WorldWideScience

Sample records for monocytes macrophages myeloid

  1. Constitutive activity of NF-kappa B in myeloid cells drives pathogenicity of monocytes and macrophages during autoimmune neuroinflammation

    Directory of Open Access Journals (Sweden)

    Ellrichmann Gisa

    2012-01-01

    Full Text Available Abstract The NF-κB/REL-family of transcription factors plays a central role in coordinating the expression of a wide variety of genes controlling immune responses including autoimmunity of the central nervous system (CNS. The inactive form of NF-κB consists of a heterodimer which is complexed with its inhibitor, IκB. Conditional knockout-mice for IκBα in myeloid cells (lysMCreIκBαfl/fl have been generated and are characterized by a constitutive activation of NF-κB proteins allowing the study of this transcription factor in myelin-oligodendrocyte-glycoprotein induced experimental autoimmune encephalomyelitis (MOG-EAE, a well established experimental model for autoimmune demyelination of the CNS. In comparison to controls, lysMCreIκBαfl/fl mice developed a more severe clinical course of EAE. Upon histological analysis on day 15 p.i., there was an over two fold increased infiltration of T-cells and macrophages/microglia. In addition, lysMCreIκBαfl/fl mice displayed an increased expression of the NF-κB dependent factor inducible nitric oxide synthase in inflamed lesions. These changes in the CNS are associated with increased numbers of CD11b positive splenocytes and a higher expression of Ly6c on monocytes in the periphery. Well in accordance with these changes in the myeloid cell compartment, there was an increased production of the monocyte cytokines interleukin(IL-12 p70, IL-6 and IL-1beta in splenocytes. In contrast, production of the T-cell associated cytokines interferon gamma (IFN-gamma and IL-17 was not influenced. In summary, myeloid cell derived NF-κB plays a crucial role in autoimmune inflammation of the CNS and drives a pathogenic role of monocytes and macrophages independently from T-cells.

  2. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages.

    Science.gov (United States)

    Hoeffel, Guillaume; Chen, Jinmiao; Lavin, Yonit; Low, Donovan; Almeida, Francisca F; See, Peter; Beaudin, Anna E; Lum, Josephine; Low, Ivy; Forsberg, E Camilla; Poidinger, Michael; Zolezzi, Francesca; Larbi, Anis; Ng, Lai Guan; Chan, Jerry K Y; Greter, Melanie; Becher, Burkhard; Samokhvalov, Igor M; Merad, Miriam; Ginhoux, Florent

    2015-04-21

    Although classified as hematopoietic cells, tissue-resident macrophages (MFs) arise from embryonic precursors that seed the tissues prior to birth to generate a self-renewing population, which is maintained independently of adult hematopoiesis. Here we reveal the identity of these embryonic precursors using an in utero MF-depletion strategy and fate-mapping of yolk sac (YS) and fetal liver (FL) hematopoiesis. We show that YS MFs are the main precursors of microglia, while most other MFs derive from fetal monocytes (MOs). Both YS MFs and fetal MOs arise from erythro-myeloid progenitors (EMPs) generated in the YS. In the YS, EMPs gave rise to MFs without monocytic intermediates, while EMP seeding the FL upon the establishment of blood circulation acquired c-Myb expression and gave rise to fetal MOs that then seeded embryonic tissues and differentiated into MFs. Thus, adult tissue-resident MFs established from hematopoietic stem cell-independent embryonic precursors arise from two distinct developmental programs.

  3. Monocyte-macrophage differentiation of acute myeloid leukemia cell lines by small molecules identified through interrogation of the Connectivity Map database.

    Science.gov (United States)

    Manzotti, Gloria; Parenti, Sandra; Ferrari-Amorotti, Giovanna; Soliera, Angela Rachele; Cattelani, Sara; Montanari, Monica; Cavalli, Daniel; Ertel, Adam; Grande, Alexis; Calabretta, Bruno

    2015-01-01

    The transcription factor C/EBPα is required for granulocytic differentiation of normal myeloid progenitors and is frequently inactivated in acute myeloid leukemia (AML) cells. Ectopic expression of C/EBPα in AML cells suppresses proliferation and induces differentiation suggesting that restoring C/EBPα expression/activity in AML cells could be therapeutically useful. Unfortunately, current approaches of gene or protein delivery in leukemic cells are unsatisfactory. However, "drug repurposing" is becoming a very attractive strategy to identify potential new uses for existing drugs. In this study, we assessed the biological effects of candidate C/EBPα-mimetics identified by interrogation of the Connectivity Map database. We found that amantadine, an antiviral and anti-Parkinson agent, induced a monocyte-macrophage-like differentiation of HL60, U937, Kasumi-1 myeloid leukemia cell lines, as indicated by morphology and differentiation antigen expression, when used in combination with suboptimal concentration of all trans retinoic acid (ATRA) or Vit D3. The effect of amantadine depends, in part, on increased activity of the vitamin D receptor (VDR), since it induced VDR expression and amantadine-dependent monocyte-macrophage differentiation of HL60 cells was blocked by expression of dominant-negative VDR. These results reveal a new function for amantadine and support the concept that screening of the Connectivity Map database can identify small molecules that mimic the effect of transcription factors required for myelo-monocytic differentiation.

  4. Gomesin acts in the immune system and promotes myeloid differentiation and monocyte/macrophage activation in mouse.

    Science.gov (United States)

    Buri, Marcus V; Dias, Carol C; Barbosa, Christiano M V; Nogueira-Pedro, Amanda; Ribeiro-Filho, Antonio C; Miranda, Antonio; Paredes-Gamero, Edgar J

    2016-11-01

    Due to the cytotoxic effect of antimicrobial peptides (AMP) against several microorganism and tumor cells has been proposed their association with the immune system. However, just a few reports have shown this relationship. In this study, mice were treated with gomesin, a β-hairpin AMP that exhibit high cytotoxicity against bacterial and tumor cells. Different effects in the immune system were observed, such as, decrease of CD3(+) in T lymphocytes (Control: 17.7±1.4%; Gomesin: 7.67±1.2%) and in hematopoietic progenitors and increase of hematopoietic stem cell (Control: 0.046±0.004%; Gomesin: 0.067±0.003%), B220(+) B lymphocytes (Control: 38.63±1.5%; Gomesin: 47.83±0.48%), and Mac-1(+)F4/80(+) macrophages (Control: 11.76±3.4%; Gomesin: 27.13±4.0%). Additionally, macrophage increase was accompanied by an increase of macrophage phagocytosis (Control 20.85±1.53; Gomesin 31.32±1 Geometric mean), interleukin 6 (Control: 47.24±1.9ng/mL; Gomesin: 138.68±33.68ng/mL) and monocyte chemoattractant protein-1 (Control: 0.872±0.093ng/mL; Gomesin: 1.83±0.067ng/mL). Thus, this report showed immunomodulatory activity of gomesin in the immune system of mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  6. DMPD: Monocyte/macrophage traffic in HIV and SIV encephalitis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960230 Monocyte/macrophage traffic in HIV and SIV encephalitis. Kim WK, Corey S, ...Show Monocyte/macrophage traffic in HIV and SIV encephalitis. PubmedID 12960230 Title Monocyte/macrophage traffic

  7. Macrophage dynamics are regulated by local macrophage proliferation and monocyte recruitment in injured pancreas.

    Science.gov (United States)

    Van Gassen, Naomi; Van Overmeire, Eva; Leuckx, Gunter; Heremans, Yves; De Groef, Sofie; Cai, Ying; Elkrim, Yvon; Gysemans, Conny; Stijlemans, Benoît; Van de Casteele, Mark; De Baetselier, Patrick; De Leu, Nico; Heimberg, Harry; Van Ginderachter, Jo A

    2015-05-01

    Pancreas injury by partial duct ligation (PDL) activates a healing response, encompassing β-cell neogenesis and proliferation. Macrophages (MΦs) were recently shown to promote β-cell proliferation after PDL, but they remain poorly characterized. We assessed myeloid cell diversity and the factors driving myeloid cell dynamics following acute pancreas injury by PDL. In naive and sham-operated pancreas, the myeloid cell compartment consisted mainly of two distinct tissue-resident MΦ types, designated MHC-II(lo) and MHC-II(hi) MΦs, the latter being predominant. MHC-II(lo) and MHC-II(hi) pancreas MΦs differed at the molecular level, with MHC-II(lo) MΦs being more M2-activated. After PDL, there was an early surge of Ly6C(hi) monocyte infiltration in the pancreas, followed by a transient MHC-II(lo) MΦ peak and ultimately a restoration of the MHC-II(hi) MΦ-dominated steady-state equilibrium. These intricate MΦ dynamics in PDL pancreas depended on monocyte recruitment by C-C chemokine receptor 2 and macrophage-colony stimulating factor receptor as well as on macrophage-colony stimulating factor receptor-dependent local MΦ proliferation. Functionally, MHC-II(lo) MΦs were more angiogenic. We further demonstrated that, at least in C-C chemokine receptor 2-KO mice, tissue MΦs, rather than Ly6C(hi) monocyte-derived MΦs, contributed to β-cell proliferation. Together, our study fully characterizes the MΦ subsets in the pancreas and clarifies the complex dynamics of MΦs after PDL injury. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ly6C- Monocytes Regulate Parasite-Induced Liver Inflammation by Inducing the Differentiation of Pathogenic Ly6C+ Monocytes into Macrophages.

    Directory of Open Access Journals (Sweden)

    Yannick Morias

    2015-05-01

    Full Text Available Monocytes consist of two well-defined subsets, the Ly6C+ and Ly6C- monocytes. Both CD11b+ myeloid cells populations have been proposed to infiltrate tissues during inflammation. While infiltration of Ly6C+ monocytes is an established pathogenic factor during hepatic inflammation, the role of Ly6C- monocytes remains elusive. Mice suffering experimental African trypanosome infection die from systemic inflammatory response syndrome (SIRS that is initiated by phagocytosis of parasites by liver myeloid cells and culminates in apoptosis/necrosis of liver myeloid and parenchymal cells that reduces host survival. C57BL/6 mice are considered as trypanotolerant to Trypanosoma congolense infection. We have reported that in these animals, IL-10, produced among others by myeloid cells, limits the liver damage caused by pathogenic TNF-producing Ly6C+ monocytes, ensuring prolonged survival. Here, the heterogeneity and dynamics of liver myeloid cells in T. congolense-infected C57/BL6 mice was further dissected. Moreover, the contribution of Ly6C- monocytes to trypanotolerance was investigated. By using FACS analysis and adoptive transfer experiments, we found that the accumulation of Ly6C- monocytes and macrophages in the liver of infected mice coincided with a drop in the pool of Ly6C+ monocytes. Pathogenic TNF mainly originated from Ly6C+ monocytes while Ly6C- monocytes and macrophages were major and equipotent sources of IL-10 within myeloid cells. Moreover, Nr4a1 (Nur77 transcription factor-dependent Ly6C- monocytes exhibited IL-10-dependent and cell contact-dependent regulatory properties contributing to trypanotolerance by suppressing the production of TNF by Ly6C+ monocytes and by promoting the differentiation of the latter cells into macrophages. Thus, Ly6C- monocytes can dampen liver damage caused by an extensive Ly6C+ monocyte-associated inflammatory immune response in T. congolense trypanotolerant animals. In a more general context, Ly6C- or Ly6C

  9. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko ...tml) (.csml) Show Shaping of monocyte and macrophage function by adenosine receptors. PubmedID 17056121 Titl...e Shaping of monocyte and macrophage function by adenosine receptors. Authors Has

  10. The interplay between monocytes/macrophages and CD4+ T cell subsets in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Ceri A. Roberts

    2015-11-01

    Full Text Available Rheumatoid arthritis (RA is a chronic inflammatory disease characterized by inflammation of the synovial lining (synovitis. The inflammation in the RA joint is associated with and driven by immune cell infiltration, synovial hyperproliferation and excessive production of pro-inflammatory mediators, such as TNFα, IFNγ, IL-1β, IL-6 and IL-17, eventually resulting in damage to the cartilage and underlying bone. The RA joint harbors a wide range of immune cell types, including monocytes, macrophages and CD4+ T cells (both pro-inflammatory and regulatory. The interplay between CD14+ myeloid cells and CD4+ T cells can significantly influence CD4+ T cell function and conversely, effector vs. regulatory CD4+ T cell subsets can exert profound effects on monocyte/macrophage function. In this review, we will discuss how the interplay between CD4+ T cells and monocytes/macrophages may contribute to the immunopathology of RA.

  11. Monocyte and Macrophage Plasticity in Tissue Repair and Regeneration

    Science.gov (United States)

    Das, Amitava; Sinha, Mithun; Datta, Soma; Abas, Motaz; Chaffee, Scott; Sen, Chandan K.; Roy, Sashwati

    2016-01-01

    Heterogeneity and high versatility are the characteristic features of the cells of monocyte-macrophage lineage. The mononuclear phagocyte system, derived from the bone marrow progenitor cells, is primarily composed of monocytes, macrophages, and dendritic cells. In regenerative tissues, a central role of monocyte-derived macrophages and paracrine factors secreted by these cells is indisputable. Macrophages are highly plastic cells. On the basis of environmental cues and molecular mediators, these cells differentiate to proinflammatory type I macrophage (M1) or anti-inflammatory or proreparative type II macrophage (M2) phenotypes and transdifferentiate into other cell types. Given a central role in tissue repair and regeneration, the review focuses on the heterogeneity of monocytes and macrophages with current known mechanisms of differentiation and plasticity, including microenvironmental cues and molecular mediators, such as noncoding RNAs. PMID:26118749

  12. Host hindrance to HIV-1 replication in monocytes and macrophages

    Directory of Open Access Journals (Sweden)

    Pancino Gianfranco

    2010-04-01

    Full Text Available Abstract Monocytes and macrophages are targets of HIV-1 infection and play critical roles in multiple aspects of viral pathogenesis. HIV-1 can replicate in blood monocytes, although only a minor proportion of circulating monocytes harbor viral DNA. Resident macrophages in tissues can be infected and function as viral reservoirs. However, their susceptibility to infection, and their capacity to actively replicate the virus, varies greatly depending on the tissue localization and cytokine environment. The susceptibility of monocytes to HIV-1 infection in vitro depends on their differentiation status. Monocytes are refractory to infection and become permissive upon differentiation into macrophages. In addition, the capacity of monocyte-derived macrophages to sustain viral replication varies between individuals. Host determinants regulate HIV-1 replication in monocytes and macrophages, limiting several steps of the viral life-cycle, from viral entry to virus release. Some host factors responsible for HIV-1 restriction are shared with T lymphocytes, but several anti-viral mechanisms are specific to either monocytes or macrophages. Whilst a number of these mechanisms have been identified in monocytes or in monocyte-derived macrophages in vitro, some of them have also been implicated in the regulation of HIV-1 infection in vivo, in particular in the brain and the lung where macrophages are the main cell type infected by HIV-1. This review focuses on cellular factors that have been reported to interfere with HIV-1 infection in monocytes and macrophages, and examines the evidences supporting their role in vivo, highlighting unique aspects of HIV-1 restriction in these two cell types.

  13. Comparative Analysis of the Interaction of Helicobacter pylori with Human Dendritic Cells, Macrophages, and Monocytes

    Science.gov (United States)

    Fehlings, Michael; Drobbe, Lea; Moos, Verena; Renner Viveros, Pablo; Hagen, Jana; Beigier-Bompadre, Macarena; Pang, Ervinna; Belogolova, Elena; Churin, Yuri; Schneider, Thomas; Meyer, Thomas F.; Aebischer, Toni

    2012-01-01

    Helicobacter pylori may cause chronic gastritis, gastric cancer, or lymphoma. Myeloid antigen-presenting cells (APCs) are most likely involved in the induction and expression of the underlying inflammatory responses. To study the interaction of human APC subsets with H. pylori, we infected monocytes, monocyte-derived dendritic cells (DCs), and monocyte-derived (classically activated; M1) macrophages with H. pylori and analyzed phenotypic alterations, cytokine secretion, phagocytosis, and immunostimulation. Since we detected CD163+ (alternatively activated; M2) macrophages in gastric biopsy specimens from H. pylori-positive patients, we also included monocyte-derived M2 macrophages in the study. Upon H. pylori infection, monocytes secreted interleukin-1β (IL-1β), IL-6, IL-10, and IL-12p40 (partially secreted as IL-23) but not IL-12p70. Infected DCs became activated, as shown by the enhanced expression of CD25, CD80, CD83, PDL-1, and CCR7, and secreted IL-1β, IL-6, IL-10, IL-12p40, IL-12p70, and IL-23. However, infection led to significantly downregulated CD209 and suppressed the constitutive secretion of macrophage migration inhibitory factor (MIF). H. pylori-infected M1 macrophages upregulated CD14 and CD32, downregulated CD11b and HLA-DR, and secreted mainly IL-1β, IL-6, IL-10, IL-12p40, and IL-23. Activation of DCs and M1 macrophages correlated with increased capacity to induce T-cell proliferation and decreased phagocytosis of dextran. M2 macrophages upregulated CD14 and CD206 and secreted IL-10 but produced less of the proinflammatory cytokines than M1 macrophages. Thus, H. pylori affects the functions of human APC subsets differently, which may influence the course and the outcome of H. pylori infection. The suppression of MIF in DCs constitutes a novel immune evasion mechanism exploited by H. pylori. PMID:22615251

  14. Monocyte chemiluminescence and macrophage precursors in the aged.

    Directory of Open Access Journals (Sweden)

    Takahashi,Isao

    1985-12-01

    Full Text Available Age-related alterations in the host defense system have been vigorously investigated because of increased susceptibility to infection and neoplasms in the aged. Although monocyte-macrophages form a major part of the cellular defense against microorganisms, the majority of investigations has been limited to neutrophils and lymphocytes. The present study, designed to determine the influence of age on mononuclear phagocytes, revealed no significant decrease in the absolute number of blood monocytes, but did reveal a tendency for the chemiluminescence of blood monocytes to decrease (p less than 0.10 and a significant decrease in the numbers of macrophage precursors (p less than 0.05 in the aged (over 70 year old, in comparison with controls (under 40 years old. On the basis of these findings, functional alterations of monocyte-macrophages seem to participate in the increased susceptibility to infection in the aged.

  15. Monocyte/macrophage lineage commitment and distribution are affected by the lack of regulatory T cells in scurfy mice.

    Science.gov (United States)

    Skuljec, Jelena; Cabanski, Maciej; Surdziel, Ewa; Lachmann, Nico; Brennig, Sebastian; Pul, Refik; Jirmo, Adan C; Habener, Anika; Visic, Julia; Dalüge, Kathleen; Hennig, Christian; Moritz, Thomas; Happle, Christine; Hansen, Gesine

    2016-07-01

    Foxp3(+) regulatory T (Treg) cells play a pivotal role in maintaining immunological tolerance. Loss-of-function mutations in the Foxp3 gene result in multiorgan inflammation known as immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome in humans and scurfy (Sf) disease in mice. While the impact of missing Treg cells on adaptive immune cells is well documented, their role in regulation of myeloid cells remains unclear. Here we report that Sf mice exhibit an altered composition of stem and progenitor cells, characterized by increased numbers of myeloid precursors and higher efficiency of macrophage generation ex vivo. The proportion of monocytes/macrophages in the bone marrow, blood, and spleen was significantly elevated in Sf mice, which was accompanied with tissue-specific monocyte expression of homing receptor and phagocytic activity. Sf mice displayed high levels of M-CSF and other inflammatory cytokines, including monocyte-recruiting chemokines. Adoptive transfer of WT CD4(+) cells and in vivo neutralization of M-CSF normalized frequencies of monocyte subsets and their progenitors and reduced high levels of monocyte-related cytokines in Sf mice, while Treg cell transfer to RAG2(-/-) mice had no effect on myelopoiesis and monocyte/macrophage counts. Our findings illustrate that deregulated myelopoiesis in Sf mice is mainly caused by the inflammatory reaction resulting from the lack of Treg cells.

  16. Endogenous epoxygenases are modulators of monocyte/macrophage activity.

    Directory of Open Access Journals (Sweden)

    Jonas Bystrom

    Full Text Available BACKGROUND: Arachidonic acid is metabolized through three major metabolic pathways, the cyclooxygenase, lipoxygenase and CYP450 enzyme systems. Unlike cyclooxygenase and lipoxygenases, the role of CYP450 epoxygenases in monocyte/macrophage-mediated responses is not known. METHODOLOGY/PRINCIPAL FINDINGS: When transfected in vitro, CYP2J2 is an efficient activator of anti-inflammatory pathways through the nuclear receptor peroxisome proliferator-activated receptor (PPAR α. Human monocytes and macrophages contain PPARα and here we show they express the epoxygenases CYP2J2 and CYP2C8. Inhibition of constitutive monocyte epoxygenases using the epoxygenase inhibitor SKF525A induces cyclooxygenase (COX-2 expression and activity, and the release of TNFα, and can be reversed by either add back of the endogenous epoxygenase products and PPARα ligand 11,12- epoxyeicosatrienoic acid (EET or the addition of the selective synthetic PPARα ligand GW7647. In alternatively activated (IL-4-treated monocytes, in contrast to classically activated cells, epoxygenase inhibition decreased TNFα release. Epoxygenases can be pro-inflammatory via superoxide anion production. The suppression of TNFα by SKF525A in the presence of IL-4 was associated with a reduction in superoxide anion generation and reproduced by the superoxide dismutase MnCl(2. Similar to these acute activation studies, in monocyte derived macrophages, epoxygenase inhibition elevates M1 macrophage TNFα mRNA and further decreases M2 macrophage TNFα. CONCLUSIONS/SIGNIFICANCE: In conclusion, epoxygenase activity represents an important endogenous pathway which limits monocyte activation. Moreover endogenous epoxygenases are immuno-modulators regulating monocyte/macrophage activation depending on the underlying activation state.

  17. Periodontitis-activated monocytes/macrophages cause aortic inflammation

    Science.gov (United States)

    Miyajima, Shin-ichi; Naruse, Keiko; Kobayashi, Yasuko; Nakamura, Nobuhisa; Nishikawa, Toru; Adachi, Kei; Suzuki, Yuki; Kikuchi, Takeshi; Mitani, Akio; Mizutani, Makoto; Ohno, Norikazu; Noguchi, Toshihide; Matsubara, Tatsuaki

    2014-01-01

    A relationship between periodontal disease and atherosclerosis has been suggested by epidemiological studies. Ligature-induced experimental periodontitis is an adequate model for clinical periodontitis, which starts from plaque accumulation, followed by inflammation in the periodontal tissue. Here we have demonstrated using a ligature-induced periodontitis model that periodontitis activates monocytes/macrophages, which subsequently circulate in the blood and adhere to vascular endothelial cells without altering the serum TNF-α concentration. Adherent monocytes/macrophages induced NF-κB activation and VCAM-1 expression in the endothelium and increased the expression of the TNF-α signaling cascade in the aorta. Peripheral blood-derived mononuclear cells from rats with experimental periodontitis showed enhanced adhesion and increased NF-κB/VCAM-1 in cultured vascular endothelial cells. Our results suggest that periodontitis triggers the initial pathogenesis of atherosclerosis, inflammation of the vasculature, through activating monocytes/macrophages. PMID:24893991

  18. Influence of phthalates on cytokine production in monocytes and macrophages

    DEFF Research Database (Denmark)

    Frohnert, Juliana; Bendtzen, Klaus; Boas, Malene;

    2015-01-01

    BACKGROUND: Phthalates are a group of endocrine disrupting chemicals suspected to influence the immune system. The aim of this systematic review is to summarise the present knowledge on the influence of phthalates on monocyte and macrophage production and secretion of cytokines, an influence which......-α secretion/production from monocytes or macrophages. A summary of cytokine measurements was not possible since few studies were comparable in study design and due to insufficient reporting of raw data for most of the included studies. CONCLUSION: Results from this review have suggested that at least one...

  19. Non-myeloid Cells are Major Contributors to Innate Immune Responses via Production of Monocyte Chemoattractant Protein- 1(MCP-1/CCL2

    Directory of Open Access Journals (Sweden)

    Teizo eYoshimura

    2014-01-01

    Full Text Available Monocyte chemoattractant protein-1 (MCP-1/CCL2 is a chemokine regulating the recruitment of monocytes into sites of inflammation and cancer. MCP-1 can be produced by a variety of cell types, such as macrophages, neutrophils, fibroblasts, endothelial cells and epithelial cells. Notably, macrophages produce high levels of MCP-1 in response to proinflammatory stimuli in vitro, leading to the hypothesis that macrophages are the major source of MCP-1 during inflammatory responses in vivo. In stark contrast to the hypothesis, however, there was no significant reduction in MCP-1 protein or the number of infiltrating macrophages in the peritoneal inflammatory exudates of myeloid cell-specific MCP-1-deficient mice in response to i.p injection of thioglycollate or zymosan A. Furthermore, injection of LPS into skin air pouch also had no effect on local MCP-1 production in myeloid-specific MCP-1-deficient mice. Finally, myeloid-specific MCP-1-deficiency did not reduce MCP-1 mRNA expression or macrophage infiltration in LPS-induced lung injury. These results indicate that non-myeloid cells, in response to a variety of stimulants, play a previously unappreciated role in innate immune responses as the primary source of MCP-1.

  20. DMPD: Differential responses of human monocytes and macrophages to IL-4 and IL-13. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10534111 Differential responses of human monocytes and macrophages to IL-4 and IL-1...):575-8. (.png) (.svg) (.html) (.csml) Show Differential responses of human monocytes and macrophages to IL-...4 and IL-13. PubmedID 10534111 Title Differential responses of human monocytes an

  1. Acidosis differently modulates the inflammatory program in monocytes and macrophages.

    Science.gov (United States)

    Riemann, Anne; Wußling, Hanna; Loppnow, Harald; Fu, Hang; Reime, Sarah; Thews, Oliver

    2016-01-01

    Inflammation, ischemia or the microenvironment of solid tumors is often accompanied by a reduction of extracellular pH (acidosis) that stresses the cells and acts on cellular signaling and transcription. The effect of acidosis on the expression of various inflammatory markers, on functional parameters (migration, phagocytic activity) and on signaling pathways involved was studied in monocytic cells and macrophages. In monocytic cell lines acidosis led to a reduction in expression of most of the inflammatory mediators, namely IL-1ß, IL-6, TNF-α, MCP-1, COX-2 and osteopontin. In primary human monocytes MCP-1 and TNF-α were reduced but COX-2 and IL-6 were increased. In RAW264.7 macrophage cell line IL-1ß, COX-2 and iNOS expression was increased, whereas MCP-1 was reduced similar to the effect in monocytic cells. For primary human monocyte-derived macrophages the regulation of inflammatory markers by acidosis depended on activation state, except for the acidosis-induced downregulation of MCP-1 and TNF-α. Acidosis affected functional immune cell behavior when looking at phagocytic activity which was increased in a time-dependent manner, but cellular motility was not changed. Neither ERK1/2 nor CREB signaling was stimulated by the reduction of extracellular pH. However, p38 was activated by acidosis in RAW264.7 cells and this activation was critical for the induction of IL-1ß, COX-2 and iNOS expression. In conclusion, acidosis may impede the recruitment of immune cells, but fosters inflammation when macrophages are present by increasing the level of COX-2 and iNOS and by functionally forcing up the phagocytic activity.

  2. Intravital live cell triggered imaging system reveals monocyte patrolling and macrophage migration in atherosclerotic arteries

    Science.gov (United States)

    McArdle, Sara; Chodaczek, Grzegorz; Ray, Nilanjan; Ley, Klaus

    2015-02-01

    Intravital multiphoton imaging of arteries is technically challenging because the artery expands with every heartbeat, causing severe motion artifacts. To study leukocyte activity in atherosclerosis, we developed the intravital live cell triggered imaging system (ILTIS). This system implements cardiac triggered acquisition as well as frame selection and image registration algorithms to produce stable movies of myeloid cell movement in atherosclerotic arteries in live mice. To minimize tissue damage, no mechanical stabilization is used and the artery is allowed to expand freely. ILTIS performs multicolor high frame-rate two-dimensional imaging and full-thickness three-dimensional imaging of beating arteries in live mice. The external carotid artery and its branches (superior thyroid and ascending pharyngeal arteries) were developed as a surgically accessible and reliable model of atherosclerosis. We use ILTIS to demonstrate Cx3cr1GFP monocytes patrolling the lumen of atherosclerotic arteries. Additionally, we developed a new reporter mouse (Apoe-/-Cx3cr1GFP/+Cd11cYFP) to image GFP+ and GFP+YFP+ macrophages "dancing on the spot" and YFP+ macrophages migrating within intimal plaque. ILTIS will be helpful to answer pertinent open questions in the field, including monocyte recruitment and transmigration, macrophage and dendritic cell activity, and motion of other immune cells.

  3. Myeloid Acyl-CoA:Cholesterol Acyltransferase 1 Deficiency Reduces Lesion Macrophage Content and Suppresses Atherosclerosis Progression.

    Science.gov (United States)

    Huang, Li-Hao; Melton, Elaina M; Li, Haibo; Sohn, Paul; Rogers, Maximillian A; Mulligan-Kehoe, Mary Jo; Fiering, Steven N; Hickey, William F; Chang, Catherine C Y; Chang, Ta-Yuan

    2016-03-18

    Acyl-CoA:cholesterol acyltransferase 1 (Acat1) converts cellular cholesterol to cholesteryl esters and is considered a drug target for treating atherosclerosis. However, in mouse models for atherosclerosis, global Acat1 knockout (Acat1(-/-)) did not prevent lesion development. Acat1(-/-) increased apoptosis within lesions and led to several additional undesirable phenotypes, including hair loss, dry eye, leukocytosis, xanthomatosis, and a reduced life span. To determine the roles of Acat1 in monocytes/macrophages in atherosclerosis, we produced a myeloid-specific Acat1 knockout (Acat1(-M/-M)) mouse and showed that, in the Apoe knockout (Apoe(-/-)) mouse model for atherosclerosis, Acat1(-M/-M) decreased the plaque area and reduced lesion size without causing leukocytosis, dry eye, hair loss, or a reduced life span. Acat1(-M/-M) enhanced xanthomatosis in apoe(-/-) mice, a skin disease that is not associated with diet-induced atherosclerosis in humans. Analyses of atherosclerotic lesions showed that Acat1(-M/-M) reduced macrophage numbers and diminished the cholesterol and cholesteryl ester load without causing detectable apoptotic cell death. Leukocyte migration analysis in vivo showed that Acat1(-M/-M) caused much fewer leukocytes to appear at the activated endothelium. Studies in inflammatory (Ly6C(hi)-positive) monocytes and in cultured macrophages showed that inhibiting ACAT1 by gene knockout or by pharmacological inhibition caused a significant decrease in integrin β 1 (CD29) expression in activated monocytes/macrophages. The sparse presence of lesion macrophages without Acat1 can therefore, in part, be attributed to decreased interaction between inflammatory monocytes/macrophages lacking Acat1 and the activated endothelium. We conclude that targeting ACAT1 in a myeloid cell lineage suppresses atherosclerosis progression while avoiding many of the undesirable side effects caused by global Acat1 inhibition.

  4. Myeloid Acyl-CoA:Cholesterol Acyltransferase 1 Deficiency Reduces Lesion Macrophage Content and Suppresses Atherosclerosis Progression*

    Science.gov (United States)

    Huang, Li-Hao; Melton, Elaina M.; Li, Haibo; Sohn, Paul; Rogers, Maximillian A.; Mulligan-Kehoe, Mary Jo; Fiering, Steven N.; Hickey, William F.; Chang, Catherine C. Y.; Chang, Ta-Yuan

    2016-01-01

    Acyl-CoA:cholesterol acyltransferase 1 (Acat1) converts cellular cholesterol to cholesteryl esters and is considered a drug target for treating atherosclerosis. However, in mouse models for atherosclerosis, global Acat1 knockout (Acat1−/−) did not prevent lesion development. Acat1−/− increased apoptosis within lesions and led to several additional undesirable phenotypes, including hair loss, dry eye, leukocytosis, xanthomatosis, and a reduced life span. To determine the roles of Acat1 in monocytes/macrophages in atherosclerosis, we produced a myeloid-specific Acat1 knockout (Acat1−M/−M) mouse and showed that, in the Apoe knockout (Apoe−/−) mouse model for atherosclerosis, Acat1−M/−M decreased the plaque area and reduced lesion size without causing leukocytosis, dry eye, hair loss, or a reduced life span. Acat1−M/−M enhanced xanthomatosis in apoe−/− mice, a skin disease that is not associated with diet-induced atherosclerosis in humans. Analyses of atherosclerotic lesions showed that Acat1−M/−M reduced macrophage numbers and diminished the cholesterol and cholesteryl ester load without causing detectable apoptotic cell death. Leukocyte migration analysis in vivo showed that Acat1−M/−M caused much fewer leukocytes to appear at the activated endothelium. Studies in inflammatory (Ly6Chi-positive) monocytes and in cultured macrophages showed that inhibiting ACAT1 by gene knockout or by pharmacological inhibition caused a significant decrease in integrin β 1 (CD29) expression in activated monocytes/macrophages. The sparse presence of lesion macrophages without Acat1 can therefore, in part, be attributed to decreased interaction between inflammatory monocytes/macrophages lacking Acat1 and the activated endothelium. We conclude that targeting ACAT1 in a myeloid cell lineage suppresses atherosclerosis progression while avoiding many of the undesirable side effects caused by global Acat1 inhibition. PMID:26801614

  5. Tracking the Spatial and Functional Gradient of Monocyte-To-Macrophage Differentiation in Inflamed Lung.

    Science.gov (United States)

    Sen, Debasish; Jones, Stephen M; Oswald, Erin M; Pinkard, Henry; Corbin, Kaitlin; Krummel, Matthew F

    2016-01-01

    Myeloid-derived cells such as monocytes, dendritic cells (DCs), and macrophages are at the heart of the immune effector function in an inflammatory response. But because of the lack of an efficient imaging system to trace these cells live during their migration and maturation in their native environment at sub-cellular resolution, our knowledge is limited to data available from specific time-points analyzed by flow cytometry, histology, genomics and other immunological methods. Here, we have developed a ratiometric imaging method for measuring monocyte maturation in inflamed mouse lungs in situ using real-time using 2-photon imaging and complementary methods. We visualized that while undifferentiated monocytes were predominantly found only in the vasculature, a semi-differentiated monocyte/macrophage population could enter the tissue and resembled more mature and differentiated populations by morphology and surface phenotype. As these cells entered and differentiated, they were already selectively localized near inflamed airways and their entry was associated with changes in motility and morphology. We were able to visualize these during the act of differentiation, a process that can be demonstrated in this way to be faster on a per-cell basis under inflammatory conditions. Finally, our in situ analyses demonstrated increases, in the differentiating cells, for both antigen uptake and the ability to mediate interactions with T cells. This work, while largely confirming proposed models for in situ differentiation, provides important in situ data on the coordinated site-specific recruitment and differentiation of these cells and helps elaborate the predominance of immune pathology at the airways. Our novel imaging technology to trace immunogenic cell maturation in situ will complement existing information available on in situ differentiation deduced from other immunological methods, and assist better understanding of the spatio-temporal cellular behavior during an

  6. Tracking Monocyte Recruitment and Macrophage Accumulation in Atherosclerotic Plaque Progression Using a Novel hCD68GFP/ApoE−/− Reporter Mouse—Brief Report

    Science.gov (United States)

    Iqbal, Asif J.; Jones, Daniel; Patel, Jyoti; Coutinho, Patricia; Taylor, Lewis; Greaves, David R.; Channon, Keith M.

    2017-01-01

    Objective— To create a model of atherosclerosis using green fluorescent protein (GFP)–targeted monocytes/macrophages, allowing analysis of both endogenous GFP+ and adoptively transferred GFP+ myeloid cells in arterial inflammation. Approach and Results— hCD68GFP reporter mice were crossed with ApoE−/− mice. Expression of GFP was localized to macrophages in atherosclerotic plaques and in angiotensin II–induced aortic aneurysms and correlated with galectin 3 and mCD68 expression. Flow cytometry confirmed GFP+ expression in CD11b+/CD64+, CD11c+/MHC-IIHI, and CD11b+/F4/80+ myeloid cells. Adoptive transfer of GFP+ monocytes demonstrated monocyte recruitment to both adventitia and atherosclerotic plaque, throughout the aortic root, within 72 hours. We demonstrated the biological utility of hCD68GFP monocytes by comparing the recruitment of wild-type and CCR2−/− monocytes to sites of inflammation. Conclusions— hCD68GFP/ApoE−/− mice provide a new approach to study macrophage accumulation in atherosclerotic plaque progression and to identify cells recruited from adoptively transferred monocytes. PMID:27908893

  7. HIV-1-infected monocytes and monocyte-derived macrophages are impaired in their ability to produce superoxide radicals.

    Science.gov (United States)

    Howell, A L; Groveman, D S; Wallace, P K; Fanger, M W

    1997-01-01

    Monocytes and monocyte-derived macrophages play a key role in immune defense against pathogenic organisms. Superoxide anion production is a key mechanism by which phagocytes kill pathogens. We sought to determine whether human immunodeficiency virus-infected monocytes and monocyte-derived macrophages are compromised in their ability to produce the superoxide anion following stimulation with phorbol myristate acetate (PMA) or after cross-linking the type I Fc receptor for IgG (Fc gamma RI). Fc gamma RI was cross-linked by the binding of monoclonal antibody 197, which reacts with an epitope of Fc gamma RI via its Fc region. Monocytes and monocyte-derived macrophages obtained from seronegative donors were infected in vitro with human immunodeficiency virus-1JR-FL and used in effector assays that measured superoxide anion production by the reduction of nitroblue tetrazolium. Reduced nitroblue tetrazolium was measured spectrophotometrically and by microscopy in which the percentage of cells containing intracellular deposits of the dye was assessed. By spectrophotometric measurement, we found that human immunodeficiency virus-infected monocytes and monocyte-derived macrophages produced less superoxide anion following either phorbol myristate acetate stimulation or Fc gamma RI cross-linking than uninfected cells from the same donor. Using microscopy we saw no difference in the percentage of infected and uninfected macrophages containing intracellular deposits of nitroblue tetrazolium suggesting that human immunodeficiency virus-infected macrophages produce less superoxide anion on a per cell basis than uninfected macrophages. Activation of human immunodeficiency virus-infected monocytes with interferon-gamma for 72 h prior to stimulation with phorbol myristate acetate or monoclonal antibody 197 increased their ability to reduce nitroblue tetrazolium. These findings suggest that impairment in the production of reactive oxygen intermediates may, in some cases, contribute to

  8. Establishing porcine monocyte-derived macrophage and dendritic cell systems for studying the interaction with PRRSV-1

    Directory of Open Access Journals (Sweden)

    Helen eSingleton

    2016-06-01

    Full Text Available Monocyte-derived macrophages (MoMØ and monocyte-derived dendritic cells (MoDC are two model systems well established in human and rodent systems that can be used to study the interaction of pathogens with host cells. Porcine reproductive and respiratory syndrome virus (PRRSV is known to infect myeloid cells, such as macrophages (MØ and dendritic cells (DC. Therefore, this study aimed to establish systems for the differentiation and characterization of MoMØ and MoDC for subsequent infection with PRRSV-1. M-CSF differentiated monocyte-derived macrophages (MoMØ were stimulated with activators for classical (M1 or alternative (M2 activation. GM-CSF and IL-4 generated monocyte-derived dendritic cells (MoDC were activated with the well established maturation cocktail containing PAMPs and cytokines. In addition, MoMØ and MoDC were treated with dexamethasone and IL-10, which are known immuno-suppressive reagents. Cells were characterized by morphology, phenotype and function and porcine MØ subsets highlighted some divergence from described human counterparts, while MoDC, appeared more similar to mouse and human DCs. The infection with PRRSV-1 strain Lena demonstrated different replication kinetics between MoMØ and MoDC and within subsets of each cell type. While MoMØ susceptibility was significantly increased by dexamethasone and IL-10 with an accompanying increase in CD163/CD169 expression, MoDC supported only a minimal replication of PRRSV These findings underline the high variability in the susceptibility of porcine myeloid cells towards PRRSV-1 infection.

  9. Effects of Two Fullerene Derivatives on Monocytes and Macrophages

    Directory of Open Access Journals (Sweden)

    Sabrina Pacor

    2015-01-01

    Full Text Available Two fullerene derivatives (fullerenes 1 and 2, bearing a hydrophilic chain on the pyrrolidinic nitrogen, were developed with the aim to deliver anticancer agents to solid tumors. These two compounds showed a significantly different behaviour on human neoplastic cell lines in vitro in respect to healthy leukocytes. In particular, the pyrrolidinium ring on the fullerene carbon cage brings to a more active compound. In the present work, we describe the effects of these fullerenes on primary cultures of human monocytes and macrophages, two kinds of immune cells representing the first line of defence in the immune response to foreign materials. These compounds are not recognized by circulating monocytes while they get into macrophages. The evaluation of the pronecrotic or proapoptotic effects, analysed by means of analysis of the purinergic receptor P2X7 activation and of ROS scavenging activity, has allowed us to show that fullerene 2, but not its analogue fullerene 1, displays toxicity, even though at concentrations higher than those shown to be active on neoplastic cells.

  10. Effects of Two Fullerene Derivatives on Monocytes and Macrophages.

    Science.gov (United States)

    Pacor, Sabrina; Grillo, Alberto; Đorđević, Luka; Zorzet, Sonia; Lucafò, Marianna; Da Ros, Tatiana; Prato, Maurizio; Sava, Gianni

    2015-01-01

    Two fullerene derivatives (fullerenes 1 and 2), bearing a hydrophilic chain on the pyrrolidinic nitrogen, were developed with the aim to deliver anticancer agents to solid tumors. These two compounds showed a significantly different behaviour on human neoplastic cell lines in vitro in respect to healthy leukocytes. In particular, the pyrrolidinium ring on the fullerene carbon cage brings to a more active compound. In the present work, we describe the effects of these fullerenes on primary cultures of human monocytes and macrophages, two kinds of immune cells representing the first line of defence in the immune response to foreign materials. These compounds are not recognized by circulating monocytes while they get into macrophages. The evaluation of the pronecrotic or proapoptotic effects, analysed by means of analysis of the purinergic receptor P2X7 activation and of ROS scavenging activity, has allowed us to show that fullerene 2, but not its analogue fullerene 1, displays toxicity, even though at concentrations higher than those shown to be active on neoplastic cells.

  11. Phenotypic, functional, and quantitative characterization of canine peripheral blood monocyte-derived macrophages

    Directory of Open Access Journals (Sweden)

    R Bueno

    2005-08-01

    Full Text Available The yield as well as phenotypic and functional parameters of canine peripheral blood monocyte-derived macrophages were analyzed. The cells that remained adherent to Teflon after 10 days of culture had high phagocytic activity when inoculated with Leishmania chagasi. Flow cytometric analysis demonstrated that more than 80% of cultured cells were positive for the monocyte/macrophage marker CD14.

  12. HIV-related proteins prolong macrophage survival through induction of Triggering receptor expressed on myeloid cells-1

    Science.gov (United States)

    Yuan, Zhihong; Fan, Xian; Staitieh, Bashar; Bedi, Chetna; Spearman, Paul; Guidot, David M; Sadikot, Ruxana T

    2017-01-01

    Triggering receptor expressed on myeloid cells-1(TREM-1) is a member of the superimmunoglobulin receptor family. We have previously shown that TREM-1 prolongs survival of macrophages treated with lipoolysaccharide through Egr2-Bcl2 signaling. Recent studies suggest a role for TREM-1 in viral immunity. Human immunodeficiency virus-1 (HIV) targets the monocyte/macrophage lineage at varying stages of infection. Emerging data suggest that macrophages are key reservoirs for latent HIV even in individuals on antiretroviral therapy. Here, we investigated the potential role of TREM-1 in HIV latency in macrophages. Our data show that human macrophages infected with HIV show an increased expression of TREM-1. In parallel, direct exposure to the HIV-related proteins Tat or gp120 induces TREM-1 expression in macrophages and confers anti-apoptotic attributes.NF-κB p65 silencing identified that these proteins induce TREM-1 in p65-dependent manner. TREM-1 silencing in macrophages exposed to HIV-related proteins led to increased caspase 3 activation and reduced Bcl-2 expression, rendering them susceptible to apotosis. These novel data reveal that TREM-1 may play a critical role in establishing HIV reservoir in macrophages by inhibiting apoptosis. Therefore, targeting TREM-1 could be a novel therapeutic approach to enhance clearance of the HIV reservoir, at least within the macrophage pools. PMID:28181540

  13. Ontogeny and Polarization of Macrophages in Inflammation: Blood monocytes versus tissue macrophages.

    Directory of Open Access Journals (Sweden)

    Adwitia eDey

    2015-01-01

    Full Text Available The explosion of new information in recent years on the origin of macrophages in the steady-state and in the context of inflammation has opened up numerous new avenues of investigation and possibilities for therapeutic intervention. In contrast to the classical model of macrophage development, it is clear that tissue-resident macrophages can develop from yolk sac-derived erythromyeloid progenitors, fetal liver progenitors and bone marrow-derived monocytes. Under both homeostatic conditions and in response to pathophysiological insult, the contribution of these distinct sources of macrophages varies significantly between tissues. Furthermore, while all of these populations of macrophages appear to be capable of adopting the polarized M1/M2 phenotypes, their respective contribution to inflammation, resolution of inflammation and tissue repair remains poorly understood and is likely to be tissue- and disease-dependent. A better understanding of the ontology and polarization capacity of macrophages in homeostasis and disease will be essential for the development of novel therapies that target the inherent plasticity of macrophages in the treatment of acute and chronic inflammatory disease.

  14. Myeloid Growth Factors Promote Resistance to Mycobacterial Infection by Curtailing Granuloma Necrosis through Macrophage Replenishment.

    Science.gov (United States)

    Pagán, Antonio J; Yang, Chao-Tsung; Cameron, James; Swaim, Laura E; Ellett, Felix; Lieschke, Graham J; Ramakrishnan, Lalita

    2015-07-08

    The mycobacterial ESX-1 virulence locus accelerates macrophage recruitment to the forming tuberculous granuloma. Newly recruited macrophages phagocytose previously infected apoptotic macrophages to become new bacterial growth niches. Granuloma macrophages can then necrose, releasing mycobacteria into the extracellular milieu, which potentiates their growth even further. Using zebrafish with genetic or pharmacologically induced macrophage deficiencies, we find that global macrophage deficits increase susceptibility to mycobacterial infection by accelerating granuloma necrosis. This is because reduction in the macrophage supply below a critical threshold decreases granuloma macrophage replenishment to the point where apoptotic infected macrophages, failing to get engulfed, necrose. Reducing macrophage demand by removing bacterial ESX-1 offsets the susceptibility of macrophage deficits. Conversely, increasing macrophage supply in wild-type fish by overexpressing myeloid growth factors induces resistance by curtailing necrosis. These findings may explain the susceptibility of humans with mononuclear cytopenias to mycobacterial infections and highlight the therapeutic potential of myeloid growth factors in tuberculosis.

  15. Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions.

    Directory of Open Access Journals (Sweden)

    Bonnie van Wilgenburg

    Full Text Available Human macrophages are specialised hosts for HIV-1, dengue virus, Leishmania and Mycobacterium tuberculosis. Yet macrophage research is hampered by lack of appropriate cell models for modelling infection by these human pathogens, because available myeloid cell lines are, by definition, not terminally differentiated like tissue macrophages. We describe here a method for deriving monocytes and macrophages from human Pluripotent Stem Cells which improves on previously published protocols in that it uses entirely defined, feeder- and serum-free culture conditions and produces very consistent, pure, high yields across both human Embryonic Stem Cell (hESC and multiple human induced Pluripotent Stem Cell (hiPSC lines over time periods of up to one year. Cumulatively, up to ∼3×10(7 monocytes can be harvested per 6-well plate. The monocytes produced are most closely similar to the major blood monocyte (CD14(+, CD16(low, CD163(+. Differentiation with M-CSF produces macrophages that are highly phagocytic, HIV-1-infectable, and upon activation produce a pro-inflammatory cytokine profile similar to blood monocyte-derived macrophages. Macrophages are notoriously hard to genetically manipulate, as they recognise foreign nucleic acids; the lentivector system described here overcomes this, as pluripotent stem cells can be relatively simply genetically manipulated for efficient transgene expression in the differentiated cells, surmounting issues of transgene silencing. Overall, the method we describe here is an efficient, effective, scalable system for the reproducible production and genetic modification of human macrophages, facilitating the interrogation of human macrophage biology.

  16. Myeloid Colony Stimulating Factors as Regulators of Macrophage Polarization

    Directory of Open Access Journals (Sweden)

    Thomas A Hamilton

    2014-11-01

    Full Text Available The scope of functional heterogeneity in macrophages has been defined by two polarized end states known as M1 and M2, which exhibit the pro-inflammatory activities necessary for host defense and the tissue repair activities required for tissue repair respectively. Macrophage populations in different tissue locations exist in distinct phenotypic states across this M1/M2 spectrum and the development and abundance of individual subsets result from the local and systemic action of myeloid colony stimulating factors (CSFs including M-CSF and GM-CSF. These factors have relatively non-overlapping roles in the differentiation and maintenance of specific macrophage subsets. Furthermore there is now evidence that CSFs may also regulate macrophage phenotype during challenge. Cell culture studies from multiple laboratories demonstrate that macrophages developed in the presence of GM-CSF exhibit amplified response to M1 polarizing stimuli while M-CSF potentiates responses to M2 stimuli. As a consequence these factors can be important determinants of the magnitude and duration of both acute and chronic inflammatory pathology and may, therefore, be potential targets for therapeutic manipulation in specific human disease settings.

  17. Pharmacological effects of mitraphylline from Uncaria tomentosa in primary human monocytes: Skew toward M2 macrophages.

    Science.gov (United States)

    Montserrat-de la Paz, S; de la Puerta, R; Fernandez-Arche, A; Quilez, A M; Muriana, F J G; Garcia-Gimenez, M D; Bermudez, B

    2015-07-21

    Uncaria tomentosa (Willdenow ex Roemer & Schultes) DC. (Rubiaceae) is a Peruvian thorny liana, commonly known as "cat׳s claw", and traditionally used in folk medicine to deal with several inflammatory diseases. Mitraphylline (MTP) is the most abundant pentacyclic oxindolic alkaloid (POA) from U. Tomentosa and has been reported to modify the inflammatory response. Herein, we have sought to identify the mechanisms underlying this modulatory effect of MTP on primary human monocytes and its ability to regulate differentiation processes on human primary monocyte and monocyte-derived macrophages. In vitro studies with human primary monocytes and monocyte-derived macrophages were performed. Monocytes and M0 macrophages were exposed to MTP (25μM) and LPS (100ng/mL). M0 macrophages were polarized to M1 and M2 phenotypes in the absence or presence of MTP. The activation state of monocytes/macrophages was assessed by flow cytometry, gene expression and protein analysis of different specific markers. In human primary monocytes, the incubation of MTP for 24h reduced the number of classical (CD14(++)CD16(-)) and intermediate (CD14(++)CD16(+)) subsets when compared to untreated or LPS-treated cells. MTP also reduced the chemotactic capacity of human primary monocytes. In addition, MTP promoted the polarization of M0 macrophages toward an anti-inflammatory M2 phenotype, the abrogation of the release of pro-inflammatory cytokines such as TNFα, IL-6 or IL-1β, as well as the restoration of markers for M2 macrophages in LPS-treated M1 macrophages. Our results suggest that MTP may be a key modulator for regulating the plasticity of monocytes/macrophages and the attenuation of the inflammatory response. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Transduced monocyte/macrophages targeted to murine skin by UV light.

    Science.gov (United States)

    Zhang, Alexandra Y; Wu, Caiyun; Zhou, Lixin; Ismail, Sahar A; Tao, Jianming; McCormick, Laura L; Cooper, Kevin D; Gilliam, Anita C

    2006-01-01

    We have selectively targeted monocyte/macrophages overexpressing an immunomodulatory molecule, latency-associated peptide (LAP), a naturally occurring antagonist for transforming growth factor-beta1, to murine skin utilizing UV light to produce a cutaneous influx of transduced monocyte/macrophages. Bone marrow (BM) cells from BALB/c mice were transduced in vitro with a retroviral construct containing green fluorescent protein (GFP) for detection and human LAP (hLAP) as a test molecule. The transduced BM cells were then cultured in vitro with granulocyte-macrophage colony-stimulating factor (GM-CSF) to produce differentiation to monocyte/macrophages. More than 80% of transduced BM cells were CD11b-positive and MOMA-positive by fluorescence-activated cell-sorter analysis and secreted LAP by ELISA after 10 days of culture in granulocyte-macrophage colony-stimulating factor (GM-CSF). Transduced monocyte/macrophages containing either GFP or hLAP-GFP were then injected intravenously into BALB/c mice. One-half of recipients in each group were exposed to UVB (72 mJ) to induce monocyte/macrophage infiltration into skin. Recipients were sacrificed 60 h after UV irradiation. We found transduced cutaneous macrophages expressing GFP by examining with fluorescence microscopy frozen skin sections of recipient mice immunostained with antibodies to GFP and to macrophage marker F4/80. We identified hLAP sequences by polymerase chain reaction (PCR) of total DNA in recipient blood and UV-irradiated skin but not in unirradiated skin. LAP sequences were also detected at much lower levels in other organs (lung, spleen, and liver) by PCR. Therefore, we have shown that genetically altered monocytic cells can be injected intravenously and targeted to mouse skin by UV exposure. This macrophage-based gene-transfer method may be a potentially useful immunotherapeutic approach for delivering monocyte/macrophage-derived products to skin.

  19. Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation.

    Science.gov (United States)

    Miró-Mur, Francesc; Pérez-de-Puig, Isabel; Ferrer-Ferrer, Maura; Urra, Xabier; Justicia, Carles; Chamorro, Angel; Planas, Anna M

    2016-03-01

    Acute stroke induces a local inflammatory reaction causing leukocyte infiltration. Circulating monocytes are recruited to the ischemic brain and become tissue macrophages morphologically indistinguishable from reactive microglia. However, monocytes are a heterogeneous population of cells with different functions. Herein, we investigated the infiltration and fate of the monocyte subsets in a mouse model of focal brain ischemia by permanent occlusion of the distal portion of the middle cerebral artery. We separated two main subtypes of CD11b(hi) monocytes according to their expression of the surface markers Ly6C and CD43. Using adoptive transfer of reporter monocytes and monocyte depletion, we identified the pro-inflammatory Ly6C(hi)CD43(lo)CCR2(+) subset as the predominant monocytes recruited to the ischemic tissue. Monocytes were seen in the leptomeninges from where they entered the cortex along the penetrating arterioles. Four days post-ischemia, they had invaded the infarcted core, where they were often located adjacent to blood vessels. At this time, Iba-1(-) and Iba-1(+) cells in the ischemic tissue incorporated BrdU, but BrdU incorporation was rare in the reporter monocytes. The monocyte phenotype progressively changed by down-regulating Ly6C, up-regulating F4/80, expressing low or intermediate levels of Iba-1, and developing macrophage morphology. Moreover, monocytes progressively acquired the expression of typical markers of alternatively activated macrophages, like arginase-1 and YM-1. Collectively, the results show that stroke mobilized immature pro-inflammatory Ly6C(hi)CD43(lo) monocytes that acutely infiltrated the ischemic tissue reaching the core of the lesion. Monocytes differentiated to macrophages with features of alternative activation suggesting possible roles in tissue repair during the sub-acute phase of stroke.

  20. Release of salusin-beta from human monocytes/macrophages.

    Science.gov (United States)

    Sato, Kengo; Fujimoto, Kazumi; Koyama, Takatoshi; Shichiri, Masayoshi

    2010-06-01

    the release of salusin-beta. These data demonstrate that salusin-beta, which induces macrophage foam cell formation, is secreted in its authentic form from human monocytes/macrophages.

  1. Impact of individual intravenous iron preparations on the differentiation of monocytes towards macrophages and dendritic cells

    Science.gov (United States)

    Fell, Lisa H.; Seiler-Mußler, Sarah; Sellier, Alexander B.; Rotter, Björn; Winter, Peter; Sester, Martina; Fliser, Danilo; Heine, Gunnar H.; Zawada, Adam M.

    2016-01-01

    Background Treatment of iron deficiency with intravenous (i.v.) iron is a first-line strategy to improve anaemia of chronic kidney disease. Previous in vitro experiments demonstrated that different i.v. iron preparations inhibit differentiation of haematopoietic stem cells to monocytes, but their effect on monocyte differentiation to macrophages and mature dendritic cells (mDCs) has not been assessed. We investigated substance-specific effects of iron sucrose (IS), sodium ferric gluconate (SFG), ferric carboxymaltose (FCM) and iron isomaltoside 1000 (IIM) on monocytic differentiation to M1/M2 macrophages and mDCs. Methods Via flow cytometry and microRNA (miRNA) expression analysis, we morphologically and functionally characterized monocyte differentiation to M1/M2 macrophages and mDCs after monocyte stimulation with IS, SFG, FCM and IIM (0.133, 0.266 and 0.533 mg/mL, respectively). To assess potential clinical implications, we compared monocytic phagocytosis capacity in dialysis patients who received either 500 mg IS or IIM. Results Phenotypically, IS and SFG dysregulated the expression of macrophage (e.g. CD40, CD163) and mDC (e.g. CD1c, CD141) surface markers. Functionally, IS and SFG impaired macrophage phagocytosis capacity. Phenotypic and functional alterations were less pronounced with FCM, and virtually absent with IIM. In miRNA expression analysis of mDCs, IS dysregulated miRNAs such as miR-146b-5p and miR-155-5p, which are linked to Toll-like receptor and mitogen-activated protein kinase signalling pathways. In vivo, IS reduced monocytic phagocytosis capacity within 1 h after infusion, while IIM did not. Conclusions This study demonstrates that less stable i.v. iron preparations specifically affect monocyte differentiation towards macrophages and mDCs. PMID:27190361

  2. A Higher Frequency of CD14+ CD169+ Monocytes/Macrophages in Patients with Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Chenguang Li

    Full Text Available Monocytes and macrophages can infiltrate into tumor microenvironment and regulate the progression of tumors. This study aimed at determining the frequency of different subsets of circulating monocytes and tumor infiltrating macrophages (TIMs in patients with colorectal cancer (CRC.The frequency of different subsets of circulating monocytes was characterized in 46 CRC patients and 22 healthy controls (HC by flow cytometry. The frequency of different subsets of macrophages was analyzed in TIMs from 30 tumor tissues and in lamina propria mononuclear cells (LPMCs from 12 non-tumor tissues. The concentrations of plasma cytokines and carcinoembryonic antigen (CEA were determined. The potential association of these measures with the values of clinical parameters was analyzed.In comparison with that in the HC, the percentages of circulating CD14+ CD169+, CD14+ CD169+ CD163+ and CD14+ CD169+ CD206+ monocytes and TIMs CD14+ CD169+ as well as IL-10+ CD14+ CD169+, but not IL-12+ CD14+ CD169+ macrophages were significantly increased, accompanied by higher levels of plasma IL-10 in the CRC patients. The percentages of CD14+ CD169+ circulating monocytes and TIM macrophages were associated with the stage of disease and correlated positively with the levels of plasma IL-10 and CEA in CRC patients.Our data suggest that an increase in the frequency of CD14+ CD169+ cells may be associated with the development and progression of CRC and is concomitant rise of both, pro-tumor (M2-like, IL-10 producing and anti-tumor (M1-like, IL-12 producing monocytes and infiltrating macrophages. The frequency of CD14+ CD169+ circulating monocytes and infiltrating macrophages may serve as a biomarker for evaluating the pathogenic degrees of CRC.

  3. Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression.

    Science.gov (United States)

    Lai, Jiann-Jyh; Lai, Kuo-Pao; Chuang, Kuang-Hsiang; Chang, Philip; Yu, I-Chen; Lin, Wen-Jye; Chang, Chawnshang

    2009-12-01

    Cutaneous wounds heal more slowly in elderly males than in elderly females, suggesting a role for sex hormones in the healing process. Indeed, androgen/androgen receptor (AR) signaling has been shown to inhibit cutaneous wound healing. AR is expressed in several cell types in healing skin, including keratinocytes, dermal fibroblasts, and infiltrating macrophages, but the exact role of androgen/AR signaling in these different cell types remains unclear. To address this question, we generated and studied cutaneous wound healing in cell-specific AR knockout (ARKO) mice. General and myeloid-specific ARKO mice exhibited accelerated wound healing compared with WT mice, whereas keratinocyte- and fibroblast-specific ARKO mice did not. Importantly, the rate of wound healing in the general ARKO mice was dependent on AR and not serum androgen levels. Interestingly, although dispensable for wound closure, keratinocyte AR promoted re-epithelialization, while fibroblast AR suppressed it. Further analysis indicated that AR suppressed wound healing by enhancing the inflammatory response through a localized increase in TNF-alpha expression. Furthermore, AR enhanced local TNF-alpha expression via multiple mechanisms, including increasing the inflammatory monocyte population, enhancing monocyte chemotaxis by upregulating CCR2 expression, and enhancing TNF-alpha expression in macrophages. Finally, targeting AR by topical application of a compound (ASC-J9) that degrades AR protein resulted in accelerated healing, suggesting a potential new therapeutic approach that may lead to better treatment of wound healing.

  4. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy

    Science.gov (United States)

    Xu, Yingying; Wang, Liming; Bai, Ru; Zhang, Tianlu; Chen, Chunying

    2015-09-01

    Monocytes/macrophages are important constituents of the innate immune system. Monocyte-macrophage differentiation is not only crucial for innate immune responses, but is also related to some cardiovascular diseases. Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials because of their broad-spectrum antimicrobial properties. However, the effect of AgNPs on the functions of blood monocytes is scarcely reported. Here, we report the impedance effect of AgNPs on THP-1 monocyte differentiation, and that this effect was mediated by autophagy blockade and lysosomal impairment. Firstly, AgNPs inhibit phorbol 12-myristate 13-acetate (PMA)-induced monocyte differentiation by down-regulating both expression of surface marker CD11b and response to lipopolysaccharide (LPS) stimulation. Secondly, autophagy is activated during PMA-induced THP-1 monocyte differentiation, and the autophagy inhibitor chloroquine (CQ) can inhibit this process. Thirdly, AgNPs block the degradation of the autophagy substrate p62 and induce autophagosome accumulation, which demonstrates the blockade of autophagic flux. Fourthly, lysosomal impairments including alkalization and decrease of lysosomal membrane stability were observed in AgNP-treated THP-1 cells. In conclusion, we demonstrate that the impedance of monocyte-macrophage differentiation by AgNPs is mediated by autophagy blockade and lysosomal dysfunction. Our results suggest that crosstalk exists in different biological effects induced by AgNPs.

  5. The role of HIV and monocytes/macrophages in adipose tissue biology.

    Science.gov (United States)

    Shikuma, Cecilia M; Gangcuangco, Louie Mar A; Killebrew, Deirdre A; Libutti, Daniel E; Chow, Dominic C; Nakamoto, Beau K; Liang, Chin Yuan; Milne, Cris I P; Ndhlovu, Lishomwa C; Barbour, Jason D; Shiramizu, Bruce T; Gerschenson, Mariana

    2014-02-01

    To assess the role of HIV and monocytes/macrophages in adipose tissue dysregulation. Cross-sectional study in 5 groups: HIV seronegative, HIV+ antiretroviral therapy (ART)-naive, HIV+ nonlipoatrophic on zidovudine- and/or stavudine-containing ART, HIV+ lipoatrophic on similar ART, and HIV+ on abacavir- or tenofovir-containing ART. HIV DNA in circulating monocyte subsets was quantitated by real-time polymerase chain reaction. Biopsied subcutaneous fat was examined for macrophage content by CD68 staining. Isolated adipocytes and macrophages were cultured and the supernatant assayed for secretory products by Luminex multiplex cytokine technology. Sixty-nine subjects were enrolled. Lipoatrophic subjects had higher median HIV DNA levels (270.5 copies/10 cells) in circulating peripheral CD14CD16 co-expressing monocyte subsets compared with subjects who were ART-naive (25.0 copies), nonlipoatrophic (15.0 copies), or on abacavir/tenofovir (57.5 copies), P adipocytes and adipose macrophage content were marginal. Although adipocyte secretory products were similar, HIV-infected subjects had higher adipose macrophage-derived interleukin (IL)-12p40, IL-6, IL-8, and monocyte inflammatory protein 1 alpha and lower eotaxin and interferon gamma levels than HIV seronegative subjects (P adipose macrophage secretory products were comparable between subjects naive with ART versus those on ART. Circulating HIV-infected and proinflammatory CD14CD16 monocyte subsets contribute to the pathogenesis of HIV-associated lipoatrophy. Among HIV-infected individuals, macrophages, rather than adipocytes, are the primary source of low-grade inflammation in subcutaneous adipose tissue. HIV infection modifies these macrophages to a more proinflammatory phenotype, and these changes are not substantially mitigated by the use of ART.

  6. Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage

    Directory of Open Access Journals (Sweden)

    Rohr Olivier

    2010-04-01

    Full Text Available Abstract The introduction of the highly active antiretroviral therapy (HAART has greatly improved survival. However, these treatments fail to definitively cure the patients and unveil the presence of quiescent HIV-1 reservoirs like cells from monocyte-macrophage lineage. A purge, or at least a significant reduction of these long lived HIV-1 reservoirs will be needed to raise the hope of the viral eradication. This review focuses on the molecular mechanisms responsible for viral persistence in cells of the monocyte-macrophage lineage. Controversy on latency and/or cryptic chronic replication will be specifically evoked. In addition, since HIV-1 infected monocyte-macrophage cells appear to be more resistant to apoptosis, this obstacle to the viral eradication will be discussed. Understanding the intimate mechanisms of HIV-1 persistence is a prerequisite to devise new and original therapies aiming to achieve viral eradication.

  7. Hemoglobin induces monocyte recruitment and CD163-macrophage polarization in abdominal aortic aneurysm.

    Science.gov (United States)

    Rubio-Navarro, Alfonso; Amaro Villalobos, Juan Manuel; Lindholt, Jes S; Buendía, Irene; Egido, Jesús; Blanco-Colio, Luis Miguel; Samaniego, Rafael; Meilhac, Olivier; Michel, Jean Baptiste; Martín-Ventura, José Luis; Moreno, Juan Antonio

    2015-12-15

    Increased hemoglobin (Hb) accumulation was reported in abdominal aortic aneurysms (AAAs). CD163 is a macrophage receptor involved in tissue Hb clearance, however its role in AAA has not been reported. We investigated the role of Hb on monocyte recruitment and differentiation towards CD163 expressing macrophages ex vivo, in vitro and in human AAA. CD163 mRNA and protein expression was significantly higher in human AAA (n=7) vs. healthy wall (n=6). CD163 was predominantly found in adventitia of AAA, coinciding with areas rich in hemosiderin and adjacent to neoangiogenic microvessels. Dual CD14/CD163 expression was observed in recently infiltrated monocytes surrounding microvessels. A higher release of soluble CD163 was observed in the conditioned medium from AAA (AAA-CM, n=10), mainly in the adventitial layer. Similar to Hb, AAA-CM induced CD163-dependent monocyte chemotaxis, especially on circulating monocytes from AAA patients. Hb or AAA-CM promoted differentiation towards CD163(high)/HLA-DR(low)-expressing macrophages, with enhanced Hb uptake, increased anti-inflammatory IL-10 secretion and decreased pro-inflammatory IL-12p40 release. All these effects were partially suppressed when Hb was removed from AAA-CM. Separate analysis on circulating monocytes reported increased percentage of pre-infiltrating CD14(++)CD16(+) monocytes in patients with AAA (n=21), as compared to controls (n=14). A significant increase in CD163 expression in CD14(++)CD16(+) monocyte subpopulation was observed in AAA patients. The presence of Hb in the adventitial AAA-wall promotes the migration and differentiation of activated circulating monocytes in AAA patients, explaining the existence of a protective CD163-macrophage phenotype that could take up the Hb present in the AAA-wall, avoiding its injurious effects. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Monocyte to macrophage differentiation goes along with modulation of the plasmalogen pattern through transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Stefan Wallner

    Full Text Available BACKGROUND: Dysregulation of monocyte-macrophage differentiation is a hallmark of vascular and metabolic diseases and associated with persistent low grade inflammation. Plasmalogens represent ether lipids that play a role in diabesity and previous data show diminished plasmalogen levels in obese subjects. We therefore analyzed transcriptomic and lipidomic changes during monocyte-macrophage differentiation in vitro using a bioinformatic approach. METHODS: Elutriated monocytes from 13 healthy donors were differentiated in vitro to macrophages using rhM-CSF under serum-free conditions. Samples were taken on days 0, 1, 4 and 5 and analyzed for their lipidomic and transcriptomic profiles. RESULTS: Gene expression analysis showed strong regulation of lipidome-related transcripts. Enzymes involved in fatty acid desaturation and elongation were increasingly expressed, peroxisomal and ER stress related genes were induced. Total plasmalogen levels remained unchanged, while the PE plasmalogen species pattern became more similar to circulating granulocytes, showing decreases in PUFA and increases in MUFA. A partial least squares discriminant analysis (PLS/DA revealed that PE plasmalogens discriminate the stage of monocyte-derived macrophage differentiation. Partial correlation analysis could predict novel potential key nodes including DOCK1, PDK4, GNPTAB and FAM126A that might be involved in regulating lipid and especially plasmalogen homeostasis during differentiation. An in silico transcription analysis of lipid related regulation revealed known motifs such as PPAR-gamma and KLF4 as well as novel candidates such as NFY, RNF96 and Zinc-finger proteins. CONCLUSION: Monocyte to macrophage differentiation goes along with profound changes in the lipid-related transcriptome. This leads to an induction of fatty-acid desaturation and elongation. In their PE-plasmalogen profile macrophages become more similar to granulocytes than monocytes, indicating terminal

  9. Macrophage Differentiation from Monocytes Is Influenced by the Lipid Oxidation Degree of Low Density Lipoprotein

    Directory of Open Access Journals (Sweden)

    Jin-Won Seo

    2015-01-01

    Full Text Available LDL plays an important role in atherosclerotic plaque formation and macrophage differentiation. However, there is no report regarding the oxidation degree of LDL and macrophage differentiation. Our study has shown that the differentiation into M1 or M2 macrophages is related to the lipid oxidation level of LDL. Based on the level of lipid peroxidation, LDL is classified into high-oxidized LDL (hi-oxLDL and low-oxidized LDL (low-oxLDL. The differentiation profiles of macrophages were determined by surface receptor expression and cytokine secretion profiles. Low-oxLDL induced CD86 expression and production of TNF-α and IL-12p40 in THP-1 cells, indicating an M1 macrophage phenotype. Hi-oxLDL induced mannose receptor expression and production of IL-6 and monocyte chemoattractant protein-1, which mostly match the phenotype of M2 macrophages. Further supporting evidence for an M2 polarization by hi-oxLDL was the induction of LOX-1 in THP-1 cells treated with hi-oxLDL but not with low-oxLDL. Similar results were obtained in primary human monocytes. Therefore, our results strongly suggest that the oxidation degree of LDL influences the differentiation of monocytes into M1 or M2 macrophages and determines the inflammatory fate in early stages of atherosclerosis.

  10. Mechanism involved in interleukin-21-induced phagocytosis in human monocytes and macrophages.

    Science.gov (United States)

    Vallières, F; Girard, D

    2017-02-01

    The interleukin (IL)-21/IL-21 receptor (R) is a promising system to be exploited for the development of therapeutic strategies. Although the biological activities of IL-21 and its cell signalling events have been largely studied in immunocytes, its interaction with human monocytes and macrophages have been neglected. Previously, we reported that IL-21 enhances Fc gamma receptor (FcRγ)-mediated phagocytosis in human monocytes and in human monocyte-derived macrophages (HMDM) and identified Syk as a novel molecular target of IL-21. Here, we elucidate further how IL-21 promotes phagocytosis in these cells. Unlike its ability to enhance phagocytosis of opsonized sheep red blood cells (SRBCs), IL-21 did not promote phagocytosis of Escherichia coli and zymosan by monocytes and did not alter the cell surface expression of CD16, CD32 and CD64. In HMDM, IL-21 was found to enhance phagocytosis of zymosan. In addition, we found that IL-21 activates p38, protein kinase B (Akt), signal transducer and activator of transcription (STAT)-1 and STAT-3 in monocytes and HMDM. Using a pharmacological approach, we demonstrate that IL-21 enhances phagocytosis by activating some mitogen-activated protein kinases (MAPKs) and phosphoinositide 3-kinase (PI3K)-Akt and Janus kinase (JAK)-STAT pathways. These results obtained in human monocytes and macrophages have to be considered for a better exploitation of the IL-21/IL-21R system for therapeutic purposes. © 2016 British Society for Immunology.

  11. Anti-myeloperoxidase antibodies attenuate the monocyte response to LPS and shape macrophage development

    Science.gov (United States)

    Popat, Reena J.; Hakki, Seran; Coughlan, Alice M.; Watson, Julie; Little, Mark A.; Spickett, Corinne M.; Lavender, Paul; Afzali, Behdad; Kemper, Claudia; Robson, Michael G.

    2017-01-01

    Anti-neutrophil cytoplasmic antibody (ANCA) vasculitis is characterized by the presence of autoantibodies to myeloperoxidase and proteinase-3, which bind monocytes in addition to neutrophils. While a pathological effect on neutrophils is acknowledged, the impact of ANCA on monocyte function is less well understood. Using IgG from patients we investigated the effect of these autoantibodies on monocytes and found that anti-myeloperoxidase antibodies (MPO-ANCA) reduced both IL-10 and IL-6 secretion in response to LPS. This reduction in IL-10 and IL-6 depended on Fc receptors and enzymatic myeloperoxidase and was accompanied by a significant reduction in TLR-driven signaling pathways. Aligning with changes in TLR signals, oxidized phospholipids, which function as TLR4 antagonists, were increased in monocytes in the presence of MPO-ANCA. We further observed that MPO-ANCA increased monocyte survival and differentiation to macrophages by stimulating CSF-1 production. However, this was independent of myeloperoxidase enzymatic activity and TLR signaling. Macrophages differentiated in the presence of MPO-ANCA secreted more TGF-β and further promoted the development of IL-10– and TGF-β–secreting CD4+ T cells. Thus, MPO-ANCA may promote inflammation by reducing the secretion of antiinflammatory IL-10 from monocytes, and MPO-ANCA can alter the development of macrophages and T cells to potentially promote fibrosis. PMID:28138552

  12. Galectin-2 induces a proinflammatory, anti-arteriogenic phenotype in monocytes and macrophages.

    Directory of Open Access Journals (Sweden)

    Cansu Yıldırım

    Full Text Available Galectin-2 is a monocyte-expressed carbohydrate-binding lectin, for which increased expression is genetically determined and associated with decreased collateral arteriogenesis in obstructive coronary artery disease patients. The inhibiting effect of galectin-2 on arteriogenesis was confirmed in vivo, but the mechanism is largely unknown. In this study we aimed to explore the effects of galectin-2 on monocyte/macrophage phenotype in vitro and vivo, and to identify the receptor by which galectin-2 exerts these effects. We now show that the binding of galectin-2 to different circulating human monocyte subsets is dependent on monocyte surface expression levels of CD14. The high affinity binding is blocked by an anti-CD14 antibody but not by carbohydrates, indicating a specific protein-protein interaction. Galectin-2 binding to human monocytes modulated their transcriptome by inducing proinflammatory cytokines and inhibiting pro-arteriogenic factors, while attenuating monocyte migration. Using specific knock-out mice, we show that galectin-2 acts through the CD14/toll-like receptor (TLR-4 pathway. Furthermore, galectin-2 skews human macrophages to a M1-like proinflammatory phenotype, characterized by a reduced motility and expression of an anti-arteriogenic cytokine/growth factor repertoire. This is accompanied by a switch in surface protein expression to CD40-high and CD206-low (M1. In a murine model we show that galectin-2 administration, known to attenuate arteriogenesis, leads to increased numbers of CD40-positive (M1 and reduced numbers of CD206-positive (M2 macrophages surrounding actively remodeling collateral arteries. In conclusion galectin-2 is the first endogenous CD14/TLR4 ligand that induces a proinflammatory, non-arteriogenic phenotype in monocytes/macrophages. Interference with CD14-Galectin-2 interaction may provide a new intervention strategy to stimulate growth of collateral arteries in genetically compromised cardiovascular

  13. Functional role of monocytes and macrophages for the inflammatory response in acute liver injury

    Directory of Open Access Journals (Sweden)

    Henning W Zimmermann

    2012-10-01

    Full Text Available Different etiologies such as drug toxicity, acute viral hepatitis B or acetaminophen poisoning can cause acute liver injury (ALI or even acute liver failure (ALF. Excessive cell death of hepatocytes in the liver is known to result in a strong hepatic inflammation. Experimental murine models of liver injury highlighted the importance of hepatic macrophages, so-called Kupffer cells, for initiating and driving this inflammatory response by releasing proinflammatory cytokines and chemokines including tumor necrosis factor (TNF, interleukin-6 (IL-6, IL-1-beta or monocyte chemoattractant protein 1 (MCP-1, CCL2 as well as activating other non-parenchymal liver cells, e.g. endothelial or hepatic stellate cells (HSC. Many of these proinflammatory mediators can trigger hepatocytic cell death pathways, e.g. via caspase activation, but also activate protective signaling pathways, e.g. via nuclear factor kappa B (NF-kB. Recent studies in mice demonstrated that these macrophage actions largely depend on the recruitment of monocytes into the liver, namely of the inflammatory Ly6c+ (Gr1+ monocyte subset as precursors of tissue macrophages. The chemokine receptor CCR2 and its ligand MCP-1/CCL2 promote monocyte subset infiltration upon liver injury. In contrast, the chemokine receptor CX3CR1 and its ligand fractalkine (CX3CL1 are important negative regulators of monocyte infiltration by controlling their survival and differentiation into functionally diverse macrophage subsets upon injury. The recently identified cellular and molecular pathways for monocyte subset recruitment, macrophage differentiation and interactions with other hepatic cell types in the injured liver may therefore represent interesting novel targets for future therapeutic approaches in ALF.

  14. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Marc Daigneault

    Full Text Available Differentiated macrophages are the resident tissue phagocytes and sentinel cells of the innate immune response. The phenotype of mature tissue macrophages represents the composite of environmental and differentiation-dependent imprinting. Phorbol-12-myristate-13-acetate (PMA and 1,25-dihydroxyvitamin D3 (VD(3 are stimuli commonly used to induce macrophage differentiation in monocytic cell lines but the extent of differentiation in comparison to primary tissue macrophages is unclear. We have compared the phenotype of the promonocytic THP-1 cell line after various protocols of differentiation utilising VD(3 and PMA in comparison to primary human monocytes or monocyte-derived macrophages (MDM. Both stimuli induced changes in cell morphology indicative of differentiation but neither showed differentiation comparable to MDM. In contrast, PMA treatment followed by 5 days resting in culture without PMA (PMAr increased cytoplasmic to nuclear ratio, increased mitochondrial and lysosomal numbers and altered differentiation-dependent cell surface markers in a pattern similar to MDM. Moreover, PMAr cells showed relative resistance to apoptotic stimuli and maintained levels of the differentiation-dependent anti-apoptotic protein Mcl-1 similar to MDM. PMAr cells retained a high phagocytic capacity for latex beads, and expressed a cytokine profile that resembled MDM in response to TLR ligands, in particular with marked TLR2 responses. Moreover, both MDM and PMAr retained marked plasticity to stimulus-directed polarization. These findings suggest a modified PMA differentiation protocol can enhance macrophage differentiation of THP-1 cells and identify increased numbers of mitochondria and lysosomes, resistance to apoptosis and the potency of TLR2 responses as important discriminators of the level of macrophage differentiation for transformed cells.

  15. Glycoengineering of therapeutic antibodies enhances monocyte/macrophage-mediated phagocytosis and cytotoxicity.

    Science.gov (United States)

    Herter, Sylvia; Birk, Martina C; Klein, Christian; Gerdes, Christian; Umana, Pablo; Bacac, Marina

    2014-03-01

    Therapeutic Abs possess several clinically relevant mechanisms of action including perturbation of tumor cell signaling, activation of complement-dependent cytotoxicity, Ab-dependent cellular cytotoxicity (ADCC), Ab-dependent cellular phagocytosis (ADCP), and induction of adaptive immunity. In view of the important role of phagocytic lineage cells in the mechanism of action of therapeutic Abs, we analyzed FcγR receptor-dependent effector functions of monocytes and macrophages triggered by glycoengineered (GE) Abs (having enhanced FcγRIIIa [CD16a] binding affinity) versus their wild-type (WT) counterparts under different experimental conditions. We first defined the precise FcγR repertoire on classical and nonclassical intermediate monocytes--M1 and M2c macrophage populations. We further show that WT and GE Abs display comparable binding and induce similar effector functions (ADCC and ADCP) in the absence of nonspecific, endogenous IgGs. However, in the presence of these IgGs (i.e., in a situation that more closely mimics physiologic conditions), GE Abs display significantly superior binding and promote stronger monocyte and macrophage activity. These data show that in addition to enhancing CD16a-dependent NK cell cytotoxicity, glycoengineering also enhances monocyte and macrophage phagocytic and cytotoxic activities through enhanced binding to CD16a under conditions that more closely resemble the physiologic setting.

  16. The TLR Expression Pattern on Monocyte-Derived Macrophages for Lipopolysaccharid Stimulation of Calves

    Institute of Scientific and Technical Information of China (English)

    GUO Yi-jie; ZHAO Guo-Qi; HUO Yong-jiu; Sachi Tana-ka; Hisashi Aso; Takahiro Yamaguchi

    2009-01-01

    In this paper, toll-like receptor expression pattern in monocytes-derived macrophages by lipopolysaccharid (LPS) stimulation was examined. Jugular venous blood samples from 4 Japanese calves were obtained and the peripheral blood mononuclear cells (PBMC) were isolated. The PBMC were cultured for 7 d so as to collect monocytes-derived macrophages in Repcell. The PBMC were stimulated by LPS for 24 h and the mRNA expression pattern of TLR and cytokines in monocytes-derived macrophages (Mod-Mφ) was analyzed. Results showed that LPS stimulation of Mod-Mφ could increase the mRNA levels of the genes of TNF-α, IL-6, and IL-8. In addition, the mRNA levels of the genes of TNF-α and IL-6 in the group of LPS stimulation were most significantly (P<0.01) higher than those in control group and the mRNA levels of TLR1, 3, 5, 8, and 10 were significantly (P<0.05) decreased after LPS stimulation. There was no difference in the mRNA expressions of TLR2, 4, 6, and 7 between the groups of the control and LPS stimulation. Besides, expression of TLR9 was not found. It suggested that monocytes-derived macrophages could respond to LPS and they might take an important role in the innate immunity. The important function of the cells might contribute to better disease treatment.

  17. Hemoglobin induces monocyte recruitment and CD163-macrophage polarization in abdominal aortic aneurysm

    DEFF Research Database (Denmark)

    Rubio-Navarro, Alfonso; Amaro Villalobos, Juan Manuel; Lindholt, Jes S

    2015-01-01

    BACKGROUND: Increased hemoglobin (Hb) accumulation was reported in abdominal aortic aneurysms (AAAs). CD163 is a macrophage receptor involved in tissue Hb clearance, however its role in AAA has not been reported. We investigated the role of Hb on monocyte recruitment and differentiation towards C...

  18. Increased Expression of Visfatin in Monocytes and Macrophages in Male Acute Myocardial Infarction Patients

    Directory of Open Access Journals (Sweden)

    Cheng-An Chiu

    2012-01-01

    Full Text Available We demonstrated that visfatin expressed in monocytes and neutrophils and increased their reactivity in male acute ST-segment elevation myocardial infarction patients. Furthermore, visfatin was strongly appeared in lipid rich coronary rupture plaques and macrophages. These results suggest another explanation about leukocytes mediated visfatin that may play a pathogenesis role in coronary vulnerable plaques rupture.

  19. Monocytes and macrophages in pregnancy and pre-eclampsia

    NARCIS (Netherlands)

    Faas, Marijke M.; Spaans, Floor; De Vos, Paul

    2014-01-01

    Preeclampsia is an important complication in pregnancy, characterized by hypertension and proteinuria in the second half of pregnancy. Generalized activation of the inflammatory response is thought to play a role in the pathogenesis of pre-eclampsia. Monocytes may play a central role in this

  20. Monocytes and macrophages in pregnancy and pre-eclampsia

    NARCIS (Netherlands)

    Faas, Marijke M.; Spaans, Floor; De Vos, Paul

    2014-01-01

    Preeclampsia is an important complication in pregnancy, characterized by hypertension and proteinuria in the second half of pregnancy. Generalized activation of the inflammatory response is thought to play a role in the pathogenesis of pre-eclampsia. Monocytes may play a central role in this inflamm

  1. Functional activity of monocytes and macrophages in HTLV-1 infected subjects.

    Directory of Open Access Journals (Sweden)

    Camila F Amorim

    2014-12-01

    Full Text Available The Human T lymphotropic virus type-1 (HTLV-1 infects predominantly T cells, inducing proliferation and lymphocyte activation. Additionally, HTLV-1 infected subjects are more susceptible to other infections caused by other intracellular agents. Monocytes/macrophages are important cells in the defense against intracellular pathogens. Our aims were to determine the frequency of monocytes subsets, expression of co-stimulatory molecules in these cells and to evaluate microbicidal ability and cytokine and chemokine production by macrophages from HTLV-1 infected subjects. Participants were 23 HTLV-1 carriers (HC, 22 HAM/TSP patients and 22 healthy subjects (HS not infected with HTLV-1. The frequencies of monocyte subsets and expression of co-stimulatory molecules were determined by flow cytometry. Macrophages were infected with L. braziliensis or stimulated with LPS. Microbicidal activity of macrophages was determined by optic microscopy. Cytokines/chemokines from macrophage supernatants were measured by ELISA. HAM/TSP patients showed an increase frequency of intermediate monocytes, but expression of co-stimulatory molecules was similar between the groups. Macrophages from HTLV-1 infected individuals were infected with L. braziliensis at the same ratio than macrophages from HS, and all the groups had the same ability to kill Leishmania parasites. However, macrophages from HTLV-1 infected subjects produced more CXCL9 and CCL5, and less IL-10 than cells from HS. While there was no correlation between IFN-γ and cytokine/chemokine production by macrophages, there was a correlation between proviral load and TNF and CXCL10. These data showed a dissociation between the inflammatory response and microbicidal ability of macrophages from HTLV-1 infected subjects. While macrophages ability to kill an intracellular pathogen did not differ among HTLV-1 infected subjects, these cells secreted high amount of chemokines even in unstimulated cultures. Moreover the

  2. Nf1+/- monocytes/macrophages induce neointima formation via CCR2 activation.

    Science.gov (United States)

    Bessler, Waylan K; Kim, Grace; Hudson, Farlyn Z; Mund, Julie A; Mali, Raghuveer; Menon, Keshav; Kapur, Reuben; Clapp, D Wade; Ingram, David A; Stansfield, Brian K

    2016-03-15

    Persons with neurofibromatosis type 1 (NF1) have a predisposition for premature and severe arterial stenosis. Mutations in the NF1 gene result in decreased expression of neurofibromin, a negative regulator of p21(Ras), and increases Ras signaling. Heterozygous Nf1 (Nf1(+/-)) mice develop a marked arterial stenosis characterized by proliferating smooth muscle cells (SMCs) and a predominance of infiltrating macrophages, which closely resembles arterial lesions from NF1 patients. Interestingly, lineage-restricted inactivation of a single Nf1 allele in monocytes/macrophages is sufficient to recapitulate the phenotype observed in Nf1(+/-) mice and to mobilize proinflammatory CCR2+ monocytes into the peripheral blood. Therefore, we hypothesized that CCR2 receptor activation by its primary ligand monocyte chemotactic protein-1 (MCP-1) is critical for monocyte infiltration into the arterial wall and neointima formation in Nf1(+/-) mice. MCP-1 induces a dose-responsive increase in Nf1(+/-) macrophage migration and proliferation that corresponds with activation of multiple Ras kinases. In addition, Nf1(+/-) SMCs, which express CCR2, demonstrate an enhanced proliferative response to MCP-1 when compared with WT SMCs. To interrogate the role of CCR2 activation on Nf1(+/-) neointima formation, we induced neointima formation by carotid artery ligation in Nf1(+/-) and WT mice with genetic deletion of either MCP1 or CCR2. Loss of MCP-1 or CCR2 expression effectively inhibited Nf1(+/-) neointima formation and reduced macrophage content in the arterial wall. Finally, administration of a CCR2 antagonist significantly reduced Nf1(+/-) neointima formation. These studies identify MCP-1 as a potent chemokine for Nf1(+/-) monocytes/macrophages and CCR2 as a viable therapeutic target for NF1 arterial stenosis.

  3. Adrenergic regulation of monocyte chemotactic protein 1 leads to enhanced macrophage recruitment and ovarian carcinoma growth

    Science.gov (United States)

    Armaiz-Pena, Guillermo N.; Gonzalez-Villasana, Vianey; Nagaraja, Archana S.; Rodriguez-Aguayo, Cristian; Sadaoui, Nouara C.; Stone, Rebecca L.; Matsuo, Koji; Dalton, Heather J.; Previs, Rebecca A.; Jennings, Nicholas B.; Dorniak, Piotr; Hansen, Jean M.; Arevalo, Jesusa M.G.; Cole, Steve W.; Lutgendorf, Susan K.; Sood, Anil K.; Lopez-Berestein, Gabriel

    2015-01-01

    Increased adrenergic signaling facilitates tumor progression, but the underlying mechanisms remain poorly understood. We examined factors responsible for stress-mediated effects on monocyte/macrophage recruitment into the tumor microenvironment, and the resultant effects on tumor growth. In vitro, MCP1 was significantly increased after catecholamine exposure, which was mediated by cAMP and PKA. Tumor samples from mice subjected to daily restraint stress had elevated MCP1 gene and protein levels, increased CD14+ cells, and increased infiltration of CD68+ cells. hMCP1 siRNA-DOPC nanoparticles significantly abrogated daily restraint stress-induced tumor growth and inhibited infiltration of CD68+ and F4/80+ cells. In ovarian cancer patients, elevated peripheral blood monocytes and tumoral macrophages were associated with worse overall survival. Collectively, we demonstrate that increased adrenergic signaling is associated with macrophage infiltration and mediated by tumor cell-derived MCP1 production. PMID:25738355

  4. Transmembrane oligomeric form of Vibrio cholerae cytolysin triggers TLR2/TLR6-dependent proinflammatory responses in monocytes and macrophages.

    Science.gov (United States)

    Khilwani, Barkha; Mukhopadhaya, Arunika; Chattopadhyay, Kausik

    2015-02-15

    Vibrio cholerae cytolysin (VCC) kills target eukaryotic cells by forming transmembrane oligomeric β-barrel pores. Once irreversibly converted into the transmembrane oligomeric form, VCC acquires an unusual structural stability and loses its cytotoxic property. It is therefore possible that, on exertion of its cytotoxic activity, the oligomeric form of VCC retained in the disintegrated membrane fractions of the lysed cells would survive within the host cellular milieu for a long period, without causing any further cytotoxicity. Under such circumstances, VCC oligomers may potentially be recognized by the host immune cells. Based on such a hypothesis, in the present study we explored the interaction of the transmembrane oligomeric form of VCC with the monocytes and macrophages of the innate immune system. Our study shows that the VCC oligomers assembled in the liposome membranes elicit potent proinflammatory responses in monocytes and macrophages, via stimulation of the toll-like receptor (TLR)2/TLR6-dependent signalling cascades that involve myeloid differentiation factor 88 (MyD88)/interleukin-1-receptor-associated kinase (IRAK)1/tumour-necrosis-factor-receptor-associated factor (TRAF)6. VCC oligomer-mediated proinflammatory responses critically depend on the activation of the transcription factor nuclear factor-κB. Proinflammatory responses induced by the VCC oligomers also require activation of the mitogen-activated protein kinase (MAPK) family member c-Jun N-terminal kinase, which presumably acts via stimulation of the transcription factor activator protein-1. Notably, the role of the MAPK p38 could not be documented in the process.

  5. Methylome of fetal and maternal monocytes and macrophages at the feto-maternal interface.

    Science.gov (United States)

    Kim, Sun Young; Romero, Roberto; Tarca, Adi L; Bhatti, Gaurav; Kim, Chong Jai; Lee, JoonHo; Elsey, Amelia; Than, Nandor Gabor; Chaiworapongsa, Tinnakorn; Hassan, Sonia S; Kang, Gyeong Hoon; Kim, Jung-Sun

    2012-07-01

    Decidual macrophages (dMφ) of the mother and placental macrophages (Hofbauer cells, HC) of the fetus are deployed at a critical location: the feto-maternal interface. This study was conducted to compare the DNA methylome of maternal and fetal monocytes, dMφ, and HC and thereby to determine the immunobiological importance of DNA methylation in pregnancy. Paired samples were obtained from normal pregnant women at term not in labor and their neonates. Maternal monocytes (MMo) and fetal monocytes (FMo) were isolated from the peripheral blood of mothers and fetal cord blood, respectively. dMφ and HC were obtained from the decidua of fetal membranes and placentas, respectively. DNA methylation profiling was performed using the Illumina Infinium Human Methylation27 BeadChip. Quantitative real-time PCR and Western Blot were performed for validation experiments. (i) Significant differences in DNA methylation were found in each comparison (MMo versus FMo, 65 loci; dMφ versus HC, 266 loci; MMo versus dMφ, 199 loci; FMo versus HC, 1030 loci). (ii) Many of the immune response-related genes were hypermethylated in fetal cells (FMo and HC) compared to maternal cells (MMo and dMφ). (iii) Genes encoding markers of classical macrophage activation were hypermethylated, and genes encoding alternative macrophage activation were hypomethylated in dMφ and HC compared to MMo and FMo, respectively. (iv) mRNA expressions of DNMT1, DNMT3A, and DNMT3B were significantly lower in dMφ than in HC. (v) 5-azacytidine treatment increased expression of INCA1 in dMφ. The findings herein indicate that DNA methylation patterns change during monocyte-macrophage differentiation at the feto-maternal interface. It is also suggested that DNA methylation is an important component of the biological machinery conferring an anti-inflammatory phenotype to macrophages at the feto-maternal interface. © 2012 John Wiley & Sons A/S.

  6. Phenotype and function of myeloid dendritic cells derived from African green monkey blood monocytes.

    Science.gov (United States)

    Mortara, Lorenzo; Ploquin, Mickaël J-Y; Faye, Abdourahmane; Scott-Algara, Daniel; Vaslin, Bruno; Butor, Cécile; Hosmalin, Anne; Barré-Sinoussi, Françoise; Diop, Ousmane M; Müller-Trutwin, Michaela C

    2006-01-20

    Myeloid dendritic cells probably play an important role in the immune response against HIV and SIV, and in the enhancement of CD4+ T cell infection. Here, we have investigated phenotypic and functional features of myeloid monocyte-derived DC (MDDC) from African green monkeys (AGMs). AGMs are natural hosts of SIV and exhibit no signs of abnormal T cell activation despite high SIV plasma viremia. We identified mAbs that cross-react specifically with homologous molecules expressed on AGM DC. We adapted a protocol to derive AGM MDDC by culture in the presence of GM-CSF and IL-4. The differentiated cells possessed a typical dendritic morphology and the majority were CD11c+ DC-SIGN+. AGM MDDC displayed a high expression of typical maturation markers, such as CD83, CD86 and DC-LAMP, and moderate immunostimulatory capacity, suggesting that the cells were in a semi-mature state. Stimulation resulted in further maturation, as shown by up-regulation of CD80 and decrease of endocytosis ability. However, neither increase of HLA-DR or CD40 expression nor enhanced immunostimulatory capacity was observed. The latter was associated with a low pro-inflammatory cytokine production during mixed lymphocyte reactions and a cytokine balance in favour of IL-10 in contrast to human MDDC. This is the first characterization of AGM MDDC. The tools described here are a crucial step for future studies in vivo or in vitro on the function of myeloid DC using the AGM animal model.

  7. Human monocytes/macrophages are a target of Neisseria meningitidis Adhesin A (NadA).

    Science.gov (United States)

    Franzoso, Susanna; Mazzon, Cristina; Sztukowska, Maryta; Cecchini, Paola; Kasic, Tihana; Capecchi, Barbara; Tavano, Regina; Papini, Emanuele

    2008-05-01

    Specific surface proteins of Neisseria meningitidis have been proposed to stimulate leukocytes during tissue invasion and septic shock. In this study, we demonstrate that the adhesin N. meningitidis Adhesin A (NadA) involved in the colonization of the respiratory epithelium by hypervirulent N. meningitidis B strains also binds to and activates human monocytes/macrophages. Expression of NadA on the surface on Escherichia coli does not increase bacterial-monocyte association, but a NadA-positive strain induced a significantly higher amount of TNF-alpha and IL-8 compared with the parental NadA-negative strain, suggesting that NadA has an intrinsic stimulatory action on these cells. Consistently, highly pure, soluble NadA(Delta351-405), a proposed component of an antimeningococcal vaccine, efficiently stimulates monocytes/macrophages to secrete a selected pattern of cytokines and chemotactic factors characterized by high levels of IL-8, IL-6, MCP-1, and MIP-1alpha and low levels of the main vasoactive mediators TNF-alpha and IL-1. NadA(Delta351-405) also inhibited monocyte apoptosis and determined its differentiation into a macrophage-like phenotype.

  8. CXCR3+ monocytes/macrophages are required for establishment of pulmonary metastases

    Science.gov (United States)

    Butler, Kiah L.; Clancy-Thompson, Eleanor; Mullins, David W.

    2017-01-01

    We present a new foundational role for CXCR3+ monocytes/macrophages in the process of tumor engraftment in the lung. CXCR3 is associated with monocytic and lymphocytic infiltration of inflamed or tumor-bearing lung. Although the requirement for tumor-expressed CXCR3 in metastatic engraftment has been demonstrated, the role of monocyte-expressed CXCR3 had not been appreciated. In a murine model of metastatic-like melanoma, engraftment was coordinate with CXCR3+ monocyte/macrophage accumulation in the lungs and was sensitive to pharmacologic inhibition of CXCR3 signaling. Tumor engraftment to lung was impaired in CXCR3−/− mice, and transient reconstitution with circulating CXCR3-replete monocytes was sufficient to restore engraftment. These data illustrate the paradoxical pro-tumor role for CXCR3 in lung immunobiology wherein the CXCR3 axis drives both the anti-tumor effector cell chemoattraction and pro-tumor infiltration of the lungs and suggests a potential therapeutic target for lung-tropic metastasizing cancers. PMID:28358049

  9. Enhanced alveolar monocytic phagocyte (macrophage) proliferation in tobacco and marijuana smokers

    Energy Technology Data Exchange (ETDEWEB)

    Barbers, R.G.; Evans, M.J.; Gong, H. Jr.; Tashkin, D.P. (Univ. of California-Los Angeles School of Medicine (USA))

    1991-05-01

    We tested the hypothesis that enhanced cell division accounted for the augmented numbers of monocytic phagocytes with characteristics attributed to alveolar macrophages (AM) found in the lungs of habitual tobacco (T) and marijuana (M) smokers. The monocytic phagocytes, that is, alveolar macrophages, were obtained by bronchoalveolar lavage (BAL) from 12 nonsmoking subjects; 10 subjects who smoked T only (TS); 13 subjects who smoked M only (MS); and 6 smokers of both T and M (MTS). The replication of these cells was determined by measuring the incorporation of ({sup 3}H)thymidine into the DNA of dividing cells and visually counting 2,000 cells on autoradiographically prepared cytocentrifuge cell preparations. This study demonstrated that the number of ({sup 3}H)thymidine-labeled monocytic phagocytes with characteristics of alveolar macrophages from either TS or MS have a higher proliferative index compared to cells (macrophages) from nonsmokers, p less than 0.05 by one-way ANOVA. The total number of BAL macrophages that are in mitosis in TS (17.90 +/- 4.50 labeled AM x 10(3)/ml) or MTS (10.50 +/- 4.20 labeled AM x 10(3)/ml) are 18- and 10-fold greater, respectively, than the number obtained from nonsmokers (1.01 +/- 0.18 labeled AM x 10(3)/ml). Interestingly, the number of ({sup 3}H)thymidine-labeled macrophages from MS (2.90 +/- 0.66 labeled AM x 10(3)/ml) are also greater than the number obtained from nonsmokers, although this is not statistically significant. The stimulus augmenting alveolar macrophage replication is as yet unknown but may likely be found in the T or M smoke.

  10. Tacaribe virus but not junin virus infection induces cytokine release from primary human monocytes and macrophages.

    Directory of Open Access Journals (Sweden)

    Allison Groseth

    Full Text Available The mechanisms underlying the development of disease during arenavirus infection are poorly understood. However, common to all hemorrhagic fever diseases is the involvement of macrophages as primary target cells, suggesting that the immune response in these cells may be of paramount importance during infection. Thus, in order to identify features of the immune response that contribute to arenavirus pathogenesis, we have examined the growth kinetics and cytokine profiles of two closely related New World arenaviruses, the apathogenic Tacaribe virus (TCRV and the hemorrhagic fever-causing Junin virus (JUNV, in primary human monocytes and macrophages. Both viruses grew robustly in VeroE6 cells; however, TCRV titres were decreased by approximately 10 fold compared to JUNV in both monocytes and macrophages. Infection of both monocytes and macrophages with TCRV also resulted in the release of high levels of IL-6, IL-10 and TNF-α, while levels of IFN-α, IFN-β and IL-12 were not affected. However, we could show that the presence of these cytokines had no direct effect on growth of either TCRV of JUNV in macrophages. Further analysis also showed that while the production of IL-6 and IL-10 are dependent on viral replication, production of TNF-α also occurs after exposure to UV-inactivated TCRV particles and is thus independent of productive virus infection. Surprisingly, JUNV infection did not have an effect on any of the cytokines examined indicating that, in contrast to other viral hemorrhagic fever viruses, macrophage-derived cytokine production is unlikely to play an active role in contributing to the cytokine dysregulation observed in JUNV infected patients. Rather, these results suggest that an early, controlled immune response by infected macrophages may be critical for the successful control of infection of apathogenic viruses and prevention of subsequent disease, including systemic cytokine dysregulation.

  11. Brugia malayi Microfilariae Induce a Regulatory Monocyte/Macrophage Phenotype That Suppresses Innate and Adaptive Immune Responses

    Science.gov (United States)

    Venugopal, Gopinath; Rao, Gopala B.; Lucius, Richard; Srikantam, Aparna; Hartmann, Susanne

    2014-01-01

    Background Monocytes and macrophages contribute to the dysfunction of immune responses in human filariasis. During patent infection monocytes encounter microfilariae in the blood, an event that occurs in asymptomatically infected filariasis patients that are immunologically hyporeactive. Aim To determine whether blood microfilariae directly act on blood monocytes and in vitro generated macrophages to induce a regulatory phenotype that interferes with innate and adaptive responses. Methodology and principal findings Monocytes and in vitro generated macrophages from filaria non-endemic normal donors were stimulated in vitro with Brugia malayi microfilarial (Mf) lysate. We could show that monocytes stimulated with Mf lysate develop a defined regulatory phenotype, characterised by expression of the immunoregulatory markers IL-10 and PD-L1. Significantly, this regulatory phenotype was recapitulated in monocytes from Wuchereria bancrofti asymptomatically infected patients but not patients with pathology or endemic normals. Monocytes from non-endemic donors stimulated with Mf lysate directly inhibited CD4+ T cell proliferation and cytokine production (IFN-γ, IL-13 and IL-10). IFN-γ responses were restored by neutralising IL-10 or PD-1. Furthermore, macrophages stimulated with Mf lysate expressed high levels of IL-10 and had suppressed phagocytic abilities. Finally Mf lysate applied during the differentiation of macrophages in vitro interfered with macrophage abilities to respond to subsequent LPS stimulation in a selective manner. Conclusions and significance Conclusively, our study demonstrates that Mf lysate stimulation of monocytes from healthy donors in vitro induces a regulatory phenotype, characterized by expression of PD-L1 and IL-10. This phenotype is directly reflected in monocytes from filarial patients with asymptomatic infection but not patients with pathology or endemic normals. We suggest that suppression of T cell functions typically seen in lymphatic

  12. Brugia malayi microfilariae induce a regulatory monocyte/macrophage phenotype that suppresses innate and adaptive immune responses.

    Directory of Open Access Journals (Sweden)

    Noëlle Louise O'Regan

    2014-10-01

    Full Text Available Monocytes and macrophages contribute to the dysfunction of immune responses in human filariasis. During patent infection monocytes encounter microfilariae in the blood, an event that occurs in asymptomatically infected filariasis patients that are immunologically hyporeactive.To determine whether blood microfilariae directly act on blood monocytes and in vitro generated macrophages to induce a regulatory phenotype that interferes with innate and adaptive responses.Monocytes and in vitro generated macrophages from filaria non-endemic normal donors were stimulated in vitro with Brugia malayi microfilarial (Mf lysate. We could show that monocytes stimulated with Mf lysate develop a defined regulatory phenotype, characterised by expression of the immunoregulatory markers IL-10 and PD-L1. Significantly, this regulatory phenotype was recapitulated in monocytes from Wuchereria bancrofti asymptomatically infected patients but not patients with pathology or endemic normals. Monocytes from non-endemic donors stimulated with Mf lysate directly inhibited CD4+ T cell proliferation and cytokine production (IFN-γ, IL-13 and IL-10. IFN-γ responses were restored by neutralising IL-10 or PD-1. Furthermore, macrophages stimulated with Mf lysate expressed high levels of IL-10 and had suppressed phagocytic abilities. Finally Mf lysate applied during the differentiation of macrophages in vitro interfered with macrophage abilities to respond to subsequent LPS stimulation in a selective manner.Conclusively, our study demonstrates that Mf lysate stimulation of monocytes from healthy donors in vitro induces a regulatory phenotype, characterized by expression of PD-L1 and IL-10. This phenotype is directly reflected in monocytes from filarial patients with asymptomatic infection but not patients with pathology or endemic normals. We suggest that suppression of T cell functions typically seen in lymphatic filariasis is caused by microfilaria-modulated monocytes in an IL

  13. Regulation of ICAM-1 in Cells of the Monocyte/Macrophage System in Microgravity

    Directory of Open Access Journals (Sweden)

    Katrin Paulsen

    2015-01-01

    Full Text Available Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells.

  14. Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity.

    Science.gov (United States)

    Paulsen, Katrin; Tauber, Svantje; Dumrese, Claudia; Bradacs, Gesine; Simmet, Dana M; Gölz, Nadine; Hauschild, Swantje; Raig, Christiane; Engeli, Stephanie; Gutewort, Annett; Hürlimann, Eva; Biskup, Josefine; Unverdorben, Felix; Rieder, Gabriela; Hofmänner, Daniel; Mutschler, Lisa; Krammer, Sonja; Buttron, Isabell; Philpot, Claudia; Huge, Andreas; Lier, Hartwin; Barz, Ines; Engelmann, Frank; Layer, Liliana E; Thiel, Cora S; Ullrich, Oliver

    2015-01-01

    Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells.

  15. Natural killer cells require monocytic Gr-1(+)/CD11b(+) myeloid cells to eradicate orthotopically engrafted glioma cells.

    Science.gov (United States)

    Baker, Gregory J; Chockley, Peter; Zamler, Daniel; Castro, Maria G; Lowenstein, Pedro R

    2016-06-01

    Malignant gliomas are resistant to natural killer (NK) cell immune surveillance. However, the mechanisms used by these cancers to suppress antitumor NK cell activity remain poorly understood. We have recently reported on a novel mechanism of innate immune evasion characterized by the overexpression of the carbohydrate-binding protein galectin-1 by both mouse and rat malignant glioma. Here, we investigate the cytokine profile of galectin-1-deficient GL26 cells and describe the process by which these tumors are targeted by the early innate immune system in RAG1(-/-) and C57BL/6J mice. Our data reveal that galectin-1 knockdown in GL26 cells heightens their inflammatory status leading to the rapid recruitment of Gr-1(+)/CD11b(+) myeloid cells and NK1.1(+) NK cells into the brain tumor microenvironment, culminating in tumor clearance. We show that immunodepletion of Gr-1(+) myeloid cells in RAG1(-/-) mice permits the growth of galectin-1-deficient glioma despite the presence of NK cells, thus demonstrating an essential role for myeloid cells in the clearance of galectin-1-deficient glioma. Further characterization of tumor-infiltrating Gr-1(+)/CD11b(+) cells reveals that these cells also express CCR2 and Ly-6C, markers consistent with inflammatory monocytes. Our results demonstrate that Gr-1(+)/CD11b(+) myeloid cells, often referred to as myeloid-derived suppressor cells (MDSCs), are required for antitumor NK cell activity against galectin-1-deficient GL26 glioma. We conclude that glioma-derived galectin-1 represents an important factor in dictating the phenotypic behavior of monocytic Gr-1(+)/CD11b(+) myeloid cells. Galectin-1 suppression may be a valuable treatment approach for clinical glioma by promoting their innate immune-mediated recognition and clearance through the concerted effort of innate myeloid and lymphoid cell lineages.

  16. Monocytes-derived macrophages mediated stable expression of human brain-derived neurotrophic factor, a novel therapeutic strategy for neuroAIDS.

    Directory of Open Access Journals (Sweden)

    Jing Tong

    Full Text Available HIV-1 associated dementia remains a significant public health burden. Clinical and experimental research has shown that reduced levels of brain-derived neurotrophic factor (BDNF may be a risk factor for neurological complications associated with HIV-1 infection. We are actively testing genetically modified macrophages for their possible use as the cell-based gene delivery vehicle for the central nervous system (CNS. It can be an advantage to use the natural homing/migratory properties of monocyte-derived macrophages to deliver potentially neuroprotective BDNF into the CNS, as a non-invasive manner. Lentiviral-mediated gene transfer of human (hBDNF plasmid was constructed and characterized. Defective lentiviral stocks were generated by transient transfection of 293T cells with lentiviral transfer plasmid together with packaging and envelope plasmids. High titer lentiviral vector stocks were harvested and used to transduce human neuronal cell lines, primary cultures of human peripheral mononocyte-derived macrophages (hMDM and murine myeloid monocyte-derived macrophages (mMDM. These transduced cells were tested for hBDNF expression, stability, and neuroprotective activity. The GenomeLab GeXP Genetic Analysis System was used to evaluate transduced cells for any adverse effects by assessing gene profiles of 24 reference genes. High titer vectors were prepared for efficient transduction of neuronal cell lines, hMDM, and mMDM. Stable secretion of high levels of hBDNF was detected in supernatants of transduced cells using western blot and ELISA. The conditioned media containing hBDNF were shown to be protective to neuronal and monocytic cell lines from TNF-α and HIV-1 Tat mediated cytotoxicity. Lentiviral vector-mediated gene transduction of hMDM and mMDM resulted in high-level, stable expression of the neuroprotective factorBDNF in vitro. These findings form the basis for future research on the potential use of BDNF as a novel therapy for neuroAIDS.

  17. Monocytes-derived macrophages mediated stable expression of human brain-derived neurotrophic factor, a novel therapeutic strategy for neuroAIDS.

    Science.gov (United States)

    Tong, Jing; Buch, Shilpa; Yao, Honghong; Wu, Chengxiang; Tong, Hsin-I; Wang, Youwei; Lu, Yuanan

    2014-01-01

    HIV-1 associated dementia remains a significant public health burden. Clinical and experimental research has shown that reduced levels of brain-derived neurotrophic factor (BDNF) may be a risk factor for neurological complications associated with HIV-1 infection. We are actively testing genetically modified macrophages for their possible use as the cell-based gene delivery vehicle for the central nervous system (CNS). It can be an advantage to use the natural homing/migratory properties of monocyte-derived macrophages to deliver potentially neuroprotective BDNF into the CNS, as a non-invasive manner. Lentiviral-mediated gene transfer of human (h)BDNF plasmid was constructed and characterized. Defective lentiviral stocks were generated by transient transfection of 293T cells with lentiviral transfer plasmid together with packaging and envelope plasmids. High titer lentiviral vector stocks were harvested and used to transduce human neuronal cell lines, primary cultures of human peripheral mononocyte-derived macrophages (hMDM) and murine myeloid monocyte-derived macrophages (mMDM). These transduced cells were tested for hBDNF expression, stability, and neuroprotective activity. The GenomeLab GeXP Genetic Analysis System was used to evaluate transduced cells for any adverse effects by assessing gene profiles of 24 reference genes. High titer vectors were prepared for efficient transduction of neuronal cell lines, hMDM, and mMDM. Stable secretion of high levels of hBDNF was detected in supernatants of transduced cells using western blot and ELISA. The conditioned media containing hBDNF were shown to be protective to neuronal and monocytic cell lines from TNF-α and HIV-1 Tat mediated cytotoxicity. Lentiviral vector-mediated gene transduction of hMDM and mMDM resulted in high-level, stable expression of the neuroprotective factorBDNF in vitro. These findings form the basis for future research on the potential use of BDNF as a novel therapy for neuroAIDS.

  18. CD14-dependent monocyte isolation enhances phagocytosis of listeria monocytogenes by proinflammatory, GM-CSF-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Caroline Neu

    Full Text Available Macrophages are an important line of defence against invading pathogens. Human macrophages derived by different methods were tested for their suitability as models to investigate Listeria monocytogenes (Lm infection and compared to macrophage-like THP-1 cells. Human primary monocytes were isolated by either positive or negative immunomagnetic selection and differentiated in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF or macrophage colony-stimulating factor (M-CSF into pro- or anti-inflammatory macrophages, respectively. Regardless of the isolation method, GM-CSF-derived macrophages (GM-Mφ stained positive for CD206 and M-CSF-derived macrophages (M-Mφ for CD163. THP-1 cells did not express CD206 or CD163 following incubation with PMA, M- or GM-CSF alone or in combination. Upon infection with Lm, all primary macrophages showed good survival at high multiplicities of infection whereas viability of THP-1 was severely reduced even at lower bacterial numbers. M-Mφ generally showed high phagocytosis of Lm. Strikingly, phagocytosis of Lm by GM-Mφ was markedly influenced by the method used for isolation of monocytes. GM-Mφ derived from negatively isolated monocytes showed low phagocytosis of Lm whereas GM-Mφ generated from positively selected monocytes displayed high phagocytosis of Lm. Moreover, incubation with CD14 antibody was sufficient to enhance phagocytosis of Lm by GM-Mφ generated from negatively isolated monocytes. By contrast, non-specific phagocytosis of latex beads by GM-Mφ was not influenced by treatment with CD14 antibody. Furthermore, phagocytosis of Lactococcus lactis, Escherichia coli, human cytomegalovirus and the protozoan parasite Leishmania major by GM-Mφ was not enhanced upon treatment with CD14 antibody indicating that this effect is specific for Lm. Based on these observations, we propose macrophages derived by ex vivo differentiation of negatively selected human primary monocytes as the most

  19. Influence of phthalates on cytokine production in monocytes and macrophages: a systematic review of experimental trials.

    Directory of Open Access Journals (Sweden)

    Juliana Frohnert Hansen

    Full Text Available Phthalates are a group of endocrine disrupting chemicals suspected to influence the immune system. The aim of this systematic review is to summarise the present knowledge on the influence of phthalates on monocyte and macrophage production and secretion of cytokines, an influence which could affect both pro- and anti-inflammatory abilities of these cells.A systematic search was performed in Medline, Embase and Toxline in June 2013, last updated 3rd of August 2014. Criteria used to select studies were described and published beforehand online on Prospero (http://www.crd.york.ac.uk/NIHR_PROSPERO, registration number CRD42013004236. In vivo, ex vivo and in vitro studies investigating the influence of phthalates on cytokine mRNA expression and cytokine secretion in animals and humans were included. A total of 11 reports, containing 12 studies, were found eligible for inclusion. In these, a total of four different phthalate diesters, six primary metabolites (phthalate monoesters and seven different cytokines were investigated. Though all studies varied greatly in study design and species sources, four out of five studies that investigated di-2-ethylhexyl phthalate found an increased tumour necrosis factor-α secretion/production from monocytes or macrophages. A summary of cytokine measurements was not possible since few studies were comparable in study design and due to insufficient reporting of raw data for most of the included studies.Results from this review have suggested that at least one phthalate (di-2-ethylhexyl phthalate has the ability to enhance tumour necrosis factor-α production/secretion from monocytes/macrophages in vitro, but also observed ex vivo. Influence of other phthalates on other cytokines has only been investigated in few studies. Thus, in vitro studies on primary human monocytes/macrophages as well as more in vivo studies are needed to confirm or dispute these findings.

  20. Activation of caprine arthritis-encephalitis virus expression during maturation of monocytes to macrophages.

    OpenAIRE

    Narayan, O; Kennedy-Stoskopf, S; Sheffer, D; Griffin, D E; Clements, J E

    1983-01-01

    Lentiviruses, which cause arthritis-encephalitis and maedi-visna in goats and sheep, respectively, cause persistent infections in these animals. The viruses replicate productively at low levels in macrophages in diseased organs such as the "maedi lung" and nonproductively in other cell types such as leukocytes in peripheral blood. Nonproductive infections become productive during in vitro cultivation of the cells. This study showed that monocytes were the only cells in the peripheral blood le...

  1. Role of monocytes and macrophages in experimental and human acute liver failure

    Institute of Scientific and Technical Information of China (English)

    Lucia; A; Possamai; Charalambos; Gustav; Antoniades; Quentin; M; Anstee; Alberto; Quaglia; Diego; Vergani; Mark; Thursz; Julia; Wendon

    2010-01-01

    Acute liver failure (ALF) is a devastating clinical syndrome characterised by progressive encephalopathy, coagulopathy, and circulatory dysfunction, which commonly leads to multiorgan failure and death. Central to the pathogenesis of ALF is activation of the immune system with mobilisation of cellular effectors and massive production of cytokines. As key components of the innate immune system, monocytes and macrophages are postulated to play a central role in the initiation, progression and resolution of AL...

  2. T-cell/myeloid mixed-phenotype acute leukemia with monocytic differentiation and isolated 17p deletion

    Directory of Open Access Journals (Sweden)

    Germison Silva Lopes

    2014-07-01

    Full Text Available Mixed phenotype acute leukemia is a rare subtype of leukemia that probably arises from a hematopoietic pluripotent stem cell. The co-expression of two of myeloid, B- or T-lymphoid antigens is the hallmark of this disease. Herein, the case of a 28-year-old female patient is reported who presented with hemoglobin of 5.8 g/dL, white blood cell count of 138 × 109/L and platelet count of 12 × 109/L. The differential count of peripheral blood revealed 96% of blasts. Moreover, the patient presented with lymphadenopathy, splenomegaly and bone marrow infiltration by monocytoid blasts characterized as 7% positivity by Sudan Black cytochemical staining. Immunophenotyping revealed the involvement of blasts of both T- and monocytic lineages. The cytogenetic analysis showed an isolated 17p deletion. Thus, the diagnosis of T-cell/myeloid mixed phenotype acute leukemia was made with two particular rare features, that is, the monocytic differentiation and the 17p deletion as unique cytogenetic abnormalities. The possibility of concomitant expressions of T-cell and monocytic differentiation antigens in the same blast population is hard to explain using the classical model of hematopoiesis. However, recent studies have suggested that myeloid potential persists even when the lineage branches segregate toward B- and T-cells. The role of an isolated 17p deletion in the pathogenesis of this condition is unclear. At present, the patient is in complete remission after an allogeneic stem cell transplantation procedure.

  3. Critical Role for Monocytes/Macrophages in Rapid Progression to AIDS in Pediatric Simian Immunodeficiency Virus-Infected Rhesus Macaques.

    Science.gov (United States)

    Sugimoto, Chie; Merino, Kristen M; Hasegawa, Atsuhiko; Wang, Xiaolei; Alvarez, Xavier A; Wakao, Hiroshi; Mori, Kazuyasu; Kim, Woong-Ki; Veazey, Ronald S; Didier, Elizabeth S; Kuroda, Marcelo J

    2017-09-01

    Infant humans and rhesus macaques infected with the human or simian immunodeficiency virus (HIV or SIV), respectively, express higher viral loads and progress more rapidly to AIDS than infected adults. Activated memory CD4(+) T cells in intestinal tissues are major primary target cells for SIV/HIV infection, and massive depletion of these cells is considered a major cause of immunodeficiency. Monocytes and macrophages are important cells of innate immunity and also are targets of HIV/SIV infection. We reported previously that a high peripheral blood monocyte turnover rate was predictive for the onset of disease progression to AIDS in SIV-infected adult macaques. The purpose of this study was to determine if earlier or higher infection of monocytes/macrophages contributes to the more rapid progression to AIDS in infants. We observed that uninfected infant rhesus macaques exhibited higher physiologic baseline monocyte turnover than adults. Early after SIV infection, the monocyte turnover further increased, and it remained high during progression to AIDS. A high percentage of terminal deoxynucleotidyltransferase dUTP nick end label (TUNEL)-positive macrophages in the lymph nodes (LNs) and intestine corresponded with an increasing number of macrophages derived from circulating monocytes (bromodeoxyuridine positive [BrdU(+)] CD163(+)), suggesting that the increased blood monocyte turnover was required to rapidly replenish destroyed tissue macrophages. Immunofluorescence analysis further demonstrated that macrophages were a significant portion of the virus-producing cells found in LNs, intestinal tissues, and lungs. The higher baseline monocyte turnover in infant macaques and subsequent macrophage damage by SIV infection may help explain the basis of more rapid disease progression to AIDS in infants.IMPORTANCE HIV infection progresses much more rapidly in pediatric cases than in adults; however, the mechanism for this difference is unclear. Using the rhesus macaque model

  4. RNY (YRNA)-derived small RNAs regulate cell death and inflammation in monocytes/macrophages.

    Science.gov (United States)

    Hizir, Zoheir; Bottini, Silvia; Grandjean, Valerie; Trabucchi, Michele; Repetto, Emanuela

    2017-01-05

    The recent discovery of new classes of small RNAs has opened unknown territories to explore new regulations of physiopathological events. We have recently demonstrated that RNY (or Y RNA)-derived small RNAs (referred to as s-RNYs) are an independent class of clinical biomarkers to detect coronary artery lesions and are associated with atherosclerosis burden. Here, we have studied the role of s-RNYs in human and mouse monocytes/macrophages and have shown that in lipid-laden monocytes/macrophages s-RNY expression is timely correlated to the activation of both NF-κB and caspase 3-dependent cell death pathways. Loss- or gain-of-function experiments demonstrated that s-RNYs activate caspase 3 and NF-κB signaling pathways ultimately promoting cell death and inflammatory responses. As, in atherosclerosis, Ro60-associated s-RNYs generated by apoptotic macrophages are released in the blood of patients, we have investigated the extracellular function of the s-RNY/Ro60 complex. Our data demonstrated that s-RNY/Ro60 complex induces caspase 3-dependent cell death and NF-κB-dependent inflammation, when added to the medium of cultured monocytes/macrophages. Finally, we have shown that s-RNY function is mediated by Toll-like receptor 7 (TLR7). Indeed using chloroquine, which disrupts signaling of endosome-localized TLRs 3, 7, 8 and 9 or the more specific TLR7/9 antagonist, the phosphorothioated oligonucleotide IRS954, we blocked the effect of either intracellular or extracellular s-RNYs. These results position s-RNYs as relevant novel functional molecules that impacts on macrophage physiopathology, indicating their potential role as mediators of inflammatory diseases, such as atherosclerosis.

  5. Monocyte chemoattractant protein-1 (MCP-1 regulates macrophage cytotoxicity in abdominal aortic aneurysm.

    Directory of Open Access Journals (Sweden)

    Qiwei Wang

    Full Text Available AIMS: In abdominal aortic aneurysm (AAA, macrophages are detected in the proximity of aortic smooth muscle cells (SMCs. We have previously demonstrated in a murine model of AAA that apoptotic SMCs attract monocytes and other leukocytes by producing MCP-1. Here we tested whether infiltrating macrophages also directly contribute to SMC apoptosis. METHODS AND RESULTS: Using a SMC/RAW264.7 macrophage co-culture system, we demonstrated that MCP-1-primed RAWs caused a significantly higher level of apoptosis in SMCs as compared to control macrophages. Next, we detected an enhanced Fas ligand (FasL mRNA level and membrane FasL protein expression in MCP-1-primed RAWs. Neutralizing FasL blocked SMC apoptosis in the co-culture. In situ proximity ligation assay showed that SMCs exposed to primed macrophages contained higher levels of receptor interacting protein-1 (RIP1/Caspase 8 containing cell death complexes. Silencing RIP1 conferred apoptosis resistance to SMCs. In the mouse elastase injury model of aneurysm, aneurysm induction increased the level of RIP1/Caspase 8 containing complexes in medial SMCs. Moreover, TUNEL-positive SMCs in aneurysmal tissues were frequently surrounded by CD68(+/FasL(+ macrophages. Conversely, elastase-treated arteries from MCP-1 knockout mice display a reduction of both macrophage infiltration and FasL expression, which was accompanied by diminished apoptosis of SMCs. CONCLUSION: Our data suggest that MCP-1-primed macrophages are more cytotoxic. MCP-1 appears to modulate macrophage cytotoxicity by increasing the level of membrane bound FasL. Thus, we showed that MCP-1-primed macrophages kill SMCs through a FasL/Fas-Caspase8-RIP1 mediated mechanism.

  6. Differential Constitutive and Cytokine-Modulated Expression of Human Toll-like Receptors in Primary Neutrophils, Monocytes, and Macrophages

    Directory of Open Access Journals (Sweden)

    D. Shane O'Mahony, Uyenvy Pham, Ramesh Iyer, Thomas R. Hawn, W. Conrad Liles

    2008-01-01

    Full Text Available Human Toll-like receptors (TLRs comprise a family of proteins that recognizes pathogen-associated molecular patterns (PAMPs and initiates host innate immune responses. Neutrophils, monocytes, and macrophages are critical cellular components of the human innate immune system. Proinflammatory cytokines, such as granulocyte colony-stimulating factor (G-CSF, granulocyte-macrophage colony-stimulating factor (GM-CSF, macrophage colony-stimulating factor (M-CSF, and interferon-γ (IFN-γ, have been shown to up-regulate microbicidal activity in these effector cells of innate immunity. Currently, the cellular and molecular mechanisms responsible for these effects are not completely understood. We hypothesized that these cytokines may up-regulate TLR expression as a mechanism to facilitate microbial recognition and augment the innate immune response. Using quantitative realtime rt-PCR technology, we examined constitutive expression of TLR2, TLR4, TLR5, and TLR9 mRNA and the effects of G-CSF, GM-CSF, M-CSF, and IFN-γ on TLR mRNA expression in purified populations of normal human neutrophils, monocytes, and monocyte-derived macrophages. Relative constitutive expression of TLR2, TLR4, and TLR9 was similar in neutrophils and monocytes. Constitutive expression of TLR5 was less in neutrophils compared to monocytes. Constitutive expression of TLR4 was greater and that of TLR9 lower in monocyte-derived macrophages compared to monocytes. Of the cytokines examined, IFN-γ and GM-CSF caused the greatest effects on TLR expression. IFN- γ up-regulated TLR2 and TLR4 in neutrophils and monocytes. GM-CSF up-regulated expression of TLR2 and TLR4 in neutrophils and TLR2 in monocytes. TLR5 was down-regulated by inflammatory cytokines in monocytes. These results suggest a potential role for IFN- γ and/or GM-CSF as therapeutic immunomodulators of the host defense to infection.

  7. Genetics of SLE: Functional Relevance for Monocytes/Macrophages in Disease

    Directory of Open Access Journals (Sweden)

    Jennifer C. Byrne

    2012-01-01

    Full Text Available Genetic studies in the last 5 years have greatly facilitated our understanding of how the dysregulation of diverse components of the innate immune system contributes to pathophysiology of SLE. A role for macrophages in the pathogenesis of SLE was first proposed as early as the 1980s following the discovery that SLE macrophages were defective in their ability to clear apoptotic cell debris, thus prolonging exposure of potential autoantigens to the adaptive immune response. More recently, there is an emerging appreciation of the contribution both monocytes and macrophages play in orchestrating immune responses with perturbations in their activation or regulation leading to immune dysregulation. This paper will focus on understanding the relevance of genes identified as being associated with innate immune function of monocytes and macrophages and development of SLE, particularly with respect to their role in (1 immune complex (IC recognition and clearance, (2 nucleic acid recognition via toll-like receptors (TLRs and downstream signalling, and (3 interferon signalling. Particular attention will be paid to the functional consequences these genetic associations have for disease susceptibility or pathogenesis.

  8. The Bacillus anthracis cholesterol-dependent cytolysin, Anthrolysin O, kills human neutrophils, monocytes and macrophages

    Directory of Open Access Journals (Sweden)

    Rest Richard F

    2006-06-01

    Full Text Available Abstract Background Bacillus anthracis is an animal and human pathogen whose virulence is characterized by lethal and edema toxin, as well as a poly-glutamic acid capsule. In addition to these well characterized toxins, B. anthracis secretes several proteases and phospholipases, and a newly described toxin of the cholesterol-dependent cytolysin (CDC family, Anthrolysin O (ALO. Results In the present studies we show that recombinant ALO (rALO or native ALO, secreted by viable B. anthracis, is lethal to human primary polymorphonuclear leukocytes (PMNs, monocytes, monocyte-derived macrophages (MDMs, lymphocytes, THP-1 monocytic human cell line and ME-180, Detroit 562, and A549 epithelial cells by trypan blue exclusion or lactate dehydrogenase (LDH release viability assays. ALO cytotoxicity is dose and time dependent and susceptibility to ALO-mediated lysis differs between cell types. In addition, the viability of monocytes and hMDMs was assayed in the presence of vegetative Sterne strains 7702 (ALO+, UT231 (ALO-, and a complemented strain expressing ALO, UT231 (pUTE544, and was dependent upon the expression of ALO. Cytotoxicity of rALO is seen as low as 0.070 nM in the absence of serum. All direct cytotoxic activity is inhibited by the addition of cholesterol or serum concentration as low as 10%. Conclusion The lethality of rALO and native ALO on human monocytes, neutrophils, macrophages and lymphocytes supports the idea that ALO may represent a previously unidentified virulence factor of B. anthracis. The study of other factors produced by B. anthracis, along with the major anthrax toxins, will lead to a better understanding of this bacterium's pathogenesis, as well as provide information for the development of antitoxin vaccines for treating and preventing anthrax.

  9. Gene expression study of monocytes/macrophages during early foreign body reaction and identification of potential precursors of myofibroblasts.

    Directory of Open Access Journals (Sweden)

    Lindsay Mesure

    Full Text Available Foreign body reaction (FBR, initiated by adherence of macrophages to biomaterials, is associated with several complications. Searching for mechanisms potentially useful to overcome these complications, we have established the signaling role of monocytes/macrophages in the development of FBR and the presence of CD34(+ cells that potentially differentiate into myofibroblasts. Therefore, CD68(+ cells were in vitro activated with fibrinogen and also purified from the FBR after 3 days of implantation in rats. Gene expression profiles showed a switch from monocytes and macrophages attracted by fibrinogen to activated macrophages and eventually wound-healing macrophages. The immature FBR also contained a subpopulation of CD34(+ cells, which could be differentiated into myofibroblasts. This study showed that macrophages are the clear driving force of FBR, dependent on milieu, and myofibroblast deposition and differentiation.

  10. Δ(9)-Tetrahydrocannabinol treatment during human monocyte differentiation reduces macrophage susceptibility to HIV-1 infection.

    Science.gov (United States)

    Williams, Julie C; Appelberg, Sofia; Goldberger, Bruce A; Klein, Thomas W; Sleasman, John W; Goodenow, Maureen M

    2014-06-01

    The major psychoactive component of marijuana, Δ(9)-tetrahydrocannabinol (THC), also acts to suppress inflammatory responses. Receptors for THC, CB1, CB2, and GPR55, are differentially expressed on multiple cell types including monocytes and macrophages, which are important modulators of inflammation in vivo and target cells for HIV-1 infection. Use of recreational and medicinal marijuana is increasing, but the consequences of marijuana exposure on HIV-1 infection are unclear. Ex vivo studies were designed to investigate effects on HIV-1 infection in macrophages exposed to THC during or following differentiation. THC treatment of primary human monocytes during differentiation reduced HIV-1 infection of subsequent macrophages by replication competent or single cycle CCR5 using viruses. In contrast, treatment of macrophages with THC immediately prior to or continuously following HIV-1 exposure failed to alter infection. Specific receptor agonists indicated that the THC effect during monocyte differentiation was mediated primarily through CB2. THC reduced the number of p24 positive cells with little to no effect on virus production per infected cell, while quantitation of intracellular viral gag pinpointed the THC effect to an early event in the viral life cycle. Cells treated during differentiation with THC displayed reduced expression of CD14, CD16, and CD163 and donor dependent increases in mRNA expression of selected viral restriction factors, suggesting a fundamental alteration in phenotype. Ultimately, the mechanism of THC suppression of HIV-1 infection was traced to a reduction in cell surface HIV receptor (CD4, CCR5 and CXCR4) expression that diminished entry efficiency.

  11. Δ9-tetrahydrocannabinol treatment during human monocyte differentiation reduces macrophage susceptibility to HIV-1 infection

    Science.gov (United States)

    Williams, Julie C.; Appelberg, Sofia; Goldberger, Bruce A.; Klein, Thomas W.; Sleasman, John W.; Goodenow, Maureen M.

    2014-01-01

    The major psychoactive component of marijuana, Δ9-tetrahydrocannabinol (THC), also acts to suppress inflammatory responses. Receptors for THC, CB1, CB2, and GPR55, are differentially expressed on multiple cell types including monocytes and macrophages, which are important modulators of inflammation in vivo and target cells for HIV-1 infection. Use of recreational and medicinal marijuana is increasing, but the consequences of marijuana exposure on HIV-1 infection are unclear. Ex vivo studies were designed to investigate effects on HIV-1 infection in macrophages exposed to THC during or following differentiation. THC treatment of primary human monocytes during differentiation reduced HIV-1 infection of subsequent macrophages by replication competent or single cycle CCR5 using viruses. In contrast, treatment of macrophages with THC immediately prior to or continuously following HIV-1 exposure failed to alter infection. Specific receptor agonists indicated that the THC effect during monocyte differentiation was mediated primarily through CB2. THC reduced the number of p24 positive cells with little to no effect on virus production per infected cell, while quantitation of intracellular viral gag pinpointed the THC effect to an early event in the viral life cycle. Cells treated during differentiation with THC displayed reduced expression of CD14, CD16, and CD163 and donor dependent increases in mRNA expression of selected viral restriction factors, suggesting a fundamental alteration in phenotype. Ultimately, the mechanism of THC suppression of HIV-1 infection was traced to a reduction in cell surface HIV receptor (CD4, CCR5 and CXCR4) expression that diminished entry efficiency. PMID:24562630

  12. Prostaglandin E 2 Does Not Modulate CCR7 Expression and Functionality after Differentiation of Blood Monocytes into Macrophages

    OpenAIRE

    Marc-André Allaire; Bérengère Tanné; Côté, Sandra C.; Nancy Dumais

    2013-01-01

    Previously, we demonstrated that prostaglandin E2 (PGE2) induces C-C chemokine receptor type 7 (CCR7) expression on human monocytes, which stimulates their subsequent migration in response to the CCR7 natural ligands CCL19 and CCL21. In this study, we determined whether PGE2 affects CCR7 expression on macrophages. Flow cytometric analysis and chemotaxis assays were performed on Mono Mac-1-derived macrophage (MDMM-1) as well as unpolarized monocyte-derived macrophages (MDMs) to determine the C...

  13. Functional TRAIL receptors in monocytes and tumor-associated macrophages: A possible targeting pathway in the tumor microenvironment

    Science.gov (United States)

    Liguori, Manuela; Buracchi, Chiara; Pasqualini, Fabio; Bergomas, Francesca; Pesce, Samantha; Sironi, Marina; Grizzi, Fabio; Mantovani, Alberto

    2016-01-01

    Despite the accepted dogma that TRAIL kills only tumor cells and spares normal ones, we show in this study that mononuclear phagocytes are susceptible to recombinant TRAIL via caspase-dependent apoptosis. Human resting monocytes and in vitro-differentiated macrophages expressed substantial levels of the functional TRAIL receptors (TRAIL-R1 and TRAIL-R2), while neutrophils and lymphocytes mostly expressed the non-signaling decoy receptor (TRAIL-R3). Accordingly, exclusively monocytes and macrophages activated caspase-8 and underwent apoptosis upon recombinant TRAIL treatment. TRAIL-Rs were up-regulated by anti-inflammatory agents (IL-10, glucocorticoids) and by natural compounds (Apigenin, Quercetin, Palmitate) and their treatment resulted in increased TRAIL-induced apoptosis. In mice, the only signaling TRAIL-R (DR5) was preferentially expressed by blood monocytes rather than neutrophils or lymphocytes. In both mice and humans, Tumor-Associated Macrophages (TAM) expressed functional TRAIL-R, while resident macrophages in normal tissues did not. As a proof of principle, we treated mice bearing a murine TRAIL-resistant fibrosarcoma with recombinant TRAIL. We observed significant decrease of circulating monocytes and infiltrating TAM, as well as reduced tumor growth and lower metastasis formation. Overall, these findings demonstrate that human and murine monocytes/macrophages are, among leukocytes, uniquely susceptible to TRAIL-mediated killing. This differential susceptibility to TRAIL could be exploited to selectively target macrophages in tumors. PMID:27191500

  14. Myeloid PTEN deficiency protects livers from ischemia reperfusion injury by facilitating M2 macrophage differentiation.

    Science.gov (United States)

    Yue, Shi; Rao, Jianhua; Zhu, Jianjun; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Lu, Ling; Wang, Xuehao; Zhai, Yuan

    2014-06-01

    Although the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in regulating cell proliferation is well established, its function in immune responses remains to be fully appreciated. In the current study, we analyzed myeloid-specific PTEN function in regulating tissue inflammatory immune response in a murine liver partial warm ischemia model. Myeloid-specific PTEN knockout (KO) resulted in liver protection from ischemia reperfusion injury (IRI) by deviating the local innate immune response against ischemia reperfusion toward the regulatory type: expression of proinflammatory genes was selectively decreased and anti-inflammatory IL-10 was simultaneously increased in ischemia reperfusion livers of PTEN KO mice compared with those of wild-type (WT) mice. PI3K inhibitor and IL-10-neutralizing Abs, but not exogenous LPS, recreated liver IRI in these KO mice. At the cellular level, Kupffer cells and peritoneal macrophages isolated from KO mice expressed higher levels of M2 markers and produced lower TNF-α and higher IL-10 in response to TLR ligands than did their WT counterparts. They had enhanced Stat3- and Stat6-signaling pathway activation, but diminished Stat1-signaling pathway activation, in response to TLR4 stimulation. Inactivation of Kupffer cells by gadolinium chloride enhanced proinflammatory immune activation and increased IRI in livers of myeloid PTEN KO mice. Thus, myeloid PTEN deficiency protects livers from IRI by facilitating M2 macrophage differentiation.

  15. Facilitated monocyte-macrophage uptake and tissue distribution of superparmagnetic iron-oxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Arnaud Beduneau

    Full Text Available BACKGROUND: We posit that the same mononuclear phagocytes (MP that serve as target cells and vehicles for a host of microbial infections can be used to improve diagnostics and drug delivery. We also theorize that physical and biological processes such as particle shape, size, coating and opsonization that affect MP clearance of debris and microbes can be harnessed to facilitate uptake of nanoparticles (NP and tissue delivery. METHODS: Monocytes and monocyte-derived macrophages (MDM were used as vehicles of superparamagnetic iron oxide (SPIO NP and immunoglobulin (IgG or albumin coated SPIO for studies of uptake and distribution. IgG coated SPIO was synthesized by covalent linkage and uptake into monocytes and MDM investigated related to size, time, temperature, concentration, and coatings. SPIO and IgG SPIO were infused intravenously into naïve mice. T(2 measures using magnetic resonance imaging (MRI were used to monitor tissue distribution in animals. RESULTS: Oxidation of dextran on the SPIO surface generated reactive aldehyde groups and permitted covalent linkage to amino groups of murine and human IgG and F(ab'(2 fragments and for Alexa Fluor(R 488 hydroxylamine to form a Schiff base. This labile intermediate was immediately reduced with sodium cyanoborohydride in order to stabilize the NP conjugate. Optical density measurements of the oxidized IgG, F(ab'(2, and/or Alexa Fluor(R 488 SPIO demonstrated approximately 50% coupling yield. IgG-SPIO was found stable at 4 degrees C for a period of 1 month during which size and polydispersity index varied little from 175 nm and 200 nm, respectively. In vitro, NP accumulated readily within monocyte and MDM cytoplasm after IgG-SPIO exposure; whereas, the uptake of native SPIO in monocytes and MDM was 10-fold less. No changes in cell viability were noted for the SPIO-containing monocytes and MDM. Cell morphology was not changed as observed by transmission electron microscopy. Compared to unconjugated

  16. SMAD-PI3K-Akt-mTOR pathway mediates BMP-7 polarization of monocytes into M2 macrophages.

    Directory of Open Access Journals (Sweden)

    Crystal Rocher

    Full Text Available Previously we demonstrated that bone morphogenetic protein-7 (BMP-7 treatment polarizes monocytes into M2 macrophages and increases the expression of anti-inflammatory cytokines. Despite these findings, the mechanisms for the observed BMP-7 induced monocyte polarization into M2 macrophages are completely unknown. In this study, we demonstrate the mechanisms involved in the polarization of monocytes into M2 macrophages. Apoptotic conditioned media (ACM was generated to mimic the stressed conditions, inducing monocyte polarization. Monocytes were treated with ACM along with BMP-7 and/or its inhibitor, follistatin, for 48 hours. Furthermore, an inhibitor of the PI3K pathway, LY-294002, was also studied. Our data show that BMP-7 induces polarization of monocytes into M2 macrophages while significantly increasing the expression of anti-inflammatory markers, arginase-1 and IL-10, and significantly (p<0.05 decreasing the expression of pro-inflammatory markers iNOS, IL-6, TNF-α and MCP-1; (p<0.05. Moreover, addition of the PI3K inhibitor, LY-294002, significantly (p<0.05 decreases upregulation of IL-10 and arginase-1, suggesting involvement of the PI3K pathway in M2 macrophage polarization. Next, following BMP-7 treatment, a significant (p<0.05 increase in p-SMAD1/5/8 and p-PI3K expression resulting in downstream activation of p-Akt and p-mTOR was observed. Furthermore, expression of p-PTEN, an inhibitor of the PI3K pathway, was significantly (p<0.05 increased in the ACM group. However, BMP-7 treatment inhibited its expression, suggesting involvement of the PI3K-Akt-mTOR pathway. In conclusion, we demonstrate that BMP-7 polarizes monocytes into M2 macrophages and enhances anti-inflammatory cytokine expression which is mediated by the activated SMAD-PI3K-Akt-mTOR pathway.

  17. Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye.

    Science.gov (United States)

    Ko, Jung Hwa; Lee, Hyun Ju; Jeong, Hyun Jeong; Kim, Mee Kum; Wee, Won Ryang; Yoon, Sun-Ok; Choi, Hosoon; Prockop, Darwin J; Oh, Joo Youn

    2016-01-01

    Intravenously administered mesenchymal stem/stromal cells (MSCs) engraft only transiently in recipients, but confer long-term therapeutic benefits in patients with immune disorders. This suggests that MSCs induce immune tolerance by long-lasting effects on the recipient immune regulatory system. Here, we demonstrate that i.v. infusion of MSCs preconditioned lung monocytes/macrophages toward an immune regulatory phenotype in a TNF-α-stimulated gene/protein (TSG)-6-dependent manner. As a result, mice were protected against subsequent immune challenge in two models of allo- and autoimmune ocular inflammation: corneal allotransplantation and experimental autoimmune uveitis (EAU). The monocytes/macrophages primed by MSCs expressed high levels of MHC class II, B220, CD11b, and IL-10, and exhibited T-cell-suppressive activities independently of FoxP3(+) regulatory T cells. Adoptive transfer of MSC-induced B220(+)CD11b(+) monocytes/macrophages prevented corneal allograft rejection and EAU. Deletion of monocytes/macrophages abrogated the MSC-induced tolerance. However, MSCs with TSG-6 knockdown did not induce MHC II(+)B220(+)CD11b(+) cells, and failed to attenuate EAU. Therefore, the results demonstrate a mechanism of the MSC-mediated immune modulation through induction of innate immune tolerance that involves monocytes/macrophages.

  18. Activation of farnesoid X receptor downregulates monocyte chemoattractant protein-1 in murine macrophage.

    Science.gov (United States)

    Li, Liangpeng; Zhang, Qian; Peng, Jiahe; Jiang, Chanjui; Zhang, Yan; Shen, Lili; Dong, Jinyu; Wang, Yongchao; Jiang, Yu

    2015-11-27

    Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, which plays important roles in bile acids/lipid homeostasis and inflammation. Monocyte chemoattractant protein-1 (MCP-1) contributes to macrophage infiltration into body tissues during inflammation. Here we investigated whether FXR can regulate MCP-1 expression in murine macrophage. FXR activation down regulate MCP-1 mRNA and protein levels in ANA-1 and Raw264.7 cells. Luciferase reporter assay, Gel shift and Chromatin immunoprecipitation assays have revealed that the activated FXR bind to the FXR element located in -738 bp ∼  -723 bp in MCP-1 promoter. These results suggested that FXR may serve as a novel target for regulating MCP-1 levels for the inflammation related diseases therapies.

  19. Induction of HO-1 in tissue macrophages and monocytes in fatal falciparum malaria and sepsis

    Directory of Open Access Journals (Sweden)

    Liomba N

    2003-11-01

    Full Text Available Abstract Background As well as being inducible by haem, haemoxygenase -1 (HO-1 is also induced by interleukin-10 and an anti-inflammatory prostaglandin, 15d PGJ2, the carbon monoxide thus produced mediating the anti-inflammatory effects of these molecules. The cellular distribution of HO-1, by immunohistochemistry, in brain, lung and liver in fatal falciparum malaria, and in sepsis, is reported. Methods Wax sections were stained, at a 1:1000 dilution of primary antibody, for HO-1 in tissues collected during paediatric autopsies in Blantyre, Malawi. These comprised 37 acutely ill comatose patients, 32 of whom were diagnosed clinically as cerebral malaria and the other 5 as bacterial diseases with coma. Another 3 died unexpectedly from an alert state. Other control tissues were from Australian adults. Results Apart from its presence in splenic red pulp macrophages and microhaemorrhages, staining for HO-1 was confined to intravascular monocytes and certain tissue macrophages. Of the 32 clinically diagnosed cerebral malaria cases, 11 (category A cases had negligible histological change in the brain and absence of or scanty intravascular sequestration of parasitized erythrocytes. Of these 11 cases, eight proved at autopsy to have other pathological changes as well, and none of these eight showed HO-1 staining within the brain apart from isolated moderate staining in one case. Two of the three without another pathological diagnosis showed moderate staining of scattered monocytes in brain vessels. Six of these 11 (category A cases exhibited strong lung staining, and the Kupffer cells of nine of them were intensely stained. Of the seven (category B cases with no histological changes in the brain, but appreciable sequestered parasitised erythrocytes present, one was without staining, and the other six showed strongly staining, rare or scattered monocytes in cerebral vessels. All six lung sections not obscured by neutrophils showed strong staining of

  20. A macrophage activation switch (MAcS)-index for assessment of monocyte/macrophage activation

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Lauridsen, Mette; Knudsen, Troels Bygum

    2008-01-01

    for the resolution of inflammation. Clin Exp Immunol. 2005 Dec;142(3):481-9. 2. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004 Dec;25(12):677-86. 3. Weaver LK, Hintz-Goldstein KA, Pioli PA, Wardwell...

  1. The MacBlue binary transgene (csf1r-gal4VP16/UAS-ECFP provides a novel marker for visualisation of subsets of monocytes, macrophages and dendritic cells and responsiveness to CSF1 administration.

    Directory of Open Access Journals (Sweden)

    Kristin A Sauter

    Full Text Available The MacBlue transgenic mouse uses the Csf1r promoter and first intron to drive expression of gal4-VP16, which in turn drives a cointegrated gal4-responsive UAS-ECFP cassette. The Csf1r promoter region used contains a deletion of a 150 bp conserved region covering trophoblast and osteoclast-specific transcription start sites. In this study, we examined expression of the transgene in embryos and adult mice. In embryos, ECFP was expressed in the large majority of macrophages derived from the yolk sac, and as the liver became a major site of monocytopoiesis. In adults, ECFP was detected at high levels in both Ly6C+ and Ly6C- monocytes and distinguished them from Ly6C+, F4/80+, CSF1R+ immature myeloid cells in peripheral blood. ECFP was also detected in the large majority of microglia and Langerhans cells. However, expression was lost from the majority of tissue macrophages, including Kupffer cells in the liver and F4/80+ macrophages of the lung, kidney, spleen and intestine. The small numbers of positive cells isolated from the liver resembled blood monocytes. In the gut, ECFP+ cells were identified primarily as classical dendritic cells or blood monocytes in disaggregated cell preparations. Immunohistochemistry showed large numbers of ECFP+ cells in the Peyer's patch and isolated lymphoid follicles. The MacBlue transgene was used to investigate the effect of treatment with CSF1-Fc, a form of the growth factor with longer half-life and efficacy. CSF1-Fc massively expanded both the immature myeloid cell (ECFP- and Ly6C+ monocyte populations, but had a smaller effect on Ly6C- monocytes. There were proportional increases in ECFP+ cells detected in lung and liver, consistent with monocyte infiltration, but no generation of ECFP+ Kupffer cells. In the gut, there was selective infiltration of large numbers of cells into the lamina propria and Peyer's patches. We discuss the use of the MacBlue transgene as a marker of monocyte/macrophage/dendritic cell

  2. Nogo-B is associated with cytoskeletal structures in human monocyte-derived macrophages

    Directory of Open Access Journals (Sweden)

    Gredler Viktoria

    2011-01-01

    Full Text Available Abstract Background The reticulon Nogo-B participates in cellular and immunological processes in murine macrophages. Since leukocytes are an essential part of the immune system in health and disease, we decided to investigate the expression of Nogo-A, Nogo-B and Nogo-C in different human immune cell subpopulations. Furthermore, we analyzed the localization of Nogo-B in human monocyte-derived macrophages by indirect immunofluorescence stainings to gain further insight into its possible function. Findings We describe an association of Nogo-B with cytoskeletal structures and the base of filopodia, but not with focal or podosomal adhesion sites of monocyte-derived macrophages. Nogo-B positive structures are partially co-localized with RhoA staining and Rac1 positive membrane ruffles. Furthermore, Nogo-B is associated with the tubulin network, but not accumulated in the Golgi region. Although Nogo-B is present in the endoplasmic reticulum, it can also be translocated to large cell protrusions or the trailing end of migratory cells, where it is homogenously distributed. Conclusions Two different Nogo-B staining patterns can be distinguished in macrophages: firstly we observed ER-independent Nogo-B localization in cell protrusions and at the trailing end of migrating cells. Secondly, the localization of Nogo-B in actin/RhoA/Rac1 positive regions supports an influence on cytoskeletal organization. To our knowledge this is the first report on Nogo-B expression at the base of filopodia, thus providing further insight into the distribution of this protein.

  3. Human recombinant macrophage inflammatory protein-1 alpha and -beta and monocyte chemotactic and activating factor utilize common and unique receptors on human monocytes.

    Science.gov (United States)

    Wang, J M; Sherry, B; Fivash, M J; Kelvin, D J; Oppenheim, J J

    1993-04-01

    The human macrophage inflammatory proteins-1 alpha and -beta (MIP-1 alpha and -beta), which are also known as LD78 and ACT2, respectively, are distinct but highly related members of the chemoattractant cytokine (chemokine) family. rMIP-1 alpha and -beta labeled with 125I specifically bind to human peripheral blood monocytes, the monocytic cell line THP-1, peripheral blood T cells, and the YT cell line. Steady state binding experiments revealed approximately 3000 high affinity binding sites/cell for MIP-1 alpha on human monocytes and on THP-1 cells, with Kd values of 383 pM and 450 pM, respectively. Human MIP-1 alpha and -beta had nearly identical affinities for the binding sites and each competed equally well for binding. Human monocyte chemotactic and activating factor (MCAF), a member of the same chemokine family, consistently displaced about 25% of human MIP-1 alpha and -beta binding on monocytes but not on YT cells, which did not bind MCAF. On the other hand, human rMIP-1 alpha and -beta partially inhibited binding of radiolabeled MCAF to monocytes. Both MIP-1 alpha and -beta were chemotactic for human monocytes. Preincubation of monocytes with human rMIP-1 alpha or -beta markedly reduced cell migration towards the other cytokine, whereas preincubation with human rMCAF only partially desensitized the monocyte chemotaxis response to human rMIP-1 alpha or -beta. These data suggest the existence of three subtypes of receptors, i.e., one unique receptor shared by MIP-1 alpha and -beta, a second unique receptor for MCAF, and a third species that recognizes both MCAF and MIP-1 peptides.

  4. Isolation of human monocytes by double gradient centrifugation and their differentiation to macrophages in teflon-coated cell culture bags.

    Science.gov (United States)

    Menck, Kerstin; Behme, Daniel; Pantke, Mathias; Reiling, Norbert; Binder, Claudia; Pukrop, Tobias; Klemm, Florian

    2014-09-09

    Human macrophages are involved in a plethora of pathologic processes ranging from infectious diseases to cancer. Thus they pose a valuable tool to understand the underlying mechanisms of these diseases. We therefore present a straightforward protocol for the isolation of human monocytes from buffy coats, followed by a differentiation procedure which results in high macrophage yields. The technique relies mostly on commonly available lab equipment and thus provides a cost and time effective way to obtain large quantities of human macrophages. Briefly, buffy coats from healthy blood donors are subjected to a double density gradient centrifugation to harvest monocytes from the peripheral blood. These monocytes are then cultured in fluorinated ethylene propylene (FEP) Teflon-coated cell culture bags in the presence of macrophage colony-stimulating factor (M-CSF). The differentiated macrophages can be easily harvested and used for subsequent studies and functional assays. Important methods for quality control and validation of the isolation and differentiation steps will be highlighted within the protocol. In summary, the protocol described here enables scientists to routinely and reproducibly isolate human macrophages without the need for cost intensive tools. Furthermore, disease models can be studied in a syngeneic human system circumventing the use of murine macrophages.

  5. Human monocytes undergo excessive apoptosis following temozolomide activating the ATM/ATR pathway while dendritic cells and macrophages are resistant.

    Directory of Open Access Journals (Sweden)

    Martina Bauer

    Full Text Available Immunodeficiency is a severe therapy-limiting side effect of anticancer chemotherapy resulting from sensitivity of immunocompetent cells to DNA damaging agents. A central role in the immune system is played by monocytes that differentiate into macrophages and dendritic cells (DCs. In this study we compared human monocytes isolated from peripheral blood and cytokine matured macrophages and DCs derived from them and assessed the mechanism of toxicity of the DNA methylating anticancer drug temozolomide (TMZ in these cell populations. We observed that monocytes, but not DCs and macrophages, were highly sensitive to the killing effect of TMZ. Studies on DNA damage and repair revealed that the initial DNA incision was efficient in monocytes while the re-ligation step of base excision repair (BER can not be accomplished, resulting in an accumulation of DNA single-strand breaks (SSBs. Furthermore, monocytes accumulated DNA double-strand breaks (DSBs following TMZ treatment, while DCs and macrophages were able to repair DSBs. Monocytes lack the DNA repair proteins XRCC1, ligase IIIα and PARP-1 whose expression is restored during differentiation into macrophages and DCs following treatment with GM-CSF and GM-CSF plus IL-4, respectively. These proteins play a key role both in BER and DSB repair by B-NHEJ, which explains the accumulation of DNA breaks in monocytes following TMZ treatment. Although TMZ provoked an upregulation of XRCC1 and ligase IIIα, BER was not enhanced likely because PARP-1 was not upregulated. Accordingly, inhibition of PARP-1 did not sensitize monocytes, but monocyte-derived DCs in which strong PARP activation was observed. TMZ induced in monocytes the DNA damage response pathways ATM-Chk2 and ATR-Chk1 resulting in p53 activation. Finally, upon activation of the Fas-receptor and the mitochondrial pathway apoptosis was executed in a caspase-dependent manner. The downregulation of DNA repair in monocytes, resulting in their selective

  6. Hoxb8 conditionally immortalised macrophage lines model inflammatory monocytic cells with important similarity to dendritic cells.

    Science.gov (United States)

    Rosas, Marcela; Osorio, Fabiola; Robinson, Matthew J; Davies, Luke C; Dierkes, Nicola; Jones, Simon A; Reis e Sousa, Caetano; Taylor, Philip R

    2011-02-01

    We have examined the potential to generate bona fide macrophages (MØ) from conditionally immortalised murine bone marrow precursors. MØ can be derived from Hoxb8 conditionally immortalised macrophage precursor cell lines (MØP) using either M-CSF or GM-CSF. When differentiated in GM-CSF (GM-MØP) the resultant cells resemble GM-CSF bone marrow-derived dendritic cells (BMDC) in morphological phenotype, antigen phenotype and functional responses to microbial stimuli. In spite of this high similarity between the two cell types and the ability of GM-MØP to effectively present antigen to a T-cell hybridoma, these cells are comparatively poor at priming the expansion of IFN-γ responses from naïve CD4(+) T cells. The generation of MØP from transgenic or genetically aberrant mice provides an excellent opportunity to study the inflammatory role of GM-MØP, and reduces the need for mouse colonies in many studies. Hence differentiation of conditionally immortalised MØPs in GM-CSF represents a unique in vitro model of inflammatory monocyte-like cells, with important differences from bone marrow-derived dendritic cells, which will facilitate functional studies relating to the many 'sub-phenotypes' of inflammatory monocytes.

  7. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    Science.gov (United States)

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  8. Monocyte / macrophage inflammatory response pathways to combat Francisella infection: possible therapeutic targets?

    Directory of Open Access Journals (Sweden)

    Devyn D Gillette

    2014-02-01

    Full Text Available Francisella tularensis can bypass and suppress host immune responses, even to the point of manipulating immune cell phenotypes and intercellular inflammatory networks. Strengthening these responses such that immune cells more readily identify and destroy the bacteria is likely to become a viable (and perhaps necessary strategy for combating infections with Francisella, especially given the likelihood of antibiotic resistance in the foreseeable future. Monocytes and macrophages offer a niche wherein Francisella can invade and replicate, resulting in substantially higher bacterial load that can overcome the host. As such, understanding their responses to Francisella may uncover potential avenues of therapy that could promote a lowering of bacterial burden and clearance of infection. These response pathways include Toll-like Receptor 2 (TLR2, the caspase-1 inflammasome, Interferons, NADPH oxidase, Phosphatidylinositide 3-kinase (PI3K and the Ras pathway. In this review we summarize the literature pertaining to the roles of these pathways during Francisella infection, with an emphasis on monocyte / macrophage responses. The therapeutic targeting of one or more such pathways may ultimately become a valuable tool for the treatment of tularemia, and several possibilities are discussed.

  9. Acute exposure to apolipoprotein A1 inhibits macrophage chemotaxis in vitro and monocyte recruitment in vivo

    Science.gov (United States)

    Iqbal, Asif J; Barrett, Tessa J; Taylor, Lewis; McNeill, Eileen; Manmadhan, Arun; Recio, Carlota; Carmineri, Alfredo; Brodermann, Maximillian H; White, Gemma E; Cooper, Dianne; DiDonato, Joseph A; Zamanian-Daryoush, Maryam; Hazen, Stanley L; Channon, Keith M

    2016-01-01

    Apolipoprotein A1 (apoA1) is the major protein component of high-density lipoprotein (HDL) and has well documented anti-inflammatory properties. To better understand the cellular and molecular basis of the anti-inflammatory actions of apoA1, we explored the effect of acute human apoA1 exposure on the migratory capacity of monocyte-derived cells in vitro and in vivo. Acute (20–60 min) apoA1 treatment induced a substantial (50–90%) reduction in macrophage chemotaxis to a range of chemoattractants. This acute treatment was anti-inflammatory in vivo as shown by pre-treatment of monocytes prior to adoptive transfer into an on-going murine peritonitis model. We find that apoA1 rapidly disrupts membrane lipid rafts, and as a consequence, dampens the PI3K/Akt signalling pathway that coordinates reorganization of the actin cytoskeleton and cell migration. Our data strengthen the evidence base for therapeutic apoA1 infusions in situations where reduced monocyte recruitment to sites of inflammation could have beneficial outcomes. DOI: http://dx.doi.org/10.7554/eLife.15190.001 PMID:27572261

  10. Misfolded N-CoR is linked to the ectopic reactivation of CD34/Flt3-based stem-cell phenotype in promyelocytic and monocytic acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Dawn Sijin Nin

    2015-10-01

    Full Text Available Nuclear receptor co-repressor (N-CoR is the key component of generic co-repressor complex essential for the transcriptional control of genes involved in cellular hemostasis. We have recently reported that N-CoR actively represses Flt3, a key factor of hematopoietic stem cells (HSC self-renewal and growth; and that de-repression of Flt3 by the misfolded N-CoR plays important role in the pathogenesis of promyelocytic and monocytic acute myeloid leukemia (AML. The leukemic cells derived from the promyelocytic and monocytic AML are distinctly characterized by the ectopic reactivation of stem cell phenotypes in relatively committed myeloid compartment. However, the molecular mechanism underlying this phenomenon is not known. Here, we report that N-CoR function is essential for the commitment of primitive hematopoietic cells to the cells of myeloid lineage, and that loss of N-CoR function due to misfolding is linked to the ectopic reactivation of generic stem cell phenotypes in promyelocytic and monocytic AML. Analysis of N-CoR and Flt3 transcripts in mouse hematopoietic cells revealed a positive correlation between N-CoR level and the commitment of myeloid cells and an inverse correlation between N-CoR and Flt3 levels in primitive as well as committed myeloid cells. Enforced N-CoR expression in mouse HSCs inhibited their growth and self-renewal potentials and promoted maturation towards cells of myeloid lineage, suggesting a role of N-CoR in the commitment of cells of myeloid lineage. In contrast to AML cells with natively folded N-CoR, primary and secondary promyelocytic and monocytic AML cells harboring the misfolded N-CoR were highly positive for Flt3 and myeloid antigen based HSC marker CD34. Genetic and therapeutic restoration of N-CoR conformation significantly down-regulated the CD34 levels in monocytic AML cells, suggesting an important role of N-CoR in the suppression of CD34 based hematopoietic stem cell phenotypes. These finding

  11. The effect of low oxygen with and without steady-state hydrogen peroxide on cytokine gene and protein expression of monocyte-derived macrophages - biomed 2011

    NARCIS (Netherlands)

    Owegi, H.; Bouwens, M.; Egot-Lemaire, S.; Mueller, S.; Geib, R.W.; Waite, G.N.

    2011-01-01

    An early event during inflammation and infection is the migration of monocytes into tissues where they differentiate into macrophages. Such monocyte-derived macrophages face an unfavorable environment characterized by extremely low oxygen tension and accumulation of reactive oxygen species such as h

  12. Ly6Chi monocyte recruitment is responsible for Th2 associated host-protective macrophage accumulation in liver inflammation due to schistosomiasis.

    Directory of Open Access Journals (Sweden)

    Marcia Nascimento

    2014-08-01

    Full Text Available Accumulation of M2 macrophages in the liver, within the context of a strong Th2 response, is a hallmark of infection with the parasitic helminth, Schistosoma mansoni, but the origin of these cells is unclear. To explore this, we examined the relatedness of macrophages to monocytes in this setting. Our data show that both monocyte-derived and resident macrophages are engaged in the response to infection. Infection caused CCR2-dependent increases in numbers of Ly6Chi monocytes in blood and liver and of CX3CR1+ macrophages in diseased liver. Ly6Chi monocytes recovered from liver had the potential to differentiate into macrophages when cultured with M-CSF. Using pulse chase BrdU labeling, we found that most hepatic macrophages in infected mice arose from monocytes. Consistent with this, deletion of monocytes led to the loss of a subpopulation of hepatic CD11chi macrophages that was present in infected but not naïve mice. This was accompanied by a reduction in the size of egg-associated granulomas and significantly exacerbated disease. In addition to the involvement of monocytes and monocyte-derived macrophages in hepatic inflammation due to infection, we observed increased incorporation of BrdU and expression of Ki67 and MHC II in resident macrophages, indicating that these cells are participating in the response. Expression of both M2 and M1 marker genes was increased in liver from infected vs. naive mice. The M2 fingerprint in the liver was not accounted for by a single cell type, but rather reflected expression of M2 genes by various cells including macrophages, neutrophils, eosinophils and monocytes. Our data point to monocyte recruitment as the dominant process for increasing macrophage cell numbers in the liver during schistosomiasis.

  13. Ly6Chi Monocytes and Their Macrophage Descendants Regulate Neutrophil Function and Clearance in Acetaminophen-Induced Liver Injury

    Science.gov (United States)

    Graubardt, Nadine; Vugman, Milena; Mouhadeb, Odelia; Caliari, Gabriele; Pasmanik-Chor, Metsada; Reuveni, Debby; Zigmond, Ehud; Brazowski, Eli; David, Eyal; Chappell-Maor, Lousie; Jung, Steffen; Varol, Chen

    2017-01-01

    Monocyte-derived macrophages (MoMF) play a pivotal role in the resolution of acetaminophen-induced liver injury (AILI). Timely termination of neutrophil activity and their clearance are essential for liver regeneration following injury. Here, we show that infiltrating Ly6Chi monocytes, their macrophage descendants, and neutrophils spatially and temporally overlap in the centrilobular necrotic areas during the necroinflammatory and resolution phases of AILI. At the necroinflammatory phase, inducible ablation of circulating Ly6Chi monocytes resulted in reduced numbers and fractions of reactive oxygen species (ROS)-producing neutrophils. In alignment with this, neutrophils sorted from monocyte-deficient livers exhibited reduced expression of NADPH oxidase 2. Moreover, human CD14+ monocytes stimulated with lipopolysaccharide or hepatocyte apoptotic bodies directly induced ROS production by cocultured neutrophils. RNA-seq-based transcriptome profiling of neutrophils from Ly6Chi monocyte-deficient versus normal livers revealed 449 genes that were differentially expressed with at least twofold change (p ≤ 0.05). In the absence of Ly6Chi monocytes, neutrophils displayed gene expression alterations associated with decreased innate immune activity and increased cell survival. At the early resolution phase, Ly6Chi monocytes differentiated into ephemeral Ly6Clo MoMF and their absence resulted in significant accumulation of late apoptotic neutrophils. Further gene expression analysis revealed the induced expression of a specific repertoire of bridging molecules and receptors involved with apoptotic cell clearance during the transition from Ly6Chi monocytes to MoMF. Collectively, our findings establish a phase-dependent task division between liver-infiltrating Ly6Chi monocytes and their MoMF descendants with the former regulating innate immune functions and cell survival of neutrophils and the later neutrophil clearance. PMID:28620383

  14. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells.

    Science.gov (United States)

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla; Gri, Giorgia

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.

  15. 萝卜硫素对慢性阻塞性肺疾病患者巨噬细胞Toll样受体4/髓样分化因子88信号通路的影响%Effects of sulforaphane on Toll-like receptor 4/myeloid differentiation factor 88 pathway of monocyte-derived macrophages from patients with chronic obstructive pulmonary disease

    Institute of Scientific and Technical Information of China (English)

    曾晓丽; 刘晓菊; 包海荣; 张艺; 王小虎; 施凯; 庞琪

    2014-01-01

    4 (TLR4)/ myeloid differentiation factor 88 (MyD88) pathway and its downstream inflammatory cytokines in patients with chronic obstructive pulmonary disease (COPD).Methods From Jan.2012 to Mar.2013,thirty-two stable COPD patients and thirty healthy donors (non-COPD group) from the First Hospital of Lanzhou University were recruited.The peripheral blood monocytes were isolated and induced to macrophages (monocyte-derived macrophages,MDMs).The MDMs of COPD patients were divided into a blank control group,a LPS group,a sulforaphane group,a sulforaphane and LPS group (combined group),while the MDMs from the non-COPD group received no drug intervention.The number of cells in each group was 3 ×106.The mRNA and protein expression of TLR4 and MyD88 were measured with real-time PCR and Western blot.The TNF-α and IL-6 levels in the culture supernatant were measured with ELISA.Oneway ANOVA and LSD-t test were used for statistical analysis.Results The levels of mRNA and protein of TLR4 and MyD88 and the contents of TNF-α and IL-6 in the culture supernatant were higher in the blank control group [3.7 ±0.5,1.9±0.4,0.45 ±0.18,1.11 ±0.65,(31 ±4) and (43 ±5) μg/L] than those in the nonCOPDgroup [1.00,1.00,0.26±0.14,0.58±0.40,(19±2) and (29±4) μg/L] (t=2.19-12.11,P <0.05 or P <0.01).After LPS treatment (LPS group),the above parameters [5.5 ± 1.1,3.4 ± 1.6,0.65 ± 0.20,1.66 ± 0.64,(47 ± 4) and (54 ± 5) μg/L] were increased as compared to those in the blank control group (t =2.39-11.9,P < 0.05 or P < 0.01),but after sulforaphane treatment (Sulforaphane group),these parameters [2.2 ± 0.4,1.0 ± 0.6,0.25 ± 0.09,0.62 ± 0.34,(20 ± 3) and (27 ±4) μg/L] were decreased as compared to those in the blank control group (t =2.13-8.46,P < 0.05 or P < 0.01).Similarly,these parameters in the combined group [3.2 ± 0.5,1.5 ± 0.8,0.33 ± 0.11,0.77 ±0.25,(31 ±3) and (33 ±4) μg/L] were also remarkably decreased as compared to those in the LPS group (t =3

  16. Activation of farnesoid X receptor downregulates monocyte chemoattractant protein-1 in murine macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangpeng; Zhang, Qian; Peng, Jiahe; Jiang, Chanjui; Zhang, Yan; Shen, Lili; Dong, Jinyu; Wang, Yongchao; Jiang, Yu, E-mail: yujiang0207@163.com

    2015-11-27

    Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, which plays important roles in bile acids/lipid homeostasis and inflammation. Monocyte chemoattractant protein-1 (MCP-1) contributes to macrophage infiltration into body tissues during inflammation. Here we investigated whether FXR can regulate MCP-1 expression in murine macrophage. FXR activation down regulate MCP-1 mRNA and protein levels in ANA-1 and Raw264.7 cells. Luciferase reporter assay, Gel shift and Chromatin immunoprecipitation assays have revealed that the activated FXR bind to the FXR element located in −738 bp ∼  −723 bp in MCP-1 promoter. These results suggested that FXR may serve as a novel target for regulating MCP-1 levels for the inflammation related diseases therapies. - Highlights: • FXR is expressed in murine macrophage cell line. • FXR down regulates MCP-1 expression. • FXR binds to the DR4 in MCP-1 promoter.

  17. Effect of monocyte chemoattractant protein-1 on chemotactic gene expression by macrophage cell line U937

    Institute of Scientific and Technical Information of China (English)

    BIAN Guang-xing; GUO Bao-yu; MIAO Hong; QIU Lei; CAO Dong-mei; DAO Shu-yan; ZHANG Ran

    2004-01-01

    Objective: To study the chemotactic superfamily genes expression profiling of macrophage line U937 treated with monocyte chemoattractant protein-1 (MCP-1) using gene chip technique. Methods: Total RNA from macrophage line U937 (as control) and U937 with MCP-1 was extracted, made reverse transcript to cDNA and tested with gene expression chip HO2 human. Results: Some chemotactic-related gene expressions were changed in all analyzed genes. Regulated upon activation, normal T cell expressed and secreted (RANTES) was up-regulated over 2-fold and 7 chemotactic-related genes (CCR2, CCR5, CCL16, GROβ, GROγ, IL-8 and granulocyte chemotactic protein 2) were down-regulated over 2-fold inMCP-1 treated U937 cells at mRNA level. Conclusion: MCP-1 can influence some chemokines and receptors expression in macrophage in vitro, in which MCP-1 mainly down-regulates the chemotactic genes expression of those influencing neutrophilic granulocyte (GROβ, GROγ, IL-8 and granulocyte chemotactic protein 2). Another novel finding is that it can also down-regulate the mRNA level of CCR5, which plays a critical role in many disorders and illnesses.

  18. HIV-1 Vpr induces interferon-stimulated genes in human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Muhammad Atif Zahoor

    Full Text Available Macrophages act as reservoirs of human immunodeficiency virus type 1 (HIV-1 and play an important role in its transmission to other cells. HIV-1 Vpr is a multi-functional protein involved in HIV-1 replication and pathogenesis; however, its exact role in HIV-1-infected human macrophages remains poorly understood. In this study, we used a microarray approach to explore the effects of HIV-1 Vpr on the transcriptional profile of human monocyte-derived macrophages (MDMs. More than 500 genes, mainly those involved in the innate immune response, the type I interferon pathway, cytokine production, and signal transduction, were differentially regulated (fold change >2.0 after infection with a recombinant adenovirus expressing HIV-1 Vpr protein. The differential expression profiles of select interferon-stimulated genes (ISGs and genes involved in the innate immune response, including STAT1, IRF7, MX1, MX2, ISG15, ISG20, IFIT1, IFIT2, IFIT3, IFI27, IFI44L, APOBEC3A, DDX58 (RIG-I, TNFSF10 (TRAIL, and RSAD2 (viperin were confirmed by real-time quantitative PCR and were consistent with the microarray data. In addition, at the post-translational level, HIV-1 Vpr induced the phosphorylation of STAT1 at tyrosine 701 in human MDMs. These results demonstrate that HIV-1 Vpr leads to the induction of ISGs and expand the current understanding of the function of Vpr and its role in HIV-1 immune pathogenesis.

  19. The transcriptome of Legionella pneumophila-infected human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Christopher T D Price

    Full Text Available Legionella pneumophila is an intracellular bacterial pathogen that invades and replicates within alveolar macrophages through injection of ∼ 300 effector proteins by its Dot/Icm type IV translocation apparatus. The bona fide F-box protein, AnkB, is a nutritional virulence effector that triggers macrophages to generate a surplus of amino acids, which is essential for intravacuolar proliferation. Therefore, the ankB mutant represents a novel genetic tool to determine the transcriptional response of human monocyte-derived macrophages (hMDMs to actively replicating L. pneumophila.Here, we utilized total human gene microarrays to determine the global transcriptional response of hMDMs to infection by wild type or the ankB mutant of L. pneumophila. The transcriptomes of hMDMs infected with either actively proliferating wild type or non-replicative ankB mutant bacteria were remarkably similar. The transcriptome of infected hMDMs was predominated by up-regulation of inflammatory pathways (IL-10 anti-inflammatory, interferon signaling and amphoterin signaling, anti-apoptosis, and down-regulation of protein synthesis pathways. In addition, L. pneumophila modulated diverse metabolic pathways, particularly those associated with bio-active lipid metabolism, and SLC amino acid transporters expression.Taken together, the hMDM transcriptional response to L. pneumophila is independent of intra-vacuolar replication of the bacteria and primarily involves modulation of the immune response and metabolic as well as nutritional pathways.

  20. Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy.

    Science.gov (United States)

    Sasso, Maria Stella; Lollo, Giovanna; Pitorre, Marion; Solito, Samantha; Pinton, Laura; Valpione, Sara; Bastiat, Guillaume; Mandruzzato, Susanna; Bronte, Vincenzo; Marigo, Ilaria; Benoit, Jean-Pierre

    2016-07-01

    Tumor-induced expansion of myeloid-derived suppressor cells (MDSCs) is known to impair the efficacy of cancer immunotherapy. Among pharmacological approaches for MDSC modulation, chemotherapy with selected drugs has a considerable interest due to the possibility of a rapid translation to the clinic. However, such approach is poorly selective and may be associated with dose-dependent toxicities. In the present study, we showed that lipid nanocapsules (LNCs) loaded with a lauroyl-modified form of gemcitabine (GemC12) efficiently target the monocytic (M-) MDSC subset. Subcutaneous administration of GemC12-loaded LNCs reduced the percentage of spleen and tumor-infiltrating M-MDSCs in lymphoma and melanoma-bearing mice, with enhanced efficacy when compared to free gemcitabine. Consistently, fluorochrome-labeled LNCs were preferentially uptaken by monocytic cells rather than by other immune cells, in both tumor-bearing mice and human blood samples from healthy donors and melanoma patients. Very low dose administration of GemC12-loaded LNCs attenuated tumor-associated immunosuppression and increased the efficacy of adoptive T cell therapy. Overall, our results show that GemC12-LNCs have monocyte-targeting properties that can be useful for immunomodulatory purposes, and unveil new possibilities for the exploitation of nanoparticulate drug formulations in cancer immunotherapy.

  1. Effect of cytokines on Siglec-1 and HIV-1 entry in monocyte-derived macrophages: the importance of HIV-1 envelope V1V2 region.

    Science.gov (United States)

    Jobe, Ousman; Trinh, Hung V; Kim, Jiae; Alsalmi, Wadad; Tovanabutra, Sodsai; Ehrenberg, Philip K; Peachman, Kristina K; Gao, Guofen; Thomas, Rasmi; Kim, Jerome H; Michael, Nelson L; Alving, Carl R; Rao, Venigalla B; Rao, Mangala

    2016-06-01

    Monocytes and monocyte-derived macrophages express relatively low levels of CD4. Despite this, macrophages can be effectively infected with human immunodeficiency virus type 1. Macrophages have a critical role in human immunodeficiency virus type 1 transmission; however, the mechanism or mechanisms of virus infection are poorly understood. We report that growth factors, such as granulocyte macrophage colony-stimulating factor and macrophage colony-stimulating factor affect the phenotypic profile and permissiveness of macrophages to human immunodeficiency virus type 1. Human immunodeficiency virus type 1 infection of monocyte-derived macrophages derived from granulocyte macrophage and macrophage colony-stimulating factors was predominantly facilitated by the sialic acid-binding immunoglobulin-like lectin-1. The number of sialic acid-binding immunoglobulin-like lectin receptors on macrophage colony-stimulating factor-derived monocyte-derived macrophages was significantly greater than on granulocyte macrophage colony-stimulating factor-derived monocyte-derived macrophages, and correspondingly, human immunodeficiency virus type 1 infection was greater in the macrophage colony-stimulating factor-derived monocyte-derived macrophages. Single-genome analysis and quantitative reverse transcriptase-polymerase chain reaction revealed that the differences in infectivity was not due to differences in viral fitness or in viral variants with differential infectivity but was due to reduced viral entry into the granulocyte macrophage colony-stimulating factor-derived monocyte-derived macrophages. Anti-sialic acid-binding immunoglobulin-like lectin, trimeric glycoprotein 145, and scaffolded V1V2 proteins were bound to sialic acid-binding immunoglobulin-like lectin and significantly reduced human immunodeficiency virus type 1 entry and infection. Furthermore, sialic acid residues present in the V1V2 region of the envelope protein mediated human immunodeficiency virus type 1

  2. Maturation Phenotype of Peripheral Blood Monocyte/Macrophage After Stimulation with Lipopolysaccharides in Irritable Bowel Syndrome

    Science.gov (United States)

    Rodríguez-Fandiño, Oscar A; Hernández-Ruiz, Joselín; López-Vidal, Yolanda; Charúa-Guindic, Luis; Escobedo, Galileo; Schmulson, Max J

    2017-01-01

    Background/Aims Abnormal immune regulation and increased intestinal permeability augmenting the passage of bacterial molecules that can activate immune cells, such as monocytes/macrophages, have been reported in irritable bowel syndrome (IBS). The aim was to compare the maturation phenotype of monocytes/macrophages (CD14+) from IBS patients and controls in the presence or absence of Escherichia coli lipopolysaccharides (LPS), in vitro. Methods Mononuclear cells were isolated from peripheral blood of 20 Rome II-IBS patients and 19 controls and cultured with or without LPS for 72 hours. The maturation phenotype was examined by flow cytometry as follows: M1-Early (CD11c+CD206−), M2-Advanced (CD11c−CD206+CX3CR1+); expression of membrane markers was reported as mean fluorescence intensity (MFI). The Mann-Whitney test was used and significance was set at P < 0.05. Results In CD14+ cells, CD11c expression decreased with vs without LPS both in IBS (MFI: 8766.0 ± 730.2 vs 12 920.0 ± 949.2, P < 0.001) and controls (8233.0 ± 613.9 vs 13 750.0 ± 743.3, P < 0.001). M1-Early cells without LPS, showed lower CD11c expression in IBS than controls (MFI: 11 540.0 ± 537.5 vs 13 860.0 ± 893.7, P = 0.040), while both groups showed less CD11c in response to LPS (P < 0.01). Furthermore, the percentage of “Intermediate” (CD11c+CD206+CX3CR1+) cells without LPS, was higher in IBS than controls (IBS = 9.5 ± 1.5% vs C = 4.9 ± 1.4%, P < 0.001). Finally, fractalkine receptor (CX3CR1) expression on M2-Advanced cells was increased when treated with LPS in controls but not in IBS (P < 0.001). Conclusions The initial phase of monocyte/macrophage maturation appears to be more advanced in IBS compared to controls. However, the decreased CX3CR1 in patients with IBS, compared to controls, when stimulated with LPS suggests a state of immune activation in IBS. PMID:28044051

  3. [EVALUATION OF THE HUMAN SENSITIVITY TO SMALLPOX VIRUS BY THE PRIMARY CULTURES OF THE MONOCYTE-MACROPHAGES].

    Science.gov (United States)

    Zamedyanskaya, A S; Titova, K A; Sergeev, Al A; Kabanov, A S; Bulychev, L E; Sergeev, Ar A; Galakhova, D O; Nesterov, A E; Nosareva, O V; Shishkina, L N; Taranov, O S; Omigov, V V; Agafonov, A P; Sergeev, A N

    2016-01-01

    Studies of the primary cultures of granulocytes, mononuclear, and monocyte-macrophage cells derived from human blood were performed using variola virus (VARV) in the doses of 0.001-0.021 PFU/cell (plaques-forming units per cell). Positive dynamics of the virus accumulation was observed only in the monocyte-macrophages with maximum values of virus concentration (5.0-5.5 Ig PFU/ml) mainly within six days after the infection. The fact of VARV replication in the monocyte-macrophages was confirmed by the data of electron microscopy. At the same time, virus vaccines when tested in doses 3.3 and 4.2 Ig PFU/ml did not show the ability to reproduce in these human cells. The people sensitivity to VARV as assessed from the data obtained on human monocyte-macrophages corresponded to -1 PFU (taking into account the smooth interaction of the virus in the body to the cells of this type), which is consistent to previously found theoretical data on the virus sensitivity. The human susceptibility to VARV assessed experimentally can be used to predict the adequacy of developed smallpox models (in vivo) based on susceptible animals. This is necessary for reliable assessment of the efficiency of development of drugs for treatment and prophylaxis of the smallpox.

  4. Modulation of neutrophil and monocyte function by recombinant human granulocyte macrophage colony-stimulating factor in patients with lymphoma

    DEFF Research Database (Denmark)

    Kharazmi, A; Nielsen, H; Hovgaard, D;

    1991-01-01

    Granulocyte macrophage colony-stimulating factor (GM-CSF) has been shown to inhibit the chemotaxis and enhance the oxidative burst response of human neutrophils in vitro. The present study describes the effect of recombinant GM-CSF on the neutrophil and monocyte function in patients with lymphoma...

  5. Soluble CD163, a product of monocyte/macrophage activation, is inversely associated with haemoglobin levels in placental malaria.

    Directory of Open Access Journals (Sweden)

    Caroline Lin Lin Chua

    Full Text Available In Plasmodium falciparum malaria, activation of monocytes and macrophages (monocytes/macrophages can result in the production of various inflammatory mediators that contribute to immunopathology. Soluble CD163 (sCD163 is a specific marker of monocyte/macrophage activation typically found at increased levels during various inflammatory conditions and can be associated with poor clinical outcomes. To better understand the relationships between levels of sCD163 and clinical parameters in women with placental malaria, we measured plasma sCD163 levels in maternal peripheral and placental blood compartments at delivery and determined their correlations with birth weight and maternal haemoglobin concentrations. sCD163 levels were negatively correlated with birth weight only in the placental compartment (r = -0.145, p = 0.03 and were inversely correlated with maternal haemoglobin concentrations, both in peripheral blood (r = -0.238, p = 0.0004 and in placental blood (r = -0.259, p = 0.0001. These inverse relationships suggest a potential role for monocyte/macrophage activation in the pathogenesis of malaria in pregnancy, particularly in relation to malaria-associated anaemia.

  6. Arteriogenesis depends on circulating monocytes and macrophage accumulation and is severely depressed in op/op mice

    NARCIS (Netherlands)

    C.E. Bergmann; I.E. Hoefer; B. Meder; H. Roth; N. van Royen; S.M. Breit; M.M. Jost; S. Aharinejad; S. Hartmann; I.R. Buschmann

    2006-01-01

    It has been suggested that monocytes/macrophages represent the pivotal cell type during early adaptive growth of pre-existent arterial anastomoses toward functional collateral arteries (arteriogenesis) upon arterial occlusion. This hypothesis was supported by previous studies providing evidence that

  7. Possible impact of microglial cells and the monocyte-macrophage system on suicidal behavior.

    Science.gov (United States)

    Steiner, Johann; Gos, Tomasz; Bogerts, Bernhard; Bielau, Hendrik; Drexhage, Hemmo A; Bernstein, Hans-Gert

    2013-11-01

    Immune dysfunction, including monocytosis, increased blood levels of interleukin-1 (IL-1), interleukin-6 (IL- 6) and tumor necrosis factor-alpha (TNF-alpha), as well as an increased microglial density in certain brain areas, have been described in schizophrenia and depression. Interestingly, similar immune alterations have been observed in suicide patients regardless of their underlying psychiatric diagnosis. This review summarizes relevant data from previous studies that have examined peripheral blood, cerebrospinal fluid and human brains (using postmortem histology and in vivo positron emission tomography) to investigate immune mechanisms in suicidal patients. We discuss whether the observed findings indicate that microgliosis and monocyte-macrophage system activation may be a useful marker of disease acuity/severity or whether they instead indicate a distinct neurobiology of suicide. Notably, pathophysiological mechanisms could change during the long-term course of psychiatric diseases. Therefore, different patterns of immune activation may be observed when comparing newly diseased patients with those who are chronically ill.

  8. Monocyte/macrophage-derived soluble CD163: A novel biomarker in multiple myeloma

    DEFF Research Database (Denmark)

    Andersen, Morten Nørgaard; Abildgaard, Niels; Maniecki, Maciej B

    2014-01-01

    fluids (soluble CD163, sCD163). In this study, we examined serum sCD163 as a biomarker in patients with newly diagnosed multiple myeloma. METHODS: Peripheral blood (n = 104) and bone marrow (n = 17) levels of sCD163 were measured using an enzyme-linked immunosorbent assay. RESULTS: At diagnosis, high s......CD163 was associated with higher stage according to the International Staging System (ISS) and with other known prognostic factors in multiple myeloma (creatinine, C-reactive protein, and beta-2 microglobulin). Soluble CD163 decreased upon high-dose treatment, and in a multivariate survival analysis...... in bone marrow samples than in the matched blood samples, which indicate a localized production of sCD163 within the bone marrow microenvironment. CONCLUSIONS: Soluble CD163 was found to be a prognostic marker in patients with multiple myeloma. This may indicate that macrophages and/or monocytes have...

  9. TNF and PGE2 in human monocyte-derived macrophages infected with Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    E. Manor

    1993-01-01

    Full Text Available In this study levels of prostaglandin E2 (PGE2, tumour necrosis factor (TNF and interleukin-1 (IL-1 alpha in medium from monocyte derived macrophages (MdM infected with Chlamydia trachomatis (L2/434/Bu or K biovars. TNF and PGE2 were found in both cases while IL-1 alpha was not detected. Both TNF and PGE2 levels were higher in the medium of the MdM infected with K biovars. TNF reached maximum levels 24 h postinfection, and then declined, while PGE2 levels increased continuously during the infection time up to 96 h post-infection. Addition of dexamethasone inhibited production of TNF and PGE2. Inhibition of PGE2 production by indomethacin resulted in increased production of TNF, while addition of PGE2 caused partial inhibition of TNF production from infected MdM.

  10. Flagella from five Cronobacter species induce pro-inflammatory cytokines in macrophage derivatives from human monocytes.

    Directory of Open Access Journals (Sweden)

    Ariadnna Cruz-Córdova

    Full Text Available Cronobacter spp. are opportunistic pathogens linked to lie-threatening infections in neonates and contaminated powdered infant formula that has been epidemiologically associated with these cases. Clinical symptoms of Cronobacter include necrotizing enterocolitis, bacteremia, and meningitis. Flagella from C. sakazakii are involved in biofilm formation and its adhesion to epithelial cells. We investigated the role of flagella from C. sakazakii ST1 and ST4, C. malonaticus, C. muytjensii, C. turicensis and C. dublinensis during the activation of cytokines (IL-8, TNF-α, and IL-10 in macrophage derivatives from human monocytes, which has not been extensively studied. The production and identity of flagella from the five Cronobacter species were visualized and recognized with anti-flagella antibodies by immunogold labeling through transmission electron microscopy. Purified flagella were dissociated into monomers in 12% SDS-PAGE Coomassie blue-stained gels showing a band of ∼28 kDa and, in addition, mass spectrometry revealed the presence of several peptides that correspond to flagellin. Flagella (100 ng induced the release of IL-8 (3314-6025 pg/ml, TNF-α (39-359 pg/ml, and IL-10 (2-96 pg/ml, in macrophage isolates from human monocytes and similar results were obtained when flagella were dissociated into monomers. Inhibition assays using three dilutions of anti-flagella antibodies (1∶10, 1∶100, and 1∶200 suppressed the secretion of IL-8, TNF-α, and IL-10 between 95-100% using 100 ng of protein. A transfection assay using 293-hTLR5 cells showed IL-8 release of 197 pg/ml and suppression in the secretion of IL-8 when anti-hTLR5-IgA antibodies were used at different concentrations. These observations suggest that flagella and flagellin are involved in an inflammatory response dependent on TLR5 recognition, which could contribute to the pathogenesis of the bacteria.

  11. Flagella from Five Cronobacter Species Induce Pro-Inflammatory Cytokines in Macrophage Derivatives from Human Monocytes

    Science.gov (United States)

    Cruz-Córdova, Ariadnna; Rocha-Ramírez, Luz M.; Ochoa, Sara A.; Gónzalez-Pedrajo, Bertha; Espinosa, Norma; Eslava, Carlos; Hernández-Chiñas, Ulises; Mendoza-Hernández, Guillermo; Rodríguez-Leviz, Alejandra; Valencia-Mayoral, Pedro; Sadowinski-Pine, Stanislaw; Hernández-Castro, Rigoberto; Estrada-García, Iris; Muñoz-Hernández, Onofre; Rosas, Irma; Xicohtencatl-Cortes, Juan

    2012-01-01

    Cronobacter spp. are opportunistic pathogens linked to lie-threatening infections in neonates and contaminated powdered infant formula that has been epidemiologically associated with these cases. Clinical symptoms of Cronobacter include necrotizing enterocolitis, bacteremia, and meningitis. Flagella from C. sakazakii are involved in biofilm formation and its adhesion to epithelial cells. We investigated the role of flagella from C. sakazakii ST1 and ST4, C. malonaticus, C. muytjensii, C. turicensis and C. dublinensis during the activation of cytokines (IL-8, TNF-α, and IL-10) in macrophage derivatives from human monocytes, which has not been extensively studied. The production and identity of flagella from the five Cronobacter species were visualized and recognized with anti-flagella antibodies by immunogold labeling through transmission electron microscopy. Purified flagella were dissociated into monomers in 12% SDS-PAGE Coomassie blue-stained gels showing a band of ∼28 kDa and, in addition, mass spectrometry revealed the presence of several peptides that correspond to flagellin. Flagella (100 ng) induced the release of IL-8 (3314–6025 pg/ml), TNF-α (39–359 pg/ml), and IL-10 (2–96 pg/ml), in macrophage isolates from human monocytes and similar results were obtained when flagella were dissociated into monomers. Inhibition assays using three dilutions of anti-flagella antibodies (1∶10, 1∶100, and 1∶200) suppressed the secretion of IL-8, TNF-α, and IL-10 between 95–100% using 100 ng of protein. A transfection assay using 293-hTLR5 cells showed IL-8 release of 197 pg/ml and suppression in the secretion of IL-8 when anti-hTLR5-IgA antibodies were used at different concentrations. These observations suggest that flagella and flagellin are involved in an inflammatory response dependent on TLR5 recognition, which could contribute to the pathogenesis of the bacteria. PMID:23284883

  12. Helminth-induced Ly6Chi monocyte-derived alternatively activated macrophages suppress experimental autoimmune encephalomyelitis

    Science.gov (United States)

    Terrazas, Cesar; de Dios Ruiz-Rosado, Juan; Amici, Stephanie A.; Jablonski, Kyle A.; Martinez-Saucedo, Diana; Webb, Lindsay M.; Cortado, Hanna; Robledo-Avila, Frank; Oghumu, Steve; Satoskar, Abhay R.; Rodriguez-Sosa, Miriam; Terrazas, Luis I.; Guerau-de-Arellano, Mireia; Partida-Sánchez, Santiago

    2017-01-01

    Helminths cause chronic infections and affect the immune response to unrelated inflammatory diseases. Although helminths have been used therapeutically to ameliorate inflammatory conditions, their anti-inflammatory properties are poorly understood. Alternatively activated macrophages (AAMϕs) have been suggested as the anti-inflammatory effector cells during helminth infections. Here, we define the origin of AAMϕs during infection with Taenia crassiceps, and their disease-modulating activity on the Experimental Autoimmune Encephalomyelitis (EAE). Our data show two distinct populations of AAMϕs, based on the expression of PD-L1 and PD-L2 molecules, resulting upon T. crassiceps infection. Adoptive transfer of Ly6C+ monocytes gave rise to PD-L1+/PD-L2+, but not PD-L1+/PD-L2− cells in T. crassiceps-infected mice, demonstrating that the PD-L1+/PD-L2+ subpopulation of AAMϕs originates from blood monocytes. Furthermore, adoptive transfer of PD-L1+/PD-L2+ AAMϕs into EAE induced mice reduced disease incidence, delayed disease onset, and diminished the clinical disability, indicating the critical role of these cells in the regulation of autoimmune disorders. PMID:28094319

  13. Dynamical optical imaging monocytes/macrophages migration and activation in contact hypersensitivity (Conference Presentation)

    Science.gov (United States)

    Zhang, Zhihong

    2017-02-01

    Inflammatory monocytes/macrophages (Mon/Mφ) play an important role in cutaneous allergic inflammation. However, their migration and activation in dermatitis and how they accelerate the inflammatory reaction are largely unknown. Optical molecular imaging is the most promising tool for investigating the function and motility of immune cells in vivo. We have developed a multi-scale optical imaging approach to evaluate the spatio-temporal dynamic behavior and properties of immune cells from the whole field of organs to the cellular level at the inflammatory site in delayed type hypersensitivity reaction. Here, we developed some multi-color labeling mouse models based on the endogenous labeling with fluorescent proteins and the exogenous labeling with fluorescent dyes. We investigated the cell movement, cell interaction and function of immunocytes (e.g. Mon/Mφ, DC, T cells and neutrophils) in the skin allergy inflammation (e.g., contact hypersensitivity) by using intravital microscopy. The long-term imaging data showed that after inflammatory Mon/Mφ transendothelial migration in dermis, they migrating in interstitial space of dermis. Depletion of blood monocyte with clodronate liposome extremely reduced the inflammatory reaction. Our finding provided further insight into inflammatory Mon/Mφ mediating the inflammatory cascade through functional migration in allergic contact dermatitis.

  14. Transcriptional analysis of diverse strains Mycobacterium avium subspecies paratuberculosis in primary bovine monocyte derived macrophages.

    Science.gov (United States)

    Zhu, Xiaochun; Tu, Zheng J; Coussens, Paul M; Kapur, Vivek; Janagama, Harish; Naser, Saleh; Sreevatsan, Srinand

    2008-10-01

    In this study we analyzed the macrophage-induced gene expression of three diverse genotypes of Mycobacterium avium subsp. paratuberculosis (MAP). Using selective capture of transcribed sequences (SCOTS) on three genotypically diverse MAP isolates from cattle, human, and sheep exposed to primary bovine monocyte derived macrophages for 48 h and 120 h we created and sequenced six cDNA libraries. Sequence annotations revealed that the cattle isolate up-regulated 27 and 241 genes; the human isolate up-regulated 22 and 53 genes, and the sheep isolate up-regulated 35 and 358 genes, at the two time points respectively. Thirteen to thirty-three percent of the genes identified did not have any annotated function. Despite variations in the genes identified, the patterns of expression fell into overlapping cellular functions as inferred by pathway analysis. For example, 10-12% of the genes expressed by all three strains at each time point were associated with cell-wall biosynthesis. All three strains of MAP studied up-regulated genes in pathways that combat oxidative stress, metabolic and nutritional starvation, and cell survival. Taken together, this comparative transcriptional analysis suggests that diverse MAP genotypes respond with similar modus operandi for survival in the host.

  15. Purification of Human Monocytes and Lymphocyte Populations by Counter Current Elutriation– A Short Protocol

    OpenAIRE

    Clarke, Elizabeth V.; Benoit, Marie E.; Tenner, Andrea J.

    2013-01-01

    Investigations of the activation processes involved in human monocytes and monocyte-derived macrophages and dendritic cells often required large numbers of cells that have not been possibly altered or activated by adherence to surfaces, by binding of antibodies to surface antigens during positive selection, or by release of activators by platelets or other non myeloid cells during isolation or co-culture. Human peripheral blood monocytes as well as lymphocytes from the same blood donor can be...

  16. Prostaglandin E2 Does Not Modulate CCR7 Expression and Functionality after Differentiation of Blood Monocytes into Macrophages

    Directory of Open Access Journals (Sweden)

    Marc-André Allaire

    2013-01-01

    Full Text Available Previously, we demonstrated that prostaglandin E2 (PGE2 induces C-C chemokine receptor type 7 (CCR7 expression on human monocytes, which stimulates their subsequent migration in response to the CCR7 natural ligands CCL19 and CCL21. In this study, we determined whether PGE2 affects CCR7 expression on macrophages. Flow cytometric analysis and chemotaxis assays were performed on Mono Mac-1-derived macrophage (MDMM-1 as well as unpolarized monocyte-derived macrophages (MDMs to determine the CCR7 expression and functionality in the presence of PGE2. Data revealed that a MDMM-1 exhibited markedly downregulated CCR7 expression and functionality that were partially restored by treatment with PGE2. In MDMs, we observed a drastic downregulation of CCR7 expression and functionality that were unaffected following PGE2 treatment. Our data indicate that monocyte differentiation induces the loss of CCR7 expression and that PGE2 is unable to modulate CCR7 expression and functionality as shown previously in monocytes.

  17. Prostaglandin E2 suppresses beta1-integrin expression via E-prostanoid receptor in human monocytes/macrophages.

    Science.gov (United States)

    Hasegawa, Shunji; Ichiyama, Takashi; Kohno, Fumitaka; Korenaga, Yuno; Ohsaki, Ayami; Hirano, Reiji; Haneda, Yasuhiro; Fukano, Reiji; Furukawa, Susumu

    2010-01-01

    Beta1-integrins mediate cell attachment to different extracellular matrix proteins, intracellular proteins, and intercellular adhesions. Recently, it has been reported that prostaglandin E2 (PGE2) has anti-inflammatory properties such as inhibition of the expression of adhesion molecules or production of chemokines. However, the effect of PGE2 on the expression of beta1-integrin remains unknown. In this study, we investigated the effects of PGE2 on the expression of beta1-integrin in the human monocytic cell line THP-1 and in CD14+ monocytes/macrophages in human peripheral blood. For this, we examined the role of four subtypes of PGE2 receptors and E-prostanoid (EP) receptors on PGE2-mediated inhibition. We found that PGE2 significantly inhibited the expression of beta1-integrin, mainly through EP4 receptors in THP-1 cells and CD14+ monocytes/macrophages in human peripheral blood. We suggest that PGE2 has anti-inflammatory effects, leading to the inhibited expression of beta1-integrin in human monocytes/macrophages, and that the EP4 receptor may play an important role in PGE2-mediated inhibition. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  18. Monocyte/macrophage-derived soluble CD163: a novel biomarker in multiple myeloma.

    Science.gov (United States)

    Andersen, Morten N; Abildgaard, Niels; Maniecki, Maciej B; Møller, Holger J; Andersen, Niels F

    2014-07-01

    Macrophages play an important role in cancer by suppression of adaptive immunity and promotion of angiogenesis and metastasis. Tumor-associated macrophages strongly express the hemoglobin scavenger receptor CD163, which can also be found as a soluble protein in serum and other body fluids (soluble CD163, sCD163). In this study, we examined serum sCD163 as a biomarker in patients with newly diagnosed multiple myeloma. Peripheral blood (n = 104) and bone marrow (n = 17) levels of sCD163 were measured using an enzyme-linked immunosorbent assay. At diagnosis, high sCD163 was associated with higher stage according to the International Staging System (ISS) and with other known prognostic factors in multiple myeloma (creatinine, C-reactive protein, and beta-2 microglobulin). Soluble CD163 decreased upon high-dose treatment, and in a multivariate survival analysis including the covariates treatment modality and age at diagnosis, higher levels of sCD163 were associated with poor outcome (HR = 1.82; P = 0.010). The prognostic significance of sCD163 was lost when including ISS stage in the model (HR = 1.51; P = 0.085). Soluble CD163 values were significantly higher in bone marrow samples than in the matched blood samples, which indicate a localized production of sCD163 within the bone marrow microenvironment. Soluble CD163 was found to be a prognostic marker in patients with multiple myeloma. This may indicate that macrophages and/or monocytes have an important role in the bone marrow microenvironment of myeloma patients, supporting myeloma cell proliferation and survival. We propose the serum sCD163 value 1.8 mg/L as a cutoff concentration for survival analysis in patients with multiple myeloma, which should be validated in future studies. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. In Lysinuric Protein Intolerance system y+L activity is defective in monocytes and in GM-CSF-differentiated macrophages

    Directory of Open Access Journals (Sweden)

    Mariani Francesca

    2010-11-01

    Full Text Available Abstract Background In the recessive aminoaciduria Lysinuric Protein Intolerance (LPI, mutations of SLC7A7/y+LAT1 impair system y+L transport activity for cationic amino acids. A severe complication of LPI is a form of Pulmonary Alveolar Proteinosis (PAP, in which alveolar spaces are filled with lipoproteinaceous material because of the impaired surfactant clearance by resident macrophages. The pathogenesis of LPI-associated PAP remains still obscure. The present study investigates for the first time the expression and function of y+LAT1 in monocytes and macrophages isolated from a patient affected by LPI-associated PAP. A comparison with mesenchymal cells from the same subject has been also performed. Methods Monocytes from peripheral blood were isolated from a 21-year-old patient with LPI. Alveolar macrophages and fibroblastic-like mesenchymal cells were obtained from a whole lung lavage (WLL performed on the same patient. System y+L activity was determined measuring the 1-min uptake of [3H]-arginine under discriminating conditions. Gene expression was evaluated through qRT-PCR. Results We have found that: 1 system y+L activity is markedly lowered in monocytes and alveolar macrophages from the LPI patient, because of the prevailing expression of SLC7A7/y+LAT1 in these cells; 2 on the contrary, fibroblasts isolated from the same patient do not display the transport defect due to compensation by the SLC7A6/y+LAT2 isoform; 3 in both normal and LPI monocytes, GM-CSF induces the expression of SLC7A7, suggesting that the gene is a target of the cytokine; 4 GM-CSF-induced differentiation of LPI monocytes is comparable to that of normal cells, demonstrating that GM-CSF signalling is unaltered; 5 general and respiratory conditions of the patient, along with PAP-associated parameters, markedly improved after GM-CSF therapy through aerosolization. Conclusions Monocytes and macrophages, but not fibroblasts, derived from a LPI patient clearly display the

  20. Chemical and physical effects on the adhesion, maturation, and survival of monocytes, macrophages, and foreign body giant cells

    Science.gov (United States)

    Collier, Terry Odell, III

    Injury caused by biomedical device implantation initiates inflammatory and wound healing responses. Cells migrate to the site of injury to degrade bacteria and toxins, create new vasculature, and form new and repair injured tissue. Blood-proteins rapidly adsorb onto the implanted material surface and express adhesive ligands which mediate cell adhesion on the material surface. Monocyte-derived macrophages and multi-nucleated foreign body giant cells adhere to the surface and degrade the surface of the material. Due to the role of macrophage and foreign body giant cell on material biocompatibility and biostability, the effects of surface chemistry, surface topography and specific proteins on the maturation and survival of monocytes, macrophages and foreign body giant cells has been investigated. Novel molecularly designed materials were used to elucidate the dynamic interactions which occur between inflammatory cells, proteins and surfaces. The effect of protein and protein adhesion was investigated using adhesive protein depleted serum conditions on RGD-modified and silane modified surfaces. The effects of surface chemistry were investigated using temperature responsive surfaces of poly (N-isopropylacrylamide) and micropatterned surfaces of N-(2 aminoethyl)-3-aminopropyltrimethoxysilane regions on an interpenetrating polymer network of polyacrylamide and poly(ethylene glycol). The physical effects were investigated using polyimide scaffold materials and polyurethane materials with surface modifying end groups. The depletion of immunoglobulin G caused decreased levels of macrophage adhesion, foreign body giant cell formation and increased levels of apoptosis. The temporal nature of macrophage adhesion was observed with changing effectiveness of adherent cell detachment with time, which correlated to increased expression of beta1 integrin receptors on detached macrophages with time. The limited ability of the micropatterned surface, polyimide scaffold and surface

  1. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions.

    Directory of Open Access Journals (Sweden)

    Flora Rey-Giraud

    Full Text Available The tumor promoting role of M2 macrophages has been described in in vivo models and the presence of macrophages in certain tumor types has been linked to a poor clinical outcome. In light of burgeoning activities to clinically develop new therapies targeting tumor-associated macrophages (TAMs, reliable in vitro models faithfully mimicking the tumor promoting functions of TAMs are required. Generation and activation of human monocyte-derived macrophages (MDM in vitro, described as M1 or M2 macrophages attributed with tumoricidal or tumor-promoting functions, respectively, has been widely reported using mainly serum containing culture methods. In this study, we compared the properties of macrophages originating from monocytes cultured either in media containing serum together with M-CSF for M2 and GM-CSF for M1 macrophages or in serum-free media supplemented with M-CSF or GM-CSF and cytokines such as IL-4, IL-10 to induce activated M2 or LPS together with IFN-γ to generate activated M1 phenotype. We observed differences in cell morphology as well as increased surface receptor expression levels in serum-containing culture whereas similar or higher cytokine production levels were detected under serum-free culture conditions. More importantly, MDM differentiated under serum-free conditions displayed enhanced tumoricidal activity for M1 and tumor promoting property for M2 macrophages in contrast to MDM differentiated in the presence of serum. Moreover, evaluation of MDM phagocytic activity in serum free condition resulted in greater phagocytic properties of M2 compared to M1. Our data therefore confirm the tumor promoting properties of M2 macrophages in vitro and encourage the targeting of TAMs for cancer therapy.

  2. Monocyte-macrophage membrane possesses free radicals scavenging activity: stimulation by polyphenols or by paraoxonase 1 (PON1).

    Science.gov (United States)

    Rosenblat, M; Elias, A; Volkova, N; Aviram, M

    2013-04-01

    In the current study, we analysed free radicals scavenging activity of monocytes-macrophages in the absence or presence of antioxidants such as polyphenols or paraoxonase 1 (PON1). THP-1 human monocytic cell line, murine J774A.1 macrophages, as well as human primary monocytes have the capability to scavenge free radicals, as measured by the 1-diphenyl-2-picryl-hydrazyl (DPPH) assay. This effect (which could be attributed to the cell's membrane) was cell number and incubation time dependent. Upon incubation of J774A.1 macrophages with acetylated LDL (Ac-LDL), with VLDL, or with the radical generator, AAPH, the cells' lipid peroxides content, and paraoxonase 2 (PON2) activity were significantly increased. While non-treated cells decreased DPPH absorbance by 65%, the Ac-LDL-, VLDL- or AAPH-treated cells, decreased it by only 33%, 30%, or 45%, respectively. We next analysed the effect of J774A.1 macrophage enrichment with antioxidants, such as polyphenols or PON1 on the cells' free radicals scavenging activity. Non-treated cells decreased DPPH absorbance by 50%, whereas vitamin E-, punicalagin- or PJ-treated cells significantly further decreased it, by 75%. Similarly, in PON1-treated cells DPPH absorbance was further decreased by 63%, in association with 23% increment in PON1 catalytic activity. In cells under oxidative stress [treated with AAPH-, or with oxidized LDL], PON1 activity was decreased by 31% or 40%, as compared to the activity observed in PON1 incubated with non-treated cells. We conclude that monocytes-macrophages possess free radicals scavenging activity, which is decreased under atherogenic conditions, and increased upon cell enrichment with potent antioxidants such as nutritional polyphenols, or PON1.

  3. HSV-1-induced chemokine expression via IFI16-dependent and IFI16-independent pathways in human monocyte-derived macrophages

    DEFF Research Database (Denmark)

    Søby, Stine; Laursen, Rune R; Østergaard, Lars Jørgen;

    2012-01-01

    ABSTRACT: BACKGROUND: Innate recognition is essential in the antiviral response against infection by herpes simplex virus (HSV). Chemokines are important for control of HSV via recruitment of natural killer cells, T lymphocytes, and antigen-presenting cells. We previously found that early HSV-1......-mediated chemokine responses are not dependent on TLR2 and TLR9 in human macrophages. Here, we investigated the role of the recently identified innate IFN-inducible DNA receptor IFI16 during HSV-1 infection in human macrophages. METHODS: Peripheral blood mononuclear cells were purified from buffy coats...... and monocytes were differentiated to macrophages. Macrophages infected with HSV-1 were analyzed using siRNA-mediated knock-down of IFI16 by real-time PCR, ELISA, and Western blotting. RESULTS: We determined that both CXCL10 and CCL3 are induced independent of HSV-1 replication. IFI16 mediates CCL3 m...

  4. The impact of telmisartan on angiotensin converting enzyme 2 mRNA expression in monocyte-derived macrophages of diabetic hypertensive patients

    Institute of Scientific and Technical Information of China (English)

    李永勤

    2013-01-01

    Objective To investigate the effects of telmisartan on the expression of angiotensin converting enzyme 2(ACE2) mRNA in monocyte-derived macrophages of hypertensive patients accompanied with diabetes. Methods 62 essential hypertensive patients accompanied with

  5. Dimethyphenylpiperazinium, a nicotinic receptor agonist, downregulates inflammation in monocytes/macrophages through PI3K and PLC chronic activation.

    Science.gov (United States)

    Blanchet, Marie-Renée; Israël-Assayag, Evelyne; Daleau, Pascal; Beaulieu, Marie-Josée; Cormier, Yvon

    2006-10-01

    Activation of nicotinic acetylcholine receptors (nAChRs) on inflammatory cells induces anti-inflammatory effects. The intracellular mechanisms that regulate this effect are still poorly understood. In neuronal cells, nAChRs are associated with phosphatidylinositol 3-kinase (PI3K). This enzyme, which can activate phospholipase C (PLC), is also present in monocytes. The aim of this study was to assess the role of these proteins in the signaling pathways involved in the anti-inflammatory effect of dimethylphenylpiperazinium (DMPP), a synthetic nAChR agonist, on monocytes and macrophages. The results indicate that PI3K is associated with alpha3, -4, and -5 nAChR subunits in monocytes. The PI3K inhibitors wortmannin and LY294002 abrogated the inhibitory effect of DMPP on LPS-induced TNF release by monocytes. Treatment with DMPP for 24 and 48 h provoked a mild PLC phosphorylation, which was blocked by the nAChR antagonist mecamylamine and reversed by PI3K inhibitors. Treatment of monocytes and alveolar macrophages with DMPP reduced the inositol 1,4,5-trisphosphate (IP3)-dependent intracellular calcium mobilization induced by platelet-activating factor (PAF), an effect that was reversed by mecamylamine in alveolar macrophages. DMPP did not have any effect on PAF receptor expression. DMPP also inhibited the thapsigargin-provoked calcium release, indicating that the endoplasmic reticulum calcium stores might be depleted by treatment with the nAChR agonist. Taken together, these results suggest that PI3K and PLC activation is involved in the anti-inflammatory effect of DMPP. PLC limited, but constant activation could induce, the depletion of intracellular calcium stores, leading to the anti-inflammatory effect of DMPP.

  6. Human breast cancer cells share antigens with the myeloid monocyte lineage.

    OpenAIRE

    F. Calvo; Martin, P M; Jabrane, N.; de Cremoux, P; Magdelenat, H.

    1987-01-01

    We have examined the expression of several myeloid cell associated antigens, some of which are involved in myelomonocyte adhesion, in seven well characterized human breast cancer cell lines, since common properties of adhesiveness and migration are found in haemopoietic cells and epithelial cancer cells. Five of these cell lines were of metastatic origin and two were derived from primary breast carcinoma. Antigenic expression was evaluated by immunofluorescence (IF), flow cytometry (FCM), rad...

  7. Effect of size of man-made and natural mineral fibers on chemiluminescent response in human monocyte-derived macrophages.

    OpenAIRE

    2001-01-01

    Fiber size is an important factor in the tumorigenicity of various mineral fibers and asbestos fibers in animal experiments. We examined the time course of the ability to induce lucigenin-dependent chemiluminescence (CL) from human monocyte-derived macrophages exposed to Japan Fibrous Material standard reference samples (glass wool, rock wool, micro glass fiber, two types of refractory ceramic fiber, refractory mullite fiber, potassium titanium whisker, silicon carbide whisker, titanium oxide...

  8. Inhibition of HIV-1 replication in human monocyte-derived macrophages by parasite Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Guadalupe Andreani

    Full Text Available BACKGROUND: Cells of monocyte/macrophage lineage are one of the major targets of HIV-1 infection and serve as reservoirs for viral persistence in vivo. These cells are also the target of the protozoa Trypanosoma cruzi, the causative agent of Chagas disease, being one of the most important endemic protozoonoses in Latin America. It has been demonstrated in vitro that co-infection with other pathogens can modulate HIV replication. However, no studies at cellular level have suggested an interaction between T. cruzi and HIV-1 to date. METHODOLOGY/PRINCIPAL FINDINGS: By using a fully replicative wild-type virus, our study showed that T. cruzi inhibits HIV-1 antigen production by nearly 100% (p99% being stronger than HIV-T. cruzi (approximately 90% for BaL and approximately 85% for VSV-G infection. In MDM with established HIV-1 infection, T. cruzi significantly inhibited luciferate activity (p<0.01. By quantifying R-U5 and U5-gag transcripts by real time PCR, our study showed the expression of both transcripts significantly diminished in the presence of trypomastigotes (p<0.05. Thus, T. cruzi inhibits viral post-integration steps, early post-entry steps and entry into MDM. Trypomastigotes also caused a approximately 60-70% decrease of surface CCR5 expression on MDM. Multiplication of T. cruzi inside the MDM does not seem to be required for inhibiting HIV-1 replication since soluble factors secreted by trypomastigotes have shown similar effects. Moreover, the major parasite antigen cruzipain, which is secreted by the trypomastigote form, was able to inhibit viral production in MDM over 90% (p<0.01. CONCLUSIONS/SIGNIFICANCE: Our study showed that T. cruzi inhibits HIV-1 replication at several replication stages in macrophages, a major cell target for both pathogens.

  9. Fate mapping reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina.

    Science.gov (United States)

    O'Koren, E G; Mathew, R; Saban, D R

    2016-02-09

    The recent paradigm shift that microglia are yolk sac-derived, not hematopoietic-derived, is reshaping our knowledge about the isolated role of microglia in CNS diseases, including degenerative conditions of the retina. However, unraveling microglial-specific functions has been hindered by phenotypic overlap of microglia with monocyte-derived macrophages. The latter are differentiated from recruited monocytes in neuroinflammation, including retina. Here we demonstrate the use of fate mapping wherein microglia and monocyte-derived cells are endogenously labeled with different fluorescent reporters. Combining this method with 12-color flow cytometry, we show that these two populations are definitively distinguishable by phenotype in retina. We prove that retinal microglia have a unique CD45(lo) CD11c(lo) F4/80(lo) I-A/I-E(-) signature, conserved in the steady state and during retinal injury. The latter was observed in the widely used light-induced retinal degeneration model and corroborated in other models, including whole-body irradiation/bone-marrow transplantation. The literature contains conflicting observations about whether microglia, including in the retina, increase expression of these markers in neuroinflammation. We show that monocyte-derived macrophages have elevated expression of these surface markers, not microglia. Our resolution of such phenotypic differences may serve as a robust way to help characterize isolated roles of these cells in retinal neuroinflammation and possibly elsewhere in CNS.

  10. Regulation of MMP-9 by a WIN-binding site in the monocyte-macrophage system independent from cannabinoid receptors.

    Directory of Open Access Journals (Sweden)

    Svantje Tauber

    Full Text Available The cannabinoid system is known to be involved in the regulation of inflammatory processes. Therefore, drugs targeting cannabinoid receptors are considered as candidates for anti-inflammatory and tissue protective therapy. We demonstrated that the prototypical cannabinoid agonist R(+WIN55,212-2 (WIN reduced the secretion of matrix metalloproteinase-9 (MMP-9 in a murine model of cigarette-smoke induced lung inflammation. In experiments using primary cells and cell lines of the monocyte-macrophage-system we found that binding of the cannabinoid-receptor agonist WIN to a stereo-selective, specific binding site in cells of the monocyte-macrophage-system induced a significant down-regulation of MMP-9 secretion and disturbance of intracellular processing, which subsequently down-regulated MMP-9 mRNA expression via a ERK1/2-phosphorylation-dependent pathway. Surprisingly, the anti-inflammatory effect was independent from classical cannabinoid receptors. Our experiments supposed an involvement of TRPV1, but other yet unidentified sites are also possible. We conclude that cannabinoid-induced control of MMP-9 in the monocyte-macrophage system via a cannabinoid-receptor independent pathway represents a general option for tissue protection during inflammation, such as during lung inflammation and other diseases associated with inflammatory tissue damage.

  11. Nanoporosity of Alumina Surfaces Induces Different Patterns of Activation in Adhering Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Natalia Ferraz

    2010-01-01

    Full Text Available The present study shows that alumina nanotopography affects monocyte/macrophage behavior. Human mononuclear cells cultured on alumina membranes with pore diameters of 20 and 200 nm were evaluated in terms of cell adhesion, viability, morphology, and release of proinflammatory cytokines. After 24 hours, cell adhesion was assessed by means of light microscopy and cell viability by measuring LDH release. The inflammatory response was evaluated by quantifying interleukin-1β and tumour necrosis factor-α. Finally, scanning electron microscopy was used to study cell morphology. Results showed pronounced differences in cell number, morphology, and cytokine release depending on the nanoporosity. Few but highly activated cells were found on the 200 nm porous alumina, while relatively larger number of cells were found on the 20 nm porous surface. However, despite their larger number, the cells adhering on the 20 nm surface exhibited reduced pro-inflammatory activity. The data of this paper implies that nanotopography could be exploited for controlling the inflammatory response to implants.

  12. Pathology of African swine fever: the role of monocyte-macrophage.

    Science.gov (United States)

    Gómez-Villamandos, J C; Bautista, M J; Sánchez-Cordón, P J; Carrasco, L

    2013-04-01

    African swine fever (ASF) is a viral hemorrhagic disease with different clinical and lesional changes depending of virulence of strains/isolates and immunological status of pigs. In acute and subacute forms of ASF, severe vascular changes are present, with hemorrhages in different organs (mainly melena, epistaxis, erythema, renal petechiaes and diffuse hemorrhages in lymph nodes), pulmonary edema, disseminate intravascular coagulation and thrombocytopenia. Lymphopenia and monocytopenia are developed during acute and subacute ASF. Lymphopenia is associated with lymphoid depletion in primary and secondary lymphoid organs, which is caused by apoptosis. All these lesions are not related to viral replication in endothelial cells or lymphocytes. Monocytes-macrophages show viral replication and cytophatic effect, including hemadsorption. The more significant changes in these cells are increased number and secretory activation (increased levels of proinflammatory cytokines) in targets organs. Proinflammatory activation is the initial cause of clinical and lesional pictures in ASF, including fever and changes in levels of acute phase proteins. Levels of IFN-β and -γ are increased from initial phase of acute ASF. Anti-inflammatory response, represented by increased level of IL-10, is observed also, although in the final phase of acute ASF only.

  13. Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages[S

    Science.gov (United States)

    L'homme, Laurent; Esser, Nathalie; Riva, Laura; Scheen, André; Paquot, Nicolas; Piette, Jacques; Legrand-Poels, Sylvie

    2013-01-01

    The NLRP3 inflammasome is involved in many obesity-associated diseases, such as type 2 diabetes, atherosclerosis, and gouty arthritis, through its ability to induce interleukin (IL)-1β release. The molecular link between obesity and inflammasome activation is still unclear, but free fatty acids have been proposed as one triggering event. Here we reported opposite effects of saturated fatty acids (SFAs) compared with unsaturated fatty acids (UFAs) on NLRP3 inflammasome in human monocytes/macrophages. Palmitate and stearate, both SFAs, triggered IL-1β secretion in a caspase-1/ASC/NLRP3-dependent pathway. Unlike SFAs, the UFAs oleate and linoleate did not lead to IL-1β secretion. In addition, they totally prevented the IL-1β release induced by SFAs and, with less efficiency, by a broad range of NLRP3 inducers, including nigericin, alum, and monosodium urate. UFAs did not affect the transcriptional effect of SFAs, suggesting a specific effect on the NLRP3 activation. These results provide a new anti-inflammatory mechanism of UFAs by preventing the activation of the NLRP3 inflammasome and, therefore, IL-1β processing. By this way, UFAs might play a protective role in NLRP3-associated diseases. PMID:24006511

  14. Myeloid-Specific Krüppel-Like Factor 2 Inactivation Increases Macrophage and Neutrophil Adhesion and Promotes Atherosclerosis

    Science.gov (United States)

    Lingrel, Jerry B; Pilcher-Roberts, Robyn; Basford, Joshua E.; Manoharan, Palanikumar; Neumann, Jon; Konaniah, Eddy S.; Srinivasan, Ramprasad; Bogdanov, Vladimir Y; Hui, David Y.

    2012-01-01

    Rationale and Objective Hemizygous deficiency of the transcription factor Krüppel-like factor 2 (KLF2) has been shown previously to augment atherosclerosis in hypercholesterolemic mice. However, the cell type responsible for the increased atherosclerosis due to KLF2 deficiency has not been identified. This study examined the consequence of myeloid cell-specific KLF2 inactivation in atherosclerosis. Methods and Results Cell-specific knockout mice were generated by Cre/loxP recombination. Macrophages isolated from myeloid-specific Klf2 knockout (myeKlf2-/-) mice were similar to myeKlf2+/+ macrophages in response to activation, polarization, and lipid accumulation. However, in comparison to myeKlf2+/+ macrophages, myeKlf2-/- macrophages adhered more robustly to endothelial cells. Neutrophils from myeKlf2-/- mice also adhered more robustly to endothelial cells, and less myeKlf2-/- neutrophils survived in culture over a 24 hr period in comparison with myeKlf2+/+ neutrophils. When myeKlf2-/- mice were mated to Ldlr-/- mice and then fed a high fat and high cholesterol diet, significant increase in atherosclerosis was observed in the myeKlf2-/-Ldlr-/- mice compared to myeKlf2+/+Ldlr-/- littermates. The increased atherosclerosis in myeKlf2-/-Ldlr-/- mice was associated with elevated presence of neutrophils and macrophages, with corresponding increase of myeloperoxidase as well as chlorinated- and nitrosylated-tyrosine epitopes in their lesion areas compared to myeKlf2+/+Ldlr-/- mice. Conclusions This study documents a role for myeloid KLF2 expression in modulating atherosclerosis. The increased neutrophil accumulation and atherosclerosis progression with myeloid-specific KLF2 deficiency also underscores the importance of neutrophils in promoting vascular oxidative stress and atherosclerosis. Collectively, these results suggest that elevating KLF2 expression may be a novel strategy for prevention and treatment of atherosclerosis. PMID:22474254

  15. DMPD: LPS induction of gene expression in human monocytes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11257452 LPS induction of gene expression in human monocytes. Guha M, Mackman N. Ce...ll Signal. 2001 Feb;13(2):85-94. (.png) (.svg) (.html) (.csml) Show LPS induction of gene expression in human... monocytes. PubmedID 11257452 Title LPS induction of gene expression in human monocytes. Authors Guha M, Ma

  16. Plasma lipoproteins and monocyte-macrophages in a peroxisome-deficient system: study of a patient with infantile refsum disease.

    Science.gov (United States)

    Mandel, H; Berant, M; Meiron, D; Aizin, A; Oiknine, J; Brook, J G; Aviram, M

    1992-01-01

    Hypocholesterolaemia in infantile Refsum disease (IRD) may link peroxisomes and lipoprotein metabolism. In our patient, plasma cholesterol levels were reduced to 26% and 29% of control in LDL and HDL fractions, respectively. Plasma apolipoproteins B-100 and A-I levels were 52% and 66% of controls, respectively. In the kindred, plasma cholesterol concentration was 61-73% of controls. The HDL-cholesterol/apo A-I ratios were: patient 0.12; kindred 0.17; controls 0.28. Analysis of the IRD patient's lipoprotein revealed compositional abnormalities in all fractions. The patient's LDL demonstrated a substantial reduction in its lipid-to-protein ratio. Alterations in plasma lipoproteins affect their interaction with macrophages. Upon incubation of the patient's LDL with J-774 macrophages, its cellular uptake, measured as cholesterol esterification rate, was only 66% of a control rate. The abnormal LDL of the IRD patient showed also only 25% of control susceptibility to in vitro oxidation. Studies of cellular cholesterol metabolism in the patient's monocyte-derived macrophages (MDM) showed 57% increased cholesterol esterification rate in comparison to normal MDM. The possible link between lipoprotein abnormalities and monocyte-macrophage cholesterol metabolism is discussed.

  17. Myeloid heme oxygenase-1 haploinsufficiency reduces high fat diet-induced insulin resistance by affecting adipose macrophage infiltration in mice.

    Directory of Open Access Journals (Sweden)

    Jun-Yuan Huang

    Full Text Available Increased adipose tissue macrophages contribute to obesity-induced metabolic syndrome. Heme oxygenase-1 (HO-1 is a stress-inducible enzyme with potent anti-inflammatory and proangiogenic activities in macrophages. However, the role of macrophage HO-1 on obesity-induced adipose inflammation and metabolic syndrome remains unclear. Here we show that high-fat diet (HFD feeding in C57BL/6J mice induced HO-1 expression in the visceral adipose tissue, particularly the stromal vascular fraction. When the irradiated C57BL/6J mice reconstituted with wild-type or HO-1(+/- bone marrow were fed with HFD for over 24 weeks, the HO-1(+/- chimeras were protected from HFD-induced insulin resistance and this was associated with reduced adipose macrophage infiltration and angiogenesis, suggesting that HO-1 affects myeloid cell migration toward adipose tissue during obesity. In vivo and in vitro migration assays revealed that HO-1(+/- macrophages exhibited an impaired migration response. Chemoattractant-induced phosphorylation of p38 and focal adhesion kinase (FAK declined faster in HO-1(+/- macrophages. Further experiments demonstrated that carbon monoxide and bilirubin, the byproducts derived from heme degradation by HO-1, enhanced macrophage migration by increasing phosphorylation of p38 and FAK, respectively. These data disclose a novel role of hematopoietic cell HO-1 in promoting adipose macrophage infiltration and the development of insulin resistance during obesity.

  18. Evidence That Ly6C(hi) Monocytes are Protective in Acute Ischemic Stroke by Promoting M2 Macrophage Polarization.

    Science.gov (United States)

    Chu, Hannah X; Broughton, Brad R S; Kim, Hyun Ah; Lee, Seyoung; Drummond, Grant R; Sobey, Christopher G

    2015-07-01

    Ly6C(hi) monocytes are generally thought to exert a proinflammatory role in acute tissue injury, although their impact after injuries to the central nervous system is poorly defined. CC chemokine receptor 2 is expressed on Ly6C(hi) monocytes and plays an essential role in their extravasation and transmigration into the brain after cerebral ischemia. We used a selective CC chemokine receptor 2 antagonist, INCB3344, to assess the effect of Ly6C(hi) monocytes recruited into the brain early after ischemic stroke. Male C57Bl/6J mice underwent occlusion of the middle cerebral artery for 1 hour followed by 23 hours of reperfusion. Mice were administered either vehicle (dimethyl sulfoxide/carboxymethylcellulose) or INCB3344 (10, 30 or 100 mg/kg IP) 1 hour before ischemia and at 2 and 6 hours after ischemia. At 24 hours, we assessed functional outcomes, infarct volume, and quantified the immune cells in blood and brain by flow cytometry or immunofluorescence. Gene expression of selected inflammatory markers was assessed by quantitative polymerase chain reaction. Ly6C(hi) monocytes were increased 3-fold in the blood and 10-fold in the brain after stroke, and these increases were selectively prevented by INCB3344 in a dose-dependent manner. Mice treated with INCB3344 exhibited markedly worse functional outcomes and larger infarct volumes, in association with reduced M2 polarization and increased peroxynitrite production in macrophages, compared with vehicle-treated mice. Our data suggest that Ly6C(hi) monocytes exert an acute protective effect after ischemic stroke to limit brain injury and functional deficit that involves promotion of M2 macrophage polarization. © 2015 American Heart Association, Inc.

  19. Comparative nitric oxide production by LPS-stimulated monocyte-derived macrophages from Ovis canadensis and Ovis aries.

    Science.gov (United States)

    Sacco, R E; Waters, W R; Rudolph, K M; Drew, M L

    2006-01-01

    Bighorn sheep are more susceptible to respiratory infection by Mannheimia haemolytica than are domestic sheep. In response to bacterial challenge, macrophages produce a number of molecules that play key roles in the inflammatory response, including highly reactive nitrogen intermediates such as nitric oxide (NO). Supernatants from monocyte-derived macrophages cultured with M. haemolytica LPS were assayed for nitric oxide activity via measurement of the NO metabolite, nitrite. In response to LPS stimulation, bighorn sheep macrophages secreted significantly higher levels of NO compared to levels for non-stimulated macrophages. In contrast, levels of NO produced by domestic sheep macrophages in response to M. haemolytica LPS did not differ from levels detected in non-stimulated cell cultures. Nitrite levels detected in supernatants of LPS-stimulated bighorn macrophage cultures treated with an inducible nitric oxide synthase (INOS) inhibitor, N(G)-monomethyl-L-arginine, were similar to that observed in non-stimulated cultures indicating a role for the iNOS pathway.

  20. Induction of Monocyte Chemoattractant Proteins in Macrophages via the Production of Granulocyte-macrophage Colony Stimulating Factor by Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Teizo eYoshimura

    2016-01-01

    Full Text Available Monocyte chemoattractant protein-1 (MCP-1/CCL2 plays an important role in the initiation and progression of cancer. We previously reported that in 4T1 murine breast cancer, non-tumor stromal cells, including macrophages, were the major source of MCP-1. In the present study, we analyzed the potential mechanisms by which MCP-1 is upregulated in macrophages infiltrating 4T1 tumors. We found that cell-free culture supernatants of 4T1 cells (4T1-sup markedly upregulated MCP-1 production by peritoneal inflammatory macrophages. 4T1-sup also upregulated other MCPs, such as MCP-3/CCL7 and MCP-5/CCL12, but modestly neutrophil chemotactic chemokines, such as KC/CXCL1 or MIP-2/CXCL2. Physicochemical analysis indicated that an approximately 2 to 3 kDa 4T1 cell product was responsible for the capacity of 4T1-sup to upregulate MCP-1 expression by macrophages. A neutralizing antibody against granulocyte-macrophage-colony stimulating factor (GM-CSF, but not macrophage-colony stimulating factor, almost completely abrogated MCP-1-inducing activity of 4T1-sup, and recombinant GM-CSF potently up-regulated MCP-1 production by macrophages. The expression levels of GM-CSF in 4T1 tumors in vivo were higher than other tumors, such as Lewis lung carcinoma. Treatment of mice with anti-GM-CSF antibody significantly reduced the growth of 4T1 tumors at the injection sites but did not reduce MCP-1 production or lung metastasis in tumor-bearing mice. These results indicate that 4T1 cells have the capacity to directly up-regulate MCP-1 production by macrophages by releasing GM-CSF; however, other mechanisms are also involved in increased MCP-1 levels in the 4T1 tumor microenvironment.

  1. Mycobacterium tuberculosis ESAT6 and CPF10 Induce Adenosine Deaminase 2 mRNA Expression in Monocyte-Derived Macrophages

    Science.gov (United States)

    Bae, Mi Jung; Ryu, Suyeon; Kim, Ha-Jeong; Cha, Seung Ick

    2017-01-01

    Background Delayed hypersensitivity plays a large role in the pathogenesis of tuberculous pleural effusion (TPE). Macrophages infected with live Mycobacterium tuberculosis (MTB) increase the levels of adenosine deaminase2 (ADA2) in the pleural fluid of TPE patients. However, it is as yet unclear whether ADA2 can be produced by macrophages when challenged with MTB antigens alone. This study therefore evaluated the levels of ADA2 mRNA expression, using monocyte-derived macrophages (MDMs) stimulated with MTB antigens. Methods Purified monocytes from the peripheral blood mononuclear cells of healthy volunteers were differentiated into macrophages using granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF). The MDMs were stimulated with early secretory antigenic target protein 6 (ESAT6) and culture filtrate protein 10 (CFP10). The mRNA expression levels for the cat eye syndrome chromosome region, candidate 1 (CECR1) gene encoding ADA2 were then measured. Results CECR1 mRNA expression levels were significantly higher in MDMs stimulated with ESAT6 and CFP10, than in the unstimulated MDMs. When stimulated with ESAT6, M-CSF-treated MDMs showed more pronounced CECR1 mRNA expression than GM-CSF-treated MDMs. Interferon-γ decreased the ESAT6- and CFP10-induced CECR1 mRNA expression in MDMs. CECR1 mRNA expression levels were positively correlated with mRNA expression of tumor necrosis factor α and interleukin 10, respectively. Conclusion ADA2 mRNA expression increased when MDMs were stimulated with MTB antigens alone. This partly indicates that pleural fluid ADA levels could increase in patients with culture-negative TPE. Our results may be helpful in improving the understanding of TPE pathogenesis.

  2. Proliferating Cellular Nuclear Antigen Expression as a Marker of Perivascular Macrophages in Simian Immunodeficiency Virus Encephalitis

    OpenAIRE

    2002-01-01

    Brain perivascular macrophages are a major target of simian immunodeficiency virus (SIV) infection in rhesus macaques and HIV infection in humans. Perivascular macrophages are distinct from parenchymal microglia in their location, morphology, expression of myeloid markers, and turnover in the CNS. In contrast to parenchymal microglia, perivascular macrophages are continuously repopulated by blood monocytes, which undergo maturation to macrophages on entering the central nervous system (CNS). ...

  3. Uptake of cerium oxide nanoparticles and its influence on functions of mouse leukemic monocyte macrophages

    Science.gov (United States)

    Zhou, Xiangyan; Wang, Bing; Jiang, Pengfei; Chen, Yiqi; Mao, Zhengwei; Gao, Changyou

    2015-01-01

    Exposure of the CeO2 nanoparticles (NPs) causes a public concern on their potential health risk due to their wide applications in the fields of fuel additive, commodities, pharmaceutical, and other industries. In this study, the interactions between two commercial CeO2 NPs (D-CeO2 from Degussa and PC-CeO2 from PlasmaChem) and mouse leukemic monocyte macrophage Raw264.7 cells were investigated to provide a fast and in-depth understanding of the biological influences of the NPs. Both types of the CeO2 NPs had a negative surface charge around -12 mV and showed a tendency to form aggregates with sizes of 191 ± 5.9 and 60.9 ± 2.8 nm in cell culture environment, respectively. The cellular uptake of the CeO2 NPs increased along with the increase of feeding dosage and prolongation of the culture time. The PC-CeO2 NPs had a faster uptake rate and reached higher cellular loading amount at the highest feeding concentration (200 µg/mL). In general, both types of the CeO2 NPs had rather small cytotoxicity even with a dosage as high as 200 µg/mL. The D-CeO2 NPs showed a relative stronger cytotoxicity especially at higher concentrations and longer incubation time. The NPs were dispersed in vacuoles (most likely endosomes and lysosomes) and cytoplasm. Although both types of the CeO2 NPs could suppress the production of reactive oxygen species, they impaired the mitochondria membrane potential to some extent. The cytoskeleton organization was altered and consequently the cell adhesion ability decreased after uptake of both types of the CeO2 NPs.

  4. Uptake of cerium oxide nanoparticles and its influence on functions of mouse leukemic monocyte macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiangyan; Wang, Bing; Jiang, Pengfei; Chen, Yiqi; Mao, Zhengwei, E-mail: zwmao@zju.edu.cn; Gao, Changyou [Zhejiang University, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering (China)

    2015-01-15

    Exposure of the CeO{sub 2} nanoparticles (NPs) causes a public concern on their potential health risk due to their wide applications in the fields of fuel additive, commodities, pharmaceutical, and other industries. In this study, the interactions between two commercial CeO{sub 2} NPs (D-CeO{sub 2} from Degussa and PC-CeO{sub 2} from PlasmaChem) and mouse leukemic monocyte macrophage Raw264.7 cells were investigated to provide a fast and in-depth understanding of the biological influences of the NPs. Both types of the CeO{sub 2} NPs had a negative surface charge around −12 mV and showed a tendency to form aggregates with sizes of 191 ± 5.9 and 60.9 ± 2.8 nm in cell culture environment, respectively. The cellular uptake of the CeO{sub 2} NPs increased along with the increase of feeding dosage and prolongation of the culture time. The PC-CeO{sub 2} NPs had a faster uptake rate and reached higher cellular loading amount at the highest feeding concentration (200 µg/mL). In general, both types of the CeO{sub 2} NPs had rather small cytotoxicity even with a dosage as high as 200 µg/mL. The D-CeO{sub 2} NPs showed a relative stronger cytotoxicity especially at higher concentrations and longer incubation time. The NPs were dispersed in vacuoles (most likely endosomes and lysosomes) and cytoplasm. Although both types of the CeO{sub 2} NPs could suppress the production of reactive oxygen species, they impaired the mitochondria membrane potential to some extent. The cytoskeleton organization was altered and consequently the cell adhesion ability decreased after uptake of both types of the CeO{sub 2} NPs.

  5. Proteomic alteration of equine monocyte-derived macrophages infected with equine infectious anemia virus.

    Science.gov (United States)

    Du, Cheng; Liu, Hai-Fang; Lin, Yue-Zhi; Wang, Xue-Feng; Ma, Jian; Li, Yi-Jing; Wang, Xiaojun; Zhou, Jian-Hua

    2015-06-01

    Similar to the well-studied viruses human immunodeficiency virus (HIV)-1 and simian immunodeficiency virus (SIV), equine infectious anemia virus (EIAV) is another member of the Lentivirus genus in the family Retroviridae. Previous studies revealed that interactions between EIAV and the host resulted in viral evolution in pathogenicity and immunogenicity, as well as adaptation to the host. Proteomic analysis has been performed to examine changes in protein expression and/or modification in host cells infected with viruses and has revealed useful information for virus-host interactions. In this study, altered protein expression in equine monocyte-derived macrophages (eMDMs, the principle target cell of EIAV in vivo) infected with the EIAV pathogenic strain EIAV(DLV34) (DLV34) was examined using 2D-LC-MS/MS coupled with the iTRAQ labeling technique. The expression levels of 210 cellular proteins were identified to be significantly upregulated or downregulated by infection with DLV34. Alterations in protein expression were confirmed by examining the mRNA levels of eight selected proteins using quantitative real-time reverse-transcription PCR, and by verifying the levels of ten selected proteins using parallel reaction monitoring (PRM). Further analysis of GO and Kyoto Encyclopedia of Genes and Genomes (KEGG)-Pathway enrichment demonstrated that these differentially expressed proteins are primarily related to the biological processes of oxidative phosphorylation, protein folding, RNA splicing, and ubiquitylation. Our results can facilitate a better understanding of the host response to EIAV infection and the cellular processes required for EIAV replication and pathogenesis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Low molecular weight hyaluronan activates cytosolic phospholipase A2α and eicosanoid production in monocytes and macrophages.

    Science.gov (United States)

    Sokolowska, Milena; Chen, Li-Yuan; Eberlein, Michael; Martinez-Anton, Asuncion; Liu, Yueqin; Alsaaty, Sara; Qi, Hai-Yan; Logun, Carolea; Horton, Maureen; Shelhamer, James H

    2014-02-14

    Hyaluronan (HA) is the major glycosaminoglycan in the extracellular matrix. During inflammation, there is an increased breakdown of HA, resulting in the accumulation of low molecular weight (LMW) HA and activation of monocytes and macrophages. Eicosanoids, derived from the cytosolic phospholipase A2 group IVA (cPLA2α) activation, are potent lipid mediators also attributed to acute and chronic inflammation. The aim of this study was to determine the effect of LMW HA on cPLA2α activation, arachidonic acid (AA) release, and subsequent eicosanoid production and to examine the receptors and downstream mechanisms involved in these processes in monocytes and differently polarized macrophages. LMW HA was a potent stimulant of AA release in a time- and dose-dependent manner, induced cPLA2α, ERK1/2, p38, and JNK phosphorylation, as well as activated COX2 expression and prostaglandin (PG) E2 production in primary human monocytes, murine RAW 264.7, and wild-type bone marrow-derived macrophages. Specific cPLA2α inhibitor blocked HA-induced AA release and PGE2 production in all of these cells. Using CD44, TLR4, TLR2, MYD88, RHAMM or STAB2 siRNA-transfected macrophages and monocytes, we found that AA release, cPLA2α, ERK1/2, p38, and JNK phosphorylation, COX2 expression, and PGE2 production were activated by LMW HA through a TLR4/MYD88 pathway. Likewise, PGE2 production and COX2 expression were blocked in Tlr4(-/-) and Myd88(-/-) mice, but not in Cd44(-/-) mice, after LMW HA stimulation. Moreover, we demonstrated that LMW HA activated the M1 macrophage phenotype with the unique cPLA2α/COX2(high) and COX1/ALOX15/ALOX5/LTA4H(low) gene and PGE2/PGD2/15-HETE(high) and LXA4(low) eicosanoid profile. These findings reveal a novel link between HA-mediated inflammation and lipid metabolism.

  7. Activated human mast cells induce LOX-1-specific scavenger receptor expression in human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Mervi Alanne-Kinnunen

    Full Text Available Activated mast cells in atherosclerotic lesions degranulate and release bioactive compounds capable of regulating atherogenesis. Here we examined the ability of activated human primary mast cells to regulate the expression of the major scavenger receptors in cultured human primary monocyte-derived macrophages (HMDMs.Components released by immunologically activated human primary mast cells induced a transient expression of lectin-like oxidized LDL receptor (LOX-1 mRNA in HMDMs, while the expression of two other scavenger receptors, MSR1 and CD36, remained unaffected. The LOX-1-inducing secretory components were identified as histamine, tumor necrosis factor alpha (TNF-α, and transforming growth factor beta (TGF-β1, which exhibited a synergistic effect on LOX-1 mRNA expression. Histamine induced a transient expression of LOX-1 protein. Mast cell -induced increase in LOX-1 expression was not associated with increased uptake of oxidized LDL by the macrophages.Mast cell-derived histamine, TNF-α, and TGF-β1 act in concert to induce a transient increase in LOX-1 expression in human primary monocyte-derived macrophages. The LOX-1-inducing activity potentially endows mast cells a hitherto unrecognized role in the regulation of innate immune reactions in atherogenesis.

  8. Monocytes/macrophages infected with Toxoplasma gondii do not increase co-stimulatory molecules while maintaining their migratory ability.

    Science.gov (United States)

    Seipel, Daniele; Ribeiro-Gomes, Flavia Lima; Barcelos, Michelle Willmen; Ramalho, André Villaça; Kanashiro, Milton M; Kipnis, Thereza Liberman; Arnholdt, Andrea Cristina Veto

    2009-09-01

    Toxoplasma gondii is an obligate intracellular parasite that is able to disseminate into deep tissues and cross biological barriers, reaching immunoprivileged sites such as the brain and retina. The parasite is able to infect macrophages and dendritic cells and use them for dispersal throughout the body, but the activation state of those cells is unknown. We investigated the ability of human and murine cells from monocytic/macrophage lineages that had not previously been exposed to inflammatory cytokines to up-regulate co-stimulatory and adhesion molecules upon infection. Toxoplasma gondii-infected human monocytes (freshly isolated and THP1 lineage) were unable to up-regulate CD86, CD83, CD40 or CD1a. CD80 expression increased in infected cells but expression of l-selectin and beta2 integrin was unaltered. We evaluated the ability of infected macrophages from wild type C57/BL/6 or CD14(-/-) mice to migrate in 8 mum transwells. Infected cells from CD14(-/-) mice were more likely to de-adhere than infected cells from wild type mice but they did not show any increase in migratory ability. The non-stimulatory profile of these infected cells may contribute to parasite spread throughout the lymphatic circulation in the initial phases of infection.

  9. High density lipoprotein suppresses lipoprotein associated phospholipase A2 in human monocytes-derived macrophages through peroxisome proliferator-activated receptor-γ pathway

    Institute of Scientific and Technical Information of China (English)

    HAN Guan-ping; REN Jing-yi; QIN Li; SONG Jun-xian; WANG Lan; CHEN Hong

    2012-01-01

    Background Lipoprotein-associated phospholipase A2 (Lp-PLA2) is mainly secreted by macrophages,serving as a specific marker of atherosclerotic plaque and exerting pro-atherogenic effects.It is known that high-density lipoprotein (HDL) plays an important role against atherosclerosis by inhibiting pro-inflammatory factors,however,the relationship between HDL and Lp-PLA2 remains elusive.Methods In this study,reverse transcription-polymerase chain reaction (RT-PCR),Western blotting,and a platelet-activating factor (PAF) acetylhydrolase assay were performed to determine the Lp-PLA2 mRNA level,protein expression and activity in human monocyte-derived macrophages upon HDL treatment of different concentrations and durations.To investigate the underlying mechanism of HDL-induced Lp-PLA2 action,pioglitazone,a peroxisome proliferator-activated receptor-y (PPARy) ligand,was introduced to human monocyte-derived macrophages and mRNA and protein levels of Lp-PLA2,as well as its activity,were determined.Results Lp-PLA2 mRNA levels,protein expression and activity were significantly inhibited in response to HDL treatment in a dose and time dependent manner in human monocyte-derived macrophages.Pioglitazone treatment (1-10 ng/ml) upregulated the Lp-PLA2 mRNA level,protein expression and activity in human monocyte-derived macrophages,while the effects were markedly reversed by HDL.In addition,pioglitazone resulted in a significant increase in PPARY phosphorylation in human monocyte-derived macrophages,which could be inhibited by HDL.Conclusion These findings indicate that HDL suppresses the expression and activity of Lp-PLA2 in human monocyte-derived macrophages,and the underlying mechanisms may be mediated through the PPARY pathway.

  10. Bone Marrow-Derived Macrophages (BMM)

    DEFF Research Database (Denmark)

    Weischenfeldt, Joachim; Porse, Bo

    2008-01-01

    INTRODUCTIONBone marrow-derived macrophages (BMM) are primary macrophage cells, derived from bone marrow cells in vitro in the presence of growth factors. Macrophage colony-stimulating factor (M-CSF) is a lineage-specific growth factor that is responsible for the proliferation and differentiation...... of committed myeloid progenitors into cells of the macrophage/monocyte lineage. Mice lacking functional M-CSF are deficient in macrophages and osteoclasts and suffer from osteopetrosis. In this protocol, bone marrow cells are grown in culture dishes in the presence of M-CSF, which is secreted by L929 cells...... and is used in the form of L929-conditioned medium. Under these conditions, the bone marrow monocyte/macrophage progenitors will proliferate and differentiate into a homogenous population of mature BMMs. The efficiency of the differentiation is assessed using fluorescence-activated cell sorting (FACS...

  11. Macrophage Inflammatory Protein-1alpha mediates Matrix Metalloproteinase-9 enhancement in human adherent monocytes fed with malarial pigment

    Institute of Scientific and Technical Information of China (English)

    Giuliana Giribaldi; Elena Valente; Amina Khadjavi; Manuela Polimeni; Mauro Prato

    2011-01-01

    Objective:To investigate the role of macrophage inflammatory protein-1alpha (MIP-1alpha) in the detrimental enhancement of matrix metalloproteinase-9 (MMP-9)expression, release and activity induced by phagocytosis of malarial pigment (haemozoin,HZ) in human monocytes. Methods: Human adherent monocytes were unfed/fed with nativeHZ for 2 h. After 24 hours, MIP-1alpha production was evaluated by ELISA in cell supernatants. Alternatively,HZ-unfed/fed monocytes were treated in presence/absence of anti-humanMIP-1alpha blocking antibodies or recombinant humanMIP-1alpha for15 h (RNA studies) or 24 h (protein studies); therefore,MMP-9mRNA expression was evaluated in cell lysates by Real TimeRT-PCR, whereas proMMP-9and activeMMP-9protein release were measured in cell supernatants by Western blotting and gelatin zymography.Results: Phagocytosis ofHZ by human monocytes increased production ofMIP-1alpha, mRNA expression ofMMP-9and protein release of proMMP-9 and activeMMP-9. All theHZ-enhancing effects onMMP-9 were abrogated by anti-humanMIP-1alpha blocking antibodies and mimicked by recombinant humanMIP-1alpha.Conclusions:The present work suggests a role for MIP-1alpha in theHZ-dependent enhancement ofMMP-9 expression, release and activity observed in human monocytes, highlighting new detrimental effects ofHZ-triggered proinflammatory response by phagocytic cells in falciparum malaria.

  12. Inflammatory cytokine regulation by LPS and lymphoid cells in human gamma-irradiated monocytes/macrophages; Regulation des cytokines de l`inflammation en presence de LPS ou de lymphocytes dans les monocytes/macrophages humains irradies

    Energy Technology Data Exchange (ETDEWEB)

    Pons, I.; Gras, G.; Dormont, D. [Centre de Recherches du Service de Sante des Armees, La Tronche, 38 - Grenoble (France)]|[Centre de Recherches du Service de Sante des Armees - Centre d`Etudes Nucleaires de Fontenay-aux-Roses, 92 (France)]|[Paris-5 Univ., 75 (France)

    1997-12-31

    We have investigated the inflammatory cytokine regulation after ionizing radiation of monocytes/macrophages. We have not evidenced any significant induction of tumour necrosis factor-{alpha}(TNF{alpha}) after irradiation alone. For one donor only out of eight, interleukin-1{beta}(IL-l{beta}) gene expression was affected by {gamma}-irradiation, with a 2-3-fold increase in level, while for two other donors, interleukin-6 (IL-6) mRNA expression was 5-14 fold increased. For one of the eight donors tested, monocytes/macrophages responded to 10 Gy {gamma}-rays by releasing inflammatory cytokines. In the presence of LPS, a significant increase of IL-1{beta} mRNA expression was detected in 10 Gy {gamma}-irradiated cells treated with 1 {mu}g/ml LPS. In most cases, combination of LPS treatment and 10 Gy irradiation down-regulated cytokine secretion except for a TNF{alpha} induction at 6 h post-irradiation. In the presence of lymphoid cells, IL-6 mRNA level was increased in irradiated cells at 24 h. Increases of IL-1{beta} and IL-6 releases were detected at 24 h post-irradiation too. (authors)

  13. Exenatide (a GLP-1 agonist) improves the antioxidative potential of in vitro cultured human monocytes/macrophages.

    Science.gov (United States)

    Bułdak, Łukasz; Łabuzek, Krzysztof; Bułdak, Rafał Jakub; Machnik, Grzegorz; Bołdys, Aleksandra; Okopień, Bogusław

    2015-09-01

    Macrophages are dominant cells in the pathogenesis of atherosclerosis. They are also a major source of reactive oxygen species (ROS). Oxidative stress, which is particularly high in subjects with diabetes, is responsible for accelerated atherosclerosis. Novel antidiabetic drugs (e.g., glucagon-like peptide-1 (GLP-1) agonists) were shown to reduce ROS level. Therefore, we conceived a study to evaluate the influence of exenatide, a GLP-1 agonist, on redox status in human monocytes/macrophages cultured in vitro, which may explain the beneficial effects of incretin-based antidiabetic treatment. Human macrophages obtained from 10 healthy volunteers were in vitro subjected to the treatment with GLP-1 agonist (exenatide) in the presence of lipopolysaccharide (LPS), antagonist of GLP-1 receptors (exendin 9-39), or protein kinase A inhibitor (H89). Afterwards, reactive oxygen species, malondialdehyde level, NADPH oxidase, and antioxidative enzymes [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase] expression was evaluated. Finally, we estimated the activity of the abovementioned enzymes in the presence of H89. According to our findings, exenatide reduced ROS and malondialdyhyde (MDA) level by decreasing the expression of ROS-generating NADPH oxidase and by increasing the expression and activities of SOD and GSH-Px. We also showed that this effect was significantly inhibited by exendin 9-39 (a GLP-1 antagonist) and blocked by H89. Exenatide improved the antioxidative potential and reduced oxidative stress in cultured human monocytes/macrophages, and this finding may be responsible for the pleiotropic effects of incretin-based therapies. This effect relied on the stimulation of GLP-1 receptor.

  14. Cholesterol enrichment of human monocyte/macrophages induces surface exposure of phosphatidylserine and the release of biologically-active tissue factor-positive microvesicles.

    Science.gov (United States)

    Liu, Ming-Lin; Reilly, Michael P; Casasanto, Peter; McKenzie, Steven E; Williams, Kevin Jon

    2007-02-01

    Biologically significant amounts of two procoagulant molecules, phosphatidylserine (PS) and tissue factor (TF), are transported by monocyte/macrophage-derived microvesicles (MVs). Because cellular cholesterol accumulation is an important feature of atherosclerotic vascular disease, we now examined effects of cholesterol enrichment on MV release from human monocytes and macrophages. Cholesterol enrichment of human THP-1 monocytes, alone or in combination with lipopolysaccharide (LPS), tripled their total MV generation, as quantified by flow cytometry based on particle size and PS exposure. The subset of these MVs that were also TF-positive was likewise increased by cellular cholesterol enrichment, and these TF-positive MVs exhibited a striking 10-fold increase in procoagulant activity. Moreover, cholesterol enrichment of primary human monocyte-derived macrophages also increased their total as well as TF-positive MV release, and these TF-positive MVs exhibited a similar 10-fold increase in procoagulant activity. To explore the mechanisms of enhanced MV release, we found that cholesterol enrichment of monocytes caused PS exposure on the cell surface by as early as 2 hours and genomic DNA fragmentation in a minority of cells by 20 hours. Addition of a caspase inhibitor at the beginning of these incubations blunted both cholesterol-induced apoptosis and MV release. Cholesterol enrichment of human monocyte/macrophages induces the generation of highly biologically active, PS-positive MVs, at least in part through induction of apoptosis. Cholesterol-induced monocyte/macrophage MVs, both TF-positive and TF-negative, may be novel contributors to atherothrombosis.

  15. Characterization of HIV-1 Infection and Innate Sensing in Different Types of Primary Human Monocyte-Derived Macrophages

    Directory of Open Access Journals (Sweden)

    Elisabeth A. Diget

    2013-01-01

    Full Text Available Macrophages play an important role in human immunodeficiency virus (HIV pathogenesis and contribute to establishment of a viral reservoir responsible for continuous virus production and virus transmission to T cells. In this study, we investigated the differences between various monocyte-derived macrophages (MDMs generated through different differentiation protocols and evaluated different cellular, immunological, and virological properties. We found that elevated and persistent HIV-1 pWT/BaL replication could be obtained only in MDMs grown in RPMI containing macrophage colony-stimulating factor (M-CSF. Interestingly, this MDM type was also most responsive to toll-like receptor stimulation. By contrast, all MDM types were activated to a comparable extent by intracellular DNA, and the macrophage serum-free medium-(Mac-SFM-differentiated MDMs responded strongly to membrane fusion through expression of CXCL10. Finally, we found that HIV infection of RPMI/M-CSF-differentiated MDMs induced low-grade expression of two interferon-stimulated genes in some donors. In conclusion, our study demonstrates that the differentiation protocol used greatly influences the ability of MDMs to activate innate immune reactions and support HIV-1 replication. Paradoxically, the data show that the MDMs with the strongest innate immune response were also the most permissive for HIV-1 replication.

  16. HIV-1 regulation of latency in the monocyte-macrophage lineage and in CD4+ T lymphocytes.

    Science.gov (United States)

    Redel, Laetitia; Le Douce, Valentin; Cherrier, Thomas; Marban, Céline; Janossy, Andrea; Aunis, Dominique; Van Lint, Carine; Rohr, Olivier; Schwartz, Christian

    2010-04-01

    The introduction in 1996 of the HAART raised hopes for the eradication of HIV-1. Unfortunately, the discovery of latent HIV-1 reservoirs in CD4+ T cells and in the monocyte-macrophage lineage proved the optimism to be premature. The long-lived HIV-1 reservoirs constitute a major obstacle to the eradication of HIV-1. In this review, we focus on the establishment and maintenance of HIV-1 latency in the two major targets for HIV-1: the CD4+ T cells and the monocyte-macrophage lineage. Understanding the cell-type molecular mechanisms of establishment, maintenance, and reactivation of HIV-1 latency in these reservoirs is crucial for efficient therapeutic intervention. A complete viral eradication, the holy graal for clinicians, might be achieved by strategic interventions targeting latently and productively infected cells. We suggest that new approaches, such as the combination of different kinds of proviral activators, may help to reduce dramatically the size of latent HIV-1 reservoirs in patients on HAART.

  17. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines.

    Science.gov (United States)

    Yan, Yan; Gause, Katelyn T; Kamphuis, Marloes M J; Ang, Ching-Seng; O'Brien-Simpson, Neil M; Lenzo, Jason C; Reynolds, Eric C; Nice, Edouard C; Caruso, Frank

    2013-12-23

    Many biomolecules, mainly proteins, adsorb onto polymer particles to form a dynamic protein corona in biological environments. The protein corona can significantly influence particle-cell interactions, including internalization and pathway activation. In this work, we demonstrate the differential roles of a given protein corona formed in cell culture media in particle uptake by monocytes and macrophages. By exposing disulfide-stabilized poly(methacrylic acid) nanoporous polymer particles (PMASH NPPs) to complete cell growth media containing 10% fetal bovine serum, a protein corona, with the most abundant component being bovine serum albumin, was characterized. Upon adsorption onto the PMASH NPPs, native bovine serum albumin (BSA) was found to undergo conformational changes. The denatured BSA led to a significant decrease in internalization efficiency in human monocytic cells, THP-1, compared with the bare particles, due to reduced cell membrane adhesion. In contrast, the unfolded BSA on the NPPs triggered class A scavenger receptor-mediated phagocytosis in differentiated macrophage-like cells (dTHP-1) without a significant impact on the overall internalization efficiency. Taken together, this work demonstrates the disparate effects of a given protein corona on particle-cell interactions, highlighting the correlation between protein corona conformation in situ and relevant biological characteristics for biological functionalities.

  18. Modulation of neutrophil and monocyte function by recombinant human granulocyte macrophage colony-stimulating factor in patients with lymphoma.

    Science.gov (United States)

    Kharazmi, A; Nielsen, H; Hovgaard, D; Borregaard, N; Nissen, N I

    1991-04-01

    Granulocyte macrophage colony-stimulating factor (GM-CSF) has been shown to inhibit the chemotaxis and enhance the oxidative burst response of human neutrophils in vitro. The present study describes the effect of recombinant GM-CSF on the neutrophil and monocyte function in patients with lymphoma undergoing GM-CSF treatment. Patients with either Hodgkin's or non-Hodgkin's lymphoma were treated with various dosages (2-16 micrograms kg-1 body weight per day for 5 days) of rhGM-CSF by intravenous or subcutaneous route. Prior to and on day 5 of rhGM-CSF treatment, neutrophil and monocyte chemotaxis and chemiluminescence responses to f-Met-Leu-Phe, zymosan activated serum (ZAS) and opsonized zymosan (OZ) were determined. It was observed that chemotactic response of neutrophils to f-Met-Leu-Phe and ZAS was reduced, whereas the chemiluminescence response of both cell types to f-Met-Leu-Phe and zymosan was enhanced by up to 43-fold. rhGM-CSF treatment did not affect degranulation of the neutrophils as measured by release of vitamin B12 binding protein. Degree of modulation of neutrophil and monocyte function by rhGM-CSF was independent of rhGM-CSF dosages administered. These data suggest that phagocytic defence system may be enhanced by GM-CSF treatment and that this cytokine may be a useful therapeutic adjunct in compromised patients.

  19. TISSUE FACTOR EXPRESSION BY MYELOID CELLS CONTRIBUTES TO PROTECTIVE IMMUNE RESPONSE AGAINST Mycobacterium tuberculosis INFECTION

    Science.gov (United States)

    Venkatasubramanian, Sambasivan; Tripathi, Deepak; Tucker, Torry; Paidipally, Padmaja; Cheekatla, Satyanarayana; Welch, Elwyn; Raghunath, Anjana; Jeffers, Ann; Tvinnereim, Amy R.; Schechter, Melissa E; Andrade, Bruno B; Mackman, Nizel; Idell, Steven; Vankayalapati, Ramakrishna

    2015-01-01

    Tissue Factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate immune response to infections. In the current study, we determined the role of TF expressed by myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF gene in myeloid cells (TFΔ) and human monocyte derived macrophages (MDMs). We found that during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our results demonstrate that a deficiency of TF in myeloid cells promotes M2 like phenotype in M .tb infected macrophages. A deficiency in TF expression by myeloid cells was also associated with reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells has newly recognized abilities to polarize macrophages and to regulate M. tb growth. PMID:26471500

  20. DMPD: The oxidation of lipoproteins by monocytes-macrophages. Biochemical andbiological mechanisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available logical mechanisms. Chisolm GM 3rd, Hazen SL, Fox PL, Cathcart MK. J Biol Chem. 1999 Sep 10;274(37):25959-62...onocytes-macrophages. Biochemical andbiological mechanisms. Authors Chisolm GM 3rd, Hazen SL, Fox PL, Cathcart

  1. Macrophage colony-stimulating factor (CSF1) controls monocyte production and maturation and the steady-state size of the liver in pigs.

    Science.gov (United States)

    Sauter, Kristin A; Waddell, Lindsey A; Lisowski, Zofia M; Young, Rachel; Lefevre, Lucas; Davis, Gemma M; Clohisey, Sara M; McCulloch, Mary; Magowan, Elizabeth; Mabbott, Neil A; Summers, Kim M; Hume, David A

    2016-09-01

    Macrophage colony-stimulating factor (CSF1) is an essential growth and differentiation factor for cells of the macrophage lineage. To explore the role of CSF1 in steady-state control of monocyte production and differentiation and tissue repair, we previously developed a bioactive protein with a longer half-life in circulation by fusing pig CSF1 with the Fc region of pig IgG1a. CSF1-Fc administration to pigs expanded progenitor pools in the marrow and selectively increased monocyte numbers and their expression of the maturation marker CD163. There was a rapid increase in the size of the liver, and extensive proliferation of hepatocytes associated with increased macrophage infiltration. Despite the large influx of macrophages, there was no evidence of liver injury and no increase in circulating liver enzymes. Microarray expression profiling of livers identified increased expression of macrophage markers, i.e., cytokines such as TNF, IL1, and IL6 known to influence hepatocyte proliferation, alongside cell cycle genes. The analysis also revealed selective enrichment of genes associated with portal, as opposed to centrilobular regions, as seen in hepatic regeneration. Combined with earlier data from the mouse, this study supports the existence of a CSF1-dependent feedback loop, linking macrophages of the liver with bone marrow and blood monocytes, to mediate homeostatic control of the size of the liver. The results also provide evidence of safety and efficacy for possible clinical applications of CSF1-Fc.

  2. A novel hybrid aspirin-NO-releasing compound inhibits TNFalpha release from LPS-activated human monocytes and macrophages

    Directory of Open Access Journals (Sweden)

    Fox Sarah

    2008-07-01

    Full Text Available Abstract Background The cytoprotective nature of nitric oxide (NO led to development of NO-aspirins in the hope of overcoming the gastric side-effects of aspirin. However, the NO moiety gives these hybrids potential for actions further to their aspirin-mediated anti-platelet and anti-inflammatory effects. Having previously shown that novel NO-aspirin hybrids containing a furoxan NO-releasing group have potent anti-platelet effects, here we investigate their anti-inflammatory properties. Here we examine their effects upon TNFα release from lipopolysaccharide (LPS-stimulated human monocytes and monocyte-derived macrophages and investigate a potential mechanism of action through effects on LPS-stimulated nuclear factor-kappa B (NF-κB activation. Methods Peripheral venous blood was drawn from the antecubital fossa of human volunteers. Mononuclear cells were isolated and cultured. The resultant differentiated macrophages were treated with pharmacologically relevant concentrations of either a furoxan-aspirin (B8, B7; 10 μM, their respective furazan NO-free counterparts (B16, B15; 10 μM, aspirin (10 μM, existing nitroaspirin (NCX4016; 10 μM, an NO donor (DEA/NO; 10 μM or dexamethasone (1 μM, in the presence and absence of LPS (10 ng/ml; 4 h. Parallel experiments were conducted on undifferentiated fresh monocytes. Supernatants were assessed by specific ELISA for TNFα release and by lactate dehydrogenase (LDH assay for cell necrosis. To assess NF-κB activation, the effects of the compounds on the loss of cytoplasmic inhibitor of NF-κB, IκBα (assessed by western blotting and nuclear localisation (assessed by immunofluorescence of the p65 subunit of NF-κB were determined. Results B8 significantly reduced TNFα release from LPS-treated macrophages to 36 ± 10% of the LPS control. B8 and B16 significantly inhibited monocyte TNFα release to 28 ± 5, and 49 ± 9% of control, respectively. The B8 effect was equivalent in magnitude to that of

  3. Suppression of cell division-associated genes by Helicobacter pylori attenuates proliferation of RAW264.7 monocytic macrophage cells.

    Science.gov (United States)

    Tan, Grace Min Yi; Looi, Chung Yeng; Fernandez, Keith Conrad; Vadivelu, Jamuna; Loke, Mun Fai; Wong, Won Fen

    2015-06-16

    Helicobacter pylori at multiplicity of infection (MOI ≥ 50) have been shown to cause apoptosis in RAW264.7 monocytic macrophage cells. Because chronic gastric infection by H. pylori results in the persistence of macrophages in the host's gut, it is likely that H. pylori is present at low to moderate, rather than high numbers in the infected host. At present, the effect of low-MOI H. pylori infection on macrophage has not been fully elucidated. In this study, we investigated the genome-wide transcriptional regulation of H. pylori-infected RAW264.7 cells at MOI 1, 5 and 10 in the absence of cellular apoptosis. Microarray data revealed up- and down-regulation of 1341 and 1591 genes, respectively. The expression of genes encoding for DNA replication and cell cycle-associated molecules, including Aurora-B kinase (AurkB) were down-regulated. Immunoblot analysis verified the decreased expression of AurkB and downstream phosphorylation of Cdk1 caused by H. pylori infection. Consistently, we observed that H. pylori infection inhibited cell proliferation and progression through the G1/S and G2/M checkpoints. In summary, we suggest that H. pylori disrupts expression of cell cycle-associated genes, thereby impeding proliferation of RAW264.7 cells, and such disruption may be an immunoevasive strategy utilized by H. pylori.

  4. Recombinant glycoprotein 63 (Gp63) of Trypanosoma carassii suppresses antimicrobial responses of goldfish (Carassius auratus L.) monocytes and macrophages.

    Science.gov (United States)

    Oladiran, Ayoola; Belosevic, Miodrag

    2012-06-01

    We previously reported that proteins secreted by Trypanosoma carassii play a role in evasion of fish host immune responses. To further understand how these parasites survive in the host, we cloned and expressed T. carassii glycoprotein 63 (Tcagp63), and generated a rabbit polyclonal antibody to the recombinant protein (rTcagp63). Tcagp63 was similar to gp63 of other trypanosomes and grouped with Trypanosoma cruzi and Trypanosoma brucei gp63 in phylogenetic analysis. We showed that rTcagp63 down-regulated Aeromonas salmonicida and recombinant goldfish TNFα2-induced production of reactive oxygen and nitrogen intermediates. Macrophages treated with rTcagp63 also exhibited significant reduction in the expression of inducible nitric oxide synthase (iNOS)-A, TNFα-1 and TNFα-2. Recombinant Tcagp63 bound to and was internalised by goldfish macrophages. The Tcagp63 may act by altering the signalling events important in downstream monocyte/macrophage antimicrobial and other cytokine-induced functions. We believe that this is the first report on downregulation of antimicrobial responses by trypanosome gp63.

  5. Macrophage Polarization in Health and Disease

    Directory of Open Access Journals (Sweden)

    Luca Cassetta

    2011-01-01

    Full Text Available Macrophages are terminally differentiated cells of the mononuclear phagocyte system that also encompasses dendritic cells, circulating blood monocytes, and committed myeloid progenitor cells in the bone marrow. Both macrophages and their monocytic precursors can change their functional state in response to microenvironmental cues exhibiting a marked heterogeneity. However, there are still uncertainties regarding distinct expression patterns of surface markers that clearly define macrophage subsets, particularly in the case of human macrophages. In addition to their tissue distribution, macrophages can be functionally polarized into M1 (proinflammatory and M2 (alternatively activated as well as regulatory cells in response to both exogenous infections and solid tumors as well as by systems biology approaches.

  6. Myeloid-specific Rictor deletion induces M1 macrophage polarization and potentiates in vivo pro-inflammatory response to lipopolysaccharide.

    Directory of Open Access Journals (Sweden)

    William T Festuccia

    Full Text Available The phosphoinositide-3-kinase (PI3K/protein kinase B (Akt axis plays a central role in attenuating inflammation upon macrophage stimulation with toll-like receptor (TLR ligands. The mechanistic target of rapamycin complex 2 (mTORC2 relays signal from PI3K to Akt but its role in modulating inflammation in vivo has never been investigated. To evaluate the role of mTORC2 in the regulation of inflammation in vivo, we have generated a mouse model lacking Rictor, an essential mTORC2 component, in myeloid cells. Primary macrophages isolated from myeloid-specific Rictor null mice exhibited an exaggerated response to TLRs ligands, and expressed high levels of M1 genes and lower levels of M2 markers. To determine whether the loss of Rictor similarly affected inflammation in vivo, mice were either fed a high fat diet, a situation promoting chronic but low-grade inflammation, or were injected with lipopolysaccharide (LPS, which mimics an acute, severe septic inflammatory condition. Although high fat feeding contributed to promote obesity, inflammation, macrophage infiltration in adipose tissue and systemic insulin resistance, we did not observe a significant impact of Rictor loss on these parameters. However, mice lacking Rictor exhibited a higher sensitivity to septic shock when injected with LPS. Altogether, these results indicate that mTORC2 is a key negative regulator of macrophages TLR signalling and that its role in modulating inflammation is particularly important in the context of severe inflammatory challenges. These observations suggest that approaches aimed at modulating mTORC2 activity may represent a possible therapeutic approach for diseases linked to excessive inflammation.

  7. Bole of macrophage colony-stimulating factor in the differentiation and expansion of monocytes and dendritic cells from CD34(+) progenitor cells

    NARCIS (Netherlands)

    Kamps, AWA; Smit, JW; Vellenga, E

    1999-01-01

    The present study focused on whether it is possible to expand monocytic cells from CD34(+) progenitor cells by using macrophage colony-stimulating factor (M-CSF) in the absence and presence of mast cell growth factor (MGF) and IL-6. It was demonstrated that CD34(+) cells differentiate without expans

  8. Analysis of the bovine monocyte-derived macrophage response to Mycobacterium avium subspecies paratuberculosis infection using RNA-seq

    Directory of Open Access Journals (Sweden)

    Maura E Casey

    2015-02-01

    Full Text Available Johne’s disease, caused by infection with Mycobacterium avium subsp. paratuberculosis, (MAP, is a chronic intestinal disease of ruminants with serious economic consequences for cattle production in the United States and elsewhere. During infection, MAP bacilli are phagocytosed and subvert host macrophage processes, resulting in subclinical infections that can lead to immunopathology and dissemination of disease. Analysis of the host macrophage transcriptome during infection can therefore shed light on the molecular mechanisms and host-pathogen interplay associated with Johne’s disease. Here we describe results of an in vitro study of the bovine monocyte-derived macrophage (MDM transcriptome response during MAP infection using RNA-seq. MDM were obtained from seven age- and sex-matched Holstein-Friesian cattle and were infected with MAP across a six-hour infection time course with non-infected controls. We observed 245 and 574 differentially expressed genes in MAP-infected versus non-infected control samples (adjusted P value ≤ 0.05 at 2 and 6 hours post-infection, respectively. Functional analyses of these differentially expressed genes, including biological pathway enrichment, highlighted potential functional roles for genes that have not been previously described in the host response to infection with MAP bacilli. In addition, differential expression of pro- and anti-inflammatory cytokine genes, such as those associated with the IL-10 signaling pathway, and other immune-related genes that encode proteins involved in the bovine macrophage response to MAP infection emphasize the balance between protective host immunity and bacilli survival and proliferation. Systematic comparisons of RNA-seq gene expression results with Affymetrix® microarray data generated from the same experimental samples also demonstrated that RNA-seq represents a superior technology for studying host transcriptional responses to intracellular infection.

  9. The MAPK ERK5, but not ERK1/2, inhibits the progression of monocytic phenotype to the functioning macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuening [Department of Pathology and Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, NJ 07103 (United States); Pesakhov, Stella [Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva (Israel); Harrison, Jonathan S [Department of Medicine, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ 08903 (United States); Kafka, Michael; Danilenko, Michael [Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva (Israel); Studzinski, George P, E-mail: studzins@njms.rutgers.edu [Department of Pathology and Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, NJ 07103 (United States)

    2015-01-01

    Intracellular signaling pathways present targets for pharmacological agents with potential for treatment of neoplastic diseases, with some disease remissions already recorded. However, cellular compensatory mechanisms usually negate the initial success. For instance, attempts to interrupt aberrant signaling downstream of the frequently mutated ras by inhibiting ERK1/2 has shown only limited usefulness for cancer therapy. Here, we examined how ERK5, that overlaps the functions of ERK1/2 in cell proliferation and survival, functions in a manner distinct from ERK1/2 in human AML cells induced to differentiate by 1,25D-dihydroxyvitamin D{sub 3} (1,25D). Using inhibitors of ERK1/2 and of MEK5/ERK5 at concentrations specific for each kinase in HL60 and U937 cells, we observed that selective inhibition of the kinase activity of ERK5, but not of ERK1/2, in the presence of 1,25D resulted in macrophage-like cell morphology and enhancement of phagocytic activity. Importantly, this was associated with increased expression of the macrophage colony stimulating factor receptor (M-CSFR), but was not seen when M-CSFR expression was knocked down. Interestingly, inhibition of ERK1/2 led to activation of ERK5 in these cells. Our results support the hypothesis that ERK5 negatively regulates the expression of M-CSFR, and thus has a restraining function on macrophage differentiation. The addition of pharmacological inhibitors of ERK5 may influence trials of differentiation therapy of AML. - Highlights: • ERK5 has at least some functions in AML cells which are distinct from those of ERK1/2. • ERK5 activity negatively controls the expression of M-CSFR. • ERK5 retards the progression of differentiation from monocyte to functional macrophage.

  10. Induced differentiation of human myeloid leukemia cells into M2 macrophages by combined treatment with retinoic acid and 1α,25-dihydroxyvitamin D3.

    Directory of Open Access Journals (Sweden)

    Hiromichi Takahashi

    Full Text Available Retinoids and 1α,25-dihydroxyvitamin D3 (1,25(OH2D3 induce differentiation of myeloid leukemia cells into granulocyte and macrophage lineages, respectively. All-trans retinoic acid (ATRA, which is effective in the treatment of acute promyelocytic leukemia, can induce differentiation of other types of myeloid leukemia cells, and combined treatment with retinoid and 1,25(OH2D3 effectively enhances the differentiation of leukemia cells into macrophage-like cells. Recent work has classified macrophages into M1 and M2 types. In this study, we investigated the effect of combined treatment with retinoid and 1,25(OH2D3 on differentiation of myeloid leukemia THP-1 and HL60 cells. 9-cis Retinoic acid (9cRA plus 1,25(OH2D3 inhibited proliferation of THP-1 and HL60 cells and increased myeloid differentiation markers including nitroblue tetrazolium reducing activity and expression of CD14 and CD11b. ATRA and the synthetic retinoic acid receptor agonist Am80 exhibited similar effects in combination with 1,25(OH2D3 but less effectively than 9cRA, while the retinoid X receptor agonist HX630 was not effective. 9cRA plus 1,25(OH2D3 effectively increased expression of M2 macrophage marker genes, such as CD163, ARG1 and IL10, increased surface CD163 expression, and induced interleukin-10 secretion in myeloid leukemia cells, while 9cRA alone had weaker effects on these phenotypes and 1,25(OH2D3 was not effective. Taken together, our results demonstrate selective induction of M2 macrophage markers in human myeloid leukemia cells by combined treatment with 9cRA and 1,25(OH2D3.

  11. Role of CC chemokines (macrophage inflammatory protein-1 beta, monocyte chemoattractant protein-1, RANTES) in acute lung injury in rats

    DEFF Research Database (Denmark)

    Bless, N M; Huber-Lang, M; Guo, R F

    2000-01-01

    were cloned, the proteins were expressed, and neutralizing Abs were developed. mRNA and protein expression for MIP-1 beta and MCP-1 were up-regulated during the inflammatory response, while mRNA and protein expression for RANTES were constitutive and unchanged during the inflammatory response...... that in chemokine-dependent inflammatory responses in lung CC chemokines do not necessarily demonstrate redundant function.......The role of the CC chemokines, macrophage inflammatory protein-1 beta (MIP-1 beta), monocyte chemotactic peptide-1 (MCP-1), and RANTES, in acute lung inflammatory injury induced by intrapulmonary deposition of IgG immune complexes injury in rats was determined. Rat MIP-1 beta, MCP-1, and RANTES...

  12. HIV-1 inhibits phagocytosis and inflammatory cytokine responses of human monocyte-derived macrophages to P. falciparum infected erythrocytes.

    Directory of Open Access Journals (Sweden)

    Louise E Ludlow

    Full Text Available HIV-1 infection increases the risk and severity of malaria by poorly defined mechanisms. We investigated the effect of HIV-1(Ba-L infection of monocyte-derived macrophages (MDM on phagocytosis of opsonised P. falciparum infected erythrocytes (IE and subsequent proinflammatory cytokine secretion. Compared to mock-infected MDM, HIV-1 infection significantly inhibited phagocytosis of IE (median (IQR (10 (0-28 versus (34 (27-108; IE internalised/100 MDM; p = 0.001 and decreased secretion of IL-6 (1,116 (352-3,387 versus 1,552 (889-6,331; pg/mL; p = 0.0078 and IL-1β (16 (7-21 versus 33 (27-65; pg/mL; p = 0.0078. Thus inadequate phagocytosis and cytokine production may contribute to impaired control of malaria in HIV-1 infected individuals.

  13. Pathogenic bacteria and TNF do not induce production of macrophage migration inhibitory factor (MIF) by human monocytes.

    Science.gov (United States)

    Temple, Suzanna E L; Cheong, Karey Y; Price, Patricia; Waterer, Grant W

    2009-06-01

    Elevated serum macrophage migration inhibitory factor (MIF) is associated with severe sepsis, but it is not clear whether bacteria stimulate synthesis of MIF by blood leukocytes directly or via induction of TNF. Here we assess production of MIF mRNA and protein by blood leukocytes from healthy human subjects (n=28) following exposure to bacteria commonly associated with sepsis (Escherichia coli and Streptococcus pneumoniae). Bacteria did not increase levels of MIF mRNA or secreted protein. CD14(+) monocytes were the main cell type producing MIF before and after stimulation. Exposure of leukocytes to TNF did not induce MIF. Hence elevated levels of serum MIF observed in sepsis may not reflect MIF produced by blood leukocytes stimulated directly by bacteria or TNF.

  14. Unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not promote human monocyte differentiation toward alternative macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Bouhlel, Mohamed Amine [Univ Lille Nord de France, F-59000 Lille (France); Inserm U545, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Brozek, John [Genfit, Loos (France); Derudas, Bruno [Univ Lille Nord de France, F-59000 Lille (France); Inserm U545, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Zawadzki, Christophe; Jude, Brigitte [Inserm ERI-9 and Equipe d' Accueil 2693, IFR114, Universite de Lille, Lille (France); Staels, Bart, E-mail: bart.staels@pasteur-lille.fr [Univ Lille Nord de France, F-59000 Lille (France); Inserm U545, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Chinetti-Gbaguidi, Giulia [Univ Lille Nord de France, F-59000 Lille (France); Inserm U545, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France)

    2009-08-28

    Macrophages adapt their response to micro-environmental signals. While Th1 cytokines promote pro-inflammatory M1 macrophages, Th2 cytokines promote an 'alternative' anti-inflammatory M2 macrophage phenotype. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors expressed in macrophages where they control the inflammatory response. It has been shown that PPAR{gamma} promotes the differentiation of monocytes into anti-inflammatory M2 macrophages in humans and mice, while a role for PPAR{beta}/{delta} in this process has been reported only in mice and no data are available for PPAR{alpha}. Here, we show that in contrast to PPAR{gamma}, expression of PPAR{alpha} and PPAR{beta}/{delta} overall does not correlate with the expression of M2 markers in human atherosclerotic lesions, whereas a positive correlation with genes of lipid metabolism exists. Moreover, unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not influence human monocyte differentiation into M2 macrophages in vitro. Thus, PPAR{alpha} and PPAR{beta}/{delta} do not appear to modulate the alternative differentiation of human macrophages.

  15. Vascular endothelial growth factor (VEGF), produced by feline infectious peritonitis (FIP) virus-infected monocytes and macrophages, induces vascular permeability and effusion in cats with FIP.

    Science.gov (United States)

    Takano, Tomomi; Ohyama, Taku; Kokumoto, Aiko; Satoh, Ryoichi; Hohdatsu, Tsutomu

    2011-06-01

    Feline infectious peritonitis virus (FIPV) causes a fatal disease called FIP in Felidae. The effusion in body cavity is commonly associated with FIP. However, the exact mechanism of accumulation of effusion remains unclear. We investigated vascular endothelial growth factor (VEGF) to examine the relationship between VEGF levels and the amounts of effusion in cats with FIP. Furthermore, we examined VEGF production in FIPV-infected monocytes/macrophages, and we used feline vascular endothelial cells to examine vascular permeability induced by the culture supernatant of FIPV-infected macrophages. In cats with FIP, the production of effusion was related with increasing plasma VEGF levels. In FIPV-infected monocytes/macrophages, the production of VEGF was associated with proliferation of virus. Furthermore, the culture supernatant of FIPV-infected macrophages induced hyperpermeability of feline vascular endothelial cells. It was suggested that vascular permeability factors, including VEGF, produced by FIPV-infected monocytes/macrophages might increase the vascular permeability and the amounts of effusion in cats with FIP.

  16. Support of HUVEC proliferation by pro-angiogenic intermediate CD163+ monocytes/macrophages: a co-culture experiment.

    Science.gov (United States)

    Mayer, A; Hiebl, B; Lendlein, A; Jung, F

    2011-01-01

    So called intermediate (MO2) monocytes/macrophages possess anti-inflammatory properties and express the MO lineage marker CD163. On a hydrophilic, acrylamide-based hydrogel human intermediate (CD14++ CD16+) CD163++ monocytes/macrophages (aMO2) which were angiogenically stimulated, maintained a pro-angiogenic and non-inflammatory status for at least 14 days. Here we explored, whether this aMO2 subset can positively influence the proliferation of human umbilical venous endothelial cells (HUVECs) without switching back into a pro-inflammatory (MO1) phenotype. aMO2 or HUVEC were seeded alone on glass cover slips (0.5 × 10(5) cells / 1.33 cm(2)) in a HUVEC specific cell culture medium (EGM-2) for 3 hrs, 24 hrs and 72 hrs or under co-culture conditions (0.5 × 10(5) HUVEC + 0.25 × 10(5) aMO2 / 1.33 cm(2)) in EGM-2 for the same time window as well (n = 6 each). Under co-culture conditions the numbers of adherent HUVEC per unit area were significantly higher (p HUVEC/mm(2)) compared to control mono-cultures (473 ± 76 HUVEC/mm(2)) after 72 hrs of cultivation and showed their typically spread morphology. The aMO2 remained in their subset status and secreted VEGF-A165 without release of pro-inflammatory cytokines until the end of the 72 hrs cultivation time period, thereby supporting the HUVEC proliferation. These in vitro results might indicate that this MO subset can be used as cellular delivery system for pro-angiogenic and non-inflammatory mediators to support the endothelialisation of biomaterials like e.g. cPnBA.

  17. Cytometric analysis of surface molecules of leucocytes and phagocytic activity of granulocytes and monocytes/macrophages in cows with pyometra.

    Science.gov (United States)

    Brodzki, P; Kostro, K; Brodzki, A; Niemczuk, K; Lisiecka, U

    2014-10-01

    Pyometra is a serious problem in dairy cow herds, causing large economic losses due to infertility. The development of pyometra depends mainly on the immunological status of the cow. The aim of the study was a comparative evaluation of selected indicators involving non-specific and specific immunity in cows with pyometra and in cows without inflammation of the uterus. The study was performed in 20 cows, which were divided into two groups: pyometra group and healthy group, each comprising 10 cows, based on the results of cytological and ultrasonographic tests. A flow cytometric analysis was performed for the surface molecules CD4, CD8, CD14, CD21, CD25 and CD4(+) CD25(+) on leucocytes, and the phagocytic activity was determined from granulocytes and monocytes/macrophages in the peripheral blood and uterine washings, respectively. It was demonstrated that the percentage of phagocytic granulocytes and monocytes/macrophages in both the peripheral blood and uterine washings was significantly lower in cows with pyometra compared with the healthy group (p < 0.001). Significantly (p ≤ 0.001) lower percentage of CD4(+) , CD14(+) , CD25(+) and CD4(+) CD25(+) phenotype leucocytes was also observed in the peripheral blood of cows from the pyometra group, along with a significantly higher (p < 0.001) percentage of CD8(+) and CD21(+) lymphocytes as compared to the healthy group. The results of work indicate that disfunction of cell immunity coexisting with pyometra may be caused by a bacterial infection and the presence of blocking agents (IL-10), released by the increasing number of CD8(+) lymphocytes what leads to the advanced inflammation of uterus.

  18. Integrated microRNA-mRNA-analysis of human monocyte derived macrophages upon Mycobacterium avium subsp. hominissuis infection.

    Directory of Open Access Journals (Sweden)

    Jutta Sharbati

    Full Text Available BACKGROUND: Many efforts have been made to understand basal mechanisms of mycobacterial infections. Macrophages are the first line of host immune defence to encounter and eradicate mycobacteria. Pathogenic species have evolved different mechanisms to evade host response, e.g. by influencing macrophage apoptotic pathways. However, the underlying molecular regulation is not fully understood. A new layer of eukaryotic regulation of gene expression is constituted by microRNAs. Therefore, we present a comprehensive study for identification of these key regulators and their targets in the context of host macrophage response to mycobacterial infections. METHODOLOGY/PRINCIPAL FINDINGS: We performed microRNA as well as mRNA expression analysis of human monocyte derived macrophages infected with several Mycobacterium avium hominissuis strains by means of microarrays as well as quantitative reverse transcription PCR (qRT-PCR. The data revealed the ability of all strains to inhibit apoptosis by transcriptional regulation of BCL2 family members. Accordingly, at 48 h after infection macrophages infected with all M. avium strains showed significantly decreased caspase 3 and 7 activities compared to the controls. Expression of let-7e, miR-29a and miR-886-5p were increased in response to mycobacterial infection at 48 h. The integrated analysis of microRNA and mRNA expression as well as target prediction pointed out regulative networks identifying caspase 3 and 7 as potential targets of let-7e and miR-29a, respectively. Consecutive reporter assays verified the regulation of caspase 3 and 7 by these microRNAs. CONCLUSIONS/SIGNIFICANCE: We show for the first time that mycobacterial infection of human macrophages causes a specific microRNA response. We furthermore outlined a regulatory network of potential interactions between microRNAs and mRNAs. This study provides a theoretical concept for unveiling how distinct mycobacteria could manipulate host cell response

  19. Modulation of monocyte/macrophage-derived cytokine and chemokine profile by persistent Hepatitis C virus (HCV infection leads to chronic inflammation

    Directory of Open Access Journals (Sweden)

    Penelope Mavromara

    2012-02-01

    Full Text Available HCV infection presents a major public health problem, with more than 170 million people infected worldwide. Chronicity and persistence of infection constitute the hallmark of the disease. Although HCV is a hepatotropic virus, subsets of immune cells have been found to be permissive to infection and viral replication. Peripheral blood monocytes, attracted to the site of infection and differentiated into macrophages, and resident hepatic macrophages, known as Kupffer cells, are important mediators of innate immunity, through production of several chemokines and cytokines in addition to their phagocytic activity. HCV proteins have been shown to modulate the cytokine and chemokine production profile of monocytes/macrophages, as it is suggested by both in vitro and clinical studies. This modified expression profile appears crucial for the establishment of aberrant inflammation that leads to liver cirrhosis and hepatocellular carcinoma.

  20. Live cell imaging to understand monocyte, macrophage, and dendritic cell function in atherosclerosis.

    Science.gov (United States)

    McArdle, Sara; Mikulski, Zbigniew; Ley, Klaus

    2016-06-27

    Intravital imaging is an invaluable tool for understanding the function of cells in healthy and diseased tissues. It provides a window into dynamic processes that cannot be studied by other techniques. This review will cover the benefits and limitations of various techniques for labeling and imaging myeloid cells, with a special focus on imaging cells in atherosclerotic arteries. Although intravital imaging is a powerful tool for understanding cell function, it alone does not provide a complete picture of the cell. Other techniques, such as flow cytometry and transcriptomics, must be combined with intravital imaging to fully understand a cell's phenotype, lineage, and function.

  1. ALV-J strain SCAU-HN06 induces innate immune responses in chicken primary monocyte-derived macrophages.

    Science.gov (United States)

    Feng, Min; Dai, Manman; Cao, Weisheng; Tan, Yan; Li, Zhenhui; Shi, Meiqing; Zhang, Xiquan

    2017-01-01

    Avian leucosis virus subgroup J (ALV-J) can cause lifelong infection and can escape from the host immune defenses in chickens. Since macrophages act as the important defense line against invading pathogens in host innate immunity, we investigated the function and innate immune responses of chicken primary monocyte-derived macrophages (MDM) after ALV-J infection in this study. Our results indicated that ALV-J was stably maintained in MDM cells but that the viral growth rate was significantly lower than that in DF-1 cells. We also found that ALV-J infection significantly increased nitric oxide (NO) production, but had no effect on MDM phagocytic capacity. Interestingly, infection with ALV-J rapidly promoted the expression levels of Myxovirus resistance 1 (Mx) (3 h, 6 h), ISG12 (6 h), and interleukin-1β (IL-1β) (3 h, 12 h) at an early infection stage, whereas it sharply decreased the expression of Mx (24 h, 36 h), ISG12 (36 h), and made little change on IL-1β (24 h, 36 h) production at a late infection stage in MDM cells. Moreover, the protein levels of interferon-β (IFN-β) and interleukin-6 (IL-6) had sharply increased in infected MDM cells from 3 to 36 h post infection (hpi) of ALV-J. And, the protein level of interleukin-10 (IL-10) was dramatically decreased at 36 hpi in MDM cells infected with ALV-J. These results demonstrate that ALV-J can induce host innate immune responses and we hypothesize that macrophages play an important role in host innate immune attack and ALV-J immune escape.

  2. Evaluation of the cytotoxicity of organic dust components on THP1 monocytes-derived macrophages using high content analysis.

    Science.gov (United States)

    Ramery, Eve; O'Brien, Peter J

    2014-03-01

    Organic dust contains pathogen-associated molecular patterns (PAMPs) which can induce significant airway diseases following chronic exposure. Mononuclear phagocytes are key protecting cells of the respiratory tract. Several studies have investigated the effects of PAMPs and mainly endotoxins, on cytokine production. However the sublethal cytotoxicity of organic dust components on macrophages has not been tested yet. The novel technology of high content analysis (HCA) is already used to assess subclinical drug-induced toxicity. It combines the capabilities of flow cytometry, intracellular fluorescence probes, and image analysis and enables rapid multiple analyses in large numbers of samples. In this study, HCA was used to investigate the cytotoxicity of the three major PAMPs contained in organic dust, i.e., endotoxin (LPS), peptidoglycan (PGN) and β-glucans (zymosan) on THP-1 monocyte-derived macrophages. LPS was used at concentrations of 0.005, 0.01, 0.02, 0.05, 0.1, and 1 μg/mL; PGN and zymosan were used at concentrations of 1, 5, 10, 50, 100, and 500 μg/mL. Cells were exposed to PAMPs for 24 h. In addition, the oxidative burst and the phagocytic capabilities of the cells were tested. An overlap between PGN intrinsic fluorescence and red/far-red fluorescent dyes occurred, rendering the evaluation of some parameters impossible for PGN. LPS induced sublethal cytotoxicity at the lowest dose (from 50 ng/mL). However, the greatest cytotoxic changes occurred with zymosan. In addition, zymosan, but not LPS, induced phagosome maturation and oxidative burst. Given the fact that β-glucans can be up to 100-fold more concentrated in organic dust than LPS, these results suggest that β-glucans could play a major role in macrophage impairment following heavy dust exposure and will merit further investigation in the near future.

  3. Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease.

    Science.gov (United States)

    Baillie, J Kenneth; Arner, Erik; Daub, Carsten; De Hoon, Michiel; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Carninci, Piero; Forrest, Alistair R R; Hayashizaki, Yoshihide; Faulkner, Geoffrey J; Wells, Christine A; Rehli, Michael; Pavli, Paul; Summers, Kim M; Hume, David A

    2017-03-01

    The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis

  4. High resolution preparation of monocyte-derived macrophages (MDM protein fractions for clinical proteomics

    Directory of Open Access Journals (Sweden)

    Olivieri Oliviero

    2009-02-01

    Full Text Available Abstract Background Macrophages are involved in a number of key physiological processes and complex responses such as inflammatory, immunological, infectious diseases and iron homeostasis. These cells are specialised for iron storage and recycling from senescent erythrocytes so they play a central role in the fine tuning of iron balancing and distribution. The comprehension of the many physiological responses of macrophages implies the study of the related molecular events. To this regard, proteomic analysis, is one of the most powerful tools for the elucidation of the molecular mechanisms, in terms of changes in protein expression levels. Results Our aim was to optimize a protocol for protein fractionation and high resolution mapping using human macrophages for clinical studies. We exploited a fractionation protocol based on the neutral detergent Triton X-114. The 2D maps of the fractions obtained showed high resolution and a good level of purity. Western immunoblotting and mass spectrometry (MS/MS analysis indicated no fraction cross contamination. On 2D-PAGE mini gels (7 × 8 cm we could count more than five hundred protein spots, substantially increasing the resolution and the number of detectable proteins for the macrophage proteome. The fractions were also evaluated, with preliminary experiments, using Surface Enhanced Laser Desorption Ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS. Conclusion This relatively simple method allows deep investigation into macrophages proteomics producing discrete and accurate protein fractions, especially membrane-associated and integral proteins. The adapted protocol seems highly suitable for further studies of clinical proteomics, especially for the elucidation of the molecular mechanisms controlling iron homeostasis in normal and disease conditions.

  5. Cytomegalovirus immune evasion of myeloid lineage cells.

    Science.gov (United States)

    Brinkmann, Melanie M; Dağ, Franziska; Hengel, Hartmut; Messerle, Martin; Kalinke, Ulrich; Čičin-Šain, Luka

    2015-06-01

    Cytomegalovirus (CMV) evades the immune system in many different ways, allowing the virus to grow and its progeny to spread in the face of an adverse environment. Mounting evidence about the antiviral role of myeloid immune cells has prompted the research of CMV immune evasion mechanisms targeting these cells. Several cells of the myeloid lineage, such as monocytes, dendritic cells and macrophages, play a role in viral control, but are also permissive for CMV and are naturally infected by it. Therefore, CMV evasion of myeloid cells involves mechanisms that qualitatively differ from the evasion of non-CMV-permissive immune cells of the lymphoid lineage. The evasion of myeloid cells includes effects in cis, where the virus modulates the immune signaling pathways within the infected myeloid cell, and those in trans, where the virus affects somatic cells targeted by cytokines released from myeloid cells. This review presents an overview of CMV strategies to modulate and evade the antiviral activity of myeloid cells in cis and in trans.

  6. Interaction between {alpha}5{beta}1 integrin and secreted fibronectin is involved in macrophage differentiation of human HL-60 myeloid leukemia cells.

    Energy Technology Data Exchange (ETDEWEB)

    Laouar, A.; Collart, F. R.; Chubb, C. B. H.; Xie, B.; Huberman, E.; Center for Mechanistic Biology and Biotechnology; anl-cmb

    1999-01-01

    We examined the role of fibronectin (FN) and FN-binding integrins in macrophage differentiation. Increased FN and {alpha}5{beta}1 integrin gene expression was observed in phorbol 12-myristate 13-acetate PMA-treated HL-60 cells and PMA- or macrophage-CSF-treated blood monocytes before the manifestation of macrophage markers. After treatment of HL-60 cells and monocytes, newly synthesized FN was released and deposited on the dishes. An HL-60 cell variant, HL-525, which is deficient in the protein kinase C{beta} (PKC-{beta}) and resistant to PMA-induced differentiation, failed to express FN after PMA treatment. Transfecting HL-525 cells with a PKC-{beta} expression plasmid restored PMA-induced FN gene expression and macrophage differentiation. Untreated HL-525 cells (which have a high level of the {alpha}5{beta}1 integrin) incubated on FN differentiated into macrophages. The percentage of cells having a macrophage phenotype induced by PMA in HL-60 cells, by FN in HL-525 cells, or by either PMA or macrophage-CSF in monocytes was reduced in the presence of mAbs to FN and {alpha}5{beta}1 integrin. The integrin-signaling nonreceptor tyrosine kinase, p72{sup Syk}, was activated in PMA-treated HL-60 and FN-treated HL-525 cells. We suggest that macrophage differentiation involves the activation of PKC-{beta} and expression of extracellular matrix proteins such as FN and the corresponding integrins, {alpha}5{beta}1 integrin in particular. The stimulated cells, through the integrins, attach to substrates by binding to the deposited FN. This attachment, in turn, may through integrin signaling activate nonreceptor tyrosine kinases, including p72{sup Syk}, and later lead to expression of other genes involved in evoking the macrophage phenotype.

  7. Helminth-induced Ly6Chi monocyte-derived alternatively activated macrophages suppress experimental autoimmune encephalomyelitis

    OpenAIRE

    Terrazas, Cesar; de Dios Ruiz-Rosado, Juan; Stephanie A. Amici; Jablonski, Kyle A.; Martinez-Saucedo, Diana; Lindsay M Webb; Cortado, Hanna; Robledo-Avila, Frank; Oghumu, Steve; Satoskar, Abhay R.; Rodriguez-Sosa, Miriam; Terrazas, Luis I.; Guerau-de-Arellano, Mireia; Partida-Sánchez, Santiago

    2017-01-01

    Helminths cause chronic infections and affect the immune response to unrelated inflammatory diseases. Although helminths have been used therapeutically to ameliorate inflammatory conditions, their anti-inflammatory properties are poorly understood. Alternatively activated macrophages (AAMϕs) have been suggested as the anti-inflammatory effector cells during helminth infections. Here, we define the origin of AAMϕs during infection with Taenia crassiceps, and their disease-modulating activity o...

  8. Inhibition of nitric oxide enhances ovine lentivirus replication in monocyte-derived macrophages.

    Science.gov (United States)

    Keane, Kevin A; Mason, Gary L; DeMartini, James C

    2002-12-01

    Ovine lentivirus (OvLV) also known as maedi-visna virus, infects and replicates primarily in macrophages. This investigation examined the role of nitric oxide in the replication of OvLV in cultured macrophages. Peripheral blood mononuclear cells were collected from OvLV-free sheep and cultured in Teflon coated flasks at a high concentration of lamb serum. The cells were subsequently infected with OvLV strain 85/34. OvLV replication was assessed under different experimental treatments by comparison of reverse transcriptase (RT) activity in culture supernatant. Cultures that were treated with exogenous nitric oxide via S-nitroso-acetylpenicillamine did not have altered levels of RT activity compared to cultures treated with the inactive control compound, acetylpenicillamine. However, blockage of nitric oxide production by treatment with aminoguanidine, a competitive inhibitor of inducible nitric oxide synthase (iNOS), led to a significant rise in RT activity. This rise in RT activity was partially reversed in aminoguanidine treated cultures by L-arginine, the normal substrate for iNOS. Finally, the number of viral antigen producing cells was also quantified after aminoguanidine treatment and found to be significantly higher than untreated cultures. Collectively, these results indicate that nitric oxide is a negative regulator of OvLV replication in macrophages.

  9. Human monocytes and macrophages express NADPH oxidase 5; a potential source of reactive oxygen species in atherosclerosis.

    Science.gov (United States)

    Manea, Adrian; Manea, Simona-Adriana; Gan, Ana Maria; Constantin, Alina; Fenyo, Ioana Madalina; Raicu, Monica; Muresian, Horia; Simionescu, Maya

    2015-05-22

    Monocytes (Mon) and Mon-derived macrophages (Mac) orchestrate important oxidative and inflammatory reactions in atherosclerosis by secreting reactive oxygen species (ROS) due, in large part, to the upregulated NADPH oxidases (Nox). The Nox enzymes have been extensively investigated in human Mon and Mac. However, the expression and functional significance of the Nox5 subtypes is not known. We aimed at elucidating whether Nox5 is expressed in human Mon and Mac, and examine its potential role in atherosclerosis. Human monocytic THP-1 cell line and CD14(+) Mon were employed to search for Nox5 expression. RT-PCR, Western blot, lucigenin-enhanced chemiluminescence and dihydroethidium assays were utilized to examine Nox5 in these cells. We found that Nox5 transcription variants and proteins are constitutively expressed in THP-1 cells and primary CD14(+) Mon. Silencing of Nox5 protein expression by siRNA reduced the Ca(2+)-dependent Nox activity and the formation of ROS in Mac induced by A23187, a selective Ca(2+) ionophore. Exposure of Mac to increasing concentrations of IFNγ (5-100 ng/ml) or oxidized LDL (5-100 μg/ml) resulted in a dose-dependent increase in Nox5 protein expression and elevation in intracellular Ca(2+) concentration. Immunohistochemical staining revealed that Nox5 is present in CD68(+) Mac-rich area within human carotid artery atherosclerotic plaques. To the best of our knowledge, this is the first evidence that Nox5 is constitutively expressed in human Mon. Induction of Nox5 expression in IFNγ- and oxidized LDL-exposed Mac and the presence of Nox5 in Mac-rich atheroma are indicative of the implication of Nox5 in atherogenesis.

  10. Genome-wide association study identifies single nucleotide polymorphism in DYRK1A associated with replication of HIV-1 in monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Sebastiaan M Bol

    Full Text Available BACKGROUND: HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART, macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages. METHODOLOGY/PRINCIPAL FINDINGS: Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96 or high (n = 96 p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16 × 10(-5. While the association was not genome-wide significant (p<1 × 10(-7, we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034. Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84 × 10(-6. In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the kinase

  11. Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue

    Directory of Open Access Journals (Sweden)

    Jennifer L. Kaplan

    2015-11-01

    Conclusions: This study provides the first in vivo evidence, to our knowledge, that committed AdPCs in VAT are the initial source of obesity-induced MCP-1 and identifies the helix-loop-helix transcription factor Id3 as a critical regulator of p21Cip1 expression, AdPC proliferation, MCP-1 expression and M1 macrophage accumulation in VAT. Inhibition of Id3 and AdPC expansion, as well as CD44 expression in human AdPCs, may serve as unique therapeutic targets for the regulation of adipose tissue inflammation.

  12. Applications of myeloid-specific promoters in transgenic mice support in vivo imaging and functional genomics but do not support the concept of distinct macrophage and dendritic cell lineages or roles in immunity.

    Science.gov (United States)

    Hume, David A

    2011-04-01

    Myeloid lineage cells contribute to innate and acquired immunity, homeostasis, wound repair, and inflammation. There is considerable interest in manipulation of their function in transgenic mice using myeloid-specific promoters. This review considers the applications and specificity of some of the most widely studied transgenes, driven by promoter elements of the lysM, csf1r, CD11c, CD68, macrophage SRA, and CD11b genes, as well as several others. Transgenes have been used in mice to generate myeloid lineage-specific cell ablation, expression of genes of interest, including fluorescent reporters, or deletion via recombination. In general, the specificity of such transgenes has been overinterpreted, and none of them provide well-documented, reliable, differential expression in any specific myeloid cell subset, macrophages, granulocytes, or myeloid DCs. Nevertheless, they have proved valuable in cell isolation, functional genomics, and live imaging of myeloid cell behavior in many different pathologies.

  13. A unique anti-CD115 monoclonal antibody which inhibits osteolysis and skews human monocyte differentiation from M2-polarized macrophages toward dendritic cells.

    Science.gov (United States)

    Haegel, Hélène; Thioudellet, Christine; Hallet, Rémy; Geist, Michel; Menguy, Thierry; Le Pogam, Fabrice; Marchand, Jean-Baptiste; Toh, Myew-Ling; Duong, Vanessa; Calcei, Alexandre; Settelen, Nathalie; Preville, Xavier; Hennequi, Marie; Grellier, Benoit; Ancian, Philippe; Rissanen, Jukka; Clayette, Pascal; Guillen, Christine; Rooke, Ronald; Bonnefoy, Jean-Yves

    2013-01-01

    Cancer progression has been associated with the presence of tumor-associated M2-macrophages (M2-TAMs) able to inhibit anti-tumor immune responses. It is also often associated with metastasis-induced bone destruction mediated by osteoclasts. Both cell types are controlled by the CD115 (CSF-1R)/colony-stimulating factor-1 (CSF-1, M-CSF) pathway, making CD115 a promising target for cancer therapy. Anti-human CD115 monoclonal antibodies (mAbs) that inhibit the receptor function have been generated in a number of laboratories. These mAbs compete with CSF-1 binding to CD115, dramatically affecting monocyte survival and preventing osteoclast and macrophage differentiation, but they also block CD115/CSF-1 internalization and degradation, which could lead to potent rebound CSF-1 effects in patients after mAb treatment has ended. We thus generated and selected a non-ligand competitive anti-CD115 mAb that exerts only partial inhibitory effects on CD115 signaling without blocking the internalization or the degradation of the CD115/CSF-1 complex. This mAb, H27K15, affects monocyte survival only minimally, but downregulates osteoclast differentiation and activity. Importantly, it inhibits monocyte differentiation to CD163(+)CD64(+) M2-polarized suppressor macrophages, skewing their differentiation toward CD14(-)CD1a(+) dendritic cells (DCs). In line with this observation, H27K15 also drastically inhibits monocyte chemotactic protein-1 secretion and reduces interleukin-6 production; these two molecules are known to be involved in M2-macrophage recruitment. Thus, the non-depleting mAb H27K15 is a promising anti-tumor candidate, able to inhibit osteoclast differentiation, likely decreasing metastasis-induced osteolysis, and able to prevent M2 polarization of TAMs while inducing DCs, hence contributing to the creation of more efficient anti-tumor immune responses.

  14. Serum concentrations and peripheral secretion of the beta chemokines monocyte chemoattractant protein 1 and macrophage inflammatory protein 1α in alcoholic liver disease

    OpenAIRE

    Fisher, N; Neil, D.; Williams, A.; Adams, D.

    1999-01-01

    BACKGROUND—Alcoholic liver disease is associated with increased hepatic expression of monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein 1α (MIP-1α).
AIMS—To determine whether concentrations of chemokines in the peripheral circulation reflect disease activity, and whether chemokine secretion is restricted to the liver or is part of a systemic inflammatory response in alcoholic liver disease.
PATIENTS—Fifty one patients with alcoholic liver disease and 12 healthy co...

  15. Acute stress reduces wound-induced activation of microbicidal potential of ex vivo isolated human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Ulrike Kuebler

    Full Text Available BACKGROUND: Psychological stress delays wound healing but the precise underlying mechanisms are unclear. Macrophages play an important role in wound healing, in particular by killing microbes. We hypothesized that (a acute psychological stress reduces wound-induced activation of microbicidal potential of human monocyte-derived macrophages (HMDM, and (b that these reductions are modulated by stress hormone release. METHODS: Fourty-one healthy men (mean age 35 ± 13 years were randomly assigned to either a stress or stress-control group. While the stress group underwent a standardized short-term psychological stress task after catheter-induced wound infliction, stress-controls did not. Catheter insertion was controlled. Assessing the microbicidal potential, we investigated PMA-activated superoxide anion production by HMDM immediately before and 1, 10 and 60 min after stress/rest. Moreover, plasma norepinephrine and epinephrine and salivary cortisol were repeatedly measured. In subsequent in vitro studies, whole blood was incubated with norepinephrine in the presence or absence of phentolamine (norepinephrine blocker before assessing HMDM microbicidal potential. RESULTS: Compared with stress-controls, HMDM of the stressed subjects displayed decreased superoxide anion-responses after stress (p's <.05. Higher plasma norepinephrine levels statistically mediated lower amounts of superoxide anion-responses (indirect effect 95% CI: 4.14-44.72. Norepinephrine-treated HMDM showed reduced superoxide anion-production (p<.001. This effect was blocked by prior incubation with phentolamine. CONCLUSIONS: Our results suggest that acute psychological stress reduces wound-induced activation of microbicidal potential of HMDM and that this reduction is mediated by norepinephrine. This might have implications for stress-induced impairment in wound healing.

  16. Alkali treatment of microrough titanium surfaces affects macrophage/monocyte adhesion, platelet activation and architecture of blood clot formation

    Directory of Open Access Journals (Sweden)

    V Milleret

    2011-05-01

    Full Text Available Titanium implants are most commonly used for bone augmentation and replacement due to their favorable osseointegration properties. Here, hyperhydrophilic sand-blasted and acid-etched (SBA titanium surfaces were produced by alkali treatment and their responses to partially heparinized whole human blood were analyzed. Blood clot formation, platelet activation and activation of the complement system was analyzed revealing that exposure time between blood and the material surface is crucial as increasing exposure time results in higher amount of activated platelets, more blood clots formed and stronger complement activation. In contrast, the number of macrophages/monocytes found on alkali-treated surfaces was significantly reduced as compared to untreated SBA Ti surfaces. Interestingly, when comparing untreated to modified SBA Ti surfaces very different blood clots formed on their surfaces. On untreated Ti surfaces blood clots remain thin (below 15 mm, patchy and non-structured lacking large fibrin fiber networks whereas blood clots on differentiated surfaces assemble in an organized and layered architecture of more than 30 mm thickness. Close to the material surface most nucleated cells adhere, above large amounts of non-nucleated platelets remain entrapped within a dense fibrin fiber network providing a continuous cover of the entire surface. These findings might indicate that, combined with findings of previous in vivo studies demonstrating that alkali-treated SBA Ti surfaces perform better in terms of osseointegration, a continuous and structured layer of blood components on the blood-facing surface supports later tissue integration of an endosseous implant.

  17. Screening of Mycobacterium avium subsp. paratuberculosis Mutants for Attenuation in a Bovine Monocyte-Derived Macrophage Model

    Directory of Open Access Journals (Sweden)

    Elise A Lamont

    2014-06-01

    Full Text Available Vaccination remains a major tool for prevention and progression of Johne’s disease, a chronic enteritis of ruminants worldwide. Currently there is only one licensed vaccine within the United States and two vaccines licensed internationally against Johne’s disease. All licensed vaccines reduce fecal shedding of Mycobacterium avium subsp. paratuberculosis (MAP and delay disease progression. However, there are no available vaccines that prevent disease onset. A joint effort by the Johne’s Disease Integrated Program (JDIP, a USDA-funded consortium, and USDA- APHIS/VS sought to identify transposon insertion mutant strains as vaccine candidates in part of a three phase study. The focus of the Phase I study was to evaluate MAP mutant attenuation in a well-defined in vitro bovine monocyte-derived macrophage (MDM model. Attenuation was determined by colony forming unit (CFUs counts and slope estimates. Based on CFU counts alone, the MDM model did not identify any mutant that significantly differed from the wild-type control, MAP K-10. Slope estimates using mixed models approach identified six mutants as being attenuated. These were enrolled in protection studies involving murine and baby goat vaccination-challenge models. MDM based approach identified trends in attenuation but this did not correlate with protection in a natural host model. These results suggest the need for alternative strategies for Johne’s disease vaccine candidate screening and evaluation.

  18. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice.

    Science.gov (United States)

    Channappanavar, Rudragouda; Fehr, Anthony R; Vijay, Rahul; Mack, Matthias; Zhao, Jincun; Meyerholz, David K; Perlman, Stanley

    2016-02-10

    Highly pathogenic human respiratory coronaviruses cause acute lethal disease characterized by exuberant inflammatory responses and lung damage. However, the factors leading to lung pathology are not well understood. Using mice infected with SARS (severe acute respiratory syndrome)-CoV, we show that robust virus replication accompanied by delayed type I interferon (IFN-I) signaling orchestrates inflammatory responses and lung immunopathology with diminished survival. IFN-I remains detectable until after virus titers peak, but early IFN-I administration ameliorates immunopathology. This delayed IFN-I signaling promotes the accumulation of pathogenic inflammatory monocyte-macrophages (IMMs), resulting in elevated lung cytokine/chemokine levels, vascular leakage, and impaired virus-specific T cell responses. Genetic ablation of the IFN-αβ receptor (IFNAR) or IMM depletion protects mice from lethal infection, without affecting viral load. These results demonstrate that IFN-I and IMM promote lethal SARS-CoV infection and identify IFN-I and IMMs as potential therapeutic targets in patients infected with pathogenic coronavirus and perhaps other respiratory viruses. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Intestinal Monocyte-Derived Macrophages Control Commensal-Specific Th17 Responses

    Directory of Open Access Journals (Sweden)

    Casandra Panea

    2015-08-01

    Full Text Available Generation of different CD4 T cell responses to commensal and pathogenic bacteria is crucial for maintaining a healthy gut environment, but the associated cellular mechanisms are poorly understood. Dendritic cells (DCs and macrophages (Mfs integrate microbial signals and direct adaptive immunity. Although the role of DCs in initiating T cell responses is well appreciated, how Mfs contribute to the generation of CD4 T cell responses to intestinal microbes is unclear. Th17 cells are critical for mucosal immune protection and at steady state are induced by commensal bacteria, such as segmented filamentous bacteria (SFB. Here, we examined the roles of mucosal DCs and Mfs in Th17 induction by SFB in vivo. We show that Mfs, and not conventional CD103+ DCs, are essential for the generation of SFB-specific Th17 responses. Thus, Mfs drive mucosal T cell responses to certain commensal bacteria.

  20. DMPD: Monocyte CD14: a multifunctional receptor engaged in apoptosis from both sides. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10380893 Monocyte CD14: a multifunctional receptor engaged in apoptosis from both s...ides. Heidenreich S. J Leukoc Biol. 1999 Jun;65(6):737-43. (.png) (.svg) (.html) (.csml) Show Monocyte CD14: a multi...functional receptor engaged in apoptosis from both sides. PubmedID 10380893 Title Monocyte CD14: a multi

  1. [Spectrophotometric determination of protein content in THP-1 monocytes/macrophages - description of the method].

    Science.gov (United States)

    Wolska, Jolanta; Janda, Katarzyna; Gutowska, Izabela

    2015-01-01

    Proteins are the basic building block of tissue, and are part of enzymes and hormones regulating many important life processes. Changes in their concentration control the metabolic processes of the cell. Quantitative determination of the protein content is divided into indirect methods (e.g. Kjeldahl method) and direct methods (buret method, Lowry, immunoenzymatic, formol method, based on incorporation of dye in the range of ultraviolet spectrophotometry, and based on the phenomenon of selective absorption of radiation in the infrared range). One of the methods for the determination of protein content is the spectrophotometric method described by Bradford. The protein concentration assay procedure utilizes the phenomenon of formation of the dye (Coomassie Brillant Blue G-250)-protein and colour intensity is proportional to the protein content in the solution. The aim of this study was to verify the usefulness of this method for determining the protein content in THP-1 cells cultured with extracts of nettle fruit stalks (Urtica dioica L.). Aqueous and alcohol extracts at two concentrations were used. It has been shown that the spectrophotometric determination of protein content by the Bradford method is an effective and accurate method for determining the concentration of protein in THP-1 macrophages. The results indicate that this method can be recommended for the determination of the protein content in other cell cultures.

  2. Alveolar macrophage-epithelial cell interaction following exposure to atmospheric particles induces the release of mediators involved in monocyte mobilization and recruitment

    Directory of Open Access Journals (Sweden)

    Mukae Hiroshi

    2005-08-01

    Full Text Available Abstract Background Studies from our laboratory have shown that human alveolar macrophages (AM and bronchial epithelial cells (HBEC exposed to ambient particles (PM10 in vitro increase their production of inflammatory mediators and that supernatants from PM10-exposed cells shorten the transit time of monocytes through the bone marrow and promote their release into the circulation. Methods The present study concerns co-culture of AM and HBEC exposed to PM10 (EHC-93 and the production of mediators involved in monocyte kinetics measured at both the mRNA and protein levels. The experiments were also designed to determine the role of the adhesive interaction between these cells via the intercellular adhesion molecule (ICAM-1 in the production of these mediators. Results AM/HBEC co-cultures exposed to 100 μg/ml of PM10 for 2 or 24 h increased their levels of granulocyte-macrophage colony-stimulating factor (GM-CSF, M-CSF, macrophage inflammatory protein (MIP-1β, monocyte chemotactic protein (MCP-1, interleukin (IL-6 and ICAM-1 mRNA, compared to exposed AM or HBEC mono-cultures, or control non-exposed co-cultures. The levels of GM-CSF, M-CSF, MIP-1β and IL-6 increased in co-cultured supernatants collected after 24 h exposure compared to control cells (p 10-induced increase in co-culture mRNA expression. Conclusion We conclude that an ICAM-1 independent interaction between AM and HBEC, lung cells that process inhaled particles, increases the production and release of mediators that enhance bone marrow turnover of monocytes and their recruitment into tissues. We speculate that this interaction amplifies PM10-induced lung inflammation and contributes to both the pulmonary and systemic morbidity associated with exposure to air pollution.

  3. Pharm GKB: Leukemia, Monocytic, Acute [PharmGKB

    Lifescience Database Archive (English)

    Full Text Available Overview Alternate Names: Synonym Acute Monoblastic Leukemia; Acute Monoblastic Leukemias; Acute... Monocytic Leukemia; Acute Monocytic Leukemias; Acute monoblastic leukaemia; Acute monoblastic leukemia; Acute... monocytic leukaemia; Acute monocytic leukemia, morphology; Acute monocytoid leukemia; Leukemia, Acute... Monoblastic; Leukemia, Acute Monocytic; Leukemia, Monoblastic, Acute; Leukemia, Myeloid, Acute... Schilling-Type Myeloid; Leukemias, Acute Monoblastic; Leukemias, Acute Monocytic; M5a - Acute monoblastic leukaemia; M5a - Acute

  4. Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    J Kenneth Baillie

    2017-03-01

    Full Text Available The FANTOM5 consortium utilised cap analysis of gene expression (CAGE to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1 to bacterial lipopolysaccharide (LPS. We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility

  5. Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease

    Science.gov (United States)

    Arner, Erik; De Hoon, Michiel; Carninci, Piero; Hayashizaki, Yoshihide; Pavli, Paul; Summers, Kim M.; Hume, David A.

    2017-01-01

    The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis

  6. In vivo inhibition of c-MYC in myeloid cells impairs tumor-associated macrophage maturation and pro-tumoral activities.

    Directory of Open Access Journals (Sweden)

    Oscar M Pello

    Full Text Available Although tumor-associated macrophages (TAMs are involved in tumor growth and metastasis, the mechanisms controlling their pro-tumoral activities remain largely unknown. The transcription factor c-MYC has been recently shown to regulate in vitro human macrophage polarization and be expressed in macrophages infiltrating human tumors. In this study, we exploited the predominant expression of LysM in myeloid cells to generate c-Myc(fl/fl LysM(cre/+ mice, which lack c-Myc in macrophages, to investigate the role of macrophage c-MYC expression in cancer. Under steady-state conditions, immune system parameters in c-Myc(fl/fl LysM(cre/+ mice appeared normal, including the abundance of different subsets of bone marrow hematopoietic stem cells, precursors and circulating cells, macrophage density, and immune organ structure. In a model of melanoma, however, TAMs lacking c-Myc displayed a delay in maturation and showed an attenuation of pro-tumoral functions (e.g., reduced expression of VEGF, MMP9, and HIF1α that was associated with impaired tissue remodeling and angiogenesis and limited tumor growth in c-Myc(fl/fl LysM(cre/+ mice. Macrophage c-Myc deletion also diminished fibrosarcoma growth. These data identify c-Myc as a positive regulator of the pro-tumoral program of TAMs and suggest c-Myc inactivation as an attractive target for anti-cancer therapy.

  7. Human macrophage differentiation involves an interaction between integrins and fibronectin

    Energy Technology Data Exchange (ETDEWEB)

    Laouar, A.; Chubb, C.B.H.; Collart, F.; Huberman, E.

    1997-03-14

    The authors have examined the role of integrins and extracellular matrix (ECM) proteins in macrophage differentiation of (1) human HL-60 myeloid leukemia cells induced by phorbol 12-myristate 13-acetate (PMA) and (2) human peripheral blood monocytes induced by either PMA or macrophage-colony stimulating factor (M-CSF). Increased {beta}{sub 1} integrin and fibronectin (FN) gene expression was observed in PMA-treated HL-60 cells and PMA- or M-CSF-treated monocytes, even at a time preceding the manifestation of macrophage markers. Treated HL-60 cells and monocytes also released and deposited FN on the culture dishes. An HL-60 cell variant, HL-525, which is deficient in protein kinase C {beta} (PKC{beta}) and resistant to PMA-induced differentiation, failed to express FN after PMA treatment. Restoration of PKC{beta} resulted in PMA-induced FN gene expression and macrophage differentiation. The macrophage phenotype induced in HL-60 cells or monocytes was attenuated by anti-{beta}{sub 1} integrin or anti-FN MAbs. The authors suggest that macrophage differentiation involves activation of PKC and expression of specific integrins and ECM proteins. The stimulated cells, through their integrins, attach and spread on these substrates by binding to the deposited ECM proteins. This attachment and spreading in turn, through integrin signaling, leads to the macrophage phenotype.

  8. Monocyte to macrophage differentiation-associated (MMD) targeted by miR-140-5p regulates tumor growth in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weina, E-mail: liweina228@163.com [Department of Biomedical Engineering, Fourth Military Medical University, Xi’an 710032 (China); He, Fei, E-mail: hesili1027@163.com [Department of Hepatic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032 (China)

    2014-07-18

    Highlights: • Expression of MMD is increased in lung cancer tissues. • Knockdown of MMD inhibits growth of A549 and LLC cells in vitro and in vivo. • MMD is a direct functional target of miR-140-5p. • MiR-140-5p/MMD axis regulates Erk1/2 signaling. - Abstract: Monocyte to macrophage differentiation-associated (MMD) is identified in macrophages as a gene associated with the differentiation from monocytes to macrophages. Recent microarray analysis for non-small cell lung cancer (NSCLC) suggests that MMD is an important signature associated with relapse and survival among patients with NSCLC. Therefore, we speculate that MMD likely plays a role in lung cancer. In this study, we found that the protein level of MMD was increased in lung cancer compared to benign lung tissues, and knockdown of MMD inhibited the growth of A549 and Lewis lung cancer cells (LLC) in vitro and in vivo. Integrated analysis demonstrated that MMD was a direct functional target of miR-140-5p. Furthermore, we found that miR-140-5p/MMD axis could affect the cell proliferation of lung cancer cells by regulating Erk signaling. Together, our results highlight the significance of miR-140-5p/MMD axis in lung cancer, and miR-140-5p/MMD axis could serve as new molecular targets for the therapy against lung cancer.

  9. Graft monocytic myeloid-derived suppressor cell content predicts the risk of acute graft-versus-host disease after allogeneic transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood stem cells.

    Science.gov (United States)

    Vendramin, Antonio; Gimondi, Silvia; Bermema, Anisa; Longoni, Paolo; Rizzitano, Sara; Corradini, Paolo; Carniti, Cristiana

    2014-12-01

    Myeloid-derived suppressor cells (MDSCs) are powerful immunomodulatory cells that in mice play a role in infectious and inflammatory disorders, including acute graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation. Their relevance in clinical acute GVHD is poorly known. We analyzed whether granulocyte colony-stimulating factor (G-CSF) administration, used to mobilize hematopoietic stem cells, affected the frequency of MDSCs in the peripheral blood stem cell grafts of 60 unrelated donors. In addition, we evaluated whether the MDSC content in the peripheral blood stem cell grafts affected the occurrence of acute GVHD in patients undergoing unrelated donor allogeneic stem cell transplantation. Systemic treatment with G-CSF induces an expansion of myeloid cells displaying the phenotype of monocytic MDSCs (Lin(low/neg)HLA-DR(-)CD11b(+)CD33(+)CD14(+)) with the ability to suppress alloreactive T cells in vitro, therefore meeting the definition of MDSCs. Monocytic MDSC dose was the only graft parameter to predict acute GVHD. The cumulative incidence of acute GVHD at 180 days after transplantation for recipients receiving monocytic MDSC doses below and above the median was 63% and 22%, respectively (P = .02). The number of monocytic MDSCs infused did not impact the relapse rate or the transplant-related mortality rate (P > .05). Although further prospective studies involving larger sample size are needed to validate the exact monocytic MDSC graft dose that protects from acute GVHD, our results strongly suggest the modulation of G-CSF might be used to affect monocytic MDSCs graft cell doses for prevention of acute GVHD.

  10. Monocyte/macrophage and protein interactions with non-fouling plasma polymerized tetraglyme and chemically modified polystyrene surfaces: In vitro and in vivo studies

    Science.gov (United States)

    Shen, Mingchao

    2001-07-01

    Biomaterials become encapsulated by fibrous tissues after implantation in soft tissues. Monocytes and macrophages are believed to play important roles in this response. The hypothesis tested in this dissertation is that material surface chemistry determines the amount of adsorbed proteins, which mediate monocyte adhesion, activation, and the foreign body response. On chemically modified polystyrene surfaces, monocyte adhesion in vitro was promoted by preadsorbed fibrinogen, fibronectin, and IgG, and increased with increasing amount of adsorbed fibrinogen. Adsorbed proteins and material surface chemistry mediated monocyte activation. TNFalpha release, procoagulant activity, and multinucleated foreign body giant cell (FBGC) formation was at least two-fold higher on IgG than other protein adsorbed surfaces. Adsorbed IgG and fibrinogen triggered monocyte intracellular calcium changes. FBGC formation was the highest on the hydrophobic polystyrene surface. Materials that greatly reduce non-specific protein adsorption may reduce the foreign body response to implanted materials. Radio-frequency plasma polymerized tetraglyme (CH3O(CH2CH2O)4CH 3) surfaces contained PEO-like chemical species and reduced fibrinogen adsorption to less than 10 ng/cm2. Monocyte adhesion to tetraglyme in vitro was also greatly reduced. Monocyte adhesion correlated linearly to the amount of adsorbed fibrinogen on a series of tetraglyme surfaces deposited at different plasma powers. Multivariate analysis using partial least squares regression identified the key surface spectra variables from electron spectroscopy for chemical analysis (ESCA) and time of flight secondary ion mass spectrometry (ToF-SIMS) that contributed to the non-fouling properties of tetraglyme. However, leukocyte adhesion to surfaces implanted subcutaneously in mice for 1 or 28 days did not correlate with protein adsorption and was higher on tetraglyme than the FEP control. Fibrous encapsulation to tetraglyme implanted for 28 days

  11. Different Regulation of Interleukin-1 Production and Activity in Monocytes and Macrophages: Innate Memory as an Endogenous Mechanism of IL-1 Inhibition

    Directory of Open Access Journals (Sweden)

    Mariusz P. Madej

    2017-06-01

    Full Text Available Production and activity of interleukin (IL-1β are kept under strict control in our body, because of its powerful inflammation-promoting capacity. Control of IL-1β production and activity allows IL-1 to exert its defensive activities without causing extensive tissue damage. Monocytes are the major producers of IL-1β during inflammation, but they are also able to produce significant amounts of IL-1 inhibitors such as IL-1Ra and the soluble form of the decoy receptor IL-1R2, in an auto-regulatory feedback loop. Here, we investigated how innate immune memory could modulate production and activity of IL-1β by human primary monocytes and monocyte-derived tissue-like/deactivated macrophages in vitro. Cells were exposed to Gram-negative (Escherichia coli and Gram-positive (Lactobacillus acidophilus bacteria for 24 h, then allowed to rest, and then re-challenged with the same stimuli. The presence of biologically active IL-1β in cell supernatants was calculated as the ratio between free IL-1β (i.e., the cytokine that is not bound/inhibited by sIL-1R2 and its receptor antagonist IL-1Ra. As expected, we observed that the responsiveness of tissue-like/deactivated macrophages to bacterial stimuli was lower than that of monocytes. After resting and re-stimulation, a memory effect was evident for the production of inflammatory cytokines, whereas production of alarm signals (chemokines was minimally affected. We observed a high variability in the innate memory response among individual donors. This is expected since innate memory largely depends on the previous history of exposure or infections, which is different in different subjects. Overall, innate memory appeared to limit the amount of active IL-1β produced by macrophages in response to a bacterial challenge, while enhancing the responsiveness of monocytes. The functional re-programming of mononuclear phagocytes through modulation of innate memory may provide innovative approaches in the management

  12. In vitro evidence for the protective role of Sida rhomboidea. Roxb extract against LDL oxidation and oxidized LDL-induced apoptosis in human monocyte-derived macrophages.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Devkar, Ranjisinh V; Ramachandran, A V

    2011-06-01

    The present study was undertaken to evaluate protective role of S. rhomboidea. Roxb (SR) leaf extract against in vitro low-density lipoprotein (LDL) oxidation and oxidized LDL (Ox-LDL) induced macrophage apoptosis. Copper and cell-mediated LDL oxidation, Ox-LDL-induced peroxyl radical generation, mitochondrial activity, and apoptosis in human monocyte-derived macrophages (HMDMs) were assessed in presence of SR extract. Results clearly indicated that SR was capable of reducing LDL oxidation and formation of intermediary oxidation products. Also, SR successfully attenuated peroxyl radical formation, mitochondrial dysfunction, nuclear condensation, and apoptosis in Ox-LDL-exposed HMDMs. This scientific report is the first detailed investigation that establishes anti-atherosclerotic potential of SR extract.

  13. Differentiation Therapy of Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Elzbieta Gocek

    2011-05-01

    Full Text Available Acute Myeloid Leukemia (AML is a predominant acute leukemia among adults, characterized by accumulation of malignantly transformed immature myeloid precursors. A very attractive way to treat myeloid leukemia, which is now called ‘differentiation therapy’, was proposed as in vitro studies have shown that a variety of agents stimulate differentiation of the cell lines isolated from leukemic patients. One of the differentiation-inducing agents, all-trans retinoic acid (ATRA, which can induce granulocytic differentiation in myeloid leukemic cell lines, has been introduced into clinics to treat patients with acute promyelocytic leukemia (APL in which a PML-RARA fusion protein is generated by a t(15;17(q22;q12 chromosomal translocation. Because differentiation therapy using ATRA has significantly improved prognosis for patients with APL, many efforts have been made to find alternative differentiating agents. Since 1,25-dihydroxyvitamin D3 (1,25D is capable of inducing in vitro monocyte/macrophage differentiation of myeloid leukemic cells, clinical trials have been performed to estimate its potential to treat patients with AML or myelodysplastic syndrome (MDS. Unfortunately therapeutic concentrations of 1,25D can induce potentially fatal systemic hypercalcemia, thus limiting clinical utility of that compound. Attempts to overcome this problem have focused on the synthesis of 1,25D analogs (VDAs which retain differentiation inducing potential, but lack its hypercalcemic effects. This review aims to discuss current problems and potential solutions in differentiation therapy of AML.

  14. Differentiation Therapy of Acute Myeloid Leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Gocek, Elzbieta; Marcinkowska, Ewa, E-mail: ema@cs.uni.wroc.pl [Department of Biotechnology, University of Wroclaw, ul Tamka 2, Wroclaw 50-137 (Poland)

    2011-05-16

    Acute Myeloid Leukemia (AML) is a predominant acute leukemia among adults, characterized by accumulation of malignantly transformed immature myeloid precursors. A very attractive way to treat myeloid leukemia, which is now called ‘differentiation therapy’, was proposed as in vitro studies have shown that a variety of agents stimulate differentiation of the cell lines isolated from leukemic patients. One of the differentiation-inducing agents, all-trans retinoic acid (ATRA), which can induce granulocytic differentiation in myeloid leukemic cell lines, has been introduced into clinics to treat patients with acute promyelocytic leukemia (APL) in which a PML-RARA fusion protein is generated by a t(15;17)(q22;q12) chromosomal translocation. Because differentiation therapy using ATRA has significantly improved prognosis for patients with APL, many efforts have been made to find alternative differentiating agents. Since 1,25-dihydroxyvitamin D{sub 3} (1,25D) is capable of inducing in vitro monocyte/macrophage differentiation of myeloid leukemic cells, clinical trials have been performed to estimate its potential to treat patients with AML or myelodysplastic syndrome (MDS). Unfortunately therapeutic concentrations of 1,25D can induce potentially fatal systemic hypercalcemia, thus limiting clinical utility of that compound. Attempts to overcome this problem have focused on the synthesis of 1,25D analogs (VDAs) which retain differentiation inducing potential, but lack its hypercalcemic effects. This review aims to discuss current problems and potential solutions in differentiation therapy of AML.

  15. Monocyte/macrophage and T-cell infiltrates in peritoneum of patients with ovarian cancer or benign pelvic disease

    Directory of Open Access Journals (Sweden)

    Ma Qing

    2006-07-01

    Full Text Available Abstract Background We previously showed that tumor-free peritoneum of patients with epithelial ovarian cancer (EOC exhibited enhanced expression of several inflammatory response genes compared to peritoneum of benign disease. Here, we examined peritoneal inflammatory cell patterns to determine their concordance with selected enhanced genes. Methods Expression patterns of selected inflammatory genes were mined from our previously published data base. Bilateral pelvic peritoneal and subjacent stromal specimens were obtained from 20 women with EOC and 7 women with benign pelvic conditions. Sections were first stained by indirect immunoperoxidase and numbers of monocytes/macrophages (MO/MA, T cells, B cells, and NK cells counted. Proportions of CD68+ cells and CD3+ cells that coexpressed MO/MA differentiation factors (CD163, CCR1, CXCR8, VCAM1, and phosphorylated cytosolic phospholipase A2 [pcPLA2], which had demonstrated expression in EOC peritoneal samples, were determined by multicolor immunofluorescence. Results MO/MA were present on both sides of the pelvic peritoneum in EOC patients, with infiltration of the subjacent stroma and mesothelium. CD68+ MO/MA, the most commonly represented population, and CD3+ T cells were present more often in EOC than in benign pelvic tumors. NK cells, B cells, and granulocytes were rare. CXCL8 (IL-8 and the chemokine receptor CCR1 were coexpressed more frequently on MO/MA than on CD3+ cells contrasting with CD68+/CD163+ cells that coexpressed CXCL8 less often. An important activated enzyme in the eicosanoid pathway, pcPLA2, was highly expressed on both CD68+ and CD163+ cells. The adherence molecule Vascular Cell Adhesion Molecule-1 (VCAM1 was expressed on CD31+ endothelial cells and on a proportion of CD68+ MO/MA but rarely on CD3+ cells. Conclusion The pelvic peritoneum in EOC exhibits a general pattern of chronic inflammation, represented primarily by differentiated MO/MA, and distinct from that in benign

  16. Surface modification of biomaterials based on high-molecular polylactic acid and their effect on inflammatory reactions of primary human monocyte-derived macrophages: perspective for personalized therapy.

    Science.gov (United States)

    Stankevich, Ksenia S; Gudima, Alexandru; Filimonov, Victor D; Klüter, Harald; Mamontova, Evgeniya M; Tverdokhlebov, Sergei I; Kzhyshkowska, Julia

    2015-06-01

    Polylactic acid (PLA) based implants can cause inflammatory complications. Macrophages are key innate immune cells that control inflammation. To provide higher biocompatibility of PLA-based implants with local innate immune cells their surface properties have to be improved. In our study surface modification technique for high-molecular PLA (MW=1,646,600g/mol) based biomaterials was originally developed and successfully applied. Optimal modification conditions were determined. Treatment of PLA films with toluene/ethanol=3/7 mixture for 10min with subsequent exposure in 0.001M brilliant green dye (BGD) solution allows to entrap approximately 10(-9)mol/cm(2) model biomolecules. The modified PLA film surface was characterized by optical microscopy, SERS, FT-IR, UV and TG/DTA/DSC analysis. Tensile strain of modified films was determined as well. The effect of PLA films modified with BGD on the inflammatory reactions of primary human monocyte-derived macrophages was investigated. We developed in vitro test-system by differentiating primary monocyte-derived macrophages on a coating material. Type 1 and type 2 inflammatory cytokines (TNFα, CCL18) secretion and histological biomarkers (CD206, stabilin-1) expression were analyzed by ELISA and confocal microscopy respectively. BGD-modified materials have improved thermal stability and good mechanical properties. However, BGD modifications induced additional donor-specific inflammatory reactions and suppressed tolerogenic phenotype of macrophages. Therefore, our test-system successfully demonstrated specific immunomodulatory effects of original and modified PLA-based biomaterials, and can be further applied for the examination of improved coatings for implants and identification of patient-specific reactions to implants.

  17. Wear particles from studded tires and granite pavement induce pro-inflammatory alterations in human monocyte-derived macrophages: a proteomic study.

    Science.gov (United States)

    Karlsson, Helen; Lindbom, John; Ghafouri, Bijar; Lindahl, Mats; Tagesson, Christer; Gustafsson, Mats; Ljungman, Anders G

    2011-01-14

    Airborne particulate matter is considered to be one of the environmental contributors to the mortality in cancer, respiratory, and cardiovascular diseases. For future preventive actions, it is of major concern to investigate the toxicity of defined groups of airborne particles and to clarify their pathways in biological tissues. To expand the knowledge beyond general inflammatory markers, this study examined the toxicoproteomic effects on human monocyte derived macrophages after exposure to wear particles generated from the interface of studded tires and a granite-containing pavement. As comparison, the effect of endotoxin was also investigated. The macrophage proteome was separated using two-dimensional gel electrophoresis. Detected proteins were quantified, and selected proteins were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Among analyzed proteins, seven were significantly decreased and three were increased by exposure to wear particles as compared to unexposed control cells. Endotoxin exposure resulted in significant changes in the expression of six proteins: four decreased and two increased. For example, macrophage capping protein was significantly increased after wear particle exposure only, whereas calgizzarin and galectin-3 were increased by both wear particle and endotoxin exposure. Overall, proteins associated with inflammatory response were increased and proteins involved in cellular functions such as redox balance, anti-inflammatory response, and glycolysis were decreased. Investigating the effects of characterized wear particles on human macrophages with a toxicoproteomic approach has shown to be useful in the search for more detailed information about specific pathways and possible biological markers.

  18. Cellular internalization and cytotoxicity of the antimicrobial proline-rich peptide Bac7(1-35) in monocytes/macrophages, and its activity against phagocytosed Salmonella typhimurium.

    Science.gov (United States)

    Pelillo, Chiara; Benincasa, Monica; Scocchi, Marco; Gennaro, Renato; Tossi, Alessandro; Pacor, Sabrina

    2014-04-01

    Bac7(1-35) is an active fragment of the bovine cathelicidin antimicrobial peptide Bac7, which selectively inactivates Gram-negative bacteria both in vitro and in mice infected with Salmonella typhimurium. It has a non-lytic mechanism of action, is rapidly internalized by susceptible bacteria and mammalian cells and likely acts by binding to internal targets. In this study we show that Bac7(1-35) accumulates selectively within primed macrophages with respect to resting monocytes. Confocal microscopy analysis showed that the peptide mainly distributes in the cytoplasm and perinuclear region of macrophages within 3 hours of incubation, without affecting cell viability. Cytotoxicity studies showed that the peptide does not induce necrotic or apoptotic damage up to concentrations 50-100-fold higher than minimal inhibitory concentrations (MIC). Moreover, Bac7(1-35) did not affect the ability of macrophages to engulf S. typhimurium, a species that may proliferate within this cell type. Conversely, when added to macrophages after phagocytosis, Bac7(1-35) caused a significant reduction in the number of recovered bacteria, indicating that it can kill the engulfed microorganisms directly and/or indirectly, via activation of the defense response of the cells.

  19. The effect of squalane-dissolved fullerene-C60 on adipogenesis-accompanied oxidative stress and macrophage activation in a preadipocyte-monocyte co-culture system.

    Science.gov (United States)

    Xiao, Li; Aoshima, Hisae; Saitoh, Yasukazu; Miwa, Nobuhiko

    2010-08-01

    Effects of squalane-dissolved fullerene-C60 (Sql-fullerene) on macrophage activation and adipose conversion with oxidative stress were studied using an inflammatory adipose-tissue equivalent (ATE) and OP9 mouse stromal preadipocyte-U937 lymphoma cell co-culture systems. Differentiation of OP9 cells was initiated by insulin-rich serum replacement (SR) as an adipogenic stimulant, and then followed by accumulation of intracellular lipid droplets and reactive oxygen species (ROS), both of which were significantly inhibited by Sql-fullerene. In the OP9-U937 cell co-culture system, U937 cells rapidly differentiated to macrophage-like cells during SR-induced adipogenesis in OP9 cells. The ROS accumulation was in the co-culture more marked than in OP9 cells alone, suggesting that the interaction between adipocytes and monocytes/macrophages promotes inflammatory responses. Sql-fullerene significantly inhibited macrophage activation and low-grade adipogenesis in the OP9-U937 co-culture system. We developed a three-dimensional inflammatory adipose-tissue model "ATE" consisting of, characteristically, U937 cells in the culture-wells, and, in addition, mounted a culture insert containing OP9 cells-populated collagen gel. ATE is enabled with suitable stimulation to represent the pathology of inflammatory disorders, such as macrophage infiltration in adipose tissue. Five-day culturing of ATE in SR medium occurred U937 macrophage migration and intracellular oil-droplet accumulation that were significantly inhibited by Sql-fullerene. Our results suggest that Sql-fullerene might be explored as a potential medicine for the treatment of metabolic syndrome or other obesity-related disorders.

  20. Macrophages and Dendritic Cells: Partners in Atherogenesis.

    Science.gov (United States)

    Cybulsky, Myron I; Cheong, Cheolho; Robbins, Clinton S

    2016-02-19

    Atherosclerosis is a complex chronic disease. The accumulation of myeloid cells in the arterial intima, including macrophages and dendritic cells (DCs), is a feature of early stages of disease. For decades, it has been known that monocyte recruitment to the intima contributes to the burden of lesion macrophages. Yet, this paradigm may require reevaluation in light of recent advances in understanding of tissue macrophage ontogeny, their capacity for self-renewal, as well as observations that macrophages proliferate throughout atherogenesis and that self-renewal is critical for maintenance of macrophages in advanced lesions. The rate of atherosclerotic lesion formation is profoundly influenced by innate and adaptive immunity, which can be regulated locally within atherosclerotic lesions, as well as in secondary lymphoid organs, the bone marrow and the blood. DCs are important modulators of immunity. Advances in the past decade have cemented our understanding of DC subsets, functions, hematopoietic origin, gene expression patterns, transcription factors critical for differentiation, and provided new tools for study of DC biology. The functions of macrophages and DCs overlap to some extent, thus it is important to reassess the contributions of each of these myeloid cells taking into account strict criteria of cell identification, ontogeny, and determine whether their key roles are within atherosclerotic lesions or secondary lymphoid organs. This review will highlight key aspect of macrophage and DC biology, summarize how these cells participate in different stages of atherogenesis and comment on complexities, controversies, and gaps in knowledge in the field.

  1. Differential cytotoxicity but augmented IFN-γ secretion by NK cells after interaction with monocytes from humans, and those from wild type and myeloid specific COX-2 knockout mice

    Directory of Open Access Journals (Sweden)

    Han-Ching eTseng

    2015-06-01

    Full Text Available The list of genes which augment NK cell function when knocked out in neighboring cells is increasing, and may point to the fundamental function of NK cells targeting cells with diminished capability to differentiate optimally since NK cells are able to target less differentiated cells, and aid in their differentiation. In this paper we aimed at understanding the effect of monocytes from targeted knockout of COX-2 in myeloid cells (Cox-2flox/flox;LysMCre/+ and from control littermates (Cox-2flox/flox;LysM+/+ on ex vivo function of NK cells. Furthermore, we compared the effect of monocytes treated with and without lipopolysaccharide (LPS on NK cells from mice and humans. NK cells purified from Cox-2flox/flox;LysMCre/+ mice had heightened cytotoxic activity when compared to those obtained from control littermates. In addition, NK cells cultured with autologous Cox-2flox/flox;LysMCre/+ monocytes and DCs, mouse embryonic fibroblasts (MEFs from global knock out COX-2, but not with knock out of COX-2 in T cells, had increased cytotoxic function as well as augmented IFN-γ secretion when compared to NK cells from control littermates cultured with monocytes. LPS inhibited NK cell cytotoxicity while increasing IFN-γ secretion when cultured in the presence of monocytes from either Cox-2flox/flox;LysMCre/+ or control littermates. In contrast to mice, NK cells from humans when cultured with monocytes lost cytotoxic function and gained ability to secrete large amounts of IFN-γ, a process which we had previously coined as split anergy. Similar to mice, LPS potentiated the loss of human NK cell cytotoxicity while increasing IFN-γ secretion in the presence of monocytes. Greater loss of cytotoxicity and larger secretion of IFN-γ in NK cells induced by gene knock out cells may be important for the greater need of these cells for differentiation.

  2. Fibroblasts and monocyte macrophages contract and degrade three-dimensional collagen gels in extended co-culture

    Directory of Open Access Journals (Sweden)

    Ertl Ronald F

    2001-09-01

    Full Text Available Abstract Background Inflammatory cells are believed to play a prominent role during tissue repair and remodeling. Since repair processes develop and mature over extended time frames, the present study was designed to evaluate the effect of monocytes and fibroblasts in prolonged culture in three-dimensional collagen gels. Methods Blood monocytes from healthy donors and human fetal lung fibroblasts were cast into type I collagen gels and maintained in floating cultures for three weeks. Results Fibroblast-mediated gel contraction was initially inhibited by the presence of monocytes (P P P 2 production was significantly increased by co-culture and its presence attenuated collagen degradation. Conclusion The current study, therefore, demonstrates that interaction between monocytes and fibroblasts can contract and degrade extracellular matrix in extended culture.

  3. Analysis of Monocytic and Granulocytic Myeloid-Derived Suppressor Cells Subsets in Patients with Hepatitis C Virus Infection and Their Clinical Significance

    Directory of Open Access Journals (Sweden)

    Gang Ning

    2015-01-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs have been shown to inhibit T-cell responses in many diseases, but, in hepatitis C virus (HCV infected patients, MDSCs are still poorly studied. In this assay, we investigated the phenotype and frequency of two new populations of MDSCs denoted as monocytic and granulocytic MDSCs (M-MDSCs and G-MDSCs in HCV infected patients and analyzed their clinical significance in these patients respectively. We found that the frequency of CD14+HLA-DR-/low cells (M-MDSCs from HCV infected patients (mean ± SE, 3.134% ± 0.340% was significantly increased when compared to healthy controls (mean ± SE, 1.764% ± 0.461% (Z = −2.438, P = 0.015, while there was no statistical difference between the frequency of HLA-DR-/lowCD33+CD11b+CD15+ (G-MDSCs of HCV infected patients and healthy donors (0.201% ± 0.038% versus 0.096% ± 0.026%, P > 0.05, which suggested that HCV infection could cause the proliferation of M-MDSCs instead of G-MDSCs. Besides, we found that the frequency of M-MDSCs in HCV infected patients had certain relevance with age (r = 0.358, P = 0.003; patients older than 40 years old group (mean ± SE, 3.673% ± 0.456% had a significantly higher frequency of M-MDSCs than that of age less than 40 years old group (mean ± SE, 2.363% ± 0.482% (Z = −2.685, P = 0.007. The frequency of M-MDSCs, however, had no correlation with HCV RNA loads, aspartate aminotransferase (AST, alanine aminotransferase (ALT, and the level of liver inflammation degree.

  4. Elevated ARG1 expression in primary monocytes-derived macrophages as a predictor of radiation-induced acute skin toxicities in early breast cancer patients.

    Science.gov (United States)

    Jung, Karen; Sabri, Siham; Hanson, John; Xu, Yaoxian; Wang, Ying Wayne; Lai, Raymond; Abdulkarim, Bassam S

    2015-01-01

    Radiation therapy (RT) the front-line treatment after surgery for early breast cancer patients is associated with acute skin toxicities in at least 40% of treated patients. Monocyte-derived macrophages are polarized into functionally distinct (M1 or M2) activated phenotypes at injury sites by specific systemic cytokines known to play a key role in the transition between damage and repair in irradiated tissues. The role of M1 and M2 macrophages in RT-induced acute skin toxicities remains to be defined. We investigated the potential value of M1 and M2 macrophages as predictive factors of RT-induced skin toxicities in early breast cancer patients treated with adjuvant RT after lumpectomy. Blood samples collected from patients enrolled in a prospective clinical study (n = 49) were analyzed at baseline and after the first delivered 2Gy RT dose. We designed an ex vivo culture system to differentiate patient blood monocytes into macrophages and treated them with M1 or M2-inducing cytokines before quantitative analysis of their "M1/M2" activation markers, iNOS, Arg1, and TGFß1. Statistical analysis was performed to correlate experimental data to clinical assessment of acute skin toxicity using Common Toxicity Criteria (CTC) grade for objective evaluation of skin reactions. Increased ARG1 mRNA significantly correlated with higher grades of erythema, moist desquamation, and CTC grade. Multivariate analysis revealed that increased ARG1 expression in macrophages after a single RT dose was an independent prognostic factor of erythema (p = 0 .032), moist desquamation (p = 0 .027), and CTC grade (p = 0 .056). Interestingly, multivariate analysis of ARG1 mRNA expression in macrophages stimulated with IL-4 also revealed independent prognostic value for predicting acute RT-induced toxicity factors, erythema (p = 0 .069), moist desquamation (p = 0 .037), and CTC grade (p = 0 .046). To conclude, our findings underline for the first time the biological significance of increased ARG1 m

  5. Phenotypic diversity and emerging new tools to study macrophage activation in bacterial infectious diseases

    Directory of Open Access Journals (Sweden)

    Jean-Louis eMege

    2014-10-01

    Full Text Available Macrophage polarization is a concept that has been useful to describe the different features of macrophage activation related to specific functions. Macrophage polarization is responsible for a dichotomic approach (killing versus repair of the host response to bacteria: M1-type conditions are protective, whereas M2-type conditions are associated with bacterial persistence. The use of the polarization concept to classify the features of macrophage activation in infected patients using transcriptional and/or molecular data and to provide biomarkers for diagnosis and prognosis has most often been unsuccessful. The confrontation of polarization with different clinical situations in which monocytes/macrophages encounter bacteria obliged us to reappraise this concept. With the exception of M2-type infectious diseases such as leprosy and Whipple’s disease, most acute (sepsis or chronic (Q fever, tuberculosis infectious diseases do not exhibit polarized monocytes/macrophages. This is also the case for commensals that shape the immune response and for probiotics that alter the immune response independent of macrophage polarization. We propose that the type of myeloid cells (monocytes vs. macrophages and the kinetics of the immune response (early vs. late responses are critical variables for understanding macrophage activation in human infectious diseases. Explorating the role of these new markers will provide important tools to better understand complex macrophage physiology.

  6. Simian Immunodeficiency Virus Targeting of CXCR3(+) CD4(+) T Cells in Secondary Lymphoid Organs Is Associated with Robust CXCL10 Expression in Monocyte/Macrophage Subsets.

    Science.gov (United States)

    Fujino, Masayuki; Sato, Hirotaka; Okamura, Tomotaka; Uda, Akihiko; Takeda, Satoshi; Ahmed, Nursarat; Shichino, Shigeyuki; Shiino, Teiichiro; Saito, Yohei; Watanabe, Satoru; Sugimoto, Chie; Kuroda, Marcelo J; Ato, Manabu; Nagai, Yoshiyuki; Izumo, Shuji; Matsushima, Kouji; Miyazawa, Masaaki; Ansari, Aftab A; Villinger, Francois; Mori, Kazuyasu

    2017-07-01

    Glycosylation of Env defines pathogenic properties of simian immunodeficiency virus (SIV). We previously demonstrated that pathogenic SIVmac239 and a live-attenuated, quintuple deglycosylated Env mutant (Δ5G) virus target CD4(+) T cells residing in different tissues during acute infection. SIVmac239 and Δ5G preferentially infected distinct CD4(+) T cells in secondary lymphoid organs (SLOs) and within the lamina propria of the small intestine, respectively (C. Sugimoto et al., J Virol 86:9323-9336, 2012, https://doi.org/10.1128/JVI.00948-12). Here, we studied the host responses relevant to SIV targeting of CXCR3(+) CCR5(+) CD4(+) T cells in SLOs. Genome-wide transcriptome analyses revealed that Th1-polarized inflammatory responses, defined by expression of CXCR3 chemokines, were distinctly induced in the SIVmac239-infected animals. Consistent with robust expression of CXCL10, CXCR3(+) T cells were depleted from blood in the SIVmac239-infected animals. We also discovered that elevation of CXCL10 expression in blood and SLOs was secondary to the induction of CD14(+) CD16(+) monocytes and MAC387(+) macrophages, respectively. Since the significantly higher levels of SIV infection in SLOs occurred with a massive accumulation of infiltrated MAC387(+) macrophages, T cells, dendritic cells (DCs), and residential macrophages near high endothelial venules, the results highlight critical roles of innate/inflammatory responses in SIVmac239 infection. Restricted infection in SLOs by Δ5G also suggests that glycosylation of Env modulates innate/inflammatory responses elicited by cells of monocyte/macrophage/DC lineages.IMPORTANCE We previously demonstrated that a pathogenic SIVmac239 virus and a live-attenuated, deglycosylated mutant Δ5G virus infected distinct CD4(+) T cell subsets in SLOs and the small intestine, respectively (C. Sugimoto et al., J Virol 86:9323-9336, 2012, https://doi.org/10.1128/JVI.00948-12). Accordingly, infections with SIVmac239, but not with Δ5G

  7. Central nervous system myeloid cells as drug targets: current status and translational challenges.

    Science.gov (United States)

    Biber, Knut; Möller, Thomas; Boddeke, Erik; Prinz, Marco

    2016-02-01

    Myeloid cells of the central nervous system (CNS), which include parenchymal microglia, macrophages at CNS interfaces and monocytes recruited from the circulation during disease, are increasingly being recognized as targets for therapeutic intervention in neurological and psychiatric diseases. The origin of these cells in the immune system distinguishes them from ectodermal neurons and other glia and endows them with potential drug targets distinct from classical CNS target groups. However, despite the identification of several promising therapeutic approaches and molecular targets, no agents directly targeting these cells are currently available. Here, we assess strategies for targeting CNS myeloid cells and address key issues associated with their translation into the clinic.

  8. Monocytes/Macrophages Upregulate the Hyaluronidase HYAL1 and Adapt Its Subcellular Trafficking to Promote Extracellular Residency upon Differentiation into Osteoclasts

    Science.gov (United States)

    Puissant, Emeline; Boonen, Marielle

    2016-01-01

    Osteoclasts are giant bone-resorbing cells originating from monocytes/macrophages. During their differentiation, they overexpress two lysosomal enzymes, cathepsin K and TRAP, which are secreted into the resorption lacuna, an acidified sealed area in contact with bone matrix where bone degradation takes place. Here we report that the acid hydrolase HYAL1, a hyaluronidase able to degrade the glycosaminoglycans hyaluronic acid (HA) and chondroitin sulfate, is also upregulated upon osteoclastogenesis. The mRNA expression and protein level of HYAL1 are markedly increased in osteoclasts differentiated from RAW264.7 mouse macrophages or primary mouse bone marrow monocytes compared to these precursor cells. As a result, the HYAL1-mediated HA hydrolysis ability of osteoclasts is strongly enhanced. Using subcellular fractionation, we demonstrate that HYAL1 proteins are sorted to the osteoclast lysosomes even though, in contrast to cathepsin K and TRAP, HYAL1 is poorly mannose 6-phosphorylated. We reported previously that macrophages secrete HYAL1 proforms by constitutive secretion, and that these are recaptured by the cell surface mannose receptor, processed in endosomes and sorted to lysosomes. Present work highlights that osteoclasts secrete HYAL1 in two ways, through lysosomal exocytosis and constitutive secretion, and that these cells promote the extracellular residency of HYAL1 through downregulation of the mannose receptor. Interestingly, the expression of the other main hyaluronidase, HYAL2, and of lysosomal exoglycosidases involved in HA degradation, does not increase similarly to HYAL1 upon osteoclastogenesis. Taken together, these findings point out the predominant involvement of HYAL1 in bone HA metabolism and perhaps bone remodeling via the resorption lacuna. PMID:27755597

  9. Secreted Ectodomain of Sialic Acid-Binding Ig-Like Lectin-9 and Monocyte Chemoattractant Protein-1 Synergistically Regenerate Transected Rat Peripheral Nerves by Altering Macrophage Polarity.

    Science.gov (United States)

    Kano, Fumiya; Matsubara, Kohki; Ueda, Minoru; Hibi, Hideharu; Yamamoto, Akihito

    2017-03-01

    Peripheral nerves (PNs) exhibit remarkable self-repairing reparative activity after a simple crush or cut injury. However, the neuronal transection involving a nerve gap overwhelms their repairing activity and causes persistent paralysis. Here, we show that an implantation of the serum-free conditioned medium from stem cells from human exfoliated deciduous teeth (SHED-CM) immersed in a collagen sponge into the nerve gap formed by rat facial nerves transection restored the neurological function. In contrast, SHED-CM specifically depleted of a set of anti-inflammatory M2 macrophage inducers, monocyte chemoattractant protein-1 (MCP-1) and the secreted ectodomain of sialic acid-binding Ig-like lectin-9 (sSiglec-9) lost the ability to restore neurological function in this model. Notably, the combination of MCP-1 and sSiglec-9 induced the polarization of M2 macrophages in vitro, resulting in the expression of multiple trophic factors that enhanced proliferation, migration, and differentiation of Schwann cells, blood vessel formation, and nerve fiber extension. Furthermore, the implantation of a collagen graft containing MCP-1/sSiglec-9 into the nerve gap induced anti-inflammatory M2 macrophage polarization, generated a Schwann-cell bridge instead of fibrotic scar, induced axonal regrowth, and restored nerve function. The specific elimination of M2 macrophages by Mannosylated-Clodrosome suppressed the MCP-1/sSiglec-9-mediated neurological recovery. Taken together, our data suggest that MCP-1/sSiglec-9 regenerates PNs by inducing tissue-repairing M2 macrophages and may provide therapeutic benefits for severe peripheral nerve injuries. Stem Cells 2017;35:641-653.

  10. Acanthamoeba castellanii Genotype T4 Stimulates the Production of Interleukin-10 as Well as Proinflammatory Cytokines in THP-1 Cells, Human Peripheral Blood Mononuclear Cells, and Human Monocyte-Derived Macrophages.

    Science.gov (United States)

    Mattana, Antonella; Sanna, Manuela; Cano, Antonella; Delogu, Giuseppe; Erre, Giuseppe; Roberts, Craig W; Henriquez, Fiona L; Fiori, Pier Luigi; Cappuccinelli, Piero

    2016-10-01

    Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, such as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages during the early phase of infection. Here, THP-1 cells, primary human monocytes isolated from peripheral blood, and human monocyte-derived macrophages were either coincubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell-free conditioned medium. Production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-12), anti-inflammatory cytokine (IL-10), and chemokine (IL-8) was evaluated at specific hours poststimulation (ranging from 1.5 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both proinflammatory cytokines and chemokine production, suggesting that this protozoan infection results from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of proinflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response.

  11. Acanthamoeba castellanii Genotype T4 Stimulates the Production of Interleukin-10 as Well as Proinflammatory Cytokines in THP-1 Cells, Human Peripheral Blood Mononuclear Cells, and Human Monocyte-Derived Macrophages

    Science.gov (United States)

    Sanna, Manuela; Cano, Antonella; Delogu, Giuseppe; Erre, Giuseppe; Roberts, Craig W.; Henriquez, Fiona L.; Fiori, Pier Luigi; Cappuccinelli, Piero

    2016-01-01

    Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, such as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages during the early phase of infection. Here, THP-1 cells, primary human monocytes isolated from peripheral blood, and human monocyte-derived macrophages were either coincubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell-free conditioned medium. Production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-12), anti-inflammatory cytokine (IL-10), and chemokine (IL-8) was evaluated at specific hours poststimulation (ranging from 1.5 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both proinflammatory cytokines and chemokine production, suggesting that this protozoan infection results from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of proinflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response. PMID:27481240

  12. The innate pattern recognition molecule Ficolin-1 is secreted by monocytes/macrophages and is circulating in human plasma

    DEFF Research Database (Denmark)

    Honoré, Christian; Rørvig, Sara; Munthe-Fog, Lea

    2008-01-01

    Ficolin-1 (M-Ficolin) is a pattern recognition molecule of the complement system that is expressed by myeloid cells and type II alveolar epithelial cells. Ficolin-1 has been shown to localize in the secretory granules of these cells and attached to cell surfaces, but whether Ficolin-1 exists...

  13. Induction of cyclooxygenase-2 expression during HIV-1-infected monocyte-derived macrophage and human brain microvascular endothelial cell interactions

    NARCIS (Netherlands)

    Pereira, CF; Boven, LA; Middel, J; Verhoef, J; Nottet, HSLM

    2000-01-01

    Human immunodeficiency virus type-1 (HIV-1)-associated dementia (HAD) is a neurodegenerative disease characterized by HIV infection and replication in brain tissue. HIV-1-infected monocytes overexpress inflammatory molecules that facilitate their entry into the brain. Prostanoids are lipid mediators

  14. Decitabine, Cytarabine, and Daunorubicin Hydrochloride in Treating Patients With Acute Myeloid Leukemia

    Science.gov (United States)

    2016-07-20

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  15. Rho GTPase expression in human myeloid cells.

    Directory of Open Access Journals (Sweden)

    Suzanne F G van Helden

    Full Text Available Myeloid cells are critical for innate immunity and the initiation of adaptive immunity. Strict regulation of the adhesive and migratory behavior is essential for proper functioning of these cells. Rho GTPases are important regulators of adhesion and migration; however, it is unknown which Rho GTPases are expressed in different myeloid cells. Here, we use a qPCR-based approach to investigate Rho GTPase expression in myeloid cells.We found that the mRNAs encoding Cdc42, RhoQ, Rac1, Rac2, RhoA and RhoC are the most abundant. In addition, RhoG, RhoB, RhoF and RhoV are expressed at low levels or only in specific cell types. More differentiated cells along the monocyte-lineage display lower levels of Cdc42 and RhoV, while RhoC mRNA is more abundant. In addition, the Rho GTPase expression profile changes during dendritic cell maturation with Rac1 being upregulated and Rac2 downregulated. Finally, GM-CSF stimulation, during macrophage and osteoclast differentiation, leads to high expression of Rac2, while M-CSF induces high levels of RhoA, showing that these cytokines induce a distinct pattern. Our data uncover cell type specific modulation of the Rho GTPase expression profile in hematopoietic stem cells and in more differentiated cells of the myeloid lineage.

  16. Killing of Escherichia coli by Crohn's Disease Monocyte-derived Macrophages and Its Enhancement by Hydroxychloroquine and Vitamin D

    OpenAIRE

    Flanagan, Paul K.; Chiewchengchol, Direkrit; Helen L Wright; Edwards, Steven W.; Alswied, Abdullah; Satsangi, Jack; Subramanian, Sreedhar; Rhodes, Jonathan M.; Campbell, Barry J.

    2015-01-01

    BACKGROUND: Crohn's disease (CD) is associated with defective innate immunity, including impaired neutrophil chemotaxis, and mucosal invasion by bacteria, particularly adherent and invasive Escherichia coli that replicate inside macrophage phagolysosomes. We compared CD and healthy control (HC) macrophages for their abilities to kill E. coli and generate neutrophil chemoattractants and also assessed the effects of hydroxychloroquine (HCQ) and vitamin D on killing of phagocytosed E. coli.METHO...

  17. First Case of Biphenotypic/bilineal (B/myeloid, B/monocytic) Mixed Phenotype Acute Leukemia with t(9;22)(q34;q11.2);BCR-ABL1.

    Science.gov (United States)

    Kim, Hyeong Nyeon; Hur, Mina; Kim, Hanah; Ji, Misuk; Moon, Hee-Won; Yun, Yeo-Min; Lee, Mark Hong

    2016-07-01

    Mixed phenotype acute leukemia (MPAL) includes biphenotypic leukemia, bilineal leukemia, or its combination by the 2008 WHO classification. A few cases of combined biphenotypic/bilineal MPAL have been reported so far; they all had biphenotypic expressions in only one of the two distinct leukemic populations. A 43-year-old female presented with leukocytosis and bicytopenia. Her complete blood counts were: hemoglobin, 6.9 g/dL; white blood cells, 62.8×10(9)/L; and platelets, 83×10(9)/L. Neither lymphadenopathy nor organomegaly was observed. Blasts and promonocytes/monoblasts were increased in her peripheral blood (42%) and bone marrow (60.1%). Flow cytometric analysis revealed two distinct populations of leukemic cells, which expressed CD11c, CD19, and cytoplasmic CD79a in common. Additionally, the first population expressed CD10 and CD117 (B/myeloid), and the second one expressed CD14 and CD20 (B/monocytic). She had a karyotype of 46,XX,inv(9)(p12q13),t(9;22)(q34;q11.2)[20] and BCR/ABL1 rearrangement. To the best of our knowledge, this is the first reported case of biphenotypic/bilineal MPAL with B/myeloid and B/monocytic expressions. © 2016 by the Association of Clinical Scientists, Inc.

  18. Modeling of HIV-1 infection: insights to the role of monocytes/macrophages, latently infected T4 cells, and HAART regimes.

    Directory of Open Access Journals (Sweden)

    Qiang Li

    Full Text Available A novel dynamic model covering five types of cells and three connected compartments, peripheral blood (PB, lymph nodes (LNs, and the central nervous system (CNS, is here proposed. It is based on assessment of the biological principles underlying the interactions between the human immunodeficiency virus type I (HIV-1 and the human immune system. The simulated results of this model matched the three well-documented phases of HIV-1 infection very closely and successfully described the three stages of LN destruction that occur during HIV-1 infection. The model also showed that LNs are the major location of viral replication, creating a pool of latently infected T4 cells during the latency period. A detailed discussion of the role of monocytes/macrophages is made, and the results indicated that infected monocytes/macrophages could determine the progression of HIV-1 infection. The effects of typical highly active antiretroviral therapy (HAART drugs on HIV-1 infection were analyzed and the results showed that efficiency of each drug but not the time of the treatment start contributed to the change of the turnover of the disease greatly. An incremental count of latently infected T4 cells was made under therapeutic simulation, and patients were found to fail to respond to HAART therapy in the presence of certain stimuli, such as opportunistic infections. In general, the dynamics of the model qualitatively matched clinical observations very closely, indicating that the model may have benefits in evaluating the efficacy of different drug therapy regimens and in the discovery of new monitoring markers and therapeutic schemes for the treatment of HIV-1 infection.

  19. Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment.

    Science.gov (United States)

    Allavena, P; Mantovani, A

    2012-02-01

    Mononuclear phagocytes are cells of the innate immunity that defend the host against harmful pathogens and heal tissues after injury. Contrary to expectations, in malignancies, tumour-associated macrophages (TAM) promote disease progression by supporting cancer cell survival, proliferation and invasion. TAM and related myeloid cells [Tie2(+) monocytes and myeloid-derived suppressor cells (MDSC)] also promote tumour angiogenesis and suppress adaptive immune responses. These divergent biological activities are mediated by macrophages/myeloid cells with distinct functional polarization, which are ultimately dictated by microenvironmental cues. Clinical and experimental evidence has shown that cancer tissues with high infiltration of TAM are associated with poor patient prognosis and resistance to therapies. Targeting of macrophages in tumours is considered a promising therapeutic strategy: depletion of TAM or their 're-education' as anti-tumour effectors is under clinical investigation and will hopefully contribute to the success of conventional anti-cancer treatments.

  20. Vascular growth responses to chronic arterial occlusion are unaffected by myeloid specific focal adhesion kinase (FAK) deletion

    Science.gov (United States)

    Heuslein, Joshua L.; Murrell, Kelsey P.; Leiphart, Ryan J.; Llewellyn, Ryan A.; Meisner, Joshua K.; Price, Richard J.

    2016-05-01

    Arteriogenesis, or the lumenal expansion of pre-existing arterioles in the presence of an upstream occlusion, is a fundamental vascular growth response. Though alterations in shear stress stimulate arteriogenesis, the migration of monocytes into the perivascular space surrounding collateral arteries and their differentiation into macrophages is critical for this vascular growth response to occur. Focal adhesion kinase’s (FAK) role in regulating cell migration has recently been expanded to primary macrophages. We therefore investigated the effect of the myeloid-specific conditional deletion of FAK on vascular remodeling in the mouse femoral arterial ligation (FAL) model. Using laser Doppler perfusion imaging, whole mount imaging of vascular casted gracilis muscles, and immunostaining for CD31 in gastrocnemius muscles cross-sections, we found that there were no statistical differences in perfusion recovery, arteriogenesis, or angiogenesis 28 days after FAL. We therefore sought to determine FAK expression in different myeloid cell populations. We found that FAK is expressed at equally low levels in Ly6Chi and Ly6Clo blood monocytes, however expression is increased over 2-fold in bone marrow derived macrophages. Ultimately, these results suggest that FAK is not required for monocyte migration to the perivascular space and that vascular remodeling following arterial occlusion occurs independently of myeloid specific FAK.

  1. Aortic endothelial cells regulate proliferation of human monocytes in vitro via a mechanism synergistic with macrophage colony-stimulating factor. Convergence at the cyclin E/p27(Kip1) regulatory checkpoint.

    Science.gov (United States)

    Antonov, A S; Munn, D H; Kolodgie, F D; Virmani, R; Gerrity, R G

    1997-06-15

    Monocyte-derived macrophages (Mphis) are pivotal participants in the pathogenesis of atherosclerosis. Evidence from both animal and human plaques indicates that local proliferation may contribute to accumulation of lesion Mphis, and the major Mphi growth factor, macrophage colony stimulating factor (MCSF), is present in atherosclerotic plaques. However, most in vitro studies have failed to demonstrate that human monocytes/Mphis possess significant proliferative capacity. We now report that, although human monocytes cultured in isolation showed only limited MCSF-induced proliferation, monocytes cocultured with aortic endothelial cells at identical MCSF concentrations underwent enhanced (up to 40-fold) and prolonged (21 d) proliferation. In contrast with monocytes in isolation, this was optimal at low seeding densities, required endothelial cell contact, and could not be reproduced by coculture with smooth muscle cells. Intimal Mphi isolated from human aortas likewise showed endothelial cell contact-dependent, MCSF-induced proliferation. Consistent with a two-signal mechanism governing Mphi proliferation, the cell cycle regulatory protein, cyclin E, was rapidly upregulated by endothelial cell contact in an MCSFindependent fashion, but MCSF was required for successful downregulation of the cell cycle inhibitory protein p27(Kip1) before cell cycling. Thus endothelial cells and MCSF differentially and synergistically regulate two Mphi genes critical for progression through the cell cycle.

  2. Endocannabinoid System Contributes to Liver Injury and Inflammation by Activation of Bone Marrow-Derived Monocytes/Macrophages in a CB1-Dependent Manner.

    Science.gov (United States)

    Mai, Ping; Yang, Le; Tian, Lei; Wang, Lin; Jia, Shuangshuang; Zhang, Yuanyuan; Liu, Xin; Yang, Lin; Li, Liying

    2015-10-01

    Hepatic injury undergoes significant increases in endocannabinoidsand infiltrations of macrophages, yet the concrete mechanisms of changes in endocannabinoids and the functions of macrophage-expressed cannabinoid receptors (CBs) are unclear. Biosynthetic and degradative enzymes of endocannabinoids revealed a significant change in human fibrotic liver. Meanwhile, we showed dynamic changes of these enzymes and CBs (CB1 and CB2) from 1 to 56 d in carbon tetrachloride-induced murine liver injury. Biosynthetic enzymes (N-acylphosphatidyl-ethanolamine selective phospholipase D and diacylglycerol lipase-α) and CBs were markedly increased, whereas degradative enzymes (fatty acid amidohydrolase and monoacylglycerol lipase) were downregulated. Moreover, these enzymes intimately correlated with the fibrosis parameter [procollagen α1(III)]. Bone marrow-derived monocytes/macrophages (BMM) expressed CBs. Interestingly, CB1 but not CB2 mediated BMM migration through a Boyden chambers assay, and the effect depended on the G(α)i/o/RhoA/ROCK signaling pathway. ICR mice were lethally irradiated and received BM transplants from enhanced GFP transgenic mice. Four weeks later, mice of BM reconstruction were subjected to carbon tetrachloride-induced liver injury. In the chimeric murine model, we found that blockade of CB1 by administration of a CB1 antagonist inhibited the recruitment of BMM into injured liver using immunofluorescence staining and FACS, but it did not have effects on migration of T cells and dendritic cells without CB1 expression. Furthermore, activation of CB1 enhanced cytokine expression of BMM. In vivo, inhibition of CB1 attenuated the inflammatory cytokine level through real-time RT-PCR and cytometric bead array, ameliorating hepatic inflammation and fibrosis. In this study, we identify inactivation of BMM-expressed CB1 as a therapeutic strategy for reducing hepatic inflammation and fibrosis.

  3. Differential expression of HIV-1 interfering factors in monocyte-derived macrophages stimulated with polarizing cytokines or interferons

    Science.gov (United States)

    Jiménez, Viviana Cobos; Booiman, Thijs; de Taeye, Steven W.; van Dort, Karel A.; Rits, Maarten A. N.; Hamann, Jörg; Kootstra, Neeltje A.

    2012-10-01

    HIV-1 replication in macrophages can be regulated by cytokines and infection is restricted in macrophages activated by type I interferons and polarizing cytokines. Here, we observed that the expression levels of the cellular factors Trim5α, CypA, APOBEC3G, SAMHD-1, Trim22, tetherin and TREX-1, and the anti-HIV miRNAs miR-28, miR-150, miR-223 and miR-382 was upregulated by IFN-α and IFN-β in macrophages, which may account for the inhibiting effect on viral replication and the antiviral state of these cells. Expression of these factors was also increased by IFN-γ +/- TNF-α, albeit to a lesser extent; yet, HIV-1 replication in these cells was not restricted at the level of proviral synthesis, indicating that these cellular factors only partially contribute to the observed restriction. IL-4, IL-10 or IL-32 polarization did not affect the expression of cellular factors and miRNAs, suggesting only a limited role for these cellular factors in restricting HIV-1 replication in macrophages.

  4. Transcriptional Response of Bovine Monocyte-Derived Macrophages after the Infection with Different Argentinean Mycobacterium bovis Isolates

    Directory of Open Access Journals (Sweden)

    Karina Caimi

    2013-01-01

    Full Text Available Infection of bovines with Mycobacterium bovis causes important financial hardship in many countries presenting also a risk for humans. M. bovis is known to be adapted to survive and thrive within the intramacrophage environment. In spite of its relevance, at present the information about macrophage expression patterns is scarce, particularly regarding the bovine host. In this study, transcriptomic analysis was used to detect genes differentially expressed in macrophages derived from peripheral blood mononuclear cells at early stages of infection with two Argentinean strains of M. bovis, a virulent and an attenuated strains. The results showed that the number of differentially expressed genes in the cells infected with the virulent strain (5 was significantly lower than those in the cells infected with the attenuated strain (172. Several genes were more strongly expressed in infected macrophages. Among them, we detected encoding transcription factors, anthrax toxin receptor, cell division and apoptosis regulator, ankyrin proteins, cytoskeleton proteins, protein of cell differentiation, and regulators of endocytic traffic of membrane. Quantitative real-time PCR of a selected group of differentially expressed genes confirmed the microarrays results. Altogether, the present results contribute to understanding the mechanisms involved in the early interaction of M. bovis with the bovine macrophage.

  5. HCMV Displays a Unique Transcriptome of Immunomodulatory Genes in Primary Monocyte-Derived Cell Types

    Science.gov (United States)

    Van Damme, Ellen; Thys, Kim; Tuefferd, Marianne; Van Hove, Carl; Aerssens, Jeroen; Van Loock, Marnix

    2016-01-01

    Human cytomegalovirus (HCMV) is a betaherpesvirus which rarely presents problems in healthy individuals, yet may result in severe morbidity in immunocompromised patients and in immune-naïve neonates. HCMV has a large 235 kb genome with a coding capacity of at least 165 open reading frames (ORFs). This large genome allows complex gene regulation resulting in different sets of transcripts during lytic and latent infection. While latent virus mainly resides within monocytes and CD34+ progenitor cells, reactivation to lytic infection is driven by differentiation towards terminally differentiated myeloid dendritic cells and macrophages. Consequently, it has been suggested that macrophages and dendritic cells contribute to viral spread in vivo. Thus far only limited knowledge is available on the expression of HCMV genes in terminally differentiated myeloid primary cells and whether or not the virus exhibits a different set of lytic genes in primary cells compared with lytic infection in NHDF fibroblasts. To address these questions, we used Illumina next generation sequencing to determine the HCMV transcriptome in macrophages and dendritic cells during lytic infection and compared it to the transcriptome in NHDF fibroblasts. Here, we demonstrate unique expression profiles in macrophages and dendritic cells which significantly differ from the transcriptome in fibroblasts mainly by modulating the expression of viral transcripts involved in immune modulation, cell tropism and viral spread. In a head to head comparison between macrophages and dendritic cells, we observed that factors involved in viral spread and virion composition are differentially regulated suggesting that the plasticity of the virion facilitates the infection of surrounding cells. Taken together, this study provides the full transcript expression analysis of lytic HCMV genes in monocyte-derived type 1 and type 2 macrophages as well as in monocyte-derived dendritic cells. Thereby underlining the potential

  6. Unique proteomic signatures distinguish macrophages and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Lev Becker

    Full Text Available Monocytes differentiate into heterogeneous populations of tissue macrophages and dendritic cells (DCs that regulate inflammation and immunity. Identifying specific populations of myeloid cells in vivo is problematic, however, because only a limited number of proteins have been used to assign cellular phenotype. Using mass spectrometry and bone marrow-derived cells, we provided a global view of the proteomes of M-CSF-derived macrophages, classically and alternatively activated macrophages, and GM-CSF-derived DCs. Remarkably, the expression levels of half the plasma membrane proteins differed significantly in the various populations of cells derived in vitro. Moreover, the membrane proteomes of macrophages and DCs were more distinct than those of classically and alternatively activated macrophages. Hierarchical cluster and dual statistical analyses demonstrated that each cell type exhibited a robust proteomic signature that was unique. To interrogate the phenotype of myeloid cells in vivo, we subjected elicited peritoneal macrophages harvested from wild-type and GM-CSF-deficient mice to mass spectrometric and functional analysis. Unexpectedly, we found that peritoneal macrophages exhibited many features of the DCs generated in vitro. These findings demonstrate that global analysis of the membrane proteome can help define immune cell phenotypes in vivo.

  7. Potential differentiation of tumor bearing mouse CD11b+Gr-1+ immature myeloid cells into both suppressor macrophages and immunostimulatory dendritic cells.

    Science.gov (United States)

    Narita, Yoshinori; Wakita, Daiko; Ohkur, Takayuki; Chamoto, Kenji; Nishimura, Takashi

    2009-02-01

    Evaluation of immunosuppressive tumor-escape mechanisms in tumor-bearing hosts is of great importance for the development of an efficient tumor immunotherapy. We document here the functional characteristics of CD11b(+)Gr-1(+) immature myeloid cells (ImC), which increase abnormally in tumor-bearing mice. Although it has been reported that ImC exhibit a strong immunosuppressive activity against T cell responses, we demonstrate that ImC derived from tumor-bearing mouse spleens (TB-SPL) did not exhibit a strong inhibitory activity against CTL generation in MLR. However, ImC isolated from TB-SPL and induced to differentiate into CD11b(+)Gr-1(+)F4/80(+) suppressor macrophages (MPhi) under the influence of tumor-derived factors were immunosuppressive. Furthermore, we also demonstrate that ImC isolated from TB-SPL had a capability of differentiating into immunostimulatory dendritic cells (DC1) supportive of the generation of IFN-gamma producing CTL if the ImC were cultured with Th1 cytokines plus GM-CSF and IL-3. Thus, our findings indicate that tumor bearing mouse-derived CD11b(+)Gr-1(+) ImC are not committed to development into immunosuppressor cells but have dual differentiation ability into both immunosuppressive myeloid cells and immunostimulatory DC1.

  8. Monocyte-Derived Suppressor Cells in Transplantation.

    Science.gov (United States)

    Ochando, Jordi; Conde, Patricia; Bronte, Vincenzo

    Myeloid-derived suppressor cells (MDSC) are cells of myeloid origin with enhanced suppressive function. They are negative regulators of the immune responses and comprise a heterogeneous mixture of immunosuppressive cells of monocytic (M-MDSC) and granulocytic (G-MDSC) origin. A more recent nomenclature proposes the term "suppressive monocyte derived cells" (suppressive MCs) to define CSF1/CSF2-dependent mouse suppressor cells that develop from common monocyte progenitors (cMoPs) after birth. Here, we review the literature about monocytic-derived cells with demonstrated suppressor function in vitro and in vivo within the context of solid organ transplantation.

  9. Mononuclear cells in subcutaneous haemorrhage with special consideration of myeloid percursor cells.

    Science.gov (United States)

    Oehmichen, M; Windisch, A; Meissner, C

    2000-10-01

    Various hematogenous markers were used to differentiate and quantify the types of mononuclear cells present in subcutaneous haemorrhages. Fifty samples of subcutaneous bleeding with a survival time of a few minutes to more than 48 hours were studied. The various cell types were detected using the following stains: Naphthol AS-D chloracetate esterase for myeloid cells, including mast cells; (alpha1-antichymotrypsin for monocytes/macrophages; UCHL1 for T-lymphocytes; and L26 for B lymphocytes. The percentage of monocytes/macrophages was found to increase in dependence on survival time, whereas T-lymphocytes declined. Within minutes of injury neutrophilic granulocytes had emigrated into the surrounding tissue and mast cell degranulation had occurred within the haemorrhagic zone. Esterase-positive mononuclear cells, namely metamyelocytes, were detected within minutes after injury and were still present after survival times exceeding 48 hours; however, no dependence on survival time or cause of death was found. Although the increasing number of monocytes/ macrophages and T-lymphocytes was expected, the sometimes high percentage of myeloid precursor cells within the wound were surprising. Possible explanations for this phenomenon are discussed.

  10. Characterizing primary human microglia: A comparative study with myeloid subsets and culture models.

    Science.gov (United States)

    Melief, J; Sneeboer, M A M; Litjens, M; Ormel, P R; Palmen, S J M C; Huitinga, I; Kahn, R S; Hol, E M; de Witte, L D

    2016-11-01

    The biology of microglia has become subject to intense study, as they are widely recognized as crucial determinants of normal and pathologic brain functioning. While they are well studied in animal models, it is still strongly debated what specifies most accurately the phenotype and functioning of microglia in the human brain. In this study, we therefore isolated microglia from postmortem human brain tissue of corpus callosum (CC) and frontal cortex (CTX). The cells were phenotyped for a panel of typical microglia markers and genes involved in myeloid cell biology. Furthermore, their response to pro- and anti-inflammatory stimuli was assessed. The microglia were compared to key human myeloid cell subsets, including monocytes, monocyte-derived macrophages and monocyte-derived dendritic cells, and several commonly used microglial cell models. Protein and mRNA expression profiles partly differed between microglia isolated from CC and frontal cortex and were clearly distinct from other myeloid subsets. Microglia responded to both pro- (LPS or poly I:C) and anti-inflammatory (IL-4 or dexamethasone) stimuli. Interestingly, pro-inflammatory responses differed between microglia and monocyte-derived macrophages, as the former responded more strongly to poly I:C and the latter more strongly to LPS. Furthermore, we defined a large phenotypic discrepancy between primary human microglia and currently used microglial cell models and cell lines. In conclusion, we further delineated the unique and specific features that discriminate human microglia from other myeloid subsets, and we show that currently used cellular models only partly reflect the phenotype of primary human microglia. GLIA 2016;64:1857-1868.

  11. Neutrophils and macrophages: The main partners of phagocyte cell systems

    Directory of Open Access Journals (Sweden)

    Manuel T. Silva

    2012-07-01

    Full Text Available Biological cellular systems are groups of cells sharing a set of characteristics, mainly key function and origin. Phagocytes are crucial in the host defense against microbial infection. The previously proposed phagocyte cell systems including the most recent and presently prevailing one, the Mononuclear Phagocyte System (MPS, grouped mononuclear cells but excluded neutrophils, creating an unacceptable situation. As neutrophils are archetypical phagocytes that must be members of comprehensive phagocyte systems, M. T. Silva recently proposed the creation of a Myeloid Phagocyte System (MYPS that adds neutrophils to the MPS. The phagocytes grouped in the MYPS include the leukocytes neutrophils, inflammatory monocytes, macrophages and immature myeloid DCs. Here the justifications behind the inclusion of neutrophils in a phagocyte system is expanded and the MYPS are further characterized as a group of dedicated phagocytic cells that function in an interacting and cooperative way in the host defense against microbial infection. Neutrophils and macrophages are considered the main arms of this system.

  12. Molecular Characterization of E-Type Prostanoid Receptor 4 (EP4 from Ayu (Plecoglossus altivelis and Its Functional Analysis in the Monocytes/Macrophages.

    Directory of Open Access Journals (Sweden)

    Ye-Jing Rong

    Full Text Available Prostaglandin E2 (PGE2 plays an important role in a broad spectrum of physiological and pathological processes by interacting with E-type prostanoid receptors (EPs. EP4 is one of four EP subtypes known to mediate the immune response in mammalian monocytes/macrophages. However, the precise function and characteristics of EP4 in fish remain unclear. In this study, we characterized a novel EP4-like (PaEP4L gene from ayu, Plecoglossus altivelis. The cDNA sequence of PaEP4L is 2781 nucleotides (nts in length, encoding a polypeptide of 459 amino acid residues with a calculated molecular weight of 51.17 kDa. Sequence comparison and phylogenetic tree analysis showed that PaEP4L shared 76% amino acid identity with that of the Atlantic salmon (Salmo salar. PaEP4L mRNA was detected by real-time quantitative PCR (QPCR in all tested tissues and head kidney-derived monocytes/macrophages (MO/MФ. It varied greatly in liver, spleen and MO/MФ upon Vibrio anguillarum infection. Western blot analysis revealed a significant increase of PaEP4L in cell homogenates from ayu MO/MФ upon V. anguillarum infection. Moreover, anti-PaEP4L IgG reversed the down-regulation of interleukin 1β (IL-1β and tumor necrosis factor α (TNF-α mRNA expression as well as phagocytosis in ayu MO/MФ caused by PGE2. There were no significant differences in the respiratory burst response between PGE2 treated and untreated cells. We further found that cAMP mediated PGE2/PaEP4L signal in ayu MO/MФ. In conclusion, our results indicate that PaEP4L mediates PGE2 effects on ayu MO/MФ function, revealing that EP4 also plays a role in the modulation of cells of the fish's innate immune system.

  13. Interleukin-10 production by myeloid-derived suppressor cells contributes to bacterial persistence during Staphylococcus aureus orthopedic biofilm infection

    Science.gov (United States)

    Heim, Cortney E.; Vidlak, Debbie; Kielian, Tammy

    2015-01-01

    Staphylococcus aureus is known to establish biofilms on medical devices. We recently demonstrated that Ly6GhighLy6C+ myeloid-derived suppressor cells are critical for allowing S. aureus biofilms to subvert immune-mediated clearance; however, the mechanisms whereby myeloid-derived suppressor cells promote biofilm persistence remain unknown. Interleukin-10 expression was significantly increased in a mouse model of S. aureus orthopedic implant biofilm infection with kinetics that mirrored myeloid-derived suppressor cell recruitment. Because myeloid-derived suppressor cells produce interleukin-10, we explored whether it was involved in orchestrating the nonproductive immune response that facilitates biofilm formation. Analysis of interleukin-10–green fluorescent protein reporter mice revealed that Ly6GhighLy6C+ myeloid-derived suppressor cells were the main source of interleukin-10 during the first 2 wk of biofilm infection, whereas monocytes had negligible interleukin-10 expression until day 14. Myeloid-derived suppressor cell influx into implant-associated tissues was significantly reduced in interleukin-10 knockout mice at day 14 postinfection, concomitant with increased monocyte and macrophage infiltrates that displayed enhanced proinflammatory gene expression. Reduced myeloid-derived suppressor cell recruitment facilitated bacterial clearance, as revealed by significant decreases in S. aureus burdens in the knee joint, surrounding soft tissue, and femur of interleukin-10 knockout mice. Adoptive transfer of interleukin-10 wild-type myeloid-derived suppressor cells into S. aureus–infected interleukin-10 knockout mice restored the local biofilm-permissive environment, as evidenced by increased bacterial burdens and inhibition of monocyte proinflammatory activity. These effects were both interleukin-10-dependent and interleukin-10-independent because myeloid-derived suppressor cell–derived interleukin-10 was required for promoting biofilm growth and anti

  14. THE MAPK ERK5, BUT NOT ERK1/2, INHIBITS THE PROGRESSION OF MONOCYTIC PHENOTYPE TO THE FUNCTIONING MACROPHAGE

    Science.gov (United States)

    Wang, Xuening; Pesakhov, Stella; Harrison, Jonathan S; Kafka, Michael; Danilenko, Michael; Studzinski, George P

    2014-01-01

    Intracellular signaling pathways present targets for pharmacological agents with potential for treatment of neoplastic diseases, with some disease remissions already recorded. However, cellular compensatory mechanisms usually negate the initial success. For instance, attempts to interrupt aberrant signaling downstream of the frequently mutated ras by inhibiting ERK1/2 has shown only limited usefulness for cancer therapy. Here, we examined how ERK5, that overlaps the functions of ERK1/2 in cell proliferation and survival, functions in a manner distinct from ERK1/2 in human AML cells induced to differentiate by 1,25D-dihydroxyvitamin D3 (1,25D). Using inhibitors of ERK1/2 and of MEK5/ERK5 at concentrations specific for each kinase in HL60 and U937 cells, we observed that selective inhibition of the kinase activity of ERK5, but not of ERK1/2, in the presence of 1,25D resulted in macrophage-like cell morphology and enhancement of phagocytic activity. Importantly, this was associated with increased expression of the macrophage colony stimulating factor receptor (M-CSFR), but was not seen when M-CSFR expression was knocked down. Interestingly, inhibition of ERK1/2 led to activation of ERK5 in these cells. Our results support the hypothesis that ERK5 negatively regulates the expression of M-CSFR, and thus has a restraining function on macrophage differentiation. The addition of pharmacological inhibitors of ERK5 may influence trials of differentiation therapy of AML. PMID:25447310

  15. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Caroline; Squadrito, Mario Leonardo [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Iruela-Arispe, M. Luisa, E-mail: arispe@mcdb.ucla.edu [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles 90095, CA (United States); De Palma, Michele, E-mail: michele.depalma@epfl.ch [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2013-07-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches.

  16. A matrix of cholesterol crystals, but not cholesterol alone, primes human monocytes/macrophages for excessive endotoxin-induced production of tumor necrosis factor-alpha. Role in atherosclerotic inflammation?

    DEFF Research Database (Denmark)

    Bendtzen, Klaus; Christensen, Ole; Nielsen, Claus Henrik

    2014-01-01

    When exposed to small amounts of bacterial endotoxin, matrices of cholesterol crystals, but not cholesterol itself, primed human monocytes/macrophages to a highly augmented (>10-fold) production of inflammatory tumor necrosis factor-α. Priming also sensitized the cells, as 10- to 100-fold lower...... suggest that cholesterol matrix formation may play a pathogenic role in atherosclerotic inflammation, and they indicate a mechanism by which bacteria and/or bacterial products may play a role in processes leading to arteriosclerosis....

  17. Infection of equine monocyte-derived macrophages with an attenuated equine infectious anemia virus (EIAV) strain induces a strong resistance to the infection by a virulent EIAV strain.

    Science.gov (United States)

    Ma, Jian; Wang, Shan-Shan; Lin, Yue-Zhi; Liu, Hai-Fang; Liu, Qiang; Wei, Hua-Mian; Wang, Xue-Feng; Wang, Yu-Hong; Du, Cheng; Kong, Xian-Gang; Zhou, Jian-Hua; Wang, Xiaojun

    2014-08-09

    The Chinese attenuated equine infectious anemia virus (EIAV) vaccine has successfully protected millions of equine animals from EIA disease in China. Given that the induction of immune protection results from the interactions between viruses and hosts, a better understanding of the characteristics of vaccine strain infection and host responses would be useful for elucidating the mechanism of the induction of immune protection by the Chinese attenuated EIAV strain. In this study, we demonstrate in equine monocyte-derived macrophages (eMDM) that EIAVFDDV13, a Chinese attenuated EIAV strain, induced a strong resistance to subsequent infection by a pathogenic strain, EIAVUK3. Further experiments indicate that the expression of the soluble EIAV receptor sELR1, Toll-like receptor 3 (TLR3) and interferon β (IFNβ) was up-regulated in eMDM infected with EIAVFDDV13 compared with eMDM infected with EIAVUK3. Stimulating eMDM with poly I:C resulted in similar resistance to EIAV infection as induced by EIAVFDDV13 and was correlated with enhanced TLR3, sELR1 and IFNβ expression. The knock down of TLR3 mRNA significantly impaired poly I:C-stimulated resistance to EIAV, greatly reducing the expression of sELR1 and IFNβ and lowered the level of infection resistance induced by EIAVFDDV13. These results indicate that the induction of restraining infection by EIAVFDDV13 in macrophages is partially mediated through the up-regulated expression of the soluble viral receptor and IFNβ, and that the TLR3 pathway activation plays an important role in the development of an EIAV-resistant intracellular environment.

  18. Global gene expression and systems biology analysis of bovine monocyte-derived macrophages in response to in vitro challenge with Mycobacterium bovis.

    Directory of Open Access Journals (Sweden)

    David A Magee

    Full Text Available BACKGROUND: Mycobacterium bovis, the causative agent of bovine tuberculosis, is a major cause of mortality in global cattle populations. Macrophages are among the first cell types to encounter M. bovis following exposure and the response elicited by these cells is pivotal in determining the outcome of infection. Here, a functional genomics approach was undertaken to investigate global gene expression profiles in bovine monocyte-derived macrophages (MDM purified from seven age-matched non-related females, in response to in vitro challenge with M. bovis (multiplicity of infection 2:1. Total cellular RNA was extracted from non-challenged control and M. bovis-challenged MDM for all animals at intervals of 2 hours, 6 hours and 24 hours post-challenge and prepared for global gene expression analysis using the Affymetrix® GeneChip® Bovine Genome Array. RESULTS: Comparison of M. bovis-challenged MDM gene expression profiles with those from the non-challenged MDM controls at each time point identified 3,064 differentially expressed genes 2 hours post-challenge, with 4,451 and 5,267 differentially expressed genes detected at the 6 hour and 24 hour time points, respectively (adjusted P-value threshold ≤ 0.05. Notably, the number of downregulated genes exceeded the number of upregulated genes in the M. bovis-challenged MDM across all time points; however, the fold-change in expression for the upregulated genes was markedly higher than that for the downregulated genes. Systems analysis revealed enrichment for genes involved in: (1 the inflammatory response; (2 cell signalling pathways, including Toll-like receptors and intracellular pathogen recognition receptors; and (3 apoptosis. CONCLUSIONS: The increased number of downregulated genes is consistent with previous studies showing that M. bovis infection is associated with the repression of host gene expression. The results also support roles for MyD88-independent signalling and intracellular PRRs in

  19. Toll-Like Receptor 4 Promotes NO Synthesis by Upregulating GCHI Expression under Oxidative Stress Conditions in Sheep Monocytes/Macrophages.

    Science.gov (United States)

    Deng, Shoulong; Yu, Kun; Zhang, Baolu; Yao, Yuchang; Wang, Zhixian; Zhang, Jinlong; Zhang, Xiaosheng; Liu, Guoshi; Li, Ning; Liu, Yixun; Lian, Zhengxing

    2015-01-01

    Many groups of Gram-negative bacteria cause diseases that are harmful to sheep. Toll-like receptor 4 (TLR4), which is critical for detecting Gram-negative bacteria by the innate immune system, is activated by lipopolysaccharide (LPS) to initiate inflammatory responses and oxidative stress. Oxidation intermediates are essential activators of oxidative stress, as low levels of free radicals form a stressful oxidative environment that can clear invading pathogens. NO is an oxidation intermediate and its generation is regulated by nitric oxide synthase (iNOS). Guanosine triphosphate cyclohydrolase (GCHI) is the rate-limiting enzyme for tetrahydrobiopterin (BH4) synthesis, which is essential for the production of inducible iNOS. Previously, we made vectors to overexpress the sheep TLR4 gene. Herein, first generation (G1) of transgenic sheep was stimulated with LPS in vivo and in vitro, and oxidative stress and GCHI expression were investigated. Oxidative injury caused by TLR4 overexpression was tightly regulated in tissues. However, the transgenic (Tg) group still secreted nitric oxide (NO) when an iNOS inhibitor was added. Furthermore, GCHI expression remained upregulated in both serum and monocytes/macrophages. Thus, overexpression of TLR4 in transgenic sheep might accelerate the clearance of invading microbes through NO generation following LPS stimulation. Additionally, TLR4 overexpression also enhances GCHI activation.

  20. Toll-Like Receptor 4 Promotes NO Synthesis by Upregulating GCHI Expression under Oxidative Stress Conditions in Sheep Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Shoulong Deng

    2015-01-01

    Full Text Available Many groups of Gram-negative bacteria cause diseases that are harmful to sheep. Toll-like receptor 4 (TLR4, which is critical for detecting Gram-negative bacteria by the innate immune system, is activated by lipopolysaccharide (LPS to initiate inflammatory responses and oxidative stress. Oxidation intermediates are essential activators of oxidative stress, as low levels of free radicals form a stressful oxidative environment that can clear invading pathogens. NO is an oxidation intermediate and its generation is regulated by nitric oxide synthase (iNOS. Guanosine triphosphate cyclohydrolase (GCHI is the rate-limiting enzyme for tetrahydrobiopterin (BH4 synthesis, which is essential for the production of inducible iNOS. Previously, we made vectors to overexpress the sheep TLR4 gene. Herein, first generation (G1 of transgenic sheep was stimulated with LPS in vivo and in vitro, and oxidative stress and GCHI expression were investigated. Oxidative injury caused by TLR4 overexpression was tightly regulated in tissues. However, the transgenic (Tg group still secreted nitric oxide (NO when an iNOS inhibitor was added. Furthermore, GCHI expression remained upregulated in both serum and monocytes/macrophages. Thus, overexpression of TLR4 in transgenic sheep might accelerate the clearance of invading microbes through NO generation following LPS stimulation. Additionally, TLR4 overexpression also enhances GCHI activation.

  1. High Intracellular Concentrations of Posaconazole Do Not Impact on Functional Capacities of Human Polymorphonuclear Neutrophils and Monocyte-Derived Macrophages In Vitro.

    Science.gov (United States)

    Farowski, Fedja; Cornely, Oliver A; Hartmann, Pia

    2016-06-01

    Posaconazole is a commonly used antifungal for the prophylaxis and treatment of invasive fungal infections. We previously demonstrated that the intracellular concentration of posaconazole in peripheral blood mononuclear cells (PBMCs) and polymorphonuclear neutrophils (PMNs) was greatly increased compared to the plasma concentration. As these professional phagocytes are crucial to combat fungal infections, we set out to investigate if and how, beneficial or deleterious, this high loading of intracellular posaconazole impacts the functional capacities of these cells. Here, we show that high intracellular concentrations of posaconazole do not significantly impact PMN and monocyte-derived macrophage function in vitro In particular, killing capacity and cytoskeletal features of PMN, such as migration, are not affected, indicating that these cells serve as vehicles for posaconazole to the site of infection. Moreover, since posaconazole as such slowed the germination of Aspergillus fumigatus conidia, infected neutrophils released less reactive oxygen species (ROS). Based on these findings, we propose that the delivery of posaconazole by neutrophils to the site of Aspergillus species infection warrants control of the pathogen and preservation of tissue integrity at the same time.

  2. Pathogenic prion protein fragment (PrP106–126) promotes human immunodeficiency virus type-1 infection in peripheral blood monocyte-derived macrophages

    Science.gov (United States)

    Bacot, Silvia M.; Feldman, Gerald M.; Yamada, Kenneth M.; Dhawan, Subhash

    2017-01-01

    Transfusion of blood and blood products contaminated with the pathogenic form of prion protein Prpsc, thought to be the causative agent of variant a Creutzfeldt–Jakob disease (vCJD), may result in serious consequences in recipients with a compromised immune system, for example, as seen in HIV-1 infection. In the present study, we demonstrate that treatment of peripheral blood monocyte-derived macrophages (MDM) with PrP106–126, a synthetic domain of PrPsc that has intrinsic functional activities related to the full-length protein, markedly increased their susceptibility to HIV-1 infection, induced cytokine secretion, and enhanced their migratory behavior in response to N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP). Live-cell imaging of MDM cultured in the presence of PrP106–126 showed large cell clusters indicative of cellular activation. Tyrosine kinase inhibitor STI-571, protein kinase C inhibitor K252B, and cyclin-dependent kinase inhibitor olomoucine attenuated PrP106–126-induced altered MDM functions. These findings delineate a previously undefined functional role of PrP106–126-mediated host cell response in promoting HIV-1 pathogenesis. PMID:25589240

  3. Origin of osteoclasts: Mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Udagawa, Nobuyuki; Takahashi, Naoyuki; Akatsu, Takuhiko; Tanaka, Hirofumi; Sasaki, Takahisa; Suda, Tatsuo (Showa Univ., Tokyo (Japan)); Nishihara, Tatsuji; Koga, Toshihiko (National Inst. of Health, Tokyo (Japan)); Martin, T.J. (Saint Vincent' s Inst. of Medical Research, Melbourne (Australia))

    1990-09-01

    The authors previously reported that osteoclast-like cells were formed in cocultures of a mouse marrow-derived stromal cell line (ST2) with mouse spleen cells in the presence of 1{alpha},25-dihydroxyvitamin D{sub 3} and dexamethasone. In this study, they developed a new coculture system to determine the origin of osteoclasts. When relatively small numbers of mononuclear cells obtained from mouse bone marrow, spleen, thymus, or peripheral blood were cultured for 12 days on the ST2 cell layers, they formed colonies with a linear relationship between the number of colonies formed and the number of hemopoietic cells inoculated. Tartrate-resistant acid phosphatase (TRAPase)-positive monoculear and multinucleated cells appeared in the colonies (TRAPase-positive colonies) in response to 1{alpha},25-dihydroxyvitamin D{sub 3} and dexamethasone. When hemopoietic cells suspended in a collagen-gel solution were cultured on the ST2 cell layers to prevent their movement, TRAPase-positive colonies were similarly formed, indicating that each colony originated from a single cell. Salmon {sup 125}I-labeled calcitonin specifically bound to the TRAPase-positive cells. Resorption lacunae were formed on dentine slices on which cocultures were performed. These results indicate that osteoclasts are also derived from the mature monocytes and macrophages when a suitable microenvironment is provided by bone marrow-derived stromal cells.

  4. The membrane expression of Neisseria meningitidis adhesin A (NadA) increases the proimmune effects of MenB OMVs on human macrophages, compared with NadA- OMVs, without further stimulating their proinflammatory activity on circulating monocytes.

    Science.gov (United States)

    Tavano, Regina; Franzoso, Susanna; Cecchini, Paola; Cartocci, Elena; Oriente, Francesca; Aricò, Beatrice; Papini, Emanuele

    2009-07-01

    Hypervirulent MenB causing fatal human infections frequently display the oligomeric-coiled coil adhesin NadA, a 45-kDa intrinsic outer membrane protein implicated in binding to and invasion of respiratory epithelial cells. A recombinant soluble mutant lacking the 10-kDa COOH terminal membrane domain (NadA(Delta351-405)) also activates human monocytes/macrophages/DCs. As NadA is physiologically released during sepsis as part of OMVs, in this study, we tested the hypothesis that NadA(+) OMVs have an enhanced or modified proinflammatory/proimmune action compared with NadA(-) OMVs. To do this we investigated the activity of purified free NadA(Delta351-405) and of OMVs from MenB and Escherichia coli strains, expressing or not full-length NadA. NadA(Delta351-405) stimulated monocytes and macrophages to secrete cytokines (IL-1beta, TNF-alpha, IL-6, IL-12p40, IL-12p70, IL-10) and chemokines (IL-8, MIP-1alpha, MCP-1, RANTES), and full-length NadA improved MenB OMV activity, preferentially on macrophages, and only increased cytokine release. NadA(Delta351-405) induced the lymphocyte costimulant CD80 in monocytes and macrophages, and NadA(+) OMVs induced a wider set of molecules supporting antigen presentation (CD80, CD86, HLA-DR, and ICAM-1) more efficiently than NadA(-) OMVs only in macrophages. Moreover, membrane NadA effects, unlike NadA(Delta351-405) ones, were much less IFN-gamma-sensitive. The activity of NadA-positive E. coli OMVs was similar to that of control OMVs. NadA in MenB OMVs acted at adhesin concentrations approximately 10(6) times lower than those required to stimulate cells with free NadA(Delta351-405).

  5. Decitabine With or Without Bortezomib in Treating Older Patients With Acute Myeloid Leukemia

    Science.gov (United States)

    2016-03-14

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  6. Matrix metalloproteinase-9 and stromal cell-derived factor-1 act synergistically to support migration of blood-borne monocytes into the injured spinal cord.

    Science.gov (United States)

    Zhang, Haoqian; Trivedi, Alpa; Lee, Jung-Uek; Lohela, Marja; Lee, Sang Mi; Fandel, Thomas M; Werb, Zena; Noble-Haeusslein, Linda J

    2011-11-01

    The infiltration of monocytes into the lesioned site is a key event in the inflammatory response after spinal cord injury (SCI). We hypothesized that the molecular events governing the infiltration of monocytes into the injured cord involve cooperativity between the upregulation of the chemoattractant stromal cell-derived factor-1 (SDF-1)/CXCL12 in the injured cord and matrix metalloproteinase-9 (MMP-9/gelatinase B), expressed by infiltrating monocytes. SDF-1 and its receptor CXCR4 mRNAs were upregulated in the injured cord, while macrophages immunoexpressed CXCR4. When mice, transplanted with bone marrow cells from green fluorescent protein (GFP) transgenic mice, were subjected to SCI, GFP+ monocytes infiltrated the cord and displayed gelatinolytic activity. In vitro studies confirmed that SDF-1α, acting through CXCR4, expressed on bone marrow-derived macrophages, upregulated MMP-9 and stimulated MMP-9-dependent transmigration across endothelial cell monolayers by 2.6-fold. There was a reduction in F4/80+ macrophages in spinal cord-injured MMP-9 knock-out mice (by 36%) or wild-type mice, treated with the broad-spectrum MMP inhibitor GM6001 (by 30%). Mice were adoptively transferred with myeloid cells and treated with the MMP-9/-2 inhibitor SB-3CT, the CXCR4 antagonist AMD3100, or a combination of both drugs. While either drug resulted in a 28-30% reduction of infiltrated myeloid cells, the combined treatment resulted in a 45% reduction, suggesting that SDF-1 and MMP-9 function independently to promote the trafficking of myeloid cells into the injured cord. Collectively, these observations suggest a synergistic partnership between MMP-9 and SDF-1 in facilitating transmigration of monocytes into the injured spinal cord.

  7. The adult murine heart has a sparse, phagocytically active macrophage population that expands through monocyte recruitment and adopts an ‘M2’ phenotype in response to Th2 immunologic challenge

    Science.gov (United States)

    Mylonas, Katie J.; Jenkins, Stephen J.; Castellan, Raphael F.P.; Ruckerl, Dominik; McGregor, Kieran; Phythian-Adams, Alexander T.; Hewitson, James P.; Campbell, Sharon M.; MacDonald, Andrew S.; Allen, Judith E.; Gray, Gillian A.

    2015-01-01

    Tissue resident macrophages have vital homeostatic roles in many tissues but their roles are less well defined in the heart. The present study aimed to identify the density, polarisation status and distribution of macrophages in the healthy murine heart and to investigate their ability to respond to immune challenge. Histological analysis of hearts from CSF-1 receptor (csf1-GFP; MacGreen) and CX3CR1 (Cx3cr1GFP/+) reporter mice revealed a sparse population of GFP positive macrophages that were evenly distributed throughout the left and right ventricular free walls and septum. F4/80+CD11b+ cardiac macrophages, sorted from myocardial homogenates, were able to phagocytose fluorescent beads in vitro and expressed markers typical of both ‘M1’ (IL-1β, TNF and CCR2) and ‘M2’ activation (Ym1, Arg 1, RELMα and IL-10), suggesting no specific polarisation in healthy myocardium. Exposure to Th2 challenge by infection of mice with helminth parasites Schistosoma mansoni, or Heligmosomoides polygyrus, resulted in an increase in cardiac macrophage density, adoption of a stellate morphology and increased expression of Ym1, RELMα and CD206 (mannose receptor), indicative of ‘M2’ polarisation. This was dependent on recruitment of Ly6ChighCCR2+ monocytes and was accompanied by an increase in collagen content. In conclusion, in the healthy heart resident macrophages are relatively sparse and have a phagocytic role. Following Th2 challenge this population expands due to monocyte recruitment and adopts an ‘M2’ phenotype associated with increased tissue fibrosis. PMID:25700973

  8. The adult murine heart has a sparse, phagocytically active macrophage population that expands through monocyte recruitment and adopts an 'M2' phenotype in response to Th2 immunologic challenge.

    Science.gov (United States)

    Mylonas, Katie J; Jenkins, Stephen J; Castellan, Raphael F P; Ruckerl, Dominik; McGregor, Kieran; Phythian-Adams, Alexander T; Hewitson, James P; Campbell, Sharon M; MacDonald, Andrew S; Allen, Judith E; Gray, Gillian A

    2015-07-01

    Tissue resident macrophages have vital homeostatic roles in many tissues but their roles are less well defined in the heart. The present study aimed to identify the density, polarisation status and distribution of macrophages in the healthy murine heart and to investigate their ability to respond to immune challenge. Histological analysis of hearts from CSF-1 receptor (csf1-GFP; MacGreen) and CX3CR1 (Cx3cr1(GFP/+)) reporter mice revealed a sparse population of GFP positive macrophages that were evenly distributed throughout the left and right ventricular free walls and septum. F4/80+CD11b+ cardiac macrophages, sorted from myocardial homogenates, were able to phagocytose fluorescent beads in vitro and expressed markers typical of both 'M1' (IL-1β, TNF and CCR2) and 'M2' activation (Ym1, Arg 1, RELMα and IL-10), suggesting no specific polarisation in healthy myocardium. Exposure to Th2 challenge by infection of mice with helminth parasites Schistosoma mansoni, or Heligmosomoides polygyrus, resulted in an increase in cardiac macrophage density, adoption of a stellate morphology and increased expression of Ym1, RELMα and CD206 (mannose receptor), indicative of 'M2' polarisation. This was dependent on recruitment of Ly6ChighCCR2+ monocytes and was accompanied by an increase in collagen content. In conclusion, in the healthy heart resident macrophages are relatively sparse and have a phagocytic role. Following Th2 challenge this population expands due to monocyte recruitment and adopts an 'M2' phenotype associated with increased tissue fibrosis.

  9. The role of macrophages in skin homeostasis.

    Science.gov (United States)

    Yanez, Diana A; Lacher, Richard K; Vidyarthi, Aurobind; Colegio, Oscar R

    2017-04-01

    The skin and its appendages comprise the largest and fastest growing organ in the body. It performs multiple tasks and maintains homeostatic control, including the regulation of body temperature and protection from desiccation and from pathogen invasion. The skin can perform its functions with the assistance of different immune cell populations. Monocyte-derived cells are imperative for the completion of these tasks. The comprehensive role of macrophages and Langerhans cells in establishing and maintaining skin homeostasis remains incompletely defined. However, over the past decade, innovations in mouse genetics have allowed for advancements in the field. In this review, we explore different homeostatic roles of macrophages and Langerhans cells, including wound repair, follicle regeneration, salt balance, and cancer regression and progression in the skin. The understanding of the precise functions of myeloid-derived cells in the skin under basal conditions can help develop specific therapies that aid in skin and hair follicle regeneration and cutaneous cancer prevention.

  10. Binding of recombinant HIV coat protein gp120 to human monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Finbloom, D.S.; Hoover, D.L.; Meltzer, M.S. (Food and Drug Administration, Bethesda, MD (USA))

    1991-02-15

    Inasmuch as the exact level of CD4 Ag expression on macrophages is controversial and because HIV may interact with macrophages in a manner different from that on T cells, we analyzed the binding of gp120 to freshly isolated and cultured monocytes. rgp120 was iodinated using the lactoperoxidase method to a sp. act. of 600 Ci/mmol. Highly purified monocytes (greater than 90%) were isolated from the leukapheresed blood of normal volunteers by Ficoll-Hypaque sedimentation followed by countercurrent centrifugal elutriation and cultured 7 days in DMEM supplemented with 1000 U/ml macrophage CSF in 10% human serum. Whereas MOLT/4 cells consistently bound freshly prepared 125I-rgp120 at 80% specificity with 5100 +/- 700 mol/cell, MCSF cultured monocytes bound rgp120 at only 0 to 20% specificity and 420 +/- 200 mol/cell. Most of the radioactivity bound by these cells could not be blocked by the addition of unlabeled rgp120. In contrast, the U937 myeloid cell line bound rgp120 with 50% specificity and about 2500 mol/cell. Whereas the antibody OKT4a (anti-CD4) blocked 80% of the binding on MOLT/4 cells and 50% on U937 cells, binding was only inhibited on the average of 6% on cultured monocytes. When soluble rCD4 was used as an inhibitor, binding to MOLT/4 cells was blocked by 80%. In contrast, binding to cultured monocytes was inhibited by 28%. HIV infectivity was blocked by similar concentrations of OKT4a. These observations suggest that although most binding of gp120 to cultured monocytes is not to the CD4 determinant, several hundred molecules do bind to a CD4-like molecule which promotes virus entry and replication.

  11. Lack of PPARγ in myeloid cells confers resistance to Listeria monocytogenes infection.

    Directory of Open Access Journals (Sweden)

    Zeinab Abdullah

    Full Text Available The peroxisomal proliferator-activated receptor γ (PPARγ is a nuclear receptor that controls inflammation and immunity. Innate immune defense against bacterial infection appears to be compromised by PPARγ. The relevance of PPARγ in myeloid cells, that organize anti-bacterial immunity, for the outcome of immune responses against intracellular bacteria such as Listeria monocytogenes in vivo is unknown. We found that Listeria monocytogenes infection of macrophages rapidly led to increased expression of PPARγ. This prompted us to investigate whether PPARγ in myeloid cells influences innate immunity against Listeria monocytogenes infection by using transgenic mice with myeloid-cell specific ablation of PPARγ (LysMCre×PPARγ(flox/flox. Loss of PPARγ in myeloid cells results in enhanced innate immune defense against Listeria monocytogenes infection both, in vitro and in vivo. This increased resistance against infection was characterized by augmented levels of bactericidal factors and inflammatory cytokines: ROS, NO, IFNγ TNF IL-6 and IL-12. Moreover, myeloid cell-specific loss of PPARγ enhanced chemokine and adhesion molecule expression leading to improved recruitment of inflammatory Ly6C(hi monocytes to sites of infection. Importantly, increased resistance against Listeria infection in the absence of PPARγ was not accompanied by enhanced immunopathology. Our results elucidate a yet unknown regulatory network in myeloid cells that is governed by PPARγ and restrains both listeriocidal activity and recruitment of inflammatory monocytes during Listeria infection, which may contribute to bacterial immune escape. Pharmacological interference with PPARγ activity in myeloid cells might represent a novel strategy to overcome intracellular bacterial infection.

  12. Interaction of angiogenically stimulated intermediate CD163+ monocytes/macrophages with soft hydrophobic poly(n-butyl acrylate) networks with elastic moduli matched to that of human arteries.

    Science.gov (United States)

    Mayer, Anke; Kratz, Karl; Hiebl, Bernhard; Lendlein, Andreas; Jung, Friedrich

    2012-03-01

    The cell population of peripheral blood monocytes/macrophages (MO) is heterogeneous: The majority of the MO are CD14++ CD16- and named "classical" (= MO1). Furthermore, two other subpopulations were described: CD14++ CD16+ ("intermediate" = MO2) and CD14+ CD16++ ("non-classical" = MO3). It is reported that MO2 possess anti-inflammatory properties and express the MO lineage marker CD163. On a hydrophilic neutrally charged acrylamide-based hydrogel human intermediate (CD14++ CD16+ ), angiogenically stimulated CD163++ monocytes/macrophages (aMO2) maintained a proangiogenic and noninflammatory status for at least 14 days. Here, we explored whether this aMO2 subset adhered to hydrophobic poly(n-butyl acrylate) networks (cPnBA) and also remained in its proangiogenic and noninflammatory status. Because substrate elasticity can impact adherence, morphology, and function of cells, cPnBAs with different Young's modulus (250 and 1100 kPa) were investigated, whereby their elasticity was tailored by variation of the cross-linker content and matched to the elasticity of human arteries. The cPnBAs exhibited similar surface properties (e.g., surface roughness), which were maintained after ethylene oxide sterilization and exposure in serum-free cell culture medium for 18 h at 37°C. aMO2 were seeded on cPnBA samples (1.7 × 10(5) cells/1.33 cm(2) ) in Dulbecco's modified Eagle medium (DMEM high glucose) supplemented with vascular endothelial growth factor 165 (VEGF-A(165) , 10 ng/mL) and fetal calf serum (10 vol%) for 3 and 72 h. On both polymeric samples (n = 3 each), the numbers of adherent cells per unit area were significantly higher (P glass, 3 h: 6 ± 3 cells/mm(2) , 72 h: 130 ± 83 cells/mm(2) ) and showed a typically spread morphology. The mRNA expression profile of the aMO2 was not influenced by the substrate elasticity. In the supernatant of aMO2 on cPnBA0250, significantly less VEGF-A(165) product was found than expected based on

  13. Heterozygous inactivation of the Nf1 gene in myeloid cells enhances neointima formation via a rosuvastatin-sensitive cellular pathway.

    Science.gov (United States)

    Stansfield, Brian K; Bessler, Waylan K; Mali, Raghuveer; Mund, Julie A; Downing, Brandon; Li, Fang; Sarchet, Kara N; DiStasi, Matthew R; Conway, Simon J; Kapur, Reuben; Ingram, David A

    2013-03-01

    Mutations in the NF1 tumor suppressor gene cause Neurofibromatosis type 1 (NF1). Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity. Some NF1 patients develop cardiovascular disease, which represents an underrecognized disease complication and contributes to excess morbidity and mortality. Specifically, NF1 patients develop arterial occlusion resulting in tissue ischemia and sudden death. Murine studies demonstrate that heterozygous inactivation of Nf1 (Nf1(+/-)) in bone marrow cells enhances neointima formation following arterial injury. Macrophages infiltrate Nf1(+/-) neointimas, and NF1 patients have increased circulating inflammatory monocytes in their peripheral blood. Therefore, we tested the hypothesis that heterozygous inactivation of Nf1 in myeloid cells is sufficient for neointima formation. Specific ablation of a single copy of the Nf1 gene in myeloid cells alone mobilizes a discrete pro-inflammatory murine monocyte population via a cell autonomous and gene-dosage dependent mechanism. Furthermore, lineage-restricted heterozygous inactivation of Nf1 in myeloid cells is sufficient to reproduce the enhanced neointima formation observed in Nf1(+/-) mice when compared with wild-type controls, and homozygous inactivation of Nf1 in myeloid cells amplified the degree of arterial stenosis after arterial injury. Treatment of Nf1(+/-) mice with rosuvastatin, a stain with anti-inflammatory properties, significantly reduced neointima formation when compared with control. These studies identify neurofibromin-deficient myeloid cells as critical cellular effectors of Nf1(+/-) neointima formation and propose a potential therapeutic for NF1 cardiovascular disease.

  14. Enhanced Inhibitory Effect of Ultra-Fine Granules of Red Ginseng on LPS-induced Cytokine Expression in the Monocyte-Derived Macrophage THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Hong-Yeoul Kim

    2008-08-01

    Full Text Available Red ginseng is one of the most popular traditional medicines in Korea because its soluble hot-water extract is known to be very effective on enhancing immunity as well as inhibiting inflammation. Recently, we developed a new technique, called the HACgearshift system, which can pulverize red ginseng into the ultra-fine granules ranging from 0.2 to 7.0 μm in size. In this study, the soluble hot-water extract of those ultra-fine granules of red ginseng (URG was investigated and compared to that of the normal-sized granules of red ginseng (RG. The high pressure liquid chromatographic analyses of the soluble hot-water extracts of both URG and RG revealed that URG had about 2-fold higher amounts of the ginsenosides, the biologically active components in red ginseng, than RG did. Using quantitative RT-PCR, cytokine profiling against the Escherichia coli lipopolysaccharide (LPS in the monocyte-derived macrophage THP-1 cells demonstrated that the URG-treated cells showed a significant reduction in cytokine expression than the RG-treated ones. Transcription expression of the LPS-induced cytokines such as TNF-α, IL-1β, IL-6, IL-8, IL-10, and TGF-β was significantly inhibited by URG compared to RG. These results suggest that some biologically active and soluble components in red ginseng can be more effectively extracted from URG than RG by standard hot-water extraction.

  15. Differential intracellular fate of Burkholderia pseudomallei 844 and Burkholderia thailandensis UE5 in human monocyte-derived dendritic cells and macrophages

    Directory of Open Access Journals (Sweden)

    Engering Anneke

    2009-04-01

    Full Text Available Abstract Background Burkholderia pseudomallei (Bp is a category B biothreat organism that causes a potentially fatal disease in humans and animals, namely melioidosis. Burkholderia thailandensis (Bt is another naturally occurring species that is very closely related to Bp. However, despite this closely related genotype, Bt is considered avirulent as it does not cause the disease. In the present study, we compared the growth kinetics of B. pseudomallei strain 844 (Bp-844 in human monocyte-derived dendritic cells (MoDCs and macrophages (Mφs, as well as its ability to stimulate host cell responses with those of B. thailandensis strain UE5 (Bt-UE5. Results Primary human MoDCs and Mφs were infected with Bp-844 and its intracellular growth kinetics and ability to induce host cell responses were evaluated. The results were compared with those obtained using the Bt-UE5. In human MoDCs, both bacteria were similar in respect to their ability to survive and replicate intracellularly, induce upregulation of costimulatory molecules and cytokines and bias T helper cell differentiation toward a Th1 phenotype. By contrast, the two bacteria exhibited different growth kinetics in human Mφs, where the intracellular growth of Bt-UE5, but not Bp-844, was significantly suppressed. Moreover, the ability of Mφs to kill Bp-844 was markedly enhanced following stimulation with IFN-γ. Conclusion The data presented showed that while both strains were similar in their ability to survive and replicate in human MoDCs, only Bp-844 could readily replicate in human Mφs. Both bacteria induced similar host cellular responses, particularly with regard to their ability to bias T cell differentiation toward a Th1 phenotype.

  16. Tumour-cytolytic human monocyte-derived macrophages: a simple and efficient method for the generation and long-term cultivation as non-adherent cells in a serum-free medium.

    Science.gov (United States)

    Streck, R J; Hurley, E L; Epstein, D A; Pauly, J L

    1992-01-01

    We report a simple and efficient culture procedure for the generation of tumour-cytolytic human monocyte-derived macrophages (MAC). In this method, normal human peripheral blood mononuclear cells, isolated using a conventional Ficoll-Hypaque density gradient procedure, are cultured as a heterogenous leukocyte population in Teflon or other hydrophobic cultureware, in a commercially available serum-free culture medium (M-SFM) that has been formulated specifically for the cultivation and ex vivo stimulation of human monocytes and MAC, and in the absence of exogenous mitogens, antigens, cytokines or other stimulants. This procedure features a negative-selection technique that takes advantage of the differential survival of blood leukocytes. Using the prescribed in vitro conditions, lymphocytes survived relatively poorly, whereas monocytes differentiated in the absence of exogenous stimulants into mature tumour-cytolytic MAC. The MAC were present as non-adherent, single cells that expressed good viability (greater than 95%) for a prolonged period (greater than 60 days). When compared to conventional procedures for generating MAC, the prescribed technique is thought to offer several important advantages in that it: (a) eliminates the tedious and cumbersome monocyte isolation procedures, thus providing a significant savings not only in time and money but also in eliminating repetitive cell manipulations that have often been associated with damage to monocyte morphology and/or function; (b) reduces the loss of monocyte subsets that are not recovered during specific isolation procedures; (c) facilitates harvesting a single cell, non-adherent suspension of immunocompetent MAC suitable for various examinations including analyses defining MAC morphology, cytochemistry, phenotype and function; and (d) eliminates variability and artifacts associated with different sera that are utilised frequently as medium supplements. The utility of the prescribed method is illustrated by the

  17. Notch Regulates Macrophage-Mediated Inflammation in Diabetic Wound Healing.

    Science.gov (United States)

    Kimball, Andrew S; Joshi, Amrita D; Boniakowski, Anna E; Schaller, Matthew; Chung, Jooho; Allen, Ronald; Bermick, Jennifer; Carson, William F; Henke, Peter K; Maillard, Ivan; Kunkel, Steve L; Gallagher, Katherine A

    2017-01-01

    Macrophages are essential immune cells necessary for regulated inflammation during wound healing. Recent studies have identified that Notch plays a role in macrophage-mediated inflammation. Thus, we investigated the role of Notch signaling on wound macrophage phenotype and function during normal and diabetic wound healing. We found that Notch receptor and ligand expression are dynamic in wound macrophages during normal healing. Mice with a myeloid-specific Notch signaling defect (DNMAML(floxed)Lyz2(Cre+) ) demonstrated delayed early healing (days 1-3) and wound macrophages had decreased inflammatory gene expression. In our physiologic murine model of type 2 diabetes (T2D), Notch receptor expression was significantly increased in wound macrophages on day 6, following the initial inflammatory phase of wound healing, corresponding to increased inflammatory cytokine expression. This increase in Notch1 and Notch2 was also observed in human monocytes from patients with T2D. Further, in prediabetic mice with a genetic Notch signaling defect (DNMAML(floxed)Lyz2(Cre+) on a high-fat diet), improved wound healing was seen at late time points (days 6-7). These findings suggest that Notch is critical for the early inflammatory phase of wound healing and directs production of macrophage-dependent inflammatory mediators. These results identify that canonical Notch signaling is important in directing macrophage function in wound repair and define a translational target for the treatment of non-healing diabetic wounds.

  18. Notch Regulates Macrophage-Mediated Inflammation in Diabetic Wound Healing

    Directory of Open Access Journals (Sweden)

    Andrew S. Kimball

    2017-06-01

    Full Text Available Macrophages are essential immune cells necessary for regulated inflammation during wound healing. Recent studies have identified that Notch plays a role in macrophage-mediated inflammation. Thus, we investigated the role of Notch signaling on wound macrophage phenotype and function during normal and diabetic wound healing. We found that Notch receptor and ligand expression are dynamic in wound macrophages during normal healing. Mice with a myeloid-specific Notch signaling defect (DNMAMLfloxedLyz2Cre+ demonstrated delayed early healing (days 1–3 and wound macrophages had decreased inflammatory gene expression. In our physiologic murine model of type 2 diabetes (T2D, Notch receptor expression was significantly increased in wound macrophages on day 6, following the initial inflammatory phase of wound healing, corresponding to increased inflammatory cytokine expression. This increase in Notch1 and Notch2 was also observed in human monocytes from patients with T2D. Further, in prediabetic mice with a genetic Notch signaling defect (DNMAMLfloxedLyz2Cre+ on a high-fat diet, improved wound healing was seen at late time points (days 6–7. These findings suggest that Notch is critical for the early inflammatory phase of wound healing and directs production of macrophage-dependent inflammatory mediators. These results identify that canonical Notch signaling is important in directing macrophage function in wound repair and define a translational target for the treatment of non-healing diabetic wounds.

  19. Implication of Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) and Interleukin-3 (IL-3) in Children with Acute Myeloid Leukaemia (AML).

    Science.gov (United States)

    Elbaz, O; Shaltout, A

    2000-01-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) and Interleukin-3 (IL-3) are increasingly used to stimulate granulopoiesis in neutropenic patients but these are rarely used in the lights of knowledge of the endogenous CSF-levels. In this study we measured serum levels of GM-CSF and IL-3 at diagnosis and after remission in children with acute leukaemia, using an enzyme linked immuno-sorbent assay (ELISA) techniques in 14 patients with acute myeloid leukaemia (AML) and 27 patients with acute lymphoblastic leukaemia (ALL). Twelve healthy age-matched children were used as a reference group. AML patients showed a highly significant increase in serum levels of GM-CSF and IL-3 before induction of therapy (p 0.5), with no significant difference between preinduction and postinduction serum levels of either (p > 0.5). Since these cytokines are known to be fundamental for the growth of AML cells, we postulate that the pretreatment levels of both GM-CSF and IL-3 could play a role in the pathogenesis of AML.

  20. Implication of Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) and Interleukin-3 (IL-3) in Children with Acute Myeloid Leukaemia (AML); Malignancy.

    Science.gov (United States)

    Elbaz, Osama; Shaltout, Ali

    2001-01-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) and Interleukin-3 (IL-3) are increasingly used to stimulate granulopoiesis in neutropenic patients but these are rarely used in the lights of knowledge of the endogenous CSF-levels. In this study we measured serum levels of GM-CSF and IL-3 at diagnosis and after remission in children with acute leukaemia, using an enzyme linked immuno-sorbent assay (ELISA) techniques in 14 patients with acute myeloid leukaemia (AML) and 27 patients with acute lymphoblastic leukaemia (ALL). Twelve healthy age-matched children were used as a reference group. AML patients showed a highly significant increase in serum levels of GM-CSF and IL-3 before induction of therapy (p 0.5), with no significant difference between preinduction and postinduction serum levels of either (p > 0.5). Since these cytokines are known to be fundamental for the growth of AML cells, we postulate that the pretreatment levels of both GM-CSF and IL-3 could play a role in the pathogenesis of AML.

  1. The abcEDCBA-Encoded ABC Transporter and the virB Operon-Encoded Type IV Secretion System of Brucella ovis Are Critical for Intracellular Trafficking and Survival in Ovine Monocyte-Derived Macrophages.

    Directory of Open Access Journals (Sweden)

    Auricelio A Macedo

    Full Text Available Brucella ovis infection is associated with epididymitis, orchitis and infertility in rams. Most of the information available on B. ovis and host cell interaction has been generated using murine macrophages or epithelial cell lines, but the interaction between B. ovis and primary ovine macrophages has not been studied. The aim of this study was to evaluate the role of the B. ovis abcEDCBA-encoded ABC transporter and the virB operon-encoded Type IV Secretion System (T4SS during intracellular survival of B. ovis in ovine peripheral blood monocyte-derived macrophages. ΔabcBA and ΔvirB2 mutant strains were unable to survive in the intracellular environment when compared to the WT B. ovis at 48 hours post infection (hpi. In addition, these mutant strains cannot exclude the lysosomal marker LAMP1 from its vacuolar membrane, and their vacuoles do not acquire the endoplasmic reticulum marker calreticulin, which takes place in the WT B. ovis containing vacuole. Higher levels of nitric oxide production were observed in macrophages infected with WT B. ovis at 48 hpi when compared to macrophages infected with the ΔabcBA or ΔvirB2 mutant strains. Conversely, higher levels of reactive oxygen species were detected in macrophages infected with the ΔabcBA or ΔvirB2 mutant strains at 48 hpi when compared to macrophages infected with the WT strain. Our results demonstrate that B. ovis is able to persist and multiply in ovine macrophages, while ΔabcBA and ΔvirB2 mutations prevent intracellular multiplication, favor phagolysosome fusion, and impair maturation of the B. ovis vacuole towards an endoplasmic reticulum-derived compartment.

  2. The activation of CD14, TLR4, and TLR2 by mmLDL induces IL-1β, IL-6, and IL-10 secretion in human monocytes and macrophages

    Directory of Open Access Journals (Sweden)

    Blanco-Favela Francisco

    2010-10-01

    Full Text Available Abstract Atherosclerosis is considered a chronic inflammatory disease in which monocytes and macrophages are critical. These cells express CD14, toll-like receptor (TLR 2, and TLR4 on their surfaces, are activated by minimally modified low-density lipoprotein (mmLDL and are capable of secreting pro-inflammatory cytokines. The aim of this research was thus to demonstrate that the activation of CD14, TLR2, and TLR4 by mmLDL induces the secretion of cytokines. Methods Human monocytes and macrophages were incubated with monoclonal antibodies specific for CD14, TLR4, and TLR2 prior to stimulation with mmLDL. Cytokine secretion was then compared to that observed upon mmLDL stimulation in untreated cells. Results Stimulation with mmLDL induced the secretion of pro-inflammatory cytokines. Blocking CD14 in monocytes inhibited secretion of interleukin (IL-1β (72%, IL-6 (58% and IL-10 (63%, and blocking TLR4 inhibited secretion of IL-1β by 67%, IL-6 by 63% and IL-10 by 60%. Blocking both receptors inhibited secretion of IL-1β by 73%, IL-6 by 69% and IL-10 by 63%. Furthermore, blocking TLR2 inhibited secretion of IL-1β by 65%, IL-6 by 62% and IL-10 by 75%. In macrophages, we found similar results: blocking CD14 inhibited secretion of IL-1β by 59%, IL-6 by 52% and IL-10 by 65%; blocking TLR4 inhibited secretion of IL-1β by 53%, IL-6 by 63% and IL-10 by 61%; and blocking both receptors inhibited secretion of IL-1β by 69%, IL-6 by 67% and IL-10 by 65%. Blocking TLR2 in macrophages inhibited secretion of IL-1β by 57%, IL-6 by 40% and IL-10 by 72%. Conclusion Our study demonstrates that CD14, TLR4, and TLR2 participate in the immune response against mmLDL by inducing the production of pro-inflammatory cytokines in both monocytes and macrophages. These findings suggest that the activation of these receptors by mmLDL contributes to the inflammatory process of atherosclerosis.

  3. Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer

    DEFF Research Database (Denmark)

    Idorn, Manja; Køllgaard, Tania; Kongsted, Per

    2014-01-01

    and function of immune suppressive cell subsets in the peripheral blood of 41 patients with prostate cancer (PC) and 36 healthy donors (HD) showed a significant increase in circulating CD14(+) HLA-DR(low/neg) monocytic MDSC (M-MDSC) and Tregs in patients with PC compared to HD. Furthermore, M-MDSC frequencies...... with known negative prognostic markers in patients with PC including elevated levels of lactate dehydrogenase and prostate-specific antigen. Accordingly, high levels of M-MDSC were associated with a shorter median overall survival. Our data strongly suggest that M-MDSC, possibly along with Tregs, play a role...

  4. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice.

    Directory of Open Access Journals (Sweden)

    Noah Saederup

    Full Text Available BACKGROUND: Monocyte subpopulations distinguished by differential expression of chemokine receptors CCR2 and CX3CR1 are difficult to track in vivo, partly due to lack of CCR2 reagents. METHODOLOGY/PRINCIPAL FINDINGS: We created CCR2-red fluorescent protein (RFP knock-in mice and crossed them with CX3CR1-GFP mice to investigate monocyte subset trafficking. In mice with experimental autoimmune encephalomyelitis, CCR2 was critical for efficient intrathecal accumulation and localization of Ly6C(hi/CCR2(hi monocytes. Surprisingly, neutrophils, not Ly6C(lo monocytes, largely replaced Ly6C(hi cells in the central nervous system of these mice. CCR2-RFP expression allowed the first unequivocal distinction between infiltrating monocytes/macrophages from resident microglia. CONCLUSION/SIGNIFICANCE: These results refine the concept of monocyte subsets, provide mechanistic insight about monocyte entry into the central nervous system, and present a novel model for imaging and quantifying inflammatory myeloid populations.

  5. A matrix of cholesterol crystals, but not cholesterol alone, primes human monocytes/macrophages for excessive endotoxin-induced production of tumor necrosis factor-alpha. Role in atherosclerotic inflammation?

    DEFF Research Database (Denmark)

    Bendtzen, Klaus; Christensen, Ole; Nielsen, Claus Henrik

    2014-01-01

    When exposed to small amounts of bacterial endotoxin, matrices of cholesterol crystals, but not cholesterol itself, primed human monocytes/macrophages to a highly augmented (>10-fold) production of inflammatory tumor necrosis factor-α. Priming also sensitized the cells, as 10- to 100-fold lower...... levels of endotoxin were needed for TNF-α production equivalent to that of unprimed cells. The pro-inflammatory effect was selective as endotoxin-induced production of other pro-inflammatory cytokines was unaffected while production of anti-inflammatory interleukin-10 was diminished. These findings...

  6. Myeloid Engraftment in Humanized Mice: Impact of Granulocyte-Colony Stimulating Factor Treatment and Transgenic Mouse Strain.

    Science.gov (United States)

    Coughlan, Alice M; Harmon, Cathal; Whelan, Sarah; O'Brien, Eóin C; O'Reilly, Vincent P; Crotty, Paul; Kelly, Pamela; Ryan, Michelle; Hickey, Fionnuala B; O'Farrelly, Cliona; Little, Mark A

    2016-04-01

    Poor myeloid engraftment remains a barrier to experimental use of humanized mice. Focusing primarily on peripheral blood cells, we compared the engraftment profile of NOD-scid-IL2Rγc(-/-) (NSG) mice with that of NSG mice transgenic for human membrane stem cell factor (hu-mSCF mice), NSG mice transgenic for human interleukin (IL)-3, granulocyte-macrophage-colony stimulating factor (GM-CSF), and stem cell factor (SGM3 mice). hu-mSCF and SGM3 mice showed enhanced engraftment of human leukocytes compared to NSG mice, and this was reflected in the number of human neutrophils and monocytes present in these strains. Importantly, discrete classical, intermediate, and nonclassical monocyte populations were identifiable in the blood of NSG and hu-mSCF mice, while the nonclassical population was absent in the blood of SGM3 mice. Granulocyte-colony stimulating factor (GCSF) treatment increased the number of blood monocytes in NSG and hu-mSCF mice, and neutrophils in NSG and SGM3 mice; however, this effect appeared to be at least partially dependent on the stem cell donor used to engraft the mice. Furthermore, GCSF treatment resulted in a preferential expansion of nonclassical monocytes in both NSG and hu-mSCF mice. Human tubulointerstitial CD11c(+) cells were present in the kidneys of hu-mSCF mice, while monocytes and neutrophils were identified in the liver of all strains. Bone marrow-derived macrophages prepared from NSG mice were most effective at phagocytosing polystyrene beads. In conclusion, hu-mSCF mice provide the best environment for the generation of human myeloid cells, with GCSF treatment further enhancing peripheral blood human monocyte cell numbers in this strain.

  7. Monocyte scintigraphy in rheumatoid arthritis: the dynamics of monocyte migration in immune-mediated inflammatory disease.

    Directory of Open Access Journals (Sweden)

    Rogier M Thurlings

    Full Text Available BACKGROUND: Macrophages are principal drivers of synovial inflammation in rheumatoid arthritis (RA, a prototype immune-mediated inflammatory disease. Conceivably, synovial macrophages are continuously replaced by circulating monocytes in RA. Animal studies from the 1960s suggested that macrophage replacement by monocytes is a slow process in chronic inflammatory lesions. Translation of these data into the human condition has been hampered by the lack of available techniques to analyze monocyte migration in man. METHODS/PRINCIPAL FINDINGS: We developed a technique that enabled us to analyze the migration of labelled autologous monocytes in RA patients using single photon emission computer tomography (SPECT. We isolated CD14+ monocytes by CliniMACS in 8 patients and labeled these with technetium-99m (99mTc-HMPAO. Monocytes were re-infused into the same patient. Using SPECT we calculated that a very small but specific fraction of 3.4 x 10(-3 (0.95-5.1 x 10(-3 % of re-infused monocytes migrated to the inflamed joints, being detectable within one hour after re-infusion. CONCLUSIONS/SIGNIFICANCE: The results indicate monocytes migrate continuously into the inflamed synovial tissue of RA patients, but at a slow macrophage-replacement rate. This suggests that the rapid decrease in synovial macrophages that occurs after antirheumatic treatment might rather be explained by an alteration in macrophage retention than in monocyte influx and that RA might be particularly sensitive to treatments targeting inflammatory cell retention.

  8. Interaction of OX-LDL and monocytes-macrophages promote atherogenesis%OX-LDL与单核巨噬细胞相互作用促进动脉粥样硬化形成

    Institute of Scientific and Technical Information of China (English)

    张良; 韩丹; 赵诗萌; 吴红敏

    2013-01-01

    目的 单核-巨噬细胞在动脉粥样硬化(AS)发病过程中的作用日益受到关注,但泡沫化过程中细胞内脂质变化情况的研究报道尚不多见.方法 一次性密度梯度超速离心分离LDL制成ox-LDL,动态观察小鼠巨噬细胞内脂质成分和细胞形态的变化.结果 纯化的LDL纯度可达92.39%.细胞形态学观察细胞内红色脂质颗粒增多,电镜显示细胞核周围包含染色质,胞浆稀少含有大量的核糖体,线粒体丰富.随浓度的增加LDL组及OX-LDL组细胞内TC、FC、CE均明显增加.结论 OX-LDL同单核巨噬细胞相互作用可使动脉壁局部形成AS病变的特征病理性细胞.OX-LDL较LDL更易使单核巨噬细胞形成泡沫细胞.高浓度的OX-LDL可以导致细胞膜结构的损伤.%Objective There is growing concern about the role of monocytes-macrophages in the progression of atherosclerosis (AS). However, the mechanism of lipid changes in those cells in the foaming process is not fully clear. Methods LDL was isolated by density-gradient centrifugation and to make Ox-LDL. The changes of lipid composition and cellular morphology of the rat macrophages were dynamically observed. Results The purity of separated LDL reached 92. 39% . Increased amount of red lipid droplets in the macrophages were observed. Electron microscopy showed the presence of perinuclear chromatin, numerous mitochondria and ribosomes in the sparse cytoplasm. In the LDL group, TC, FC, and CE were all increased along with the increasing LDL concentration. Similar results were observed in the Ox-LDL group. Conclusions Interaction of Ox-LDL and monocytes-macrophages may promote the formation of characteristic pathologic cells of AS nature in the arterial wall. OX-LDL is more easy than LDL to promote the changes of monocytes/ macrophages into foam cells. High concentration of OX-LDL can lead to cell membrane damages.

  9. Regulation of Human Macrophage M1–M2 Polarization Balance by Hypoxia and the Triggering Receptor Expressed on Myeloid Cells-1

    Directory of Open Access Journals (Sweden)

    Federica Raggi

    2017-09-01

    Full Text Available Macrophages (Mf are a heterogeneous population of tissue-resident professional phagocytes and a major component of the leukocyte infiltrate at sites of inflammation, infection, and tumor growth. They can undergo diverse forms of activation in response to environmental factors, polarizing into specialized functional subsets. A common hallmark of the pathologic environment is represented by hypoxia. The impact of hypoxia on human Mf polarization has not been fully established. The objective of this study was to elucidate the effects of a hypoxic environment reflecting that occurring in vivo in diseased tissues on the ability of human Mf to polarize into classically activated (proinflammatory M1 and alternatively activated (anti-inflammatory M2 subsets. We present data showing that hypoxia hinders Mf polarization toward the M1 phenotype by decreasing the expression of T cell costimulatory molecules and chemokine homing receptors and the production of proinflammatory, Th1-priming cytokines typical of classical activation, while promoting their acquisition of phenotypic and secretory features of alternative activation. Furthermore, we identify the triggering receptor expressed on myeloid cells (TREM-1, a member of the Ig-like immunoregulatory receptor family, as a hypoxia-inducible gene in Mf and demonstrate that its engagement by an agonist Ab reverses the M2-polarizing effect of hypoxia imparting a M1-skewed phenotype to Mf. Finally, we provide evidence that Mf infiltrating the inflamed hypoxic joints of children affected by oligoarticular juvenile idiopatic arthritis express high surface levels of TREM-1 associated with predominant M1 polarization and suggest the potential of this molecule in driving M1 proinflammatory reprogramming in the hypoxic synovial environment.

  10. Hydrogen sulfide suppresses oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 generation from macrophages via the nuclear factor κB (NF-κB) pathway.

    Science.gov (United States)

    Du, Junbao; Huang, Yaqian; Yan, Hui; Zhang, Qiaoli; Zhao, Manman; Zhu, Mingzhu; Liu, Jia; Chen, Stella X; Bu, Dingfang; Tang, Chaoshu; Jin, Hongfang

    2014-04-01

    This study was designed to examine the role of hydrogen sulfide (H2S) in the generation of oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 (MCP-1) from macrophages and possible mechanisms. THP-1 cells and RAW macrophages were pretreated with sodium hydrosulfide (NaHS) and hexyl acrylate and then treated with ox-LDL. The results showed that ox-LDL treatment down-regulated the H2S/cystathionine-β-synthase pathway, with increased MCP-1 protein and mRNA expression in both THP-1 cells and RAW macrophages. Hexyl acrylate promoted ox-LDL-induced inflammation, whereas the H2S donor NaHS inhibited it. NaHS markedly suppressed NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter in ox-LDL-treated macrophages. Furthermore, NaHS decreased the ratio of free thiol groups in p65, whereas the thiol reductant DTT reversed the inhibiting effect of H2S on the p65 DNA binding activity. Most importantly, site-specific mutation of cysteine 38 to serine in p65 abolished the effect of H2S on the sulfhydration of NF-κB and ox-LDL-induced NF-κB activation. These results suggested that endogenous H2S inhibited ox-LDL-induced macrophage inflammation by suppressing NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter. The sulfhydration of free thiol group on cysteine 38 in p65 served as a molecular mechanism by which H2S inhibited NF-κB pathway activation in ox-LDL-induced macrophage inflammation.

  11. Depletion of macrophages in mice results in higher dengue virus titers and highlights the role of macrophages for virus control

    NARCIS (Netherlands)

    Fink, K.; Ng, C.; Nkenfou, C.; Vasudevan, S.G.; Rooijen, van N.; Schul, W.

    2009-01-01

    Monocytes and macrophages are target cells for dengue infection. Besides their potential role for virus replication, activated monocytes/macrophages produce cytokines that may be critical for dengue pathology. To study the in vivo role of monocytes and macrophages for virus replication, we depleted

  12. Proliferating Cellular Nuclear Antigen Expression as a Marker of Perivascular Macrophages in Simian Immunodeficiency Virus Encephalitis

    Science.gov (United States)

    Williams, Kenneth; Schwartz, Annette; Corey, Sarah; Orandle, Marlene; Kennedy, William; Thompson, Brendon; Alvarez, Xavier; Brown, Charlie; Gartner, Suzanne; Lackner, Andrew

    2002-01-01

    Brain perivascular macrophages are a major target of simian immunodeficiency virus (SIV) infection in rhesus macaques and HIV infection in humans. Perivascular macrophages are distinct from parenchymal microglia in their location, morphology, expression of myeloid markers, and turnover in the CNS. In contrast to parenchymal microglia, perivascular macrophages are continuously repopulated by blood monocytes, which undergo maturation to macrophages on entering the central nervous system (CNS). We studied differences in monocyte/macrophages in vivo that might account for preferential infection of perivascular macrophages by SIV. In situ hybridization for SIV and proliferating cellular nuclear antigen (PCNA) immunohistochemistry demonstrated that SIV-infected and PCNA-positive cells were predominantly found in perivascular cuffs of viremic animals and in histopathological lesions that characterize SIV encephalitis (SIVE) in animals with AIDS. Multilabel techniques including double-label immunohistochemistry and combined in situ hybridization and immunofluorescence confocal microscopy revealed numerous infected perivascular macrophages that were PCNA-positive. Outside the CNS, SIV-infected, PCNA-expressing macrophage subpopulations were found in the small intestine and lung of animals with AIDS. While PCNA is used as a marker of cell proliferation it is also strongly expressed in non-dividing cells undergoing DNA synthesis and repair. Therefore, more specific markers for cell proliferation including Ki-67, topoisomerase IIα, and bromodeoxyuridine (BrdU) incorporation were used which indicated that PCNA-positive cells within SIVE lesions were not proliferating. These observations are consistent with perivascular macrophages as terminally differentiated, non-dividing cells and underscores biological differences that could potentially define mechanisms of preferential, productive infection of perivascular macrophages in the rhesus macaque model of neuroAIDS. These studies

  13. The Influence of Programmed Cell Death in Myeloid Cells on Host Resilience to Infection with Legionella pneumophila or Streptococcus pyogenes

    Science.gov (United States)

    Gamradt, Pia; Xu, Yun; Gratz, Nina; Duncan, Kellyanne; Kobzik, Lester; Högler, Sandra; Decker, Thomas

    2016-01-01

    Pathogen clearance and host resilience/tolerance to infection are both important factors in surviving an infection. Cells of the myeloid lineage play important roles in both of these processes. Neutrophils, monocytes, macrophages, and dendritic cells all have important roles in initiation of the immune response and clearance of bacterial pathogens. If these cells are not properly regulated they can result in excessive inflammation and immunopathology leading to decreased host resilience. Programmed cell death (PCD) is one possible mechanism that myeloid cells may use to prevent excessive inflammation. Myeloid cell subsets play roles in tissue repair, immune response resolution, and maintenance of homeostasis, so excessive PCD may also influence host resilience in this way. In addition, myeloid cell death is one mechanism used to control pathogen replication and dissemination. Many of these functions for PCD have been well defined in vitro, but the role in vivo is less well understood. We created a mouse that constitutively expresses the pro-survival B-cell lymphoma (bcl)-2 protein in myeloid cells (CD68(bcl2tg), thus decreasing PCD specifically in myeloid cells. Using this mouse model we explored the impact that decreased cell death of these cells has on infection with two different bacterial pathogens, Legionella pneumophila and Streptococcus pyogenes. Both of these pathogens target multiple cell death pathways in myeloid cells, and the expression of bcl2 resulted in decreased PCD after infection. We examined both pathogen clearance and host resilience and found that myeloid cell death was crucial for host resilience. Surprisingly, the decreased myeloid PCD had minimal impact on pathogen clearance. These data indicate that the most important role of PCD during infection with these bacteria is to minimize inflammation and increase host resilience, not to aid in the clearance or prevent the spread of the pathogen. PMID:27973535

  14. Iron acquisition by Mycobacterium tuberculosis residing within myeloid dendritic cells.

    Science.gov (United States)

    Olakanmi, Oyebode; Kesavalu, Banurekha; Abdalla, Maher Y; Britigan, Bradley E

    2013-12-01

    The pathophysiology of Mycobacterium tuberculosis (M.tb) infection is linked to the ability of the organism to grow within macrophages. Lung myeloid dendritic cells are a newly recognized reservoir of M.tb during infection. Iron (Fe) acquisition is critical for M.tb growth. In vivo, extracellular Fe is chelated to transferrin (TF) and lactoferrin (LF). We previously reported that M.tb replicating in human monocyte-dervied macrophages (MDM) can acquire Fe bound to TF, LF, and citrate, as well as from the MDM cytoplasm. Access of M.tb to Fe may influence its growth in macrophages and dendritic cells. In the present work we confirmed the ability of different strains of M.tb to grow in human myeloid dendritic cells in vitro. Fe acquired by M.tb replicating within dendritic cells from externally added Fe chelates varied with the Fe chelate present in the external media: Fe-citrate > Fe-LF > Fe-TF. Fe acquisition rates from each chelate did not vary over 7 days. M.tb within dendritic cells also acquired Fe from the dendritic cell cytoplasm, with the efficiency of Fe acquisition greater from cytoplasmic Fe sources, regardless of the initial Fe chelate from which that cytoplasmic Fe was derived. Growth and Fe acquisition results with human MDM were similar to those with dendritic cells. M.tb grow and replicate within myeloid dendritic cells in vitro. Fe metabolism of M.tb growing in either MDM or dendritic cells in vitro is influenced by the nature of Fe available and the organism appears to preferentially access cytoplasmic rather than extracellular Fe sources. Whether these in vitro data extend to in vivo conditions should be examined in future studies.

  15. Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Jian Liu

    Full Text Available Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+ cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+ Arg-1(+ myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+ Arg-1(+ phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain.

  16. The absolute lymphocyte/monocyte ratio recovery during ABVD treatment cycles is not significantly impacted by the use of myeloid growth factors and predicts clinical outcomes in classical Hodgkin lymphoma regardless of their use

    Directory of Open Access Journals (Sweden)

    Kaufman GP

    2014-07-01

    Full Text Available Gregory P Kaufman,1 Kay M Ristow,1,2 Svetomir N Markovic,1,2 Luis F Porrata1,2 1Department of Internal Medicine, 2Division of Hematology, Mayo Clinic, Rochester, MN, USA Abstract: Risk stratification of patients with classical Hodgkin lymphoma (cHL remains suboptimal. The ratio of the absolute lymphocyte count (ALC to absolute monocyte count (AMC both at diagnosis and during subsequent recovery from serial cycles of chemotherapy predicts survival in cHL, and possesses advantages over other commonly used prognostic markers. Myeloid growth factors (MGFs, while not strongly recommended for use in adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD treatment cycles, are not uncommonly used to prevent the negative consequences of neutropenia. The effect that MGFs have on the ALC/AMC ratio during ABVD treatment cycles, if any, remains unclear. We retrospectively evaluated 208 patients with cHL, who were diagnosed, treated, and followed at Mayo Clinic Rochester between 1990 and 2014, and who had quantifiable records for the use of MGFs during ABVD treatment cycles. Having an ALC/AMC ratio <1.1 during all treatment cycles was confirmed as being a negative predictor of overall and progression free survival (hazard ratio [HR] 0.06, 95% confidence interval [CI] 0.03–0.14 and HR 0.08, 95% CI 0.04–0.17, respectively. Data on both the ALC/AMC ratio and use of MGFs were available for 1,979 half treatment cycles. When stratified to whether or not MGFs were given, the change in the ALC/AMC ratio as compared to the prior half cycle was found to be statistically insignificant (P=0.3445. No survival advantage was found with the administration of MGFs in any cycle of therapy (log rank P=0.5713. Our data validate the prognostic significance of having an ALC/AMC ratio of ≥1.1 regardless of the use of MGFs. Keywords: myeloid growth factors, classical Hodgkin lymphoma, survival ALC/AMC ratio, ABVD chemotherapy

  17. Myeloid extracellular vesicles: messengers from the demented brain

    Directory of Open Access Journals (Sweden)

    Annamaria eNigro

    2016-01-01

    Full Text Available Blood-borne monocyte derived cells play a pivotal, initially unrecognized, role in most central nervous system disorders, including diseases initially classified as purely neurodegenerative (i.e. AD, PD, and ALS. Their trafficking to the brain and spinal cord has been extensively studied in classical neuroinflammatory disorders such as multiple sclerosis. Central nervous system resident myeloid cells, namely microglia and perivascular macrophages, also are in the spotlight of investigations on neurological disorders. Myeloid cells, such as infiltrating macrophages and microglia, have been described as having both protective and destructive features in neurological disorders, thus identification of their functional phenotype during disease evolution would be of paramount importance. Extracellular vesicles, namely exosomes and shed vesicles, are released by virtually any cell type and can be detected and identified in terms of cell origin in biological fluids. They therefore constitute an ideal tool to access information on cells residing in an inaccessible site such as the brain. We will review here available information on extracellular vesicles detection in neurological disorders with special emphasis on neurodegenerative diseases.

  18. The PRKAA1/AMPKα1 pathway triggers autophagy during CSF1-induced human monocyte differentiation and is a potential target in CMML.

    Science.gov (United States)

    Obba, Sandrine; Hizir, Zoheir; Boyer, Laurent; Selimoglu-Buet, Dorothée; Pfeifer, Anja; Michel, Gregory; Hamouda, Mohamed-Amine; Gonçalvès, Diogo; Cerezo, Michael; Marchetti, Sandrine; Rocchi, Stephane; Droin, Nathalie; Cluzeau, Thomas; Robert, Guillaume; Luciano, Frederic; Robaye, Bernard; Foretz, Marc; Viollet, Benoit; Legros, Laurence; Solary, Eric; Auberger, Patrick; Jacquel, Arnaud

    2015-01-01

    Autophagy is induced during differentiation of human monocytes into macrophages that is mediated by CSF1/CSF-1/M-CSF (colony stimulating factor 1 [macrophage]). However, little is known about the molecular mechanisms that link CSF1 receptor engagement to the induction of autophagy. Here we show that the CAMKK2-PRKAA1-ULK1 pathway is required for CSF1-induced autophagy and human monocyte differentiation. We reveal that this pathway links P2RY6 to the induction of autophagy, and we decipher the signaling network that links the CSF1 receptor to P2RY6-mediated autophagy and monocyte differentiation. In addition, we show that the physiological P2RY6 ligand UDP and the specific P2RY6 agonist MRS2693 can restore normal monocyte differentiation through reinduction of autophagy in primary myeloid cells from some but not all chronic myelomonocytic leukemia (CMML) patients. Collectively, our findings highlight an essential role for PRKAA1-mediated autophagy during differentiation of human monocytes and pave the way for future therapeutic interventions for CMML.

  19. Coordinated regulation of myeloid cells by tumours.

    Science.gov (United States)

    Gabrilovich, Dmitry I; Ostrand-Rosenberg, Suzanne; Bronte, Vincenzo

    2012-03-22

    Myeloid cells are the most abundant nucleated haematopoietic cells in the human body and are a collection of distinct cell populations with many diverse functions. The three groups of terminally differentiated myeloid cells - macrophages, dendritic cells and granulocytes - are essential for the normal function of both the innate and adaptive immune systems. Mounting evidence indicates that the tumour microenvironment alters myeloid cells and can convert them into potent immunosuppressive cells. Here, we consider myeloid cells as an intricately connected, complex, single system and we focus on how tumours manipulate the myeloid system to evade the host immune response.

  20. Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages

    NARCIS (Netherlands)

    Bol, S.M.; Moerland, P.D.; Limou, S.; van Remmerden, Y.; Coulonges, C.; Manen, D.; Herbeck, J.T.; Fellay, J.; Sieberer, M.; Sietzema, J.G.; van 't Slot, R.; Martinson, J.; Zagury, J.F.; Schuitemaker, H.; van 't Wout, A.B.

    2011-01-01

    Background: HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue penetr

  1. Nutritionally relevant concentrations of resveratrol and hydroxytyrosol mitigate oxidative burst of human granulocytes and monocytes and the production of pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Bigagli, Elisabetta; Cinci, Lorenzo; Paccosi, Sara; Parenti, Astrid; D'Ambrosio, Mario; Luceri, Cristina

    2017-02-01

    The health benefits of bio-active phenolic compounds have been largely investigated in vitro at concentrations which exceed those reachable in vivo. We investigated and compared the anti-inflammatory effects of resveratrol, hydroxytyrosol and oleuropein at physiologically relevant concentrations by using in vitro models of inflammation. Human granulocytes and monocytes were stimulated with phorbol myristate acetate (PMA) and the ability of resveratrol, hydroxytyrosol and oleuropein to inhibit the oxidative burst and CD11b expression was measured. Nitric oxide (NO), prostaglandin E2 (PGE2) levels, COX-2, iNOS, TNFα, IL-1β and miR-146a expression and activation of the transcription factor Nrf2 were evaluated in macrophages RAW 264.7 stimulated with LPS (1μg/ml) for 18h, exposed to resveratrol, hydroxytyrosol and oleuropein (5 and 10μM). Synergistic effects were explored as well, together with the levels of PGE2, COX-2 and IL-1β expression in macrophages after 6h of LPS stimulation. PGE2 and COX-2 expression were also assessed on human monocytes. All the tested compounds inhibited granulocytes oxidative burst in a concentration dependent manner and CD11b expression was also significantly counteracted by resveratrol and hydroxytyrosol. The measurement of oxidative burst in human monocytes produced similar effects being resveratrol more active. Hydroxytyrosol and resveratrol inhibited the production of NO and PGE2 but did not reduce iNOS, TNFα or IL-1β gene expression in LPS-stimulated RAW 264.7 for 18h. Resveratrol slightly decreased COX-2 expression after 18h but not after 6h, but reduced PGE2 levels after 6h. Resveratrol and hydroxytyrosol 10μM induced NRf2 nuclear translocation and reduced miR-146a expression in LPS treated RAW 264.7. Overall, we reported an anti-inflammatory effect of resveratrol and hydroxytyrosol at low, nutritionally relevant concentrations, involving the inhibition of granulocytes and monocytes activation, the modulation of miR-146a

  2. Large-Scale Hematopoietic Differentiation of Human Induced Pluripotent Stem Cells Provides Granulocytes or Macrophages for Cell Replacement Therapies

    Directory of Open Access Journals (Sweden)

    Nico Lachmann

    2015-02-01

    Full Text Available Interleukin-3 (IL-3 is capable of supporting the proliferation of a broad range of hematopoietic cell types, whereas granulocyte colony-stimulating factor (G-CSF and macrophage CSF (M-CSF represent critical cytokines in myeloid differentiation. When this was investigated in a pluripotent-stem-cell-based hematopoietic differentiation model, IL-3/G-CSF or IL-3/M-CSF exposure resulted in the continuous generation of myeloid cells from an intermediate myeloid-cell-forming complex containing CD34+ clonogenic progenitor cells for more than 2 months. Whereas IL-3/G-CSF directed differentiation toward CD45+CD11b+CD15+CD16+CD66b+ granulocytic cells of various differentiation stages up to a segmented morphology displaying the capacity of cytokine-directed migration, respiratory burst response, and neutrophil-extracellular-trap formation, exposure to IL-3/M-CSF resulted in CD45+CD11b+CD14+CD163+CD68+ monocyte/macrophage-type cells capable of phagocytosis and cytokine secretion. Hence, we show here that myeloid specification of human pluripotent stem cells by IL-3/G-CSF or IL-3/M-CSF allows for prolonged and large-scale production of myeloid cells, and thus is suited for cell-fate and disease-modeling studies as well as gene- and cell-therapy applications.

  3. Xanthohumol from Hop (Humulus lupulus L.) Is an Efficient Inhibitor of Monocyte Chemoattractant Protein-1 and Tumor Necrosis Factor-a Release in LPS-Stimulated RAW 264.7 Mouse Macrophages and U937 Human Monocytes

    NARCIS (Netherlands)

    Lupinacci, E.; Meijerink, J.; Vincken, J.P.; Gabriele, B.; Gruppen, H.; Witkamp, R.F.

    2009-01-01

    Activated macrophages in adipose tissue play a major role in the chronic inflammatory process that has been linked to the complications of overweight and obesity. The hop plant (Humulus lupulus L.) has been described to possess both anti-inflammatory and antidiabetic effects. In the present study, t

  4. Irf4-dependent CD103+CD11b+ dendritic cells and the intestinal microbiome regulate monocyte and macrophage activation and intestinal peristalsis in postoperative ileus

    DEFF Research Database (Denmark)

    Pohl, Judith Mira; Gutweiler, Sebastian; Thiebes, Stephanie

    2017-01-01

    and large intestinal POI suggested a potential role of the intestinal microbiota. Indeed, antibiotic treatment reduced iNOS levels and ameliorated POI. Conclusions: Our findings reveal that CD103+CD11b+ DCs and the intestinal microbiome are a prerequisite for the activation of intestinal monocytes...

  5. Differential and time-dependent expression of monocyte chemoattractant protein-1 mRNA by astrocytes and macrophages in rat brain : Effects of ischemia and peripheral lipopolysaccharide administration

    NARCIS (Netherlands)

    Gourmala, NG; Buttini, M; Limonta, S; Sauter, A; Boddeke, HWGM

    1997-01-01

    Increasing evidence indicates a key role of chemoattractant cytokines in the accumulation of leukocytes in the central nervous system (CNS) during the course of inflammatory processes. Monocyte chemoattractant protein (MCP-1/JE), a member of the beta-chemokine (C-C chemokine) family, functions as a

  6. Transcriptional Regulation and Macrophage Differentiation.

    Science.gov (United States)

    Hume, David A; Summers, Kim M; Rehli, Michael

    2016-06-01

    Monocytes and macrophages are professional phagocytes that occupy specific niches in every tissue of the body. Their survival, proliferation, and differentiation are controlled by signals from the macrophage colony-stimulating factor receptor (CSF-1R) and its two ligands, CSF-1 and interleukin-34. In this review, we address the developmental and transcriptional relationships between hematopoietic progenitor cells, blood monocytes, and tissue macrophages as well as the distinctions from dendritic cells. A huge repertoire of receptors allows monocytes, tissue-resident macrophages, or pathology-associated macrophages to adapt to specific microenvironments. These processes create a broad spectrum of macrophages with different functions and individual effector capacities. The production of large transcriptomic data sets in mouse, human, and other species provides new insights into the mechanisms that underlie macrophage functional plasticity.

  7. Mutation of neutralizing/antibody-dependent enhancing epitope on spike protein and 7b gene of feline infectious peritonitis virus: influences of viral replication in monocytes/macrophages and virulence in cats.

    Science.gov (United States)

    Takano, Tomomi; Tomiyama, Yoshika; Katoh, Yasuichiroh; Nakamura, Michiyo; Satoh, Ryoichi; Hohdatsu, Tsutomu

    2011-03-01

    We previously prepared neutralizing monoclonal antibody (MAb)-resistant (mar) mutant viruses using a laboratory strain feline infectious peritonitis virus (FIPV) 79-1146 (Kida et al., 1999). Mar mutant viruses are mutated several amino acids of the neutralizing epitope of Spike protein, compared with the parent strain, FIPV 79-1146. We clarified that MAb used to prepare mar mutant viruses also lost its activity to enhance homologous mar mutant viruses, strongly suggesting that neutralizing and antibody-dependent enhancing epitopes are present in the same region in the strain FIPV 79-1146. We also discovered that amino acid mutation in the neutralizing epitope reduced viral replication in monocytes/macrophages. We also demonstrated that the mutation or deletion of two nucleotides in 7b gene abrogate the virulence of strain FIPV 79-1146.

  8. Vorinostat in Treating Patients With Acute Myeloid Leukemia

    Science.gov (United States)

    2014-04-30

    Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  9. Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for glial and neural-related molecules in central nervous system mixed glial cell cultures: neurotrophins, growth factors and structural proteins

    Directory of Open Access Journals (Sweden)

    Nedelkoska Liljana

    2007-12-01

    Full Text Available Abstract Background In multiple sclerosis, inflammatory cells are found in both active and chronic lesions, and it is increasingly clear that cytokines are involved directly and indirectly in both formation and inhibition of lesions. We propose that cytokine mixtures typical of Th1 or Th2 lymphocytes, or monocyte/macrophages each induce unique molecular changes in glial cells. Methods To examine changes in gene expression that might occur in glial cells exposed to the secreted products of immune cells, we have used gene array analysis to assess the early effects of different cytokine mixtures on mixed CNS glia in culture. We compared the effects of cytokines typical of Th1 and Th2 lymphocytes and monocyte/macrophages (M/M on CNS glia after 6 hours of treatment. Results In this paper we focus on changes with potential relevance for neuroprotection and axon/glial interactions. Each mixture of cytokines induced a unique pattern of changes in genes for neurotrophins, growth and maturation factors and related receptors; most notably an alternatively spliced form of trkC was markedly downregulated by Th1 and M/M cytokines, while Th2 cytokines upregulated BDNF. Genes for molecules of potential importance in axon/glial interactions, including cell adhesion molecules, connexins, and some molecules traditionally associated with neurons showed significant changes, while no genes for myelin-associated genes were regulated at this early time point. Unexpectedly, changes occurred in several genes for proteins initially associated with retina, cancer or bone development, and not previously reported in glial cells. Conclusion Each of the three cytokine mixtures induced specific changes in gene expression that could be altered by pharmacologic strategies to promote protection of the central nervous system.

  10. Cutaneous myeloid sarcoma: natural history and biology of an uncommon manifestation of acute myeloid leukemia.

    Science.gov (United States)

    Hurley, M Yadira; Ghahramani, Grant K; Frisch, Stephanie; Armbrecht, Eric S; Lind, Anne C; Nguyen, Tudung T; Hassan, Anjum; Kreisel, Friederike H; Frater, John L

    2013-05-01

    We conducted a retrospective study of patients with cutaneous myeloid sarcoma, from 2 tertiary care institutions. Eighty-three patients presented, with a mean age of 52 years. Diagnosis of myeloid sarcoma in the skin was difficult due to the low frequency of myeloperoxidase and/or CD34+ cases (56% and 19% of tested cases, respectively). Seventy-one of the 83 patients (86%) had ≥ 1 bone marrow biopsy. Twenty-eight (39%) had acute myeloid leukemia with monocytic differentiation. Twenty-three had other de novo acute myeloid leukemia subtypes. Thirteen patients had other myeloid neoplasms, of which 4 ultimately progressed to an acute myeloid leukemia. Seven had no bone marrow malignancy. Ninety-eight percent of the patients received chemotherapy, and approximately 89% died of causes related to their disease. Cutaneous myeloid sarcoma in most cases represents an aggressive manifestation of acute myeloid leukemia. Diagnosis can be challenging due to lack of myeloblast-associated antigen expression in many cases, and difficulty in distinguishing monocyte-lineage blasts from neoplastic and non-neoplastic mature monocytes.

  11. Inflammation and Cancer: Extra- and Intracellular Determinants of Tumor-Associated Macrophages as Tumor Promoters

    Science.gov (United States)

    Vizler, Csaba; Kitajka, Klara; Puskas, Laszlo G.

    2017-01-01

    One of the hallmarks of cancer-related inflammation is the recruitment of monocyte-macrophage lineage cells to the tumor microenvironment. These tumor infiltrating myeloid cells are educated by the tumor milieu, rich in cancer cells and stroma components, to exert functions such as promotion of tumor growth, immunosuppression, angiogenesis, and cancer cell dissemination. Our review highlights the ontogenetic diversity of tumor-associated macrophages (TAMs) and describes their main phenotypic markers. We cover fundamental molecular players in the tumor microenvironment including extra- (CCL2, CSF-1, CXCL12, IL-4, IL-13, semaphorins, WNT5A, and WNT7B) and intracellular signals. We discuss how these factors converge on intracellular determinants (STAT3, STAT6, STAT1, NF-κB, RORC1, and HIF-1α) of cell functions and drive the recruitment and polarization of TAMs. Since microRNAs (miRNAs) modulate macrophage polarization key miRNAs (miR-146a, miR-155, miR-125a, miR-511, and miR-223) are also discussed in the context of the inflammatory myeloid tumor compartment. Accumulating evidence suggests that high TAM infiltration correlates with disease progression and overall poor survival of cancer patients. Identification of molecular targets to develop new therapeutic interventions targeting these harmful tumor infiltrating myeloid cells is emerging nowadays. PMID:28197019

  12. Differential regulatory activities of viral protein X for anti-viral efficacy of nucleos(t)ide reverse transcriptase inhibitors in monocyte-derived macrophages and activated CD4(+) T cells.

    Science.gov (United States)

    Hollenbaugh, Joseph A; Schader, Susan M; Schinazi, Raymond F; Kim, Baek

    2015-11-01

    Vpx encoded by HIV-2 and SIVsm enhances retroviral reverse transcription in macrophages in vitro by mediating the degradation of the host SAMHD1 protein that hydrolyzes dNTPs and by elevating cellular dNTP levels. Here we employed RT-SHIV constructs (SIV encoding HIV-1 RT) to investigate the contribution of Vpx to the potency of NRTIs, which compete against dNTPs, in monocyte-derived macrophages (MDMs) and activated CD4(+) T cells. Relative to HIV-1, both SIV and RT-SHIV exhibited reduced sensitivities to AZT, 3TC and TDF in MDMs but not in activated CD4(+) T cells. However, when SIV and RT-SHIV constructs not coding for Vpx were utilized, we observed greater sensitivities to all NRTIs tested using activated CD4(+) T cells relative to the Vpx-coding counterparts. This latter phenomenon was observed for AZT only when using MDMs. Our data suggest that Vpx in RT-SHIVs may underestimate the antiviral efficacy of NRTIs in a cell type dependent manner.

  13. Establishing the flow cytometric assessment of myeloid cells in kidney ischemia/reperfusion injury.

    Science.gov (United States)

    Williams, Timothy M; Wise, Andrea F; Alikhan, Maliha A; Layton, Daniel S; Ricardo, Sharon D

    2014-03-01

    Polychromatic flow cytometry is a powerful tool for assessing populations of cells in the kidney through times of homeostasis, disease and tissue remodeling. In particular, macrophages have been identified as having central roles in these three settings. However, because of the plasticity of myeloid cells it has been difficult to define a specific immunophenotype for these cells in the kidney. This study developed a gating strategy for identifying and assessing monocyte and macrophage subpopulations, along with neutrophils and epithelial cells in the healthy kidney and following ischemia/reperfusion (IR) injury in mice, using antibodies against CD45, CD11b, CD11c, Ly6C, Ly6G, F4/80, CSF-1R (CD115), MHC class II, mannose receptor (MR or CD206), an alternatively activated macrophage marker, and the epithelial cell adhesion marker (EpCAM or CD326). Backgating analysis and assessment of autofluorescence was used to extend the knowledge of various cell types and the changes that occur in the kidney at various time-points post-IR injury. In addition, the impact of enzymatic digestion of kidneys on cell surface markers and cell viability was assessed. Comparisons of kidney myeloid populations were also made with those in the spleen. These results provide a useful reference for future analyses of therapies aimed at modulating inflammation and enhancing endogenous remodeling following kidney injury.

  14. Macrophage-like cell transformation and CFU(c) fluctuations in normal and leukemic human marrow cultures treated by phorbol diester.

    Science.gov (United States)

    Svet-Moldavskaya, I A; Zinzar, S N; Svet-Moldavsky, G J; Mann, P E; Bekesi, J G; Holland, J F; Clarkson, B D; Arlin, Z; Koziner, B

    1979-12-01

    Bone marrow from normal and chronic myeloid leukemia donors was grown in liquid cultures without feeder layers and with and without 12-u-tetradecanoyl-phorbol-13-acetate (TPA). In 24-96 hours most of the cells (60-70%) cultured with 10(-7) M and 10(-8) M TPA stuck to the bottom of the flasks and had a peculiar shape resembling macrophages possessing strong phagocytizing activity and surface markers of monocyte-macrophage lineage of differentiation. 10(-7) M and 10(-8) M TPA fully inhibited CFU(c) in cultures of normal marrow as well as of chronic myeloid leukemia (CML) patients; 10(-9) M and 10(-10) M exhibited individually varied partial suppression. Cultivation of bone marrow with 10(-11) M to 10(-13) M TPA led in some cases to statistically significant increase of CFU(c) on day 4 and day 7.

  15. Characteristics of monocytes and macrophages in response to Salmonella typhi%单核细胞巨噬细胞对伤寒沙门氏菌应答的特性

    Institute of Scientific and Technical Information of China (English)

    李铁民; 徐浩; 江崎孝行

    2001-01-01

    Aim To explore the characteristics of monocyte and macrophage inresponse to Salmonella typhi. Methods The internalization and intracellular survival of Salmonella typhi, as well as the production of TNF-α and IL-12 were detected by using THP-1 cells cultured in vitro and PMA-differentiated THP-1 cells induced by Salmonella typhi. Results THP-1 cells were differentiated into macrophages after PMA treatment. The ability to internalize and kill intracellular Salmonella typhi was markedly enhanced in PMA-differentiated THP-1 cells, and production of the cytokines in THP-1 cells and PMA differentiated THP-1 cells inducted by Salmonella typhi was significantly different. Conclusion Human macrophages may be the main cells which defend against the infection of Salmonella typhi.%目的探讨人类单核细胞巨噬细胞对伤寒沙门氏菌应答的特性。方法采用体外培养的THP-1细胞和PMA诱导分化的THP-1细胞,测定其内在化和杀伤伤寒沙门氏菌的活性,以及以伤寒沙门氏菌诱导的上述两种细胞产生TNFα和IL-12的情况。结果PMA诱导的THP-1细胞可分化成巨噬细胞;THP-1细胞和PMA诱导分化的THP-1细胞的内在化,杀伤伤寒沙门氏菌的能力及其产生细胞因子的能力显箸不同。结论人类巨噬细胞可能是机体抗御伤寒沙门氏菌感染的重要细胞。

  16. Regulation of ATP-binding cassette transporters and cholesterol efflux by glucose in primary human monocytes and murine bone marrow-derived macrophages

    Science.gov (United States)

    Individuals with type 2 diabetes mellitus are at increased risk of developing atherosclerosis. This may be partially attributable to suppression of macrophage ATP-binding cassette (ABC) transporter mediated cholesterol efflux by sustained elevated blood glucose concentrations. Two models were used...

  17. SIV vpx is essential for macrophage infection but not for development of AIDS.

    Directory of Open Access Journals (Sweden)

    Susan V Westmoreland

    Full Text Available Analysis of rhesus macaques infected with a vpx deletion mutant virus of simian immunodeficiency virus mac239 (SIVΔvpx demonstrates that Vpx is essential for efficient monocyte/macrophage infection in vivo but is not necessary for development of AIDS. To compare myeloid-lineage cell infection in monkeys infected with SIVΔvpx compared to SIVmac239, we analyzed lymphoid and gastrointestinal tissues from SIVΔvpx-infected rhesus (n = 5, SIVmac239-infected rhesus with SIV encephalitis (7 SIV239E, those without encephalitis (4 SIV239noE, and other SIV mutant viruses with low viral loads (4 SIVΔnef, 2 SIVΔ3. SIV+ macrophages and the percentage of total SIV+ cells that were macrophages in spleen and lymph nodes were significantly lower in rhesus infected with SIVΔvpx (2.2% compared to those infected with SIV239E (22.7%, SIV239noE (8.2%, and SIV mutant viruses (10.1%. In colon, SIVΔvpx monkeys had fewer SIV+ cells, no SIV+ macrophages, and lower percentage of SIV+ cells that were macrophages than the other 3 groups. Only 2 SIVΔvpx monkeys exhibited detectable virus in the colon. We demonstrate that Vpx is essential for efficient macrophage infection in vivo and that simian AIDS and death can occur in the absence of detectable macrophage infection.

  18. Differential dependencies of monocytes and neutrophils on dectin-1, dectin-2 and complement for the recognition of fungal particles in inflammation.

    Directory of Open Access Journals (Sweden)

    Jacqueline U McDonald

    Full Text Available We have re-investigated the role of the complement system and the non-opsonic pattern recognition receptors dectin-1 and dectin-2 in the recognition of fungal particles by inflammatory neutrophils, monocytes and macrophages. We have used in vivo and ex vivo models to study the recognition and response of these cells: i We confirm previous observations regarding the importance of complement to neutrophil but not monocytic responses; ii We show that dectin-1 is important for driving inflammatory cell recruitment to fungal stimuli and that it biases the immediate inflammatory response to one that favors neutrophil over monocyte recruitment; iii We show that dectin-2 contributes to the physical recognition of fungal particles by inflammatory monocytes/macrophages, but is also expressed on neutrophils, where we show it has the potential to contribute to cellular activation; iv Additionally, we show that serum-opsonization has the potential to interfere with non-opsonic recognition of fungal particles by dectin-1 and dectin-2, presumably through masking of ligands. Collectively these roles are consistent with previously described roles of dectin-1 and dectin-2 in driving inflammatory and adaptive immune responses and complement in containing fungal burdens. This study emphasizes the importance of heterogeneity of receptor expression across myeloid cell subsets in protective immune responses.

  19. Differential dependencies of monocytes and neutrophils on dectin-1, dectin-2 and complement for the recognition of fungal particles in inflammation.

    Science.gov (United States)

    McDonald, Jacqueline U; Rosas, Marcela; Brown, Gordon D; Jones, Simon A; Taylor, Philip R

    2012-01-01

    We have re-investigated the role of the complement system and the non-opsonic pattern recognition receptors dectin-1 and dectin-2 in the recognition of fungal particles by inflammatory neutrophils, monocytes and macrophages. We have used in vivo and ex vivo models to study the recognition and response of these cells: i) We confirm previous observations regarding the importance of complement to neutrophil but not monocytic responses; ii) We show that dectin-1 is important for driving inflammatory cell recruitment to fungal stimuli and that it biases the immediate inflammatory response to one that favors neutrophil over monocyte recruitment; iii) We show that dectin-2 contributes to the physical recognition of fungal particles by inflammatory monocytes/macrophages, but is also expressed on neutrophils, where we show it has the potential to contribute to cellular activation; iv) Additionally, we show that serum-opsonization has the potential to interfere with non-opsonic recognition of fungal particles by dectin-1 and dectin-2, presumably through masking of ligands. Collectively these roles are consistent with previously described roles of dectin-1 and dectin-2 in driving inflammatory and adaptive immune responses and complement in containing fungal burdens. This study emphasizes the importance of heterogeneity of receptor expression across myeloid cell subsets in protective immune responses.

  20. Dermatan sulfate reduces monocyte chemoattractant protein 1 and TGF-β production, as well as macrophage recruitment and myofibroblast accumulation in mice with unilateral ureteral obstruction

    Directory of Open Access Journals (Sweden)

    C.L.R. Belmiro

    2011-07-01

    Full Text Available Selectins play an essential role in most inflammatory reactions, mediating the initial leukocyte-rolling event on activated endothelium. Heparin and dermatan sulfate (DS bind and block P- and L-selectin function in vitro. Recently, we reported that subcutaneous administration of DS inhibits colon inflammation in rats by reducing macrophage and T-cell recruitment and macrophage activation. In the present study, we examined the effect of porcine intestinal mucosa DS on renal inflammation and fibrosis in mice after unilateral ureteral obstruction (UUO. Twenty-four adult male Swiss mice weighing 20-25 g were divided into 4 groups: group C (N = 6 was not subjected to any surgical manipulation; group SH (N = 6 was subjected to surgical manipulation but without ureter ligation; group UUO (N = 6 was subjected to unilateral ureteral obstruction and received no treatment; group UUO plus DS (N = 6 was subjected to UUO and received DS (4 mg/kg subcutaneously daily for 14 days. An immunoblot study was also performed for TGF-β. Collagen (stained area ~3700 µm², MCP-1 (stained area ~1700 µm², TGF-β (stained area ~13% of total area, macrophage (number of cells ~40, and myofibroblast (stained area ~1900 µm² levels were significantly (P < 0.05 higher in the UUO group compared to control. DS treatment significantly (P < 0.05 reduced the content of collagen (stained area ~700 µm², MCP-1 (stained area ~160 µm² and TGF-β (stained area ~5% of total area, in addition to myofibroblast (stained area ~190 µm² and macrophage (number of cells ~32 accumulation in the obstructed kidney. Overall, these results indicate that DS attenuates kidney inflammation by reducing macrophage recruitment, myofibroblast population and fibrosis in mice submitted to UUO.

  1. Lipid homeostasis and inflammatory activation are disturbed in classically activated macrophages with peroxisomal β-oxidation deficiency.

    Science.gov (United States)

    Geric, Ivana; Tyurina, Yulia Y; Krysko, Olga; Krysko, Dmitri V; De Schryver, Evelyn; Kagan, Valerian E; Van Veldhoven, Paul P; Baes, Myriam; Verheijden, Simon

    2017-09-22

    Macrophage activation is characterized by pronounced metabolic adaptation. Classically activated macrophages show decreased rates of mitochondrial fatty acid oxidation and oxidative phosphorylation and acquire a glycolytic state together with their pro-inflammatory phenotype. In contrast, alternatively activated macrophages require oxidative phosphorylation and mitochondrial fatty acid oxidation for their anti-inflammatory function. Although it is evident that mitochondrial metabolism is regulated during macrophage polarization and essential for macrophage function, little is known on the regulation and role of peroxisomal β-oxidation during macrophage activation. In this study, we show that peroxisomal β-oxidation is strongly decreased in classically activated bone marrow derived macrophages (BMDM) and mildly induced in alternatively activated BMDM. To examine the role of peroxisomal β-oxidation in macrophages, we used Mfp2(-/-) BMDM lacking the key enzyme of this pathway. Impairment of peroxisomal β-oxidation in Mfp2(-/-) BMDM did not cause lipid accumulation but rather an altered distribution of lipid species with very long chain fatty acids accumulating in the triglyceride and phospholipid fraction. These lipid alterations in Mfp2(-/-) macrophages led to decreased inflammatory activation of Mfp2(-/-) BMDM and peritoneal macrophages evidenced by impaired production of several inflammatory cytokines and chemokines, but did not affect anti-inflammatory polarization. The disturbed inflammatory responses of Mfp2(-/-) macrophages did not affect immune cell infiltration, as mice with selective elimination of MFP2 from myeloid cells showed normal monocyte and neutrophil influx upon challenge with zymosan. Together, these data demonstrate that peroxisomal β-oxidation is involved in fine-tuning the phenotype of macrophages, likely by influencing the dynamic lipid profile during macrophage polarization. This article is protected by copyright. All rights reserved

  2. Activated factor X signaling via protease-activated receptor 2 suppresses pro-inflammatory cytokine production from LPS-stimulated myeloid cells.

    LENUS (Irish Health Repository)

    Gleeson, Eimear M

    2013-07-19

    Vitamin K-dependent proteases generated in response to vascular injury and infection enable fibrin clot formation, but also trigger distinct immuno-regulatory signaling pathways on myeloid cells. Factor Xa, a protease crucial for blood coagulation, also induces protease-activated receptor-dependent cell signaling. Factor Xa can bind both monocytes and macrophages, but whether factor Xa-dependent signaling stimulates or suppresses myeloid cell cytokine production in response to Toll-like receptor activation is not known. In this study, exposure to factor Xa significantly impaired pro-inflammatory cytokine production from lipopolysaccharide-treated peripheral blood mononuclear cells, THP-1 monocytic cells and murine macrophages. Furthermore, factor Xa inhibited nuclear factor-kappa B activation in THP-1 reporter cells, requiring phosphatidylinositide 3-kinase activity for its anti-inflammatory effect. Active-site blockade, γ-carboxyglutamic acid domain truncation and a peptide mimic of the factor Xa inter-epidermal growth factor-like region prevented factor Xa inhibition of lipopolysaccharide-induced tumour necrosis factor-α release. In addition, factor Xa anti-inflammatory activity was markedly attenuated by the presence of an antagonist of protease-activated receptor 2, but not protease-activated receptor 1. The key role of protease-activated receptor 2 in eliciting factor Xa-dependent anti-inflammatory signaling on macrophages was further underscored by the inability of factor Xa to mediate inhibition of tumour necrosis factor-α and interleukin-6 release from murine bone marrow-derived protease-activated receptor 2-deficient macrophages. We also show for the first time that, in addition to protease-activated receptor 2, factor Xa requires a receptor-associated protein-sensitive low-density lipoprotein receptor to inhibit lipopolysaccharide-induced cytokine production. Collectively, this study supports a novel function for factor Xa as an endogenous, receptor

  3. Cystathionine-γ-lyase gene silencing with siRNA in monocytes/ macrophages attenuates inflammation in cecal ligation and puncture-induced sepsis in the mouse

    Indian Academy of Sciences (India)

    A Badiei; ST Chambers; RR Gaddam; M Bhatia

    2016-03-01

    Hydrogen sulphide is an endogenous inflammatory mediator produced by cystathionine-γ-lyase (CSE) in macrophages. To determine the role of H2S and macrophages in sepsis, we used small interference RNA (siRNA) to target the CSE gene and investigated its effect in a mouse model of sepsis. Cecal ligation puncture (CLP)-induced sepsis is characterized by increased levels of myeloperoxidase (MPO) activity, morphological changes in liver and pro-inflammatory cytokines and chemokines in the liver and lung. SiRNA treatment attenuated inflammation in the liver and lungs of mice following CLP-induced sepsis. Liver MPO activity increased in CLP-induced sepsis and treatment with siRNA significantly reduced this. Similarly, lung MPO activity increased following induction of sepsis with CLP while siRNA treatment significantly reduced MPO activity. Liver and lung cytokine and chemokine levels in CLP-induced sepsis reduced following treatment with siRNA. These findings show a crucial pro-inflammatory role for H2S synthesized by CSE in macrophages in sepsis and suggest CSE gene silencing with siRNA as a potential therapeutic approach for this condition.

  4. MIF inhibition reverts the gene expression profile of human melanoma cell line-induced MDSCs to normal monocytes

    Directory of Open Access Journals (Sweden)

    Sabine Waigel

    2016-03-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are potently immunosuppressive innate immune cells that accumulate in advanced cancer patients and actively inhibit anti-tumor T lymphocyte responses [1]. Increased numbers of circulating MDSCs directly correlate with melanoma patient morbidity and reduced anti-tumor immune responses [2,3]. Previous studies have revealed that monocyte-derived macrophage migration inhibitory factor (MIF is necessary for the immune suppressive function of MDSCs in mouse models of melanoma [4,5]. To investigate whether MIF participates in human melanoma-induced MDSC differentiation and/or suppressive function, we have established an in vitro MDSC induction model using primary, normal human monocytes co-cultured with human melanoma cell lines in the presence or absence of the MIF antagonist—4-IPP [4,6–9]. To identify potential mechanistic effectors, we have performed transcriptome analyses on cultured monocytes and on melanoma-induced MDSCs obtained from either untreated or 4-IPP-treated A375:monocyte co-cultures. Here, we present a detailed protocol, which can facilitate easy reproduction of the microarray results (NCBI GEO accession number GSE73333 published by Yaddanapudi et al. (2015 in Cancer Immunology Research [10].

  5. Human Monocyte-Derived Osteoclasts Are Targeted by Staphylococcal Pore-Forming Toxins and Superantigens.

    Directory of Open Access Journals (Sweden)

    Sacha Flammier

    Full Text Available Staphylococcus aureus is the leading cause of bone and joint infections (BJIs. Staphylococcal pathogenesis involves numerous virulence factors including secreted toxins such as pore-forming toxins (PFTs and superantigens. The role of these toxins on BJI outcome is largely unknown. In particular, few studies have examined how osteoclasts, the bone-resorbing cells, respond to exposure to staphylococcal PFTs and superantigens. We investigated the direct impact of recombinant staphylococcal toxins on human primary mature monocyte-derived osteoclasts, in terms of cytotoxicity and cell activation with cell death and bone resorption assays, using macrophages of the corresponding donors as a reference. Monocyte-derived osteoclasts displayed similar toxin susceptibility profiles compared to macrophages. Specifically, we demonstrated that the Panton-Valentine leukocidin, known as one of the most powerful PFT which lyses myeloid cells after binding to the C5a receptor, was able to induce the death of osteoclasts. The archetypal superantigen TSST-1 was not cytotoxic but enhanced the bone resorption activity of osteoclasts, suggesting a novel mechanism by which superantigen-producing S. aureus can accelerate the destruction of bone tissue during BJI. Altogether, our data indicate that the diverse clinical presentations of BJIs could be related, at least partly, to the toxin profiles of S. aureus isolates involved in these severe infections.

  6. The dysregulation of the monocyte/macrophage effector function induced by isopropanol is mediated by the defective activation of distinct members of the AP-1 family of transcription factors.

    Science.gov (United States)

    Carignan, Damien; Désy, Olivier; de Campos-Lima, Pedro O

    2012-01-01

    Isopropanol is the second most common cause of short-chain alcohol acute intoxication. Nonethanolic short-chain alcohols mediate their immunomodulatory effect by interfering with nuclear factor of activated T cells (NFAT) activation with or without additional activator protein-1 (AP-1) involvement. In the present study, we examined the immunomodulation induced by isopropanol in conditions that are not reliant on NFAT: the inflammatory cytokine response of lipopolysaccharide (LPS)-stimulated monocytes. Our hypothesis was that isopropanol acute exposure would have an attenuated effect or no consequence in this setting. To our surprise, the impairment of AP-1 activation was sufficient to mediate a severe and dose-dependent phenotype in human monocytes in vitro at alcohol concentrations as low as 0.16% (or 26 mM). There were three outcomes: interleukin (IL)-1β/IL-8 were unaltered; IL-6 was upregulated; and tumor necrosis factor alpha (TNF-α)/CCL2 were downregulated. The effector function of human monocyte-derived macrophages was also compromised. Our results showed that Toll-like receptor 4 early signaling was preserved, as isopropanol did not change the kinase activity of the IL-1 receptor-associated kinase 1 in LPS-stimulated cells. The nuclear factor-κB signaling cascade and the p38/c-Jun N-terminal kinase modules of the mitogen-activated protein kinase pathway were alcohol insensitive. Conversely, the activation of extracellular signal-regulated protein kinase and, ultimately, of c-Fos and JunB were impaired. The alcohol-induced cytokine dysregulation was confirmed in a mouse model of isopropanol intoxication in which the production of TNF-α in response to LPS challenge was virtually abolished. The magnitude of this alcohol effect was sufficiently high to rescue animals from LPS-induced toxic shock. Our data contribute to the dismal body of information on the immunotoxicology of isopropanol, one of the most ubiquitous chemicals to which the general population

  7. Bovine viral diarrhea virus type 2 in vivo infection modulates TLR4 responsiveness in differentiated myeloid cells which is associated with decreased MyD88 expression.

    Science.gov (United States)

    Schaut, Robert G; McGill, Jodi L; Neill, John D; Ridpath, Julia F; Sacco, Randy E

    2015-10-02

    Symptoms of bovine viral diarrhea virus (BVDV) infection range from subclinical to severe, depending on strain virulence. Several in vitro studies showed BVDV infection impaired leukocyte function. Fewer studies have examined the effects of in vivo BVDV infection on monocyte/macrophage function, especially with strains of differing virulence. We characterized cytokine production by bovine myeloid cells isolated early or late in high (HV) or low virulence (LV) BVDV2 infection. Given BVDV infection may enhance susceptibility to secondary bacterial infection, LPS responses were examined as well. Monocytes from HV and LV infected calves produced higher levels of cytokines compared to cells from controls. In contrast, monocyte-derived macrophage cytokine levels were generally reduced. Modulated cytokine expression in HV BVDV2 macrophages was associated with decreased MyD88 expression, likely due to its interaction with viral NS5A. These data and those of others, suggest that certain Flaviviridae may have evolved strategies for subverting receptor signaling pathways involving MyD88.

  8. Revisiting mouse peritoneal macrophages: heterogeneity, development and function

    Directory of Open Access Journals (Sweden)

    Alexandra Dos Anjos Cassado

    2015-05-01

    Full Text Available Tissue macrophages play a crucial role in the maintenance of tissue homeostasis and also contribute to inflammatory and reparatory responses during pathogenic infection and tissue injury. The high heterogeneity of these macrophages is consistent with their adaptation to distinct tissue environments and specialization to develop niche-specific functions. Although peritoneal macrophages are one of best-studied macrophage populations, only recently it was demonstrated the co-existence of two subsets in mouse PerC, which exhibit distinct phenotypes, functions and origins. These macrophage subsets have been classified according to their morphology as LPMs (large peritoneal macrophages and SPMs (small peritoneal macrophages. LPMs, the most abundant subset under steady-state conditions, express high levels of F4/80 and low levels of class II molecules of the major histocompatibility complex (MHC. LPMs appear to be originated from embriogenic precursors, and their maintenance in PerC is regulated by expression of specific transcription factors and tissue-derived signals. Conversely, SPMs, a minor subset in unstimulated PerC, have a F4/80lowMHC-IIhigh phenotype and are generated from bone-marrow-derived myeloid precursors. In response to infectious or inflammatory stimuli, the cellular composition of PerC is dramatically altered, where LPMs disappear and SPMs become the prevalent population together with their precursor, the inflammatory monocyte. SPMs appear to be the major source of inflammatory mediators in PerC during infection whereas LPMs contribute for gut-associated lymphoid tissue (GALT-independent and retinoic acid-dependent IgA production by peritoneal B-1 cells. In the last years, considerable efforts have been made to broaden our understanding of LPM and SPM origin, transcriptional regulation and functional profile. This review addresses these issues, focusing on the impact of tissue-derived signals and external stimulation in the complex

  9. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults

    Directory of Open Access Journals (Sweden)

    Trautwein Christian

    2010-06-01

    Full Text Available Abstract Background Recent experimental approaches have unraveled essential migratory and functional differences of monocyte subpopulations in mice. In order to possibly translate these findings into human physiology and pathophysiology, human monocyte subsets need to be carefully revisited in health and disease. In analogy to murine studies, we hypothesized that human monocyte subsets dynamically change during ageing, potentially influencing their functionality and contributing to immunosenescence. Results Circulating monocyte subsets, surface marker and chemokine receptor expression were analyzed in 181 healthy volunteers (median age 42, range 18-88. Unlike the unaffected total leukocyte or total monocyte counts, non-classical CD14+CD16+ monocytes significantly increased with age, but displayed reduced HLA-DR and CX3CR1 surface expression in the elderly. Classical CD14++CD16- monocyte counts did not vary dependent on age. Serum MCP-1 (CCL2, but not MIP1α (CCL3, MIP1β (CCL4 or fractalkine (CX3CL1 concentrations increased with age. Monocyte-derived macrophages from old or young individuals did not differ with respect to cytokine release in vitro at steady state or upon LPS stimulation. Conclusions Our study demonstrates dynamic changes of circulating monocytes during ageing in humans. The expansion of the non-classical CD14+CD16+ subtype, alterations of surface protein and chemokine receptor expression as well as circulating monocyte-related chemokines possibly contribute to the preserved functionality of the monocyte pool throughout adulthood.

  10. Influence of selective brain cooling on the expression of ICAM-1 mRNA and infiltration of PMNLs and monocytes/macrophages in rats suffering from global brain ischemia/reperfusion injury.

    Science.gov (United States)

    Cao, Jianping; Xu, Jianguo; Li, Weiyan; Liu, Jian

    2008-12-01

    This study sought to evaluate the effects of selective brain cooling on the expression of intercellular adhesion molecule-1 (ICAM-1) mRNA and infiltration of polymorphonuclear leukocytes (PMNLs) and monocytes/macrophages (MPhi) during global cerebral ischemia/ reperfusion (I/R). Global ischemia of the brain was produced by four-vessel occlusion for 30 min followed by reperfusion for 240 min. Thirty-five SD rats were randomly divided into five groups: group I had no ischemia and reperfusion; groups II, III, IV, and V were subjected to ischemia for 30 min at 37 degrees C and reperfusion for 240 min at 37, 35, 32, and 28 degrees C, respectively. Cerebral tissue samples were taken for pathological examination of the infiltration of PMNLs and MPhi and to detect ICAM-1 mRNA expression by reverse transcription-polymerase chain reaction (RT-PCR). The expression of ICAM-1 mRNA and infiltration of PMNLs and MPhi increased more markedly in group II than in group I (p cooling, and especially moderate hypothermia (28-32 degrees C), may provide better cerebral protection by markedly inhibiting the expression of ICAM-1 mRNA while decreasing the infiltration of PMNLs and MPhi in the brain.

  11. 单核-巨噬细胞在早产儿视网膜病变发生中的作用%Role of monocyte/macrophages in the pathogenesis of retinopathy of prematurity

    Institute of Scientific and Technical Information of China (English)

    高翔; 王雨生

    2013-01-01

    早产儿视网膜病变(retinopathy of prematurity,ROP)是一种常见而复杂的视网膜新生血管性疾病,致病因素复杂,发病机制尚未阐明,治疗棘手.近年来临床和基础研究证实,感染和炎症在其发生发展中起着重要作用.单核-巨噬细胞系统(MC/MΦ)是炎症反应的中心环节,在ROP发生中具有重要作用.%Retinopathy of prematurity (ROP) is a common and complicated retinal neovascularized disease which etiological factors and pathogenesis are still unclear.The current clinical and animal experiments show that infection and inflammation play an important role in ROP.As the monocytes/macrophages (MC/MΦ) are in the central of inflammatory responses,we review the role of the MC/MΦ in the pathogenesis of ROP.

  12. Primary 1,25-dihydroxyvitamin D3 response of the interleukin 8 gene cluster in human monocyte- and macrophage-like cells.

    Directory of Open Access Journals (Sweden)

    Jussi Ryynänen

    Full Text Available Genome-wide analysis of vitamin D receptor (VDR binding sites in THP-1 human monocyte-like cells highlighted the interleukin 8 gene, also known as chemokine CXC motif ligand 8 (CXCL8. CXCL8 is a chemotactic cytokine with important functions during acute inflammation as well as in the context of various cancers. The nine genes of the CXCL cluster and the strong VDR binding site close to the CXCL8 gene are insulated from neighboring genes by CCCTC-binding factor (CTCF binding sites. Only CXCL8, CXCL6 and CXCL1 are expressed in THP-1 cells, but all three are up-regulated primary 1,25-dihydroxyvitamin D3 (1,25(OH2D3 target genes. Formaldehyde-assisted isolation of regulatory elements sequencing analysis of the whole CXCL cluster demonstrated 1,25(OH2D3-dependent chromatin opening exclusively for the VDR binding site. In differentiated THP-1 cells the CXCL8 gene showed a 33-fold higher basal expression, but is together with CXCL6 and CXCL1 still a primary 1,25(OH2D3 target under the control of the same genomic VDR binding site. In summary, both in undifferentiated and differentiated THP-1 cells the genes CXCL8, CXCL6 and CXCL1 are under the primary control of 1,25(OH2D3 and its receptor VDR. Our observation provides further evidence for the immune-related functions of vitamin D.

  13. In vitro responses of chicken macrophage-like monocytes following exposure to pathogenic and non-pathogenic E. coli ghosts loaded with a rational design of conserved genetic materials of influenza and Newcastle disease viruses.

    Science.gov (United States)

    Lagzian, Milad; Bassami, Mohammad Reza; Dehghani, Hesam

    2016-08-01

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two important viral diseases in the poultry industry. Therefore, new disease-fighting strategies, especially effective genetic vaccination, are in high demand. Bacterial Ghost (BG) is a promising platform for delivering genetic materials to macrophages, cells that are among the first to encounter these viruses. However, there is no investigation on the immune response of these macrophage-targeted treatments. Here, we investigated the effect of genetic materials of AIV and NDV on the gene expression profile of important pro-inflammatory cytokines, a chemokine, a transcription factor, major histocompatibility complexes, and the viability of the chicken macrophage-like monocyte cells (CMM). Our genetic construct contained the external domain of matrix protein 2 and nucleoprotein gene of AIV, and immunodominant epitopes of fusion and hemagglutinin-neuraminidase proteins of NDV (hereinafter referred to as pAIV-Vax), delivered via the pathogenic and non-pathogenic BGs (Escherichia coli O78K80 and E. coli TOP10 respectively). The results demonstrated that both types of BGs were able to efficiently deliver the construct to the CMM, although the pathogenic strain derived BG was a significantly better stimulant and delivery vehicle. Both BGs were safe regarding LPS toxicity and did not induce any cell death. Furthermore, the loaded BGs were more powerful in modulating the pro-inflammatory cytokines' responses and antigen presentation systems in comparison to the unloaded BGs. Nitric oxide production of the BG-stimulated cells was also comparable to those challenged by the live bacteria. According to the results, the combination of pAIV-Vax construct and E. coli O78K80 BG is promising in inducing a considerable innate and adaptive immune response against AIV-NDV and perhaps the pathogenic E. coli, provided that the current combination be a potential candidate for in vivo testing regarding the development of an

  14. Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population.

    Science.gov (United States)

    Antonelli, Lis R V; Gigliotti Rothfuchs, Antonio; Gonçalves, Ricardo; Roffê, Ester; Cheever, Allen W; Bafica, Andre; Salazar, Andres M; Feng, Carl G; Sher, Alan

    2010-05-01

    Type I IFN has been demonstrated to have major regulatory effects on the outcome of bacterial infections. To assess the effects of exogenously induced type I IFN on the outcome of Mycobacterium tuberculosis infection, we treated pathogen-exposed mice intranasally with polyinosinic-polycytidylic acid condensed with poly-l-lysine and carboxymethylcellulose (Poly-ICLC), an agent designed to stimulate prolonged, high-level production of type I IFN. Drug-treated, M. tuberculosis-infected WT mice, but not mice lacking IFN-alphabeta receptor 1 (IFNalphabetaR; also known as IFNAR1), displayed marked elevations in lung bacillary loads, accompanied by widespread pulmonary necrosis without detectable impairment of Th1 effector function. Importantly, lungs from Poly-ICLC-treated M. tuberculosis-infected mice exhibited a striking increase in CD11b+F4/80+Gr1int cells that displayed decreased MHC II expression and enhanced bacterial levels relative to the same subset of cells purified from infected, untreated controls. Moreover, both the Poly-ICLC-triggered pulmonary recruitment of the CD11b+F4/80+Gr1int population and the accompanying exacerbation of infection correlated with type I IFN-induced upregulation of the chemokine-encoding gene Ccl2 and were dependent on host expression of the chemokine receptor CCR2. The above findings suggest that Poly-ICLC treatment can detrimentally affect the outcome of M. tuberculosis infection, by promoting the accumulation of a permissive myeloid population in the lung. In addition, these data suggest that agents that stimulate type I IFN should be used with caution in patients exposed to this pathogen.

  15. Selective phosphorylation during early macrophage differentiation

    KAUST Repository

    Zhang, Huoming

    2015-08-26

    The differentiation of macrophages from monocytes is a tightly controlled and complex biological process. Although numerous studies have been conducted using biochemical approaches or global gene/gene profiling, the mechanisms of the early stages of differentiation remain unclear. Here we used SILAC-based quantitative proteomics approach to perform temporal phosphoproteome profiling of early macrophage differentiation. We identified a large set of phosphoproteins and grouped them as PMA-regulated and non-regulated phosphoproteins in the early stages of differentiation. Further analysis of the PMA-regulated phosphoproteins revealed that transcriptional suppression, cytoskeletal reorganization and cell adhesion were among the most significantly activated pathways. Some key involved regulators of these pathways are mTOR, MYB, STAT1 and CTNNB. Moreover, we were able to classify the roles and activities of several transcriptional factors during different differentiation stages and found that E2F is likely to be an important regulator during the relatively late stages of differentiation. This study provides the first comprehensive picture of the dynamic phosphoproteome during myeloid cells differentiation, and identifies potential molecular targets in leukemic cells.

  16. A functional study on the migration of human monocytes to human leukemic cell lines and the role of monocyte chemoattractant protein-1

    NARCIS (Netherlands)

    Legdeur, MCJC; Beelen, RHJ; Schuurhuis, GJ; Broekhoven, MG; vandeLoosdrecht, AA; Tekstra, J; Langenhuijsen, MMAC; Ossenkoppele, GJ

    1997-01-01

    In the present study the migration of human monocytes towards the supernatants of five different human myeloid leukemic cell lines, four different human lymphatic leukemic cell lines and blasts derived from three different patients with acute myeloid leukemia (AML) was studied and the role of monocy

  17. Integrin αDβ2 (CD11d/CD18 is expressed by human circulating and tissue myeloid leukocytes and mediates inflammatory signaling.

    Directory of Open Access Journals (Sweden)

    Yasunari Miyazaki

    Full Text Available Integrin α(Dβ(2 is the most recently identified member of the leukocyte, or β(2, subfamily of integrin heterodimers. Its distribution and functions on human leukocytes have not been clearly defined and are controversial. We examined these issues and found that α(Dβ(2 is prominently expressed by leukocytes in whole blood from healthy human subjects, including most polymorphonuclear leukocytes and monocytes. We also found that α(Dβ(2 is displayed by leukocytes in the alveoli of uninjured and inflamed human lungs and by human monocyte-derived macrophages and dendritic cells, indicating broad myeloid expression. Using freshly-isolated human monocytes, we found that α(Dβ(2 delivers outside-in signals to pathways that regulate cell spreading and gene expression. Screening expression analysis followed by validation of candidate transcripts demonstrated that engagement of α(Dβ(2 induces mRNAs encoding inflammatory chemokines and cytokines and secretion of their protein products. Thus, α(Dβ(2 is a major member of the integrin repertoire of both circulating and tissue myeloid leukocytes in humans. Its broad expression and capacity for outside-in signaling indicate that it is likely to have important functions in clinical syndromes of infection, inflammation, and tissue injury.

  18. Macrophage migration inhibitory factor and autism spectrum disorders

    NARCIS (Netherlands)

    Grigorenko, Elena L.; Han, Summer S.; Yrigollen, Carolyn M.; Leng, Lin; Mizue, Yuka; Anderson, George M.; Mulder, Erik J.; de Bildt, Annelies; Minderaa, Ruud B.; Volkmar, Fred R.; Chang, Joseph T.; Bucala, Richard

    2008-01-01

    OBJECTIVE. Autistic spectrum disorders are childhood neurodevelopmental disorders characterized by social and communicative impairment and repetitive and stereotypical behavior. Macrophage migration inhibitory factor (MIF) is an upstream regulator of innate immunity that promotes monocyte/macrophage

  19. Circulating classical CD14++CD16− monocytes predict shorter time to initial treatment in chronic lymphocytic leukemia patients: Differential effects of immune chemotherapy on monocyte-related membrane and soluble forms of CD163

    National Research Council Canada - National Science Library

    LAPUC, IZABELA; BOLKUN, LUKASZ; ELJASZEWICZ, ANDRZEJ; RUSAK, MALGORZATA; LUKSZA, EWA; SINGH, PAULINA; MIKLASZ, PAULA; PISZCZ, JAROSLAW; PTASZYNSKA-KOPCZYNSKA, KATARZYNA; JASIEWICZ, MALGORZATA; KAMINSKI, KAROL; DABROWSKA, MILENA; BODZENTA-LUKASZYK, ANNA; KLOCZKO, JANUSZ; MONIUSZKO, MARCIN

    2015-01-01

    ...). Moreover, we set out to analyze the effects of standard immune chemotherapy on different monocyte subsets and levels of membrane-associated and soluble forms of CD163, a monocyte/macrophage-related...

  20. Enhancing and suppressing effects of recombinant murine macrophage inflammatory proteins on colony formation in vitro by bone marrow myeloid progenitor cells.

    Science.gov (United States)

    Broxmeyer, H E; Sherry, B; Lu, L; Cooper, S; Oh, K O; Tekamp-Olson, P; Kwon, B S; Cerami, A

    1990-09-15

    Purified recombinant (r) macrophage inflammatory proteins (MIPs) 1 alpha, 1 beta, and 2 were assessed for effects on murine (mu) and human (hu) marrow colony-forming unit-granulocyte-macrophage (CFU-GM) and burst-forming unit-erythroid (BFU-E) colonies. Recombinant MIP-1 alpha, -1 beta, and -2 enhanced muCFU-GM colonies above that stimulated with 10 to 100 U natural mu macrophage-colony-stimulating factor (M-CSF) or rmuGM-CSF, with enhancement seen on huCFU-GM colony formation stimulated with suboptimal rhuM-CSF or rhuGM-CSF; effects were neutralized by respective MIP-specific antibodies. Macrophage inflammatory proteins had no effects on mu or huBFU-E colonies stimulated with erythropoietin (Epo). However, natural MIP-1 and rMIP-1 alpha, but not rMIP-1 beta or -2, suppressed muCFU-GM stimulated with pokeweed mitogen spleen-conditioned medium (PWMSCM), huCFU-GM stimulated with optimal rhuGM-CSF plus rhu interleukin-3 (IL-3), muBFU-E and multipotential progenitors (CFU-GEMM) stimulated with Epo plus PWMSCM, and huBFU-E and CFU-GEMM stimulated with Epo plus rhuIL-3 or rhuGM-CSF. The suppressive effects of natural MIP-1 and rMIP-1 alpha were also apparent on a population of BFU-E, CFU-GEMM, and CFU-GM present in cell-sorted fractions of human bone marrow (CD34 HLA-DR+) highly enriched for progenitors with cloning efficiencies of 42% to 75%. These results, along with our previous studies, suggest that MIP-1 alpha, -1 beta, and -2 may have direct myelopoietic enhancing activity for mature progenitors, while MIP-1 alpha may have direct suppressing activity for more immature progenitors.

  1. Comparative analysis of signature genes in PRRSV-infected porcine monocyte-derived dendritic cells at differential activation statuses

    Science.gov (United States)

    Activation statuses of monocytic cells including monocytes, macrophages and dendritic cells (DCs) are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these c...

  2. Emerging roles of myeloid derived suppressor cells in hepatic inflammation and fibrosis

    Institute of Scientific and Technical Information of China (English)

    Linda; Hammerich; Frank; Tacke

    2015-01-01

    Myeloid derived suppressor cells(MDSC) are a heterogeneous population of immune cells that are potent suppressors of immune responses. MDSC emerge in various compartments in the body, such as blood, bonemarrow or spleen, especially in conditions of cancer, infections or inflammation. MDSC usually express CD11 b, CD33, and low levels of human leukocyte antigen-DR in humans or CD11 b and Gr1(Ly6C/G) in mice, and they can be further divided into granulocytic or monocytic MDSC. The liver is an important organ for MDSC induction and accumulation in hepatic as well as extrahepatic diseases. Different hepatic cells, especially hepatic stellate cells, as well as liver-derived soluble factors, including hepatocyte growth factor and acute phase proteins(SAA, KC), can promote the differentiation of MDSC from myeloid cells. Importantly, hepatic myeloid cells like neutrophils, monocytes and macrophages fulfill essential roles in acute and chronic liver diseases. Recent data from patients with liver diseases and animal models linked MDSC to the pathogenesis of hepatic inflammation, fibrosis and hepatocellular carcinoma(HCC). In settings of acute hepatitis, MDSC can limit immunogenic T cell responses and subsequent tissue injury. In patients with chronic hepatitis C, MDSC increase and may favor viral persistence. Animal models of chronic liver injury, however, have not yet conclusively clarified the involvement of MDSC for hepatic fibrosis. In human HCC and mouse models of liver cancer, MDSC are induced in the tumor environment and suppress anti-tumoral immune responses. Thus, the liver is a primary site of MDSC in vivo, and modulating MDSC functionality might represent a promising novel therapeutic target for liver diseases.

  3. Metalloproteinases: a Functional Pathway for Myeloid Cells.

    Science.gov (United States)

    Chou, Jonathan; Chan, Matilda F; Werb, Zena

    2016-04-01

    Myeloid cells have diverse roles in regulating immunity, inflammation, and extracellular matrix turnover. To accomplish these tasks, myeloid cells carry an arsenal of metalloproteinases, which include the matrix metalloproteinases and the adamalysins. These enzymes have diverse substrate repertoires, and are thus involved in mediating proteolytic cascades, cell migration, and cell signaling. Dysregulation of metalloproteinases contributes to pathogenic processes, including inflammation, fibrosis, and cancer. Metalloproteinases also have important nonproteolytic functions in controlling cytoskeletal dynamics during macrophage fusion and enhancing transcription to promote antiviral immunity. This review highlights the diverse contributions of metalloproteinases to myeloid cell functions.

  4. Transgenic mice overexpressing arginase 1 in monocytic cell lineage are affected by lympho-myeloproliferative disorders and disseminated intravascular coagulation.

    Science.gov (United States)

    Astigiano, Simonetta; Morini, Monica; Damonte, Patrizia; Fraternali Orcioni, Giulio; Cassanello, Michela; Puglisi, Andrea; Noonan, Douglas M; Bronte, Vincenzo; Barbieri, Ottavia

    2015-11-01

    Arginase (ARG) is a metabolic enzyme present in two isoforms that hydrolyze l-arginine to urea and ornithine. In humans, ARG isoform 1 is also expressed in cells of the myeloid lineage. ARG activity promotes tumour growth and inhibits T lymphocyte activation. However, the two ARG transgenic mouse lines produced so far failed to show such effects. We have generated, in two different genetic backgrounds, transgenic mice constitutively expressing ARG1 under the control of the CD68 promoter in macrophages and monocytes. Both heterozygous and homozygous transgenic mice showed a relevant increase in mortality at early age, compared with wild-type siblings (67/267 and 48/181 versus 8/149, respectively, both P < 0.005). This increase was due to high incidence of haematologic malignancies, in particular myeloid leukaemia, myeloid dysplasia, lymphomas and disseminated intravascular coagulation (DIC), diseases that were absent in wild-type mice. Atrophy of lymphoid organs due to reduction in T-cell compartment was also detected. Our results indicate that ARG activity may participate in the pathogenesis of lymphoproliferative and myeloproliferative disorders, suggest the involvement of alterations of L-arginine metabolism in the onset of DIC and confirm a role for the enzyme in regulating T-cell homeostasis.

  5. The role of myeloid cell activation and arginine metabolism in the pathogenesis of virus-induced diseases

    Directory of Open Access Journals (Sweden)

    Kristina S. Burrack

    2014-09-01

    Full Text Available When an antiviral immune response is generated, a balance must be reached between two opposing pathways: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS and arginase 1 (Arg1. Nitric oxide (NO production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections.

  6. Endotoxin-induced maturation of monocytes in preterm fetal sheep lung.

    Science.gov (United States)

    Kramer, Boris W; Joshi, Shubhada N; Moss, Timothy J M; Newnham, John P; Sindelar, Richard; Jobe, Alan H; Kallapur, Suhas G

    2007-08-01

    The fetal lung normally contains immature monocytes and very few mature macrophages. The chorioamnionitis frequently associated with preterm birth induces monocyte influx into the fetal lung. Previous studies demonstrated that monocytes in the developing lung can mediate lung injury responses that resemble BPD in humans. We hypothesized that chorioamnionitis would induce maturation of immature monocytes in the fetal lung. Groups of three to seven time-mated ewes received saline or 10 mg of endotoxin (Escherichia coli 055:B5) in saline by intra-amniotic injection for intervals from 1 to 14 days before operative delivery at 124 days of gestational age. Monocytic cells from lung tissue were recovered using Percoll gradients. Monocytic cells consistent with macrophages were identified morphologically and by myosin heavy chain class II expression. An increase in macrophages was preceded by induction of granulocyte-macrophage colony-stimulating factor in the lung and subsequent activation of the transcription factor PU.1. The production of IL-6 by monocytes/macrophages in response to endotoxin challenge in vitro increased 7 and 14 days after exposure to intra-amniotic endotoxin. Recombinant TNF-alpha induced IL-6 production by lung monocytic cells exposed to intra-amniotic endotoxin but not in control cells. Monocytic phagocytosis of apoptotic neutrophils also increased 7 and 14 days after exposure to intra-amniotic endotoxin. Intra-amniotic endotoxin induced lung monocytes to develop into functionally mature cells consistent with macrophages. These findings have implications for lung immune responses after exposure to chorioamnionitis.

  7. Role of HIV-1 subtype C envelope V3 to V5 regions in viral entry, coreceptor utilization and replication efficiency in primary T-lymphocytes and monocyte-derived macrophages

    Directory of Open Access Journals (Sweden)

    Gopalan Sarla

    2007-11-01

    Full Text Available Abstract Background Several subtypes of HIV-1 circulate in infected people worldwide, including subtype B in the United States and subtype C in Africa and India. To understand the biological properties of HIV-1 subtype C, including cellular tropism, virus entry, replication efficiency and cytopathic effects, we reciprocally inserted our previously characterized envelope V3–V5 regions derived from 9 subtype C infected patients from India into a subtype B molecular clone, pNL4-3. Equal amounts of the chimeric viruses were used to infect T-lymphocyte cell lines (A3.01 and MT-2, coreceptor cell lines (U373-MAGI-CCR5/CXCR4, primary blood T-lymphocytes (PBL and monocyte-derived macrophages (MDM. Results We found that subtype C envelope V3–V5 region chimeras failed to replicate in T-lymphocyte cell lines but replicated in PBL and MDM. In addition, these chimeras were able to infect U373MAGI-CD4+-CCR5+ but not U373MAGI-CD4+-CXCR4+ cell line, suggesting CCR5 coreceptor utilization and R5 phenotypes. These subtype C chimeras were unable to induce syncytia in MT-2 cells, indicative of non-syncytium inducing (NSI phenotypes. More importantly, the subtype C envelope chimeras replicated at higher levels in PBL and MDM compared with subtype B chimeras and isolates. Furthermore, the higher levels subtype C chimeras replication in PBL and MDM correlated with increased virus entry in U373MAGI-CD4+-CCR5+. Conclusion Taken together, these results suggest that the envelope V3 to V5 regions of subtype C contributed to higher levels of HIV-1 replication compared with subtype B chimeras, which may contribute to higher viral loads and faster disease progression in subtype C infected individuals than other subtypes as well as rapid HIV-1 subtype C spread in India.

  8. [Macrophages in asthma].

    Science.gov (United States)

    Medina Avalos, M A; Orea Solano, M

    1997-01-01

    Every time they exist more demonstrations of the paper than performs the line monocytes-macrophage in the patogenesis of the bronchial asthma. The mononuclear phagocytes cells, as the alveolar macrophages, also they can be activated during allergic methods. The monocytes macrophages are possible efficient inductors of the inflammation; this due to the fact that they can secrete inflammatory mediators, between those which are counted the pre-forming granules of peptides, metabolites of oxidation activation, activator of platelets activator and metabolites of the arachidonic acid. The identification of IL-1 in the liquidate of the bronchial ablution of sick asthmatic, as well as the identification of IL-1 in the I bronchioalveolar washing of places of allergens cutaneous prick, supports the activation concept mononuclear of phagocytic cells in allergic sufferings.

  9. Plasma level of the macrophage-derived soluble CD163 is increased and positively correlates with severity in Gaucher's disease

    DEFF Research Database (Denmark)

    Møller, Holger Jon; de Fost, Maaike; Aerts, Hans

    2004-01-01

    Recently, soluble CD163 (sCD163) has been identified as a macrophage/monocyte-specific plasma protein and increased concentrations have been measured in patients with infection and myeloid leukaemia. In the present study we investigated the levels of sCD163 in patients with Gaucher's disease...... supplementation therapy, the sCD163 levels were significantly reduced [4.7 mg/L (3.2-6.6), P = 0.0004]. sCD163 correlated with disease severity (rho = 0.43, P 0.0001). This study further establishes that sCD163 may be a valuable laboratory parameter...... in monitoring disease with increased macrophage activity....

  10. Caspofungin Acetate or Fluconazole in Preventing Invasive Fungal Infections in Patients With Acute Myeloid Leukemia Who Are Undergoing Chemotherapy

    Science.gov (United States)

    2017-01-31

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Fungal Infection; Neutropenia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  11. Growth factors induce monocyte binding to vascular smooth muscle cells: implications for monocyte retention in atherosclerosis.

    Science.gov (United States)

    Cai, Qiangjun; Lanting, Linda; Natarajan, Rama

    2004-09-01

    Adhesive interactions between monocytes and vascular smooth muscle cells (VSMC) may contribute to subendothelial monocyte-macrophage retention in atherosclerosis. We investigated the effects of angiotensin II (ANG II) and platelet-derived growth factor (PDGF)-BB on VSMC-monocyte interactions. Treatment of human aortic VSMC (HVSMC) with ANG II or PDGF-BB significantly increased binding to human monocytic THP-1 cells and to peripheral blood monocytes. This was inhibited by antibodies to monocyte beta(1)- and beta(2)-integrins. The binding was also attenuated by blocking VSMC arachidonic acid (AA) metabolism by inhibitors of 12/15-lipoxygenase (12/15-LO) or cyclooxygenase-2 (COX-2). Conversely, binding was enhanced by overexpression of 12/15-LO or COX-2. Direct treatment of HVSMC with AA or its metabolites also increased binding. Furthermore, VSMC derived from 12/15-LO knockout mice displayed reduced binding to mouse monocytic cells relative to genetic control mice. Using specific signal transduction inhibitors, we demonstrated the involvement of Src, phosphoinositide 3-kinase, and MAPKs in ANG II- or PDGF-BB-induced binding. Interestingly, after coculture with HVSMC, THP-1 cell surface expression of the scavenger receptor CD36 was increased. These results show for the first time that growth factors may play additional roles in atherosclerosis by increasing monocyte binding to VSMC via AA metabolism and key signaling pathways. This can lead to monocyte subendothelial retention, CD36 expression, and foam cell formation.

  12. Myeloid suppressor cells in cancer and autoimmunity.

    Science.gov (United States)

    Sica, Antonio; Massarotti, Marco

    2017-07-17

    A bottleneck for immunotherapy of cancer is the immunosuppressive microenvironment in which the tumor cells proliferate. Cancers harness the immune regulatory mechanism that prevents autoimmunity from evading immunosurveillance and promoting immune destruction. Regulatory T cells, myeloid suppressor cells, inhibitory cytokines and immune checkpoint receptors are the major components of the immune system acting in concert with cancer cells and causing the subversion of anti-tumor immunity. This redundant immunosuppressive network poses an impediment to efficacious immunotherapy by facilitating tumor progression. Tumor-associated myeloid cells comprise heterogeneous populations acting systemically (myeloid-derived suppressor cells/MDSCs) and/or locally in the tumor microenvironment (MDSCs and tumor-associated macrophages/TAMs). Both populations promote cancer cell proliferation and survival, angiogenesis and lymphangiogenesis and elicit immunosuppression through different pathways, including the expression of immunosuppressive cytokines and checkpoint inhibitors. Several evidences have demonstrated that myeloid cells can express different functional programs in response to different microenvironmental signals, a property defined as functional plasticity. The opposed extremes of this functional flexibility are generally represented by the classical macrophage activation, which identifies inflammatory and cytotoxic M1 polarized macrophages, and the alternative state of macrophage activation, which identifies M2 polarized anti-inflammatory and immunosuppressive macrophages. Functional skewing of myeloid cells occurs in vivo under physiological and pathological conditions, including cancer and autoimmunity. Here we discuss how myeloid suppressor cells can on one hand support tumor growth and, on the other, limit autoimmune responses, indicating that their therapeutic reprogramming can generate opportunities in relieving immunosuppression in the tumor microenvironment or

  13. Immune surveillance of the lung by migrating tissue monocytes

    Science.gov (United States)

    Rodero, Mathieu P; Poupel, Lucie; Loyher, Pierre-Louis; Hamon, Pauline; Licata, Fabrice; Pessel, Charlotte; Hume, David A; Combadière, Christophe; Boissonnas, Alexandre

    2015-01-01

    Monocytes are phagocytic effector cells in the blood and precursors of resident and inflammatory tissue macrophages. The aim of the current study was to analyse and compare their contribution to innate immune surveillance of the lung in the steady state with macrophage and dendritic cells (DC). ECFP and EGFP transgenic reporters based upon Csf1r and Cx3cr1 distinguish monocytes from resident mononuclear phagocytes. We used these transgenes to study the migratory properties of monocytes and macrophages by functional imaging on explanted lungs. Migratory monocytes were found to be either patrolling within large vessels of the lung or locating at the interface between lung capillaries and alveoli. This spatial organisation gives to monocytes the property to capture fluorescent particles derived from both vascular and airway routes. We conclude that monocytes participate in steady-state surveillance of the lung, in a way that is complementary to resident macrophages and DC, without differentiating into macrophages. DOI: http://dx.doi.org/10.7554/eLife.07847.001 PMID:26167653

  14. Macrophages in Tissue Repair, Regeneration, and Fibrosis.

    Science.gov (United States)

    Wynn, Thomas A; Vannella, Kevin M

    2016-03-15

    Inflammatory monocytes and tissue-resident macrophages are key regulators of tissue repair, regeneration, and fibrosis. After tissue injury, monocytes and macrophages undergo marked phenotypic and functional changes to play critical roles during the initiation, maintenance, and resolution phases of tissue repair. Disturbances in macrophage function can lead to aberrant repair, such that uncontrolled production of inflammatory mediators and growth factors, deficient generation of anti-inflammatory macrophages, or failed communication between macrophages and epithelial cells, endothelial cells, fibroblasts, and stem or tissue progenitor cells all contribute to a state of persistent injury, and this could lead to the development of pathological fibrosis. In this review, we discuss the mechanisms that instruct macrophages to adopt pro-inflammatory, pro-wound-healing, pro-fibrotic, anti-inflammatory, anti-fibrotic, pro-resolving, and tissue-regenerating phenotypes after injury, and we highlight how some of these mechanisms and macrophage activation states could be exploited therapeutically.

  15. Macrophage-mediated tumor cytotoxicity: role of macrophage surface sialic acid.

    Science.gov (United States)

    Cameron, D J

    1983-02-01

    Cell surface sialic acid levels were compared for monocytes and macrophages obtained from normal volunteers and breast cancer patients. Equal quantities of sialic acid were found on the monocytes obtained from normal volunteers and breast cancer patients. Approximately 60% more cell surface sialic acid was found on the macrophages from breast cancer patients than was found on the macrophages from normal volunteers. In order to determine whether cell surface sialic acid had any effect on macrophage-mediated cytotoxicity, macrophages were pretreated with neuraminidase (NANAse) prior to co-cultivation with tumor cells. The normal macrophages, after neuraminidase treatment, no longer retained their ability to kill tumor cells. However, when macrophages from breast cancer patients were treated with NANAse, no difference was observed in the ability of untreated and NANAse treated macrophages to kill tumor cells.

  16. Haemophilus ducreyi partially activates human myeloid dendritic cells.

    Science.gov (United States)

    Banks, Keith E; Humphreys, Tricia L; Li, Wei; Katz, Barry P; Wilkes, David S; Spinola, Stanley M

    2007-12-01

    Dendritic cells (DC) orchestrate innate and adaptive immune responses to bacteria. How Haemophilus ducreyi, which causes genital ulcers and regional lymphadenitis, interacts with DC is unknown. H. ducreyi evades uptake by polymorphonuclear leukocyte and macrophage-like cell lines by secreting LspA1 and LspA2. Many H. ducreyi strains express cytolethal distending toxin (CDT), and recombinant CDT causes apoptosis of DC in vitro. Here, we examined interactions between DC and H. ducreyi 35000HP, which produces LspA1, LspA2, and CDT. In human volunteers infected with 35000HP, the ratio of myeloid DC to plasmacytoid DC was 2.8:1 in lesions, compared to a ratio of 1:1 in peripheral blood. Using myeloid DC derived from monocytes as surrogates for lesional DC, we found that DC infected with 35000HP remained as viable as uninfected DC for up to 48 h. Gentamicin protection and confocal microscopy assays demonstrated that DC ingested and killed 35000HP, but killing was incomplete at 48 h. The expression of LspA1 and LspA2 did not inhibit the uptake of H. ducreyi, despite inactivating Src kinases. Infection of DC with live 35000HP caused less cell surface marker activation than infection with heat-killed 35000HP and lipopolysaccharide (LPS) and inhibited maturation by LPS. However, infection of DC with live bacteria caused the secretion of significantly higher levels of interleukin-6 and tumor necrosis factor alpha than infection with heat-killed bacteria and LPS. The survival of H. ducreyi in DC may provide a mechanism by which the organism traffics to lymph nodes. Partial activation of DC may abrogate the establishment of a full Th1 response and an environment that promotes phagocytosis.

  17. Comparative analysis of signature genes in porcine reproductive and respiratory syndrome virus (PRRSV)-infected porcine monocyte-derived dendritic cells at differential activation statuses

    Science.gov (United States)

    Activation statuses of monocytic cells, e.g. monocytes, macrophages and dendritic cells (DCs), are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these cell...

  18. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials

    Directory of Open Access Journals (Sweden)

    Zeeshan Sheikh

    2015-08-01

    Full Text Available All biomaterials, when implanted in vivo, elicit cellular and tissue responses. These responses include the inflammatory and wound healing responses, foreign body reactions, and fibrous encapsulation of the implanted materials. Macrophages are myeloid immune cells that are tactically situated throughout the tissues, where they ingest and degrade dead cells and foreign materials in addition to orchestrating inflammatory processes. Macrophages and their fused morphologic variants, the multinucleated giant cells, which include the foreign body giant cells (FBGCs are the dominant early responders to biomaterial implantation and remain at biomaterial-tissue interfaces for the lifetime of the device. An essential aspect of macrophage function in the body is to mediate degradation of bio-resorbable materials including bone through extracellular degradation and phagocytosis. Biomaterial surface properties play a crucial role in modulating the foreign body reaction in the first couple of weeks following implantation. The foreign body reaction may impact biocompatibility of implantation devices and may considerably impact short- and long-term success in tissue engineering and regenerative medicine, necessitating a clear understanding of the foreign body reaction to different implantation materials. The focus of this review article is on the interactions of macrophages and foreign body giant cells with biomaterial surfaces, and the physical, chemical and morphological characteristics of biomaterial surfaces that play a role in regulating the foreign body response. Events in the foreign body response include protein adsorption, adhesion of monocytes/macrophages, fusion to form FBGCs, and the consequent modification of the biomaterial surface. The effect of physico-chemical cues on macrophages is not well known and there is a complex interplay between biomaterial properties and those that result from interactions with the local environment. By having a

  19. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling.

    Science.gov (United States)

    Hume, David A; MacDonald, Kelli P A

    2012-02-23

    Macrophage-colony stimulating factor (CSF-1) signaling through its receptor (CSF-1R) promotes the differentiation of myeloid progenitors into heterogeneous populations of monocytes, macrophages, dendritic cells, and bone-resorbing osteoclasts. In the periphery, CSF-1 regulates the migration, proliferation, function, and survival of macrophages, which function at multiple levels within the innate and adaptive immune systems. Macrophage populations elicited by CSF-1 are associated with, and exacerbate, a broad spectrum of pathologies, including cancer, inflammation, and bone disease. Conversely, macrophages can also contribute to immunosuppression, disease resolution, and tissue repair. Recombinant CSF-1, antibodies against the ligand and the receptor, and specific inhibitors of CSF-1R kinase activity have been each been tested in a range of animal models and in some cases, in patients. This review examines the potential clinical uses of modulators of the CSF-1/CSF-1R system. We conclude that CSF-1 promotes a resident-type macrophage phenotype. As a treatment, CSF-1 has therapeutic potential in tissue repair. Conversely, inhibition of CSF-1R is unlikely to be effective in inflammatory disease but may have utility in cancer.

  20. Development and validation of a bovine macrophage specific cDNA microarray

    Directory of Open Access Journals (Sweden)

    Waddington David

    2006-09-01

    Full Text Available Abstract Background The response of macrophages to danger signals is an important early stage in the immune response. Our understanding of this complex event has been furthered by microarray analysis, which allows the simultaneous investigation of the expression of large numbers of genes. However, the microarray resources available to study these events in livestock animals are limited. Results Here we report the development of a bovine macrophage specific (BoMP cDNA microarray. The BoMP microarray contains 5026 sequence elements (printed in duplicate and numerous controls. The majority of the clones incorporated on the microarray were derived from the BoMP cDNA library generated from bovine myeloid cells subjected to various stimuli, including over 900 sequences unique to the library. Additional clones representing immunologically important genes have been included on the BoMP microarray. The microarray was validated by investigating the response of bovine monocytes to stimulation with interferon-γ and lipopolysaccharide using amplified RNA. At 2 and 16 hours post stimulation 695 genes exhibited statistically significant differential expression, including; 26 sequences unique to the BoMP library, interleukin 6, prion protein and toll-like receptor 4. Conclusion A 5 K cDNA microarray has been successfully developed to investigate gene expression in bovine myeloid cells. The BoMP microarray is available from the ARK-Genomics Centre for Functional Genomics in Farm Animals, UK.

  1. Transcriptome analysis of monocyte-HIV interactions

    Directory of Open Access Journals (Sweden)

    Tran Huyen

    2010-06-01

    Full Text Available Abstract Background During HIV infection and/or antiretroviral therapy (ART, monocytes and macrophages exhibit a wide range of dysfunctions which contribute significantly to HIV pathogenesis and therapy-associated complications. Nevertheless, the molecular components which contribute to these dysfunctions remain elusive. We therefore applied a parallel approach of genome-wide microarray analysis and focused gene expression profiling on monocytes from patients in different stages of HIV infection and/or ART to further characterise these dysfunctions. Results Processes involved in apoptosis, cell cycle, lipid metabolism, proteasome function, protein trafficking and transcriptional regulation were identified as areas of monocyte dysfunction during HIV infection. Individual genes potentially contributing to these monocyte dysfunctions included several novel factors. One of these is the adipocytokine NAMPT/visfatin, which we show to be capable of inhibiting HIV at an early step in its life cycle. Roughly half of all genes identified were restored to control levels under ART, while the others represented a persistent dysregulation. Additionally, several candidate biomarkers (in particular CCL1 and CYP2C19 for the development of the abacavir hypersensitivity reaction were suggested. Conclusions Previously described areas of monocyte dysfunction during HIV infection were confirmed, and novel themes were identified. Furthermore, individual genes associated with these dysfunctions and with ART-associated disorders were pinpointed. These genes form a useful basis for further functional studies concerning the contribution of monocytes/macrophages to HIV pathogenesis. One such gene, NAMPT/visfatin, represents a possible novel restriction factor for HIV. Background Both macrophages and T lymphocyte subsets express the CD4 receptor and either the CXCR4 and/or the CCR5 coreceptor which confer susceptibility to infection with the Human Immunodeficiency Virus

  2. Equine infectious anemia virus replication is upregulated during differentiation of blood monocytes from acutely infected horses.

    OpenAIRE

    Sellon, D C; Walker, K M; Russell, K E; Perry, S T; Covington, P; Fuller, F J

    1996-01-01

    Equine infectious anemia virus is a lentivirus that replicates in mature tissue macrophages of horses. Ponies were infected with equine infectious anemia virus. During febrile episodes, proviral DNA was detectable, but viral mRNA was not detectable. As cultured blood monocytes from these ponies differentiated into macrophages, viral expression was upregulated. In situ hybridization confirmed that viral transcription occurred in mature macrophages.

  3. Primary Tr1 cells from metastatic melanoma eliminate tumor-promoting macrophages through granzyme B- and perforin-dependent mechanisms.

    Science.gov (United States)

    Yan, Hongxia; Zhang, Ping; Kong, Xue; Hou, Xianglian; Zhao, Li; Li, Tianhang; Yuan, Xiaozhou; Fu, Hongjun

    2017-04-01

    In malignant melanoma, tumor-associated macrophages play multiple roles in promoting tumor growth, such as inducing the transformation of melanocytes under ultraviolet irradiation, increasing angiogenesis in melanomas, and suppressing antitumor immunity. Because granzyme B- and perforin-expressing Tr1 cells could specifically eliminate antigen-presenting cells of myeloid origin, we examined whether Tr1 cells in melanoma could eliminate tumor-promoting macrophages and how the interaction between Tr1 cells and macrophages could affect the growth of melanoma cells. Tr1 cells were characterized by high interleukin 10 secretion and low Foxp3 expression and were enriched in the CD4(+)CD49b(+)LAG-3(+) T-cell fraction. Macrophages derived from peripheral blood monocytes in the presence of modified melanoma-conditioned media demonstrated tumor-promoting capacity, exemplified by improving the proliferation of cocultured A375 malignant melanoma cells. But when primary Tr1 cells were present in the macrophage-A375 coculture, the growth of A375 cells was abrogated. The conventional CD25(+) Treg cells, however, were unable to inhibit macrophage-mediated increase in tumor cell growth. Further analyses showed that Tr1 cells did not directly eliminate A375 cells, but mediated the killing of tumor-promoting macrophages through the secretion of granzyme B and perforin. The tumor-infiltrating interleukin 10(+)Foxp3(-)CD4(+) T cells expressed very low levels of granzyme B and perforin, possibly suggested the downregulation of Tr1 cytotoxic capacity in melanoma tumors. Together, these data demonstrated an antitumor function of Tr1 cells through the elimination of tumor-promoting macrophages, which was not shared by conventional Tregs.

  4. Soluble immune complexes shift the TLR-induced cytokine production of distinct polarized human macrophage subsets towards IL-10.

    Directory of Open Access Journals (Sweden)

    Carmen A Ambarus

    Full Text Available BACKGROUND: Costimulation of murine macrophages with immune complexes (ICs and TLR ligands leads to alternative activation. Studies on human myeloid cells, however, indicate that ICs induce an increased pro-inflammatory cytokine production. This study aimed to clarify the effect of ICs on the pro- versus anti-inflammatory profile of human polarized macrophages. MATERIALS AND METHODS: Monocytes isolated from peripheral blood of healthy donors were polarized for four days with IFN-γ, IL-4, IL-10, GM-CSF, M-CSF, or LPS, in the presence or absence of heat aggregated gamma-globulins (HAGGs. Phenotypic polarization markers were measured by flow cytometry. Polarized macrophages were stimulated with HAGGs or immobilized IgG alone or in combination with TLR ligands. TNF, IL-6, IL-10, IL-12, and IL-23 were measured by Luminex and/or RT-qPCR. RESULTS: HAGGs did not modulate the phenotypic polarization and the cytokine production of macrophages. However, HAGGs significantly altered the TLR-induced cytokine production of all polarized macrophage subsets, with the exception of MΦ(IL-4. In particular, HAGGs consistently enhanced the TLR-induced IL-10 production in both classically and alternatively polarized macrophages (M1 and M2. The effect of HAGGs on TNF and IL-6 production was less pronounced and depended on the polarization status, while IL-23p19 and IL-12p35 expression was not affected. In contrast with HAGGs, immobilized IgG induced a strong upregulation of not only IL-10, but also TNF and IL-6. CONCLUSION: HAGGs alone do not alter the phenotype and cytokine production of in vitro polarized human macrophages. In combination with TLR-ligands, however, HAGGs but not immobilized IgG shift the cytokine production of distinct macrophage subsets toward IL-10.

  5. Macrophage activation and differentiation signals regulate schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis.

    Directory of Open Access Journals (Sweden)

    Wendy J van Zuylen

    Full Text Available BACKGROUND: The ten mouse and six human members of the Schlafen (Slfn gene family all contain an AAA domain. Little is known of their function, but previous studies suggest roles in immune cell development. In this report, we assessed Slfn regulation and function in macrophages, which are key cellular regulators of innate immunity. METHODOLOGY/PRINCIPAL FINDINGS: Multiple members of the Slfn family were up-regulated in mouse bone marrow-derived macrophages (BMM by the Toll-like Receptor (TLR4 agonist lipopolysaccharide (LPS, the TLR3 agonist Poly(I∶C, and in disease-affected joints in the collagen-induced model of rheumatoid arthritis. Of these, the most inducible was Slfn4. TLR agonists that signal exclusively through the MyD88 adaptor protein had more modest effects on Slfn4 mRNA levels, thus implicating MyD88-independent signalling and autocrine interferon (IFN-β in inducible expression. This was supported by the substantial reduction in basal and LPS-induced Slfn4 mRNA expression in IFNAR-1⁻/⁻ BMM. LPS causes growth arrest in macrophages, and other Slfn family genes have been implicated in growth control. Slfn4 mRNA levels were repressed during macrophage colony-stimulating factor (CSF-1-mediated differentiation of bone marrow progenitors into BMM. To determine the role of Slfn4 in vivo, we over-expressed the gene specifically in macrophages in mice using a csf1r promoter-driven binary expression system. Transgenic over-expression of Slfn4 in myeloid cells did not alter macrophage colony formation or proliferation in vitro. Monocyte numbers, as well as inflammatory macrophages recruited to the peritoneal cavity, were reduced in transgenic mice that specifically over-expressed Slfn4, while macrophage numbers and hematopoietic activity were increased in the livers and spleens. CONCLUSIONS: Slfn4 mRNA levels were up-regulated during macrophage activation but down-regulated during differentiation. Constitutive Slfn4 expression in the

  6. Fagocitose intensificada de Corynebacterium pseudotuberculosis por células da série monócito-macrófago de caprinos naturalmente infectados pelo vírus da artrite encefalite Enhanced phagocytosis of Corynebacterium pseudotuberculosis by monocyte-macrophage cells from goats naturally infected with caprine arthritis encephalitis vírus

    Directory of Open Access Journals (Sweden)

    Bárbara G.S. Sanches

    2012-12-01

    Full Text Available A Artrite Encefalite Caprina (AEC e a Linfadenite Caseosa (LC possuem alta incidência e transmissibilidade em pequenos ruminantes. Como ambas possuem tropismo por monócitos-macrófagos e afetam mecanismos da resposta inata do hospedeiro, acredita-se que a AEC predispõe o animal a infecções por Corynebacteruim pseudotuberculosis, agente etiológico da LC. Para confirmar esta hipótese, avaliou-se a fagocitose de células da série monócito-macrófago de cabras naturalmente infectadas pelo vírus da AEC (VAEC. Para tanto, foram utilizadas 30 cabras da raça Saanen, alocadas em dois grupos distintos, com 15 animais cada, conforme a sororreatividade de anticorpos séricos antivírus da AEC. Células mononucleares de sangue periférico foram isoladas por gradiente de densidade e plaqueadas para isolamento de células da série monócito-macrófago. Posteriormente, o ensaio de fagocitose de C. pseudotuberculosis foi realizado, após incubação por duas horas a 37ºC a 5% de CO2, e a visualização da fagocitose foi identificada por microscopia óptica. O presente estudo não encontrou diferença na porcentagem de monócito-macrófagos que realizaram fagocitose entre os diferentes grupos (P = 0,41. Todavia, a análise quantitativa de bactérias fagocitadas, demonstrou maior capacidade fagocítica pelos macrófagos-monócitos do grupo sororreagente ao vírus da AEC. Correlação entre monócitos fagocitando e macrófagos que fagocitaram mais de 12 bactérias foi observado neste grupo (r = 0,488; P = 0,006, não sendo o mesmo encontrado no grupo de animais sorroreagentes negativos. Os dados demonstram aumento na intensidade da fagocitose de macrófagos de animais infectados com o vírus da AEC.Caprine arthritis encephalitis (CAE and caseous lymphadenitis (CL have high incidence and transmissibility in small ruminants. Since both virus have tropism for macrophages and monocytes and affect the innate immune response, it is believed that CAE can

  7. Macrophage diversity in renal injury and repair

    NARCIS (Netherlands)

    Ricardo, Sharon D.; van Goor, Harry; Eddy, Allison A.

    2008-01-01

    Monocyte-derived macrophages can determine the outcome of the immune response and whether this response contributes to tissue repair or mediates tissue destruction. In addition to their important role in immune-mediated renal disease and host defense, macrophages play a fundamental role in tissue re

  8. Regulation of monocyte cell fate by blood vessels mediated by Notch signalling.

    Science.gov (United States)

    Gamrekelashvili, Jaba; Giagnorio, Roberto; Jussofie, Jasmin; Soehnlein, Oliver; Duchene, Johan; Briseño, Carlos G; Ramasamy, Saravana K; Krishnasamy, Kashyap; Limbourg, Anne; Kapanadze, Tamar; Ishifune, Chieko; Hinkel, Rabea; Radtke, Freddy; Strobl, Lothar J; Zimber-Strobl, Ursula; Napp, L Christian; Bauersachs, Johann; Haller, Hermann; Yasutomo, Koji; Kupatt, Christian; Murphy, Kenneth M; Adams, Ralf H; Weber, Christian; Limbourg, Florian P

    2016-08-31

    A population of monocytes, known as Ly6C(lo) monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6C(hi) monocytes into Ly6C(lo) monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation.

  9. Down-regulation of the oncogene PTTG1 via the KLF6 tumor suppressor during induction of myeloid differentiation.

    Directory of Open Access Journals (Sweden)

    Pei-Yi Chen

    Full Text Available The aberrant expression of proto-oncogenes is involved in processes that are responsible for cellular proliferation and the inhibition of myeloid differentiation in acute myeloid leukemia (AML. Pituitary Tumor-Transforming gene 1 (PTTG1, an oncogenic transcription factor, is abundantly expressed in various human cancers and hematopoietic malignancies. However, its expression in normal leukocytes and most normal tissues is very low or undetectable. The mechanism by which PTTG1 overexpression modifies myeloid cell development and promotes leukemogenesis remain unclear. To investigate the mechanistic links between PTTG1 overexpression and leukemia cell differentiation, we utilized phorbol 12-myristate 13-acetate (PMA, a well-known agent that triggers monocyte/macrophage differentiation, to analyze the expression patterns of PTTG1 in PMA-induced myeloid differentiation. We found that PTTG1 is down-regulated at the transcriptional level in PMA-treated HL-60 and THP1 cells. In addition, we identified a binding site for a tumor suppressor protein, Kruppel-like factor 6 (KLF6, in the PTTG1 promoter. We found that KLF6 could directly bind and repress PTTG1 expression. In HL-60 and THP1 cells, KLF6 mRNA and protein levels are up-regulated with a concordant reduction of PTTG1 expression upon treatment with PMA. Furthermore, KLF6 knockdown by shRNA abolished the suppression of PTTG1 and reduced the activation of the differentiation marker CD11b in PMA-primed cells. The protein kinase C (PKC inhibitor and the MAPK/ERK kinase (MEK inhibitor significantly blocked the potentiation of PMA-mediated KLF6 induction and the down-regulation of PTTG1, indicating that PTTG1 is suppressed via the activation of PKC/ERK/KLF6 pathway. Our findings suggest that drugs that increase the KLF6 inhibition of PTTG1 may have a therapeutic application in AML treatment strategies.

  10. The dynamic changes of myeloid derived suppressor cells and tumor associated macrophages in Panc02 pancreatic cancer bearing immunocompetent mice%免疫健全小鼠Panc02胰腺癌发展过程中髓系来源抑制细胞与肿瘤相关巨噬细胞动态变化

    Institute of Scientific and Technical Information of China (English)

    刘乔飞; 廖泉; 宗毅; 牛哲禹; 王梦一; 李媛; 卢朝辉; 赵玉沛

    2014-01-01

    Objective To establish an immunocompetent pancreatic cancer bearing mice model and clarify the dynamic changes of the CD11b+ GR-1 + myeloid derived suppressor cells (MDSC),CD11 b + Ly6Clow Ly6G + polymorphonuclear myeloid derived suppressor cells (PMN-MDSC) and CD1 1b + Ly6C + Ly6G-monocytic myeloid derived suppressor cells (Mo-MDSC),F4/80+ tumor associated macrophages (TAM) and F4/80 + CD16/32 + CD206-classical activated macrophages (M1),F4/80 + CD16/32-CD206 + adaptive activated macrophages (M2) in pancreatic cancer bearing mice.Methods The C57B6/J mice syngeneic pancreatic adenocarcinoma cell line Panc02 ceils were subcutaneously implanted to establish the immunocompetent murine pancreatic cancer bearing model.According to the tumor size,it was divided into four stages,named T1-T4.The flow cytometry (FCM) was performed to identify the different cell populations.Results With tumor progression,the MDSC population was consistently increased [for peripheral blood,T1 vs.T4,(4.95 ±1.03)% vs.(36.45 ±6.43)%,P<0.01; for tumor tissue,T1 vs.T4,(2.95 ± 2.95) % vs.(18.17 ± 3.30) %,P < 0.01],and the PMN-MDSC was the main subpopulation and dramatically increased [for peripheral blood,T1 vs.T4,(29.73 ± 10.30) % vs.(66.40 ± 12.10)%,P<0.01; for tumor tissue,T1 vs.T4,(24.73±10.81)% vs.(73.17±10.81)%,P< 0.01],but the other subtype Mo-MDSC did not significantly change [for peripheral blood,T1 vs.T4,(10.30 ± 1.90) % vs.(9.87 ± 1.91) %,P > 0.05 ; for tumor tissue,T1 vs.T4,(9.10 ± 1.01) % vs.(9.90 ±2.21)%,P >0.05].The TAM in peripheral blood in T1-T3 stages was consistently increased,including both M1 and M2 [for M1,T1 vs.T3,(6.30 ± 1.25) % vs.(20.17 ±2.31) %,P <0.01 ; for M2,(0.87 ± 0.21) % vs.(5.40 ± 0.85) %,P < 0.01],but the M2/M1 ratio became bigger.The peripheral blood macrophages in T4 stage were dramatically declined [T3 vs.T4,(20.17 ± 2.31) % vs.(10.77 ± 1.52) %,P <0.01],but M2 was still increased [T3 vs.T4

  11. The Histone Methyltransferase MLL1 Directs Macrophage-Mediated Inflammation in Wound Healing and Is Altered in a Murine Model of Obesity and Type 2 Diabetes.

    Science.gov (United States)

    Kimball, Andrew S; Joshi, Amrita; Carson, William F; Boniakowski, Anna E; Schaller, Matthew; Allen, Ronald; Bermick, Jennifer; Davis, Frank M; Henke, Peter K; Burant, Charles F; Kunkel, Steve L; Gallagher, Katherine A

    2017-09-01

    Macrophages are critical for the initiation and resolution of the inflammatory phase of wound repair. In diabetes, macrophages display a prolonged inflammatory phenotype in late wound healing. Mixed-lineage leukemia-1 (MLL1) has been shown to direct gene expression by regulating nuclear factor-κB (NF-κB)-mediated inflammatory gene transcription. Thus, we hypothesized that MLL1 influences macrophage-mediated inflammation in wound repair. We used a myeloid-specific Mll1 knockout (Mll1(f/f)Lyz2(Cre+) ) to determine the function of MLL1 in wound healing. Mll1(f/f)Lyz2(Cre+) mice display delayed wound healing and decreased wound macrophage inflammatory cytokine production compared with control animals. Furthermore, wound macrophages from Mll1(f/f)Lyz2(Cre+) mice demonstrated decreased histone H3 lysine 4 trimethylation (H3K4me3) (activation mark) at NF-κB binding sites on inflammatory gene promoters. Of note, early wound macrophages from prediabetic mice displayed similarly decreased MLL1, H3K4me3 at inflammatory gene promoters, and inflammatory cytokines compared with controls. Late wound macrophages from prediabetic mice demonstrated an increase in MLL1, H3K4me3 at inflammatory gene promoters, and inflammatory cytokines. Prediabetic macrophages treated with an MLL1 inhibitor demonstrated reduced inflammation. Finally, monocytes from patients with type 2 diabetes had increased Mll1 compared with control subjects without diabetes. These results define an important role for MLL1 in regulating macrophage-mediated inflammation in wound repair and identify a potential target for the treatment of chronic inflammation in diabetic wounds. © 2017 by the American Diabetes Association.

  12. Arsenic Trioxide in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    Science.gov (United States)

    2016-10-04

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  13. The Role of Myeloid-Derived Suppressor Cells in Immune Ontogeny

    Science.gov (United States)

    Gantt, Soren; Gervassi, Ana; Jaspan, Heather; Horton, Helen

    2014-01-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of granulocytic or monocytic cells that suppress innate as well as adaptive immune responses. In healthy adults, immature myeloid cells differentiate into macrophages, dendritic cells, and granulocytes in the bone marrow and MDSC are rarely detected in peripheral blood. However, in certain pathologies, in particular malignancies and chronic infection, differentiation of these cells is altered resulting in accumulation of circulating suppressive myeloid cells. MDSC express suppressive factors such as arginase-1, reactive oxygen species, and inducible nitric oxide synthase, which have the ability to inhibit T cell proliferation and cytoxicity, induce the expansion of regulatory T cells, and block natural killer cell activation. It is increasingly recognized that MDSC alter the immune response to several cancers, and perhaps chronic viral infections, in clinically important ways. In this review, we outline the potential contribution of MDSC to the generation of feto-maternal tolerance and to the ineffective immune responses to many infections and vaccines observed in early post-natal life. Granulocytic MDSC are present in large numbers in pregnant women and in cord blood, and wane rapidly during infancy. Furthermore, cord blood MDSC suppress in vitro T cell and NK responses, suggesting that they may play a significant role in human immune ontogeny. However, there are currently no data that demonstrate in vivo effects of MDSC on feto-maternal tolerance or immune ontogeny. Studies are ongoing to evaluate the functional importance of MDSC, including their effects on control of infection and response to vaccination in infancy. Importantly, several pharmacologic interventions have the potential to reverse MDSC function. Understanding the role of MDSC in infant ontogeny and their mechanisms of action could lead to interventions that reduce mortality due to early-life infections. PMID:25165466

  14. The role of myeloid-derived suppressor cells in immune ontogeny

    Directory of Open Access Journals (Sweden)

    Soren eGantt

    2014-08-01

    Full Text Available Myeloid derived suppressor cells (MDSC are a heterogeneous population of granulocytic or monocytic cells that suppress innate as well as adaptive immune responses. In healthy adults, immature myeloid cells differentiate into macrophages, dendritic cells, and granulocytes in the bone marrow, and MDSC are rarely detected in peripheral blood. However, in certain pathologies, in particular malignancies and chronic infection, differentiation of these cells is altered resulting in accumulation of circulating suppressive myeloid cells. MDSC express suppressive factors such as arginase-1, reactive oxygen species, and inducible nitric oxide synthase, which have the ability to inhibit T cell proliferation and cytoxicity, induce the expansion of regulatory T cells, and block natural killer cell activation. It is increasingly recognized that MDSC alter the immune response to several cancers, and perhaps chronic viral infections, in clinically important ways. In this review, we outline the potential contribution of MDSC to the generation of feto-maternal tolerance and to the ineffective immune responses to many infections and vaccines observed in early post-natal life. Granulocytic MDSC are present in large numbers in pregnant women and in cord blood, and wane rapidly during infancy. Furthermore, cord blood MDSC suppress in vitro T cell and NK responses, suggesting that they may play a significant role in human immune ontogeny. However, there are currently no data that demonstrate in vivo effects of MDSC on feto-maternal tolerance or immune ontogeny. Studies are ongoing to evaluate the functional importance of MDSC, including their effects on control of infection and response to vaccination in infancy. Importantly, several pharmacologic interventions have the potential to reverse MDSC function. Understanding the role of MDSC in infant ontogeny and their mechanisms of action could lead to interventions that reduce mortality due to early-life infections.

  15. The role of myeloid-derived suppressor cells in immune ontogeny.

    Science.gov (United States)

    Gantt, Soren; Gervassi, Ana; Jaspan, Heather; Horton, Helen

    2014-01-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of granulocytic or monocytic cells that suppress innate as well as adaptive immune responses. In healthy adults, immature myeloid cells differentiate into macrophages, dendritic cells, and granulocytes in the bone marrow and MDSC are rarely detected in peripheral blood. However, in certain pathologies, in particular malignancies and chronic infection, differentiation of these cells is altered resulting in accumulation of circulating suppressive myeloid cells. MDSC express suppressive factors such as arginase-1, reactive oxygen species, and inducible nitric oxide synthase, which have the ability to inhibit T cell proliferation and cytoxicity, induce the expansion of regulatory T cells, and block natural killer cell activation. It is increasingly recognized that MDSC alter the immune response to several cancers, and perhaps chronic viral infections, in clinically important ways. In this review, we outline the potential contribution of MDSC to the generation of feto-maternal tolerance and to the ineffective immune responses to many infections and vaccines observed in early post-natal life. Granulocytic MDSC are present in large numbers in pregnant women and in cord blood, and wane rapidly during infancy. Furthermore, cord blood MDSC suppress in vitro T cell and NK responses, suggesting that they may play a significant role in human immune ontogeny. However, there are currently no data that demonstrate in vivo effects of MDSC on feto-maternal tolerance or immune ontogeny. Studies are ongoing to evaluate the functional importance of MDSC, including their effects on control of infection and response to vaccination in infancy. Importantly, several pharmacologic interventions have the potential to reverse MDSC function. Understanding the role of MDSC in infant ontogeny and their mechanisms of action could lead to interventions that reduce mortality due to early-life infections.

  16. Monocyte Subpopulations in Angiogenesis

    Science.gov (United States)

    Dalton, Heather J.; Armaiz-Pena, Guillermo; Gonzalez-Villasana, Vianey; Lopez-Berestein, Gabriel; Bar-Eli, Menashe; Sood, Anil K.

    2014-01-01

    Growing understanding of the role of the tumor microenvironment in angiogenesis has brought monocyte-derived cells into focus. Monocyte subpopulations are an increasingly attractive therapeutic target in many pathologic states, including cancer. Before monocyte-directed therapies can be fully harnessed for clinical use, understanding of monocyte-driven angiogenesis in tissue development and homeostasis, as well as malignancy, is required. Here, we provide an overview of the mechanisms by which monocytic subpopulations contribute to angiogenesis in tissue and tumor development, highlight gaps in our existing knowledge, and discuss opportunities to exploit these cells for clinical benefit. PMID:24556724

  17. Combination Chemotherapy With or Without PSC 833, Peripheral Stem Cell Transplantation, and/or Interleukin-2 in Treating Patients With Acute Myeloid Leukemia

    Science.gov (United States)

    2013-06-03

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  18. Combination Chemotherapy in Treating Young Patients With Down Syndrome and Acute Myeloid Leukemia or Myelodysplastic Syndromes

    Science.gov (United States)

    2017-02-07

    Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  19. Intramacrophage survival of uropathogenic Escherichia coli: Differences between diverse clinical isolates and between mouse and human macrophages

    KAUST Repository

    Bokil, Nilesh J.

    2011-11-01

    Uropathogenic E. coli (UPEC) are the primary cause of urinary tract infections. Recent studies have demonstrated that UPEC can invade and replicate within epithelial cells, suggesting that this bacterial pathogen may occupy an intracellular niche within the host. Given that many intracellular pathogens target macrophages, we assessed the interactions between UPEC and macrophages. Colonization of the mouse bladder by UPEC strain CFT073 resulted in increased expression of myeloid-restricted genes, consistent with the recruitment of inflammatory macrophages to the site of infection. In in vitro assays, CFT073 was able to survive within primary mouse bone marrow-derived macrophages (BMM) up to 24h post-infection. Three additional well-characterized clinical UPEC isolates associated with distinct UTI symptomatologies displayed variable long-term survival within BMM. UPEC strains UTI89 and VR50, originally isolated from patients with cystitis and asymptomatic bacteriuria respectively, showed elevated bacterial loads in BMM at 24h post-infection as compared to CFT073 and the asymptomatic bacteriuria strain 83972. These differences did not correlate with differential effects on macrophage survival or initial uptake of bacteria. E. coli UTI89 localized to a Lamp1 + vesicular compartment within BMM. In contrast to survival within mouse BMM, intracellular bacterial loads of VR50 were low in both human monocyte-derived macrophages (HMDM) and in human T24 bladder epithelial cells. Collectively, these data suggest that some UPEC isolates may subvert macrophage anti-microbial pathways, and that host species differences may impact on intracellular UPEC survival. © 2011 Elsevier GmbH.

  20. Intramacrophage survival of uropathogenic Escherichia coli: differences between diverse clinical isolates and between mouse and human macrophages.

    Science.gov (United States)

    Bokil, Nilesh J; Totsika, Makrina; Carey, Alison J; Stacey, Katryn J; Hancock, Viktoria; Saunders, Bernadette M; Ravasi, Timothy; Ulett, Glen C; Schembri, Mark A; Sweet, Matthew J

    2011-11-01

    Uropathogenic E. coli (UPEC) are the primary cause of urinary tract infections. Recent studies have demonstrated that UPEC can invade and replicate within epithelial cells, suggesting that this bacterial pathogen may occupy an intracellular niche within the host. Given that many intracellular pathogens target macrophages, we assessed the interactions between UPEC and macrophages. Colonization of the mouse bladder by UPEC strain CFT073 resulted in increased expression of myeloid-restricted genes, consistent with the recruitment of inflammatory macrophages to the site of infection. In in vitro assays, CFT073 was able to survive within primary mouse bone marrow-derived macrophages (BMM) up to 24h post-infection. Three additional well-characterized clinical UPEC isolates associated with distinct UTI symptomatologies displayed variable long-term survival within BMM. UPEC strains UTI89 and VR50, originally isolated from patients with cystitis and asymptomatic bacteriuria respectively, showed elevated bacterial loads in BMM at 24h post-infection as compared to CFT073 and the asymptomatic bacteriuria strain 83972. These differences did not correlate with differential effects on macrophage survival or initial uptake of bacteria. E. coli UTI89 localized to a Lamp1(+) vesicular compartment within BMM. In contrast to survival within mouse BMM, intracellular bacterial loads of VR50 were low in both human monocyte-derived macrophages (HMDM) and in human T24 bladder epithelial cells. Collectively, these data suggest that some UPEC isolates may subvert macrophage anti-microbial pathways, and that host species differences may impact on intracellular UPEC survival.

  1. Human monocyte differentiation stage affects response to arachidonic acid.

    Science.gov (United States)

    Escobar-Alvarez, Elizabeth; Pelaez, Carlos A; García, Luis F; Rojas, Mauricio

    2010-01-01

    AA-induced cell death mechanisms acting on human monocytes and monocyte-derived macrophages (MDM), U937 promonocytes and PMA-differentiated U937 cells were studied. Arachidonic acid induced apoptosis and necrosis in monocytes and U937 cells but only apoptosis in MDM and U937D cells. AA increased both types of death in Mycobacterium tuberculosis-infected cells and increased the percentage of TNFalpha+ cells and reduced IL-10+ cells. Experiments blocking these cytokines indicated that AA-mediated death was TNFalpha- and IL-10-independent. The differences in AA-mediated cell death could be explained by high ROS, calpain and sPLA-2 production and activity in monocytes. Blocking sPLA-2 in monocytes and treatment with antioxidants favored M. tuberculosis control whereas AA enhanced M. tuberculosis growth in MDM. Such evidence suggested that AA-modulated effector mechanisms depend on mononuclear phagocytes' differentiation stage.

  2. LPS converts Gr-1(+)CD115(+) myeloid-derived suppressor cells from M2 to M1 via P38 MAPK.

    Science.gov (United States)

    Yang, Yi; Zhang, Ruihua; Xia, Fei; Zou, Ting; Huang, Anfei; Xiong, Sidong; Zhang, Jinping

    2013-07-15

    Myeloid-derived suppressor cells (MDSCs) are heterogeneous populations of immature myeloid cells with strong immunosuppressive function, and play a critical role in the immune evasion of cancer. A subset of MDSCs share many similar characteristics with tumor-associated macrophages (TAMs), but it is largely unclear whether MDSCs also have M1/M2 type polarization in tumor microenvironments. In the present study, we found that Gr-1(+)CD115(+) monocytes in tumor-bearing mice exhibited M2 characteristics with significantly lower expression of iNOS and higher expression of Arginase I. Immunofluorescence staining showed that Gr-1(+)CD115(+) monocytes in tumor sites from LPS-injected mice had a higher expression of iNOS. Similarly, in vitro experiments displayed that LPS-treated Gr-1(+)CD115(+) cells expressed higher levels of iNOS, IL-6, TNF, IL-12, and IL-10 compared with those in non-treated Gr-1(+)CD115(+) monocytes. Extensive study showed that LPS-treated Gr-1(+)CD115(+) monocytes had less ability to convert the CD4(+)CD25(-)cells into CD4(+)CD25(+) Tregs, and also had less suppressive function on CD4(+)CD25(-) conventional T cells. LLC tumors in LPS-injected mice grew significantly slower than those in non-LPS-injected mice. Further experiments suggested that LPS may function through the P38 MAPK signaling pathway to increase the expression of iNOS, and of MyD88 independently. Thus, we can get conclusion that Gr-1(+)CD115(+) monocytes in tumor-bearing mice show M2 type characteristics and LPS can skew this M2 type cells into M1 type through the P38 MAPK pathway and lead to inhibition of the suppressive function of Gr-1(+)CD115(+) monocytes. It suggests that LPS or its analogs may be potential drugs for tumor treatment, inflammation induced by LPS or other components of bacterium or virus may be benefit to the inhibition of tumor cell growth in vivo.

  3. Effects of ischemia on lung macrophages.

    Directory of Open Access Journals (Sweden)

    Aigul Moldobaeva

    Full Text Available Angiogenesis after pulmonary ischemia is initiated by reactive O(2 species and is dependent on CXC chemokine growth factors, and its magnitude is correlated with the number of lavaged macrophages. After complete obstruction of the left pulmonary artery in mice, the left lung is isolated from the peripheral circulation until 5-7 days later, when a new systemic vasculature invades the lung parenchyma. Consequently, this model offers a unique opportunity to study the differentiation and/or proliferation of monocyte-derived cells within the lung. In this study, we questioned whether macrophage subpopulations were differentially expressed and which subset contributed to growth factor release. We characterized the change in number of all macrophages (MHCII(int, CD11C+, alveolar macrophages (MHCII(int, CD11C+, CD11B- and mature lung macrophages (MHCII(int, CD11C+, CD11B+ in left lungs from mice immediately (0 h or 24 h after left pulmonary artery ligation (LPAL. In left lung homogenates, only lung macrophages increased 24 h after LPAL (vs. 0 h; p<0.05. No changes in proliferation were seen in any subset by PCNA expression (0 h vs. 24 h lungs. When the number of monocytic cells was reduced with clodronate liposomes, systemic blood flow to the left lung 14 days after LPAL decreased by 42% (p<0.01 compared to vehicle controls. Furthermore, when alveolar macrophages and lung macrophages were sorted and studied in vitro, only lung macrophages secreted the chemokine MIP-2α (ELISA. These data suggest that ischemic stress within the lung contributes to the differentiation of immature monocytes to lung macrophages within the first 24 h after LPAL. Lung macrophages but not alveolar macrophages increase and secrete the proangiogenic chemokine MIP-2α. Overall, an increase in the number of lung macrophages appears to be critical for neovascularization in the lung, since clodronate treatment decreased their number and attenuated functional angiogenesis.

  4. Diabetic conditions promote binding of monocytes to vascular smooth muscle cells and their subsequent differentiation

    OpenAIRE

    Meng, Li; Park, Jehyun; Cai, Qiangjun; Lanting, Linda; Reddy, Marpadga A; Natarajan, Rama

    2009-01-01

    Diabetes is associated with significantly accelerated rates of atherosclerosis, key features of which include the presence of excessive macrophage-derived foam cells in the subendothelial space. We examined the hypothesis that enhanced monocyte-vascular smooth muscle cell (VSMC) interactions leading to subendothelial monocyte retention and differentiation to macrophages under diabetic conditions may be underlying mechanisms. Human aortic VSMCs (HVSMCs) treated with diabetic stimuli high gluco...

  5. Endothelial lipase is highly expressed in macrophages in advanced human atherosclerotic lesions

    DEFF Research Database (Denmark)

    Bartels, Emil D; Nielsen, John E; Lindegaard, Marie Louise Skakkebæk

    2007-01-01

    RNA expression increased markedly when either type of monocytes was differentiated into macrophages. Upon further differentiation into foam cells EL mRNA decreased whereas protein levels remained high compared to monocytes. In conclusion, macrophages in advanced human atherosclerotic lesions display high levels...

  6. Clofarabine, Cytarabine, and Filgrastim Followed by Infusion of Non-HLA Matched Ex Vivo Expanded Cord Blood Progenitors in Treating Patients With Acute Myeloid Leukemia

    Science.gov (United States)

    2014-08-13

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  7. Genome-scale definition of the transcriptional programme associated with compromised PU.1 activity in acute myeloid leukaemia.

    Science.gov (United States)

    Sive, J I; Basilico, S; Hannah, R; Kinston, S J; Calero-Nieto, F J; Göttgens, B

    2016-01-01

    Transcriptional dysregulation is associated with haematological malignancy. Although mutations of the key haematopoietic transcription factor PU.1 are rare in human acute myeloid leukaemia (AML), they are common in murine models of radiation-induced AML, and PU.1 downregulation and/or dysfunction has been described in human AML patients carrying the fusion oncogenes RUNX1-ETO and PML-RARA. To study the transcriptional programmes associated with compromised PU.1 activity, we adapted a Pu.1-mutated murine AML cell line with an inducible wild-type PU.1. PU.1 induction caused transition from leukaemia phenotype to monocytic differentiation. Global binding maps for PU.1, CEBPA and the histone mark H3K27Ac with and without PU.1 induction showed that mutant PU.1 retains DNA-binding ability, but the induction of wild-type protein dramatically increases both the number and the height of PU.1-binding peaks. Correlating chromatin immunoprecipitation (ChIP) Seq with gene expression data, we found that PU.1 recruitment coupled with increased histone acetylation induces gene expression and activates a monocyte/macrophage transcriptional programme. PU.1 induction also caused the reorganisation of a subgroup of CEBPA binding peaks. Finally, we show that the PU.1 target gene set defined in our model allows the stratification of primary human AML samples, shedding light on both known and novel AML subtypes that may be driven by PU.1 dysfunction.

  8. Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro

    Science.gov (United States)

    Nguyen, Hal X.; Tidball, James G.

    2003-01-01

    Current evidence indicates that the physiological functions of inflammatory cells are highly sensitive to their microenvironment, which is partially determined by the inflammatory cells and their potential targets. In the present investigation, interactions between neutrophils, macrophages and muscle cells that may influence muscle cell death are examined. Findings show that in the absence of macrophages, neutrophils kill muscle cells in vitro by superoxide-dependent mechanisms, and that low concentrations of nitric oxide (NO) protect against neutrophil-mediated killing. In the absence of neutrophils, macrophages kill muscle cells through a NO-dependent mechanism, and the presence of target muscle cells causes a three-fold increase in NO production by macrophages, with no change in the concentration of inducible nitric oxide synthase. Muscle cells that are co-cultured with both neutrophils and macrophages in proportions that are observed in injured muscle show cytotoxicity through a NO-dependent, superoxide-independent mechanism. Furthermore, the concentration of myeloid cells that is necessary for muscle killing is greatly reduced in assays that use mixed myeloid cell populations, rather than uniform populations of neutrophils or macrophages. These findings collectively show that the magnitude and mechanism of muscle cell killing by myeloid cells are modified by interactions between muscle cells and neutrophils, between muscle cells and macrophages and between macrophages and neutrophils.

  9. Cholecalciferol in Treating Patients With Acute Myeloid Leukemia Undergoing Intensive Induction Chemotherapy

    Science.gov (United States)

    2015-06-18

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  10. Testing the Role of Myeloid Cell Glucose Flux in Inflammation and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Tomohiro Nishizawa

    2014-04-01

    Full Text Available Inflammatory activation of myeloid cells is accompanied by increased glycolysis, which is required for the surge in cytokine production. Although in vitro studies suggest that increased macrophage glucose metabolism is sufficient for cytokine induction, the proinflammatory effects of increased myeloid cell glucose flux in vivo and the impact on atherosclerosis, a major complication of diabetes, are unknown. We therefore tested the hypothesis that increased glucose uptake in myeloid cells stimulates cytokine production and atherosclerosis. Overexpression of the glucose transporter GLUT1 in myeloid cells caused increased glycolysis and flux through the pentose phosphate pathway but did not induce cytokines. Moreover, myeloid-cell-specific overexpression of GLUT1 in LDL receptor-deficient mice was ineffective in promoting atherosclerosis. Thus, increased glucose flux is insufficient for inflammatory myeloid cell activation and atherogenesis. If glucose promotes atherosclerosis by increasing cellular glucose flux, myeloid cells do not appear to be the key targets.

  11. Vitamin d-directed rheostatic regulation of monocyte antibacterial responses

    DEFF Research Database (Denmark)

    Adams, John S; Ren, Songyang; Liu, Philip T

    2009-01-01

    The active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)(2)D) enhances innate immunity by inducing the cathelicidin antimicrobial peptide (hCAP). In monocytes/macrophages, this occurs primarily in response to activation of TLR, that induce expression of the vitamin D receptor and localized...

  12. Monocyte chemoattractant protein-1 plays a key role in type 1 diabetes

    Institute of Scientific and Technical Information of China (English)

    Dong Li; Guoliang Liu

    2005-01-01

    Type 1 diabetes is an autoimmune disease resulting from the selective destruction of β cells in the pancreatic islets.In both human and rodent models of type 1 diabetes, the clinical disease is preceded by a progressive mononuclear cell invasion of the pancreatic islets (insulitis). In the early stage of insulitis, the major components are monocyte/macrophages, and the recruitment of mononuclear cells is a critical step in the pathogenesis of the type 1 diabetes. Studies have revealed that Monocyte chemoattractant protein-1(MCP-1)specifically recruits monocytes/macrophages into pancreas and plays an important role in the development of insulitis and diabetes.

  13. Percutaneous Transluminal Angioplasty in Patients with Peripheral Arterial Disease Does Not Affect Circulating Monocyte Subpopulations

    Directory of Open Access Journals (Sweden)

    Pawel Maga

    2016-01-01

    Full Text Available Monocytes are mononuclear cells characterized by distinct morphology and expression of CD14 and CD16 surface receptors. Classical, quiescent monocytes are positive for CD14 (lipopolysaccharide receptor but do not express Fc gamma receptor III (CD16. Intermediate monocytes coexpress CD16 and CD14. Nonclassical monocytes with low expression of CD14 represent mature macrophage-like monocytes. Monocyte behavior in peripheral arterial disease (PAD and during vessel wall directed treatment is not well defined. This observation study aimed at monitoring of acute changes in monocyte subpopulations during percutaneous transluminal angioplasty (PTA in PAD patients. Patients with Rutherford 3 and 4 PAD with no signs of inflammatory process underwent PTA of iliac, femoral, or popliteal segments. Flow cytometry for CD14, CD16, HLA-DR, CD11b, CD11c, and CD45RA antigens allowed characterization of monocyte subpopulations in blood sampled before and after PTA (direct angioplasty catheter sampling. Patients were clinically followed up for 12 months. All 61 enrolled patients completed 12-month follow-up. Target vessel failure occurred in 12 patients. While absolute counts of monocyte were significantly lower after PTA, only subtle monocyte activation after PTA (CD45RA and β-integrins occurred. None of the monocyte parameters correlated with long-term adverse clinical outcome. Changes in absolute monocyte counts and subtle changes towards an activation phenotype after PTA may reflect local cell adhesion phenomenon in patients with Rutherford 3 or 4 peripheral arterial disease.

  14. Galactomutarotase and other galactose-related genes are rapidly induced by retinoic acid in human myeloid cells.

    Science.gov (United States)

    Pai, Tongkun; Chen, Qiuyan; Zhang, Yao; Zolfaghari, Reza; Ross, A Catharine

    2007-12-25

    Aldose-1-epimerase (mutarotase) catalyzes the interconversion of alpha and beta hexoses, which is essential for normal carbohydrate metabolism and the production of complex oligosaccharides. Galactose mutarotase (GALM) has been well characterized at the protein level, but information is lacking on the regulation of GALM gene expression. We report herein that all-trans-retinoic acid (RA), an active metabolite of vitamin A that is known to induce myeloid lineage cell differentiation into macrophage-like cells, induces a rapid and robust regulation of GALM mRNA expression in human myeloid cells. all-trans-RA at a physiological concentration (20 nM), or Am580, a ligand selective for the nuclear retinoid receptor RARalpha, increased GALM mRNA in THP-1 cells, with significantly increased expression in 2 h, increasing further to an approximately 8-fold elevation after 6-40 h (P < 0.005). In contrast, tumor necrosis factor-alpha did not increase GALM mRNA expression, although it is capable of inducing cell differentiation. RA also increased GALM mRNA in U937 and HL-60 cells. The increase in GALM mRNA by RA was blocked by pretreating THP-1 cells with actinomycin D but not by cycloheximide. GALM protein and mutarotase activity were also increased time dependently in RA-treated THP-1 cells. In addition to GALM, several other genes in the biosynthetic pathway of galactosyl-containing complex oligosaccharides were more highly expressed in RA-treated THP-1 cells, including B4GALT5, ST3GAL3, ST6GALNAC5, and GALNAC4S-6ST. Thus, the results of this study identify RA as a significant regulator of GALM and other galactose-related genes in myeloid-monocytic cells, which could affect energy utilization and synthesis of cell-surface glycoproteins or glycolipids involved in cell motility, adhesion, and/or functional properties.

  15. Myeloid dendritic cells frequencies are increased in children with autism spectrum disorder and associated with amygdala volume and repetitive behaviors.

    Science.gov (United States)

    Breece, Elizabeth; Paciotti, Brian; Nordahl, Christine Wu; Ozonoff, Sally; Van de Water, Judy A; Rogers, Sally J; Amaral, David; Ashwood, Paul

    2013-07-01

    The pathophysiology of autism spectrum disorder (ASD) is not yet known; however, studies suggest that dysfunction of the immune system affects many children with ASD. Increasing evidence points to dysfunction of the innate immune system including activation of microglia and perivascular macrophages, increases in inflammatory cytokines/chemokines in brain tissue and CSF, and abnormal peripheral monocyte cell function. Dendritic cells are major players in innate immunity and have important functions in the phagocytosis of pathogens or debris, antigen presentation, activation of naïve T cells, induction of tolerance and cytokine/chemokine production. In this study, we assessed circulating frequencies of myeloid dendritic cells (defined as Lin-1(-)BDCA1(+)CD11c(+) and Lin-1(-)BDCA3(+)CD123(-)) and plasmacytoid dendritic cells (Lin-1(-)BDCA2(+)CD123(+) or Lin-1(-)BDCA4(+) CD11c(-)) in 57 children with ASD, and 29 typically developing controls of the same age, all of who were enrolled as part of the Autism Phenome Project (APP). The frequencies of dendritic cells and associations with behavioral assessment and MRI measurements of amygdala volume were compared in the same participants. The frequencies of myeloid dendritic cells were significantly increased in children with ASD compared to typically developing controls (pfrequencies of myeloid dendritic cells were positively associated with abnormal right and left amygdala enlargement, severity of gastrointestinal symptoms and increased repetitive behaviors. The frequencies of plasmacytoid dendritic cells were also associated with amygdala volumes as well as developmental regression in children with ASD. Dendritic cells play key roles in modulating immune responses and differences in frequencies or functions of these cells may result in immune dysfunction in children with ASD. These data further implicate innate immune cells in the complex pathophysiology of ASD.

  16. The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion.

    Science.gov (United States)

    Hucke, Stephanie; Herold, Martin; Liebmann, Marie; Freise, Nicole; Lindner, Maren; Fleck, Ann-Katrin; Zenker, Stefanie; Thiebes, Stephanie; Fernandez-Orth, Juncal; Buck, Dorothea; Luessi, Felix; Meuth, Sven G; Zipp, Frauke; Hemmer, Bernhard; Engel, Daniel Robert; Roth, Johannes; Kuhlmann, Tanja; Wiendl, Heinz; Klotz, Luisa

    2016-09-01

    Innate immune responses by myeloid cells decisively contribute to perpetuation of central nervous system (CNS) autoimmunity and their pharmacologic modulation represents a promising strategy to prevent disease progression in Multiple Sclerosis (MS). Based on our observation that peripheral immune cells from relapsing-remitting and primary progressive MS patients exhibited strongly decreased levels of the bile acid receptor FXR (farnesoid-X-receptor, NR1H4), we evaluated its potential relevance as therapeutic target for control of established CNS autoimmunity. Pharmacological FXR activation promoted generation of anti-inflammatory macrophages characterized by arginase-1, increased IL-10 production, and suppression of T cell responses. In mice, FXR activation ameliorated CNS autoimmunity in an IL-10-dependent fashion and even suppressed advanced clinical disease upon therapeutic administration. In analogy to rodents, pharmacological FXR activation in human monocytes from healthy controls and MS patients induced an anti-inflammatory phenotype with suppressive properties including control of effector T cell proliferation. We therefore, propose an important role of FXR in control of T cell-mediated autoimmunity by promoting anti-inflammatory macrophage responses.

  17. Effects of Cigarette Smoke Condensate on Oxidative Stress, Apoptotic Cell Death, and HIV Replication in Human Monocytic Cells.

    Directory of Open Access Journals (Sweden)

    Pss Rao

    Full Text Available While cigarette smoking is prevalent amongst HIV-infected patients, the effects of cigarette smoke constituents in cells of myeloid lineage are poorly known. Recently, we have shown that nicotine induces oxidative stress through cytochrome P450 (CYP 2A6-mediated pathway in U937 monocytic cells. The present study was designed to examine the effect of cigarette smoke condensate (CSC, which contains majority of tobacco constituents, on oxidative stress, cytotoxicity, expression of CYP1A1, and/or HIV-1 replication in HIV-infected (U1 and uninfected U937 cells. The effects of CSC on induction of CYP1 enzymes in HIV-infected primary macrophages were also analyzed. The results showed that the CSC-mediated increase in production of reactive oxygen species (ROS in U937 cells is dose- and time-dependent. Moreover, CSC treatment was found to induce cytotoxicity in U937 cells through the apoptotic pathway via activation of caspase-3. Importantly, pretreatment with vitamin C blocked the CSC-mediated production of ROS and induction of caspase-3 activity. In U1 cells, acute treatment of CSC increased ROS production at 6H (>2-fold and both ROS (>2 fold and HIV-1 replication (>3-fold after chronic treatment. The CSC mediated effects were associated with robust induction in the expression of CYP1A1 mRNA upon acute CSC treatment of U937 and U1 cells (>20-fold, and upon chronic CSC treatment to U1 cells (>30-fold. In addition, the CYP1A1 induction in U937 cells was mediated through the aromatic hydrocarbon receptor pathway. Lastly, CSC, which is known to increase viral replication in primary macrophages, was also found to induce CYP1 enzymes in HIV-infected primary macrophages. While mRNA levels of both CYP1A1 and CYP1B1 were elevated following CSC treatment, only CYP1B1 protein levels were increased in HIV-infected primary macrophages. In conclusion, these results suggest a possible association between oxidative stress, CYP1 expression, and viral replication in

  18. Commitment to the monocytic lineage occurs in the absence of the transcription factor PU.1.

    NARCIS (Netherlands)

    G.W. Henkel; S.R. McKercher; P.J. Leenen (Pieter); R.A. Maki

    1999-01-01

    textabstractMice homozygous for the disruption of the PU.1 (Spi-1) gene do not produce mature macrophages. In determining the role of PU.1 in macrophage differentiation, the present study investigated whether or not there was commitment to the monocytic lineage in the a

  19. Abnormalities in Monocyte Recruitment and Cytokine Expression in Monocyte Chemoattractant Protein 1–deficient Mice

    Science.gov (United States)

    Lu, Bao; Rutledge, Barbara J.; Gu, Long; Fiorillo, Joseph; Lukacs, Nicholas W.; Kunkel, Steven L.; North, Robert; Gerard, Craig; Rollins, Barrett J.

    1998-01-01

    Monocyte chemoattractant protein 1 (MCP-1) is a CC chemokine that attracts monocytes, memory T lymphocytes, and natural killer cells. Because other chemokines have similar target cell specificities and because CCR2, a cloned MCP-1 receptor, binds other ligands, it has been uncertain whether MCP-1 plays a unique role in recruiting mononuclear cells in vivo. To address this question, we disrupted SCYA2 (the gene encoding MCP-1) and tested MCP-1–deficient mice in models of inflammation. Despite normal numbers of circulating leukocytes and resident macrophages, MCP-1−/− mice were specifically unable to recruit monocytes 72 h after intraperitoneal thioglycollate administration. Similarly, accumulation of F4/80+ monocytes in delayed-type hypersensitivity lesions was impaired, although the swelling response was normal. Development of secondary pulmonary granulomata in response to Schistosoma mansoni eggs was blunted in MCP-1−/− mice, as was expression of IL-4, IL-5, and interferon γ in splenocytes. In contrast, MCP-1−/− mice were indistinguishable from wild-type mice in their ability to clear Mycobacterium tuberculosis. Our data indicate that MCP-1 is uniquely essential for monocyte recruitment in several inflammatory models in vivo and influences expression of cytokines related to T helper responses. PMID:9463410

  20. IGK with conserved IGΚV/IGΚJ repertoire is expressed in acute myeloid leukemia and promotes leukemic cell migration.

    Science.gov (United States)

    Wang, Chong; Xia, Miaoran; Sun, Xiaoping; He, Zhiqiao; Hu, Fanlei; Chen, Lei; Bueso-Ramos, Carlos E; Qiu, Xiaoyan; Yin, C Cameron

    2015-11-17

    We have previously reported that immunoglobulin heavy chain genes were expressed in myeloblasts and mature myeloid cells. In this study, we further demonstrated that rearranged Ig κ light chain was also frequently expressed in acute myeloid leukemia cell lines (6/6), primary myeloblasts from patients with acute myeloid leukemia (17/18), and mature monocytes (11/12) and neutrophils (3/12) from patients with non-hematopoietic neoplasms, but not or only rarely expressed in mature neutrophils (0/8) or monocytes (1/8) from healthy individuals. Interestingly, myeloblasts and mature monocytes/neutrophils shared several restricted IGKV and IGKJ gene usages but with different expression frequency. Surprisingly, almost all of the acute myeloid leukemia-derived IGKV showed somatic hypermutation; in contrast, mature myeloid cells-derived IGKV rarely had somatic hypermutation. More importantly, although IGK expression appeared not to affect cell proliferation, reduced IGK expression led to a decrease in cell migration in acute myeloid leukemia cell lines HL-60 and NB4, whereas increased IGK expression promoted their motility. In summary, IGK is expressed in myeloblasts and mature myeloid cells from patients with non-hematopoietic neoplasms, and is involved in cell migration. These results suggest that myeloid cells-derived IgK may have a role in leukemogenesis and may serve as a novel tumor marker for monitoring minimal residual disease and developing target therapy.

  1. Antiretroviral therapy in HIV-1-infected individuals with CD4 count below 100 cells/mm3 results in differential recovery of monocyte activation.

    Science.gov (United States)

    Patro, Sean C; Azzoni, Livio; Joseph, Jocelin; Fair, Matthew G; Sierra-Madero, Juan G; Rassool, Mohammed S; Sanne, Ian; Montaner, Luis J

    2016-07-01

    Reversal of monocyte and macrophage activation and the relationship to viral suppression and T cell activation are unknown in patients with advanced HIV-1 infection, initiating antiretroviral therapy. This study aimed to determine whether reduction in biomarkers of monocyte and macrophage activation would be reduced in conjunction with viral suppression and resolution of T cell activation. Furthermore, we hypothesized that the addition of CCR5 antagonism (by maraviroc) would mediate greater reduction of monocyte/macrophage activation markers than suppressive antiretroviral therapy alone. In the CCR5 antagonism to decrease the incidence of immune reconstitution inflammatory syndrome study, antiretroviral therapy-naïve patients received maraviroc or placebo in addition to standard antiretroviral therapy. PBMCs and plasma from 65 patients were assessed during 24 wk of antiretroviral therapy for biomarkers of monocyte and macrophage activation. Markers of monocyte and macrophage activation were reduced significantly by 24 wk, including CD14(++)CD16(+) intermediate monocytes (P CCR5-positive monocytes in PBMC. HIV-1 suppression after 24 wk of antiretroviral therapy, with or without maraviroc, demonstrates robust recovery in monocyte subset activation markers, whereas soluble markers of activation demonstrate minimal decrease, qualitatively differentiating markers of monocyte/macrophage activation in advanced disease.

  2. Hyper-activated pro-inflammatory CD16 monocytes correlate with the severity of liver injury and fibrosis in patients with chronic hepatitis B.

    Directory of Open Access Journals (Sweden)

    Ji-Yuan Zhang

    Full Text Available BACKGROUND: Extensive mononuclear cell infiltration is strongly correlated with liver damage in patients with chronic hepatitis B virus (CHB infection. Macrophages and infiltrating monocytes also participate in the development of liver damage and fibrosis in animal models. However, little is known regarding the immunopathogenic role of peripheral blood monocytes and intrahepatic macrophages. METHODOLOGY/PRINCIPAL FINDINGS: The frequencies, phenotypes, and functions of peripheral blood and intrahepatic monocyte/macrophage subsets were analyzed in 110 HBeAg positive CHB patients, including 32 immune tolerant (IT carriers and 78 immune activated (IA patients. Liver biopsies from 20 IA patients undergoing diagnosis were collected for immunohistochemical analysis. IA patients displayed significant increases in peripheral blood monocytes and intrahepatic macrophages as well as CD16(+ subsets, which were closely associated with serum alanine aminotransferase (ALT levels and the liver histological activity index (HAI scores. In addition, the increased CD16(+ monocytes/macrophages expressed higher levels of the activation marker HLA-DR compared with CD16(- monocytes/macrophages. Furthermore, peripheral blood CD16(+ monocytes preferentially released inflammatory cytokines and hold higher potency in inducing the expansion of Th17 cells. Of note, hepatic neutrophils also positively correlated with HAI scores. CONCLUSIONS: These distinct properties of monocyte/macrophage subpopulations participate in fostering the inflammatory microenvironment and liver damage in CHB patients and further represent a collaborative scenario among different cell types contributing to the pathogenesis of HBV-induced liver disease.

  3. CCR5 susceptibility to ligand-mediated down-modulation differs between human T lymphocytes and myeloid cells.

    Science.gov (United States)

    Fox, James M; Kasprowicz, Richard; Hartley, Oliver; Signoret, Nathalie

    2015-07-01

    CCR5 is a chemokine receptor expressed on leukocytes and a coreceptor used by HIV-1 to enter CD4(+) T lymphocytes and macrophages. Stimulation of CCR5 by chemokines triggers internalization of chemokine-bound CCR5 molecules in a process called down-modulation, which contributes to the anti-HIV activity of chemokines. Recent studies have shown that CCR5 conformational heterogeneity influences chemokine-CCR5 interactions and HIV-1 entry in transfected cells or activated CD4(+) T lymphocytes. However, the effect of CCR5 conformations on other cell types and on the process of down-modulation remains unclear. We used mAbs, some already shown to detect distinct CCR5 conformations, to compare the behavior of CCR5 on in vitro generated human T cell blasts, monocytes and MDMs and CHO-CCR5 transfectants. All human cells express distinct antigenic forms of CCR5 not detected on CHO-CCR5 cells. The recognizable populations of CCR5 receptors exhibit different patterns of down-modulation on T lymphocytes compared with myeloid cells. On T cell blasts, CCR5 is recognized by all antibodies and undergoes rapid chemokine-mediated internalization, whereas on monocytes and MDMs, a pool of CCR5 molecules is recognized by a subset of antibodies and is not removed from the cell surface. We demonstrate that this cell surface-retained form of CCR5 responds to prolonged treatment with more-potent chemokine analogs and acts as an HIV-1 coreceptor. Our findings indicate that the regulation of CCR5 is highly specific to cell type and provide a potential explanation for the observation that native chemokines are less-effective HIV-entry inhibitors on macrophages compared with T lymphocytes.

  4. The multiple roles of monocyte subsets in steady state and inflammation.

    Science.gov (United States)

    Robbins, Clinton S; Swirski, Filip K

    2010-08-01

    Monocytes participate importantly in immunity. Produced in the bone marrow and released into the blood, they circulate in blood or reside in a spleen reservoir before entering tissue and giving rise to macrophages or dendritic cells. Monocytes are more than transitional cells that adapt to a particular tissue environment indiscriminately. Accumulating evidence now indicates that monocytes are heterogeneous in several species and are themselves predetermined for particular function in the steady state and inflammation. Future therapeutics may harness this heterogeneity to target harmful functions while sparing those that are beneficial. Here, we review recent advances on the ontogeny and function of monocytes and their subsets in humans and mice.

  5. Differential Expression of CD163 on Monocyte Subsets in Healthy and HIV-1 Infected Individuals

    Science.gov (United States)

    Tippett, Emma; Cheng, Wan-Jung; Westhorpe, Clare; Cameron, Paul U.; Brew, Bruce J.; Lewin, Sharon R.; Jaworowski, Anthony; Crowe, Suzanne M.

    2011-01-01

    CD163, a haptoglobin-hemoglobin (Hp-Hb) scavenger receptor, expressed by monocytes and macrophages, is important in resolution of inflammation. Age-related non-AIDS co-morbidities in HIV-infected individuals, particularly dementia and cardiovascular disease, result in part from effects of HIV-1 infection on monocyte and macrophage biology. CD163 co-expression on CD14+CD16++ monocytes has been proposed as a useful biomarker for HIV-1 disease progression and the presence of HIV associated dementia. Here we investigated CD163 expression on monocyte subsets ex vivo, on cultured macrophages, and soluble in plasma, in the setting of HIV-1 infection. Whole blood immunophenotyping revealed CD163 expression on CD14++CD16- monocytes but not on CD14+CD16++ monocytes (P = 0.004), supported by CD163 mRNA levels. Incubation with M-CSF induced CD163 protein expression on CD14+CD16++ monocytes to the same extent as CD14++CD16− monocytes. CD163 expression on CD14++CD16+ monocytes from HIV-infected subjects was significantly higher than from uninfected individuals, with a trend towards increased expression on CD14++CD16− monocytes (P = 0.019 and 0.069 respectively), which is accounted for by HIV-1 therapy including protease inhibitors. Shedding of CD163 was shown to predominantly occur from the CD14++CD16− subset after Ficoll isolation and LPS stimulation. Soluble CD163 concentration in plasma from HIV-1 infected donors was similar to HIV-1 uninfected donors. Monocyte CD163 expression in HIV-1 infected patients showed a complicated relationship with classical measures of disease progression. Our findings clarify technical issues regarding CD163 expression on monocyte subsets and further elucidates its role in HIV-associated inflammation by demonstrating that CD163 is readily lost from CD14++CD16− monocytes and induced in pro-inflammatory CD14+CD16++ monocytes by M-CSF. Our data show that all monocyte subsets are potentially capable of differentiating into CD163

  6. Differential expression of CD163 on monocyte subsets in healthy and HIV-1 infected individuals.

    Directory of Open Access Journals (Sweden)

    Emma Tippett

    Full Text Available CD163, a haptoglobin-hemoglobin (Hp-Hb scavenger receptor, expressed by monocytes and macrophages, is important in resolution of inflammation. Age-related non-AIDS co-morbidities in HIV-infected individuals, particularly dementia and cardiovascular disease, result in part from effects of HIV-1 infection on monocyte and macrophage biology. CD163 co-expression on CD14+CD16++ monocytes has been proposed as a useful biomarker for HIV-1 disease progression and the presence of HIV associated dementia. Here we investigated CD163 expression on monocyte subsets ex vivo, on cultured macrophages, and soluble in plasma, in the setting of HIV-1 infection. Whole blood immunophenotyping revealed CD163 expression on CD14++CD16- monocytes but not on CD14+CD16++ monocytes (P = 0.004, supported by CD163 mRNA levels. Incubation with M-CSF induced CD163 protein expression on CD14+CD16++ monocytes to the same extent as CD14++CD16- monocytes. CD163 expression on CD14++CD16+ monocytes from HIV-infected subjects was significantly higher than from uninfected individuals, with a trend towards increased expression on CD14++CD16- monocytes (P = 0.019 and 0.069 respectively, which is accounted for by HIV-1 therapy including protease inhibitors. Shedding of CD163 was shown to predominantly occur from the CD14++CD16- subset after Ficoll isolation and LPS stimulation. Soluble CD163 concentration in plasma from HIV-1 infected donors was similar to HIV-1 uninfected donors. Monocyte CD163 expression in HIV-1 infected patients showed a complicated relationship with classical measures of disease progression. Our findings clarify technical issues regarding CD163 expression on monocyte subsets and further elucidates its role in HIV-associated inflammation by demonstrating that CD163 is readily lost from CD14++CD16- monocytes and induced in pro-inflammatory CD14+CD16++ monocytes by M-CSF. Our data show that all monocyte subsets are potentially capable of differentiating into CD

  7. [Heterogenous abnormality polymorphism of gene PDGFRB in myeloid neoplasms and its clinical characteristics].

    Science.gov (United States)

    Wang, Quan-Shun; Gao, Li; Jing, Yu; Zhu, Hai-Yan; Yang, Hua; Yu, Li

    2012-04-01

    Myeloid neoplasms with eosinophilia and abnormalities of PDGFRB gene are a new kind of myeloid disorders in the revised 2008 WHO classification. Out of detected 2000 cases of myeloid cell abnormalities in our hospital, 12 cases of myeloid neoplasms with eosinophilia and abnormalities of PDGFRB were found. This study was purposed to summarize and analyze the clinical and laboratorial characteristics of the 12 cases with PDGFRB gene abnormalities. The results indicated that among 12 cases of myeloid neoplasms with PDGFRB abnormalities, 5 cases with TEL/PDGFRB fusion gene, 2 cases with HEPI/PDGFRB, 1 case with PDGFRB mutation, 1 case with RABAPTIN-5/PDGFRB, 1 case with GIT2/PDGFRB, 1 case with TP53/PDGFRB, 1 case with WDR43/PDGFRB fusion gene were detected, showing the polymorphism of PDGFRB gene abnormalities. Among this kind of myeloid neoplasm patients, almost all patients manifested monocytosis and eosinophilia in different degree, the thrombocytosis mainly was observed in atypical myeloid neoplasms, acute leukemia, chromic myelo-monocytic leukemia patients. The treatment with imatinib mesylate for this kind of patients was effective in some cases. It is concluded that the myeloid neoplasms with PDGFRB gene abnormalities are a kind of heterogenetic myeloid neoplasms, their gene abnormal types and clinical manifestations show polymorphism too. The monocytosis and eosinophilia appear in this kind myeloid neoplasms which may be treated with tyrosine kinase inhibitors such as imatinib mesylate.

  8. Maturation and demise of human primary monocytes by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    De Nicola, Milena, E-mail: milena.de.nicola@uniroma2.it [University of Rome ' Tor Vergata' , Department of Biology (Italy); Mirabile Gattia, Daniele, E-mail: daniele.mirabile@enea.it [UTTMAT, ENEA-C.R. Casaccia (Italy); Traversa, Enrico, E-mail: Enrico.Traversa@kaust.edu.sa [King Abdullah University of Science and Technology (KAUST), Division of Physical Science and Engineering (Saudi Arabia); Ghibelli, Lina, E-mail: ghibelli@uniroma2.it [University of Rome ' Tor Vergata' , Department of Biology (Italy)

    2013-06-15

    The possibility of exploiting carbon nanotubes (CNT) in biomedical practices requires thorough analysis of the chemical or bulk effects they may exert on the immune system, the complex network that recognizes and eliminates foreign particles. In particular, the phagocytosing ability of cells belonging to the monocyte/macrophage lineage may render these immune cells an ideal toxicological target of pristine CNT, which may form aggregates of size exceeding monocyte/macrophage phagocytosing plasticity. To shed light on this issue, we analyzed the effects that pristine multi-walled CNT (MWCNT) without metal or biological impurities exert on survival and activation of freshly explanted human peripheral blood monocytes, analyzing in parallel the non-phagocytosing lymphocytes, and using graphite as control carbon material. MWCNT (diameter 10-50 nm, length up to 10 {mu}m) exert two different toxic effects on mononuclear leukocytes: a minor apoptogenic effect (on lymphocytes > monocytes), and a major, apoptosis-independent effect that exclusively and deeply affect monocyte homeostasis. Analysis of monocyte number, adhesion, redox equilibrium, and the differentiation markers CD14 and CD11b reveals that MWCNT cause the selective disappearance of phagocytosis-competent monocytes by mechanisms related to the presence of large nanoparticle aggregates, suggesting phenomena of bulk toxicity possibly consisting of frustrated phagocytosis. At the same time, MWCNT stimulate adhesion of the phagocytosis-incompetent monocytes, and their differentiation toward a peculiar maturation asset. These observations point out novel mechanisms of CNT toxicity, renewing concerns that they may impair the innate immune system deranging the inflammatory responses.

  9. Maturation and demise of human primary monocytes by carbon nanotubes

    KAUST Repository

    De Nicola, Milena D.

    2013-05-17

    The possibility of exploiting carbon nanotubes (CNT) in biomedical practices requires thorough analysis of the chemical or bulk effects they may exert on the immune system, the complex network that recognizes and eliminates foreign particles. In particular, the phagocytosing ability of cells belonging to the monocyte/macrophage lineage may render these immune cells an ideal toxicological target of pristine CNT, which may form aggregates of size exceeding monocyte/macrophage phagocytosing plasticity. To shed light on this issue, we analyzed the effects that pristine multi-walled CNT (MWCNT) without metal or biological impurities exert on survival and activation of freshly explanted human peripheral blood monocytes, analyzing in parallel the non-phagocytosing lymphocytes, and using graphite as control carbon material. MWCNT (diameter 10-50 nm, length up to 10 μm) exert two different toxic effects on mononuclear leukocytes: a minor apoptogenic effect (on lymphocytes > monocytes), and a major, apoptosis-independent effect that exclusively and deeply affect monocyte homeostasis. Analysis of monocyte number, adhesion, redox equilibrium, and the differentiation markers CD14 and CD11b reveals that MWCNT cause the selective disappearance of phagocytosis-competent monocytes by mechanisms related to the presence of large nanoparticle aggregates, suggesting phenomena of bulk toxicity possibly consisting of frustrated phagocytosis. At the same time, MWCNT stimulate adhesion of the phagocytosis-incompetent monocytes, and their differentiation toward a peculiar maturation asset. These observations point out novel mechanisms of CNT toxicity, renewing concerns that they may impair the innate immune system deranging the inflammatory responses. © 2013 Springer Science+Business Media Dordrecht.

  10. The Many Alternative Faces of Macrophage Activation

    OpenAIRE

    Hume, David A

    2015-01-01

    Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. Analysis of large gene expression datasets from multiple cells and tissues reveals sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, the gene clusters include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and g...

  11. Macrophage subsets and microglia in multiple sclerosis

    OpenAIRE

    2014-01-01

    Along with microglia and monocyte-derived macrophages, macrophages in the perivascular space, choroid plexus, and meninges are the principal effector cells in neuroinflammatory and neurodegenerative disorders. These phagocytes are highly heterogeneous cells displaying spatial- and temporal-dependent identities in the healthy, injured, and inflamed CNS. In the last decade, researchers have debated on whether phagocytes subtypes and phenotypes are pathogenic or protective in CNS pathologies. In...

  12. Equine infectious anemia virus replication is upregulated during differentiation of blood monocytes from acutely infected horses.

    Science.gov (United States)

    Sellon, D C; Walker, K M; Russell, K E; Perry, S T; Covington, P; Fuller, F J

    1996-01-01

    Equine infectious anemia virus is a lentivirus that replicates in mature tissue macrophages of horses. Ponies were infected with equine infectious anemia virus. During febrile episodes, proviral DNA was detectable, but viral mRNA was not detectable. As cultured blood monocytes from these ponies differentiated into macrophages, viral expression was upregulated. In situ hybridization confirmed that viral transcription occurred in mature macrophages. PMID:8523576

  13. Myeloid-derived suppressor cell heterogeneity and subset definition.

    Science.gov (United States)

    Peranzoni, Elisa; Zilio, Serena; Marigo, Ilaria; Dolcetti, Luigi; Zanovello, Paola; Mandruzzato, Susanna; Bronte, Vincenzo

    2010-04-01

    Myeloid derived suppressor cells (MDSCs) are defined in mice on the basis of CD11b and Gr-1 marker expression and the functional ability to inhibit T lymphocyte activation. Nevertheless the term 'heterogeneous' remains the first, informal feature commonly attributed to this population. It is clear that CD11b(+)Gr-1(+) cells are part of a myeloid macropopulation, which comprises at least two subsets of polymorphonuclear and monocytic cells with different immunosuppressive properties. While recent literature shows substantial agreement on the immunoregulatory property of the monocytic MDSC subset, there is still contrasting evidence on the role of the granulocytic fraction. Moreover, this dichotomy holds true for human MDSCs. We attempt here to summarize conflicting findings in the field and provide some possible, unifying explanations.

  14. What Is Chronic Myeloid Leukemia?

    Science.gov (United States)

    ... Chronic Myeloid Leukemia (CML) About Chronic Myeloid Leukemia What Is Chronic Myeloid Leukemia? Cancer starts when cells ... their treatment is the same as for adults. What is leukemia? Leukemia is a cancer that starts ...

  15. Mature dendritic cells generated from patient-derived peripheral blood monocytes in one-step culture using streptococcal preparation OK-432 exert an enhanced antigen-presenting capacity.

    Science.gov (United States)

    Naito, Kei; Ueda, Yuji; Itoh, Tsuyoshi; Fuji, Nobuaki; Shimizu, Keiji; Yano, Yutaro; Yamamoto, Yoshiki; Imura, Kenichiro; Kohara, Junji; Iwamoto, Arihiro; Shiozaki, Atsushi; Tamai, Hidemasa; Shimizu, Takeshi; Mazda, Osam; Yamagishi, Hisakazu

    2006-06-01

    Dendritic cells (DCs) have been shown to be potent in inducing cytotoxic T cell (CTL) response leading to the efficient anti-tumor effect in active immunotherapy. Myeloid DCs are conventionally generated from human peripheral blood monocytes in the presence of interleukin (IL)-4 and granulocyte/macrophage colony-stimulating factor (GM-CSF). Streptococcal preparation OK-432, which is known to be a multiple cytokine inducer, has been extensively studied as to its maturation effects on immature DCs using an in vitro culture system. The purpose of this study was to examine whether it could be possible to generate mature DCs directly from peripheral monocytes using OK-432. We specifically focused on the possibility that recombinant cytokines, which are considered to be essential for in vitro DC generation, could be substituted by OK-432. Human peripheral monocytes, which were obtained from patients with advanced cancer, were cultured with IL-4 and OK-432 for 7 days. Cultured cells were compared with DCs generated in the presence of IL-4 and GM-CSF with or without OK-432 with regard to the surface phenotype as well as the antigen-presenting capacity. As a result, the culture of monocytes in the presence of IL-4 followed by the addition of OK-432 on day 4 (IL-4/OK-DC) induced cells with a fully mature DC phenotype. Functional assays also demonstrated that IL-4/OK-DCs had a strong antigen-presenting capacity determined by their enhanced antigen-specific CTL response and exerted a Th1-type T cell response which is critical for the induction of anti-tumor response. In conclusion, human peripheral blood monocytes cultured in the presence of IL-4 and OK-432 without exogenous GM-CSF demonstrated a fully mature DC phenotype and strong antigen-presenting capacity. This one-step culture protocol allows us to generate fully mature DCs directly from monocytes in 7 days and thus, this protocol can be applicable for DC-based anti-tumor immunotherapy.

  16. Modulation of the expression of chondroitin sulfate proteoglycan in stimulated human monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Uhlin-Hansen, L.; Eskeland, T.; Kolset, S.O. (Univ. of Tromso (Norway))

    1989-09-05

    Proteoglycan biosynthesis was studied in human monocytes and monocyte-derived macrophages (MDM) after exposure to typical activators of the monocyte/macrophage system: interferon-gamma (IFN-gamma), lipopolysaccharide (LPS), and phorbol 12-myristate 13-acetate (PMA). By morphological examination, both monocytes and MDM were stimulated by these activators. Treatment with IFN-gamma resulted in a slight decrease in the expression of (35S)chondroitin sulfate proteoglycan (CSPG) in both monocytes and MDM, whereas LPS treatment increased the (35S)CSPG expression 1.8 and 2.2 times, respectively. PMA, in contrast, decreased the CSPG expression 0.4 times in monocytes, whereas MDM were stimulated to increase the biosynthesis 1.9 times. An increase in the sulfate density of the chondroitin sulfate chains was evident following differentiation of monocytes into MDM due to the expression of disulfated disaccharide units of the chondroitin sulfate E type (CS-E). However, monocytes exposed to PMA did also express disaccharides of the chondroitin sulfate E type. Furthermore, the expression of CS-E in MDM was increased 2 times following PMA treatment. An inactive phorbol ester, phorbol 12,13-diacetate, did not affect the expression of CS-E in either monocytes or MDM when compared with control cultures, suggesting that protein kinase C-dependent signal pathways may be involved in the regulation of sulfation of CSPG. Exposure to LPS or IFN-gamma did not lead to any changes in the sulfation of the chondroitin sulfate chains.

  17. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas.

    Science.gov (United States)

    Egen, Jackson G; Rothfuchs, Antonio Gigliotti; Feng, Carl G; Winter, Nathalie; Sher, Alan; Germain, Ronald N

    2008-02-01

    Granulomas play a key role in host protection against mycobacterial pathogens, with their breakdown contributing to exacerbated disease. To better understand the initiation and maintenance of these structures, we employed both high-resolution multiplex static imaging and intravital multiphoton microscopy of Mycobacterium bovis BCG-induced liver granulomas. We found that Kupffer cells directly capture blood-borne bacteria and subsequently nucleate formation of a nascent granuloma by recruiting both uninfected liver-resident macrophages and blood-derived monocytes. Within the mature granuloma, these myeloid cell populations formed a relatively immobile cellular matrix that interacted with a highly dynamic effector T cell population. The efficient recruitment of these T cells was highly dependent on TNF-alpha-derived signals, which also maintained the granuloma structure through preferential effects on uninfected macrophage populations. By characterizing the migration of both innate and adaptive immune cells throughout the process of granuloma development, these studies provide a new perspective on the cellular events involved in mycobacterial containment and escape.

  18. Impaired migration capacity in monocytes derived from patients with Gaucher disease.

    Science.gov (United States)

    Bettman, Noam; Avivi, Irit; Rosenbaum, Hanna; Bisharat, Lina; Katz, Tamar

    2015-08-01

    Gaucher disease (GD) is characterized by glucocerebroside (GC) accumulation due to defective activity of the glucocerebrosidase (GlcCerase) enzyme. Monocytes and macrophages exhibit the highest GlcCerase activity and are most prominently affected by GC engorgement. As GD patients tend to exert various immune system-related changes, this study was designed to investigate potential effects of monocyte dysfunction on these alterations. Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) of untreated GD patients and healthy volunteers. Monocyte migration capacity towards SDF1α was assessed. The GD patients exhibited reduced numbers of monocytes and decreased capability of SDF1α-dependent monocyte migration. Evaluation of CXCR4, the SDF1α receptor, revealed reduced expression of surface CXCR4 on GD-derived monocytes, despite similar CXCR4 mRNA transcript levels in the monocytes of healthy volunteers and GD patients. Reduction of surface CXCR4 was accompanied by increased intracellular CXCR4 levels in patient monocytes. This elevated intracellular CXCR4 might reflect significantly increased SDF1α concentrations characterizing patients' serum and the lysosomal impairment of GD, resulting in decreased degradation of CXCR4. Different distributions of CXCR4 expression observed in the two groups explain impaired SDF1α-dependent monocyte migration. Reduced numbers and impaired migration capacity of GD-derived monocytes could contribute to abnormal inflammation and GD-associated immune alterations seen in these patients.

  19. Trypsin, Tryptase, and Thrombin Polarize Macrophages towards a Pro-Fibrotic M2a Phenotype.

    Directory of Open Access Journals (Sweden)

    Michael J V White

    Full Text Available For both wound healing and the formation of a fibrotic lesion, circulating monocytes enter the tissue and differentiate into fibroblast-like cells called fibrocytes and pro-fibrotic M2a macrophages, which together with fibroblasts form scar tissue. Monocytes can also differentiate into classically activated M1 macrophages and alternatively activated M2 macrophages. The proteases thrombin, which is activated during blood clotting, and tryptase, which is released by activated mast cells, potentiate fibroblast proliferation and fibrocyte differentiation