi; Wang Huajie; Zhou Yanqing; Wang Jinye

    2009-01-01

    Our aim was to produce an antibiotic-emitting coating composed of zein microspheres for the prevention of bacterial infection on implanted devices. Ciprofloxacin-loaded zein microspheres were prepared using a phase separation procedure, with particle sizes between 0.5 and 2 μm. Drug encapsulation and drug loading varied with the amount of both zein and ciprofloxacin, and the highest encapsulation efficiency was 8.27% (2 mg/ml ciprofloxacin and 20 mg/ml zein; n = 3). A ciprofloxacin-loaded zein microsphere film (CF-MS film) was generated via solvent evaporation. Continuous drug release from a trypsin-degraded microsphere film was observed for up to 28 days. The liberation of ciprofloxacin from the trypsin-degraded film and the biodegradation of the microsphere film were highly correlated. Proliferation assay of the growth of human umbilical vein endothelial cells (HUVECs) by the MTT method showed that the microsphere film had no toxicity when compared with cells grown on Corning culture plates alone and plates with a zein film alone. Quantification of bacteria adhesion showed that adhesion on the microsphere film is significantly suppressed. In addition, according to the results of bacterial growth tests, ciprofloxacin-loaded microsphere films maintained antibacterial activity for more than 6 days. In contrast, a control medium containing a zein film allowed constant bacterial growth. These results indicate that CF-MS films might be useful as antibacterial films on implanted devices.

  5. Apparatus for manufacturing ceramics microspheres for cementing applications

    NARCIS (Netherlands)

    2012-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The micro spheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about Illbs/g. The resultant cement slurry may then be

  6. Controlling silk fibroin microspheres via molecular weight distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Zhang, Ke-Qin, E-mail: kqzhang@suda.edu.cn [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-05-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K{sub 2}HPO{sub 4}–KH{sub 2}PO{sub 4}). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength > 0.7 M and pH > 7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications. - Highlights: • MW distribution was changed by applying different dissolving methods of SF fiber. • Smaller and narrower MW distribution improves the quality of SF microspheres. • Size and polydispersity of microspheres increase as SF concentration increases. • Improved SF microspheres have potential in drug and gene delivery applications.

  7. Porous-wall hollow glass microspheres as carriers for biomolecules

    Science.gov (United States)

    Li, Shuyi; Dynan, William S; Wicks, George; Serkiz, Steven

    2013-09-17

    The present invention includes compositions of porous-wall hollow glass microspheres and one or more biomolecules, wherein the one or more biomolecules are positioned within a void location within the hollow glass microsphere, and the use of such compositions for the diagnostic and/or therapeutic delivery of biomolecules.

  8. Antibacterial activity of ciprofloxacin-loaded zein microsphere films

    Energy Technology Data Exchange (ETDEWEB)

    Fu Jianxi [Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 (China); Henan Normal University, 46 East Construction Road, Xinxiang, Henan 453007 (China); Wang Huajie [College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Zhou Yanqing [Henan Normal University, 46 East Construction Road, Xinxiang, Henan 453007 (China); Wang Jinye, E-mail: jywang@mail.sioc.ac.cn [Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 (China); College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)

    2009-05-05

    Our aim was to produce an antibiotic-emitting coating composed of zein microspheres for the prevention of bacterial infection on implanted devices. Ciprofloxacin-loaded zein microspheres were prepared using a phase separation procedure, with particle sizes between 0.5 and 2 {mu}m. Drug encapsulation and drug loading varied with the amount of both zein and ciprofloxacin, and the highest encapsulation efficiency was 8.27% (2 mg/ml ciprofloxacin and 20 mg/ml zein; n = 3). A ciprofloxacin-loaded zein microsphere film (CF-MS film) was generated via solvent evaporation. Continuous drug release from a trypsin-degraded microsphere film was observed for up to 28 days. The liberation of ciprofloxacin from the trypsin-degraded film and the biodegradation of the microsphere film were highly correlated. Proliferation assay of the growth of human umbilical vein endothelial cells (HUVECs) by the MTT method showed that the microsphere film had no toxicity when compared with cells grown on Corning culture plates alone and plates with a zein film alone. Quantification of bacteria adhesion showed that adhesion on the microsphere film is significantly suppressed. In addition, according to the results of bacterial growth tests, ciprofloxacin-loaded microsphere films maintained antibacterial activity for more than 6 days. In contrast, a control medium containing a zein film allowed constant bacterial growth. These results indicate that CF-MS films might be useful as antibacterial films on implanted devices.

  9. Microspheres with Ultrahigh Holmium Content for Radioablation of Malignancies

    NARCIS (Netherlands)

    Bult, W.; Seevinck, P.R.; Krijger, G.C.; Visser, T.; Kroon-Batenburg, L.M.J.; Bakker, C.J.G.; Hennink, W.E.; van het Schip, A.D.; Nijsen, J.F.W.

    2009-01-01

    The aim of this study was to develop microspheres with an ultra high holmium content which can be neutron activated for radioablation of malignancies. These microspheres are proposed to be delivered selectively through either intratumoral injections into solid tumors or administered via an

  10. Microspheres with ultrahigh holmium content for radioablation of malignancies

    NARCIS (Netherlands)

    Bult, W; Seevinck, P R; Krijger, G C; Visser, T; Kroon-Batenburg, L M J; Bakker, C J G; Hennink, W E; van het Schip, A D; Nijsen, J F W

    PURPOSE: The aim of this study was to develop microspheres with an ultra high holmium content which can be neutron activated for radioablation of malignancies. These microspheres are proposed to be delivered selectively through either intratumoral injections into solid tumors or administered via an

  11. Microspheres with Ultrahigh Holmium Content for Radioablation of Malignancies

    NARCIS (Netherlands)

    Bult, W.; Seevinck, P.R.; Krijger, G.C.; Visser, T.; Kroon-Batenburg, L.M.J.; Bakker, C.J.G.; Hennink, W.E.; Van het Schip, A.D.; Nijsen, J.F.W.

    Purpose The aim of this study was to develop microspheres with an ultra high holmium content which can be neutron activated for radioablation of malignancies. These microspheres are proposed to be delivered selectively through either intratumoral injections into solid tumors or administered via an

  12. Assembly of Fe3O4 nanoparticles on SiO2 monodisperse spheres

    Indian Academy of Sciences (India)

    Assembly of Fe3O4 nanoparticles on SiO2 monodisperse spheres. K C BARICK and D BAHADUR*. Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay,. Mumbai 400 076, India. Abstract. The assembly of superparamagnetic Fe3O4 nanoparticles on submicroscopic SiO2 ...

  13. Tri-block copolymers with mono-disperse crystallizable diamide segments: synthesis, analysis and rheological properties

    NARCIS (Netherlands)

    Araichimani, A.; Gaymans, R.J.

    2008-01-01

    Tri-block copolymers with polyether mid-segments and mono-disperse amide end segments were synthesized, analyzed and some properties studied. The end segment was an aromatic diamide (diaramide, TΦB). The polyether mid-segment was a difunctional poly(tetramethylene oxide) (PTMO, 1000 and 2900 g/mol).

  14. Hydrophilic segmented block copolymers based on poly(ethylene oxide) and monodisperse amide segments

    NARCIS (Netherlands)

    Husken, D.; Feijen, Jan; Gaymans, R.J.

    2007-01-01

    Segmented block copolymers based on poly(ethylene oxide) (PEO) flexible segments and monodisperse crystallizable bisester tetra-amide segments were made via a polycondensation reaction. The molecular weight of the PEO segments varied from 600 to 4600 g/mol and a bisester tetra-amide segment (T6T6T)

  15. Room temperature vortex fluidic synthesis of monodispersed amorphous proto-vaterite.

    Science.gov (United States)

    Peng, Wenhong; Chen, Xianjue; Zhu, Shenmin; Guo, Cuiping; Raston, Colin L

    2014-10-11

    Monodispersed particles of amorphous calcium carbonate (ACC) 90 to 200 nm in diameter are accessible at room temperature in ethylene glycol and water using a vortex fluidic device (VFD). The ACC material is stable for at least two weeks under ambient conditions.

  16. Hollow porous-wall glass microspheres for hydrogen storage

    Science.gov (United States)

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  17. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    Science.gov (United States)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A.; Brown, Gilbert M.

    2017-04-11

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.

  18. Long pulse microsphere experiments at 3 TW

    International Nuclear Information System (INIS)

    Boyle, M.J.; Attwood, D.T.; Brooks, K.M.

    1977-01-01

    Previous 1.06 μm laser implosion experiments have explored the parameter space associated with microsphere targets of typically less than 100 psec. Exploding pusher experiments have now been performed using long pulses (100 to 200 psec FWHM), and large diameter (100 to 150 μm) targets on the 3 TW Argus laser facility. Absorption, transport, implosion and neutron and α yield characteristics are discussed and compared with earlier short pulse results. The observed neutron yields are discussed in light of the temporal mismatch between the absorption and implosion time scales imposed by the large diameter, long pulse conditions

  19. Polymer compound

    NARCIS (Netherlands)

    1995-01-01

    A Polymer compound comprising a polymer (a) that contains cyclic imidesgroups and a polymer (b) that contains monomer groups with a 2,4-diamino-1,3,5-triazine side group. According to the formula (see formula) whereby themole percentage ratio of the cyclic imides groups in the polymer compoundwith

  20. Synthesis of Zn-doped TiO{sub 2} microspheres with enhanced photovoltaic performance and application for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China); Wang Lingling [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China); State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012 (China); Liu Bingkun; Zhai Jiali; Fan Haimei; Wang Dejun; Lin Yanhong [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China); Xie Tengfeng, E-mail: xietf@jlu.edu.cn [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China)

    2011-07-15

    Highlights: > Near-monodisperse Zn-doped TiO{sub 2} microspheres have been synthesized. > The photovoltaic properties of the samples were examined by SPS, FISPS and TPV measurements. > Surface photovoltage results revealed Zn doping can promote charge transfer in TiO{sub 2} film electrode. - Abstract: Zn-doped TiO{sub 2} microspheres have been synthesized by introducing a trace amount of zinc nitrate hexahydrate to the reaction system. Scanning electron microscope (SEM), field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) have been utilized to characterize the samples. Both surface photovoltage spectroscopy (SPS) technique based on lock-in amplifier and transient photovoltage (TPV) measurement reveal that the slight doping of Zn can promote the separation of photo-generated charges as well as restrain the recombination due to the strong interface built-in electric field and the decreasing of surface trap states. The photovoltaic parameters of dye-sensitized solar cells (DSSCs) based on Zn-doped TiO{sub 2} are significantly better, compared to that of a cell based on undoped TiO{sub 2}. The relation between the performance of DSSCs and their photovoltaic properties is also discussed.

  1. pH- and temperature-sensitive polymeric microspheres for drug delivery: the dissolution of copolymers modulates drug release.

    Science.gov (United States)

    Fundueanu, Gheorghe; Constantin, Marieta; Stanciu, Cristina; Theodoridis, Georgios; Ascenzi, Paolo

    2009-12-01

    Most pH-/temperature-responsive polymers for controlled release of drugs are used as cross-linked hydrogels. However, the solubility properties of the linear polymers below and above the lower critical solution temperature (LCST) are not exploited. Here, the preparation and characterization of poly (N-isopropylacrylamide-co-methacrylic acid-co-methyl methacrylate) (poly (NIPAAm-co-MA-co-MM)) and poly (N-isopropylacrylamide-co-acrylamide) (poly (NIPAAm-co-AAm)), known as "smart" polymers (SP), is reported. Both poly (NIPAAm-co-MA-co-MM) and poly (NIPAAm-co-AAm) display pH- and temperature-responsive properties. Poly (NIPAAm-co-MA-co-MM) was designed to be insoluble in the gastric fluid (pH = 1.2), but soluble in the intestinal fluid (pH = 6.8 and 7.4), at the body temperature (37 degrees C). Poly (NIPAAm-co-AAm) was designed to have a lower critical solution temperature (LCST) corresponding to 37 degrees C at pH = 7.4, therefore it is not soluble above the LCST. The solubility characteristics of these copolymers were exploited to modulate the rate of release of drugs by changing pH and/or temperature. These copolymers were solubilized with hydrophobic cellulose acetate butyrate (CAB) and vitamin B(12) (taken as a water soluble drug model system) in an acetone/methanol mixture and dispersed in mineral oil. By a progressive evaporation of the solvent, the liquid droplets were transformed into loaded CAB/SP microspheres. Differential scanning calorimetric studies and scanning electron microscopy analysis demonstrated that the polymeric components of the microspheres precipitated separately during solvent evaporation forming small microdomains. Moreover, vitamin B(12) was found to be molecularly dispersed in both microdomains with no specific affinity for any polymeric component of microspheres. The release of vitamin B(12) was investigated as a function of temperature, pH, and the CAB/SP ratio.

  2. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  3. Mass-produced lonophore-based fluorescent microspheres for trace level determination of lead ions.

    Science.gov (United States)

    Telting-Diaz, Martin; Bakker, Eric

    2002-10-15

    The development and characterization of small, uniform, and mass-produced plasticized PVC-based sensing microspheres in view of rapid trace level analysis of lead ions is reported. Micrometer-sized particles obtained via an automated casting process were rendered selective for lead ions by doping them with highly selective components in a manner analogous to traditional optode sensing films. Single particles that contained the lipophilic ionophore N,N,N',N'-tetradodecyl-3-6-dioxaoctane-1-thio-8-oxodiamide (ETH 5493), the chromoionophore ETH 5418 together with a lipophilized indocarbocyanine derivative as internal reference dye (DiIC18), and lipophilic ion-exchanger sites sodium tetrakis[3,5-bistrifluoromethylphenyl]borate, yielded measurable lead responses at the low nanomolar level in pH buffered solutions. The detection limit for single particles was 3 x 10(-9) M at pH 5.7. The microspheres were fabricated via a reproducible formation of polymer droplets within a flowing aqueous phase followed by collection of spherical particles of approximately 13 microm in size. The particles were immobilized and assayed individually in a microflow cell via fluorescence microscopy. Selectivity patterns found were in agreement with those reported earlier for the lead-selective ligand ETH 5493, and all response functions were fully described by theory. In contrast to optode films that necessitated very long equilibration times and large sample volumes in diluted samples of analyte, particles exhibited extremely enhanced equilibrium response times. Thus, for lead sample concentrations at and above 5 x 10(-8) M, response times were approximately 3 min, whereas at the detection limit, complete equilibrium was recorded after just 15 min, with required sample volumes on the order of 1 mL This new class of microspheres appears to be suitable for rapid and sensitive ion detection at trace levels in environmental and biological applications.

  4. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries.

    Science.gov (United States)

    Xia, Yang; Xiao, Zhen; Dou, Xiao; Huang, Hui; Lu, Xianghong; Yan, Rongjun; Gan, Yongping; Zhu, Wenjun; Tu, Jiangping; Zhang, Wenkui; Tao, Xinyong

    2013-08-27

    Hollow porous micro/nanostructures with high surface area and shell permeability have attracted tremendous attention. Particularly, the synthesis and structural tailoring of diverse hollow porous materials is regarded as a crucial step toward the realization of high-performance electrode materials, which has several advantages including a large contact area with electrolyte, a superior structural stability, and a short transport path for Li(+) ions. Meanwhile, owing to the inexpensive, abundant, environmentally benign, and renewable biological resources provided by nature, great efforts have been devoted to understand and practice the biotemplating technology, which has been considered as an effective strategy to achieve morphology-controllable materials with structural specialty, complexity, and related unique properties. Herein, we are inspired by the natural microalgae with its special features (easy availability, biological activity, and carbon sources) to develop a green and facile biotemplating method to fabricate monodisperse MnO/C microspheres for lithium-ion batteries. Due to the unique hollow porous structure in which MnO nanoparticles were tightly embedded into a porous carbon matrix and form a penetrative shell, MnO/C microspheres exhibited high reversible specific capacity of 700 mAh g(-1) at 0.1 A g(-1), excellent cycling stability with 94% capacity retention, and enhanced rate performance of 230 mAh g(-1) at 3 A g(-1). This green, sustainable, and economical strategy will extend the scope of biotemplating synthesis for exploring other functional materials in various structure-dependent applications such as catalysis, gas sensing, and energy storage.

  5. Measurement of thermal diffusivity of depleted uranium metal microspheres

    Science.gov (United States)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-03-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  6. Measurement of thermal diffusivity of depleted uranium metal microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Humrickhouse-Helmreich, Carissa J., E-mail: carissahelmreich@tamu.edu [Texas A and M University, Department of Nuclear Engineering, 337 Zachry Engineering Center, 3133 TAMU, College Station, TX 77843 (United States); Corbin, Rob, E-mail: rcorbin@terrapower.com [TerraPower, LLC, 330 120th Ave NE, Suite 100, Bellevue, WA 98005 (United States); McDeavitt, Sean M., E-mail: mcdeavitt@tamu.edu [Texas A and M University, Department of Nuclear Engineering, 337 Zachry Engineering Center, 3133 TAMU, College Station, TX 77843 (United States)

    2014-03-15

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time–temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  7. Preparation of nano-hydroxyapatite/poly(l-lactide) biocomposite microspheres

    International Nuclear Information System (INIS)

    Qiu Xueyu; Han Yadong; Zhuang Xiuli; Chen Xuesi; Li Yuesheng; Jing Xiabin

    2007-01-01

    Nano-hydroxyapatite (HA)/poly(l-lactide) (PLLA) composite microspheres with relatively uniform size distribution were prepared by a solid-in-oil-in-water (s/o/w) emusion solvent evaporation method. The encapsulation of the HA nanopaticles in microshperes was significantly improved by grafting PLLA on the surface of the HA nanoparticles (p-HA) during emulsion process. This procedure gave a possibility to obtain p-HA/PLLA composite microspheres with uniform morphology and the encapsulated p-HA nanoparticle loading reached up to 40 wt% (33 wt% of pure HA) in the p-HA/PLLA composite microspheres. The microstructure of composite microspheres from core-shell to single phase changed with the variation of p-HA to PLLA ratios. p-HA/PLLA composite microspheres with the diameter range of 2-3 μm were obtained. The entrapment efficiency of p-HA in microspheres could high up to 90 wt% and that of HA was only 13 wt%. Surface and bulk characterizations of the composite microspheres were performed by measurements such as wide angle X-ray diffraction (WAXD), thermal gravimetric analysis (TGA), environmental scanning electron microscope (ESEM) and transmission electron microscopy (TEM)

  8. Measurement of thermal diffusivity of depleted uranium metal microspheres

    International Nuclear Information System (INIS)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-01-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time–temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal

  9. Thermo-stabilized, porous polyimide microspheres prepared from nanosized SiO2 templating via in situ polymerization

    Directory of Open Access Journals (Sweden)

    M. Q. Liu

    2015-01-01

    Full Text Available In this article, we addressed a feasible and versatile method of the fabrication of porous polyimide microspheres presenting excellent heat resistance. The preparation process consisted of two steps. Firstly, a novel polyimide/nano-silica composite microsphere was prepared via the self-assembly structures of poly(amic acid (PAA, precursor of PI/nanosized SiO2 blends after in situ polymerization, following the two-steps imidization. Subsequently, the encapsulated nanoparticles were etched away by hydrofluoric acid treatment, giving rise to the pores. It is found the composite structure of PI/SiO2 is a precondition of the formation of nanoporous structures, furthermore, the morphology of the resultant pore could be relatively tuned by changing the content and initial morphology of silica nano-particles trapped into PI matrix. The thermal properties of the synthesized PI porous spheres were studied, indicating that the introduction of nanopores could not effectively influence the thermal stabilities of PI microspheres. Moreover, the fabrication technique described here may be extended to other porous polymer systems.

  10. Effect of sodium tripolyphosphate concentration and simulated gastrointestinal fluids on release profile of paracetamol from chitosan microsphere

    Science.gov (United States)

    Mulia, Kamarza; Andrie; Krisanti, Elsa A.

    2018-03-01

    The problem to overcome in oral drug administration is the significant pH changes present in the human digestive system. In this study, ionotropic gelation method employing 2-8% (w/v) tripolyphosphate solutions were used to crosslink chitosan microspheres for a controlled release of paracetamol as a model drug. The release profiles of paracetamol from chitosan microspheres were determined using simulated gastrointestinal fluids having pH values of 1.2, 6.8, and 7.4. The results showed that the paracetamol loading and the encapsulation efficiency values increased with increasing concentration of tripolyphosphate solutions used in the preparation step. Paracetamol released at pH 1.2 and 6.8 buffer solutions was significantly higher than that at pH 7.4; also, more paracetamol was released in the presence of α-amylase and β-glucosidase enzymes. The release profiles showed zero-order release behaviour up to 8 hours where the highest drug release was 39% of the paracetamol loaded in the chitosan microspheres, indicating a strong crosslinking between chitosan and TPP anions. The relatively low accumulated drug release could be compensated by employing suitable enzymes, lower TPP solution concentration, and addition of other biodegradable polymer to reduce the TPP crosslink.

  11. High-speed monodisperse droplet generation by ultrasonically controlled micro-jet breakup

    Science.gov (United States)

    Frommhold, Philipp Erhard; Lippert, Alexander; Holsteyns, Frank Ludwig; Mettin, Robert

    2014-04-01

    A liquid jet that is ejected from a nozzle into air will disintegrate into drops via the well-known Plateau-Rayleigh instability within a certain range of Ohnesorge and Reynolds numbers. With the focus on the micrometer scale, we investigate the control of this process by superimposing a suitable ultrasonic signal, which causes the jet to break up into a very precise train of monodisperse droplets. The jet leaves a pressurized container of liquid via a small orifice of about 20 μm diameter. The break-up process and the emerging droplets are recorded via high-speed imaging. An extended parameter study of exit speed and ultrasonic frequency is carried out for deionized water to evaluate the jet's state and the subsequent generation of monodisperse droplets. Maximum exit velocities obtained reach almost 120 m s-1, and frequencies have been applied up to 1.8 MHz. Functionality of the method is confirmed for five additional liquids for moderate jet velocities 38 m s-1. For the uncontrolled jet disintegration, the drop size spectra revealed broad distributions and downstream drop growth by collision, while the acoustic control generated monodisperse droplets with a standard deviation less than 0.5 %. By adjustment of the acoustic excitation frequency, drop diameters could be tuned continuously from about 30 to 50 μm for all exit speeds. Good agreement to former experiments and theoretical approaches is found for the relation of overpressure and jet exit speed, and for the observed stability regions of monodisperse droplet generation in the parameter plane of jet speed and acoustic excitation frequency. Fitting of two free parameters of the general theory to the liquids and nozzles used is found to yield an even higher precision. Furthermore, the high-velocity instability limit of regular jet breakup described by von Ohnesorge has been superseded by more than a factor of two without entering the wind-induced instability regime, and monodisperse droplet generation was

  12. Thyroid artery embolization with microspheres for hyperthyroidism

    International Nuclear Information System (INIS)

    Du Yahui; Zhong Chenfu; Chen Weijun; Zhang Ying; Luo Jun; Li Xiaoguang; Cao Junjie; Gan Changli; Cao Junjie; Gan Changli

    2006-01-01

    Objective: To evaluate the method and efficacy of thyroid artery embolization as a new therapy for hyperthyroidism. Methods: Thirteen patients with hyperthyroidism underwent selective thyroid artery embolization. Totally 25 thyroid arteries were embolized with microspheres. The indications for this therapy were as followings: 1) To give hyperthyroid patients having an alternative for surgical and 131 I treatment, and 2) To provide a new method for those clinically being difficult to get control with medicine. Results: Serum level of thyroid hormones dropped significantly[T3 from 2.84-9.0 ng/ml to 0.8-2.2 ng/ml, T4 from 162.9-277.2 ng/ml to 50-126 ng/ml] and symptoms of hyperthyroidism were under control in 12 patients within 1 month after the embolization. One patient remained no change 1 month later and refused to be embolized again. The symptoms of twelve patients were effectively controlled through low dose antithyroid medication for more than 6 months follow up with no serious complications. Conclusion: Thyroid artery embolization with microspheres is an effective alternative for surgical and 131 I treatment of hyperthyroidism. (authors)

  13. Storage stability of biodegradable polyethylene glycol microspheres

    Science.gov (United States)

    Jain, Era; Sheth, Saahil; Polito, Kristen; Sell, Scott A.; Zustiak, Silviya P.

    2017-10-01

    Degradable hydrogel microspheres are popular choices for multiple biomedical applications, including drug, protein, or cell carriers for minimally invasive delivery. Clinical transitioning of such new, sensitive pharmaceutical preparations requires investigation of storage methods that retain key properties for extended time. In this study, we sought to determine the influence of seven common storage conditions on the physical and mechanical properties of degradable polyethylene glycol (PEG) hydrogel microspheres: 25 °C, 4 °C, -80 °C, lyophilization/-20 °C, dimethyl sulfoxide/-80 °C, dimethyl sulfoxide/lyophilization/-20 °C, vacuum/-20 °C. We have outlined the storage conditions in detail and explained their effect on swelling ratio, stiffness and degradation rate post-storage. Additionally, we have implemented protein-loaded hydrogels to evaluate the effect of storage conditions on diffusivity as well as protein stability post-storage. We found that hydrogels could be stored short-term (1-4 d) under moist conditions (i.e. storage without drying) without a substantial loss of properties. For extended storage (7-28 d), they could be stored either at  -80 °C (moist condition) or vacuum drying (dry condition).

  14. Development of nuclear fuel microsphere handling techniques and equipment

    International Nuclear Information System (INIS)

    Mack, J.E.; Suchomel, R.R.; Angelini, P.

    1979-01-01

    Considerable progress has been made in the development of microsphere handling techniques and equipment for nuclear applications. Work at Oak Ridge National Laboratory with microspherical fuel forms dates back to the early sixties with the development of the sol-gel process. Since that time a number of equipment items and systems specifically related to microsphere handling and characterization have been identified and developed for eventual application in a remote recycle facility. These include positive and negative pressure transfer systems, samplers, weighers, a blender-dispenser, and automated devices for particle size distribution and crushing strength analysis. The current status of these and other components and systems is discussed

  15. Preparation and characterization of ibuprofen-loaded microspheres consisting of poly(3-hydroxybutyrate) and methoxy poly (ethylene glycol)-b-poly (D,L-lactide) blends or poly(3-hydroxybutyrate) and gelatin composites for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Bidone, Juliana; Melo, Ana Paula P. [Laboratorio de Farmacotecnica, Departamento de Ciencias Farmaceuticas, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Bazzo, Giovana C. [Grupo de Estudos em Materiais Polimericos (POLIMAT), Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Carmignan, Francoise [Laboratorio de Farmacotecnica, Departamento de Ciencias Farmaceuticas, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Soldi, Marli S.; Pires, Alfredo T.N. [Grupo de Estudos em Materiais Polimericos (POLIMAT), Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Lemos-Senna, Elenara [Laboratorio de Farmacotecnica, Departamento de Ciencias Farmaceuticas, Universidade Federal de Santa Catarina, Florianopolis (Brazil)], E-mail: lemos@ccs.ufsc.br

    2009-03-01

    Poly-(3-hydroxybutyrate) (P(3HB)) is a biodegradable and biocompatible polymer that has been used to obtain polymer-based drug carriers. However, due to the high crystallinity degree of this polymer, drug release from P(3HB) microspheres frequently occurs at excessive rates. In this study, two strategies for prolonging ibuprofen release from P(3HB)-based microspheres were tested: blending with poly(D,L-lactide)-b-polyethylene glycol (mPEG-PLA); and obtaining composite particles with gelatin (GEL). SEM micrographs showed particles that were spherical and had a rough surface. A slight decrease of the crystallinity degree of P(3HB) was observed only in the DSC thermogram obtained from unloaded-microspheres prepared from 1:1 P(3HB):mPEG-PLA blend. For IBF-loaded microspheres, a reduction of around 10 deg. C in the melting temperature of P(3HB) was observed, indicating that the crystalline structure of the polymer was affected in the presence of the drug. DSC studies also yielded evidence of the presence of a molecular dispersion coexisting with a crystalline dispersion in the drug in the matrix. Similar results were obtained from X-ray diffractograms. In spite of 1:1 mPEG-PLA:P(3HB) blends having contributed to the reduction of the burst effect, a more controlled drug release was provided by the use of the 3:1 P(3HB):mPEGPLA blend. This result indicated that particle hydration played an important role in the drug release. On the other hand, the preparation of P(3HB):GEL composite microspheres did not allow control of the IBF release.

  16. Preparation and characterization of ibuprofen-loaded microspheres consisting of poly(3-hydroxybutyrate) and methoxy poly (ethylene glycol)-b-poly (D,L-lactide) blends or poly(3-hydroxybutyrate) and gelatin composites for controlled drug release

    International Nuclear Information System (INIS)

    Bidone, Juliana; Melo, Ana Paula P.; Bazzo, Giovana C.; Carmignan, Francoise; Soldi, Marli S.; Pires, Alfredo T.N.; Lemos-Senna, Elenara

    2009-01-01

    Poly-(3-hydroxybutyrate) (P(3HB)) is a biodegradable and biocompatible polymer that has been used to obtain polymer-based drug carriers. However, due to the high crystallinity degree of this polymer, drug release from P(3HB) microspheres frequently occurs at excessive rates. In this study, two strategies for prolonging ibuprofen release from P(3HB)-based microspheres were tested: blending with poly(D,L-lactide)-b-polyethylene glycol (mPEG-PLA); and obtaining composite particles with gelatin (GEL). SEM micrographs showed particles that were spherical and had a rough surface. A slight decrease of the crystallinity degree of P(3HB) was observed only in the DSC thermogram obtained from unloaded-microspheres prepared from 1:1 P(3HB):mPEG-PLA blend. For IBF-loaded microspheres, a reduction of around 10 deg. C in the melting temperature of P(3HB) was observed, indicating that the crystalline structure of the polymer was affected in the presence of the drug. DSC studies also yielded evidence of the presence of a molecular dispersion coexisting with a crystalline dispersion in the drug in the matrix. Similar results were obtained from X-ray diffractograms. In spite of 1:1 mPEG-PLA:P(3HB) blends having contributed to the reduction of the burst effect, a more controlled drug release was provided by the use of the 3:1 P(3HB):mPEGPLA blend. This result indicated that particle hydration played an important role in the drug release. On the other hand, the preparation of P(3HB):GEL composite microspheres did not allow control of the IBF release

  17. TRI Microspheres prevent key signs of dry eye disease in a murine, inflammatory model.

    Science.gov (United States)

    Ratay, Michelle L; Balmert, Stephen C; Acharya, Abhinav P; Greene, Ashlee C; Meyyappan, Thiagarajan; Little, Steven R

    2017-12-13

    Dry eye disease (DED) is a highly prevalent, ocular disorder characterized by an abnormal tear film and ocular surface. Recent experimental data has suggested that the underlying pathology of DED involves inflammation of the lacrimal functional unit (LFU), comprising the cornea, conjunctiva, lacrimal gland and interconnecting innervation. This inflammation of the LFU ultimately results in tissue deterioration and the symptoms of DED. Moreover, an increase of pathogenic lymphocyte infiltration and the secretion of pro-inflammatory cytokines are involved in the propagation of DED-associated inflammation. Studies have demonstrated that the adoptive transfer of regulatory T cells (Tregs) can mediate the inflammation caused by pathogenic lymphocytes. Thus, as an approach to treating the inflammation associated with DED, we hypothesized that it was possible to enrich the body's own endogenous Tregs by locally delivering a specific combination of Treg inducing factors through degradable polymer microspheres (TRI microspheres; TGF-β1, Rapamycin (Rapa), and IL-2). This local controlled release system is capable of shifting the balance of Treg/T effectors and, in turn, preventing key signs of dry eye disease such as aqueous tear secretion, conjunctival goblet cells, epithelial corneal integrity, and reduce the pro-inflammatory cytokine milieu in the tissue.

  18. Drug release control in delivery system for biodegradable polymer drugs by γ-radiation

    International Nuclear Information System (INIS)

    Yoshioka, Sumie; Azo, Yukio; Kojima, Shigeo

    1997-01-01

    Characterizations of the drug release from microsphere and hydrogel preparation made from biodegradable polymers were investigated aiming at development of a drug delivery system which allows an optimum drug delivery and the identification of the factors which control its delivery. Poly-lactic acid microspheres containing 10% of progesterone were produced from poly DL-lactic acid and exposed to γ-ray at 5-1000 kGy. And its glass transition temperature (Tg) was determined by differential scanning calorimetry. The temperature was gradually lowered with an increase in the dose of radiation. Tg of the microsphere exposed at 1000 kGy was lower by 10degC compared with the untreated one, showing that Tg control is possible without changing the size distribution of microsphere. Then, the amount of progesterone released from microsphere was determined. The release rate of the drug linearly increased with a square root of radiation time. These results indicate that the control of drug release rate is possible through controling the microsphere's Tg by γ-ray radiation. (M.N.)

  19. Formulation and evaluation of controlled-release of telmisartan microspheres: In vitro/in vivo study

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Gaur

    2014-12-01

    Full Text Available The aim of this work was to design a controlled-release drug-delivery system for the angiotensin-II receptor antagonist drug telmisartan. Telmisartan was encapsulated with different EUDRAGIT polymers by an emulsion solvent evaporation technique and the physicochemical properties of the formulations were characterized. Using a solvent evaporation method, white spherical microspheres with particle sizes of 629.9–792.1 μm were produced. The in vitro drug release was studied in three different pH media (pH 1.2 for 2 hours, pH 6.8 for 4 hours, and pH 7.4 for 18 hours. The formulations were then evaluated for their pharmacokinetic parameters. The entrapment efficiency of these microspheres was between 58.6% and 90.56%. The obtained microspheres showed good flow properties, which were evaluated in terms of angle of repose (15.29–26.32, bulk and tapped densities (0.37–0.53 and 0.43–0.64, respectively, Carr indices and Hausner ratio (12.94–19.14% and 1.14–1.23, respectively. No drug release was observed in the simulated gastric medium up to 2 hours; however, a change in pH from 1.2 to 6.8 increased the drug release. At pH 7.4, formulations with EUDRAGIT RS 100 showed a steady drug release. The microsphere formulation TMRS-3 (i.e., microspheres containing 2-mg telmisartan gave the highest Cmax value (6.8641 μg/mL at 6 hours, which was three times higher than Cmax for telmisartan oral suspension (TOS. Correspondingly, the area under the curve for TMRS-3 was 8.5 times higher than TOS. Particle size and drug release depended on the nature and content of polymer used. The drug release mechanism of the TMRS-3 formulation can be explained using the Higuchi model. The controlled release of drug from TMRS-3 also provides for higher plasma drug content and improved bioavailability.

  20. Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions

    KAUST Repository

    Li, Erqiang

    2013-12-16

    Droplet-based microfluidic devices have become a preferred versatile platform for various fields in physics, chemistry and biology. Polydimethylsiloxane soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. Here, we report the design and fabrication of simple and inexpensive microfluidic devices based on microscope glass slides and pulled glass capillaries, for generating monodisperse multiple emulsions. The advantages of our method lie in a simple manufacturing procedure, inexpensive processing equipment and flexibility in the surface modification of the designed microfluidic devices. Different types of devices have been designed and tested and the experimental results demonstrated their robustness for preparing monodisperse single, double, triple and multi-component emulsions. © 2014 IOP Publishing Ltd.

  1. Self-diffusion in monodisperse three-dimensional magnetic fluids by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dobroserdova, A.B. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Kantorovich, S.S., E-mail: alla.dobroserdova@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we study the self-diffusion behaviour in the three-dimensional monodisperse magnetic fluids using the Molecular Dynamics Simulation and Density Functional Theory. The peculiarity of computer simulation is to study two different systems: dipolar and soft sphere ones. In the theoretical method, it is important to choose the approximation for the main structures, which are chains. We compare the theoretical results and the computer simulation data for the self-diffusion coefficient as a function of the particle volume fraction and magnetic dipole-dipole interaction parameter and find the qualitative and quantitative agreement to be good. - Highlights: • The paper deals with the study of the self-diffusion in monodisperse three-dimensional magnetic fluids. • The theoretical approach contains the free energy density functional minimization. • Computer simulations are performed by the molecular dynamics method. • We have a good qualitative and quantitative agreement between the theoretical results and computer simulation data.

  2. Design of monodisperse and well-defined polypeptide-based polyvalent inhibitors of anthrax toxin.

    Science.gov (United States)

    Patke, Sanket; Boggara, Mohan; Maheshwari, Ronak; Srivastava, Sunit K; Arha, Manish; Douaisi, Marc; Martin, Jacob T; Harvey, Ian B; Brier, Matthew; Rosen, Tania; Mogridge, Jeremy; Kane, Ravi S

    2014-07-28

    The design of polyvalent molecules, presenting multiple copies of a specific ligand, represents a promising strategy to inhibit pathogens and toxins. The ability to control independently the valency and the spacing between ligands would be valuable for elucidating structure-activity relationships and for designing potent polyvalent molecules. To that end, we designed monodisperse polypeptide-based polyvalent inhibitors of anthrax toxin in which multiple copies of an inhibitory toxin-binding peptide were separated by flexible peptide linkers. By tuning the valency and linker length, we designed polyvalent inhibitors that were over four orders of magnitude more potent than the corresponding monovalent ligands. This strategy for the rational design of monodisperse polyvalent molecules may not only be broadly applicable for the inhibition of toxins and pathogens, but also for controlling the nanoscale organization of cellular receptors to regulate signaling and the fate of stem cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fabrication of monodisperse magnetic nanoparticles released in solution using a block copolymer template

    Science.gov (United States)

    Morcrette, Mélissa; Ortiz, Guillermo; Tallegas, Salomé; Joisten, Hélène; Tiron, Raluca; Baron, Thierry; Hou, Yanxia; Lequien, Stéphane; Bsiesy, Ahmad; Dieny, Bernard

    2017-07-01

    This paper describes a fabrication process of monodisperse magnetic nanoparticles released in solution, based on combined ‘top-down’ and ‘bottom-up’ approaches. The process involves the use of a self-assembled PS-PMMA block copolymer formed on a sacrificial layer. Such an approach was so far mostly explored for the preparation of patterned magnetic media for ultrahigh density magnetic storage. It is here extended to the preparation of released monodisperse nanoparticles for biomedical applications. A special sacrificial layer had to be developed compatible with the copolymer self-organization. The resulting nanoparticles exhibit very narrow size dispersion (≈7%) and can be good candidates as contrast agents for medical imaging i.e. magnetic resonance imaging or magnetic particle imaging. The approach provides a great freedom in the choice of the particles shapes and compositions. In particular, they can be made of biocompatible magnetic material.

  4. Fabrication of monodisperse magnetic nanoparticles released in solution using a block copolymer template

    International Nuclear Information System (INIS)

    Morcrette, Mélissa; Ortiz, Guillermo; Joisten, Hélène; Dieny, Bernard; Tallegas, Salomé; Baron, Thierry; Bsiesy, Ahmad; Tiron, Raluca; Hou, Yanxia; Lequien, Stéphane

    2017-01-01

    This paper describes a fabrication process of monodisperse magnetic nanoparticles released in solution, based on combined ‘top-down’ and ‘bottom-up’ approaches. The process involves the use of a self-assembled PS-PMMA block copolymer formed on a sacrificial layer. Such an approach was so far mostly explored for the preparation of patterned magnetic media for ultrahigh density magnetic storage. It is here extended to the preparation of released monodisperse nanoparticles for biomedical applications. A special sacrificial layer had to be developed compatible with the copolymer self-organization. The resulting nanoparticles exhibit very narrow size dispersion (≈7%) and can be good candidates as contrast agents for medical imaging i.e. magnetic resonance imaging or magnetic particle imaging. The approach provides a great freedom in the choice of the particles shapes and compositions. In particular, they can be made of biocompatible magnetic material. (paper)

  5. Phase transformation, morphology evolution and luminescence property variation in Y{sub 2}O{sub 3}: Eu hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qin; Guo, Jing; Jia, Wenjing; Liu, Baocang [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot (China); Zhang, Jun, E-mail: cejzhang@sina.com [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot (China)

    2012-11-25

    Highlights: Black-Right-Pointing-Pointer We report a general and facile method for the synthesis of Y{sub 2}O{sub 3}: Eu hollow microspheres. Black-Right-Pointing-Pointer This method may be of great significance in the synthesis of many other hollow spherical materials. Black-Right-Pointing-Pointer Phase, morphology and luminescence property were found to be strongly dependent on temperature and pH. Black-Right-Pointing-Pointer The evolution process under various temperatures and pH values were discussed. Black-Right-Pointing-Pointer The sample shows a strong red emission under short UV irradiation, and the lifetime is determined to be 7.0 ms. - Abstract: Y{sub 2}O{sub 3}: Eu hollow microspheres with average size of 500-600 nm have been successfully synthesized via a solvothermal method in the presence of sodium citrate as surfactant followed by a subsequent heat treatment process. High polymer F127(EO{sub 106}PO{sub 70}EO{sub 106}) served as a soft template in the formation of as prepared hollow microspheres. It is found that the pH values and the reaction temperature are two crucial factors in determining the phase, morphology and luminescence properties of the Y{sub 2}O{sub 3}: Eu hollow microspheres. Morphology evolution can be achieved by changing the pH and the reaction temperature. The properties of the Eu{sup 3+}-doped Y{sub 2}O{sub 3}: Eu nanocrystals were characterized by XRD, FE-SEM, HR-TEM and UV-vis spectroscopy.

  6. Facile synthesis of aluminum-doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres and their electrochemical performance for high-voltage Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaolin, E-mail: liu_x_l@sina.cn [College of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi (China); Li, Dan; Mo, Qiaoling; Guo, Xiaoyu; Yang, Xiaoxiao [College of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi (China); Chen, Guoxin, E-mail: gxchen@nimte.ac.cn [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang (China); Zhong, Shengwen [College of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi (China)

    2014-10-01

    Graphical abstract: LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres as 5 V cathodes are prepared by templated transformation method using monodisperse MnCO{sub 3} microspheres as precursor. As a cathodic material for high voltage lithium ion batteries, the as-synthesized LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres are investigated by galvanostatic cycling (GC) approach to evaluate their electrochemical properties in the range of 2.7–4.8 V vs. Li/Li{sup +} at the current rate 1 C. - Highlights: • LNMO and LANMO hollow microspheres are synthesized by template method. • The as-synthesized hollow microspheres have particle-size of 2 μm. • The hollow structure is responsible for improved electrochemical performance. - Abstract: This paper presents the preparation of LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and aluminum (Al) doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres as 5 V cathodes using monodisperse MnCO{sub 3} microspheres as precursor and template, which were synthesized using MnSO{sub 4}·H{sub 2}O, NaHCO{sub 3} and ethanol in water at room temperature. XRD and morphology characterization results indicated that the as-prepared LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} were both spinel structure, and have particle sizes of 2–3 μm. The cathode electrochemical properties of LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres (as 5 V cathodes) were evaluated and compared by galvanostatic cycling (GC) vs. Li/Li{sup +} at the current rate 1 C in 2.7–4.8 V. The specific initial capacities of all samples were in the range of 70–120 mA h g{sup −1}. Compared to undoped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4}, Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow structures can effectively improve discharge capacity (up to 140 (±5) mA h g{sup −1}) and cycling stability (70

  7. Investigation Into Accessible Surface Vinyl Concentrations of Nonstoichiometric PDMS Microspheres from Hydrosilylation Reactions and Their Further Crosslinking Reactions

    DEFF Research Database (Denmark)

    Ma, Baoguang; Hansen, Jens Henrik; Hvilsted, Søren

    2015-01-01

    The introduction of surface vinyl groups to PDMS microspheres broadens the latter's applicability range since the microspheres can be further functionalized or crosslinked into elastomers. Quantification of the surface vinyl concentration of PDMS microspheres is therefore essential. Here, a novel...

  8. Synthesis of CdS flower-like hierarchical microspheres as electrode material for electrochemical performance

    International Nuclear Information System (INIS)

    Kaviyarasu, K.; Manikandan, E.; Maaza, M.

    2015-01-01

    We report in this paper, a facile hydrothermal route for the preparation of CdS nanocrystals at room temperature (RT). Composition, structure and morphology of the products were analyzed and characterized by X-ray diffraction (XRD) confirms that the hydrothermal treatment at 180 °C for periods ranging from 0 to 1440 min caused no significant modification of the long range order structure subjected to hydrothermal treatment. From the XRD analysis the diffraction peaks pertaining to 26.75°, 43.89° and 52.34° are attributed to the (111), (220) and (311) planes of cubic zinc blende structure. The Photoluminescence (PL) spectra are dominated by a strong narrow band edge emission tunable in the blue region of the visible spectra indicating the narrow size distribution of CdS nanocrystals. TEM observation shows that the CdS nanocrystals synthesized by hydrothermal synthesis are well dispersed and the average crystallite size was found to be ∼10 nm. The confocal microscopic studies reveal that each flower like spheres is due to Ostwald's ripening with numerous nanoparticles aggregating a surface. - Highlights: • The adjacent particle coalesces together forming spherical particles. • The average crystalline size of CdS nanoparticles was found to be ∼3 nm. • In the case of spherical crystallite, is given by L = 3/4 D. • The CdS nanocrystal exhibits a direct band gap of 2.4 eV. • The microspheres are dispersed with good monodispersity

  9. In-site synthesis of monodisperse, oleylamine-capped Ag nanoparticles through microemulsion approach

    Science.gov (United States)

    Chen, Shun; Ju, Yanyun; Guo, Yi; Xiong, Chuanxi; Dong, Lijie

    2017-03-01

    Ag NPs were in-site synthesized through microemulsion method by reducing silver acetate with oleylamine-mediated at 70 °C with highly monodisperse and narrow size from 10 to 20 nm. The synthesis of Ag NPs was aided by oleylamine and the role of oleylamine was researched. This in-site synthesis approach to Ag NPs was reproducibility and high yield more than 80% with stable store about 6 months.

  10. In-site synthesis of monodisperse, oleylamine-capped Ag nanoparticles through microemulsion approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shun; Ju, Yanyun [Wuhan University of Technology, School of Materials Science and Engineering (China); Guo, Yi [Wuhan University of Technology, Center for Materials Research and Analysis (China); Xiong, Chuanxi; Dong, Lijie, E-mail: dong@whut.edu.cn [Wuhan University of Technology, School of Materials Science and Engineering (China)

    2017-03-15

    Ag NPs were in-site synthesized through microemulsion method by reducing silver acetate with oleylamine-mediated at 70 °C with highly monodisperse and narrow size from 10 to 20 nm. The synthesis of Ag NPs was aided by oleylamine and the role of oleylamine was researched. This in-site synthesis approach to Ag NPs was reproducibility and high yield more than 80% with stable store about 6 months.

  11. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape.

    Science.gov (United States)

    Lu, Lehui; Ai, Kelong; Ozaki, Yukihiro

    2008-02-05

    We report a facile and environmentally friendly strategy for high-yield synthesis of highly monodisperse gold nanoparticles with urchin-like shape. A simple protein, gelatin, was first used for the control over shape and orientation of the gold nanoparticles. These nanoparticles, ready to use for biological systems, are promising in the optical imaging-based disease diagnostics and therapy because of their tunable surface plasmon resonance (SPR) and excellent surface-enhanced Raman scattering (SERS) activity.

  12. Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer

    International Nuclear Information System (INIS)

    Yu, William W; Chang, Emmanuel; Sayes, Christie M; Drezek, Rebekah; Colvin, Vicki L

    2006-01-01

    A facile method was developed for completely transferring high quality monodisperse iron oxide nanocrystals from organic solvents to water. The as-prepared aqueous dispersions of iron oxide nanocrystals were extremely stable and could be functionalized for bioconjugation with biomolecules. These iron oxide nanocrystals showed negligible cytotoxicity to human breast cancer cells (SK-BR-3) and human dermal fibroblast cells. This method is general and versatile for many organic solvent-synthesized nanoparticles, including fluorescent semiconductor nanocrystals

  13. Organic inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica)

    Science.gov (United States)

    Rubio, E.; Almaral, J.; Ramírez-Bon, R.; Castaño, V.; Rodríguez, V.

    2005-04-01

    Polymethylmethacrylate-silica hybrid coatings were prepared from methyl methacrylate and monodisperse colloidal silica prepared by the Stöber method. The surfaces of the spheres were successfully modified by chemical reaction with 3-(trimethoxysilyl) propyl methacrylate (TMSPM) to compatibilise the organic and inorganic components of the precursor solution mixture. The coatings were deposited by dip-coating on glass substrates. They result with good properties of homogeneity, optical transparence, hardness and adhesion.

  14. Temperature dependence of exchange anisotropy in monodisperse cobalt nanoparticles with a cobalt oxide shell

    International Nuclear Information System (INIS)

    Spasova, M.; Wiedwald, U.; Farle, M.; Radetic, T.; Dahmen, U.; Hilgendorff, M.; Giersig, M.

    2004-01-01

    Exchange anisotropy was studied by SQUID magnetometry on an array of monodisperse colloidal nanoparticles consisting of a 7-8 nm diameter FCC Co core covered with a 2-2.5 nm thick FCC CoO shell. Temperature-dependent measurements of the exchange bias field show that the exchange anisotropy vanishes when a magnetic field was applied during cooling below 150 K. The suppression of exchange anisotropy is due to uncompensated interfacial antiferromagnetic spins

  15. Monodisperse carboxyl-functionalized poly(ethylene glycol)-coated magnetic poly(glycidyl methacrylate) microspheres: application to the immunocapture of .beta.-amyloid peptides

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Hlídková, Helena; Hiraoui, M.; Taverna, M.; Proks, Vladimír; Mázl Chánová, Eliška; Smadja, C.; Kučerová, Z.

    2014-01-01

    Roč. 14, č. 11 (2014), s. 1590-1599 ISSN 1616-5187 R&D Projects: GA MŠk 7E12053 EU Projects: European Commission(XE) 246513 - NADINE Institutional support: RVO:61389013 Keywords : β-amyloid peptides * CE-LIF detection * functionalization Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.851, year: 2014

  16. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route

    Energy Technology Data Exchange (ETDEWEB)

    Wen Li [Xiamen University, Department of Chemistry, College of Chemistry and Chemical Engineering (China); Lin Zhonghua [Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces (China); Gu Pingying [Xiamen University, Department of Chemistry, College of Chemistry and Chemical Engineering (China); Zhou Jianzhang [Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces (China); Yao Bingxing [Xiamen University, School of Life Sciences (China); Chen Guoliang; Fu Jinkun, E-mail: wenli_1976@163.co [Xiamen University, Department of Chemistry, College of Chemistry and Chemical Engineering (China)

    2009-02-15

    Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 {sup o}C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (<2.5 nm), hold the shape of spherical nanoparticles, and promote the monodispersity of nanoparticles. Through the modulation of reaction time and the use of thiol, monodispersed spherical gold nanoparticles capped with thiol of 1.9 {+-} 0.8 nm size were formed by using Bacillus megatherium D01.

  17. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization

    International Nuclear Information System (INIS)

    Shen, Shou-Cang; Ng, Wai Kiong; Chia, Leonard; Dong, Yuan-Cai; Tan, Reginald B.H.

    2011-01-01

    Graphical abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by rapid sonochemical co-condensation to achieve high capability for protein immobilization. Highlights: → Amino-modified monodispersed silica nanoparticles were synthesized by rapid co-condensation. → Strong positive charge was created by aminopropyl-modification. → Capability for immobilization of negatively charged protein was enhanced. → Electrostatic interaction between proteins and surface contributed to the enhanced adsorption. -- Abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by 13 C and 29 Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.

  18. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiliang; Zhang Xingye; Xin Zhiqing; Deng Mengmeng; Wen Yongqiang; Song Yanlin, E-mail: zhangxy@iccas.ac.cn, E-mail: ylsong@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Lab of Organic Solids, Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-10-21

    In this study, monodisperse silver nanoparticles were synthesized with a new reduction system consisting of adipoyl hydrazide and dextrose at ambient temperature. By this facile and rapid approach, high concentration monodisperse silver nanoparticles were obtained on a large scale at low protectant/AgNO{sub 3} mass ratio which was highly beneficial to low cost and high conductivity. Based on the synthesized monodisperse silver nanoparticles, conductive inks were prepared with water, ethanol and ethylene glycol as solvents, and were expected to be more environmentally friendly. A series of electrocircuits were fabricated by ink-jet printing silver nanoparticle ink on paper substrate with a commercial printer, and they had low resistivity in the range of 9.18 x 10{sup -8}-8.76 x 10{sup -8} {Omega} m after thermal treatment at 160 {sup 0}C for 30 min, which was about five times that of bulk silver (1.586 x 10{sup -8} {Omega} m). Moreover, a radio frequency identification (RFID) antenna was fabricated by ink-jet printing, and 6 m wireless identification was realized after an Alien higgs-3 chip was mounted on the printed antenna by the flip-chip method. These flexible electrocircuits produced by ink-jet printing would have enormous potential for low cost electrodes and sensor devices.

  19. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route

    International Nuclear Information System (INIS)

    Wen Li; Lin Zhonghua; Gu Pingying; Zhou Jianzhang; Yao Bingxing; Chen Guoliang; Fu Jinkun

    2009-01-01

    Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 o C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (<2.5 nm), hold the shape of spherical nanoparticles, and promote the monodispersity of nanoparticles. Through the modulation of reaction time and the use of thiol, monodispersed spherical gold nanoparticles capped with thiol of 1.9 ± 0.8 nm size were formed by using Bacillus megatherium D01.

  20. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics

    International Nuclear Information System (INIS)

    Zhang Zhiliang; Zhang Xingye; Xin Zhiqing; Deng Mengmeng; Wen Yongqiang; Song Yanlin

    2011-01-01

    In this study, monodisperse silver nanoparticles were synthesized with a new reduction system consisting of adipoyl hydrazide and dextrose at ambient temperature. By this facile and rapid approach, high concentration monodisperse silver nanoparticles were obtained on a large scale at low protectant/AgNO 3 mass ratio which was highly beneficial to low cost and high conductivity. Based on the synthesized monodisperse silver nanoparticles, conductive inks were prepared with water, ethanol and ethylene glycol as solvents, and were expected to be more environmentally friendly. A series of electrocircuits were fabricated by ink-jet printing silver nanoparticle ink on paper substrate with a commercial printer, and they had low resistivity in the range of 9.18 x 10 -8 -8.76 x 10 -8 Ω m after thermal treatment at 160 0 C for 30 min, which was about five times that of bulk silver (1.586 x 10 -8 Ω m). Moreover, a radio frequency identification (RFID) antenna was fabricated by ink-jet printing, and 6 m wireless identification was realized after an Alien higgs-3 chip was mounted on the printed antenna by the flip-chip method. These flexible electrocircuits produced by ink-jet printing would have enormous potential for low cost electrodes and sensor devices.

  1. Optimization of a simple technique for preparation of monodisperse poly(lactide-co-glycolide) nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Fuminori, E-mail: fuminoito@spice.ocn.ne.jp [Tokyo Metropolitan University, Department of Applied Chemistry, Graduate School of Urban Environmental Sciences (Japan)

    2016-09-15

    In this study, we report the optimization of a solvent evaporation technique for preparing monodisperse poly-(lactide-co-glycolide) (PLGA) nanospheres, from a mixture of solvents composed of ethanol and PVA solution. Various experimental conditions were investigated in order to control the particle size and size distribution of the nanospheres. In addition, nanospheres containing rifampicin (RFP, an antituberculosis drug), were prepared using PLGA of various molecular weights, to study the effects of RFP as a model hydrophobic drug. The results showed that a higher micro-homogenizer stirring rate facilitated the preparation of monodisperse PLGA nanospheres with a low coefficient of variation (~20 %), with sizes below 200 nm. Increasing the PLGA concentration from 0.1 to 0.5 g resulted in an increase in the size of the obtained nanospheres from 130 to 174 nm. The molecular weight of PLGA had little effect on the particle sizes and particle size distributions of the nanospheres. However, the drug loading efficiencies of the obtained RFP/PLGA nanospheres decreased when the molecular weight of PLGA was increased. Based on these experiments, an optimized technique was established for the preparation of monodisperse PLGA nanospheres, using the method developed by the authors.Graphical Abstract.

  2. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Shou-Cang, E-mail: shen_shoucang@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Ng, Wai Kiong; Chia, Leonard; Dong, Yuan-Cai [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Tan, Reginald B.H., E-mail: reginald_tan@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Department of Chemical and Biomolecular Engineering, The National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore)

    2011-10-15

    Graphical abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by rapid sonochemical co-condensation to achieve high capability for protein immobilization. Highlights: {yields} Amino-modified monodispersed silica nanoparticles were synthesized by rapid co-condensation. {yields} Strong positive charge was created by aminopropyl-modification. {yields} Capability for immobilization of negatively charged protein was enhanced. {yields} Electrostatic interaction between proteins and surface contributed to the enhanced adsorption. -- Abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by {sup 13}C and {sup 29}Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.

  3. Optical diffraction by ordered 2D arrays of silica microspheres

    International Nuclear Information System (INIS)

    Shcherbakov, A.A.; Shavdina, O.; Tishchenko, A.V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-01-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality. - Highlights: • High quality silica microsphere monolayer was fabricated. • Accurate measurements of diffraction efficiency angular dependencies. • Rigorous diffraction simulation of both ideal hexagonal and realistic microsphere arrangements. • Qualitative rationalization of the obtained results and the observed differences between the experiment and the theory.

  4. Preparation of UN microspheres by internal gelation process

    Energy Technology Data Exchange (ETDEWEB)

    Shirasu, Yoshiro; Yamagishi, Shigeru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    UN microspheres were prepared from (UO{sub 3}+C) microspheres internally gelled in a hot silicone oil column. The gel microspheres were calcined at 480degC in nitrogen, after washing and drying. The calcined ones were carbothermically nitrided at 1400-1800degC in a nitrogen-based atmosphere in two ways: one in N{sub 2} followed by N{sub 2}-8%H{sub 2}, and the other in N{sub 2}-8%H{sub 2} only. In both cases, highly pure UN microspheres around 500 ppm of both oxygen and carbon impurities were obtained, although their densities were still low. (author)

  5. Silicon microspheres for near-IR communication applications

    International Nuclear Information System (INIS)

    Serpengüzel, Ali; Demir, Abdullah

    2008-01-01

    We have performed transverse electric and transverse magnetic polarized elastic light scattering calculations at 90° and 0° in the o-band at 1.3 µm for a 15 µm radius silicon microsphere with a refractive index of 3.5. The quality factors are on the order of 10 7 and the mode/channel spacing is 7 nm, which correlate well with the refractive index and the optical size of the microsphere. The 90° elastic light scattering can be used to monitor a dropped channel (drop port), whereas the 0° elastic scattering can be used to monitor the transmission channel (through port). The optical resonances of the silicon microspheres provide the necessary narrow linewidths that are needed for high-resolution optical communication applications. Potential telecommunication applications include filters, modulators, switches, wavelength converters, detectors, amplifiers and light sources. Silicon microspheres show promise as potential building blocks for silicon-based electrophotonic integration

  6. XPS analysis of aluminosilicate microspheres bioactivity tested in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Todea, M.; Vanea, E. [Faculty of Physics and Institute of Interdisciplinary Research on Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca 400084 (Romania); Bran, S. [University of Medicine and Pharmacy “Iuliu Haţieganu”, Department of Cranio-Maxillofacial Surgery, 400029 Cluj-Napoca (Romania); Berce, P. [Technical University of Cluj-Napoca, Faculty of Machine Building and National Centre of Rapid Prototyping, 400641 Cluj-Napoca (Romania); Simon, S., E-mail: simons@phys.ubbcluj.ro [Faculty of Physics and Institute of Interdisciplinary Research on Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca 400084 (Romania)

    2013-04-01

    The study aims to characterize surface properties of aluminosilicate microspheres incorporating yttrium, with potential biomedical applications. Micrometric particles of spherical shape were obtained by spray drying method. The behavior of aluminosilicate microspheres without yttrium and with yttrium was investigated under in vitro conditions, by seven days incubation in simulated body fluid (SBF). The surface elemental composition and the atomic environments on outermost layer of the microspheres, prior to and after incubation in SBF were evaluated by X-ray photoelectron spectroscopy (XPS) in order to investigate their bioactivity. The results were analyzed to underline the effect of yttrium addition on surface properties of the aluminosilicate microspheres and implicitly on the behavior of the samples in simulated body environments.

  7. Investigation of defects on PAMS microspheres fabricated with microencapsulation method

    International Nuclear Information System (INIS)

    Chen Sufen; Li Bo; Liu Yiyang; Zhang Zhanwen; Qi Xiaobo

    2012-01-01

    Poly-(α-methylstyrene) (PAMS) microspheres were fabricated with W1/O/W2 double emulsion microencapsulation method, and the effects of polyvinylalcohol (PVA) and CaCl 2 weight concentrations and the O/W2 phase ratio on the percentages of defected PAMS microspheres were studied. The weight concentrations of PVA and CaCl 2 and the O/W2 phase ratio in the fabrication process of PAMS microspheres were optimized. The results show that, for the three parameters being 1.0%, 1.5%, and 0.01, respectively, the percentage of the defect-free PAMS microspheres without vacuoles in the shell wall can be up to 60%. (authors)

  8. Investigation of concrete mixtures incorporating hollow plastic microspheres.

    Science.gov (United States)

    1981-01-01

    This study investigated the potential of hollow plastic microspheres, HPM, for providing non-air-entrained portland cement concrete resistance to damage from cycles of freezing and thawing. In the study, a mixture with an air-entraining agent (vinsol...

  9. Resonant microsphere gyroscope based on a double Faraday rotator system.

    Science.gov (United States)

    Xie, Chengfeng; Tang, Jun; Cui, Danfeng; Wu, Dajin; Zhang, Chengfei; Li, Chunming; Zhen, Yongqiu; Xue, Chenyang; Liu, Jun

    2016-10-15

    The resonant microsphere gyroscope is proposed based on a double Faraday rotator system for the resonant microsphere gyroscope (RMSG) that is characterized by low insertion losses and does not destroy the reciprocity of the gyroscope system. Use of the echo suppression structure and the orthogonal polarization method can effectively inhibit both the backscattering noise and the polarization error, and reduce them below the system sensitivity limit. The resonance asymmetry rate dropped from 34.2% to 2.9% after optimization of the backscattering noise and the polarization noise, which greatly improved the bias stability and the scale factor linearity of the proposed system. Additionally, based on the optimum parameters for the double Faraday rotator system, a bias stability of 0.04°/s has been established for an integration time of 10 s in 1000 s in a resonator microsphere gyroscope using a microsphere resonator with a diameter of 1 mm and a Q of 7.2×106.

  10. Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique.

    Science.gov (United States)

    Viswanathan, N B; Thomas, P A; Pandit, J K; Kulkarni, M G; Mashelkar, R A

    1999-03-08

    Emulsification-solvent removal methods have been widely used for encapsulating bioactive macromolecules like proteins and polypeptides in biodegradable polymers. We report, a (water-in-oil)-in-oil emulsion technique wherein proteins and polypeptides differing in molecular weight and shape were encapsulated in polymers of current biomedical interest. When an oil was used as the processing medium in combination with a carefully selected mixed solvent system such that a stable (w/o1/o2 emulsion is formed and solvents are removed by a combination of extraction and evaporation, the entrapment efficiency was high and the product nonporous. The entrapment efficiency of globular proteins exceeded 90% while that of fibrous proteins was around 70%. Fracture studies revealed that the polymer matrix was dense. The mechanism of entrapment involved solvent-induced precipitation of the protein as the microspheres were being formed. The principle of the method will find use in preparation of non-porous polymer microparticles with reduced burst effect.

  11. Natural material adsorbed onto a polymer to enhance immune function

    Directory of Open Access Journals (Sweden)

    Reinaque AP

    2012-08-01

    Full Text Available Ana Paula Barcelos Reinaque,1 Eduardo Luzía França,2 Edson Fredulin Scherer,3 Mayra Aparecida Côrtes,1 Francisco José Dutra Souto,4 Adenilda Cristina Honorio-França51Post Graduate Program in Material Science, 2Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, 3Post Graduate Program in Material Science, Institute of Biological and Health Science, Federal University of Mato Grosso, Pontal do Araguaia, 4Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, 5Institute of Biological and Health Science, Federal University of Mato Grosso, Pontal do Araguaia, MT, BrazilBackground: In this study, we produced poly(ethylene glycol (PEG microspheres of different sizes and adsorbing a medicinal plant mixture, and verified their effect in vitro on the viability, superoxide production, and bactericidal activity of phagocytes in the blood.Methods: The medicinal plant mixture was adsorbed onto PEG microspheres and its effects were evaluated by flow cytometry and fluorescence microscopy.Results: Adsorption of the herbal mixture onto the PEG microspheres was achieved and the particles were internalized by phagocytes. PEG microspheres bearing the adsorbed herbal mixture stimulated superoxide release, and activated scavenging and microbicidal activity in phagocytes. No differences in functional activity were observed when the phagocytes were not incubated with PEG microspheres bearing the adsorbed herbal mixture.Conclusion: This system may be useful for the delivery of a variety of medicinal plants and can confer additional protection against infection. The data reported here suggest that a polymer adsorbed with a natural product is a treatment alternative for enhancing immune function.Keywords: natural product, polymer, adsorption, immune function, phagocytes

  12. [Optimization of riboflavin sodium phosphate loading to calcium alginate floating microspheres by response surface methodology].

    Science.gov (United States)

    Zhang, An-yang; Fan, Tian-yuan

    2009-12-18

    To investigate the preparation, optimization and in vitro properties of riboflavin sodium phosphate floating microspheres. The floating microspheres composed of riboflavin sodium phosphate and calcium alginate were prepared using ion gelatin-oven drying method. The properties of the microspheres were investigated, including the buoyancy, release, appearance and entrapment efficiency. The formulation was optimized by response surface methodology (RSM). The optimized microspheres were round. The entrapment efficiency was 57.49%. All the microspheres could float on the artificial gastric juice over 8 hours. The release of the drug from the microspheres complied with Fick's diffusion.

  13. A review on target drug delivery: magnetic microspheres

    OpenAIRE

    Amit Chandna; Deepa Batra; Satinder Kakar; Ramandeep Singh

    2013-01-01

    Novel drug delivery system aims to deliver the drug at a rate directed by the needs of the body during the period of treatment, and target the active entity to the site of action. A number of novel drug delivery systems have emerged encompassing various routes of administration, to achieve controlled and targeted drug delivery, magnetic micro carriers being one of them. Magnetic microsphere is newer approach in pharmaceutical field. Magnetic microspheres as an alternative to traditional ra...

  14. PHOTOREFRACTIVE POLYMERS

    NARCIS (Netherlands)

    Morichere, D; Malliaras, G.G; Krasnikov, V.V.; Bolink, H.J; Hadziioannou, G

    The use of polymers as photorefractive materials offers many advantages : flexibility in synthesis, doping, processing and low cost. The required functionalities responsible for photorefractivity, namely charge generation, transport, trapping and linear electrooptic effect are given in the polymer

  15. Photorefractive polymers

    NARCIS (Netherlands)

    Bolink, Hendrik Jan; Hadziioannou, G

    1997-01-01

    This thesis describes the synthesis and properties of photorefractive polymers. Photorefractive polymers are materials in which the refractive index can be varied by the interaction with light. Unlike in numerous other photosensitive materials, in photorefractive materials this occurs via

  16. Polymerized Nile Blue derivatives for plasticizer-free fluorescent ion optode microsphere sensors.

    Science.gov (United States)

    Ngeontae, Wittaya; Xu, Chao; Ye, Nan; Wygladacz, Katarzyna; Aeungmaitrepirom, Wanlapa; Tuntulani, Thawatchai; Bakker, Eric

    2007-09-05

    Lipophilic H+-selective fluorophores such as Nile Blue derivatives are widely used in ISE-based pH sensors and bulk optodes, and are commonly dissolved in a plasticized matrix such as PVC. Unfortunately, leaching of the active sensing ingredients and plasticizer from the matrix dictates the lifetime of the sensors and hampers their applications in vivo, especially with miniaturized particle based sensors. We find that classical copolymerization of Nile Blue derivatives containing an acrylic side group gives rise to multiple reaction products with different spectral and H+-binding properties, making this approach unsuitable for the development of reliable sensor materials. This limitation was overcome by grafting Nile Blue to a self-plasticized poly(n-butyl acrylate) matrix via an urea or amide linkage between the Nile Blue base structure and the polymer. Optode leaching experiments into methanol confirmed the successful covalent attachment of the two chromoionophores to the polymer matrix. Both polymerized Nile Blue derivatives have satisfactory pH response and appropriate optical properties that are suitable for use in ion-selective electrodes and optodes. Plasticizer-free Na+-selective microsphere sensors using the polymerized chromoionophores were fabricated under mild conditions with an in-house sonic microparticle generator for the measurement of sodium activities at physiological pH. The measuring range for sodium was found as 10(-1)-10(-4) M and 1-10(-3) M, for Nile Blue derivatives linked via urea and amide functionalities, respectively, at physiological pH. The observed ion-exchange constants of the plasticizer-free microsphere were log K(exch) = -5.6 and log K(exch) = -6.5 for the same two systems, respectively. Compared with earlier Na+-selective bulk optodes, the fabricated optical sensing microbeads reported here have agreeable selectivity patterns, reasonably fast response times, and more appropriate measuring ranges for determination of Na+ activity

  17. Development and Evaluation of Isoniazid Loaded Silk Fibroin Microsphere

    Directory of Open Access Journals (Sweden)

    Narinder Singh

    Full Text Available Aim: Current experimental investigation is dedicated to prepare microspheres with small size and good sphericity by Phase Separation method using Isoniazid (INH as model drug. Silk fibroin has unique intrinsic qualities like biodegradability, biocompatibility or release properties and their tunable drug loading capacity. The delivery loading proficiency of the drug molecules in silk spheres be contingent on their charge, and hydrophobicity or subsequent in altered drug release profiles. Methods: In the present work Isoniazid loaded silk fibroin microsphere was prepared by using phase separation method. Microsphere was evaluated for Ultraviolet-visible spectroscopy, Fourier Transform infrared spectroscopy, Entrapment efficiency, Scanning electron microscopy Studies. Results: Scanning electron microscopy studies revealed that Isoniazid Loaded Silk Fibroin Microspheres were spherical. Entrapment Efficiency of Isoniazid loaded Microspheres of different Formulation from F1 to F5 was in range of 53 to 68 %. F3 showed 68.47 % entrapment Efficiency and the optimized formulation drug release was 93.56 % at 24 hours. Conclusion: Experimental report disclosed a new aqueous based formulation method for silk spheres with controllable shape or size and sphere. Isoniazid loaded silk microspheres may act as ideal nano formulation with elaborated studies.

  18. Synthesis and characterization of Supeparamagnetics Microspheres (PMMA via suspension polymerization

    Directory of Open Access Journals (Sweden)

    Paulo Emilio Feuser

    2014-02-01

    Full Text Available Magnetics nanoparticles (NPMs has found many applications in biomedical and technological areas. The objective of this work is the preparation and characterization of PMMA microspheres containing NPMs coated with oleic acid (NPMs-AO. For the preparation of MNPs-AO was used the coprecipitation method in an aqueous medium. For the preparation of the superparamagnetic microspheres used in suspension polymerization technique. The microspheres showed a size distribution particles of approximately 150um and a spherical morphology. From the analysis of gel permeation chromatography (GPC determined the number average molecular weight (Mw of the magnetics microspheres and there was a variation in the Mw depending on the concentration of MNPs-AO in this reaction. To analyze the magnetic properties used the vibrating sample magnetometer (MAV. The microspheres showed superparamagnetic properties and a value of saturation magnetization (Ms of about 8 emu/g MNPs. Therefore you can conclude that it is possible to obtain superparamagnetics microspheres for a particular application, either, biomedical or technological.

  19. Innovative hydrogen storage in hollow glass-microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Keding, M.; Schmid, G.; Tajmar, M. [Austrian Research Centers, Vienna (Austria)

    2009-07-01

    Hydrogen storage technologies are becoming increasingly important for a number of future applications. The Austrian Research Centers (ARC) are developing a unique hydrogen storage system that combines the advantages of both hollow glass microsphere and chemical compound hydrogen storage, but eliminates their respective drawbacks. Water is utilized as a functional liquid to carry the hollow glass microspheres that are loaded with up to 700 bar of hydrogen gas. Sodium borohydride (NaBH{sub 4}) is then injected together with the glass microspheres into a reaction chamber where the water reacts catalytically with the NaBH{sub 4} producing hydrogen and heat. The heat is then utilized to release the hydrogen from the hollow glass microspheres providing a double hydrogen generation process without any external energy or heat during storage or gas release. The paper described this hydrogen storage system with particular reference to microspheres, the coating process, the experimental facility and NaBH{sub 4} test results. It was concluded that hydrogen storage and production on demand is possible with microspheres and sodium borohydride solution. 9 refs., 16 figs.

  20. Microspheres and Nanotechnology for Drug Delivery.

    Science.gov (United States)

    Jóhannesson, Gauti; Stefánsson, Einar; Loftsson, Thorsteinn

    2016-01-01

    Ocular drug delivery to the posterior segment of the eye can be accomplished by invasive drug injections into different tissues of the eye and noninvasive topical treatment. Invasive treatment involves the risks of surgical trauma and infection, and conventional topical treatments are ineffective in delivering drugs to the posterior segment of the eye. In recent years, nanotechnology has become an ever-increasing part of ocular drug delivery. In the following, we briefly review microspheres and nanotechnology for drug delivery to the eye, including different forms of nanotechnology such as nanoparticles, microparticles, liposomes, microemulsions and micromachines. The permeation barriers and anatomical considerations linked to ocular drug delivery are discussed and a theoretical overview on drug delivery through biological membranes is given. Finally, in vitro, in vivo and human studies of x03B3;-cyclodextrin nanoparticle eyedrop suspensions are discussed as an example of nanotechnology used for drug delivery to the eye. © 2016 S. Karger AG, Basel.

  1. Polymer supported gold nanoparticles: Synthesis and characterization of functionalized polystyrene-supported gold nanoparticles and their application in catalytic oxidation of alcohols in water

    Science.gov (United States)

    Kaboudin, Babak; Khanmohammadi, Hamid; Kazemi, Foad

    2017-12-01

    Sulfonated polystyrene microsphere were functionalized using ethylene diamine to introduce amine groups to the polymer chains. The amine functionalized polymers were used as a support for gold nanoparticles. A thorough structural characterization has been carried out by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM) images, EDS, CHN and atomic absorption spectroscopy. The polymer supported gold nanoparticles was found to be an efficient catalyst for the oxidation of alcohols in water.

  2. Polymer Brushes

    NARCIS (Netherlands)

    Vos, de W.M.; Kleijn, J.M.; Keizer, de A.; Cosgrove, T.; Cohen Stuart, M.A.

    2010-01-01

    A polymer brush can be defined as a dense array of polymers end-attached to an interface that stretch out into the surrounding medium. Polymer brushes have been investigated for the past 30 years and have shown to be an extremely useful tool to control interfacial properties. This review is intended

  3. Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix.

    Science.gov (United States)

    Zhang, Hongbo; Liu, Dongfei; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Herranz-Blanco, Bárbara; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-07-09

    A multifunctional nano-in-micro drug delivery platform is developed by conjugating the porous silicon nanoparticles with mucoadhesive polymers and subsequent encapsulation into a pH-responsive polymer using microfluidics. The multistage platform shows monodisperse size distribution and pH-responsive payload release, and the released nanoparticles are mucoadhesive. Moreover, this platform is capable of simultaneously loading and releasing multidrugs with distinct properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Switching the Loaded Agent from Epirubicin to Cisplatin: Salvage Transcatheter Arterial Chemoembolization with Drug-eluting Microspheres for Unresectable Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Seki, Akihiko; Hori, Shinich

    2012-01-01

    Purpose: There is no consensus on switching anticancer agents loaded onto drug carriers in transcatheter arterial chemoembolization (TACE) for hepatocellular carcinoma (HCC). This study aimed to evaluate the safety and clinical outcomes of TACE with cisplatin-loaded microspheres (CLM-TACE) in HCC patients refractory to TACE with epirubicin-loaded microspheres (ELM-TACE). Methods: Between February 2008 and June 2010, 85 patients with unresectable HCC refractory to ELM-TACE were enrolled to undergo CLM-TACE. The number of ELM-TACE sessions until judgment of resistance ranged from 1 to 4 (median, 2.1). CLM-TACE was performed using 50–100-μm superabsorbent polymer microspheres loaded with 1 mg cisplatin/1 mg microspheres together with hepatic arterial infusion of 25 mg cisplatin and 500 mg 5-fluorouracil per patient. Tumor responses were evaluated by computed tomography according to the European Association for the Study of the Liver criteria. Results: The median number of CLM-TACE treatment sessions was 1.8 (range, 1–5), and the mean total dose of cisplatin per session was 42.8 mg (range, 30.0–59.0). After 6 months, 3 (3.5%) patients achieved complete response, 31 (36.5%) had partial response, 15 (17.6%) had stable disease, and 36 (42.4%) had progressive disease. The median overall survival and time to treatment failure after initial CLM-TACE were 13.3 and 7.2 months, respectively. Overall, 9.4% of patients experienced grade 3/4 adverse events. Conclusions: witching the loaded agent from epirubicin to cisplatin is a safe, well-tolerated, and efficacious treatment strategy for salvage TACE with drug-eluting microspheres in HCC patients refractory to ELM-TACE.

  5. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.

    Science.gov (United States)

    Nair, Nitish; Wentzel, Nathaniel; Jayaraman, Arthi

    2011-05-21

    In efforts to produce polymeric materials with tailored physical properties, significant interest has grown around the ability to control the spatial organization of nanoparticles in polymer nanocomposites. One way to achieve controlled particle arrangement is by grafting the nanoparticle surface with polymers that are compatible with the matrix, thus manipulating the interfacial interactions between the nanoparticles and the polymer matrix. Previous work has shown that the molecular weight of the grafted polymer, both at high grafting density and low grafting density, plays a key role in dictating the effective inter-particle interactions in a polymer matrix. At high grafting density nanoparticles disperse (aggregate) if the graft molecular weight is higher (lower) than the matrix molecular weight. At low grafting density the longer grafts can better shield the nanoparticle surface from direct particle-particle contacts than the shorter grafts and lead to the dispersion of the grafted particles in the matrix. Despite the importance of graft molecular weight, and evidence of non-trivial effects of polydispersity of chains grafted on flat surfaces, most theoretical work on polymer grafted nanoparticles has only focused on monodisperse grafted chains. In this paper, we focus on how bidispersity in grafted chain lengths affects the grafted chain conformations and inter-particle interactions in an implicit solvent and in a dense homopolymer polymer matrix. We first present the effects of bidispersity on grafted chain conformations in a single polymer grafted particle using purely Monte Carlo (MC) simulations. This is followed by calculations of the potential of mean force (PMF) between two grafted particles in a polymer matrix using a self-consistent Polymer Reference Interaction Site Model theory-Monte Carlo simulation approach. Monte Carlo simulations of a single polymer grafted particle in an implicit solvent show that in the bidisperse polymer grafted particles

  6. The synthesis and photocatalytic activity of ZnSe microspheres

    International Nuclear Information System (INIS)

    Cao Huaqiang; Xiao Yujiang; Zhang Sichun

    2011-01-01

    This paper reports the synthesis of semiconductor ZnSe microspheres composed of nanoparticles via a solvothermal route between the organic molecule selenophene (C 4 H 4 Se) and ZnCl 2 without adding any surfactant. The ZnSe microspheres were characterized by x-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), specific surface area measurement, and photoluminescence (PL) spectra. A strong and broad blue PL emission at 443 nm in wavelength (∼2.79 eV in photon energy) is attributed to the near-band-edge (NBE) emission of ZnSe, while the 530 nm peak is a defect-related (DL) emission. The photocatalytic activity of the as-prepared ZnSe microspheres was evaluated by photodegradation of methyl orange (MO) dye under ultraviolet (UV) light and visible light irradiation. The degradations of MO reach 94% or 95.1%, close to 100%, in the presence of the as-synthesized ZnSe microspheres or commercial ZnSe powder after 7 or 10 h under UV irradiation, respectively. Meanwhile the degradations of MO reach 94.3% or 60.6% in the presence of the as-synthesized ZnSe microspheres or commercial ZnSe powder after 12 h, respectively. The degradation rate of ZnSe microspheres is twice that of ZnSe commercial powder under UV light irradiation, and three times under visible light irradiation. The degradation process of MO dye on ZnSe microspheres under UV or visible light is also discussed.

  7. Microsphere-based super-resolution scanning optical microscope.

    Science.gov (United States)

    Huszka, Gergely; Yang, Hui; Gijs, Martin A M

    2017-06-26

    High-refractive index dielectric microspheres positioned within the field of view of a microscope objective in a dielectric medium can focus the light into a so-called photonic nanojet. A sample placed in such nanojet can be imaged by the objective with super-resolution, i.e. with a resolution beyond the classical diffraction limit. However, when imaging nanostructures on a substrate, the propagation distance of a light wave in the dielectric medium in between the substrate and the microsphere must be small enough to reveal the sample's nanometric features. Therefore, only the central part of an image obtained through a microsphere shows super-resolution details, which are typically ∼100 nm using white light (peak at λ = 600 nm). We have performed finite element simulations of the role of this critical distance in the super-resolution effect. Super-resolution imaging of a sample placed beneath the microsphere is only possible within a very restricted central area of ∼10 μm 2 , where the separation distance between the substrate and the microsphere surface is very small (∼1 μm). To generate super-resolution images over larger areas of the sample, we have fixed a microsphere on a frame attached to the microscope objective, which is automatically scanned over the sample in a step-by-step fashion. This generates a set of image tiles, which are subsequently stitched into a single super-resolution image (with resolution of λ/4-λ/5) of a sample area of up to ∼10 4 μm 2 . Scanning a standard optical microscope objective with microsphere therefore enables super-resolution microscopy over the complete field-of-view of the objective.

  8. Ulex europaeus 1 lectin targets microspheres to mouse Peyer's patch M-cells in vivo.

    Science.gov (United States)

    Foster, N; Clark, M A; Jepson, M A; Hirst, B H

    1998-03-01

    The interaction of latex microspheres with mouse Peyer's patch membranous M-cells was studied in a mouse gut loop model after the microspheres were coated with a variety of agents. Carboxylated microspheres (diameter 0.5 micron) were covalently coated with lectins Ulex europaeus 1, Concanavalin A, Euonymus europaeus and Bandeiraea simplicifolia 1 isolectin-B4, human immunoglobulin A or bovine serum albumin. Of the treatments examined, only Ulex europaeus (UEA1) resulted in significant selective binding of microspheres to M-cells. UEA1-coated microspheres bound to M-cells at a level 100-fold greater than BSA-coated microspheres, but binding to enterocytes was unaffected. Incubation of UEA1-coated microspheres with alpha-L-fucose reduced M-cell binding to a level comparable with BSA-coated microspheres. This indicated that targeting by UEA1 was via a carbohydrate receptor on the M-cell surface. Adherence of UEA1-coated microspheres to M-cells occurred within 10 min of inoculation into mouse gut loops and UEA1-coated microspheres were transported to 10 microns below the apical surface of M-cells within 60 min of inoculation. UEA1-coated microspheres also targeted mouse Peyer's patch M-cells after intragastric administration. These results demonstrated that altering the surface chemistry of carboxylated polystyrene microspheres increased M-cell targeting, suggesting a strategy to enhance delivery of vaccine antigens to the mucosal immune system.

  9. A reproducible accelerated in vitro release testing method for PLGA microspheres.

    Science.gov (United States)

    Shen, Jie; Lee, Kyulim; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2016-02-10

    The objective of the present study was to develop a discriminatory and reproducible accelerated in vitro release method for long-acting PLGA microspheres with inner structure/porosity differences. Risperidone was chosen as a model drug. Qualitatively and quantitatively equivalent PLGA microspheres with different inner structure/porosity were obtained using different manufacturing processes. Physicochemical properties as well as degradation profiles of the prepared microspheres were investigated. Furthermore, in vitro release testing of the prepared risperidone microspheres was performed using the most common in vitro release methods (i.e., sample-and-separate and flow through) for this type of product. The obtained compositionally equivalent risperidone microspheres had similar drug loading but different inner structure/porosity. When microsphere particle size appeared similar, porous risperidone microspheres showed faster microsphere degradation and drug release compared with less porous microspheres. Both in vitro release methods investigated were able to differentiate risperidone microsphere formulations with differences in porosity under real-time (37 °C) and accelerated (45 °C) testing conditions. Notably, only the accelerated USP apparatus 4 method showed good reproducibility for highly porous risperidone microspheres. These results indicated that the accelerated USP apparatus 4 method is an appropriate fast quality control tool for long-acting PLGA microspheres (even with porous structures). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Force chains in monodisperse spherical particle assemblies: Three-dimensional measurements using neutrons

    Science.gov (United States)

    Wensrich, C. M.; Kisi, E. H.; Luzin, V.; Garbe, U.; Kirstein, O.; Smith, A. L.; Zhang, J. F.

    2014-10-01

    The full triaxial stress state within individual particles in a monodisperse spherical granular assembly has been measured. This was made possible by neutron imaging and computed tomography combined with neutron diffraction strain measurement techniques and associated stress reconstruction. The assembly in question consists of 549 precision steel ball bearings under an applied axial load of 85 MPa in a cylindrical die. Clear evidence of force chains was observed in terms of both the shape of the probability distribution function for normal stresses and the network formed by highly loaded particles. An extensive analysis of the source and magnitude of uncertainty in these measurements is also presented.

  11. High Performance Affinity Chromatography of Antithrombin III Based on Monodisperse Poly (glycidyl methacrylate) Beads

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new approach for the separation of antithrombin III with high performance affinity chromatography (HPAC) was described. A novel monodisperse,non-porous,cross-linked poly (glycidyl methacrylate) beads (PGMA) were used as the affinity support. With the water-soluble carbodiimide,heparin was linked covalently to amino-PGMA-beads,which was prepared by amination of PGMA. The adsorbent obtained exhibits high binding activity to antithrombin III (ATIII),good resolution and excellent mechanical properties and can be used under high flow rate.

  12. Synthesis of Monodisperse CdSe QDs using Controlled Growth Temperatures

    International Nuclear Information System (INIS)

    Noor Razinah Rahmat; Akrajas Ali Umar; Muhammad Yahya; Muhamad Mat Salleh; Mohammad Hafizuddin Jumali

    2011-01-01

    The effect of growth temperatures on size of CdSe quantum dots (QDs) has been investigated. CdSe QDs were synthesized using thermolysis of organometallics precursor route using wet chemical method. The growth temperature was varied from 260-310 degree Celsius with growth period fixed at 60 s. As the growth temperature increased, the monodispersed CdSe QDs with diameter in the range 3-7 nm were obtained. Both absorption and PL spectra of the QDs revealed a strong red-shift supporting the increment size of QDs with the rise of growth temperature. (author)

  13. The Synthesis, Characterization and Catalytic Reaction Studies of Monodisperse Platinum Nanoparticles in Mesoporous Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    A catalyst design program was implemented in which Pt nanoparticles, either of monodisperse size and/or shape were synthesized, characterized and studied in a number of hydrocarbon conversion reactions. The novel preparation of these materials enables exquisite control over their physical and chemical properties that could be controlled (and therefore rationally tuned) during synthesis. The ability to synthesize rather than prepare catalysts followed by thorough characterization enable accurate structure-function relationships to be elucidated. This thesis emphasizes all three aspects of catalyst design: synthesis, characterization and reactivity studies. The precise control of metal nanoparticle size, surface structure and composition may enable the development of highly active and selective heterogeneous catalysts.

  14. Can a droplet break up under flow without elongating? Fragmentation of smectic monodisperse droplets

    Science.gov (United States)

    Courbin, L.; Engl, W.; Panizza, P.

    2004-06-01

    We study the fragmentation under shear flow of smectic monodisperse droplets at high volume fraction. Using small angle light scattering and optical microscopy, we reveal the existence of a break-up mechanism for which the droplets burst into daughter droplets of the same size. Surprisingly, this fragmentation process, which is strain controlled and occurs homogeneously in the cell, does not require any transient elongation of the droplets. Systematic experiments as a function of the initial droplet size and the applied shear rate show that the rupture is triggered by an instability of the inner droplet structure.

  15. Note: A simple vibrating orifice monodisperse droplet generator using a hard drive actuator arm

    Energy Technology Data Exchange (ETDEWEB)

    Kosch, Sebastian, E-mail: skosch@mie.utoronto.ca, E-mail: ashgriz@mie.utoronto.ca; Ashgriz, Nasser, E-mail: skosch@mie.utoronto.ca, E-mail: ashgriz@mie.utoronto.ca [Department of Industrial and Mechanical Engineering, University of Toronto, Toronto, Ontario M5S 3G8 (Canada)

    2015-04-15

    We propose that the rotary voice coil actuators found in magnetic hard drives are fit to supercede loudspeakers as expedient vibration sources in the laboratory setting. A specific use case is the excitation of a liquid jet to induce controlled breakup into monodisperse droplets. Like loudspeakers, which are typically used for prototyping such devices, hard drive actuators are cheap and ubiquitous, but they are less unwieldy and supply greater amplitudes without producing noise. Frequencies between 0 and 17 kHz, and likely beyond, can be reproduced reliably. No machining tools or amplifying electronics are needed for the construction and operation of the presented droplet generator.

  16. A review on target drug delivery: magnetic microspheres

    Directory of Open Access Journals (Sweden)

    Amit Chandna

    2013-01-01

    Magnetic microsphere is newer approach in pharmaceutical field. Magnetic microspheres as an alternative to traditional radiation methods which use highly penetrating radiation that is absorbed throughout the body. Its use is limited by toxicity and side effects. The aim of the specific targeting is to enhance the efficiency of drug delivery & at the same time to reduce the toxicity & side effects. This kind of delivery system is very much important which localises the drug to the disease site. In this larger amount of freely circulating drug can be replaced by smaller amount of magnetically targeted drug. Magnetic carriers receive magnetic responses to a magnetic field from incorporated materials that are used for magnetic microspheres are chitosan, dextran etc. magnetic microspheres can be prepared from a variety of carrier material. One of the most utilized is serum albumin from human or other appropriate species. Drug release from albumin microspheres ca