Guzatov, D. V.; Gaida, L. S.; Afanas'ev, Anatolii A.
2008-12-01
The light pressure force acting on a spherical dielectric particle in the interference field of two plane monochromatic electromagnetic waves is studied in detail for different particle radii and angles of incidence of waves.
Directory of Open Access Journals (Sweden)
Lorenzo Iorio
2014-09-01
Full Text Available We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency νg is much smaller than the particle's orbital one nb. We make neither a priori assumptions about the direction of the wavevector kˆ nor on the orbital configuration of the particle. While the semi-major axis a is left unaffected, the eccentricity e, the inclination I, the longitude of the ascending node Ω, the longitude of pericenter ϖ and the mean anomaly ℳ undergo non-vanishing long-term changes of the form dΨ/dt=F(Kij;e,I,Ω,ω,Ψ=e,I,Ω,ϖ,M, where Kij, i,j=1,2,3 are the coefficients of the tidal matrix K. Thus, in addition to the variations of its orientation in space, the shape of the orbit would be altered as well. Strictly speaking, such effects are not secular trends because of the slow modulation introduced by K and by the orbital elements themselves: they exhibit peculiar long-term temporal patterns which would be potentially of help for their detection in multidecadal analyses of extended data records of planetary observations of various kinds. In particular, they could be useful in performing independent tests of the inflation-driven ultra-low gravitational waves whose imprint may have been indirectly detected in the Cosmic Microwave Background by the Earth-based experiment BICEP2. Our calculation holds, in general, for any gravitationally bound two-body system whose orbital frequency nb is much larger than the frequency νg of the external wave, like, e.g., extrasolar planets and the stars orbiting the Galactic black hole. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.
Matda, Y.; Crawford, F. W.
1974-01-01
An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.
Conceptual Design of Wave Plane
DEFF Research Database (Denmark)
Frigaard, Peter; Trewers, Andrew; Kofoed, Jens Peter;
The Wave Plane is a patented Wave Energy device of the overtopping type, designed to capture potential as well as kinetic energy. This is as such different to other overtopping devices, who usually only focus on potential energy. If Wave Plane A/S can deliver the turbine technology to utilize both...
The quasi-monochromatic ULF wave foreshock boundary at Venus
Shan, Lican; Mazelle, Christian; Meziane, Karim; Romanelli, Norberto; Ge, Yasong; Du, Aimin; Lu, Quanming; Zhang, Tielong
2017-04-01
The location of ULF quasi-monochromatic wave onsets upstream of Venus bow shock is explored using VEX magnetic field data. We report the existence of a spatial foreshock boundary from which ULF waves are present. It is found that the ULF boundary is sensitive to the interplanetary magnetic field (IMF) direction and appears well defined for a cone-angle larger than 30 degrees. In the Venusian foreshock, the slope of the boundary increases with the cone-angle and for a nominal direction of the IMF, it makes an inclination of 70 degrees with the Sun-Venus direction. Moreover, we have found that the velocity of an ion traveling along the ULF boundary presents a qualitative agreement with the hypothesis of a quasi-adiabatic reflection of a portion of the solar wind at the bow shock. For a nominal IMF direction, the ions associated with the boundary have enough momentum to overcome the solar wind convection. These elements strongly suggest that backstreaming ions upstream of Venus bow shock provide the main energy source of the ULF foreshock waves.
Forgács, Péter; Romańczukiewicz, Tomasz
2013-01-01
It is shown that in a large class of systems plane waves can act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode having a larger wave number, in which case excess momentum is created behind the scatterer. Such a tractor beam or negative radiation pressure effect arises naturally in systems where the coupling between the scattering channels is due to Aharonov-Bohm (AB) gauge potentials. It is demonstrated that this effect is also present if the AB potential is an induced, ("artificial") gauge potential such as the one found in J. March-Russell, J. Preskill, F. Wilczek, Phys. Rev. Lett. 58 2567 (1992).
Directory of Open Access Journals (Sweden)
Jong-In Lee
2014-01-01
Full Text Available Fringing reefs play an important role in protecting the coastal area by inducing wave breaking and wave energy dissipation. However, modeling of wave transformation and energy dissipation on this topography is still difficult due to the unique structure. In the present study, two-dimensional laboratory experiments were conducted to investigate the cross-shore variations of wave transformation, setup, and breaking phenomena over an idealized fringing reef with the 1/40 reef slope and to verify the Boussinesq model under monochromatic wave conditions. One-layer and two-layer model configurations of the Boussinesq model were used to figure out the model capability. Both models predicted well (r2>0.8 the cross-shore variation of the wave heights, crests, troughs, and setups when the nonlinearity is not too high (A0/h0<0.07 in this study. However, as the wave nonlinearity and steepness increase, the one-layer model showed problems in prediction and stability due to the error on the vertical profile of fluid velocity. The results in this study revealed that one-layer model is not suitable in the highly nonlinear wave condition over a fringing reef bathymetry. This data set can contribute to the numerical model verification.
Experimental study of blockage of monochromatic waves by counter currents
Suastika, I.K.
1999-01-01
Blockage of waves by a current can occur if waves are propagating on a spatially varying opposing current in which the velocity is increasing in the wave propagation direction. The ongoing waves become shorter and steeper while they are propagating against the current. Blocking occurs at the
Singularities from colliding plane gravitational waves
Tipler, Frank J.
1980-12-01
A simple geometrical argument is given which shows that a collision between two plane gravitational waves must result in singularities. The argument suggests that these singularities are a peculiar feature of plane waves, because singularities are also a consequence of a collision between self-gravitating plane waves of other fields with arbitrarily small energy density.
Singularities from colliding plane gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Tipler, F.J.
1980-12-15
A simple geometrical argument is given which shows that a collision between two plane gravitational waves must result in singularities. The argument suggests that these singularities are a peculiar feature of plane waves, because singularities are also a consequence of a collision between self-gravitating plane waves of other fields with arbitrarily small energy density.
Homogeneity and plane-wave limits
Figueroa-O'Farrill, J M; Philip, S; Farrill, Jos\\'e Figueroa-O'; Meessen, Patrick; Philip, Simon
2005-01-01
We explore the plane-wave limit of homogeneous spacetimes. For plane-wave limits along homogeneous geodesics the limit is known to be homogeneous and we exhibit the limiting metric in terms of Lie algebraic data. This simplifies many calculations and we illustrate this with several examples. We also investigate the behaviour of (reductive) homogeneous structures under the plane-wave limit.
Parametric decay of a parallel propagating monochromatic whistler wave: Particle-in-cell simulations
Ke, Yangguang; Gao, Xinliang; Lu, Quanming; Wang, Shui
2017-01-01
In this paper, by using one-dimensional (1-D) particle-in-cell simulations, we investigate the parametric decay of a parallel propagating monochromatic whistler wave with various wave frequencies and amplitudes. The pump whistler wave can decay into a backscattered daughter whistler wave and an ion acoustic wave, and the decay instability grows more rapidly with the increase of the frequency or amplitude. When the frequency or amplitude is sufficiently large, a multiple decay process may occur, where the daughter whistler wave undergoes a secondary decay into an ion acoustic wave and a forward propagating whistler wave. We also find that during the parametric decay a considerable part of protons can be accelerated along the background magnetic field by the enhanced ion acoustic wave through the Landau resonance. The implication of the parametric decay to the evolution of whistler waves in Earth's magnetosphere is also discussed in the paper.
Wave-flume experiments of soft-rock cliff erosion under monochromatic waves
Regard, Vincent; Astruc, Dominique; Caplain, Bastien
2017-04-01
We investigate how cliffs erode under wave attack. Rocky coast erosion works through cycles, each one corresponding to three successive phases: (i) notch creation at cliff toe by mechanical action of waves, (ii) cliff fracturation leading to collapse, and (iii) evacuation of scree aprons by waves and currents. We performed experiments in a 5m x 14cm x 25cm wave flume (15 cm water depth) to investigate how waves are eroding a rocky coast. The cliff is made of wet sand and models a relatively soft rock. We used 3 different grain size (D50 = 0.28-0.41-0.48 mm), changing the cliff rheology. Waves are monochromatic; their height and period differ for the various experiments. Actual wave parameters are estimated by capacitive probes located offshore. The experiments are monitored by two video cameras both on the side and above the flume. Pictures are taken at a rate of 1Hz during the first 4h and then the rate is decreased to 0.1Hz till the end of experiment (about 1 day). The monitoring ensure a confident characterization of experiments in terms of waves (surf similarity parameter ξ and the incident wave energy flux F) and in terms of sediment (Dean number Ω and Shields number θb at breakers). Experiments begin by an initial phase of quick cliff retreat. Then the system evolves with slower cliff retreat. We focus on bottom morphology which we characterize in function of wave forcing (ξ, F). We show that the bottom morphology mainly depends on ξ. For our reference sediment (Dm = 0.41 mm), we observed: (i) surging breakers on a steep terrace (type T1) for ξ > 0.65; (ii)collapsing breakers on a bared profile attached to the inner platform (type T2) for 0.55< ξ <0.6; (iii) spilling breakers on gentle terrace (type T3) for F < 1.3 W/m and 0.55< ξ <0.6. Another bottom morphology, type T4, displays two sub-systems, an outer system with a double-bar profile where breaking waves are plunging, and an inner system with a T1, T2 or T3 profile. Some of these bottom
Excitation of monochromatic and stable electron acoustic wave by two counter-propagating laser beams
Xiao, C. Z.; Liu, Z. J.; Zheng, C. Y.; He, X. T.
2017-07-01
The undamped electron acoustic wave is a newly-observed nonlinear electrostatic plasma wave and has potential applications in ion acceleration, laser amplification and diagnostics due to its unique frequency range. We propose to make the first attempt to excite a monochromatic and stable electron acoustic wave (EAW) by two counter-propagating laser beams. The matching conditions relevant to laser frequencies, plasma density, and electron thermal velocity are derived and the harmonic effects of the EAW are excluded. Single-beam instabilities, including stimulated Raman scattering and stimulated Brillouin scattering, on the excitation process are quantified by an interaction quantity, η =γ {τ }B, where γ is the growth rate of each instability and {τ }B is the characteristic time of the undamped EAW. The smaller the interaction quantity, the more successfully the monochromatic and stable EAW can be excited. Using one-dimensional Vlasov-Maxwell simulations, we excite EAW wave trains which are amplitude tunable, have a duration of thousands of laser periods, and are monochromatic and stable, by carefully controlling the parameters under the above conditions.
The plain truth about forming a plane wave of neutrons
Energy Technology Data Exchange (ETDEWEB)
Wagh, Apoorva G., E-mail: nintsspd@barc.gov.i [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Abbas, Sohrab [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Treimer, Wolfgang [Helmholtz Zentrum Berlin, Glienicker Str. 100, D-14109 Berlin (Germany)
2011-04-01
We have attained the first sub-arcsecond collimation of a monochromatic neutron beam by diffracting neutrons from a Bragg prism, viz. a single crystal prism operating in the vicinity of Bragg incidence. Analytical as well numerical computations based on the dynamical diffraction theory, led to the optimised collimator configuration of a silicon {l_brace}1 1 1{r_brace} Bragg prism for 5.26 A neutrons. We fabricated a Bragg prism to these specifications, tested and operated it at the double diffractometer setup in Helmholtz Zentrum Berlin to produce a 0.58 arcsec wide monochromatic neutron beam. With a similarly optimised Bragg prism analyser of opposite asymmetry, we recorded a 0.62 arcsec wide virgin rocking curve for this ultra-parallel beam. With this nearly plane-wave neutron beam, we have recorded the first ever USANS spectrum in Q{approx}10{sup -6} A{sup -1} range with a hydroxyapatite casein protein sample and demonstrated the instrument capability to characterise agglomerates up to 150 {mu}m in size. The super-collimated monochromatic beam has also enabled us to record the first neutron diffraction pattern from a macroscopic grating of 200 {mu}m period. The transverse coherence length of 175 {mu}m (FWHM) of the ultra-parallel beam derived from the analysis of this pattern, is the greatest achieved to date for A wavelength neutrons.
Statistical analysis of monochromatic whistler waves near the Moon detected by Kaguya
Directory of Open Access Journals (Sweden)
Y. Katoh
2011-05-01
Full Text Available Observations are presented of monochromatic whistler waves near the Moon detected by the Lunar Magnetometer (LMAG on board Kaguya. The waves were observed as narrowband magnetic fluctuations with frequencies close to 1 Hz, and were mostly left-hand polarized in the spacecraft frame. We performed a statistical analysis of the waves to identify the distributions of their intensity and occurrence. The results indicate that the waves were generated by the solar wind interaction with lunar crustal magnetic anomalies. The conditions for observation of the waves strongly depend on the solar zenith angle (SZA, and a high occurrence rate is recognized in the region of SZA between 40° to 90° with remarkable north-south and dawn-dusk asymmetries. We suggest that ion beams reflected by the lunar magnetic anomalies are a possible source of the waves.
Causal inheritence in plane wave quotients
Energy Technology Data Exchange (ETDEWEB)
Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.
2003-11-24
We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality.
Horizons and plane waves: A review
Hubeny, V E; Hubeny, Veronika E.; Rangamani, Mukund
2003-01-01
We review the attempts to construct black hole/string solutions in asymptotically plane wave spacetimes. First, we demonstrate that geometries admitting a covariantly constant null Killing vector cannot admit event horizons, which implies that pp-waves can't describe black holes. However, relaxing the symmetry requirements allows us to generate solutions which do possess regular event horizons while retaining the requisite asymptotic properties. In particular, we present two solution generating techniques and use them to construct asymptotically plane wave black string/brane geometries.
Exact plane gravitational waves and electromagnetic fields
Enrico MontanariUniversity of Ferrara and INFN sezione di Ferrara, Italy; Mirco Calura(University of Ferrara and INFN sezione di Ferrara, Italy)
2000-01-01
The behaviour of a "test" electromagnetic field in the background of an exact gravitational plane wave is investigated in the framework of Einstein's general relativity. We have expressed the general solution to the de Rham equations as a Fourier-like integral. In the general case we have reduced the problem to a set of ordinary differential equations and have explicitly written the solution in the case of linear polarization of the gravitational wave. We have expressed our ...
Bogatov, A. P.; Drakin, A. E.; D'yachkov, N. V.; Gushchik, T. I.
2016-08-01
Expressions for the amplitudes of amplified spontaneous emission waves in a diode amplifier near the frequency ω0 of a 'strong' input monochromatic wave have been derived in terms of a random function of a stationary Gaussian process. We have found expressions for the spectral density of the amplitudes and shown that, on the red side of the spectrum with respect to frequency ω0, spontaneous emission waves obtain additional nonlinear gain, induced by the strong wave, whereas on the blue side of the spectrum an additional loss is induced. Such behaviour of the amplitudes of amplified waves agrees with previous results.
Plane-wave scattering from half-wave dipole arrays
DEFF Research Database (Denmark)
Jensen, Niels E.
1970-01-01
A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays.......A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays....
A Michelson Interferometer in the Field of a Plane Gravitational Wave
Poplawski, N J
2006-01-01
In this paper we treat the problem of a Michelson interferometer in the field of a weak, monochromatic, plane gravitational wave in the framework of the general theory of relativity. The arms of the interferometer are regarded as world lines, whose motion is determined by the equations of geodesics in the Hamilton-Jacobi formalism. We find that interference appears in the second approximation. Moreover, the measurement of the light beam delay between both arms can be used for determining the wavelength of such a wave.
Relativistic two-boson system in presence of electromagnetic plane waves
Droz-Vincent, Philippe
2015-01-01
The relativistic two-body problem is considered for spinless particles subject to an external macroscopic electromagnetic field. When this field is made of the monochromatic superposition of two conter-propagating plane waves (and provided the mutual interaction between particles is known), it is possible to write down explicitly a pair of coupled wave equations (corresponding to a pair of mass-shell constraints) which takes into account also the field contribution. These equations are manifestly covariant; constants of the motion are exhibited, so one ends up with a reduced problem concerning five degrees of freedom.
Exact plane gravitational waves and electromagnetic fields
Montanari, E; Montanari, Enrico; Calura, Mirco
2000-01-01
The behaviour of a "test" electromagnetic field in the background of an exactgravitational plane wave is investigated in the framework of Einstein's generalrelativity. We have expressed the general solution to the de Rham equations asa Fourier-like integral. In the general case we have reduced the problem to aset of ordinary differential equations and have explicitly written the solutionin the case of linear polarization of the gravitational wave. We have expressedour results by means of Fermi Normal Coordinates (FNC), which define the properreference frame of the laboratory. Moreover we have provided some "gedankenexperiments", showing that an external gravitational wave induces measurableeffects of non tidal nature via electromagnetic interaction. Consequently it isnot possible to eliminate gravitational effects on electromagnetic field, evenin an arbitrarily small spatial region around an observer freely falling in thefield of a gravitational wave. This is opposite to the case of mechanicalinteraction invo...
Optics in a nonlinear gravitational plane wave
Harte, Abraham I.
2015-09-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here in general relativity, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. At least for freely falling sources and observers, it is shown that the commonly-used predictions of linear perturbation theory can be generically overshadowed by nonlinear effects; even for very weak gravitational waves, higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected when considering observations of sufficiently distant sources. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
The memory effect for plane gravitational waves
Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.
2017-09-01
We give an account of the gravitational memory effect in the presence of the exact plane wave solution of Einstein's vacuum equations. This allows an elementary but exact description of the soft gravitons and how their presence may be detected by observing the motion of freely falling particles. The theorem of Bondi and Pirani on caustics (for which we present a new proof) implies that the asymptotic relative velocity is constant but not zero, in contradiction with the permanent displacement claimed by Zel'dovich and Polnarev. A non-vanishing asymptotic relative velocity might be used to detect gravitational waves through the ;velocity memory effect;, considered by Braginsky, Thorne, Grishchuk, and Polnarev.
Free string evolution across plane wave singularities
Craps, Ben; Evnin, Oleg
2009-01-01
In these proceedings, we summarize our studies of free string propagation in (near-)singular scale-invariant plane wave geometries. We analyze the singular limit of the evolution for the center-of-mass motion and all excited string modes. The requirement that the entire excitation energy of the string should be finite excludes consistent propagation across the singularity, in case no dimensionful scales are introduced at the singular locus (in an otherwise scale-invariant space-time).
Generalized plane gravitational waves of non-symmetric unified field theories in plane symmetry
Directory of Open Access Journals (Sweden)
Sanjiv R. Bhoyar
2012-12-01
Full Text Available In this paper we investigated the plane wave solutions of both the weak and strong non-symmetric unified field equations of Einstein and Bonner in a generalized plane symmetric space-time in the sense of Taub [Ann. Math. 53, 472 (1951] for plane gravitational waves. We show that the plane wave solutions of Einstein and Bonner field equations exist in plane symmetry.
Blackfolds, Plane Waves and Minimal Surfaces
Armas, Jay
2015-01-01
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid...
Blackfolds, plane waves and minimal surfaces
Armas, Jay; Blau, Matthias
2015-07-01
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.
Colliding Plane Waves in String Theory
Chen, B; Furuta, K; Lin, F L; Chen, Bin; Chu, Chong-Sun; Furuta, Ko; Lin, Feng-Li
2004-01-01
We construct colliding plane wave solutions in higher dimensional gravity theory with dilaton and higher form flux, which appears naturally in the low energy theory of string theory. Especially, the role of the junction condition in constructing the solutions is emphasized. Our results not only include the previously known CPW solutions, but also provide a wide class of new solutions that is not known in the literature before. We find that late time curvature singularity is always developed for the solutions we obtained in this paper. This supports the generalized version of Tipler's theorem in higher dimensional supergravity.
Blackfolds, plane waves and minimal surfaces
Armas, Jay; Blau, Matthias
2015-01-01
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and comp...
On General Plane Fronted Waves. Geodesics
Candela, A M; Sánchez, M; Sanchez, Miguel
2003-01-01
A general class of Lorentzian metrics, $M_0 x R^2$, $ds^2 = + 2 du dv + H(x,u) du^2$, with $(M_0, $ any Riemannian manifold, is introduced in order to generalize classical exact plane fronted waves. Here, we start a systematic study of their main geodesic properties: geodesic completeness, geodesic connectedness and multiplicity, causal character of connecting geodesics. These results are independent of the possibility of a full integration of geodesic equations. Variational and geometrical techniques are applied systematically. In particular, we prove that the asymptotic behavior of $H(x,u)$ with $x$ at infinity determines many properties of geodesics. Essentially, a subquadratic growth of $H$ ensures geodesic completeness and connectedness, while the critical situation appears when $H(x,u)$ behaves in some direction as $|x|^2$, as in the classical model of exact gravitational waves
On the plane-wave cubic vertex
Lucietti, J; Sinha, A K; Lucietti, James; Schäfer-Nameki, Sakura; Sinha, Aninda
2004-01-01
The exact bosonic Neumann matrices of the cubic vertex in plane-wave light-cone string field theory are derived using the contour integration techniques developed in our earlier paper. This simplifies the original derivation of the vertex. In particular, the Neumann matrices are written in terms of \\mu-deformed Gamma-functions, thus casting them into a form that elegantly generalizes the well-known flat-space solution. The asymptotics of the \\mu-deformed Gamma-functions allow one to determine the large-\\mu behaviour of the Neumann matrices including exponential corrections. We provide an explicit expression for the first exponential correction and make a conjecture for the subsequent exponential correction terms.
The plane wave spectrum representation of electromagnetic fields
Clemmow, P C
1966-01-01
The Plane Wave Spectrum Representation of Electromagnetic Fields presents the theory of the electromagnetic field with emphasis to the plane wave. This book explains how fundamental electromagnetic fields can be represented by the superstition of plane waves traveling in different directions. Organized into two parts encompassing eight chapters, this book starts with an overview of the methods whereby plane wave spectrum representation can be used in attacking different characteristic problems belonging to the theories of radiation, diffraction, and propagation. This book then discusses the co
Sahu, P. K.
2017-08-01
The propagation of a cylindrical shock wave in a rotational axisymmetric non-ideal dusty gas under the action of monochromatic radiation with increasing energy, which has variable azimuthal and axial components of fluid velocity, is investigated. The dusty gas is assumed to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. Similarity solutions are obtained as well as the effects of the variation of the radiation parameters, the parameter of non-idealness of the gas, the mass concentration of solid particles in the mixture, the ratio of the density of solid particles to the initial density of the gas, and the piston velocity index are worked out in detail. The total energy of the shock wave is varying and increases with time. It is observed that the radiation parameter and the piston velocity index have opposite behaviour on the flow variables as well as the shock strength.
Plane-wave least-squares reverse-time migration
Dai, Wei
2013-06-03
A plane-wave least-squares reverse-time migration (LSRTM) is formulated with a new parameterization, where the migration image of each shot gather is updated separately and an ensemble of prestack images is produced along with common image gathers. The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase-shift encoding is applied to hundreds of shot gathers to produce dozens of plane waves. Unlike phase-shift encoding with random time shifts applied to each shot gather, plane-wave encoding can be effectively applied to data with a marine streamer geometry. (3) Plane-wave prestack LSRTM can provide higher-quality images than standard reverse-time migration. Numerical tests on the Marmousi2 model and a marine field data set are performed to illustrate the benefits of plane-wave LSRTM. Empirical results show that LSRTM in the plane-wave domain, compared to standard reversetime migration, produces images efficiently with fewer artifacts and better spatial resolution. Moreover, the prestack image ensemble accommodates more unknowns to makes it more robust than conventional least-squares migration in the presence of migration velocity errors. © 2013 Society of Exploration Geophysicists.
Plane waves in a thermally conducting viscous liquid
Indian Academy of Sciences (India)
Baljeet Singh
2004-02-01
The aim of this paper is to investigate plane waves in a thermally conducting viscous liquid half-space with thermal relaxation times. There exist three basic waves, namely; thermal wave, longitudinal wave and transverse wave in a thermally conducting viscous liquid half-space. Reﬂection of plane waves from the free surface of a thermally conducting viscous liquid half-space is studied. The results are obtained in terms of amplitude ratios and are compared with those without viscosity and thermal disturbances.
Loads and responses for planing craft in waves
2004-01-01
Experimental and numerical analysis of loads and responses for planing craft in waves is considered. Extensive experiments have been performed on a planing craft, in full-scale as well as in model scale. The test set-ups and significant results are reviewed. The required resolution in experiments on planing craft in waves, concerning sampling frequencies, filtering and pressure transducer areas, is investigated. The aspects of peak identification in transient signals, fitting of analytical cu...
3D plane-wave least-squares Kirchhoff migration
Wang, Xin
2014-08-05
A three dimensional least-squares Kirchhoff migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images and the computational efficiency. Due to the limitation of current 3D marine acquisition geometries, a cylindrical-wave encoding is adopted for the narrow azimuth streamer data. To account for the mispositioning of reflectors due to errors in the velocity model, a regularized LSM is devised so that each plane-wave or cylindrical-wave gather gives rise to an individual migration image, and a regularization term is included to encourage the similarities between the migration images of similar encoding schemes. Both synthetic and field results show that: 1) plane-wave or cylindrical-wave encoding LSM can achieve both computational and IO saving, compared to shot-domain LSM, however, plane-wave LSM is still about 5 times more expensive than plane-wave migration; 2) the regularized LSM is more robust compared to LSM with one reflectivity model common for all the plane-wave or cylindrical-wave gathers.
Plane Waves in a Transparent Isotropic Chiral Medium
Fisanov, V. V.
2015-04-01
A homogeneous isotropic transparent chiral medium supports two normal plane waves with left and right circular polarization and differently valued positive wave numbers. The presence or absence of forward and backward Beltrami waves and their helicity are regulated by the signs of the permittivity and permeability and the strength of the chirality. The ray refractive index is a universal parameter whose sign differentiates the forward and backward waves.
Regularized plane-wave least-squares Kirchhoff migration
Wang, Xin
2013-09-22
A Kirchhoff least-squares migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images. A regularization term is included that accounts for mispositioning of reflectors due to errors in the velocity model. Both synthetic and field results show that: 1) LSM with a reflectivity model common for all the plane-wave gathers provides the best image when the migration velocity model is accurate, but it is more sensitive to the velocity errors, 2) the regularized plane-wave LSM is more robust in the presence of velocity errors, and 3) LSM achieves both computational and IO saving by plane-wave encoding compared to shot-domain LSM for the models tested.
Solitary plane waves in an isotropic hexagonal lattice
DEFF Research Database (Denmark)
Zolotaryuk, Yaroslav; Savin, A.V.; Christiansen, Peter Leth
1998-01-01
Solitary plane-wave solutions in a two-dimensional hexagonal lattice which can propagate in different directions on the plane are found by using the pseudospectral method. The main point of our studies is that the lattice model is isotropic and we show that the sound velocity is the same for diff...
Time reversal of continuous-wave, monochromatic signals in elastic media
Energy Technology Data Exchange (ETDEWEB)
Anderson, Brian E [Los Alamos National Laboratory; Guyer, Robert A [Los Alamos National Laboratory; Ulrich, Timothy J [Los Alamos National Laboratory; Johnson, Paul A [Los Alamos National Laboratory
2009-01-01
Experimental observations of spatial focusing of continuous-wave, steady-state elastic waves in a reverberant elastic cavity using time reversal are reported here. Spatially localized focusing is achieved when multiple channels are employed, while a single channel does not yield such focusing. The amplitude of the energy at the focal location increases as the square of the number of channels used, while the amplitude elsewhere in the medium increases proportionally with the number of channels used. The observation is important in the context of imaging in solid laboratory samples as well as problems involving continuous-wave signals in Earth.
Kuzichev, Ilya; Shklyar, David
2016-04-01
One of the most challenging problems of the radiation belt studies is the problem of particles energization. Being related to the process of particle precipitation and posing a threat to scientific instruments on satellites, the problem of highly energetic particles in the radiation belts turns out to be very important. A lot of progress has been made in this field, but still some aspects of the energization process remain open. The main mechanism of particle energization in the radiation belts is the resonant interaction with different waves, mainly, in whistler frequency range. The problem of special interest is the resonant wave-particle interaction of the electrons of relativistic energies. Relativistic resonance condition provides some important features such as the so-called relativistic turning acceleration discovered by Omura et al. [1, 2]. This process appears to be a very efficient mechanism of acceleration in the case of interaction with the whistler-mode waves propagating along geomagnetic field lines. But some whistler-mode waves propagate obliquely to the magnetic field lines, and the efficiency of relativistic turning acceleration in this case is to be studied. In this report, we present the Hamiltonian theory of the resonant interaction of relativistic electrons with oblique monochromatic whistler-mode waves. We have shown that the presence of turning point requires a special treatment when one aims to derive the resonant Hamiltonian, and we have obtained two different resonant Hamiltonians: one to be applied far enough from the turning point, while another is valid in the vicinity of the turning point. We have performed numerical simulation of relativistic electron interaction with whistler-mode waves generated in the ionosphere by a monochromatic source. It could be, for example, a low-frequency transmitter. The wave-field distribution along unperturbed particle trajectory is calculated by means of geometrical optics. We show that the obliquity of
Exact Nonlinear Internal Equatorial Waves in the f-plane
Hsu, Hung-Chu
2016-07-01
We present an explicit exact solution of the nonlinear governing equations for internal geophysical water waves propagating westward above the thermocline in the f-plane approximation near the equator. Moreover, the mass transport velocity induced by this internal equatorial wave is eastward and a westward current occurs in the transition zone between the great depth where the water is still and the thermocline.
An Apparatus for Constructing an Electromagnetic Plane Wave Model
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
An Apparatus for Constructing an Electromagnetic Plane Wave Model
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
Aperture domain model image reconstruction (ADMIRE) with plane wave synthesis
Dei, Kazuyuki; Tierney, Jaime; Byram, Brett
2017-03-01
In our previous studies, we demonstrated that our aperture domain model-based clutter suppression algorithm improved image quality of in vivo B-mode data obtained from focused transmit beam sequences. Our approach suppresses off-axis clutter and reverberation and tackles limitations of related algorithms because it preserves RF channel signals and speckle statistics. We call the algorithm aperture domain model image reconstruction (ADMIRE). We previously focused on reverberation suppression, but ADMIRE is also effective at suppressing off-axis clutter. We are interested in how ADMIRE performs on plane wave sequences and the impact of AD- MIRE applied before and after synthetic beamforming of steered plane wave sequences. We employed simulated phantoms using Field II and tissue-mimicking phantoms to evaluate ADMIRE applied to plane wave sequencing. We generated images acquired from plane waves with and without synthetic aperture synthesis and measured contrast and contrast-to-noise ratio (CNR). For simulated cyst images formed from single plane waves, the contrast for delay-and-sum (DAS) and ADMIRE are 15.64 dB and 28.34 dB, respectively, while the CNR are 1.76 dB and 3.90 dB, respectively. Based on these findings, ADMIRE improves plane wave image quality. We also applied ADMIRE to resolution phantoms having a point target at 3 cm depth on-axis, simulating the point spread functions from data obtained from 1 and 75 steered plane waves, along with linear scan at focus of 3 and 4 cm depth. We then examined the outcome of applying ADMIRE before and after synthetic aperture processing. Finally, we applied this to an in vivo carotid artery.
In-plane propagation of electromagnetic waves in planar metamaterials
Yi, Changhyun; Rhee, Joo Yull; Kim, Ki Won; Lee, YoungPak
2016-08-01
Some planar metamaterials (MMs) or subwavelength antenna/hole arrays have a considerable amount of in-plane propagation when certain conditions are met. In this paper, the in-plane propagation caused by a wave incident on a MM absorber was studied by using a finite-difference time-domain (FDTD) technique. By using a FDTD simulation, we were able to observe a nonnegligible amount of in-plane propagation after the incident wave had arrived at the surface of the planar structure and gradually decreased propagation of the electromagnetic wave in the planar direction gradually decreased. We performed the FDTD simulation carefully to reproduce valid results and to verify the existence of in-plane propagation. For verification of the in-plane propagation explicitly, Poynting vectors were calculated and visualized inside the dielectric substrate between the metallic back-plate and an array of square patches. We also investigated several different structures with resonators of various shapes and found that the amount of facing edges of adjacent metallic patches critically determined the strength of the in-plane propagation. Through this study, we could establish the basis for the existence of in-plane propagation in MMs.
Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers
Guo, Bowen
2017-06-01
Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, a WEMVA method using plane-wave CIGs is presented. Plane-wave CIGs reduce the computational cost and memory storage because they are directly calculated from prestack plane-wave migration, and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic datasets and a field dataset validate the efficiency and effectiveness of this method.
Strings On Plane-waves And Spin Chains On Orbifolds
Sadri, D
2005-01-01
This thesis covers a number of topics in string theory focusing on various aspects of the AdS/CFT duality in various guises and regimes. In the first chapter we present a self-contained review of the Plane- wave/super-Yang-Mills duality. This duality is a specification of the usual AdS/CFT correspondence in the “Penrose limit”. In chapter two we study the most general parallelizable pp-wave backgrounds which are non-dilatonic solutions in the NS-NS sector of type IIA and IIB string theories. We demonstrate that parallelizable pp-wave backgrounds are necessarily homogeneous plane-waves, and that a large class of homogeneous plane-waves are parallelizable, stating the necessary conditions. Quantization of string modes, their compactification and behaviour under T- duality are also studied, as are BPS Dp- branes on such backgrounds. In chapter three we consider giant gravitons on the maximally supersymmetric plane-wave background. We deduce the low energy effective light-cone Hamiltonian of ...
AdS plane waves, entanglement and mutual information
Mukherjee, Debangshu
2014-01-01
$AdS$ plane wave backgrounds are dual to CFT excited states with energy momentum density $T_{++}=Q$. Building on previous work on entanglement entropy in these and nonconformal brane plane wave backgrounds, we first describe a phenomenological scaling picture for entanglement in terms of "entangling partons". We then study aspects of holographic mutual information in these backgrounds for two strip shaped subsystems, aligned parallel or orthogonal to the flux. We focus on the wide ($Ql^d\\gg 1$) and narrow ($Ql^d\\ll 1$) strip regimes. In the wide strip regime, mutual information exhibits growth with the individual strip sizes and a disentangling transition as the separation between the strips increases, whose behaviour is distinct from the ground and thermal states. In the narrow strip case, our calculations have parallels with "entanglement thermodynamics" for these $AdS$ plane wave deformations. We also discuss some numerical analysis.
Plane-Wave Imaging Challenge in Medical Ultrasound
DEFF Research Database (Denmark)
Liebgott, Herve; Molares, Alfonso Rodriguez; Cervenansky, F.
2016-01-01
for this effect, but comparing the different methods is difficult due to the lack of appropriate tools. PICMUS, the Plane-Wave Imaging Challenge in Medical Ultrasound aims to provide these tools. This paper describes the PICMUS challenge, its motivation, implementation, and metrics.......Plane-Wave imaging enables very high frame rates, up to several thousand frames per second. Unfortunately the lack of transmit focusing leads to reduced image quality, both in terms of resolution and contrast. Recently, numerous beamforming techniques have been proposed to compensate...
Thermally-induced vacuum instability in a single plane wave
King, B; Di Piazza, A
2012-01-01
Ever since Schwinger published his influential paper [J. Schwinger, Phys. Rev. \\textbf{82}, 664 (1951)], it has been unanimously accepted that the vacuum is stable in the presence of an electromagnetic plane wave. However, we advance an analysis that indicates this statement is not rigorously valid in a real situation, where thermal effects are present. We show that the thermal vacuum, in the presence of a single plane-wave field, even in the limit of zero frequency (a constant crossed field), decays into electron-positron pairs. Interestingly, the pair-production rate is found to depend nonperturbatively on both the amplitude of the constant crossed field and on the temperature.
Polarization operator for plane-wave background fields
Meuren, S; Di Piazza, A
2013-01-01
We derive an alternative representation of the leading-order contribution to the polarization operator in strong-field QED with a plane-wave electromagnetic background field, which is manifestly symmetric with respect to the external photon momenta. Our derivation is based on a direct evaluation of the corresponding Feynman diagram, using the Volkov-representation of the dressed fermion propagator. Furthermore, the validity of the Ward-Takahashi identity is shown for general loop diagrams in an external plane-wave background field.
Metaphysics of colliding self-gravitating plane waves
Energy Technology Data Exchange (ETDEWEB)
Matzner, R.A.; Tipler, F.J.
1984-04-15
We discuss certain global features of colliding plane-wave solutions to Einstein's equations. In particular, we show that the apparently local curvature singularities both in the Khan-Penrose solution and in the Bell-Szekeres solution are actually global. These global singularities are associated with the breakdown of nondegenerate planar symmetry in the characteristic initial data sets.
Metaphysics of colliding self-gravitating plane waves
Matzner, Richard A.; Tipler, Frank J.
1984-04-01
We discuss certain global features of colliding plane-wave solutions to Einstein's equations. In particular, we show that the apparently local curvature singularities both in the Khan-Penrose solution and in the Bell-Szekeres solution are actually global. These global singularities are associated with the breakdown of nondegenerate planar symmetry in the characteristic initial data sets.
Supersymmetry and Branes in M-theory Plane-waves
Kim, N; Kim, Nakwoo; Yee, Jung-Tay
2003-01-01
We study brane embeddings in M-theory plane-waves and their supersymmetry. The relation with branes in AdS backgrounds via the Penrose limit is also explored. Longitudinal planar branes are originated from AdS branes while giant gravitons of AdS spaces become spherical branes which are realized as fuzzy spheres in the massive matrix theory.
Plane-Wave Propagation in Extreme Magnetoelectric (EME) Media
Lindell, I V; Favaro, A
2016-01-01
The extreme magnetoelectric medium (EME medium) is defined in terms of two medium dyadics, $\\alpha$, producing electric polarization by the magnetic field and $\\beta$, producing magnetic polarization by the electric field. Plane-wave propagation of time-harmonic fields of fixed finite frequency in the EME medium is studied. It is shown that (if $\\omega\
Exact near-wall traveling waves of plane Poiseuille flow
Gibson, John; Brand, Evan
2013-11-01
We present several spatially-localized equilibrium and traveling-wave solutions of plane Couette and plane Poiseuille flow. The solutions consist of highly concentrated and spanwise-localized alternating streamwise rolls, centered over low-speed streamwise streaks and flanked on either side by high-speed streaks. For large Reynolds numbers the solutions develop critical layers that are concentrated at isolated points on the critical surface u = c . For several traveling-wave solutions of plane Poiseuille flow, the rolls are concentrated near one wall, producing streaks near the wall and larger reduction of the bulk flow in the core. These solutions form particularly isolated and elemental versions of near-wall coherent structures in shear flows and capture, as precise time-independent solutions of Navier-Stokes, the process by which near-wall rolls exchange momentum between the wall and core regions and thereby increase drag.
Energy Relations for Plane Waves Reflected from Moving Media
DEFF Research Database (Denmark)
Daly, P.; Gruenberg, Harry
1967-01-01
When a plane wave is obliquely incident from vacuum on a semi-infinite moving medium, the energy flow carried by the incident wave, is in general, not carried away by the reflected and transmitted waves. This is only the case when the medium velocity is parallel to its vacuum interface. Otherwise...... there is a net inflow or outflow of electromagnetic energy, which can be accounted for by the change of stored energy in the system, and the work done by the mechanical forces acting on the medium. A detailed energy balance is drawn up for two different media moving normal to their vacuum interfaces: (a...
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Fernanda Gomes de
2010-07-01
The present work is developed in the searching for monochromatic gravitational waves signals in ALLEGRO's data. We have two procedures for data analysis based on the periodogram of Welch, which a method for the detection of monochromatic signals in the middle of noise which basically makes power spectrum estimates using averaged modified periodograms. By using this method it was possible to obtain a power spectrum for the data which reinforce peaks due to monochromatic signals. The two procedures of analysis for the years 1997 and 1999, were focused on monitoring a peak that appears in the spectral density of ALLEGRO's detector, so called 'mystery mode' (near 887 Hz). We look for variations in the frequency of the mystery mode that agree with the variation of the Doppler effect. In the rst analysis we have used by the variation of daily and annual Doppler shift. For the second one, we have only searched annual Doppler shift. We have applied the periodogram of Welch in both tests in the raw data of the detector in the search for a real signal and we found some peaks that can be candidates of gravitational radiation only the second analysis. In order to test the method we used in both analysis a simulated gravitational wave signal modulated by the Doppler effect injected in the data. We detected in both methods the artificial signal of GW simulated. Therefore we have reason to conclude that both methods are efficient in the search for monochromatic signals. (author)
Radiation of Electron in the Field of Plane Light Wave
Energy Technology Data Exchange (ETDEWEB)
Zelinsky, A.; Drebot, I.V.; Grigorev, Yu.N.; Zvonareva, O.D.; /Kharkov, KIPT; Tatchyn, R.; /SLAC
2006-02-24
Results of integration of a Lorentz equation for a relativistic electron moving in the field of running, plane, linear polarized electromagnetic wave are presented in the paper. It is shown that electron velocities in the field of the wave are almost periodic functions of time. For calculations of angular spectrum of electron radiation intensity expansion of the electromagnetic field in a wave zone into generalized Fourier series was used. Expressions for the radiation intensity spectrum are presented in the paper. Derived results are illustrated for electron and laser beam parameters of NSC KIPT X-ray generator NESTOR. It is shown that for low intensity of the interacting electromagnetic wave the results of energy and angular spectrum calculations in the frame of classical electrodynamics completely coincide with calculation results produced using quantum electrodynamics. Simultaneously, derived expressions give possibilities to investigate dependence of energy and angular Compton radiation spectrum on phase of interaction and the interacting wave intensity.
Plane waves and spherical means applied to partial differential equations
John, Fritz
2004-01-01
Elementary and self-contained, this heterogeneous collection of results on partial differential equations employs certain elementary identities for plane and spherical integrals of an arbitrary function, showing how a variety of results on fairly general differential equations follow from those identities. The first chapter deals with the decomposition of arbitrary functions into functions of the type of plane waves. Succeeding chapters introduce the first application of the Radon transformation and examine the solution of the initial value problem for homogeneous hyperbolic equations with con
CMS-Wave Model: Part 5. Full-plane Wave Transformation and Grid Nesting
2012-04-01
are available in previous reports and CHETNs (Lin et al. 2006; Demirbilek et al. 2007). CMS -Wave is part of the Coastal Modeling System ( CMS ...the U.S. Army Corps of Engineers’ (USACE) Surface-water Modeling System (SMS). The CMS -Wave FP option is available in SMS Version 11.1 and higher...ERDC/CHL CHETN-IV-81 April 2012 Approved for public release; distribution is unlimited. CMS -Wave Model: Part 5. Full-plane Wave Transformation
Gravitational scattering of zero-rest-mass plane waves
De Logi, W. K.; Kovacs, S. J., Jr.
1977-01-01
The Feyman-diagram technique is used to calculate the differential cross sections for the scattering of zero-rest-mass plane waves of spin 0, 1, and 2 by linearized Schwarzschild and Kerr geometries in the long-wavelength weak-field limit. It is found that the polarization of right (or left) circularly polarized electromagnetic waves is unaffected by the scattering process (i.e., helicity is conserved) and that the two helicity (polarization) states of the photon are scattered differently by the Kerr geometry. This coupling between the photon helicity and the angular momentum of the scatterer also leads to a partial polarization of unpolarized incident light. For gravitational waves, on the other hand, there is neither helicity conservation nor helicity-dependent scattering; the angular momentum of the scatterer has no polarizing effect on incident unpolarized gravitational waves.
Scattering of Plane Guided Waves Obliquely Incident on Straight Features
Wilcox, P. D.; Velichko, A.; Drinkwater, B. W.; Croxford, A. J.; Todd, M. D.
2011-06-01
A semi-analytical finite element model is developed to study the scattering of plane guided waves obliquely incident on a straight geometric feature. The model is first used to investigate the reflection of the S0 mode from a free edge and the results are compared to those of bulk waves reflecting from a free boundary. The model is then used to predict the transmission of the S0 mode past an adhesively-bonded stiffener. The results obtained are in excellent agreement with experimental measurements.
Scattering of a CW plane wave by a pulse
Trivett, D. H.; Rogers, P. H.
1982-05-01
A procedure similar to the CW crossed-beam calculation of Ingard and Pridmore-Brown (1956) is used to calculate the far field scattered sound pressure of a pulse interacting with a plane wave. The scattered sound is found to be at neither the sum nor the difference frequency. It is suggested that this type of interaction is ideal for investigating the scattering of sound by sound, and a numerical solution is used to discuss the general features of the nearfield waveform.
Two-Flux Colliding Plane Waves in String Theory
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
We construct the two-flux colliding plane wave solutions in higher-dimensional gravity theory with dilaton,and two complementary fluxes. Two kinds of solutions have been obtained: Bell-Szekeres (BS) type and homogeneous type. After imposing the junction condition, we find that only the BS type solution is physically well-defined. Furthermore, we show that the future curvature singularity is always developed for our solutions.
The worldline approach to helicity flip in plane waves
Ilderton, Anton
2016-01-01
We apply worldline methods to the study of vacuum polarisation effects in plane wave backgrounds, in both scalar and spinor QED. We calculate helicity-flip probabilities to one loop order and treated exactly in the background field, and provide a toolkit of methods for use in investigations of higher-order processes. We also discuss the connections between the worldline, S-matrix, and lightfront approaches to vacuum polarisation effects.
Plane-wave Least-squares Reverse Time Migration
Dai, Wei
2012-11-04
Least-squares reverse time migration is formulated with a new parameterization, where the migration image of each shot is updated separately and a prestack image is produced with common image gathers. The advantage is that it can offer stable convergence for least-squares migration even when the migration velocity is not completely accurate. To significantly reduce computation cost, linear phase shift encoding is applied to hundreds of shot gathers to produce dozens of planes waves. A regularization term which penalizes the image difference between nearby angles are used to keep the prestack image consistent through all the angles. Numerical tests on a marine dataset is performed to illustrate the advantages of least-squares reverse time migration in the plane-wave domain. Through iterations of least-squares migration, the migration artifacts are reduced and the image resolution is improved. Empirical results suggest that the LSRTM in plane wave domain is an efficient method to improve the image quality and produce common image gathers.
Stolt's f-k migration for plane wave ultrasound imaging.
Garcia, Damien; Le Tarnec, Louis; Muth, Stéphan; Montagnon, Emmanuel; Porée, Jonathan; Cloutier, Guy
2013-09-01
Ultrafast ultrasound is an emerging modality that offers new perspectives and opportunities in medical imaging. Plane wave imaging (PWI) allows one to attain very high frame rates by transmission of planar ultrasound wave-fronts. As a plane wave reaches a given scatterer, the latter becomes a secondary source emitting upward spherical waves and creating a diffraction hyperbola in the received RF signals. To produce an image of the scatterers, all the hyperbolas must be migrated back to their apexes. To perform beamforming of plane wave echo RFs and return high-quality images at high frame rates, we propose a new migration method carried out in the frequency-wavenumber (f-k) domain. The f-k migration for PWI has been adapted from the Stolt migration for seismic imaging. This migration technique is based on the exploding reflector model (ERM), which consists in assuming that all the scatterers explode in concert and become acoustic sources. The classical ERM model, however, is not appropriate for PWI. We showed that the ERM can be made suitable for PWI by a spatial transformation of the hyperbolic traces present in the RF data. In vitro experiments were performed to outline the advantages of PWI with Stolt's f-k migration over the conventional delay-and-sum (DAS) approach. The Stolt's f-k migration was also compared with the Fourier-based method developed by J.-Y. Lu. Our findings show that multi-angle compounded f-k migrated images are of quality similar to those obtained with a stateof- the-art dynamic focusing mode. This remained true even with a very small number of steering angles, thus ensuring a highly competitive frame rate. In addition, the new FFT-based f-k migration provides comparable or better contrast-to-noise ratio and lateral resolution than the Lu's and DAS migration schemes. Matlab codes for the Stolt's f-k migration for PWI are provided.
The decay of plane wave pulses with complex structure in a nonlinear dissipative medium
Gurbatov, S N; Pasmanik, G V; Gurbatov, Sergei N.; Enflo, Bengt O.; Pasmanik, Galina V.
2000-01-01
Nonlinear plane acoustic waves propagating through a fluid are studied using Burgers' equation with finite viscosity. The evolution of a simple N-pulse with regular and random initial amplitude and of pulses with monochromatic and noise carrier is considered. In the latter case the initial pulses are characterized by two length scales. The length scale of the modulation function is much greater than the period or the length scale of the carrier. With increasing time the initial pulses are deformed and shocks appear. The finite viscosity leads to a finite shock width, which does not depend on the fine structure of the initial pulse and is fully determined by the shock position in the zero viscosity limit. The other effect of nonzero viscosity is the shift of the shock position from the position at zero viscosity. This shift, as well as the linear time, at which the nonlinear stage of evolution changes to the linear stage, depends on the fine structure of the initial pulse. It is also shown that the nonlinearit...
Quantum Larmor radiation from a moving charge in an electromagnetic plane wave background
Nakamura, Gen; 10.1142/S0217751X12501424
2012-01-01
We extend our previous work [Phys. Rev. D83 045030 (2011)], which investigated the first-order quantum effect in the Larmor radiation from a moving charge in a spatially homogeneous time-dependent electric field. Specifically, we investigate the quantum Larmor radiation from a moving charge in a monochromatic electromagnetic plane wave background based on the scalar quantum electrodynamics at the lowest order of the perturbation theory. Using the in-in formalism, we derive the theoretical formula of the total radiation energy from a charged particle in the initial states being at rest and being in a relativistic motion. Expanding the theoretical formula in terms of the Planck constant \\hbar, we obtain the first-order quantum effect on the Larmor radiation. The quantum effect generally suppresses the total radiation energy compared with the prediction of the classical Larmor formula, which is a contrast to the previous work. The reason is explained by the fact that the radiation from a moving charge in a monoc...
On the local plane wave methods for in situ measurement of acoustic absorption
Wijnant, Y.H.
2015-01-01
In this paper we address a series of so-called local plane wave methods (LPW) to measure acoustic absorption. As opposed to other methods, these methods do not rely on assumptions of the global sound field, like e.g. a plane wave or diffuse field, but are based on a local plane wave assumption. Ther
Waveguide characteristics of coupled in-plane waves.
Pan, Jie; Lu, Jing; Qiu, Xiaojun
2012-06-01
In-plane waves in a waveguide made from a thin plate are described by a superposition of a set of orthogonal functions that satisfy the edge conditions of the waveguide. Due to the Poisson and shear effects, the displacement components of the in-plane waves along the two in-plane orthogonal coordinates are coupled and this coupling affects the propagation and spatial properties of the waveguide modes. The orthogonal functions and their associated wavenumbers represent the characteristics of the uncoupled modes of the waveguide where the above mentioned couplings are ignored. This study demonstrates that the characteristics of the waveguide modes are determined by the couplings of the uncoupled mode pairs, which become significant when the pairs satisfy the conditions of spatial coincidence. At some frequencies, certain waveguide modes can be determined by a single pair of uncoupled modes. For this case, the analytical solution for the waveguide modes exists and provides both a qualitative and quantitative interpretation of the characteristics of the waveguide mode.
Directory of Open Access Journals (Sweden)
A. A. Lubchich
2005-07-01
Full Text Available Characteristics of small amplitude plane waves within the medium separated by the plane discontinuity into two half spaces are analysed. The approximation of the ideal one-fluid magnetohydrodynamics (MHD is used. The discontinuities with the nonzero mass flux across them are mainly examined. These are fast or slow shock waves and rotational discontinuities. The dispersion equation for MHD waves within each of half space is obtained in the reference frame connected with the discontinuity surface. The solution of this equation permits one to determine the wave vectors versus the parameter c_{p}, which is the phase velocity of surface discontinuity oscillations. This value of c_{p} is common for all MHD waves and determined by an incident wave or by spontaneous oscillations of the discontinuity surface. The main purpose of the study is a detailed analysis of the dispersion equation solution. This analysis let us draw the following conclusions. (I For a given c_{p}, ahead or behind a discontinuity at most, one diverging wave can transform to a surface wave damping when moving away from the discontinuity. The surface wave can be a fast one or, in rare cases, a slow, magnetoacoustic one. The entropy and Alfvén waves always remain in a usual homogeneous mode. (II For certain values of c_{p} and parameters of the discontinuity behind the front of the fast shock wave, there can be four slow magnetoacoustic waves, satisfying the dispersion equation, and none of the fast magnetoacoustic waves. In this case, one of the four slow magnetoacoustic waves is incident on the fast shock wave from the side of a compressed medium. It is shown that its existence does not contradict the conditions of the evolutionarity of MHD shock waves. The four slow magnetoacoustic waves, satisfying the dispersion equation, can also exist from either side of a slow shock wave or rotational discontinuity. (III The
Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming
DEFF Research Database (Denmark)
Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt
2008-01-01
In this paper, the adaptive, minimum variance (MV) beamformer is applied to medical ultrasound imaging. The Significant resolution and contrast gain provided by the adaptive, minimum variance (MV) beamformer, introduces the possibility of plane wave (PW) ultrasound imaging. Data is obtained using...... Field H and a 7 MHz, 128-elements, linear array transducer with lambda/2-spacing. MV is compared to the conventional delay-and-sum (DS) beamformer with Boxcar and Hanning weights. Furthermore, the PW images are compared to the a conventional ultrasound image, obtained from a linear scan sequence...
Plane-Wave Propagation in Electromagnetic PQ Medium
Lindell, Ismo V
2015-01-01
Two basic classes of electromagnetic media, recently defined and labeled as those of P media and Q media, are generalized to define the class of PQ media. Plane wave propagation in the general PQ medium is studied and the quartic dispersion equation is derived in analytic form applying four-dimensional dyadic formalism. The result is verified by considering various special cases of PQ media for which the dispersion equation is known to decompose to two quadratic equations or be identically satisfied (media with no dispersion equation). As a numerical example, the dispersion surface of a PQ medium with non-decomposable dispersion equation is considered.
Plane shock wave structure in a dilute granular gas
Reddy, M. H. Lakshminarayana; Alam, Meheboob
2016-11-01
We analyse the early time evolution of the Riemann problem of planar shock wave structures for a dilute granular gas by solving Navier-Stokes equations numerically. The one-dimensional reduced Navier-Stokes equations for plane shock wave problem are solved numerically using a relaxation-type numerical scheme. The results on the shock structures in granular gases are presented for different Mach numbers and restitution coefficients. Based on our analysis on early time shock dynamics we conclude that the density and temperature profiles are "asymmetric"; the density maximum and the temperature maximum occur within the shock layer; the absolute magnitudes of longitudinal stress and heat flux which are initially zero at both end states attain maxima in a very short time and thereafter decrease with time.
A numerical method for determining the radial wave motion correction in plane wave couplers
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Barrera Figueroa, Salvador; Torras Rosell, Antoni
2016-01-01
solution is an analytical expression that estimates the difference between the ideal plane wave sound field and a more complex lossless sound field created by a non-planar movement of the microphone’s membranes. Alternatively, a correction may be calculated numerically by introducing a full model......Microphones are used for realising the unit of sound pressure level, the pascal (Pa). Electro-acoustic reciprocity is the preferred method for the absolute determination of the sensitivity. This method can be applied in different sound fields: uniform pressure, free field or diffuse field. Pressure...... calibration, carried out in plane wave couplers, is the most extended. Here plane wave propagation is assumed. While this assumption is valid at low and mid frequencies, it fails at higher frequencies because the membrane of the microphones is not moving uniformly, and there are viscous losses. An existing...
Fisanov, V. V.
2017-09-01
Analytical expressions for complex values of the wave number, refractive index, and the characteristic wave impedance of homogeneous electromagnetic plane waves propagating in a linear, homogeneous, isotropic medium with losses and gain are derived. Formulas for determining the type of normal wave as a function of the values of the real and imaginary parts of the permittivity and permeability are obtained, and conditions for the appearance of positive and negative refraction at the interface of two isotropic media are indicated. In the approach applied here, the concept of a negative refractive index is not used.
A physical solution for plane SH waves in anelastic media
Ursin, Bjorn; Carcione, José M.; Gei, Davide
2017-05-01
In a lossy medium with complex frequency-dependent wave speed both rays and plane waves at an interface should satisfy the dispersion relation (that is, the wave equation), the radiation condition (the amplitude should go to zero at infinity) and the horizontal complex slowness should be continuous (Snell's law). It is known that this may lead to a transmitted wave which violates the radiation condition and which also causes problems with the phase of the reflection coefficient. In fact, ray-tracing algorithms and analytical evaluations of the reflection and transmission coefficients in anelastic media may lead to non-physical solutions related to the complex square roots of the vertical slowness and polarizations. The steepest-descent approximation with complex horizontal slowness involves non-physical complex horizontal distances, and in some cases also a non-physical vertical slowness that violates the radiation condition. Similarly, the reflection and transmission coefficients and ray-tracing codes obtained with this approach yields wrong results. In order to tackle this problem, we choose the stationary-phase approximation with real horizontal slowness. This gives real horizontal distances, the radiation condition is always satisfied and the reflection and transmission coefficients are correct. This is shown by comparison to full-wave space-time modelling results by computing the reflection and transmission coefficients and respective phase angles from synthetic seismograms. This numerical evaluation is based on a 2-D wavenumber-frequency Fourier transform. The results indicate that the stationary-phase method with a real horizontal slowness provides the correct physical solution.
Yong, Peng; Huang, Jianping; Li, Zhenchun; Liao, Wenyuan; Qu, Luping; Li, Qingyang; Liu, Peijun
2017-02-01
In finite-difference (FD) method, numerical dispersion is the dominant factor influencing the accuracy of seismic modelling. Various optimized FD schemes for scalar wave modelling have been proposed to reduce grid dispersion, while the optimized time-space domain FD schemes for elastic wave modelling have not been fully investigated yet. In this paper, an optimized FD scheme with Equivalent Staggered Grid (ESG) for elastic modelling has been developed. We start from the constant P- and S-wave speed elastic wave equations and then deduce analytical plane wave solutions in the wavenumber domain with eigenvalue decomposition method. Based on the elastic plane wave solutions, three new time-space domain dispersion relations of ESG elastic modelling are obtained, which are represented by three equations corresponding to P-, S- and converted-wave terms in the elastic equations, respectively. By using these new relations, we can study the dispersion errors of different spatial FD terms independently. The dispersion analysis showed that different spatial FD terms have different errors. It is therefore suggested that different FD coefficients to be used to approximate the three spatial derivative terms. In addition, the relative dispersion error in L2-norm is minimized through optimizing FD coefficients using Newton's method. Synthetic examples have demonstrated that this new optimal FD schemes have superior accuracy for elastic wave modelling compared to Taylor-series expansion and optimized space domain FD schemes.
Plane wave method for elastic wave scattering by a heterogeneous fracture
Energy Technology Data Exchange (ETDEWEB)
Nakagawa, Seiji; Nihei, Kurt T.; Myer, Larry R.
2003-02-21
A plane-wave method for computing the three-dimensional scattering of propagating elastic waves by a planar fracture with heterogeneous fracture compliance distribution is presented. This method is based upon the spatial Fourier transform of the seismic displacement-discontinuity (SDD) boundary conditions (also called linear slip interface conditions), and therefore, called the wave-number-domain SDD method (wd-SDD method). The resulting boundary conditions explicitly show the coupling between plane waves with an incident wave number component (specular component) and scattered waves which do not follow Snell's law (nonspecular components) if the fracture is viewed as a planar boundary. For a spatially periodic fracture compliance distribution, these boundary conditions can be cast into a linear system of equations that can be solved for the amplitudes of individual wave modes and wave numbers. We demonstrate the developed technique for a simulated fracture with a stochastic (correlated) surface compliance distribution. Low- and high-frequency solutions of the method are also compared to the predictions by low-order Born series in the weak and strong scattering limit.
On the types and number of plane waves in hypoelastic materials
Rushchitsky, J. J.
2005-11-01
General principles are formulated for modeling the elastic deformation of materials and analyzing plane waves in nonlinearly elastic materials such as hyperelastic, hypoelastic, and those governed by the general law of elasticity. The results of studying the propagation of plane waves in hypoelastic materials are further outlined. The influence of initial stresses and initial velocities on the types and number of plane waves is studied. Wave effects characteristic of hypoelastic materials are predicted theoretically. One of such effects is blocking of certain types of plane waves by initial stresses
A numerical method for determining the radial wave motion correction in plane wave couplers
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Barrera Figueroa, Salvador; Torras Rosell, Antoni
2016-01-01
solution is an analytical expression that estimates the difference between the ideal plane wave sound field and a more complex lossless sound field created by a non-planar movement of the microphone’s membranes. Alternatively, a correction may be calculated numerically by introducing a full model...
Improved beamforming performance using pulsed plane wave decomposition
DEFF Research Database (Denmark)
Munk, Peter; Jensen, Jørgen Arendt
2000-01-01
A tool for calculating the beamformer setup associated with a specified pulsed acoustic field is presented. The method is named Pulsed Plane Wave Decomposition (PPWD) and is based on the decomposition of a pulsed acoustic field into a set of PPWs at a given depth. Each PPW can be propagated...... to the location of the elements of an array transducer by a time delay. The contribution of each propagated PPW is summed to form one time function for each array element (the BMF matrix). This approach gives the beamformer setup needed to obtain a close approximation to the desired bounded pulsed acoustic field...... without involving any optimization scheme. The approximation arises due to the limited size of the acoustic aperture and the spatial sampling property of the array transducer. Thus, the acoustical field can be designed according to the imaging needs. The method is demonstrated by examples in the 2D space...
Dispersive photonic crystals from the plane wave method
Energy Technology Data Exchange (ETDEWEB)
Guevara-Cabrera, E.; Palomino-Ovando, M.A. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Flores-Desirena, B., E-mail: bflores@fcfm.buap.mx [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Gaspar-Armenta, J.A. [Departamento de Investigación en Física de la Universidad de Sonora Apdo, Post 5-088, Hermosillo Sonora 83190, México (Mexico)
2016-03-01
Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.
Effects of a covering layer in a circular-arc canyon on incident plane SV waves
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
An analytical solution for scattering of incident plane SV waves by a circular-arc canyon with a covering layer was derived by Fourier-Bessel series expansion technique, and the solution was utilized to analyze the effects of the covering layer on incident plane SV waves. It was shown that the covering layer in a canyon, even if it is very thin, amplifies incident plane SV waves tremendously, and the amplification can be two and half times more than that for a simple canyon; the stiffness and thickness of the covering layer also have great effects on incident plane SV waves.
An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders
DEFF Research Database (Denmark)
Larsen, Niels Vesterdal; Breinbjerg, Olav
2004-01-01
Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...
Ciliary beating plane and wave propagation in the bovine oviduct.
Schätz, G; Schneiter, M; Rička, J; Kühni-Boghenbor, K; Tschanz, S A; Doherr, M G; Frenz, M; Stoffel, M H
2013-01-01
The uterine tube is an essential conduit for the gametes and zygote during reproduction. The necessary bidirectional conveyance occurs through peristalsis and ciliary activity, but unlike in respiratory tract, little is known about mucociliary transport in the uterine tube, and the direction of transport and the alignment of oviductal cilia have not been conclusively characterized. This study aimed to determine the uniformity in the axonemal orientation of motile cilia in the bovine uterine tube, to identify the direction of mucociliary transport and to relate the presumptive beating plane and the mucociliary transport direction to the long axis of the uterine tube. The angular spread of oviductal motile cilia was determined by electron microscopy, and by maintaining the accurate alignment of the samples throughout the processing steps, axonemal orientation was determined relative to the long axis of the oviduct. The direction of the effective mucociliary transport was determined by the analysis of video microscopic data recorded on explants. Vector-based analysis of electron micrographs yielded the mean angle of deviation between the 'effective ciliary stroke', as derived from axonemal orientation, and the tubal longitudinal axis pointing towards the uterus to be 0.8°, with a standard deviation of 35.2°. The corresponding angular deviation of the short-wave propagation was -6.8° (SD 34.6°). These results show that oviductal motile cilia are rigorously aligned, that the beating plane of the cilia is parallel to the long axis of the uterine tube and that the 'effective stroke' and mucociliary transport are directed towards the uterus. © 2014 S. Karger AG, Basel.
Collier, Michael R.; Szabo, A.; Farrell, W.; Slavin, J. A.; Lepping, R. P.; Fitzenreiter, R.; Thompson, B.; Hamilton, D. C.; Gloeckler, G.; Ho, G. C.
2000-01-01
Evidence is presented that the WIND spacecraft observed particle and field signatures on October 18-19, 1995 due to reconnection near the footpoints of a magnetic cloud (i.e., between 1 and 5 solar radii). These signatures include: (1) an internal shock traveling approximately along the axis of the magnetic cloud, (2) a simple compression of the magnetic field consistent with the footpoint magnetic fields being thrust outwards at speeds much greater than the solar wind speed, (3) an electron heat flux dropout occurring within minutes of the shock indicating a topological change resulting from disconnection from the solar surface, (4) a very cold 5 keV proton beam and (5) an associated monochromatic wave. We expect that, given observations of enough magnetic clouds, Wind and other spacecraft will see signatures similar to the ones reported here indicating reconnection. However, these observations require the spacecraft to be fortuitously positioned to observe the passing shock and other signatures and will therefore be associated with only a small fraction of magnetic clouds. Consistent with this, a few magnetic clouds observed by Wind have been found to possess internal shock waves.
Scattering of electromagnetic plane waves by a buried vertical dike
Directory of Open Access Journals (Sweden)
Batista Lurimar S.
2003-01-01
Full Text Available The complete and exact solution of the scattering of a TE mode frequency domain electromagnetic plane wave by a vertical dike under a conductive overburden has been established. An integral representation composed of one-sided Fourier transforms describes the scattered electric field components in each one of the five media: air, overburden, dike, and the country rocks on both sides of the dike. The determination of the terms of the series that represents the spectral components of the Fourier integrals requires the numerical inversion of a sparse matrix, and the method of successive approaches. The zero-order term of the series representation for the spectral components of the overburden, for given values of the electrical and geometrical parameters of the model, has been computed. This result allowed to determine an approximate value of the variation of the electric field on the top of the overburden in the direction perpendicular to the strike of the dike. The results demonstrate the efficiency of this forward electromagnetic modeling, and are fundamental for the interpretation of VLF and Magnetotelluric data.
The Lukash Plane-Wave Attractor and Relative Energy
Korunur, M; Salti, M; Aydogdu, Oktay; Korunur, Murat; Salti, Mustafa
2006-01-01
We study energy distribution in the context of teleparallel theory of gravity, due to matter and fields including gravitation, of the universe based on the plane-wave Bianchi VII$_{\\delta}$ spacetimes described by the Lukash metric. In order to make this calculation we consider the teleparallel gravity analogs of the energy-momentum formulations of Einstein, Bergmann-Thomson and Landau-Lifshitz. We find that Einstein and Bergmann-Thomson prescriptions agree with each other and give the same results for the energy distribution in a given spacetime, but the Landau-Lifshitz complex does not. Energy density turns out to be non-vanishing in all of these prescriptions. It is interesting to mention that the results can be reduced to the already available results for the Milne universe when we write $\\omega=1$ and $\\Xi^2=1$ in the metric of the Lukash spacetime, and for this special case, we get the same relation among the energy-momentum formulations of Einstein, Bergmann-Thomson and Landau-Lifshitz as obtained for ...
Exact exchange plane-wave-pseudopotential calculations for slabs.
Engel, Eberhard
2014-05-14
The exact exchange of density functional theory is applied to both free-standing graphene and a Si(111) slab, using the plane-wave pseudopotential (PWPP) approach and a periodic repetition of the supercell containing the slab. It is shown that (i) PWPP calculations with exact exchange for slabs in supercell geometry are basically feasible, (ii) the width of the vacuum required for a decoupling of the slabs is only moderately larger than in the case of the local-density approximation, and (iii) the resulting exchange potential vx shows an extended region, both far outside the surface of the slab and far from the middle of the vacuum region between the slabs, in which vx behaves as -e(2)/z, provided the width of the vacuum is chosen sufficiently large. This last result is corroborated by an analytical analysis of periodically repeated jellium slabs. The intermediate -e(2)/z behavior of vx can be used for an absolute normalization of vx and the total Kohn-Sham potential, which, in turn, allows the determination of the work function.
Ground penetrating radar antenna measurements based on plane-wave expansions
DEFF Research Database (Denmark)
Lenler-Eriksen, Hans-Rudolph; Meincke, Peter
2005-01-01
The plane-wave transmitting spectrum of the system consisting of the ground penetrating radar (GPR) antenna and the air-soil interface is measured using a loop buried in the soil. The plane-wave spectrum is used to determine various parameters characterizing the radiation of the GPR antenna...
Reflection of semi-guided plane waves at angled thin-film transitions
Çivitci, Fehmi; Hammer, Manfred; Hoekstra, Hugo J.W.M.
2013-01-01
The propagation of thin-film guided, in-plane unguided plane optical waves, and their partial or total reflection at transitions between regions with different film thickness, is considered. The properties of reflected and refracted waves can be predicted reasonably by readily available Helmholtz- a
Wang, Geng; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Zhang, Min; Wang, Shui
2017-02-01
Cyclotron resonant scattering by electromagnetic ion cyclotron (EMIC) waves has been considered to be responsible for the rapid loss of radiation belt high-energy electrons. For parallel-propagating EMIC waves, the nonlinear character of cyclotron resonance has been revealed in recent studies. Here we present the first study on the nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique EMIC waves on the basis of test particle simulations. Higher wave obliquity produces stronger nonlinearity of harmonic resonances but weaker nonlinearity of fundamental resonance. Compared to the quasi-linear prediction, these nonlinear resonances yield a more rapid loss of electrons over a wider pitch angle range. In the quasi-linear regime, the ultrarelativistic electrons are lost in the equatorial pitch angle range αeq87.5° at ψ = 20° and 40°. At the resonant pitch angles αeq<75°, the difference between quasi-linear and nonlinear loss timescales tends to decrease with the wave normal angle increasing. At ψ = 0° and 20°, the nonlinear electron loss timescale is 10% shorter than the quasi-linear prediction; at ψ = 40°, the difference in loss timescales is reduced to <5%.
Sánchez, N G
2003-01-01
Key issues of classical and quantum strings in gravitational plane waves, shock waves and spacetime singularities are synthetically understood. This includes the string mass and mode number excitations, energy-momentum tensor, scattering amplitudes, vacuum polarization and wave-string polarization effect. The role of the real pole singularities characteristic of the tree level string spectrum (real mass resonances) and that of spacetime singularities is clearly exhibited. This throws light on the issue of singularities in string theory which can be thus classified and fully physically characterized in two different sets: strong singularities (poles of order equal or larger than 2, and black holes), where the string motion is collective and non oscillating in time, outgoing and scattering states do not appear, the string does not cross the singularities, and weak singularities (poles of order smaller than 2, Dirac delta, and conic/orbifold singularities) where the whole string motion is oscillatory in time, ou...
Parallel 3-dim fast Fourier transforms with load balancing of the plane waves
Gao, Xingyu; Fang, Jun; Wang, Han
2016-01-01
The plane wave method is most widely used for solving the Kohn-Sham equations in first-principles materials science computations. In this procedure, the three-dimensional (3-dim) trial wave functions' fast Fourier transform (FFT) is a regular operation and one of the most demanding algorithms in terms of the scalability on a parallel machine. We propose a new partitioning algorithm for the 3-dim FFT grid to accomplish the trade-off between the communication overhead and load balancing of the plane waves. It is shown by qualitative analysis and numerical results that our approach could scale the plane wave first-principles calculations up to more nodes.
Experimental evidence of a triadic resonance of plane inertial waves in a rotating fluid
Bordes, Guilhem; Dauxois, Thierry; Cortet, Pierre-Philippe
2011-01-01
Plane inertial waves are generated using a wavemaker, made of oscillating stacked plates, in a rotating water tank. Using particle image velocimetry, we observe that, after a transient, the primary plane wave is subject to a subharmonic instability and excites two secondary plane waves. The measured frequencies and wavevectors of these secondary waves are in quantitative agreement with the predictions of the triadic resonance mechanism. The secondary wavevectors are found systematically more normal to the rotation axis than the primary wavevector: this feature illustrates the basic mechanism at the origin of the energy transfers towards slow, quasi two-dimensional, motions in rotating turbulence.
Longshore Currents of Random Waves on Different Plane Beaches
Institute of Scientific and Technical Information of China (English)
邹志利; 王淑平; 邱大洪; 王艳; 王风龙; 董国海
2003-01-01
Model tests and numerical calculation of longshore currents and wave heights produced by irregular waves on two beaches with slopes of 1:100 and 1:40 are studied. The cross-shore distributions of longshore current velocities and wave heights are given and the influences of wave heights, wave periods, and beach slopes on longshore currents are discussed. The discussion is also made on the influences of different eddy viscosity coefficients on the numerical results of longshore current velocities.
Plane wave holonomies in quantum gravity. II. A sine wave solution
Neville, Donald E.
2015-08-01
This paper constructs an approximate sinusoidal wave packet solution to the equations of canonical gravity. The theory uses holonomy-flux variables with support on a lattice (LHF =lattice-holonomy flux ). There is an SU(2) holonomy on each edge of the LHF simplex, and the goal is to study the behavior of these holonomies under the influence of a passing gravitational wave. The equations are solved in a small sine approximation: holonomies are expanded in powers of sines and terms beyond sin2 are dropped; also, fields vary slowly from vertex to vertex. The wave is unidirectional and linearly polarized. The Hilbert space is spanned by a set of coherent states tailored to the symmetry of the plane wave case. Fixing the spatial diffeomorphisms is equivalent to fixing the spatial interval between vertices of the loop quantum gravity lattice. This spacing can be chosen such that the eigenvalues of the triad operators are large, as required in the small sine limit, even though the holonomies are not large. Appendices compute the energy of the wave, estimate the lifetime of the coherent state packet, discuss circular polarization and coarse-graining, and determine the behavior of the spinors used in the U(N) SHO realization of LQG.
Rigorous 2D Model for Study of Pulsed and Monochromatic Waves Propagation Near the Earth’s Surface
Directory of Open Access Journals (Sweden)
Seil S. Sautbekov
2014-01-01
Full Text Available A model problem considered in the paper allows solving rather complex 2D problems of the electromagnetic wave propagation with a required accuracy using conventional personal computers. The problems are of great importance for the theory and practical applications. The association of FDTD schemes with exact absorbing conditions makes up the basis for constructing models of the kind. This approach reduces the original open initial boundary value problems to the equivalent closed problems which can be solved numerically using the standard grid methods.
A new GTD slope diffraction coefficient for plane wave illumination of a wedge
DEFF Research Database (Denmark)
Lumholt, Michael; Breinbjerg, Olav
1997-01-01
Two wedge problems including slope diffraction are solved: one in which the incident field is a non-uniform plane wave, and one in which it is an inhomogeneous plane wave. The two solutions lead to the same GTD slope diffraction coefficient. This coefficient reveals the existence of a coupling...... effect between a transverse magnetic (or transverse electric) incident plane wave and the transverse electric (or transverse magnetic) slope-diffracted field. The coupling effect is not described by the existing GTD slope diffraction coefficient...
No pair production of open strings in a plane-wave background
Sakaguchi, Makoto; Yoshida, Kentaroh
2014-01-01
We consider whether an external electric field may cause the pair production of open strings in a type IIA plane-wave background. The boundary states of D-branes with condensates are constructed in the Green-Schwarz formulation of superstring with the light-cone gauge. The cylinder diagrams are computed with massive theta functions. Although the value of the electric field is bounded by the upper value as usual, there is no pole in the amplitudes and it indicates that no pair production occurs in the plane-wave background. This result would be universal for a class of plane-wave backgrounds.
On the Hagedorn Behaviour of Singular Scale-Invariant Plane Waves
Blau, Matthias; O'Loughlin, M; Blau, Matthias; Borunda, Monica; Loughlin, Martin O'
2005-01-01
As a step towards understanding the properties of string theory in time-dependent and singular spacetimes, we study the divergence of density operators for string ensembles in singular scale-invariant plane waves, i.e. those plane waves that arise as the Penrose limits of generic spacetime singularities. We show that the scale invariance implies that the Hagedorn behaviour of bosonic and supersymmetric strings in these backgrounds, even with the inclusion of RR or NS fields, is the same as that of strings in flat space. This is in marked contrast to the behaviour of strings in the BFHP plane wave which exhibit quantitatively and qualitatively different thermodynamic properties.
Geometry of magnetosonic shocks and plane-polarized waves: Coplanarity Variance Analysis (CVA)
Scudder, J. D.
2005-02-01
Minimum Variance Analysis (MVA) is frequently used for the geometrical organization of a time series of vectors. The Coplanarity Variance Analysis (CVA) developed in this paper reproduces the layer geometry involving coplanar magnetosonic shocks or plane-polarized wave trains (including normals and coplanarity directions) 300 times more precisely (CVA technique exploits the eigenvalue degeneracy of the covariance matrix present at planar structures to find a consistent normal to the coplanarity plane of the fluctuations. Although Tangential Discontinuities (TDs) have a coplanarity plane, the eigenvalues of their covariance matrix are usually not degenerate; accordingly, CVA does not misdiagnose TDs as shocks or plane-polarized waves. Together CVA and MVA may be used to sort between the hypotheses that the time series is caused by a one-dimensional current layer that has magnetic disturbances that are (1) coplanar, linearly polarized (shocks/plane waves), (2) intrinsically helical (rotational/tangential discontinuities), or (3) neither 1 nor 2.
Diffraction of an inhomogeneous plane wave by an impedance wedge in a lossy medium
CSIR Research Space (South Africa)
Manara, G
1998-11-01
Full Text Available The diffraction of an inhomogeneous plane wave by an impedance wedge embedded in a lossy medium is analyzed. The rigorous integral representation for the field is asymptotically evaluated in the context of the uniform geometrical theory...
Contributions of Higgs bosons in anomalous momentum of electron in plane-wave field
Klimenko, E Y
2002-01-01
The Higgs bosons contribution to the anomalous magnetic momentum of the electron, moving in the field representing the superposition of the constant crossed field and plane electromagnetic wave of the elliptical polarization are considered in this work
Matrix basis for plane and modal waves in a Timoshenko beam.
Claeyssen, Julio Cesar Ruiz; Tolfo, Daniela de Rosso; Tonetto, Leticia
2016-11-01
Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville's technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form.
Matrix basis for plane and modal waves in a Timoshenko beam
Claeyssen, Julio Cesar Ruiz; Tolfo, Daniela de Rosso; Tonetto, Leticia
2016-11-01
Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville's technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form.
Application of Plane Wave Method to the Calculation of Electronic States of Nano-Structures
Institute of Scientific and Technical Information of China (English)
LI Shu-Shen; XIA Jian-Bai
2006-01-01
@@ The electronic states of nano-structures are studied in the framework of effective-mass envelope-function theory using the plane wave basis. The barrier width and the number of plane waves are proposed to be 2.5 times the effective Bohr radius and 15n, respectively, for n-dimensional nano-structures (n = 1, 2, 3). Our proposals can be widely applied in the design of various nano-structure devices.
Traveling Wave Modes of a Plane Layered Anelastic Earth
2016-05-20
variable in the standing wave free oscillation problem is the frequency , which makes the eigenvalue problem nonlinear. The choice of the wavenumber as...38) By making the assignment Irn = κn Iqn, (39) the quadratic generalized eigenvalue problem Eq. (34) can be converted to a linear generalized...elastic eigenfunctions and the complex frequency dependent elastic moduli. The lateral standing-wave nature of the earth free oscillation problem leads to
Propagation of plane waves in poroviscoelastic anisotropic media
Institute of Scientific and Technical Information of China (English)
A.K.Vashishth,M.D.Sharma
2008-01-01
This study discusses wave propagation in perhaps the most general model of a poroelastic medium.The medium is considered as a viscoelastic,anisotropic and porous solid frame such that its pores of anisotropic permeability are filled with a viscous fluid.The anisotropy considered is of general type,and the attenuating waves in the medium are treated as the inhomogeneous waves.The complex slowness vector is resolved to define the phase velocity,homogeneous attenuation,inhomogeneous attenuation,and angle of attenuation for each of the four attenuating waves in the medium.A non-dimensional parameter measures the deviation of an inhomogeneous wave from its homogeneous version.An numerical model of a North-Sea sandstone is used to analyze the effects of the propagation direction,inhomogeneity parameter,frequency regime,anisotropy symmetry,anelasticity of the frame,and viscosity of the pore-fluid on the propagation characteristics of waves in such a medium.
Response of a Doppler canceling system to plane gravitational waves
Caporali, A.
1982-01-01
This paper discusses the interaction of long periodic gravitational waves with a three-link microwave system known as the Doppler canceling system. This system, which was developed for a gravitational red-shift experiment, uses one-way and two-way Doppler information to construct the beat signal of two reference oscillators moving with respect to each other. The geometric-optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational-wave space-time. The signature left on the Doppler-cancelled beat by bursts and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler canceling system and that of a (NASA) Doppler tracking system which employs two-way, round-trip radio waves. A threefold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences.
The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence
Smith, Glenn S.
2012-01-01
In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…
An experimental study on runup of two solitary waves on plane beaches
Institute of Scientific and Technical Information of China (English)
XUAN Rui-tao; WU Wei; LIU Hua
2013-01-01
Experiments of the runup of two solitary waves on a plane beach are carried out in a wave flume.The two solitary waves with the same amplitude and the crest separating distances are generated by using an improved wave generation method.It is found that,with regard to the two solitary waves with same wave amplitude,the runup amplification of the second wave is less than that of the first wave if the relative crest separating distance is reduced to a certain threshold value.The rundown of the first solitary wave depresses the maximum runup of the second wave.If the leading solitary wave is of relatively smaller amplitude for the two solitary waves,the runup amplification is affected by the overtaking process of two solitary waves.It turns out that the runup amplification of the second wave is larger than that of the first wave if the similarity factor is approximately larger than 15,which means the larger wave overtakes the smaller one before the waves runup on a beach.
A phase-plane analysis of localized frictional waves
Putelat, T.; Dawes, J. H. P.; Champneys, A. R.
2017-07-01
Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick-slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types.
Characteristics of Plane Wave Propagation in Biaxially Anisotropic Gyrotropic Media
Institute of Scientific and Technical Information of China (English)
PAN Wei-Tao; LIU Song-Hua; QIU Zhi-Liang
2012-01-01
Propagation characteristics of electromagnetic waves at the interface between an isotropic regular medium and a biaxially anisotropic gyrotropic medium are investigated.The results indicate that the reflection and refract ionproperties of electromagnetic waves are closely dependent on the dispersion relation of the gyrotropic media,and that anomalous total reflection and negative refraction may occur.The existence conditions of total transmission are also considered.It is found that total transmission arises when the TE-polarized incident waves are normal to the interface and the physical parameters of the two media are chosen properly,which are quite different from the existence conditions of total transmission at the anisotropic left-handed material interface.Numerical resul tsare given to validate our theoretical analysis.
In-Vivo Synthetic Aperture and Plane Wave High Frame Rate Cardiac Imaging
DEFF Research Database (Denmark)
Stuart, Matthias Bo; Jensen, Jonas; Brandt, Andreas Hjelm;
2014-01-01
A comparison of synthetic aperture imaging using spherical and plane waves with low number of emission events is presented. For both wave types, a 90 degree sector is insonified using 15 emission events giving a frame rate of 200 frames per second. Field II simulations of point targets show simil.......43 for spherical and 0.70 for plane waves. All measures are well within FDA limits for cardiac imaging. In-vivo images of the heart of a healthy 28-year old volunteer are shown....
Propagation of Quasi-plane Nonlinear Waves in Tubes
Directory of Open Access Journals (Sweden)
P. Koníček
2002-01-01
Full Text Available This paper deals with possibilities of using the generalized Burgers equation and the KZK equation to describe nonlinear waves in circular ducts. A new method for calculating of diffraction effects taking into account boundary layer effects is described. The results of numerical solutions of the model equations are compared. Finally, the limits of validity of the used model equations are discussed with respect to boundary conditions and the radius of the circular duct. The limits of applicability of the KZK equation and the GBE equation for describing nonlinear waves in tubes are discussed.
Planckian energy scattering, colliding plane gravitational waves and black hole creation
Viswanathan, K S; Viswanathan, K S; Volovich, I V
1994-01-01
In a series of papers Amati, Ciafaloni and Veneziano and 't Hooft conjectured that black holes occur in the collision of two light particles at planckian energies. In this paper we discuss a possible scenario for such a process by using the Chandrasekhar-Ferrari-Xanthopoulos duality between the Kerr black hole solution and colliding plane gravitational waves. We clarify issues arising in the definition of transition amplitude from a quantum state containing only usual matter without black holes to a state containing black holes. Collision of two plane gravitational waves producing a space-time region which is locally isometric to an interior of black hole solution is considered. The phase of the transition amplitude from plane waves to white and black hole is calculated by using the Fabbrichesi, Pettorino, Veneziano and Vilkovisky approach. An alternative extension beyond the horizon in which the space-time again splits into two separating gravitational waves is also discussed. Such a process is interpreted a...
Propagation of plane waves in thermoelastic cubic crystal material with two relaxation times
Institute of Scientific and Technical Information of China (English)
Rajneesh Kumar; Manjeet Singh
2007-01-01
A problem concerned with the reflection and refraction of thermoelastic plane waves an imperfect interface between two generalized thermally conducting cutimes has been investigated.The generalized thermoelastic theory with two relaxation of retiected and refracted waves to the amplitude of incident waves are obtained for an imperfect boundary and deduced for normal stiffness,transverse stiffness,themlal contact conductance,slip and welded boundaries. Amplitude ratios of different reflected and graphically for different incident waves.It is observed that the amplitude ratios of reflected and refracted waves are affected by the stiffness and thermal properties of the media.
Finite-amplitude steady waves in plane viscous shear flows
Milinazzo, F. A.; Saffman, P. G.
1985-01-01
Computations of two-dimensional solutions of the Navier-Stokes equations are carried out for finite-amplitude waves on steady unidirectional flow. Several cases are considered. The numerical method employs pseudospectral techniques in the streamwise direction and finite differences on a stretched grid in the transverse direction, with matching to asymptotic solutions when unbounded. Earlier results for Poiseuille flow in a channel are re-obtained, except that attention is drawn to the dependence of the minimum Reynolds number on the physical constraint of constant flux or constant pressure gradient. Attempts to calculate waves in Couette flow by continuation in the velocity of a channel wall fail. The asymptotic suction boundary layer is shown to possess finite-amplitude waves at Reynolds numbers orders of magnitude less than the critical Reynolds number for linear instability. Waves in the Blasius boundary layer and unsteady Rayleigh profile are calculated by employing the artifice of adding a body force to cancel the spatial or temporal growth. The results are verified by comparison with perturbation analysis in the vicinity of the linear-instability critical Reynolds numbers.
Parallel Multi-Focusing Using Plane Wave Decomposition
DEFF Research Database (Denmark)
Misaridis, Thanassis; Munk, Peter; Jensen, Jørgen Arendt
2003-01-01
of the transmitted pulses is based on the directivity spectrum method, a generalization of the angular spectrum method, a generalization of the angular spectrum method, containing no evanescent waves. The underlying theory is based on the Fourier slice theorem, and field reconstruction from projections. First a set...... waves result in one time function per element. The numerical solution is presented and discussed. It contains pulses with a variation in central frequency and time-varying apodization across the aperture (dynamic apodization). The RMS difference between the transmitted field using the calculated pulse......In conventional phased-array imaging, identical short single-carrier pulses are emitted from the entire aperture, and focusing is done in one direction at a time by applying simple geometric delays. This is a sequential and not optimal transmission scheme, which limits the frame rate and makes 3D...
Well-posedness and generalized plane waves simulations of a 2D mode conversion model
Imbert-Gérard, Lise-Marie
2015-01-01
Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.
Continuous-wave terahertz multi-plane in-line digital holography
Huang, Haochong; Wang, Dayong; Li, Weihua; Rong, Lu; Taylor, Zachary D.; Deng, Qinghua; Li, Bin; Wang, Yunxin; Wu, Weidong; Panezai, Spozmai
2017-07-01
Terahertz digital holography is a non-scanning and real time method for reconstructing the absorption and phase distributions of the wave-front diffracted by a given sample simultaneously in the terahertz region. A continuous-wave terahertz in-line digital holographic multi-plane imaging method is presented here for achieving a three-dimensional shape of a specific portion of a sample with the best possible focus. The three enhancement techniques of synthetic aperture, autofocusing and phase retrieval are applied to the single plane recordings for achieving a high resolution, good quality and optimally focused reconstructed image. Later, multi-plane reconstructed images are processed with the threshold mask and a three dimensional profile of the sample is obtained. Experimental verification confirms that the proposed method is a valid tool for acquiring multi-plane information of a target in the terahertz range.
Two- and three-dimensional computation of solitary wave runup on non-plane beach
Directory of Open Access Journals (Sweden)
B. H. Choi
2008-06-01
Full Text Available Solitary wave runup on a non-plane beach is studied analytically and numerically. For the theoretical approach, nonlinear shallow-water theory is applied to obtain the analytical solution for the simplified bottom geometry, such as an inclined channel whose cross-slope shape is parabolic. It generalizes Carrier-Greenspan approach for long wave runup on the inclined plane beach that is currently used now. For the numerical study, the Reynolds Averaged Navier-Stokes (RANS system is applied to study soliton runup on an inclined beach and the detailed characteristics of the wave processes (water displacement, velocity field, turbulent kinetic energy, energy dissipation are analyzed. In this study, it is theoretically and numerically proved that the existence of a parabolic cross-slope channel on the plane beach causes runup intensification, which is often observed in post-tsunami field surveys.
Efficient computation of GW energy level corrections for molecules described in a plane wave basis
Rousseau, Bruno; Laflamme Janssen, Jonathan; Côté, Michel
2013-03-01
An efficient computational approach is presented to compute the ionisation energy and quasiparticle band gap at the level of the GW approximation when the Hilbert space is described in terms of plane waves. The method relies on ab initio calculations as a starting point. Then, the use of the Sternheimer equation eliminates slowly convergent sums on conduction states. Further, the Lanczos method is used to efficiently extract the most important eigenstates of the dielectric operator. This approach avoids the explicit computation of matrix elements of the dielectric operator in the plane wave basis, a crippling bottleneck of the brute force approach. The method is initially applied to organic molecules of current interest in the field of organic photovoltaics. Given the completeness of the plane wave basis, systematic convergence studies can be conducted. Furthermore, the method can readily be extended to describe polymers, which are also of interest for photovoltaic applications, but remain a significant computational challenge for methods based on localized basis sets.
Reflection of plane waves from free surface of a microstretch elastic solid
Indian Academy of Sciences (India)
Baljeet Singh
2002-03-01
In the present investigation, it is shown that there exists five basic waves in a microstretch elastic solid half-space. The problem of reflection of plane waves from free surface of a microstretch elastic solid half-space is studied. The energy ratios for various reflected waves are obtained for aluminium- epoxy composite as a microstretch elastic solid half-space. The variations of the energy ratios with the angle of incidence are shown graphically. The microstretch effect is shown on various reflected waves.
Directory of Open Access Journals (Sweden)
Zhang Rong
2013-01-01
Full Text Available This paper analyzes the reflection and refraction of plane wave incidences at the interface between magnetoelectroelastic (MEE and liquid media. The MEE medium is assumed to be transversely isotropic and the liquid medium to be nonviscous. Three cases, i.e., the coupled quasipressure wave incidence from the MEE medium, the coupled quasi-shear vertical wave incidence from the MEE medium, and the pressure wave incidence from the liquid medium, are discussed. The expressions of reflection and transmission coefficients varying with the incident angle are obtained. This investigation would be useful to the MEE acoustic device field.
Focal plane wave-front sensing algorithm for high-contrast imaging
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
High-contrast imaging provided by a coronagraph is critical for the direction imaging of the Earth-like planet orbiting its bright parent star.A major limitation for such direct imaging is the speckle noise that is induced from the wave-front error of an optical system.We derive an algorithm for the wave-front measurement directly from 3 focal plane images.The 3 images are achieved through a deformable mirror to provide specific phases for the optics system.We introduce an extra amplitude modulation on one deformable mirror configuration to create an uncorrelated wave-front,which is a critical procedure for wave-front sensing.The simulation shows that the reconstructed wave-front is consistent with the original wave-front theoretically,which indicates that such an algorithm is a promising technique for the wave-front measurement for the high-contrast imaging.
Focal plane wave-front sensin8 algorithm for high-contrast imaging
Institute of Scientific and Technical Information of China (English)
DOU JiangPei; REN DeQing; ZHU YongTian; ZHANG Xi
2009-01-01
High-contrast imaging provided by a coronagraph is critical for the direction imaging of the Earth-like planet orbiting its bright parent star. A major limitation for such direct imaging is the speckle noise that is induced from the wave-front error of an optical system. We derive an algorithm for the wave-front measurement directly from 3 focal plane images. The 3 images are achieved through a deformable mirror to provide specific phases for the optics system. We introduce an extra amplitude modulation on one deformable mirror configuration to create an uncorrelated wave-front, which is a critical procedure for wave-front sensing. The simulation shows that the reconstructed wave-front is consistent with the original wave-front theoretically, which indicates that such an algorithm is a promising technique for the wave-front measurement for the high-contrast imaging.
Institute of Scientific and Technical Information of China (English)
Song Falun; Cao Jinxiang; Wang Ge
2005-01-01
The purpose of the present work is to present a full-wave analysis of scattering from the weakly ionized plasma in the plane geometry. We have yielded an approximate solution in an analytic form to the electromagnetic wave scattering from the weakly ionizsd plasma. In the normal and oblique incidence, the analytic solution works well, as compared with the exact solution and the solution based on the Wenzell-Kramers-Brillouin-Jeffreys (WKBJ) approximation to the uniform density profile.
Plane-wave decomposition by spherical-convolution microphone array
Rafaely, Boaz; Park, Munhum
2001-05-01
Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.
Plane-wave decomposition by spherical-convolution microphone array
Rafaely, Boaz; Park, Munhum
2004-05-01
Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.
Back Radiation Suppression through a Semitransparent Ground Plane for a mm-Wave Patch Antenna
Klionovski, Kirill
2017-06-21
Omnidirectional radiation pattern with minimum backward radiation is highly desirable for base station antennas to minimize the multipath effects. Semitransparent ground planes have been used to reduce the backward radiation, but mostly with complicated non-uniform impedance distribution. In this work, we propose, for the first time, a round semitransparent ground plane of radius 0.8 λ with uniform impedance distribution that can improve the front-to-back ratio of a wideband patch antenna by 11.6 dB as compared to a similar sized metallic ground plane. The value of uniform impedance is obtained through analytical optimization by using asymptotic expressions in the Kirchhoff approximation of the radiation pattern of a toroidal wave scattered by a round semitransparent ground plane. The semitransparent ground plane has been realized using a low-cost carbon paste on a Kapton film. Experimental results match closely with those of simulations and validate the overall concept.
Yum, H N; Jang, Y J; Liu, X; Shahriar, M S
2012-08-13
In a white light cavity (WLC), the group velocity is superluminal over a finite bandwidth. For a WLC-based data buffering system we recently proposed, it is important to visualize the behavior of pulses inside such a cavity. The conventional plane wave transfer functions, valid only over space that is translationally invariant, cannot be used for the space inside WLC or any cavity, which is translationally variant. Here, we develop the plane wave spatio temporal transfer function (PWSTTF) method to solve this problem, and produce visual representations of a Gaussian input pulse incident on a WLC, for all times and positions.
A time domain energy theorem for scattering of plane electromagnetic waves
de Hoop, A. T.
1984-10-01
A time domain analysis of the scattering problem reveals the more general conditions under which the relevant theorems in the theory of the scattering of electromagnetic waves by an obstacle of bounded extent may also hold in the time domain. The present investigation is concerned with the energy theorem for plane wave scattering. Three different kinds of time behavior are considered, taking into account transient fields, time-periodic fields, and perpetuating fields. The derived energy theorem relates the energy which is both absorbed and scattered by the object to the spherical-wave amplitude of the scattered field in the far-field region, when observed in the direction of propagation of the incident plane wave.
Relief Restoration of Complicated form Objects by Monochromatic Microwave Radiation
Directory of Open Access Journals (Sweden)
Kuzmenko Ivan
2016-01-01
Full Text Available Article demonstrates possibility of monochromatic radiation usage for relief restoration. There is a problem with restoration when scanned object is not flat and it is not parallel to the scanning plane. It was discovered that two-dimensional phase distribution could be applied for distance determination. It is reliable way to solve problems listed above. In conclusion offered methods allow monochromatic microwave radiation usage for screening system development.
Study of simple plane wave generator with an air-metal barrier
Directory of Open Access Journals (Sweden)
Wei Xiong
2014-06-01
Full Text Available Plane wave generators (PWGs are used to accelerate flyer plates to high velocities with their generated plane waves, which are widely used in the test of dynamic properties of materials. The traditional PWG is composed of two explosives with different detonation velocities. It is difficult to implement the related fabrication processes and control the generated waves due to its complicated structures. A simple plane wave generator is presented in this paper, which is composed of two identical cylindrical high explosive (HE charges and an air-metal barrier. A theoretical model was established based on two different paths of the propagation of detonation waves, based on which the size of air-metal barrier was calculated for a given charge. The corresponding numerical simulations were also carried out by AUTODYN-2D® based on the calculated results, which were used to compare with the theoretical calculations. A detonation wave with a flatness of 0.039 μs within the range of 70-percent diameter of the main charge was obtained through the simulations.
Study of simple plane wave generator with an air-metal barrier
Institute of Scientific and Technical Information of China (English)
Wei XIONG; Xian-feng ZHANG; Zhong-wei GUAN; Yong HE; Liang QIAO; Li-li GUO
2014-01-01
Plane wave generators (PWGs) are used to accelerate flyer plates to high velocities with their generated plane waves, which are widely used in the test of dynamic properties of materials. The traditional PWG is composed of two explosives with different detonation velocities. It is difficult to implement the related fabrication processes and control the generated waves due to its complicated structures. A simple plane wave generator is presented in this paper, which is composed of two identical cylindrical high explosive (HE) charges and an air-metal barrier. A theoretical model was established based on two different paths of the propagation of detonation waves, based on which the size of air-metal barrier was calculated for a given charge. The corresponding numerical simulations were also carried out by AUTODYN-2D® based on the calculated results, which were used to compare with the theoretical calculations. A detonation wave with a flatness of 0.039 ms within the range of 70-percent diameter of the main charge was obtained through the simulations.
Ye, Qian; Jiang, Yikun; Lin, Haoze
2017-03-01
In most textbooks, after discussing the partial transmission and reflection of a plane wave at a planar interface, the power (energy) reflection and transmission coefficients are introduced by calculating the normal-to-interface components of the Poynting vectors for the incident, reflected and transmitted waves, separately. Ambiguity arises among students since, for the Poynting vector to be interpreted as the energy flux density, on the incident (reflected) side, the electric and magnetic fields involved must be the total fields, namely, the sum of incident and reflected fields, instead of the partial fields which are just the incident (reflected) fields. The interpretation of the cross product of partial fields as energy flux has not been obviously justified in most textbooks. Besides, the plane wave is actually an idealisation that is only ever found in textbooks, then what do the reflection and transmission coefficients evaluated for a plane wave really mean for a real beam of limited extent? To provide a clearer physical picture, we exemplify a light beam of finite transverse extent by a fundamental Gaussian beam and simulate its reflection and transmission at a planar interface. Due to its finite transverse extent, we can then insert the incident fields or reflected fields as total fields into the expression of the Poynting vector to evaluate the energy flux and then power reflection and transmission coefficients. We demonstrate that the power reflection and transmission coefficients of a beam of finite extent turn out to be the weighted sum of the corresponding coefficients for all constituent plane wave components that form the beam. The power reflection and transmission coefficients of a single plane wave serve, in turn, as the asymptotes for the corresponding coefficients of a light beam as its width expands infinitely.
From plane waves to local Gaussians for the simulation of correlated periodic systems
Booth, George H.; Tsatsoulis, Theodoros; Chan, Garnet Kin-Lic; Grüneis, Andreas
2016-08-01
We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller-Plesset perturbation theory.
Causality and conjugate points in general plane waves
Energy Technology Data Exchange (ETDEWEB)
Flores, J L; Sanchez, M [Departamento de Geometria y Topologia, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva s/n, 18071 Granada (Spain)
2003-06-07
Let M = M{sub 0} x R{sup 2} be a pp-wave-type spacetime endowed with the metric ({center_dot}, {center_dot}){sub z} = ({center_dot}, {center_dot}){sub x} + 2 du dv + H(x, u) du{sup 2}, where (M{sub 0}, ({center_dot}, {center_dot}){sub x}) is any Riemannian manifold and H(x, u) is an arbitrary function. We show that the behaviour of H(x, u) at spatial infinity determines the causality of M, say: (a) if -H(x, u) behaves subquadratically (i.e, essentially -H(x, u) {<=} R{sub 1}(u)|x|{sup 2-{epsilon}} for some {epsilon} > 0 and large distance |x| to a fixed point) and the spatial part (M{sub 0}, ({center_dot}, {center_dot}){sub x}) is complete, then the spacetime M is globally hyperbolic, (b) if -H(x, u) grows at most quadratically (i.e, -H(x, u) {<=} R{sub 1}(u)|x|{sup 2} for large |x|) then it is strongly causal and (c) M is always causal, but there are non-distinguishing examples (and thus, not strongly causal), even when -H(x, u) {<=} R{sub 1}(u)|x|{sup 2+{epsilon}}, for small {epsilon} > 0. Therefore, the classical model M{sub 0} = R{sup 2}, H(x, u) = {sigma}{sub i,j} h{sub ij}(u)x{sub i}x{sub j} {ne} 0), which is known to be strongly causal but not globally hyperbolic, lies in the critical quadratic situation with complete M{sub 0}. This must be taken into account for realistic applications. In fact, we argue that -H will be subquadratic (and the spacetime globally hyperbolic) if M is asymptotically flat. The relation of these results with the notion of astigmatic conjugacy and the existence of conjugate points is also discussed.
Band structure of thin films by the linear augmented-plane-wave method
DEFF Research Database (Denmark)
Jepsen, O.; Madsen, J.; Andersen, Ole Krogh
1978-01-01
We present a linear augmented-plane-wave method for solving the band-structure problem in thin crystalline films. The potential is separated into a muffin-tin potential inside the film, a potential depending exclusively on the normal coordinate outside the film, and corrections in both regions...
Linear GPR Imaging Based on Electromagnetic Plane-Wave Spectra and Diffraction Tomography
DEFF Research Database (Denmark)
Meincke, Peter
2004-01-01
in the forward model. The two inversion schemes include an accurate electromagnetic description of the GPR antennas through their plane-wave transmitting and receiving spectra. The performance of the FTM is investigated through a numerical example involving a 2.5-dimensional configuration in which the GPR...
Optimized Plane Wave Imaging for Fast and High-Quality Ultrasound Imaging
DEFF Research Database (Denmark)
Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jørgen Arendt
2016-01-01
This paper presents a method for optimizing parameters affecting the image quality in plane wave imaging. More specifically, the number of emissions and steering angles is optimized to attain the best images with the highest frame rate possible. The method is applied to a specific problem, where ...
Simplified description of out-of-plane waves in thin annular elastic plates
DEFF Research Database (Denmark)
Zadeh, Maziyar Nesari; Sorokin, Sergey
2013-01-01
Dispersion relations are derived for the out-of-plane wave propagation in planar elastic plates with constant curvature using the classical Kirchhoff thin plate theory. The dispersion diagrams and the mode shapes are compared with their counterparts for a straight plate strip and the role of curv...
DEFF Research Database (Denmark)
Hansen, Hendrik H.G.; Stuart, Matthias Bo; Villagómez Hoyos, Carlos Armando
2014-01-01
using linear array ultrasound data of a pulsating concentric homogeneous artery simulated using Field II . The transducer ( f c = 9 MHz, pitch = 197.9 μ m, 192 elements, f s = 180 MHz) transmitted plane waves at 3 sequentially alternating angles (0°, + θ , - θ ) at a PRF of 2 kHz. Simulations were...
Measurement of Plane-Wave Spectra of Ground Penetrating Radar Antennas
DEFF Research Database (Denmark)
Lenler-Eriksen, Hans-Rudolph; Meincke, Peter
2005-01-01
The plane-wave transmitting spectrum of a ground penetrating radar (GPR) loop antenna close to the air-soil interface is measured by means of a probe buried in soil. Probe correction is implemented based upon knowledge about the complex permittivity of the soil and the current distribution...
Z sup 0 -boson contribution in anomalous electron momenta in plane-wave electromagnetic field
Klimenko, E Y
2002-01-01
The Z sup 0 -boson contribution to the mass of electron moving in plane-wave field is considered. The dependence of the Z sup 0 -boson contribution to electron anomalous magnetic momentum and anomalous electric momentum on the external field parameters is studied within the frames of the Weinberg-Salam-Glashow standard model
Measurement of Plane-Wave Spectra of Ground Penetrating Radar Antennas
DEFF Research Database (Denmark)
Lenler-Eriksen, Hans-Rudolph; Meincke, Peter
2005-01-01
The plane-wave transmitting spectrum of a ground penetrating radar (GPR) loop antenna close to the air-soil interface is measured by means of a probe buried in soil. Probe correction is implemented based upon knowledge about the complex permittivity of the soil and the current distribution...
Fast color flow mode imaging using plane wave excitation and temporal encoding
DEFF Research Database (Denmark)
Udesen, Jesper; Gran, Fredrik; Jensen, Jørgen Arendt
2005-01-01
velocity image is presented. The method is based on using a plane wave excitation with temporal encoding to compensate for the decreased SNR, resulting from the lack of focusing. The temporal encoding is done with a linear frequency modulated signal. To decrease lateral sidelobes, a Tukey window is used...
LDA+DMFT implemented with the pseudopotential plane-wave approach
Energy Technology Data Exchange (ETDEWEB)
Trimarchi, G; Leonov, I; Binggeli, N [Abdus Salam International Centre for Theoretical Physics, Trieste 34014 (Italy); Korotin, Dm; Anisimov, V I [Institute of Metal Physics, Russian Academy of Sciences, Ural Division, 620219 Yekaterinburg GSP-170 (Russian Federation)], E-mail: binggeli@ictp.it
2008-04-02
We present a joint implementation of dynamical-mean-field theory (DMFT) with the pseudopotential plane-wave approach, via Wannier functions, for the determination of the electronic properties of strongly correlated materials. The scheme uses, as input for the DMFT calculations, a tight-binding Hamiltonian obtained from the plane-wave calculations by projection onto atomic-centered symmetry-constrained Wannier functions for the correlated orbitals. We apply this scheme to two prototype systems: a paramagnetic correlated metal, SrVO{sub 3}, and a paramagnetic correlated system, V{sub 2}O{sub 3}, which exhibits a metal-insulator transition. Comparisons with available linear-muffin-tin-orbital (LMTO) plus DMFT calculations demonstrate the suitability of the joint DMFT pseudopotential plane-wave approach to describe the electronic properties of strongly correlated materials. This opens the way to future developments using the pseudopotential plane-wave DMFT approach to address total-energy properties, such as structural properties.
The motion of charged particles in strong plane waves including radiation reaction
Leinemann, R.; Herold, H.; Ruder, H.; Kegel, W. H.
The Lorentz-Dirac equation in the Landau approximation is used to study the motion of charged particles in strong plane vacuum waves. It is shown that integration for circularly polarized waves can be used to determine analytically the curves of the particle trajectories. The solution is used to investigate the particle trajectories and energy evolution for various strong waves. The initial conditions for the motion are chosen so that the particles start from a radiation-free path and the growing effect of the radiation reaction on the particle trajectory is highlighted.
Indian Academy of Sciences (India)
Baljeet Singh; Anand Kumar Yadav
2013-08-01
Reflection of plane waves is studied at a free surface of a perfectly conducting transversely isotropic elastic solid half-space with initial stress. The governing equations are solved to obtain the velocity equation which indicates the existence of two quasi planar waves in the medium. Reflection coefficients and energy ratios for reflected qP and qSV waves are derived and computed numerically for a particular material. Effects of the initial stress and magnetic field are shown graphically on these reflection coefficients and energy ratios.
Numerical Study of Submerged Vertical Plane Jets Under Progressive Water Surface Waves
Institute of Scientific and Technical Information of China (English)
DAI Hui-chao; WANG Ling-ling
2005-01-01
When wastewater is discharged into a coastal area through an outfall system, it will always be subjected to the action of waves. It is important to study and quantify the mixing of the discharge with the ambient water so that accurate environmental impact assessment can be made for such discharge conditions. The present work aims to study the phenomenon of a plane jet discharged into water environment with regular waves. A 3D numerical model based on the full Navier-Stokes equations (NSE) in the σ-coordinate is developed to study the present problem. Turbulence effects are modeled by a subgrid-scale (SGS) model using the concept of large eddy simulation (LES). The operator splitting method is used to solve the modified NSE. The model has been applied to the simulation of three different cases of submerged plane jets with surface waves: jet with strong waves, jet with weak waves and jet without waves. Numerical results show that the waves enhance the mixing of the jet with the ambient fluid, and cause a periodic deflection of the jet. The size of the re-circulation is about 1.5～2.4 depth of water. The velocity profile of the jet is self-similar in the zone of established flow for both the pure jet and jet in wave circumstances. The spreading characteristic constant α is 0.100 and 0.105 for pure momentum jets with Re numbers 1025 and 2050. The value of α increases from 0.130 to 0.147 for a jet in weak and strong wave circumstances, showing that waves have an obvious effect on the mixing and dilution properties of jets. Numerical results are in good agreement with the experimental data for the cases of pure jets and jets with waves.
Schaeffer, Marshall; Ruzzene, Massimo
2016-01-01
We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behavior, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centering image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subsequent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing ...
Radiation of de-excited electrons at large times in a strong electromagnetic plane wave
Kazinski, P O
2013-01-01
The late time asymptotics of the physical solutions to the Lorentz-Dirac equation in the electromagnetic external fields of simple configurations -- the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave -- are found. The solutions to the Landau-Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. General properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half of the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late ti...
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The reflection of plane electromagnetic waves (TE wave and TM wave) from a perfect conductor which moves in an arbitrary direction is investigated. Based on Maxwell's equations and the boundary conditions for moving boundary, the relation between the field vectors of reflected and incident waves, and the reflection coefficient are derived. The energy balance between incident and reflected waves, the force exerted by electromagnetic waves to the moving conductor are also discussed and some new conclusions are suggested for notice.
Schwab, Hans-Martin; Beckmann, Martin F; Schmitz, Georg
2016-04-01
Photoacoustic imaging aims to visualize light absorption properties of biological tissue by receiving a sound wave that is generated inside the observed object as a result of the photoacoustic effect. In clinical applications, the strong light absorption in human skin is a major problem. When high amplitude photoacoustic waves that originate from skin absorption propagate into the tissue, they are reflected back by acoustical scatterers and the reflections contribute to the received signal. The artifacts associated with these reflected waves are referred to as clutter or skin echo and limit the applicability of photoacoustic imaging for medical applications severely. This study seeks to exploit the acoustic tissue information gained by plane wave ultrasound measurements with a linear array in order to correct for reflections in the photoacoustic image. By deriving a theory for clutter waves in k-space and a matching inversion approach, photoacoustic measurements compensated for clutter are shown to be recovered.
Possible second-order nonlinear interactions of plane waves in an elastic solid.
Korneev, V A; Demčenko, A
2014-02-01
There exist ten possible nonlinear elastic wave interactions for an isotropic solid described by three constants of the third order. All other possible interactions out of 54 combinations (triplets) of interacting and resulting waves are prohibited, because of restrictions of various kinds. The considered waves include longitudinal and two shear waves polarized in the interacting plane and orthogonal to it. The amplitudes of scattered waves have simple analytical forms, which can be used for experimental setup and design. The analytic results are verified by comparison with numerical solutions of initial equations. Amplitude coefficients for all ten interactions are computed as functions of frequency for polyvinyl chloride, together with interaction and scattering angles. The nonlinear equation of motion is put into a general vector form and can be used for any coordinate system.
On the polarization of nonlinear gravitational waves
Poplawski, Nikodem J.
2011-01-01
We derive a relation between the two polarization modes of a plane, linear gravitational wave in the second-order approximation. Since these two polarizations are not independent, an initially monochromatic gravitational wave loses its periodic character due to the nonlinearity of the Einstein field equations. Accordingly, real gravitational waves may differ from solutions of the linearized field equations, which are being assumed in gravitational-wave detectors.
Sum, K S; Pan, J
2007-07-01
Distributions of sound pressure and intensity on the surface of a flat impedance strip flush-mounted on a rigid baffle are studied for a grazing incident plane wave. The distributions are obtained by superimposing the unperturbed wave (the specularly reflected wave as if the strip is rigid plus the incident wave) with the radiated wave from the surface vibration of the strip excited by the unperturbed pressure. The radiated pressure interferes with the unperturbed pressure and distorts the propagating plane wave. When the plane wave propagates in the baffle-strip-baffle direction, it encounters discontinuities in acoustical impedance at the baffle-strip and strip-baffle interfaces. The radiated pressure is highest around the baffle-strip interface, but decreases toward the strip-baffle interface where the plane wave distortion reduces accordingly. As the unperturbed and radiated waves have different magnitudes and superimpose out of phase, the surface pressure and intensity increase across the strip in the plane wave propagation direction. Therefore, the surface absorption of the strip is nonzero and nonuniform. This paper provides an understanding of the surface pressure and intensity behaviors of a finite impedance strip for a grazing incident plane wave, and of how the distributed intensity determines the sound absorption coefficient of the strip.
Superresolution Imaging Using Resonant Multiples and Plane-wave Migration Velocity Analysis
Guo, Bowen
2017-08-28
Seismic imaging is a technique that uses seismic echoes to map and detect underground geological structures. The conventional seismic image has the resolution limit of λ/2, where λ is the wavelength associated with the seismic waves propagating in the subsurface. To exceed this resolution limit, this thesis develops a new imaging method using resonant multiples, which produces superresolution images with twice or even more the spatial resolution compared to the conventional primary reflection image. A resonant multiple is defined as a seismic reflection that revisits the same subsurface location along coincident reflection raypath. This reverberated raypath is the reason for superresolution imaging because it increases the differences in reflection times associated with subtle changes in the spatial location of the reflector. For the practical implementation of superresolution imaging, I develop a post-stack migration technique that first enhances the signal-to-noise ratios (SNRs) of resonant multiples by a moveout-correction stacking method, and then migrates the post-stacked resonant multiples with the associated Kirchhoff or wave-equation migration formula. I show with synthetic and field data examples that the first-order resonant multiple image has about twice the spatial resolution compared to the primary reflection image. Besides resolution, the correct estimate of the subsurface velocity is crucial for determining the correct depth of reflectors. Towards this goal, wave-equation migration velocity analysis (WEMVA) is an image-domain method which inverts for the velocity model that maximizes the similarity of common image gathers (CIGs). Conventional WEMVA based on subsurface-offset, angle domain or time-lag CIGs requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, I present a new WEMVA method using plane-wave CIGs. Plane-wave CIGs reduce the
On the exact open-closed vertex in plane-wave light-cone string field theory
Lucietti, J; Sinha, A K; Lucietti, James; Schafer-Nameki, Sakura; Sinha, Aninda
2003-01-01
The open-closed vertex in the maximally supersymmetric type IIB plane-wave light-cone string field theory is considered and an explicit solution for the bosonic part of the vertex is derived, valid for all values of the mass parameter, \\mu. This vertex is of relevance to IIB plane-wave orientifolds, as well as IIB plane-wave strings in the presence of D-branes, and their gauge theory duals. Methods of complex analysis are used to develop a systematic procedure for obtaining the solution. This procedure is first applied to the vertex in flat space, and then extended to the plane-wave case. The plane-wave solution for the vertex requires introducing certain ``\\mu-deformed Gamma functions'', which are generalizations of the ordinary Gamma function. The behaviour of the Neumann matrices is graphically illustrated and their large-\\mu asymptotics are analysed.
Multi-view horizon-driven sea plane estimation for stereo wave imaging on moving vessels
Bergamasco, Filippo; Benetazzo, Alvise; Barbariol, Francesco; Carniel, Sandro; Sclavo, Mauro
2016-10-01
In the last few years we faced an increased popularity of stereo imaging as an effective tool to investigate wind sea waves at short and medium scales. Given the advances of computer vision techniques, the recovery of a scattered point-cloud from a sea surface area is nowadays a well consolidated technique producing excellent results both in terms of wave data resolution and accuracy. Nevertheless, almost all the subsequent analyses tasks, from the recovery of directional wave spectra to the estimation of significant wave height, are bound to two limiting conditions. First, wave data are required to be aligned to the mean sea plane. Second, a uniform distribution of 3D point samples is assumed. Since the stereo-camera rig is placed tilted with respect to the sea surface, perspective distortion do not allow these conditions to be met. Errors due to this problem are even more challenging if the optical instrumentation is mounted on a moving vessel, so that the mean sea plane cannot be simply obtained by averaging data from multiple subsequent frames. We address the first problem with two main contributions. First, we propose a novel horizon estimation technique to recover the attitude of a moving stereo rig with respect to the sea plane. Second, an effective weighting scheme is described to account for the non-uniform sampling of the scattered data in the estimation of the sea-plane distance. The interplay of the two allows us to provide a precise point cloud alignment without any external positioning sensor or rig viewpoint pre-calibration. The advantages of the proposed technique are evaluated throughout an experimental section spanning both synthetic and real-world scenarios.
Ring-plane traveling-wave tube slow-wave circuit design simulations at V-Band frequencies
Kory, Carol L.; Wilson, Jeffrey D.
1995-01-01
The V-Band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for intersatellite communications. As a first effort to develop a high-efficiency V-band TWT, variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite the high-power capabilities of the ring-plane TWT, disadvantages of low bandwidth and high voltage requirements have until now prevented its acceptance outside the laboratory. In this paper, we use the three-dimensional electromagnetic simulation code MAFIA to investigate methods of increasing the bandwidth and lowering the operating voltage. Dispersion, impedance, and attenuation calculations for various geometric variations and loading distributions were performed. Based on the results of the variations, a circuit termed the finned-ladder TWT slowwave circuit was designed and is compared here to the scaled ring-plane prototype and the conventional ferruled coupled-cavity TWT circuit over the V-band frequency range.
Stress Wave Propagation in a Gradient Elastic Medium
Institute of Scientific and Technical Information of China (English)
赵亚溥; 赵涵; 胡宇群
2002-01-01
The gradient elastic constitutive equation incorporating the second gradient of the strains is used to determinethe monochromatic elastic plane wave propagation in a gradient infinite medium and thin rod. The equationof motion, together with the internal material length, has been derived. Various dispersion relations have beendetermined. We present explicit expressions for the relationship between various wave speeds, wavenumber andinternal material length.
Fan, Xiaofeng; Baek, Yonggeun; Ha, Kanglyeol; Kim, Moojoon; Kim, Jungsoon; Kim, Duckjong; Kang, Hyun Wook; Oh, Junghwan
2017-07-01
An optoacoustic transducer made of light-absorbing and elastomeric materials can generate high-pressure wide-band ultrasound waves in water when it is illuminated by a pulse laser. To generate such waves with high efficiency, carbon nanotubes (CNTs) and poly(dimethylsiloxane) (PDMS) are widely used as the light-absorbing and elastomeric materials, respectively. It was previously reported that an optoacoustic concave transducer made of these materials can produce strong shock waves, namely, blast waves, within its focal zone. In this study, we have shown that these waves can also be generated by a plane optoacoustic transducer fabricated by coating CNTs-PDMS on a poly(methyl methacrylate) (PMMA) plate. Some propagation characteristics of the blast wave generated were measured and compared with the calculated results. It was found that the propagation speed and attenuation of the wave are different from those of usual sounds. From the comparison of the measured and the calculated acoustic fields, it is assumed that every point on the transducer surface produces almost the same blast wave.
Cavity-based linear polarizer immune to the polarization direction of an incident plane wave.
Wang, Jiang; Shen, Zhongxiang; Gao, Xiang; Wu, Wen
2016-01-15
We herein report a linear polarizer based on a 2D array of substrate integrated waveguide cavities, which can convert an arbitrary linearly polarized (LP) incident wave into an outgoing LP wave in a specified polarization direction with constant transmittance. Two orthogonal slots etched on the front surface of the cavity are utilized to couple a wave of arbitrary polarization into the cavity, while another slot on the back side helps to couple the field out along a desired polarization direction. Microwave experiments are performed as a proof of concept. The proposed polarizer exhibits very good performance with stable transmittance as 50% and a polarization extinction ratio over 45 dB. The new polarizer is potentially useful in novel polarization-selective devices that are immune to the polarization direction of an incident plane wave.
Travelling-wave solutions bifurcating from relative periodic orbits in plane Poiseuille flow
Rawat, Subhendu; Rincon, François
2016-01-01
Travelling-wave solutions are shown to bifurcate from relative periodic orbits in plane Poiseuille flow at Re = 2000 in a saddle-node infinite period bifurcation. These solutions consist in self-sustaining sinuous quasi-streamwise streaks and quasi- streamwise vortices located in the bulk of the flow. The lower branch travelling-wave solutions evolve into spanwise localized states when the spanwise size Lz of the domain in which they are computed is increased. On the contrary, upper branch of travelling-wave solutions develop multiple streaks when Lz is increased. Upper branch travelling-wave solutions can be continued into coherent solutions of the filtered equations used in large-eddy simulations where they represent turbulent coherent large-scale motions.
Radiation of a Plane Shear Wave from an Elastic Waveguide to a Composite Elastic Space
Directory of Open Access Journals (Sweden)
Grigoryan E.Kh.
2007-09-01
Full Text Available The radiation of a plane shear wave from an elastic strip (waveguide to an elastic space is investigated in this paper. The strip is embedded into a space and is partially bonded with it. A given plane shear wave propagates from the free part of the strip and radiates into the composite space. The problem’s solution is led to a system of two uncoupled functional Wiener-Hopf type equations which are solved via the method of factorization. Closed form expressions are obtained which determine the wavefield in all the parts of the strip and space. Asymptotic expressions are provided which represent the wavefield in the far field and in the neighborhood of the contact zones. From these formulas it follows that: a in the cases of several values of the ratio of the wave numbers of the strip and space the order of vanishing of the volume wave in the strip becomes less and equal to the one in the case of a homogeneous material, b the radiated volume wave in the strip has a velocity of propagation equal to the volume wave’s velocity in the space.
SCATTERING OF PLANE SH-WAVE BY A CYLINDRICAL HILL OF ARBITRARY SHAPE
Institute of Scientific and Technical Information of China (English)
曹欣荣; 宋天舒; 刘殿魁
2001-01-01
The problems of scattering of plane SH-wave by a cylindrical hill of arbitrary shape is studied based on the methods of conjunction and division of solution zone. The scattering wave function is given by using the complex variable and conformal mapping methods. The conjunction boundary conditions are satisfied. Furthermore appling orthogonal function expanding technique, the problems can finally be summarized into the solution of a series of infinite algebraic equations. At last, numerical results of surface displacements of a cylindrical arc hill and of a semi-ellipse hill are obtained. And those computational results are compared with the results of finite element method (FEM).
Reﬂection of plane micropolar viscoelastic waves at a loosely bonded solid-solid interface
Indian Academy of Sciences (India)
Baljeet Singh
2002-10-01
A solution of the ﬁeld equations governing small motions of a micropolar viscoelastic solid half-space is employed to study the reﬂection and transmission of plane waves at a loosely bonded interface between two dissimilar micropolar viscoelastic solid half-spaces. The amplitude ratios for various reﬂected and refracted waves are computed for a particular model for different values of bonding parameter. The variations of these amplitude ratios with the angle of incidence are shown graphically. Effects of bonding parameter and viscosity on the amplitude ratios are shown.
Abramov, Arnold; Kostikov, Alexander
2017-03-01
We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder.
Flach, S
1995-01-01
We study tangent bifurcation of band edge plane waves in nonlinear Hamiltonian lattices. The lattice is translationally invariant. We argue for the breaking of permutational symmetry by the new bifurcated periodic orbits. The case of two coupled oscillators is considered as an example for the perturbation analysis, where the symmetry breaking can be traced using Poincare maps. Next we consider a lattice and derive the dependence of the bifurcation energy on the parameters of the Hamiltonian function in the limit of large system sizes. A necessary condition for the occurence of the bifurcation is the repelling of the band edge plane wave's frequency from the linear spectrum with increasing energy. We conclude that the bifurcated orbits will consequently exponentially localize in the configurational space.
Dynamics of a spiral pair source and its interaction with plane waves.
Rabinovitch, A; Biton, Y; Gutman, M; Aviram, I
2009-05-01
Spiral pair creation and dynamics is a widely occurring phenomenon in nature. It can appear in the heart tissue, causing severe arrhythmia, known as a figure-eight reentry. We consider the appearance of a spiral pair source, its minimal strength for survival, and the possible results of its interaction with a plane wave. In particular, its ability to outlast such an encounter is of interest. We also consider the question of exposing the source to a train of pulses, in terms of the frequency and angle of encounter. Results show different regimes of behavior, e.g. source annihilation, motion of the source away from, or towards the origin of the plane waves, its breaking and multiplication. Relevance of these results to heart arrhythmia and their possible cancellation by external pacing are briefly discussed.
Tiny graviton matrix theory: DLCQ of IIB plane-wave string theory, a conjecture
Energy Technology Data Exchange (ETDEWEB)
Sheikh-Jabbari, Mohammad M. [Department of Physics, Stanford University, 382 via Pueblo Mall, Stanford CA 94305-4060 (United States)]. E-mail: jabbari@itp.stanford.edu
2004-09-01
We conjecture that the discrete light-cone quantization (DLCQ) of strings on the maximally supersymmetric type IIB plane-wave background in the sector with J units of light-cone momentum is a supersymmetric 0+1 dimensional U(J) gauge theory (quantum mechanics) with PSU(2|2) x PSU(2|2) x U(1) superalgebra. The conjectured hamiltonian for the plane-wave matrix (string) theory, the tiny graviton matrix theory, is the quantized (regularized) three brane action on the same background. We present some pieces of evidence for this conjecture through analysis of the hamiltonian , its vacua, spectrum and coupling constant. Moreover, we discuss an extension of our conjecture to the DLCQ of type IIB strings on AdS{sub 5} x S{sup 5} geometry. (author)
Simulations and cold-test results of a prototype plane wave transformer linac structure
Directory of Open Access Journals (Sweden)
Arvind Kumar
2002-03-01
Full Text Available We have built a 4-cell prototype plane wave transformer (PWT linac structure. We discuss here details of the design and fabrication of the PWT linac structure. We present results from superfish and gdfidl simulations as well as cold tests, which are in good agreement with each other. We also present detailed tolerance maps for the PWT structure. We discuss beam dynamics simulation studies performed using parmela.
The Fermionic Signature Operator and Hadamard States in the Presence of a Plane Electromagnetic Wave
Finster, Felix
2016-01-01
We give a non-perturbative construction of a distinguished state for the quantized Dirac field in Minkowski space in the presence of a time-dependent external field of the form of a plane electromagnetic wave. By explicit computation of the fermionic signature operator, it is shown that the Dirac operator has the strong mass oscillation property. We prove that the resulting fermionic projector state is a Hadamard state.
Institute of Scientific and Technical Information of China (English)
宋海斌; 马在田; 张关泉
1996-01-01
A layer-stripping method is presented for simultaneous inversion of compressional velocity and shear velocity in layered medium from single precritical-incident-angle data of P-P and P-SV plane wave seismogram. A finite bandwidth algorithm is provided and results obviously better than previous research work are obtained by the numerical experiments for band-limited seismogram and synthetic data including noise.
Contributions in anomalous fermion momenta of neutral vector boson in plane-wave field
Klimenko, E Y
2002-01-01
The contributions of the neutral vector boson to the anomalous magnetic and electric momenta of the polarized fermion moving in the plane-wave electromagnetic field are considered in this paper. The contributions are divided by the fermion spin polarization states, which makes it possible to investigate the important problem on the contributions to the fermion anomalous momenta, coming from the the fermion transition to the intermediate state spin-nonflip or spin flip of fermion
Mahillo-Isla, R; Gonźalez-Morales, M J; Dehesa-Martínez, C
2011-06-01
The slowly varying envelope approximation is applied to the radiation problems of the Helmholtz equation with a planar single-layer and dipolar sources. The analyses of such problems provide procedures to recover solutions of the Helmholtz equation based on the evaluation of solutions of the parabolic wave equation at a given plane. Furthermore, the conditions that must be fulfilled to apply each procedure are also discussed. The relations to previous work are given as well.
Multiple-scattering corrections in diluted magnetic semiconductors: A plane-wave expansion
Scalbert, D.; Ghazali, A.; Benoit à la Guillaume, C.
1993-12-01
Energy levels of band edges in diluted magnetic semiconductors are calculated in the effective-mass approximation, retaining off-diagonal terms in the exchange interaction and using a plane-wave expansion. This model accounts qualitatively for the observed asymmetry in the splitting of the A exciton in a magnetic field in Cd1-xMnxS for which multiple-scattering corrections are expected to be important.
Candela, Anna Maria; Sánchez, Miguel
2013-01-01
Recently, classical results on completeness of trajectories of Hamiltonian systems obtained at the beginning of the seventies, have been revisited, improved and applied to Lorentzian Geometry. Our aim here is threefold: to give explicit proofs of some technicalities in the background of the specialists, to show that the introduced tools allow to obtain more results for the completeness of the trajectories, and to apply these results to the completeness of spacetimes that generalize classical plane and pp-waves.
Li, Chuang; Huang, Jian-Ping; Li, Zhen-Chun; Wang, Rong-Rong
2017-03-01
Least squares migration can eliminate the artifacts introduced by the direct imaging of irregular seismic data but is computationally costly and of slow convergence. In order to suppress the migration noise, we propose the preconditioned prestack plane-wave least squares reverse time migration (PLSRTM) method with singular spectrum constraint. Singular spectrum analysis (SSA) is used in the preconditioning of the take-offangle-domain common-image gathers (TADCIGs). In addition, we adopt randomized singular value decomposition (RSVD) to calculate the singular values. RSVD reduces the computational cost of SSA by replacing the singular value decomposition (SVD) of one large matrix with the SVD of two small matrices. We incorporate a regularization term into the preconditioned PLSRTM method that penalizes misfits between the migration images from the plane waves with adjacent angles to reduce the migration noise because the stacking of the migration results cannot effectively suppress the migration noise when the migration velocity contains errors. The regularization imposes smoothness constraints on the TADCIGs that favor differential semblance optimization constraints. Numerical analysis of synthetic data using the Marmousi model suggests that the proposed method can efficiently suppress the artifacts introduced by plane-wave gathers or irregular seismic data and improve the imaging quality of PLSRTM. Furthermore, it produces better images with less noise and more continuous structures even for inaccurate migration velocities.
On the integrability of large N plane-wave matrix theory
Energy Technology Data Exchange (ETDEWEB)
Klose, Thomas E-mail: thklose@aei.mpg.de; Plefka, Jan E-mail: plefka@aei.mpg.de
2004-02-16
We show the three-loop integrability of large N plane-wave matrix theory in a subsector of states comprised of two complex light scalar fields. This is done by diagonalizing the theory's Hamiltonian in perturbation theory and taking the large N limit. At one-loop level the result is known to be equal to the Heisenberg spin-1/2 chain, which is a well-known integrable system. Here, integrability implies the existence of hidden conserved charges and results in a degeneracy of parity pairs in the spectrum. In order to confirm integrability at higher loops, we show that this degeneracy is not lifted and that (corrected) conserved charges exist. Plane-wave matrix theory is intricately connected to N=4 super-Yang-Mills, as it arises as a consistent reduction of the gauge theory on a three-sphere. We find that after appropriately renormalizing the mass parameter of the plane-wave matrix theory the effective Hamiltonian is identical to the dilatation operator of N=4 super-Yang-Mills theory in the considered subsector. Our results therefore represent a strong support for the conjectured three-loop integrability of planar N=4 SYM and are in disagreement with a recent dual string theory finding. Finally, we study the stability of the large N integrability against nonsupersymmetric deformations of the model.
Bogdanov, O. V.; Kazinski, P. O.
2015-02-01
The problem of scattering of ultrarelativistic electrons by a strong plane electromagnetic wave of a low (optical) frequency and linear polarization is solved in the semiclassical approximation, when the electron wave packet size is much smaller than the wavelength of electromagnetic wave. The exit momenta of ultrarelativistic electrons scattered are found using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of electrons traversed the electromagnetic wave depend weakly on the initial values of momenta. These electrons are mostly scattered at small angles to the propagation direction of the electromagnetic wave. The maximum Lorentz factor of electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momentum. The momentum component parallel to the electric field vector of the electromagnetic wave is determined solely by the laser beam diameter measured in the units of the classical electron radius. As for the reflected electrons, they for the most part lose the energy, but remain relativistic. A reflection law that relates the incident and reflection angles and is independent of any parameters is found.
Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation
Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo
2017-02-01
We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields.
Borzdov
2000-04-01
Vector plane-wave superpositions defined by a given set of orthonormal scalar functions on a two- or three-dimensional manifold-beam manifold-are treated. We present a technique for composing orthonormal beams and some other specific types of fields such as three-dimensional standing waves, moving and evolving whirls. It can be used for any linear fields, in particular, electromagnetic fields in complex media and elastic fields in crystals. For electromagnetic waves in an isotropic medium or free space, unique families of exact solutions of Maxwell's equations are obtained. The solutions are illustrated by calculating fields, energy densities, and energy fluxes of beams defined by the spherical harmonics. It is shown that the obtained results can be used for a transition from the plane-wave approximation to more accurate models of real incident beams in free-space techniques for characterizing complex media. A mathematical formalism convenient for the treatment of various beams defined by the spherical harmonics is presented.
Energy Technology Data Exchange (ETDEWEB)
Abramov, Arnold, E-mail: qulaser@gmail.com [Kuang-Chi Institute of Advanced Technology, Shenzhen, 518057 (China); Kostikov, Alexander [Donbass State Engineering Academy, 84303, Kramatorsk, Donetsk (Ukraine)
2017-03-26
We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder. - Highlights: • We consider scattering of electromagnetic plane waves by two cylinders. • WGMs occur because of the presence of additional cylinder at specific location. • The accuracy for the locations is much less than required for specific values of single cylinder. • The interference of waves scattered by additional cylinders and incident on the main is responsible for the effect.
Probing phase of a scattering amplitude beyond the plane-wave approximation
Karlovets, Dmitry V
2016-01-01
Within a plane-wave approach, a number of scattering events in a generic collision process is insensitive to an overall complex phase of a transition amplitude, although this phase is extremely important for a number of problems, especially in hadronic physics at the LHC energies. In reality, however, the particles are better described as localized wave packets with the mean momenta $p$, their uncertainties $\\sigma$, and here we show that the observables grow dependent upon this phase if one lays aside the simplified plane-wave model. A relative contribution of the phase to the cross section is generally attenuated by a small factor $\\sigma^2/p^2 \\ll 1$, making its experimental measurement a rather challenging task. We discuss two methods for probing how this phase changes with the transferred momentum $t$, either by colliding two beams at a non-zero impact-parameter (say, $pp \\rightarrow X$) or by employing the states with the non-trivial wave functions, for instance, vortex particles carrying orbital angula...
Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation
Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo
2017-01-01
We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields. PMID:28205589
Rossby wave radiation by an eddy on the polar beta-plane
Zhang, Yang
2015-01-01
Results from the laboratory experiments on the evolution of vortices (eddies) generated in a rotating tank with topographic beta-effect are presented. The surface elevation and velocity fields are measured by the Altimetric Imaging Velocimetry. The experiments are supplemented by shallow water numerical simulations as well as a linear theory which describes the Rossby wave radiation by travelling vortices. The cyclonic vortices observed in the experiments travel to the northwest and continuously radiate Rossby waves. Measurements show that initially axisymmetric vortices develop a dipolar component which enables them to perform translational motion. A pattern of alternating zonal jets to the west of the vortex is created by Rossby waves with approximately zonal crests. Energy spectra of the flows in the wavenumber space indicate that a wavenumber similar to that introduced by Rhines for turbulent flows on the beta-plane can be introduced here. The wavenumber is based on the translational speed of a vortex rat...
45∘ Relative Orientations of Planes of Polarizations States of Gravitational Waves and the Graviton
Manoukian, E. B.
2016-11-01
The recent detection of gravitational waves calls for, not just in words or by plausible arguments, of an explicit derivation of polarization aspects of gravitational waves with emphasis, especially, on the non-trivial aspect of the relative 45∘ orientations of the planes of polarization states of gravitation in the same way as has been done over the years for the far simpler case involving electromagnetic wave propagation with the well known relative 90∘ between its polarization states. The purpose of this communication is to carry out in a covariant description as well as by giving special attention to the underlying gauge problem these polarization aspects via a direct consideration of the graviton propagator in a quantum field theory setting from which fundamental properties of polarizations are readily extracted.
Nonlinear dynamics and band transport in a superlattice driven by a plane wave
Apostolakis, A.; Awodele, M. K.; Alekseev, K. N.; Kusmartsev, F. V.; Balanov, A. G.
2017-06-01
A quantum particle transport induced in a spatially periodic potential by a propagating plane wave has a number of important implications in a range of topical physical systems. Examples include acoustically driven semiconductor superlattices and cold atoms in an optical crystal. Here we apply a kinetic description of the directed transport in a superlattice beyond standard linear approximation, and utilize exact path-integral solutions of the semiclassical transport equation. We show that the particle drift and average velocities have nonmonotonic dependence on the wave amplitude with several prominent extrema. Such nontrivial kinetic behavior is related to global bifurcations developing with an increase of the wave amplitude. They cause dramatic transformations of the system phase space and lead to changes of the transport regime. We describe different types of phase trajectories contributing to the directed transport and analyze their spectral content.
45∘ Relative Orientations of Planes of Polarizations States of Gravitational Waves and the Graviton
Manoukian, E. B.
2016-07-01
The recent detection of gravitational waves calls for, not just in words or by plausible arguments, of an explicit derivation of polarization aspects of gravitational waves with emphasis, especially, on the non-trivial aspect of the relative 45∘ orientations of the planes of polarization states of gravitation in the same way as has been done over the years for the far simpler case involving electromagnetic wave propagation with the well known relative 90∘ between its polarization states. The purpose of this communication is to carry out in a covariant description as well as by giving special attention to the underlying gauge problem these polarization aspects via a direct consideration of the graviton propagator in a quantum field theory setting from which fundamental properties of polarizations are readily extracted.
Institute of Scientific and Technical Information of China (English)
魏培君; 章梓茂; 汪越胜
2002-01-01
The interaction of a general plane P wave and an elastic cylindrical inclusion of infinite length partially debonded from its surrounding viscoelastic matrix of infinite extension is investigated. The debonded region is modeled as an arc-shaped interface crack between inclusion and matrix with non-contacting faces. With wave functions expansion and singular integral equation technique, the interaction problem is reduced to a set of simultaneous singular integral equations of crack dislocation density function. By analysis of the fundamental solution of the singular integral equation, it is found that dynamic stress field at the crack tip is oscillatory singular,which is related to the frequency of incident wave. The singular integral equations are solved numerically, and the crack open displacement and dynamic stress intensity factor are evaluated for various incident angles and frequencies.
DEFF Research Database (Denmark)
Alvarez, Yuri; Cappellin, Cecilia; Las-Heras, Fernando
2008-01-01
A comparison between two recently developed methods for antenna diagnostics is presented. On one hand, the Spherical Wave Expansion-to-Plane Wave Expansion (SWE-PWE), based on the relationship between spherical and planar wave modes. On the other hand, the Sources Reconstruction Method (SRM), based...
Stress Waves in Composite Laminates Excited by Transverse Plane Shock Waves
Directory of Open Access Journals (Sweden)
G.R. Liu
1996-01-01
Full Text Available A simple 1-dimensional model is presented to investigate elastic stress waves in composite laminates excited by underwater explosion shocks. The focus is on the elastic dynamic stress fields in the composite laminate immediately after the action of the shock wave. In this model, the interaction between the laminate and the water is taken into account, and the effects of the laminate-water interaction on the stress wave fields in the laminate are investigated. In the formulation of the model, wave fields in the laminate and the water are the first obtained in the frequency domain and then transferred into the time domain using the Fourier transform techniques. A quadrature technique is used to deal with the Fourier transform integrals in which the integrands have very sharp peaks on the integral axis. Numerical examples for stress waves in a steel plate and a glass reinforced plastic sandwich laminate are presented. The technique and the results presented in this article may be used in the design of ship hull structures subjected to underwater explosions.
On plane-wave relativistic electrodynamics in plasmas and in vacuum
Fiore, Gaetano
2016-01-01
We revisit the exact microscopic equations (in differential, and equivalent integral form) ruling a relativistic cold plasma after the plane-wave Ansatz, without customary approximations. We show that in the Eulerian description the motion of a very diluted plasma initially at rest and excited by an arbitrary transverse plane electromagnetic travelling-wave has a very simple and explicit dependence on the transverse electromagnetic potential; for a non-zero density plasma the above motion is a good approximation of the real one as long as the back-reaction of the charges on the electromagnetic field can be neglected, i.e. for a time lapse decreasing with the plasma density, and can be used as initial step in an iterative resolution scheme. As one of many possible applications, we use these results to describe how the ponderomotive force of a very intense and short plane laser pulse hitting normally the surface of a plasma boosts the surface electrons into the ion background. Because of this penetration the el...
N=4 Supersymmetric Yang-Mills on S^3 in Plane Wave Matrix Model at Finite Temperature
Kitazawa, Yoshihisa
2008-01-01
We investigate the large N reduced model of gauge theory on a curved spacetime through the plane wave matrix model. We formally derive the action of the N=4 supersymmetric Yang-Mills theory on R \\times S^3 from the plane wave matrix model in the large N limit. Furthermore, we evaluate the effective action of the plane wave matrix model up to the two-loop level at finite temperature. We find that the effective action is consistent with the free energy of the N=4 supersymmetric Yang-Mills theory on S^3 at high temperature limit where the planar contributions dominate. We conclude that the plane wave matrix model can be used as a large N reduced model to investigate nonperturbative aspects of the N=4 supersymmetric Yang-Mills theory on R \\times S^3.
National Aeronautics and Space Administration — Photodetectors and focal plane arrays (FPAs) covering the middle-wave and longwave infrared (MWIR/LWIR) are of great importance in numerous NASA applications,...
Plane-Wave Least-Squares Reverse Time Migration for Rugged Topography
Institute of Scientific and Technical Information of China (English)
Jianping Huang; Chuang Li; Rongrong Wang; Qingyang Li
2015-01-01
We present a method based on least-squares reverse time migration with plane-wave encod-ing (P-LSRTM) for rugged topography. Instead of modifying the wave field before migration, we modify the plane-wave encoding function and fill constant velocity to the area above rugged topography in the model so that P-LSRTM can be directly performed from rugged surface in the way same to shot domain reverse time migration. In order to improve efficiency and reduce I/O (input/output) cost, the dynamic en-coding strategy and hybrid encoding strategy are implemented. Numerical test on SEG rugged topography model show that P-LSRTM can suppress migration artifacts in the migration image, and compensate am-plitude in the middle-deep part efficiently. Without data correction, P-LSRTM can produce a satisfying image of near-surface if we could get an accurate near-surface velocity model. Moreover, the pre-stack P-LSRTM is more robust than conventional RTM in the presence of migration velocity errors.
Radiation of de-excited electrons at large times in a strong electromagnetic plane wave
Kazinski, P. O.
2013-12-01
The late time asymptotics of the physical solutions to the Lorentz-Dirac equation in the electromagnetic external fields of simple configurations-the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave-are found. The solutions to the Landau-Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. Some general properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late time asymptotics are derived for a charged particle moving in the external electromagnetic fields of the simple configurations pointed above. This provides a simple method to verify experimentally that the charged particle has reached the asymptotic regime.
The radiation of sound by the instability waves of a compressible plane turbulent shear layer
Tam, C. K. W.; Morris, P. J.
1980-01-01
The problem of acoustic radiation generated by instability waves of a compressible plane turbulent shear layer is solved. The solution provided is valid up to the acoustic far-field region. It represents a significant improvement over the solution obtained by classical hydrodynamic-stability theory which is essentially a local solution with the acoustic radiation suppressed. The basic instability-wave solution which is valid in the shear layer and the near-field region is constructed in terms of an asymptotic expansion using the method of multiple scales. This solution accounts for the effects of the slightly divergent mean flow. It is shown that the multiple-scales asymptotic expansion is not uniformly valid far from the shear layer. Continuation of this solution into the entire upper half-plane is described. The extended solution enables the near- and far-field pressure fluctuations associated with the instability wave to be determined. Numerical results show that the directivity pattern of acoustic radiation into the stationary medium peaks at 20 degrees to the axis of the shear layer in the downstream direction for supersonic flows. This agrees qualitatively with the observed noise-directivity patterns of supersonic jets.
Trail-Needs pseudopotentials in quantum Monte Carlo calculations with plane-wave/blip basis sets
Drummond, N. D.; Trail, J. R.; Needs, R. J.
2016-10-01
We report a systematic analysis of the performance of a widely used set of Dirac-Fock pseudopotentials for quantum Monte Carlo (QMC) calculations. We study each atom in the periodic table from hydrogen (Z =1 ) to mercury (Z =80 ), with the exception of the 4 f elements (57 ≤Z ≤70 ). We demonstrate that ghost states are a potentially serious problem when plane-wave basis sets are used in density functional theory (DFT) orbital-generation calculations, but that this problem can be almost entirely eliminated by choosing the s channel to be local in the DFT calculation; the d channel can then be chosen to be local in subsequent QMC calculations, which generally leads to more accurate results. We investigate the achievable energy variance per electron with different levels of trial wave function and we determine appropriate plane-wave cutoff energies for DFT calculations for each pseudopotential. We demonstrate that the so-called "T-move" scheme in diffusion Monte Carlo is essential for many elements. We investigate the optimal choice of spherical integration rule for pseudopotential projectors in QMC calculations. The information reported here will prove crucial in the planning and execution of QMC projects involving beyond-first-row elements.
Directory of Open Access Journals (Sweden)
Davtyan A.V.
2014-09-01
Full Text Available In present paper is considered the problem of penetration of the pressure in an isotropic elastic half-plane, boundary of which has the rigid support moving with arbitrary velocity. Solution of the plane problem is sought by method of integral transforms Laplace, Fourier and by method of the convolutions. Partial problems about a shock wave propagating along the boundary half-plane are solved. The stress intensity factors, stress on the line of contact is calculated.
Inertial effects on thin-film wave structures with imposed surface shear on an inclined plane
Sivapuratharasu, M.; Hibberd, S.; Hubbard, M. E.; Power, H.
2016-06-01
This study provides an extended approach to the mathematical simulation of thin-film flow on a flat inclined plane relevant to flows subject to high surface shear. Motivated by modelling thin-film structures within an industrial context, wave structures are investigated for flows with moderate inertial effects and small film depth aspect ratio ε. Approximations are made assuming a Reynolds number, Re ∼ O(ε-1) and depth-averaging used to simplify the governing Navier-Stokes equations. A parallel Stokes flow is expected in the absence of any wave disturbance and a generalisation for the flow is based on a local quadratic profile. This approach provides a more general system which includes inertial effects and is solved numerically. Flow structures are compared with studies for Stokes flow in the limit of negligible inertial effects. Both two-tier and three-tier wave disturbances are used to study film profile evolution. A parametric study is provided for wave disturbances with increasing film Reynolds number. An evaluation of standing wave and transient film profiles is undertaken and identifies new profiles not previously predicted when inertial effects are neglected.
Lamb waves in phononic crystal slabs: truncated plane parallels to the axis of periodicity.
Chen, Jiujiu; Xia, Yunjia; Han, Xu; Zhang, Hongbo
2012-09-01
A theoretical study is presented on the propagation properties of Lamb wave modes in phononic crystal slabs consisting of a row or more of parallel square cylinders placed periodically in the host material. The surfaces of the slabs are parallel to the axis of periodicity. The dispersion curves of Lamb wave modes are calculated based on the supercell method. The finite element method is employed to calculate the band structures and the transmission power spectra, which are in good agreement with the results by the supercell method. We also have found that the dispersion curves of Lamb waves are strongly dependent on the crystal termination, which is the position of the cut plane through the square cylinders. There exist complete or incomplete (truncated) layers of square cylinders with the change of the crystal termination. The influence of the crystal termination on the band gaps of Lamb wave modes is analyzed by numerical simulations. The variation of the crystal termination leads to obvious changes in the dispersion curves of the Lamb waves and the widths of the band gaps. Copyright © 2012 Elsevier B.V. All rights reserved.
Stamnes, J J; Sithambaranathan, G S
2001-12-01
Exact solutions are obtained for the reflected and transmitted fields resulting when an arbitrary electromagnetic field is incident on a plane interface separating an isotropic medium and a biaxially anisotropic medium in which one of the principal axes is along the interface normal. From our exact solutions for the reflected fields resulting when a plane TE or TM wave is incident on the plane interface, it can be inferred that the reflected field contains both a TE and a TM component. This gives a change in polarization that can be utilized to determine the properties of the biaxial medium. The time-harmonic solution for the reflected field is in the form of two quadruple integrals, one of which is a superposition of plane waves polarized perpendicular to the plane of incidence and the other a superposition of plane waves polarized parallel to the plane of incidence. The time-harmonic solution for the transmitted field is also in the form of two quadruple integrals. Each of these is a superposition of extraordinary plane waves with displacement vectors that are perpendicular to the direction of phase propagation.
Mitri, F G
2015-09-01
The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque.
Ding, Chaoliang; Cai, Yangjian; Zhang, Yongtao; Pan, Liuzhan
2012-06-01
The scattering of a stochastic electromagnetic plane-wave pulse on a deterministic spherical medium is investigated. An analytical formula for the degree of polarization (DOP) of the scattered field in the far zone is derived. Letting pulse duration T(0) → ∞, our formula can be applied to study the scattering of a stationary stochastic electromagnetic light wave. Numerical results show that the DOP of the far zone field is closely determined by the size of the spherical medium when the incident field is a stochastic electromagnetic plane-wave pulse. This is much different from the case when the incident field is a stationary stochastic electromagnetic light wave, where the DOP of the far zone field is independent of the size of the medium. One may obtain the information of the spherical medium by measuring the scattering-induced changes in the DOP of a stochastic electromagnetic plane-wave pulse.
An Exact Transfer Matrix Formulation of Plane Sound Wave Transmission in Inhomogeneous Ducts
Dockumaci, E.
1998-11-01
The impedance, or the reflection coefficient, of plane sound waves in inhomogeneous ducts satisfies a Riccati equation. The present paper shows that the duct impedance matrix, or the scattering matrix, can be related explicitly to the solutions of the associated linear equation of the Riccati equation for duct impedance, or reflection coefficient, respectively. New exact analytical scattering matrix solutions, which follow as consequences of this connection, are given for two significant duct acoustics problems, namely, the sound transmission in non-uniform ducts carrying an incompressible subsonic low Mach number mean flow transmission of sound in uniform ducts with a full quadratic axial mean temperature gradient.
Nonlocal Effects on D-branes in Plane-Wave Backgrounds
Ganor, O J; Ganor, Ori J.; Varadarajan, Uday
2002-01-01
We argue that the effective field theory on D3-branes in a plane-wave background with 3-form flux is a nonlocal deformation of Yang-Mills theory. In the case of NSNS flux, it is a dipole field theory with lightlike dipole vectors. For an RR 3-form flux the dipole theory is strongly coupled. We propose a weakly coupled S-dual description for it. The S-dual description is local at any finite order in string perturbation theory but becomes nonlocal when all perturbation theory orders are summed together.
DEFF Research Database (Denmark)
Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel
2008-01-01
An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed...... numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...
NC plane waves, Casimir effect and flux tube potential with L\\"uscher terms
Kováčik, Samuel
2016-01-01
We analyze plane waves in a model of quantum mechanics in a three dimensional noncommutative (NC) space $R^3_{\\lambda}$. Signature features of NC models are impossibility of probing distances smaller than a certain length scale {\\lambda} and a presence of natural energetic cut-off at energy scale of order $1/{\\lambda}^2$ (in convenient units). We analyze consequences of such restrictions on a 1 dimensional Casimir effect. The result shows resemblance to flux tube potential for quark-antiquark pairs and to effective bosonic string theories with L\\"uscher terms. Such behavior might effect the radius of possible compact (fuzzy) dimensions.
Plane wave matrix theory vs. N=4 D=4 super Yang-Mills
Energy Technology Data Exchange (ETDEWEB)
Kim, N. [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Golm (Germany)
2004-06-01
A mass deformed, supersymmetric, Yang-Mills quantum mechanics has been introduced recently as the matrix model of M-theory on plane-wave backgrounds. Here we point out that the massive matrix model can be obtained as a dimensional reduction of N=4, D=4 Super Yang-Mills theory on S{sup 3}. The hamiltonian of the matrix model can be matched with the dilatation operator of the conformal field theory, and we discuss how they behave in the perturbative computations. (Abstract Copyright [2004], Wiley Periodicals, Inc.)
Electromagnetic plane-wave pulse transmission into a Lorentz half-space.
Cartwright, Natalie A
2011-12-01
The propagation of an electromagnetic plane-wave signal obliquely incident upon a Lorentz half-space is studied analytically. Time-domain asymptotic expressions that increase in accuracy with propagation distance are derived by application of uniform saddle point methods on the Fourier-Laplace integral representation of the transmitted field. The results are shown to be continuous in time and comparable with numerical calculations of the field. Arrival times and angles of refraction are given for prominent transient pulse features and the steady-state signal.
Liu, Xu; Greenhalgh, Stewart
2014-09-01
Using Biot's poroelasticity theory, we derive expressions for the reflection and transmission coefficients for a plane shear wave incident on an interface separating two different poroelastic solids. The coefficients are formulated as a function of the wave incidence angle, frequency and rock properties. Specific cases calculated include the boundary between water-saturated sand and water-saturated sandstone and the gas-water interface in sand. The results show a very different interface response to that of an incident P wave. Plane SV wave incidence does not significantly excite the Biot slow P wave if the frequency of the wave is below the transition frequency. Above this frequency, an incident plane SV wave can generate a mode-converted slow Biot P wave which is actually a normal propagating wave and not highly attenuating as in the usual (diffusive) case. For an incident SV wave onto a gas-water interface, even at very high frequency, there is no significant Biot second P wave produced. For small incident angles, the gas-water interface is essentially transparent. With increasing angles, there can arise an unusual "definitive angle" in the reflection/transmission coefficient curves which is related to the change of fluid viscosity on both sides of the interface and provides a possible new means for underground fluid assessment.
THE USE OF PLANE WAVES TO APPROXIMATE WAVE PROPAGATION IN ANISOTROPIC MEDIA
Institute of Scientific and Technical Information of China (English)
Tomi Huttunen; Peter Monk
2007-01-01
In this paper we extend the standard Ultra Weak Variational Formulation (UWVF) of Maxwell's equations in an isotropic medium to the case of an anisotropic medium. We verify that the underlying theoretical framework carries over to anisotropic media (however error estimates are not yet available) and completely describe the new scheme. We then consider TM mode scattering, show how this results in a Helmholtz equation in two dimensions with an anisotropic coefficient and demonstrate how to formulate the UWVF for it. In one special case, convergence can be proved. We then show some numerical results that suggest that the UWVF can successfully simulate wave propagation in anisotropic media.
Directional dependence of nonlinear surface acoustic waves in the (001) plane of cubic crystals.
Kumon, R E; Hamilton, M F
2002-05-01
Spectral evolution equations are used to perform analytical and numerical studies of nonlinear surface acoustic waves in the (001) plane of a variety of nonpiezoelectric cubic crystals. The basic theory underlying the model equations is outlined, and quasilinear solutions of the equations are presented. Expressions are also developed for a characteristic length scale for nonlinear distortion and a nonlinearity coefficient. A time-domain equation corresponding to the spectral equations is derived. Numerical calculations based on measured second- and third-order elastic constants taken from the literature are performed to predict the evolution of initially monofrequency surface waves. Nonlinearity matrix elements that indicate the coupling strength of harmonic interactions are shown to provide a useful tool for characterizing waveform distortion. The formation of compression or rarefaction shocks can be strongly dependent on the direction of propagation, and harmonic generation is suppressed or increased in certain directions.
An efficient algorithm for time propagation as applied to linearized augmented plane wave method
Dewhurst, J. K.; Krieger, K.; Sharma, S.; Gross, E. K. U.
2016-12-01
An algorithm for time propagation of the time-dependent Kohn-Sham equations is presented. The algorithm is based on dividing the Hamiltonian into small time steps and assuming that it is constant over these steps. This allows for the time-propagating Kohn-Sham wave function to be expanded in the instantaneous eigenstates of the Hamiltonian. The method is particularly efficient for basis sets which allow for a full diagonalization of the Hamiltonian matrix. One such basis is the linearized augmented plane waves. In this case we find it is sufficient to perform the evolution as a second-variational step alone, so long as sufficient number of first variational states are used. The algorithm is tested not just for non-magnetic but also for fully non-collinear magnetic systems. We show that even for delicate properties, like the magnetization density, fairly large time-step sizes can be used demonstrating the stability and efficiency of the algorithm.
PARTICLE DISPLACEMENTS ON THE WALL OF A BOREHOLE FROM INCIDENT PLANE WAVES.
Lee, M.W.
1987-01-01
Particle displacements from incident plane waves at the wall of a fluid-filled borehole are formulated by applying the seismic reciprocity theorem to far-field displacement fields. Such displacement fields are due to point forces acting on a fluid-filled borehole under the assumption of long wavelengths. The displacement fields are analyzed to examine the effect of the borehole on seismic wave propagation, particularly for vertical seismic profiling (VSP) measurements. When the shortest wavelength of interest is approximately 25 times longer than the borehole's diameter, the scattered displacements are proportional to the first power of incident frequency and borehole diameter. When the shortest wavelength of interest is about 40 times longer than the borehole's diameter, borehole effects on VSP measurements using a wall-locking geophone are negligible.
Diffraction of a Shear Plane Wave in Elastic Medium with Piecewise Homogeneous Infinite Inclusion
Directory of Open Access Journals (Sweden)
Voskanyan A. R.
2007-06-01
Full Text Available Diffraction of shear plane wave incident from infinity at arbitrary angle on infinite inclusion is considered. The infinite inclusion consists of two semi-infinite parts made of different materials. The problem’s solution is presented in the form of sum of its even and odd problems. The case of long waves is considered and these problems (the even and odd ones are modelled in a corresponding way after which each of them is reduced to the solution of Wiener-Hopf functional equation. Asymptotic formulas are obtained for displacement’s amplitude and contacts stresses in the far field. The behaviors of contact stresses in the neighborhood of the bonding line of the semi-infinite parts of the inclusion are also obtained.
Reflection for three-dimensional plane waves in triclinic crystalline medium
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The propagation of three-dimensional plane waves at a traction free boundary of a half-space composed of triclinic crystalline material is discussed. A method has been developed to find the analytical expressions of all the three phase velocities of quasi-P (qP), quasi-SV (qSV) and quasi-SH (qSH) in three dimensions. Closed form expressions in three dimensions for the amplitude ratios of reflection coefficients of qP, qSV and qSH waves in a triclinic medium are obtained. These expressions are used for numerically studying the variation of the reflection coefficients with the angle of incidence. The graphs are drawn for different polar angle and azimuth. Numerical results presented indicate that the anisotropy affect the reflection coefficients significantly in the three dimensional case compared to the two-dimensional case.
A comparison of exact TM plane wave diffraction by coated wedges and impedance wedges
DEFF Research Database (Denmark)
Andersen, Lars S.; Breinbjerg, Olav; Moore, John T.
1996-01-01
without interference from direct fields or reflected fields. Results have been obtained in the case of illumination by a transverse magnetic (TM) uniform plane wave. The analysis of the coated wedge is based on an integral equation formulation combined with a hybrid technique, while the analysis......The purpose of this work is to numerically investigate the accuracy of the standard impedance boundary condition (SIBC) approximation for edge diffraction. To this end, we compare the scattering by coated wedges and SIBC wedges for which the diffracted field from a single edge can be observed...... of the SIBC wedge is based on Maliuzhinets' solution. Comparisons have been carried out for a series of configurations including lossy coatings as well as lossless coatings permitting unattenuated propagation of surface waves. The results show that the presence of an edge in a coated structure does...
Statistics for long irregular wave run-up on a plane beach from direct numerical simulations
Didenkulova, Ira; Senichev, Dmitry; Dutykh, Denys
2017-04-01
-975 (2011). [2] P. Denissenko, I. Didenkulova, A. Rodin, M. Listak, E. Pelinovsky. Experimental statistics of long wave runup on a plane beach. Journal of Coastal Research 65, 195-200 (2013). [3] I. Didenkulova, E. Pelinovsky, A. Sergeeva. Statistical characteristics of long waves nearshore. Coastal Engineering 58, 94-102 (2011). [4] D. Dutykh, T. Katsaounis, D. Mitsotakis. Finite volume schemes for dispersive wave propagation and runup. J. Comput. Phys. 230 (8), 3035-3061 (2011a). [5] D. Dutykh, C. Labart, D. Mitsotakis. Long wave run-up on random beaches. Phys. Rev. Lett. 107, 184504 (2011b).
Energy Technology Data Exchange (ETDEWEB)
Caballero, J.A. [Univ. de Sevilla (Spain). Dept. de Fisica Atomica, Molecular y Nucl.]|[Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 123, Madrid 28006 (Spain); Donnelly, T.W. [Centre for Theoretical Physics, Laboratory for Nuclear Science and Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Moya de Guerra, E. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 123, Madrid 28006 (Spain); Udias, J.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Avda. Complutense s/n, Madrid 28040 (Spain)
1998-03-23
The issue of factorization within the context of coincidence quasi-elastic electron scattering is revisited. Using a relativistic formalism for the entire reaction mechanism and restricting ourselves to the case of plane waves for the outgoing proton, we discuss the role of the negative-energy components of the bound nucleon wave function. (orig.). 30 refs.
Tremblay-Darveau, Charles; Williams, Ross; Milot, Laurent; Bruce, Matthew; Burns, Peter N
2014-12-01
Plane-wave imaging offers image acquisition rates at the pulse repetition frequency, effectively increasing the imaging frame rates by up to two orders of magnitude over conventional line-by-line imaging. This form of acquisition can be used to achieve very long ensemble lengths in nonlinear modes such as pulse inversion Doppler, which enables new imaging trade-offs that were previously unattainable. We first demonstrate in this paper that the coherence of microbubble signals under repeated exposure to acoustic pulses of low mechanical index can be as high as 204 ± 5 pulses, which is long enough to allow an accurate power Doppler measurement. We then show that external factors, such as tissue acceleration, restrict the detection of perfusion at the capillary level with linear Doppler, even if long Doppler ensembles are considered. Hence, perfusion at the capillary level can only be detected with ultrasound through combined microbubbles and Doppler imaging. Finally, plane-wave contrast-enhanced power and color Doppler are performed on a rabbit kidney in vivo as a proof of principle. We establish that long pulse-inversion Doppler sequences and conventional wall-filters can create an image that simultaneously resolves both the vascular morphology of veins and arteries, and perfusion at the capillary level with frame rates above 100 Hz.
Concepts and Tradeoffs in Velocity Estimation With Plane-Wave Contrast-Enhanced Doppler.
Tremblay-Darveau, Charles; Williams, Ross; Sheeran, Paul S; Milot, Laurent; Bruce, Matthew; Burns, Peter N
2016-11-01
While long Doppler ensembles are, in principle, beneficial for velocity estimates, short acoustic pulses must be used in microbubble contrast-enhanced (CE) Doppler to mitigate microbubble destruction. This introduces inherent tradeoffs in velocity estimates with autocorrelators, which are studied here. A model of the autocorrelation function adapted to the microbubble Doppler signal accounting for transit time, the echo frequency uncertainty, and contrast-agent destruction is derived and validated in vitro. It is further demonstrated that a local measurement of the center frequency of the microbubble echo is essential in order to avoid significant bias in velocity estimates arising from the linear and nonlinear frequency-dependent scattering of microbubbles and compensate for the inherent speckle nature of the received echo frequency. For these reasons, broadband Doppler estimators (2-D autocorrelator and Radon projection) are better suited than simpler narrow-band estimators (1-D autocorrelator and 1-D Fourier transform) for CE flow assessment. A case study of perfusion in a VX-2 carcinoma using CE plane-wave Doppler is also shown. We demonstrate that even when considering all uncertainties associated with microbubble-related decorrelation (destruction, pulse bandwidth, transit time, and flow gradient) and the need for real-time imaging, a coefficient of variation of 4% on the axial velocity is achievable with plane-wave imaging.
Lectures on the Plane-Wave String/Gauge Theory Duality
Plefka, J
2004-01-01
These lectures give an introduction to the novel duality relating type IIB string theory in a maximally supersymmetric plane-wave background to N=4, d=4, U(N) Super Yang-Mills theory in a particular large N and large R-charge limit due to Berenstein, Maldacena and Nastase. In the first part of these lectures the duality is derived from the AdS/CFT correspondence by taking a Penrose limit of the AdS_5 x S^5 geometry and studying the corresponding double-scaling limit on the gauge theory side. The resulting free plane-wave superstring is then quantized in light-cone gauge. On the gauge theory side of the correspondence the composite Super Yang-Mills operators dual to string excitations are identified, and it is shown how the string spectrum can be mapped to the planar scaling dimensions of these operators. In the second part of these lectures we study the correspondence at the interacting respectively non-planar level. On the gauge theory side it is demonstrated that the large N large R-charge limit in question...
2, Pulse-mode expansions and refractive indices in plane-wave propagation
Energy Technology Data Exchange (ETDEWEB)
Shore, B.W.; Sacks, R.; Karr, T.; Morris, J.; Paisner, J.A.
1987-06-20
This memo presents basic background theory for treating simultaneous propagation of electromagnetic pulses of various colors, directed along a common ray, through a molecular vapor. The memo discusses some techniques for expanding the positive frequency part of the transverse electric field into pulse modes, characterized by carrier frequencies within a modulated envelope. We discuss, in the approximation of plane waves with slowly varying envelopes, a set of uncoupled envelope equations in which a polarization mode-envelope acts as a source for an electric-field envelope. These equations, when taken with a prescription for the polarization field, are the basic equations of plane-wave pulse propagation through a molecular medium. We discuss two ways of treating dispersive media, one based upon expansions in the frequency domain and the other based in the time domain. In both cases we find envelope equations that involve group velocities. This memo represents a portion of a more extensive treatment of propagation to be presented separately. Many of the equations presented here have been described in various books and articles. They are collected and described here as a summary and review of contemporary theory.
Fast solution of elliptic partial differential equations using linear combinations of plane waves
Pérez-Jordá, José M.
2016-02-01
Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations A x =b , where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O (N logN ) memory and executing an iteration in O (N log2N ) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.
Plane Wave Imaging for ultrasonic non-destructive testing: Generalization to multimodal imaging.
Le Jeune, Léonard; Robert, Sébastien; Lopez Villaverde, Eduardo; Prada, Claire
2016-01-01
This paper describes a new ultrasonic array imaging method for Non-Destructive Testing (NDT) which is derived from the medical Plane Wave Imaging (PWI) technique. The objective is to perform fast ultrasound imaging with high image quality. The approach is to transmit plane waves at several angles and to record the back-scattered signals with all the array elements. Focusing in receive is then achieved by coherent summations of the signals in every point of a region of interest. The medical PWI is generalized to immersion setups where water acts as a coupling medium and to multimodal (direct, half-skip modes) imaging in order to detect different types of defects (inclusions, porosities, cracks). This method is compared to the Total Focusing Method (TFM) which is the reference imaging technique in NDT. First, the two post-processing algorithms are described. Then experimental results with the array probe either in contact or in immersion are presented. A good agreement between the TFM and the PWI is observed, with three to ten times less transmissions required for the PWI.
Scaling of plane-wave functions in statistically optimized near-field acoustic holography.
Hald, Jørgen
2014-11-01
Statistically Optimized Near-field Acoustic Holography (SONAH) is a Patch Holography method, meaning that it can be applied in cases where the measurement area covers only part of the source surface. The method performs projections directly in the spatial domain, avoiding the use of spatial discrete Fourier transforms and the associated errors. First, an inverse problem is solved using regularization. For each calculation point a multiplication must then be performed with two transfer vectors--one to get the sound pressure and the other to get the particle velocity. Considering SONAH based on sound pressure measurements, existing derivations consider only pressure reconstruction when setting up the inverse problem, so the evanescent wave amplification associated with the calculation of particle velocity is not taken into account in the regularized solution of the inverse problem. The present paper introduces a scaling of the applied plane wave functions that takes the amplification into account, and it is shown that the previously published virtual source-plane retraction has almost the same effect. The effectiveness of the different solutions is verified through a set of simulated measurements.
Planar plane-wave matrix theory at the four loop order: integrability without BMN scaling
Energy Technology Data Exchange (ETDEWEB)
Fischbacher, Thomas [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany); Physique Theorique et Mathematique and International Solvay Institutes, Universite Libre de Bruxelles, Campus Plaine C.P. 231, B-1050 Brussels (Belgium); Klose, Thomas; Plefka, Jan [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany)]. E-mail: jan.plefka@aei.mpg.de
2005-02-01
We study SU(N) plane-wave matrix theory up to fourth perturbative order in its large N planar limit. The effective hamiltonian in the closed su(2) subsector of the model is explicitly computed through a specially tailored computer program to perform large scale distributed symbolic algebra and generation of planar graphs. The number of graphs here was in the deep billions. The outcome of our computation establishes the four-loop integrability of the planar plane-wave matrix model. To elucidate the integrable structure we apply the recent technology of the perturbative asymptotic Bethe ansatz to our model. The resulting S-matrix turns out to be structurally similar but nevertheless distinct to the so far considered long-range spin-chain S-matrices of Inozemtsev, Beisert-Dippel-Staudacher and Arutyunov-Frolov-Staudacher in the AdS/CFT context. In particular our result displays a breakdown of BMN scaling at the four-loop order. That is, while there exists an appropriate identification of the matrix theory mass parameter with the coupling constant of the N=4 superconformal Yang-Mills theory which yields an eighth order lattice derivative for well separated impurities (naively implying BMN scaling) the detailed impurity contact interactions ruin this scaling property at the four-loop order. Moreover we study the issue of 'wrapping' interactions, which show up for the first time at this loop-order through a Konishi descendant length four operator. (author)
Zhang, Xiao-Zheng; Thomas, Jean-Hugh; Bi, Chuan-Xing; Pascal, Jean-Claude
2012-10-01
A time-domain plane wave superposition method is proposed to reconstruct nonstationary sound fields. In this method, the sound field is expressed as a superposition of time convolutions between the estimated time-wavenumber spectrum of the sound pressure on a virtual source plane and the time-domain propagation kernel at each wavenumber. By discretizing the time convolutions directly, the reconstruction can be carried out iteratively in the time domain, thus providing the advantage of continuously reconstructing time-dependent pressure signals. In the reconstruction process, the Tikhonov regularization is introduced at each time step to obtain a relevant estimate of the time-wavenumber spectrum on the virtual source plane. Because the double infinite integral of the two-dimensional spatial Fourier transform is discretized directly in the wavenumber domain in the proposed method, it does not need to perform the two-dimensional spatial fast Fourier transform that is generally used in time domain holography and real-time near-field acoustic holography, and therefore it avoids some errors associated with the two-dimensional spatial fast Fourier transform in theory and makes possible to use an irregular microphone array. The feasibility of the proposed method is demonstrated by numerical simulations and an experiment with two speakers.
Mcaninch, G. L.; Myers, M. K.
1980-01-01
The parabolic approximation for the acoustic equations of motion is applied to the study of the sound field generated by a plane wave at or near grazing incidence to a finite impedance boundary. It is shown how this approximation accounts for effects neglected in the usual plane wave reflection analysis which, at grazing incidence, erroneously predicts complete cancellation of the incident field by the reflected field. Examples are presented which illustrate that the solution obtained by the parabolic approximation contains several of the physical phenomena known to occur in wave propagation near an absorbing boundary.
The strain in the array is mainly in the plane (waves below ~1 Hz)
Gomberg, J.; Pavlis, G.; Bodin, P.
1999-01-01
We compare geodetic and single-station methods of measuring dynamic deformations and characterize their causes in the frequency bands 0.5-1.0 Hz and 4.0-8.0 Hz. The geodetic approach utilizes data from small-aperture seismic arrays, applying techniques from geodesy. It requires relatively few assumptions and a priori information. The single-station method uses ground velocities recorded at isolated or single stations and assumes all the deformation is due to plane-wave propagation. It also requires knowledge of the azimuth and horizontal velocity of waves arriving at the recording station. Data employed come from a small-aperture, dense seismic array deployed in Geyokcha, Turkmenistan, and include seismograms recorded by broadband STS2 and short-period L28 sensors. Poor agreement between geodetic and single-station estimates in the 4.0-8.0 Hz passband indicates that the displacement field may vary nonlinearly with distance over distances of ~50 m. STS2 geodetic estimates provide a robust standard in the 0.5-1.0 Hz passband because they appear to be computationally stable and require fewer assumptions than single-station estimates. The agreement between STS2 geodetic estimates and single-station L28 estimates is surprisingly good for the S-wave and early surface waves, suggesting that the single-station analysis should be useful with commonly available data. These results indicate that, in the 0.5 to 1.0 Hz passband, the primary source of dynamic deformation is plane-wave propagation along great-circle source-receiver paths. For later arriving energy, the effects of scattering become important. The local structure beneath the array exerts a strong control on the geometry of the dynamic deformation, implying that it may be difficult to infer source characteristics of modern or paleoearthquakes from indicators of dynamic deformations. However, strong site control also suggests that the dynamic deformations may be predictable, which would be useful for engineering
Majhi, S.; Pal, P. C.; Kumar, S.
2017-01-01
This study investigates the reflection and transmission of plane SH-waves in two semi-infinite anisotropic magnetoelastic media. The lower half-space is considered as initially stressed and inhomogeneous. The density of lower half-space is taken exponentially varying with depth. The solutions for half-spaces are obtained analytically. The expressions for reflection and transmission coefficient are obtained in the closed form subject to continuity conditions at the interfaces of anisotropic magnetoelastic half-spaces and the Snell's law. It is found that these coefficients depend on the initial stress, inhomogeneity parameter, the magnetoelastic coupling parameter, and the angle at which wave crosses the magnetic field of the half-spaces. Numerical computations are performed for these coefficients for a specific model of two different anisotropic magnetoelastic half-spaces. The numerical results are illustrated by the graph of reflection and transmission coefficient versus the angle of incidence. In general, as the initial stress increases the reflection and transmission coefficient increases, the affect is more prominent for more than 10 GPa. Inhomogeneity in the density of the material also increases the reflection and transmission coefficient. The anisotropic magnetoelastic parameter and the angle at which the wave crosses the magnetic field for both the half-spaces have a quite significant effect on the reflection and transmission coefficient.
Majhi, S.; Pal, P. C.; Kumar, S.
2016-06-01
This study investigates the reflection and transmission of plane SH-waves in two semi-infinite anisotropic magnetoelastic media. The lower half-space is considered as initially stressed and inhomogeneous. The density of lower half-space is taken exponentially varying with depth. The solutions for half-spaces are obtained analytically. The expressions for reflection and transmission coefficient are obtained in the closed form subject to continuity conditions at the interfaces of anisotropic magnetoelastic half-spaces and the Snell's law. It is found that these coefficients depend on the initial stress, inhomogeneity parameter, the magnetoelastic coupling parameter, and the angle at which wave crosses the magnetic field of the half-spaces. Numerical computations are performed for these coefficients for a specific model of two different anisotropic magnetoelastic half-spaces. The numerical results are illustrated by the graph of reflection and transmission coefficient versus the angle of incidence. In general, as the initial stress increases the reflection and transmission coefficient increases, the affect is more prominent for more than 10 GPa. Inhomogeneity in the density of the material also increases the reflection and transmission coefficient. The anisotropic magnetoelastic parameter and the angle at which the wave crosses the magnetic field for both the half-spaces have a quite significant effect on the reflection and transmission coefficient.
Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves
Energy Technology Data Exchange (ETDEWEB)
Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, Santa Fe, New Mexico 87508 (United States)
2015-12-07
The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.
Collision of plane thermonuclear detonation waves in a preliminarily compressed DT mixture
Khishchenko, K. V.; Charakhch'yan, A. A.
2015-03-01
The paper deals with a one-dimensional problem on symmetric irradiation of a plane DT fuel layer with a thickness 2 H and density ρ0 ⩽ 100ρ s (where ρ s is the density of the DT fuel in the solid state at atmospheric pressure and a temperature of 4 K) by two identical monoenergetic proton beams with a kinetic energy of 1 MeV, an intensity of 1019 W/cm2, and a duration of 50 ps. The problem is solved in the framework of one-fluid two-temperature hydrodynamic model that takes into account the equation of state for hydrogen, electron and ion heat conductivities, kinetics of the DT reaction, plasma self-radiation, and plasma heating by α-particles. The irradiation of the fuel results in the appearance of two counterpropagating detonation waves to the fronts of which rarefaction waves are adjacent. The efficiency of the DT reaction after the collision (reflection from the plane of symmetry) of the detonation waves depends on the spatial homogeneity of thermodynamic functions between the fronts of the reflected detonation waves. At Hρ0 ≈ 1 g/cm2, the gain factor is G ≈ 200, whereas at Hρ0 ≈ 5 g/cm2, it is G > 2000. As applied to a cylindrical target that is ignited from ends and in which the cylinder with the fuel is surrounded by a heavy magnetized shell, the obtained values of the burn-up and gain factors are maximum possible. To estimate the ignition energy E ig of a cylindrical target by using solutions to the one-dimensional problem, a quasi-one-dimensional model is developed. The model assumes that the main mechanism of target ignition is fuel heating by α-particles. The trajectories of α-particles are limited by a cylindrical surface with a given radius, which is a parameter of the model and is identified with the fuel radius in the target and the radii of the irradiating proton beams. This model reproduces the well-known theoretical dependence E ig ˜ ρ{0/-2} and yields E ig = 160 kJ as a lower estimate of the ignition energy for ρ0 = 100ρ s
Cheng, Qiang; Cui, Tie Jun
2006-12-01
We have investigated the reflection and refraction properties of plane waves incident from free space into a uniaxially anisotropic chiral medium, where the chirality appears only in one direction and the host medium can be either an isotropic dielectric or an anisotropic electric plasma. We show that the reflection and refraction properties are closely related to the dispersion relation of the chiral medium and that negative phase refractions and/or negative group refractions may occur. We further demonstrate that the two eigenwaves within the uniaxially anisotropic chiral medium behave differently with respect to the incident angle, and in some cases only one of them can be supported and transmitted. We have studied the critical angle and Brewster's angle with some special properties. We have also discussed the potential application of the uniaxially anisotropic chiral medium for the polarization beam splitter. Numerical results are given to validate our analysis.
LOBSTER: A tool to extract chemical bonding from plane-wave based DFT.
Maintz, Stefan; Deringer, Volker L; Tchougréeff, Andrei L; Dronskowski, Richard
2016-04-30
The computer program LOBSTER (Local Orbital Basis Suite Towards Electronic-Structure Reconstruction) enables chemical-bonding analysis based on periodic plane-wave (PAW) density-functional theory (DFT) output and is applicable to a wide range of first-principles simulations in solid-state and materials chemistry. LOBSTER incorporates analytic projection routines described previously in this very journal [J. Comput. Chem. 2013, 34, 2557] and offers improved functionality. It calculates, among others, atom-projected densities of states (pDOS), projected crystal orbital Hamilton population (pCOHP) curves, and the recently introduced bond-weighted distribution function (BWDF). The software is offered free-of-charge for non-commercial research. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Resonant plane waves in metamaterials with dipoles and quadrupoles coupled with quantum system
Chipouline, A; Pertsch, T
2013-01-01
Here the multipole approach [13], in combination with the density matrix formalism is used for establishing of the model for MMs with gain. This approach allows us to investigate analytically or semi-analytically the interplay between gain and magnetic properties of the MMs, the influence of internally unstable operation mode for spasers (MAs coupled with emitters, which the MMs consist of) on the propagation characteristics, and finally to optimize MM design. Moreover, the presented model is in line with the previously presented approach [16] (actually is its natural extension on the problem of plane wave propagation) and from the other side pretty clear and observable. The results presented in this paper resolve the discussion excited by [12] followed by [35-38].
Institute of Scientific and Technical Information of China (English)
Lu Ke-Qing; Zhao Wei; Yang Yan-Long; Zhu Xiang-Ping; Li Jin-Ping; Zhang Yan-Peng
2004-01-01
We investigate the modulation instability of quasi-plane-wave optical beams in biased photorefractive-photovoltaic crystals by globally treating the space-charge field. The modulation instability growth rate is obtained, which depends on the external bias field, on the bulk photovoltaic effect, and on the ratio of the optical beam's intensity to that of the dark irradiance. Our analysis indicates that this modulation instability growth rate is identical to the modulation instability growth rate studied previously in biased photorefractive-nonphotovoltaic crystals when the bulk photovoltaic effect is negligible for shorted circuits, and predicts the modulation instability growth rate in open- and closed-circuit photorefractive-photovoltaic crystals when the external bias field is absent.
DFT LCAO and plane wave calculations of SrZrO{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Evarestov, R.A.; Bandura, A.V.; Alexandrov, V.E. [Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetskiy Prospekt, Stary Peterhof 198504 (Russian Federation); Kotomin, E.A. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstr. 1, 70569, Stuttgart (Germany)
2005-02-01
The results of the density functional (DFT) LCAO and plane wave (PW) calculations of the electronic and structural properties of four known SrZrO{sub 3} phases (Pm3m, I4/mcm, Cmcm and Pbnm) are presented and discussed. The calculated unit cell energies and relative stability of these phases agree well with the experimental sequence of SrZrO{sub 3} phases as the temperature increases. The lattice structure parameters optimized in the PW calculations for all four phases are in good agreement with the experimental neutron diffraction data. The LCAO and PW results for the electronic structure, density of states and chemical bonding in the cubic phase (Pm3m) are discussed in detail and compared with the results of previous PW calculations. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Integrable Open Spin Chain in Super Yang-Mills and the Plane-wave/SYM duality
Chen, B; Wu, Y S; Chen, Bin; Wang, Xiao-Jun; Wu, Yong-Shi
2004-01-01
We investigate the integrable structures in an N=2 superconfomal Sp(N) Yang-Mills theory with matter, which is dual to an open+closed string system. We restrict ourselves to the BMN operators that correspond to free string states. In the closed string sector, an integrable structure is inherited from its parent theory, N=4 SYM. For the open string sector, the planar one-loop mixing matrix for gauge invariant holomorphic operators is identified with the Hamiltonian of an integrable SU(3) open spin chain. Using the K-matrix formalism we identify the integrable open-chain boundary conditions that correspond to string boundary conditions. The solutions to the algebraic Bethe ansatz equations (ABAE) with a few impurities are shown to recover the anomalous dimensions that exactly match the spectrum of free open string in the plane-wave background. We also discuss the properties of the solutions of ABAE beyond the BMN regime.
Progress in parallel implementation of the multilevel plane wave time domain algorithm
Liu, Yang
2013-07-01
The computational complexity and memory requirements of classical schemes for evaluating transient electromagnetic fields produced by Ns dipoles active for Nt time steps scale as O(NtN s 2) and O(Ns 2), respectively. The multilevel plane wave time domain (PWTD) algorithm [A.A. Ergin et al., Antennas and Propagation Magazine, IEEE, vol. 41, pp. 39-52, 1999], viz. the extension of the frequency domain fast multipole method (FMM) to the time domain, reduces the above costs to O(NtNslog2Ns) and O(Ns α) with α = 1.5 for surface current distributions and α = 4/3 for volumetric ones. Its favorable computational and memory costs notwithstanding, serial implementations of the PWTD scheme unfortunately remain somewhat limited in scope and ill-suited to tackle complex real-world scattering problems, and parallel implementations are called for. © 2013 IEEE.
Integrable open spin chain in super Yang-Mills and the plane-wave/SYM duality
Chen, Bin; Wang, Xiao-Jun; Wu, Yong-Shi
2004-02-01
We investigate the integrable structures in an Script N = 2 superconformal Sp(N) Yang-Mills theory with matter, which is dual to an open+closed string system. We restrict ourselves to the BMN operators that correspond to free string states. In the closed string sector, an integrable structure is inherited from its parent theory, Script N = 4 SYM. For the open string sector, the planar one-loop mixing matrix for gauge invariant holomorphic scalar operators is identified with the hamiltonian of an integrable SU(3) open spin chain. Using the K-matrix formalism we identify the integrable open-chain boundary conditions that correspond to string boundary conditions. The solutions to the algebraic Bethe ansatz equations (ABAE) with a few impurities are shown to recover the anomalous dimensions that exactly match the spectrum of free open string in the plane-wave background. We also discuss the properties of the solutions of ABAE beyond the BMN regime.
Implementation of LDA+DMFT with the pseudo-potential-plane-wave method
Institute of Scientific and Technical Information of China (English)
Zhao Jian-Zhou; Zhuang Jia-Ning; Deng Xiao-Yu; Bi Yan; Cai Ling-Cang; Fang Zhong; Dai Xi
2012-01-01
We propose an efficient implementation of combining dynamical mean field theory(DMFT)with electronic structural calculation based on the local density approximation(LDA).The pseudo-potential-plane-wave method is used in the LDA part,which enables it to be applied to large systems.The full loop self consistency of the charge density has been reached in our implementation,which allows us to compute the total energy related properties.The procedure of LDA+DMFT is introduced in detail with a complete flow chart.We have also applied our code to study the electronic structure of several typical strong correlated materials,including cerium,americium and NiO.Our results fit quite well with both the experimental data and previous studies.
Fully converged plane-wave-based self-consistent G W calculations of periodic solids
Cao, Huawei; Yu, Zhongyuan; Lu, Pengfei; Wang, Lin-Wang
2017-01-01
The G W approximation is a well-known method to obtain the quasiparticle and spectral properties of systems ranging from molecules to solids. In practice, G W calculations are often employed with many different approximations and truncations. In this work, we describe the implementation of a fully self-consistent G W approach based on the solution of the Dyson equation using a plane wave basis set. Algorithmic, numerical, and technical details of the self-consistent G W approach are presented. The fully self-consistent G W calculations are performed for GaAs, ZnO, and CdS including semicores in the pseudopotentials. No further approximations and truncations apart from the truncation on the plane wave basis set are made in our implementation of the G W calculation. After adopting a special potential technique, a ˜100 Ry energy cutoff can be used without the loss of accuracy. We found that the self-consistent G W (sc-G W ) significantly overestimates the bulk band gaps, and this overestimation is likely due to the underestimation of the macroscopic dielectric constants. On the other hand, the sc-G W accurately predicts the d -state positions, most likely because the d -state screening does not sensitively depend on the macroscopic dielectric constant. Our work indicates the need to include the high-order vertex term in order for the many-body perturbation theory to accurately predict the semiconductor band gaps. It also sheds some light on why, in some cases, the G0W0 bulk calculation is more accurate than the fully self-consistent G W calculation, because the initial density-functional theory has a better dielectric constant compared to experiments.
Radiation of de-excited electrons at large times in a strong electromagnetic plane wave
Energy Technology Data Exchange (ETDEWEB)
Kazinski, P.O., E-mail: kpo@phys.tsu.ru
2013-12-15
The late time asymptotics of the physical solutions to the Lorentz–Dirac equation in the electromagnetic external fields of simple configurations–the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave–are found. The solutions to the Landau–Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. Some general properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late time asymptotics are derived for a charged particle moving in the external electromagnetic fields of the simple configurations pointed above. This provides a simple method to verify experimentally that the charged particle has reached the asymptotic regime. -- Highlights: •Late time asymptotics of the solutions to the Lorentz–Dirac equation are studied. •General properties of the total radiation power of electrons are established. •The total radiation power equals a half the rest energy divided by the proper-time. •Spectral densities of radiation formed on the late time asymptotics are derived. •Possible experimental verification of the results is proposed.
Dispersion of circumferential waves in cylindrically anisotropic layered pipes in plane strain.
Vasudeva, R Y; Sudheer, G; Vema, Anu Radha
2008-06-01
Dispersion spectra of circumferential waves along the periphery of circular pipes made of layered anisotropic materials do not seem to be available in literature. This note attempts to partially fill this gap by providing the dispersion spectra in two and three layered cylindrically anisotropic pipes in plane strain motion. The spectra for pipes executing time harmonic vibrations in plane strain condition are obtained as roots of a numerical characteristic equation derived extending a weighted residual method of solution of the governing equations for a single layer pipe [Towfighi et al., J. Appl. Mech. 69, 283-291 (2002)] to a general N layered pipe. The anisotropic elastic coefficients are considered to be independent of position coordinates and the bond condition at interfaces of the layers is assumed to be perfect. Numerical illustrations are presented for two and three layered pipes with anisotropy directions differing in adjacent layers. Increase in curvature of the pipe and inclination of the fiber orientation in the outermost layers to propagation direction are factors that seem to influence the mode number and pattern within the limited examples worked out.
Directory of Open Access Journals (Sweden)
Maity N.
2017-06-01
Full Text Available The article is concernedwith the possibility of plane wave propagation in a rotating elastic medium under the action of magnetic and thermal fields. The material is assumed to be fibre-reinforced with increased stiffness, strength and load bearing capacity. Green and Nagdhi’s concepts of generalized thermoelastic models II and III have been followed in the governing equations expressed in tensor notation. The effects of various parameters of the applied fields on the plane wave velocity have been shown graphically.
Scattering and diffraction of plane SH-waves by periodically distributed canyons
Ba, Zhenning; Liang, Jianwen; Zhang, Yanju
2016-06-01
A new method is presented to study the scattering and diffraction of plane SH-waves by periodically distributed canyons in a layered half-space. This method uses the indirect boundary element method combined with Green's functions of uniformly distributed loads acting on periodically distributed inclined lines. The periodicity feature of the canyons is exploited to limit the discretization effort to a single canyon, which avoids errors induced by the truncation of the infinite boundary, and the computational complexity and the demand on memory can be significantly reduced. Furthermore, the total wave fields are decomposed into the free field and scattered field in the process of calculation, which means that the method has definite physical meaning. The implementation of the method is described in detail and its accuracy is verified. Parametric studies are performed in the frequency domain by taking periodically distributed canyons of semi-circular and semi-elliptic cross-sections as examples. Numerical results show that the dynamic responses of periodically distributed canyons can be quite different from those for a single canyon and significant dynamic interactions exist between the canyons.
Directory of Open Access Journals (Sweden)
Hanson Huang
1996-01-01
Full Text Available A detailed solution to the transient interaction of plane acoustic waves with a spherical elastic shell was obtained more than a quarter of a century ago based on the classical separation of variables, series expansion, and Laplace transform techniques. An eight-term summation of the time history series was sufficient for the convergence of the shell deflection and strain, and to a lesser degree, the shell velocity. Since then, the results have been used routinely for validation of solution techniques and computer methods for the evaluation of underwater explosion response of submerged structures. By utilizing modern algorithms and exploiting recent advances of computer capacities and floating point mathematics, sufficient terms of the inverse Laplace transform series solution can now be accurately computed. Together with the application of the Cesaro summation using up to 70 terms of the series, two primary deficiencies of the previous solution are now remedied: meaningful time histories of higher time derivative data such as acceleration and pressure are now generated using a sufficient number of terms in the series; and uniform convergence around the discontinuous step wave front is now obtained, completely eradicating spurious oscillations due to the Gibbs' phenomenon. New results of time histories of response items of interest are presented.
Effects of Non-Elevation-Focalized Linear Array Transducer on Ultrasound Plane-Wave Imaging
Directory of Open Access Journals (Sweden)
Congzhi Wang
2016-11-01
Full Text Available Plane-wave ultrasound imaging (PWUS has become an important method of ultrasound imaging in recent years as its frame rate has exceeded 10,000 frames per second, allowing ultrasound to be used for two-dimensional shear wave detection and functional brain imaging. However, compared to the traditional focusing and scanning method, PWUS images always suffer from a degradation of lateral resolution and contrast. To improve the image quality of PWUS, many different beamforming algorithms have been proposed and verified. Yet the influence of transducer structure is rarely studied. For this paper, the influence of using an acoustic lens for PWUS was evaluated. Two linear array transducers were fabricated. One was not self-focalized in the elevation direction (non-elevation-focalized transducer, NEFT; the other one was a traditional elevation-focalized transducer (EFT. An initial simulation was conducted to show the influence of elevation focusing. Then the images obtained with NEFT on a standard ultrasound imaging phantom were compared with those obtained with EFT. It was demonstrated that, in a relatively deep region, the contrast of an NEFT image is better than that of an EFT image. These results indicate that a more sophisticated design of ultrasound transducer would further improve the image quality of PWUS.
Wang, Yu; Jiang, Jingfeng
2017-07-01
Shear wave elastography (SWE) has been used to measure viscoelastic properties for characterization of fibrotic livers. In this technique, external mechanical vibrations or acoustic radiation forces are first transmitted to the tissue being imaged to induce shear waves. Ultrasonically measured displacement/velocity is then utilized to obtain elastographic measurements related to shear wave propagation. Using an open-source wave simulator, k-Wave, we conducted a case study of the relationship between plane shear wave measurements and the microstructure of fibrotic liver tissues. Particularly, three different virtual tissue models (i.e., a histology-based model, a statistics-based model, and a simple inclusion model) were used to represent underlying microstructures of fibrotic liver tissues. We found underlying microstructures affected the estimated mean group shear wave speed (SWS) under the plane shear wave assumption by as much as 56%. Also, the elastic shear wave scattering resulted in frequency-dependent attenuation coefficients and introduced changes in the estimated group SWS. Similarly, the slope of group SWS changes with respect to the excitation frequency differed as much as 78% among three models investigated. This new finding may motivate further studies examining how elastic scattering may contribute to frequency-dependent shear wave dispersion and attenuation in biological tissues.
Magnetoelastic plane waves in rotating media in thermoelasticity of type II (G-N model
Directory of Open Access Journals (Sweden)
S. K. Roychoudhuri
2004-01-01
Full Text Available A study is made of the propagation of time-harmonic plane waves in an infinite, conducting, thermoelastic solid permeated by a uniform primary external magnetic field when the entire medium is rotating with a uniform angular velocity. The thermoelasticity theory of type II (G-N model (1993 is used to study the propagation of waves. A more general dispersion equation is derived to determine the effects of rotation, thermal parameters, characteristic of the medium, and the external magnetic field. If the primary magnetic field has a transverse component, it is observed that the longitudinal and transverse motions are linked together. For low frequency (χ≪1, χ being the ratio of the wave frequency to some standard frequency ω∗, the rotation and the thermal field have no effect on the phase velocity to the first order of χ and then this corresponds to only one slow wave influenced by the electromagnetic field only. But to the second order of χ, the phase velocity, attenuation coefficient, and the specific energy loss are affected by rotation and depend on the thermal parameters cT, cT being the nondimensional thermal wave speed of G-N theory, and the thermoelastic coupling εT, the electromagnetic parameters εH, and the transverse magnetic field RH. Also for large frequency, rotation and thermal field have no effect on the phase velocity, which is independent of primary magnetic field to the first order of (1/χ (χ≫1, and the specific energy loss is a constant, independent of any field parameter. However, to the second order of (1/χ, rotation does exert influence on both the phase velocity and the attenuation factor, and the specific energy loss is affected by rotation and depends on the thermal parameters cT and εT, electromagnetic parameter εH, and the transverse magnetic field RH, whereas the specific energy loss is independent of any field parameters to the first order of (1/χ.
Trappe, N.; Bucher, M.; De Bernardis, P.; Delabrouille, J.; Deo, P.; DePetris, M.; Doherty, S.; Ghribi, A.; Gradziel, M.; Kuzmin, L.; Maffei, B.; Mahashabde, S.; Masi, S.; Murphy, J. A.; Noviello, F.; O'Sullivan, C.; Pagano, L.; Piacentini, F.; Piat, M.; Pisano, G.; Robinson, M.; Stompor, R.; Tartari, A.; van der Vorst, M.; Verhoeve, P.
2016-07-01
The main objective of this activity is to develop new focal plane coupling array concepts and technologies that optimise the coupling from reflector optics to the large number of detectors for next generation sub millimetre wave telescopes particularly targeting measurement of the polarization of the cosmic microwave background (CMB). In this 18 month TRP programme the consortium are tasked with developing, manufacturing and experimentally verifying a prototype multichroic pixel which would be suitable for the large focal plane arrays which will be demanded to reach the required sensitivity of future CMB polarization missions. One major development was to have multichroic operation to potentially reduce the required focal plane size of a CMB mission. After research in the optimum telescope design and definition of requirements based on a stringent science case review, a number of compact focal plane architecture concepts were investigated before a pixel demonstrator consisting of a planar mesh lens feeding a backend Resonant Cold Electron Bolometer RCEB for filtering and detection of the dual frequency signal was planned for manufacture and test. In this demonstrator the frequencies of the channels was chosen to be 75 and 105 GHz in the w band close to the peak CMB signal. In the next year the prototype breadboards will be developed to test the beams produced by the manufactured flat lenses fed by a variety of antenna configurations and the spectral response of the RCEBs will also be verified.
Directory of Open Access Journals (Sweden)
C. Zorammuana
2015-01-01
Full Text Available The problem of reflection and refraction of SH-waves at a plane interface between the homogeneous and inhomogeneous fibre-reinforced elastic half-spaces has been investigated. Amplitude and energy ratios corresponding to the reflected and refracted SH-waves are derived using appropriate boundary conditions. These ratios are computed numerically for a particular model and the results are depicted graphically.
Uphill diffusion, zero-flux planes and transient chemical solitary waves in garnet
Vielzeuf, D.; Saúl, A.
2011-05-01
Diffusion profiles in minerals are increasingly used to determine the duration of geological events. For this purpose, the distinction between growth and diffusion zoning is critical; it requires the understanding of complex features associated with multicomponent diffusion. Seed-overgrowth interdiffusion experiments carried out in the range 1,050-1,250°C at 1.3 GPa have been designed to quantify and better understand Fe-Mg-Ca interdiffusion in garnet. Some of the diffusion profiles measured by analytical transmission electron microscope show characteristic features of multicomponent diffusion such as uphill diffusion, chemical solitary waves, zero-flux planes and complex diffusion paths. We implemented three different methods to calculate the interdiffusion coefficients of the D matrix from the experimental penetration curves and determined that with Ca as the dependent component, the crossed coefficients of the D matrix are negative. Experiments and numerical simulations indicate that: (1) uphill diffusion in garnet can be observed indifferently on the three components Fe, Mg and Ca, (2) it takes the form of complementary depletion/repletion waves and (3) chemical waves occur preferentially on initially flat concentration profiles. Derived D matrices are used to simulate the fate of chemical waves in time, in finite crystals. These examples show that the flow of atoms in multicomponent systems is not necessarily unidirectional for all components; it can change both in space along the diffusion profile and in time. Moving zero-flux planes in finite crystals are transitory features that allow flux reversals of atoms in the diffusion zone. Interdiffusion coefficients of the D matrices are also analyzed in terms of eigenvalues and eigenvectors. This analysis and the experimental results show that depending on the composition of the diffusion couple, (1) the shape of chemical waves and diffusion paths changes; (2) the width of the diffusion zone for each component
Filippov, A. I.; Akhmetova, O. V.; Koval‧skii, A. A.
2016-11-01
The filtration-wave process in the central layer of a three-layer anisotropic medium is described as an equivalent plane wave with a modified asymptotic method accurate in the mean. The initial problem is parametrized and broken down into simpler problems for the coefficients of expansion in an asymptotic parameter. The zero expansion coefficient describes the sought plane wave, whereas the first coefficient ensures refinement of the wave-front geometry. The exact solution of the parametrized problem is obtained on the basis of the Fourier sine transformation. The correctness of the developed method is confirmed by comparing the obtained asymptotic solutions and the coefficients of Maclaurin-series expansion of the exact solution of the parametrized problem in a formal parameter.
Terada, Takahide; Yamanaka, Kazuhiro; Suzuki, Atsuro; Tsubota, Yushi; Wu, Wenjing; Kawabata, Ken-ichi
2017-07-01
Ultrasound computed tomography (USCT) is promising for a non-invasive, painless, operator-independent and quantitative system for breast-cancer screening. Assembly error, production tolerance, and aging-degradation variations of the hardwire components, particularly of plane-wave-based USCT systems, may hamper cost effectiveness, precise imaging, and robust operation. The plane wave is transmitted from a ring-shaped transducer array for receiving the signal at a high signal-to-noise-ratio and fast aperture synthesis. There are four signal-delay components: response delays in the transmitters and receivers and propagation delays depending on the positions of the transducer elements and their directivity. We developed a highly precise calibration method for calibrating these delay components and evaluated it with our prototype plane-wave-based USCT system. Our calibration method was found to be effective in reducing delay errors. Gaps and curves were eliminated from the plane wave, and echo images of wires were sharpened in the entire imaging area.
Plane-wave matrix theory from N=4 super-Yang-Mills on RxS{sup 3}
Energy Technology Data Exchange (ETDEWEB)
Kim, Nakwoo E-mail: kim@aei.mpg.de; Klose, Thomas E-mail: thklose@aei.mpg.de; Plefka, Jan E-mail: plefka@aei.mpg.de
2003-11-03
Recently a mass deformation of the maximally supersymmetric Yang-Mills quantum mechanics has been constructed from the supermembrane action in eleven-dimensional plane-wave backgrounds. However, the origin of this plane-wave matrix theory in terms of a compactification of a higher-dimensional super-Yang-Mills model has remained obscure. In this paper we study the Kaluza-Klein reduction of D=4, N=4 super-Yang-Mills theory on a round three-sphere, and demonstrate that the plane-wave matrix theory arises through a consistent truncation to the lowest lying modes. We further explore the relation between the dilatation operator of the conformal field theory and the Hamiltonian of the quantum mechanics through perturbative calculations up to two-loop order. In particular, we find that the one-loop anomalous dimensions of pure scalar operators are completely captured by the plane-wave matrix theory. At two-loop level this property ceases to exist.
Ould-Lahoucine, H. K.; Chetouani, L.
2012-07-01
Exact Green function for a Dirac particle subject to a couple of orthogonal plane wave fields is obtained throughout a path integral approach. In addition, a suitable representation of the Dirac matrices is deduced so that the initial problem becomes the one of a free particle.
Kawashima, Yukio; Hirao, Kimihiko
2017-02-24
We introduced two methods to correct the singularity in the calculation of long-range Hartree-Fock (HF) exchange for long-range-corrected density functional theory (LC-DFT) calculations in plane-wave basis sets. The first method introduces an auxiliary function to cancel out the singularity. The second method introduces a truncated long-range Coulomb potential, which has no singularity. We assessed the introduced methods using the LC-BLYP functional by applying it to isolated systems of naphthalene and pyridine. We first compared the total energies and the HOMO energies of the singularity-corrected and uncorrected calculations and confirmed that singularity correction is essential for LC-DFT calculations using plane-wave basis sets. The LC-DFT calculation results converged rapidly with respect to the cell size as the other functionals, and their results were in good agreement with the calculated results obtained using Gaussian basis sets. LC-DFT succeeded in obtaining accurate orbital energies and excitation energies. We next applied LC-DFT with singularity correction methods to the electronic structure calculations of the extended systems, Si and SiC. We confirmed that singularity correction is important for calculations of extended systems as well. The calculation results of the valence and conduction bands by LC-BLYP showed good convergence with respect to the number of k points sampled. The introduced methods succeeded in overcoming the singularity problem in HF exchange calculation. We investigated the effect of the singularity correction on the excitation state calculation and found that careful treatment of the singularities is required compared to ground-state calculations. We finally examined the excitonic effect on the band gap of the extended systems. We calculated the excitation energies to the first excited state of the extended systems using a supercell model at the Γ point and found that the excitonic binding energy, supposed to be small for
Shepherd, James J.; Grüneis, Andreas; Booth, George H.; Kresse, Georg; Alavi, Ali
2012-07-01
Using the finite simulation-cell homogeneous electron gas (HEG) as a model, we investigate the convergence of the correlation energy to the complete-basis-set (CBS) limit in methods utilizing plane-wave wave-function expansions. Simple analytic and numerical results from second-order Møller-Plesset theory (MP2) suggest a 1/M decay of the basis-set incompleteness error where M is the number of plane waves used in the calculation, allowing for straightforward extrapolation to the CBS limit. As we shall show, the choice of basis-set truncation when constructing many-electron wave functions is far from obvious, and here we propose several alternatives based on the momentum transfer vector, which greatly improve the rate of convergence. This is demonstrated for a variety of wave-function methods, from MP2 to coupled-cluster doubles theory and the random-phase approximation plus second-order screened exchange. Finite basis-set energies are presented for these methods and compared with exact benchmarks. A transformation can map the orbitals of a general solid state system onto the HEG plane-wave basis and thereby allow application of these methods to more realistic physical problems. We demonstrate this explicitly for solid and molecular lithium hydride.
Reflection and Transmission of Plane Electromagnetic Waves by a Geologic Layer.
Energy Technology Data Exchange (ETDEWEB)
Aldridge, David F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-04-01
Electric field and magnetic field reflection and transmission responses generated by a plane wave normally incident onto a finite - thickness geologic layer are mathematically derived and numerically evaluated. A thin layer with enhanced electric current conductivity and/or magnetic permeability is a reasonable geophysical representation of a hydraulic fracture inject ed with a high - contrast proppant pack. Both theory and numerics indicate that backward - and forward - scattered electromagnetic wavefields are potentially observable in a field experiment, despite the extreme thinness of a fracture compared to a typical low - frequency electromagnetic wavelength. The First Born Approximation (FBA) representation of layer scattering, significant for inversion studies, is shown to be accurate for a thin layer with mild medium parameter (i.e., conductivity, permeability, and per mittivity) contrasts with the surrounding homogeneous wholespace. However, FBA scattering theory breaks down for thick layers and strong parameter contrasts. ACKNOWLEDGEMENTS Sandia National Laboratories is a multi - mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. This research is conducted under the auspices of CRADA (Cooperative Research and Development Agreement) SC11/01780.00 between Carbo Ceramics Inc. and Sandia National Laboratories. The author acknowledges former Carbo R&D Vic e - President Mr. Chad Cannan and former SNL Geophysics Department manage r Ms. Amy Halloran for their interest i n and support of this work. Technical discussions with Project Manager and Principal Investigator Dr. Chester J. Weiss of the SNL Geophysics Department greatly benefited this work. Dr. Lewis C. Bartel, formerly with S NL and presently a consultant to Carbo Ceramics, provided many useful and intuitive insights, and
Self-consistent theory for a plane wave in a moving medium and light-momentum criterion
Wang, Changbiao
2014-01-01
A self-consistent theory is developed based on the principle of relativity for a plane wave in a moving non-dispersive, lossless, non-conducting, isotropic uniform medium. Light-momentum criterion is set up for the first time, which states that the momentum of light in a medium is parallel to the wave vector in all inertial frames of reference. By rigorous analysis, novel basic properties of the plane wave are exposed: (1) Poynting vector does not necessarily represent the electromagnetic (EM) power flow when a medium moves, (2) Minkowski light momentum and energy constitute a Lorentz four-vector in a form of single EM-field cell or single photon, and Planck constant is a Lorentz invariant, (3) there is no momentum transfer taking place between the plane wave and the uniform medium, and the EM momentum conservation equation cannot be uniquely determined without resort to the principle of relativity, and (4) the moving medium behaves as a so-called "negative index medium" when it moves opposite to the wave vec...
Reﬂection of plane waves at the free surface of a ﬁbre-reinforced elastic half-space
Indian Academy of Sciences (India)
Baljeet Singh; Sarva Jit Singh
2004-06-01
The propagation of plane waves in ﬁbre-reinforced, anisotropic, elastic media is discussed. The expressions for the phase velocity of quasi-$P(qP)$ and quasi-$SV(qSV)$ waves propagating in a plane containing the reinforcement direction are obtained as functions of the angle between the propagation and reinforcement directions. Closed form expressions for the amplitude ratios for qP and qSV waves reﬂected at the free surface of a ﬁbre-reinforced, anisotropic, homogeneous, elastic half-space are obtained. These expressions are used to study the variation of amplitude ratios with angle of incidence. It is found that reinforcement has a signiﬁcant effect on the amplitude ratios and critical angle.
Maity, Narottam; Barik, S. P.; Chaudhuri, P. K.
2016-09-01
In this paper, plane wave propagation in a rotating anisotropic material of general nature under the action of a magnetic field of constant magnitude has been investigated. The material is supposed to be porous in nature and contains voids. Following the concept of [Cowin S. C. and Nunziato, J. W. [1983] “Linear elastic materials with voids,” J. Elasticity 13, 125-147.] the governing equations of motion have been written in tensor notation taking account of rotation, magnetic field effect and presence of voids in the medium and the possibility of plane wave propagation has been examined. A number of particular cases have been derived from our general results to match with previously obtained results in this area. Effects of various parameters on the velocity of wave propagation have been presented graphically.
Hospital-Bravo, Raúl; Sarrate, Josep; Díez, Pedro
2016-05-01
A new 2D numerical model to predict the underwater acoustic propagation is obtained by exploring the potential of the Partition of Unity Method (PUM) enriched with plane waves. The aim of the work is to obtain sound pressure level distributions when multiple operational noise sources are present, in order to assess the acoustic impact over the marine fauna. The model takes advantage of the suitability of the PUM for solving the Helmholtz equation, especially for the practical case of large domains and medium frequencies. The seawater acoustic absorption and the acoustic reflectance of the sea surface and sea bottom are explicitly considered, and perfectly matched layers (PML) are placed at the lateral artificial boundaries to avoid spurious reflexions. The model includes semi-analytical integration rules which are adapted to highly oscillatory integrands with the aim of reducing the computational cost of the integration step. In addition, we develop a novel strategy to mitigate the ill-conditioning of the elemental and global system matrices. Specifically, we compute a low-rank approximation of the local space of solutions, which in turn reduces the number of degrees of freedom, the CPU time and the memory footprint. Numerical examples are presented to illustrate the capabilities of the model and to assess its accuracy.
Ab initio Sternheimer-GW method for quasiparticle calculations using plane waves
Lambert, Henry; Giustino, Feliciano
2013-08-01
We report on the extension and implementation of the Sternheimer-GW method introduced by Giustino [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.81.115105 81, 115105 (2010)] to the case of first-principles pseudopotential calculations based on a plane-waves basis. The Sternheimer-GW method consists of calculating the GW self-energy operator without resorting to the standard expansion over unoccupied Kohn-Sham electronic states. The Green's function is calculated by solving linear systems for frequencies along the real axis. The screened Coulomb interaction is calculated for frequencies along the imaginary axis by using the Sternheimer equation. Analytic continuation to the real axis is performed using Padé approximants. The generalized plasmon-pole approximation is avoided by performing explicit calculations at multiple frequencies using Frommer's multishift solver. We demonstrate our methodology by reporting tests on common insulators and semiconductors, including Si, diamond, LiCl, and SiC. Our calculated quasiparticle energies are in agreement with the results of fully converged calculations based on the sum-over-states approach. As the Sternheimer-GW method yields the complete self-energy Σ(r,r',ω) and not only its expectation values on Kohn-Sham states, this work opens the way to nonperturbative GW calculations and to direct calculations of spectral functions for angle-resolved photoemission spectroscopy. As an example of the capabilities of the method we calculate the G0W0 spectral functions of silicon and diamond.
Quartic scaling MP2 for solids: A highly parallelized algorithm in the plane-wave basis
Schäfer, Tobias; Kresse, Georg
2016-01-01
We present a low-complexity algorithm to calculate the correlation energy of periodic systems in second-order M{\\o}ller-Plesset perturbation theory (MP2). In contrast to previous approximation-free MP2 codes, our implementation possesses a quartic scaling, $\\mathcal O(N^4$), with respect to the system size $N$ and offers an almost ideal parallelization efficiency. The general issue that the correlation energy converges slowly with the number of basis functions is solved by an internal basis set extrapolation. The key concept to reduce the scaling of the algorithm is to eliminate all summations over virtual bands which can be elegantly achieved in the Laplace transformed MP2 (LTMP2) formulation using plane-wave basis sets. Analogously, this approach could allow to calculate second order screened exchange (SOSEX) as well as particle-hole ladder diagrams with a similar low complexity. Hence, the presented method can be considered as a step towards systematically improved correlation energies.
Plane-wave transverse oscillation for high-frame-rate 2-D vector flow imaging.
Lenge, Matteo; Ramalli, Alessandro; Tortoli, Piero; Cachard, Christian; Liebgott, Hervé
2015-12-01
Transverse oscillation (TO) methods introduce oscillations in the pulse-echo field (PEF) along the direction transverse to the ultrasound propagation direction. This may be exploited to extend flow investigations toward multidimensional estimates. In this paper, the TOs are coupled with the transmission of plane waves (PWs) to reconstruct high-framerate RF images with bidirectional oscillations in the pulse-echo field. Such RF images are then processed by a 2-D phase-based displacement estimator to produce 2-D vector flow maps at thousands of frames per second. First, the capability of generating TOs after PW transmissions was thoroughly investigated by varying the lateral wavelength, the burst length, and the transmission frequency. Over the entire region of interest, the generated lateral wavelengths, compared with the designed ones, presented bias and standard deviation of -3.3 ± 5.7% and 10.6 ± 7.4% in simulations and experiments, respectively. The performance of the ultrafast vector flow mapping method was also assessed by evaluating the differences between the estimated velocities and the expected ones. Both simulations and experiments show overall biases lower than 20% when varying the beam-to-flow angle, the peak velocity, and the depth of interest. In vivo applications of the method on the common carotid and the brachial arteries are also presented.
On the formation of shocks of electromagnetic plane waves in non-linear crystals
Christodoulou, Demetrios
2015-01-01
An influential result of F. John states that no genuinely non-linear strictly hyperbolic quasi-linear first order system of partial differential equations in two variables has a global $C^2$-solution for small enough initial data. Inspired by recent work of D. Christodoulou, we revisit John's original proof and extract a more precise description of the behaviour of solutions at the time of shock. We show that John's singular first order quantity, when expressed in characteristic coordinates, remains bounded until the final time, which is then characterised by an inverse density of characteristics tending to zero in one point. Moreover, we study the derivatives of second order, showing again their boundedness when expressed in appropriate coordinates. We also recover John's upper bound for the time of shock formation and complement it with a lower bound. Finally, we apply these results to electromagnetic plane waves in a crystal with no magnetic properties and cubic electric non-linearity in the energy density...
On the formation of shocks of electromagnetic plane waves in non-linear crystals
Christodoulou, Demetrios; Perez, Daniel Raoul
2016-08-01
An influential result of F. John states that no genuinely non-linear strictly hyperbolic quasi-linear first order system of partial differential equations in two variables has a global C2-solution for small enough initial data. Inspired by recent work of D. Christodoulou, we revisit John's original proof and extract a more precise description of the behaviour of solutions at the time of shock. We show that John's singular first order quantity, when expressed in characteristic coordinates, remains bounded until the final time, which is then characterised by an inverse density of characteristics tending to zero in one point. Moreover, we study the derivatives of second order, showing again their boundedness when expressed in appropriate coordinates. We also recover John's upper bound for the time of shock formation and complement it with a lower bound. Finally, we apply these results to electromagnetic plane waves in a crystal with no magnetic properties and cubic electric non-linearity in the energy density, assuming no dispersion.
Towards a generalized iso-density continuum model for molecular solvents in plane-wave DFT
Gunceler, Deniz; Arias, T. A.
2017-01-01
Implicit electron-density solvation models offer a computationally efficient solution to the problem of calculating thermodynamic quantities of solvated systems from first-principles quantum mechanics. However, despite much recent interest in such models, to date the applicability of such models in the plane-wave context to non-aqueous solvents has been limited because the determination of the model parameters requires fitting to a large database of experimental solvation energies for each new solvent considered. This work presents a simple approach to quickly find approximations to the non-electrostatic contributions to the solvation energy, allowing for development of new iso-density models for a large class of protic and aprotic solvents from only simple, single-molecule ab initio calculations and readily available bulk thermodynamic data. Finally, to illustrate the capabilities of the resulting theory, we also calculate the surface solvation energies of crystalline LiF in various different non-aqueous solvents, and discuss the observed trends and their relevance to lithium battery technology.
Noise characteristics analysis of short wave infrared InGaAs focal plane arrays
Yu, Chunlei; Li, Xue; Yang, Bo; Huang, Songlei; Shao, Xiumei; Zhang, Yaguang; Gong, Haimei
2017-09-01
The increasing application of InGaAs short wave infrared (SWIR) focal plane arrays (FPAs) in low light level imaging requires ultra-low noise FPAs. This paper presents the theoretical analysis of FPA noise, and point out that both dark current and detector capacitance strongly affect the FPA noise. The impact of dark current and detector capacitance on FPA noise is compared in different situations. In order to obtain low noise performance FPAs, the demand for reducing detector capacitance is higher especially when pixel pitch is smaller, integration time is shorter, and integration capacitance is larger. Several InGaAs FPAs were measured and analyzed, the experiments' results could be well fitted to the calculated results. The study found that the major contributor of FPA noise is coupled noise with shorter integration time. The influence of detector capacitance on FPA noise is more significant than that of dark current. To investigate the effect of detector performance on FPA noise, two kinds of photodiodes with different concentration of the absorption layer were fabricated. The detectors' performance and noise characteristics were measured and analyzed, the results are consistent with that of theoretical analysis.
Institute of Scientific and Technical Information of China (English)
Jianwen Liang; Zhongxian Liu
2009-01-01
This paper presents an indirect boundary integration equation method for diffraction of plane P waves by a two-dimensional canyon of arbitrary shape in poroelastic half-space. The Green's functions of compressional and shear wave sources in poroelastic half-space are derived based on Biot's theory. The scattered waves are constructed using the fictitious wave sources close to the boundary of the canyon, and magnitude of the fictitious wave sources are determined by the boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, the comparison between the degenerated solutions of single-phased half-space and the well-known solutions, and the numerical stability of the method.
Bahar, Ezekiel
2010-09-01
The common definition of the Brewster angles for dielectric and magnetic achiral materials are the angles at which the vertically and horizontally polarized reflection coefficients vanish. We examine broader definitions of the Brewster conditions for waves that are incident on a free-space-chiral interface. Besides the common definition, the Brewster angles have been defined as the angles at which the polarizations of the reflected waves are independent of the polarizations of the incident waves. We consider total transmission of incident plane waves that satisfy the Brewster conditions at a free-space-chiral medium planar interface. In this case we determine the polarization of the incident wave for which the reflected vertically and horizontally polarized waves vanish simultaneously. Thus with this definition of the Brewster conditions the polarization of the reflected wave is undefined. The conditions for the excitation of surface waves are considered. The characteristic polarizations that are the same for the reflected and incident waves are also examined subject to the Brewster conditions. Potential applications of this analysis are to experimentally determine the chiral or geotropic measure of the medium and to identify and characterize biological and chemical materials through their optical activity in real time. Several independent measurements can be taken with the same polarimetric instrument to avoid false identifications. Since measurements can be conducted in the reflection mode they can be nonintrusive.
Three-dimensional, prestack, plane wave migration of teleseismic P-to-S converted phases: 1. Theory
Poppeliers, Christian; Pavlis, Gary L.
2003-02-01
We present the theoretical foundations for a prestack migration technique to image teleseismic P-to-S converted phases. The method builds on teleseismic P wave deconvolution, pseudostation stacking [, 1999] and on the idea of using a plane wave decomposition for imaging as introduced by [1982]. Deconvolution operators are constructed by pseudostation stacking of the array aligned to the incident P wave arrival times to produce a space-variable deconvolution operator. The resulting data are then muted to remove the deconvolved direct P wave pulse and pseudostation stacked over a grid of feasible slowness vectors. The pseudostation stack interpolates the wave field onto a regular grid along Earth's surface producing a series (one per slowness vector) of uniformly sampled three-dimensional data cubes (two space variables and time). The plane wave components can be propagated downward using a form of approximate ray tracing with a three-dimensional Earth model. This yields a series of distorted cubes topologically equivalent to the original uniformly sampled data cubes. These data volumes are summed as a weighted stack with the weights derived from an integration formula for inverse scattering based on the generalized Radon transform. This allows an image of the subsurface to be constructed on an event by event basis beneath the array. We apply this technique to data from the Lodore array that was deployed in northwestern Colorado. The results suggest the presence of a major lithospheric-scale discontinuity defined by a south dipping boundary.
Energy Technology Data Exchange (ETDEWEB)
Alshits, V.I.; Darinskii, A.N. [Russian Academy of Sciences, Moscow (Russian Federation); Radovich, A. [Kielce Technological Univ., Kielce (Poland)
1995-05-01
The specific features of acoustic wave reflection are analyzed at the interface between two hexagonal crystals with a sliding contact between them. Attention is focused on the angles of incidence corresponding to excitation of the leaky wave. The conditions supporting the existence of leaky waves are found. The expressions illustrating the behavior of plane wave transformation coefficients for reflection, refraction, and excitation of interfacial oscillations are found in analytic form. In addition, the features of nonmirror reflection are studied for a slightly diverging acoustic beam having initially a rectangular profile. The study deals with the case when the tangential projection of the {open_quotes}mean{close_quotes} wavevector for the beam is close to or coincides with the real part of the wavevector of the leaky wave. 9 refs., 10 figs.
Chefranov, Sergey; Chefranov, Alexander
2016-04-01
Linear hydrodynamic stability theory for the Hagen-Poiseuille (HP) flow yields a conclusion of infinitely large threshold Reynolds number, Re, value. This contradiction to the observation data is bypassed using assumption of the HP flow instability having hard type and possible for sufficiently high-amplitude disturbances. HP flow disturbance evolution is considered by nonlinear hydrodynamic stability theory. Similar is the case of the plane Couette (PC) flow. For the plane Poiseuille (PP) flow, linear theory just quantitatively does not agree with experimental data defining the threshold Reynolds number Re= 5772 ( S. A. Orszag, 1971), more than five-fold exceeding however the value observed, Re=1080 (S. J. Davies, C. M. White, 1928). In the present work, we show that the linear stability theory conclusions for the HP and PC on stability for any Reynolds number and evidently too high threshold Reynolds number estimate for the PP flow are related with the traditional use of the disturbance representation assuming the possibility of separation of the longitudinal (along the flow direction) variable from the other spatial variables. We show that if to refuse from this traditional form, conclusions on the linear instability for the HP and PC flows may be obtained for finite Reynolds numbers (for the HP flow, for Re>704, and for the PC flow, for Re>139). Also, we fit the linear stability theory conclusion on the PP flow to the experimental data by getting an estimate of the minimal threshold Reynolds number as Re=1040. We also get agreement of the minimal threshold Reynolds number estimate for PC with the experimental data of S. Bottin, et.al., 1997, where the laminar PC flow stability threshold is Re = 150. Rogue waves excitation mechanism in oppositely directed currents due to the PC flow linear instability is discussed. Results of the new linear hydrodynamic stability theory for the HP, PP, and PC flows are published in the following papers: 1. S.G. Chefranov, A
Ovsiyuk, E M; Red'kov, V M
2010-01-01
The aim of the article to clarify the status of Shapiro plane wave solutions of the Schr\\"odinger's equation in the frames of the well-known general method of separation of variables. To solve this task, we use the well-known cylindrical coordinates in Riemann and Lobachevsky spaces, naturally related with Euler angle-parameters. Conclusion may be drawn: the general method of separation of variables embraces the all plane wave solutions; the plane waves in Lobachevsky and Riemann space consist of a small part of the whole set of basis wave functions of Schr\\"odinger equation. In space of constant positive curvature $S_{3}$, a complex analog of horospherical coordinates of Lobachevsky space $H_{3}$ is introduced. To parameterize real space $S_{3}$, two complex coordinates $(r,z)$ must obey additional restriction in the form of the equation $r^{2} = e^{z-z^{*}} - e^{2z} $. The metrical tensor of space $S_{3}$ is expressed in terms of $(r,z)$ with additional constraint, or through pairs of conjugate variables $(...
Fast color flow mode imaging using plane wave excitation and temporal encoding
Udesen, Jesper; Gran, Fredrik; Jensen, Jorgen A.
2005-04-01
In conventional ultrasound color flow mode imaging, a large number (~500) of pulses have to be emitted in order to form a complete velocity map. This lowers the frame-rate and temporal resolution. A method for color flow imaging in which a few (~10) pulses have to be emitted to form a complete velocity image is presented. The method is based on using a plane wave excitation with temporal encoding to compensate for the decreased SNR, resulting from the lack of focusing. The temporal encoding is done with a linear frequency modulated signal. To decrease lateral sidelobes, a Tukey window is used as apodization on the transmitting aperture. The data are beamformed along the direction of the flow, and the velocity is found by 1-D cross correlation of these data. First the method is evaluated in simulations using the Field II program. Secondly, the method is evaluated using the experimental scanner RASMUS and a 7 MHz linear array transducer, which scans a circulating flowrig. The velocity of the blood mimicking fluid in the flowrig is constant and parabolic, and the center of the scanned area is situated at a depth of 40 mm. A CFM image of the blood flow in the flowrig is estimated from two pulse emissions. At the axial center line of the CFM image, the velocity is estimated over the vessel with a mean relative standard deviation of 2.64% and a mean relative bias of 6.91%. At an axial line 5 mm to the right of the center of the CFM image, the velocity is estimated over the vessel with a relative standard deviation of 0.84% and a relative bias of 5.74%. Finally the method is tested on the common carotid artery of a healthy 33-year-old male.
Wagner, L. S.; Forsyth, D. W.; Fouch, M. J.; James, D. E.
2009-12-01
The High Lava Plains (HLP) of eastern Oregon represent an unusual track of bimodal volcanism extending from the southeastern-most corner of the state to its current position beneath the Newberry Volcano on the eastern margin of the Cascades. The silicic volcanism is time progressive along this track, beginning some 15 Ma near the Owyhee plateau and then trending to the north east. The timing and location of the start of the HLP coincides with that of the initial volcanism associated with the Yellowstone/Snake River Plain track (YSRP). While the YSRP has often been interpreted as the classic intra-continental hot spot track, the HLP, which trends almost normal to absolute plate motion, is harder to explain. This study uses the 100+ stations associated with the HLP seismic deployment together with another ~100 Earthscope Transportable Array stations (TA) to perform a high resolution inversion for Rayleigh wave phase velocities using the 2-plane-wave methodology of Forsyth and Li (2004). Because of the comparatively small grid spacing of this study, we are able to discern much finer scale structures than studies looking at the entire western U.S. with only TA stations. Preliminary results indicate very low velocities across the study area, especially at upper mantle depths. Especially low velocities are seen beneath the Owyhee plateau and along both the HLP and YSRP tracks. Final details about the exact geometries of these features will help constrain possible scenarios for the formation of the HLP volcanic sequence.
Gao, Jing Kun; Qin, Yu Liang; Deng, Bin; Wang, Hong Qiang; Li, Jin; Li, Xiang
2016-04-01
This paper presents two parts of work around terahertz imaging applications. The first part aims at solving the problems occurred with the increasing of the rotation angle. To compensate for the nonlinearity of terahertz radar systems, a calibration signal acquired from a bright target is always used. Generally, this compensation inserts an extra linear phase term in the intermediate frequency (IF) echo signal which is not expected in large-rotation angle imaging applications. We carried out a detailed theoretical analysis on this problem, and a minimum entropy criterion was employed to estimate and compensate for the linear-phase errors. In the second part, the effects of spherical wave on terahertz inverse synthetic aperture imaging are analyzed. Analytic criteria of plane-wave approximation were derived in the cases of different rotation angles. Experimental results of corner reflectors and an aircraft model based on a 330-GHz linear frequency-modulated continuous wave (LFMCW) radar system validated the necessity and effectiveness of the proposed compensation. By comparing the experimental images obtained under plane-wave assumption and spherical-wave correction, it also showed to be highly consistent with the analytic criteria we derived.
Zhang, Baile; Wu, Bae-Ian; Chen, Hongsheng; Kong, Jin Au
2008-08-08
We demonstrate some interesting phenomena associated with a nonmonochromatic plane wave passing through a spherical invisibility cloak whose radial permittivity and permeability are of Drude and Lorentz types. We observe that the frequency center of a quasimonochromatic incident wave will suffer a blueshift in the forward scattering direction. Different frequency components have different depths of penetration, causing a rainbowlike effect within the cloak. The concept of group velocity at the inner boundary of the cloak needs to be revisited. Extremely low scattering can still be achieved within a narrow band.
Institute of Scientific and Technical Information of China (English)
FengYangde; WangYuesheng; ZhangZimao; CuiJunzhi
2003-01-01
A 2D time domain boundary element method (BEM) is developed to solve the transient scattering of plane waves by a unilaterally frictionally constrained inclusion. Coulomb friction is assumed along the contact interface. The incident wave is assumed strong enough so that localized slip and separation take place along the interface. The present problem is in effect a nonlinear boundary value problem since the mixed boundary conditions involve unknown intervals (slip, separation and stick regions). In order to determine the unknown intervals, an iterative technique is developed. As an example, we consider the scattering of a circular cylinder embeddedin an infinite solid.
Li, Xiang-Guo; Zhang, X -G; Cheng, Hai-Ping
2015-01-01
Electron transport in graphene is along the sheet but junction devices are often made by stacking different sheets together in a "side-contact" geometry which causes the current to flow perpendicular to the sheets within the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem by implementing a plane-wave based multiple scattering theory for electron transport. This implementation improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization over large number of nodes, and does not require the current direction to be along a lattice axis. As a first application, we calculate the tunneling current through a side-contact graphene junction formed by two separate graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two graphene sheets. Such transport beh...
Hu, Min; Wang, Hailong; Gong, Qian; Wang, Shumin
2017-04-01
A comparison is made between the plane wave basis and variational method. Within the framework of effective-mass approximation theory, the variational and plane wave basis method are used to calculate ground state energy and ground state binding energy in low-dimensional nano-structures under the external electric field. Comparing calculation results, the donor binding energies of ground state display the consistent trend, both of them are strongly dependent on the quantum size, impurity position and external electric field. However, the impurity ground state energy calculated using variational method may be larger than the real value and it results in the smaller binding energy for variational method. In addition, the binding energy is more sensitive to the external electric field for the variational method, which can be seen more clearly from Stark shift.
Liquid Water through Density-Functional Molecular Dynamics: Plane-Wave vs Atomic-Orbital Basis Sets
Miceli, Giacomo; Pasquarello, Alfredo
2016-01-01
We determine and compare structural, dynamical, and electronic properties of liquid water at near ambient conditions through density-functional molecular dynamics simulations, when using either plane-wave or atomic-orbital basis sets. In both frameworks, the electronic structure and the atomic forces are self-consistently determined within the same theoretical scheme based on a nonlocal density functional accounting for van der Waals interactions. The overall properties of liquid water achieved within the two frameworks are in excellent agreement with each other. Thus, our study supports that implementations with plane-wave or atomic-orbital basis sets yield equivalent results and can be used indiscriminately in study of liquid water or aqueous solutions.
Institute of Scientific and Technical Information of China (English)
Li Ying-Le; Huang Ji-Ying
2006-01-01
The relation between corresponding trigonometric functions in two rotating coordinate systems is presented. The transformation formula for a vector in the two rotating spherical coordinate systems is obtained. The scattering fields for a spherical target irradiated by a plane electromagnetic wave in an arbitrary direction are derived. These fields in a particular case retrogress to those available in the literature. The obtained results have great potential in practical applications.
Determination of the in-plane components of motion in a Lamb wave from single-axis laser vibrometry.
Rajic, Nik; Rosalie, Cedric; Norman, Patrick; Davis, Claire
2014-06-01
A method is proposed for determining in-plane components of motion in a Lamb wave from laser vibrometer measurements of surface motion out of plane. The approach relies on a frequency domain transformation that assumes knowledge only of the plate thickness and the bulk wave speeds. An outline of the relevant theory is followed by several validation case studies that generally affirm a useful level of accuracy and robust performance across a relatively wide frequency-thickness product range. In a comparison to the two-angle vibrometry approach, the proposed method is shown to be simpler to implement and to yield estimates with a consistently higher signal to noise ratio. The approach is then used to furnish estimates of the in-plane strains in Lamb waves propagating in an aluminum plate at frequencies below the first cut-off. These estimates are compared to strain measurements obtained from an adhesively bonded fiber Bragg grating. The agreement is shown to be excellent overall with an average discrepancy of less than 6%; however, systematic errors of twice that amount were recorded in the low-frequency-thickness product regime. These low-frequency discrepancies are not consistent with known sources of experimental error and cannot be explained by shear-lag theory.
Charakhch'yan, Alexander A
2014-01-01
The one-dimensional (1D) problem on bilatiral irradiation by proton beams of the plane layer of condensed DT mixture with length $2H$ and density $\\rho_0 \\leqslant 100\\rho_s$, where $\\rho_s$ is the fuel solid-state density at atmospheric pressure and temperature of 4 K, is considered. The proton kinetic energy is 1 MeV, the beam intensity is $10^{19}$ W/cm$^2$ and duration is 50 ps. A mathematical model is based on the one-fluid two-temperature hydrodynamics with a wide-range equation of state of the fuel, electron and ion heat conduction, DT fusion reaction kinetics, self-radiation of plasma and plasma heating by alpha-particles. If the ignition occurs, a plane detonation wave, which is adjacent to the front of the rarefaction wave, appears. Upon reflection of this detonation wave from the symmetry plane, the flow with the linear velocity profile along the spatial variable $x$ and with a weak dependence of the thermodynamic functions of $x$ occurs. An appropriate solution of the equations of hydrodynamics is...
Mei, Jun; Liu, Zhengyou; Qiu, Chunyin
2005-06-29
We extend the multiple-scattering theory (MST) to out-of-plane propagating elastic waves in 2D periodical composites by taking into account the full vector character. The formalism for both the band structure calculation and the reflection and transmission coefficient calculation for finite slabs is presented. The latter is based on a double-layer scheme, which obtains the reflection and transmission matrix elements for the multilayer slab from those of a single layer. Being more rapid in both the band structure and the transmission coefficient calculations for out-of-plane propagating elastic waves, our approach especially shows great advantages in handling the systems with mixed solid and fluid components, for which the conventional plane wave approach fails. As the applications of the formalism, we calculate the band structure as well as the transmission coefficients through finite slabs for systems with lead rods in an epoxy host, steel rods in a water host and water rods in a PMMA host.
An IBEM solution to the scattering of plane SH-waves by a lined tunnel in elastic wedge space
Institute of Scientific and Technical Information of China (English)
Zhongxian Liu; Lei Liu
2015-01-01
The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space.According to the theory of single-layer potential,the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface.The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces.The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space.Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and efficiently.The wave motion feature strongly depends on the wedge angle,the angle of incidence,incident frequency,the location of lined tunnel,and material parameters.The waves interference and amplification effect around the tunnel in wedge space is more significant,causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0,respectively,more than double that of the case of half-space.Hence,considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.
Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level
Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.
2010-01-01
A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…
Stress wave velocity patterns in the longitudinal-radial plane of trees for defect diagnosis
Guanghui Li; Xiang Weng; Xiaocheng Du; Xiping Wang; Hailin Feng
2016-01-01
Acoustic tomography for urban tree inspection typically uses stress wave data to reconstruct tomographic images for the trunk cross section using interpolation algorithm. This traditional technique does not take into account the stress wave velocity patterns along tree height. In this study, we proposed an analytical model for the wave velocity in the longitudinalâ...
Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level
Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.
2010-01-01
A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…
Theoretical and Experimental Study of Scattering of a Plane Wave by an Inhomogeneous Plasma Sphere
Institute of Scientific and Technical Information of China (English)
SONG Fa-Lun; CAO Jin-Xiang; WANG Ge; WANG Yan; ZHU Ying; ZHU Jian; WANG Liang; NIU Tian-Ye
2006-01-01
@@ Scattering of electromagnetic waves by an inhomogeneous plasma sphere has been studied theoretically and experimentally. The offset angles of electromagnetic waves caused by the plasma sphere have been observed experimentally. The effects of the electromagnetic wave frequency and plasma density on the offset angle are discussed. The plasma density is estimated with the offset angle.
Olano, C. A.
2009-11-01
Context: Using certain simplifications, Kompaneets derived a partial differential equation that states the local geometrical and kinematical conditions that each surface element of a shock wave, created by a point blast in a stratified gaseous medium, must satisfy. Kompaneets could solve his equation analytically for the case of a wave propagating in an exponentially stratified medium, obtaining the form of the shock front at progressive evolutionary stages. Complete analytical solutions of the Kompaneets equation for shock wave motion in further plane-parallel stratified media were not found, except for radially stratified media. Aims: We aim to analytically solve the Kompaneets equation for the motion of a shock wave in different plane-parallel stratified media that can reflect a wide variety of astrophysical contexts. We were particularly interested in solving the Kompaneets equation for a strong explosion in the interstellar medium of the Galactic disk, in which, due to intense winds and explosions of stars, gigantic gaseous structures known as superbubbles and supershells are formed. Methods: Using the Kompaneets approximation, we derived a pair of equations that we call adapted Kompaneets equations, that govern the propagation of a shock wave in a stratified medium and that permit us to obtain solutions in parametric form. The solutions provided by the system of adapted Kompaneets equations are equivalent to those of the Kompaneets equation. We solved the adapted Kompaneets equations for shock wave propagation in a generic stratified medium by means of a power-series method. Results: Using the series solution for a shock wave in a generic medium, we obtained the series solutions for four specific media whose respective density distributions in the direction perpendicular to the stratification plane are of an exponential, power-law type (one with exponent k=-1 and the other with k =-2) and a quadratic hyperbolic-secant. From these series solutions, we deduced
A 1D time-domain method for in-plane wave motions in a layered half-space
Institute of Scientific and Technical Information of China (English)
Jingbo Liu; Yan Wang
2007-01-01
A 1D finite element method in time domain is developed in this paper and applied to calculate in-plane wave motions of free field exited by SV or P wave oblique incidence in an elastic layered half-space. First, the layered half-space is discretized on the basis of the propagation cha-racteristic of elastic wave according to the Snell law. Then, the finite element method with lumped mass and the cen-tral difference method are incorporated to establish 2D wave motion equations, which can be transformed into 1D equa-tions by discretization principle and explicit finite element method. By solving the 1D equations, the displacements of nodes in any vertical line can be obtained, and the wave motions in layered half-space are finally determined based on the characteristic of traveling wave. Both the theoretical ana-lysis and the numerical results demonstrate that the proposed method has high accuracy and good stability.
Long-Wave Runup on a Plane Beach: An Experimental and Numerical Investigation
Vater, Stefan; Drähne, Ulrike; Goseberg, Nils; Beisiegel, Nicole; Behrens, Jörn
2016-04-01
In this study the runup generated by leading depression single sinusoidal waves as a very basic representation of a tsunami is investigated through physical and numerical experiments. The results are compared against existing analytical expressions for the long-wave runup of periodic sinusoidal waves. It can be shown that shallow water theory is applicable for the investigated type of waves. Furthermore, we demonstrate how such a comparative, inter-methodological work contributes to the understanding of shoreline motion of long waves. The produced data set may serve as a novel benchmark for leading depression sinusoidal waves. The experimental study was conducted using an innovative pump-driven wave generator that is capable of generating arbitrarily long waves which might even exceed the length of the wave flume. Due to the complex control problem for the chosen type of wave generator, spurious over-riding small-scale waves were unavoidable in some of the experiments. The numerical simulations were carried out with a one-dimensional Runge-Kutta discontinuous Galerkin (RKDG) non-linear shallow water model. It incorporates a high fidelity wetting and drying scheme. The sinusoidal waves are generated in a constant depth section attached to a linearly sloping beach, have periods between 20 and 100 seconds and surf similarity parameters between 4.4 and 15.6. In a first qualitative analysis the evolution of the runup elevation and velocity is compared. In order to quantify analytical, numerical and experimental data, the wave similarity measured by the Brier score, maximum run-up and run-down height, as well as run-up/run-down velocities are utilized as metrics. As a starting point, periodic and non-periodic clean sinusoidal waves are compared numerically to rule out differences due to the single sinusoidal wave generation in the wave flume. On further analysis, significant differences in experimental and analytically expected values are observed. However, with the
Barbosa, Filipe J.; Skews, Beric W.
1997-05-01
Double exposure holographic interferometry and high speed laser shadowgraph photography and videography are used to investigate the mutual reflection of two plane shock waves. Normally research on the transition from regular to Mach reflection is undertaken by allowing a plane shock wave to impinge on a wedge. However due to the boundary layer growth on the wedge, regular reflection persists at wedge angles higher than that allowed for by inviscid shock wave theory. Several bifurcated shock tubes have been constructed, wherein an initially planar shock wave is split symmetrically into two and then recombined at the trailing edge of a wedge. The plane of symmetry acts as an ideal rigid wall eliminating thermal and viscous boundary layer effects. The flow visualization system used needs to provide high resolution information on the shockwave, slipstream, triple point and vortex positions and angles. Initially shadowgraph and schlieren methods, with a Xenon light source, were used. These results, while proving useful, are not of a sufficient resolution to measure the Mach stem and slipstream lengths accurately enough in order to determine the transition point between regular and Mach reflection. To obtain the required image resolution a 2 joule double pulse ruby laser, with a 30 ns pulse duration, was used to make holographic interferograms. The combined advantages of holographic interferometry and the 30 ns pulse laser allows one to obtain much sharper definition, and more qualitative as well as quantitative information on the flow field. The disadvantages of this system are: the long time taken to develop holograms, the difficulty of aligning the pulse laser and the fact that only one image per test is obtained. Direct contact shadowgraphs were also obtained using the pulse ruby laser to help determine triple point trajectory angles. In order to provide further information a one million frames per second CCD camera, which can take up to 10 superimposed images, was
Energy Technology Data Exchange (ETDEWEB)
Hou Zhilin [Laboratoire de Physique des Milieux Ionises et Applications (LPMIA), Nancy University, CNRS Boulevard des Aiguillettes, BP 239 F-54506, Vandoeuvre-les-Nancy (France)], E-mail: zhilin.hou@lpmi.uhp-nancy.fr; Assouar, Badreddine M. [Laboratoire de Physique des Milieux Ionises et Applications (LPMIA), Nancy University, CNRS Boulevard des Aiguillettes, BP 239 F-54506, Vandoeuvre-les-Nancy (France)
2008-03-17
We show that the conversional three-dimensional plane wave expansion method can be revised to investigate the lamb wave propagation in the plate with two-dimensional phononic crystal layer coated on uniform substrate. We find that an imaginary three-dimensional periodic system can be constructed by stacking the studied plates and vacuum layers alternately, and then the Fourier series expansion can be performed. The difference between our imaginary periodic system and the true three-dimensional one is that, in our system, the Bloch feature of the wave along the thickness direction is broken. Three different systems are investigated by the proposed method as examples. The principle and reliability of the method are also discussed.
Instability of coupled gravity-inertial-Rossby waves on a β-plane in solar system atmospheres
Directory of Open Access Journals (Sweden)
J. F. McKenzie
2009-11-01
Full Text Available This paper provides an analysis of the combined theory of gravity-inertial-Rossby waves on a β-plane in the Boussinesq approximation. The wave equation for the system is fifth order in space and time and demonstrates how gravity-inertial waves on the one hand are coupled to Rossby waves on the other through the combined effects of β, the stratification characterized by the Väisälä-Brunt frequency N, the Coriolis frequency f at a given latitude, and vertical propagation which permits buoyancy modes to interact with westward propagating Rossby waves. The corresponding dispersion equation shows that the frequency of a westward propagating gravity-inertial wave is reduced by the coupling, whereas the frequency of a Rossby wave is increased. If the coupling is sufficiently strong these two modes coalesce giving rise to an instability. The instability condition translates into a curve of critical latitude Θ_{c} versus effective equatorial rotational Mach number M, with the region below this curve exhibiting instability. "Supersonic" fast rotators are unstable in a narrow band of latitudes around the equator. For example Θ_{c}~12° for Jupiter. On the other hand slow "subsonic" rotators (e.g. Mercury, Venus and the Sun's Corona are unstable at all latitudes except very close to the poles where the β effect vanishes. "Transonic" rotators, such as the Earth and Mars, exhibit instability within latitudes of 34° and 39°, respectively, around the Equator. Similar results pertain to Oceans. In the case of an Earth's Ocean of depth 4km say, purely westward propagating waves are unstable up to 26° about the Equator. The nonlinear evolution of this instability which feeds off rotational energy and gravitational buoyancy may play an important role in atmospheric dynamics.
Khurana, Aarti; Tomar, S. K.
2008-04-01
Reflection and transmission phenomena of a plane longitudinal displacement wave impinging obliquely at a plane interface between a micropolar elastic solid half-space and a chiral elastic solid half-space are investigated. The incident wave is assumed to be striking at the plane interface after propagating through the micropolar elastic solid half-space. The reflection and transmission coefficients are obtained by utilizing two possible sets of boundary conditions, for a specific model and there values corresponding to two boundary conditions are also compared graphically. The effect of chirality parameter on various reflection and transmission coefficients have been noticed and shown graphically. Results of Lakhtakia et al. [Reflection of elastic plane waves at a planar achiral-chiral interface, Journal of the Acoustical Society of America 87 (1990) 2314-2318] and Miklowitz [The Theory of Elastic Waves and Waveguides, North-Holland, New York, 1978] have also been reduced as special cases from the present formulation.
Hsu, Jin-Chen; Wu, Tsung-Tsong
2008-02-01
Based on Mindlin's piezoelectric plate theory and the plane wave expansion method, a formulation is proposed to study the frequency band gaps and dispersion relations of the lower-order Lamb waves in two-dimensional piezoelectric phononic plates. The method is applied to analyze the phononic plates composed of solid-solid and airsolid constituents with square and triangular lattices, respectively. Factors that influence the opening and width of the complete Lamb wave gaps are identified and discussed. For solid/solid phononic plates, it is suggested that the filling material be chosen with larger mass density, proper stiffness, and weak anisotropic factor embedded in a soft matrix in order to obtain wider complete band gaps of the lower-order Lamb waves. By comparing to the calculated results without considering the piezoelectricity, the influences of piezoelectric effect on Lamb waves are analyzed as well. On the other hand, for air/solid phononic plates, a background material itself with proper anisotropy and a high filling fraction of air may favor the opening of the complete Lamb wave gaps.
Possible second-order nonlinear interactions of plane waves in an elastic solid
Korneev, V.A.; Demcenko, A.
2014-01-01
There exist ten possible nonlinear elastic wave interactions for an isotropic solid described by three constants of the third order. All other possible interactions out of 54 combinations (triplets) of interacting and resulting waves are prohibited, because of restrictions of various kinds. The cons
Bogdanov, O V
2014-01-01
The relations among the components of the exit momenta of ultrarelativistic electrons scattered on a strong electromagnetic wave of a low (optical) frequency and linear polarization are established using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of the electrons traversed the electromagnetic wave depend weakly on the initial values of the momenta. These electrons are mostly scattered at the small angles to the direction of propagation of the electromagnetic wave. The maximum Lorentz factor of the electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momenta. The momentum component parallel to the electric field strength vector of the electromagnetic wave is determined only by the diameter of the laser beam measured in the units of the classical electron radius. As for the reflected electrons, they for the most part l...
An Experimental and Numerical Study of Long Wave Run-Up on a Plane Beach
Directory of Open Access Journals (Sweden)
Ulrike Drähne
2015-12-01
Full Text Available This research is to facilitate the current understanding of long wave dynamics at coasts and during on-land propagation; experimental and numerical approaches are compared against existing analytical expressions for the long wave run-up. Leading depression sinusoidal waves are chosen to model these dynamics. The experimental study was conducted using a new pump-driven wave generator and the numerical experiments were carried out with a one-dimensional discontinuous Galerkin non-linear shallow water model. The numerical model is able to accurately reproduce the run-up elevation and velocities predicted by the theoretical expressions. Depending on the surf similarity of the generated waves and due to imperfections of the experimental wave generation, riding waves are observed in the experimental results. These artifacts can also be confirmed in the numerical study when the data from the physical experiments is assimilated. Qualitatively, scale effects associated with the experimental setting are discussed. Finally, shoreline velocities, run-up and run-down are determined and shown to largely agree with analytical predictions.
Evarestov, Robert A.; Blokhin, Evgeny; Gryaznov, Denis; Kotomin, Eugene A.; Maier, Joachim
2010-01-01
The atomic, electronic structure and phonon frequencies have been calculated in a cubic and low-temperature tetragonal SrTiO3 phases at the ab initio level. We demonstrate that the use of hybrid exchange-correlation PBE0 functional gives the best agreement with experimental data. The results for the standard PBE and hybrid PBE0 are compared for the two types of basis sets: a linear combination of atomic orbitals (LCAO, CRYSTAL09 computer code) and plane waves (PW, VASP 5.2 code). Relation bet...
Wilson, Chick C.; Morrison, Carole A.
2002-08-01
Low temperature neutron diffraction and high level computational methods have been applied to investigate the short hydrogen bond in urea-phosphoric acid. It is found that isolated molecule calculations predict a `normal' O-H⋯O hydrogen bond, in strong disagreement with the very short, 3 c-4 e hydrogen bond found from the neutron diffraction. Extending these calculations into a periodic environment using plane-wave DFT methods give much improved agreement with experiment, with a much shorter, stronger hydrogen bond, and significant elongation of the O-H `covalent' bond.
Institute of Scientific and Technical Information of China (English)
SUN Yu-guo; WU Lin-zhi
2005-01-01
The dynamic behavior of two collinear cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied using the Schmidt method for the permeable crack surface conditions. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. In solving the triple integral equations, the jump of the displacements across the crack surface is expanded in a series of Jacobi polynomials. It can be obtained that the stress field is independent of the electric field and the magnetic flux.
Institute of Scientific and Technical Information of China (English)
LI Lin; ZHOU Zhen-gong; WANG Biao
2006-01-01
The scattering problem of anti-plane shear waves in a functionally graded material strip with an off-center crack is investigated by use of Schmidt method. The crack is vertically to the edge of the strip. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations that the unknown variable is the jump of the displacement across the crack surfaces. To solve the dual integral equations, the jump of the displacement across the crack surfaces was expanded in a series of Jacobi polynomials. Numerical examples were provided to show the effects of the parameter describing the functionally graded materials, the position of the crack and the frequency of the incident waves upon the stress intensity factors of the crack.
Anti-plane (SH) waves diffraction by an underground semi-circular cavity: analytical solution
Institute of Scientific and Technical Information of China (English)
Luo Hao; Vincent W. Lee; Liang Jianwen
2010-01-01
Diffraction of a two-dimensional (2D) semi-circular cavity in a half-space under incident SH-waves is studied using the classic wave function expansion method with a new de-coupling technique. This so-called "improved cosine half-range expansion" algorithm exhibits an excellent performance in reducing displacement residual errors at two rim points of concern. The governing equations are developed in a manner that minimizes the residues of the boundary conditions. Detailed derivation and analysis procedures as well as truncation of infinite linear governing equations are presented. The semi-circular cavity model presented in this paper, due to its simple profile, is expected to be used in seismic wave propagation studies as a benchmark for examining the accuracies of various analytical or numerical methods for mixed-boundary wave propagation problems.
Full-wave solution of short impulses in inhomogeneous plasma
Indian Academy of Sciences (India)
Orsolya E Ferencz
2005-02-01
In this paper the problem of real impulse propagation in arbitrarily inhomogeneous media will be presented on a fundamentally new, general, theoretical way. The general problem of wave propagation of monochromatic signals in inhomogeneous media was enlightened in [1]. The earlier theoretical models for spatial inhomogeneities have some errors regarding the structure of the resultant signal originated from backward and forward propagating parts. The application of the method of inhomogeneous basic modes (MIBM) and the complete full-wave solution of arbitrarily shaped non-monochromatic plane waves in plasmas made it possible to obtain a better description of the problem, on a fully analytical way, directly from Maxwell's equations. The model investigated in this paper is inhomogeneous of arbitrary order (while the wave pattern can exist), anisotropic (magnetized), linear, cold plasma, in which the gradient of the one-dimensional spatial inhomogeneity is parallel to the direction of propagation.
Institute of Scientific and Technical Information of China (English)
Ni Zhen; Feng-Lian Li; Yue-Sheng Wang; Chuan-Zeng Zhang
2012-01-01
In this paper,a method based on the Dirichletto-Neumann map is developed for bandgap calculation of mixed in-plane waves propagating in 2D phononic crystals with square and triangular lattices.The method expresses the scattered fields in a unit cell as the cylindrical wave expansions and imposes the Bloch condition on the boundary of the unit cell.The Dirichlet-to-Neumann (DtN) map is applied to obtain a linear eigenvalue equation,from which the Bloch wave vectors along the irreducible Brillouin zone are calculated for a given frequency.Compared with other methods,the present method is memory-saving and time-saving.It can yield accurate results with fast convergence for various material combinations including those with large acoustic mismatch without extra computational cost.The method is also efficient for mixed fluid-solid systems because it considers the different wave modes in the fluid and solid as well as the proper fluid-solid interface condition.
Liu, Zhongxian; Wang, Yirui; Liang, Jianwen
2016-06-01
The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the effect of the distance between the two tunnels, the stiffness and density of the lining material, and the incident frequency on the seismic response of the tunnels is investigated. Numerical results demonstrate that the dynamic interaction between the twin tunnels cannot be ignored and the lower tunnel has a significant shielding effect on the upper tunnel for high-frequency incident waves, resulting in great decrease of the dynamic hoop stress in the upper tunnel; for the low-frequency incident waves, in contrast, the lower tunnel can lead to amplification effect on the upper tunnel. It also reveals that the frequency-spectrum characteristics of dynamic stress of the lower tunnel are significantly different from those of the upper tunnel. In addition, for incident P waves in low-frequency region, the soft lining tunnels have significant amplification effect on the surface displacement amplitude, which is slightly larger than that of the corresponding single tunnel.
Monochromatic gamma emitter for low energy quanta
Tomova, Z R; Mironova, S A
2004-01-01
The possibility of creating of a monochromatic gamma emitter of low energy quanta is analyzed. The idea is based on Daning's scheme. Except for purely scientific problems the monochromator is actual for therapy of wide range of diseases.
Energy Technology Data Exchange (ETDEWEB)
Boudjedaa, T. [Ecole Normale Superieure, Jijel (Algeria). Dept. de Physique; Chetouani, L. [Dept. de Physique Theorique, Inst. de Physique, Univ. de Constantine (Algeria); Guechi, L. [Dept. de Physique Theorique, Inst. de Physique, Univ. de Constantine (Algeria); Hammann, T.F. [Lab. de Mathematiques et Physique Mathematique, Faculte des Sciences et Techniques, 68 Mulhouse (France)
1995-07-01
The Green`s functions for charged particles of spin zero and 1/2, subjected to the action of a Redmond field which is the combination of an electromagnetic plane wave plus a parallel constant magnetic field, are calculated via the Schwinger action principle. The Heisenberg equations are then exactly solved. The spectrum and the waves are deduced in both cases. (orig.).
Reconstruction of wave front and object for inline holography from a set of detection planes.
Hagemann, J; Robisch, A-L; Luke, D R; Homann, C; Hohage, T; Cloetens, P; Suhonen, H; Salditt, T
2014-05-19
We illustrate the errors inherent in the conventional empty beam correction of full field X-ray propagation imaging, i.e. the division of intensities in the detection plane measured with an object in the beam by the intensity pattern measured without the object, i.e. the empty beam intensity pattern. The error of this conventional approximation is controlled by the ratio of the source size to the smallest feature in the object, as is shown by numerical simulation. In a second step, we investigate how to overcome the flawed empty beam division by simultaneous reconstruction of the probing wavefront (probe) and of the object, based on measurements in several detection planes (multi-projection approach). The algorithmic scheme is demonstrated numerically and experimentally, using the defocus wavefront of the hard X-ray nanoprobe setup at the European Synchrotron Radiation Facility (ESRF).
Do, V. Nam; Le, H. Anh; Vu, V. Thieu
2017-04-01
We propose a computational approach to combining the plane-wave method and the real-space treatment to describe the periodic variation in the material plane and the decay of wave functions from the material surfaces. The proposed approach is natural for two-dimensional material systems and thus may circumvent some intrinsic limitations involving the artificial replication of material layers in traditional supercell methods. In particular, we show that the proposed method is easy to implement and, especially, computationally effective since low-cost computational algorithms, such as iterative and recursive techniques, can be used to treat matrices with block tridiagonal structure. Using this approach we show first-principles features that supplement the current knowledge of some fundamental issues in bilayer graphene systems, including the coupling between the two graphene layers, the preservation of the σ band of monolayer graphene in the electronic structure of the bilayer system, and the differences in low-energy band structure between the AA- and AB-stacked configurations.
Nikolaev, A. V.; Lamoen, D.; Partoens, B.
2016-07-01
In order to increase the accuracy of the linearized augmented plane wave (LAPW) method, we present a new approach where the plane wave basis function is augmented by two different atomic radial components constructed at two different linearization energies corresponding to two different electron bands (or energy windows). We demonstrate that this case can be reduced to the standard treatment within the LAPW paradigm where the usual basis set is enriched by the basis functions of the tight binding type, which go to zero with zero derivative at the sphere boundary. We show that the task is closely related with the problem of extended core states which is currently solved by applying the LAPW method with local orbitals (LAPW+LO). In comparison with LAPW+LO, the number of supplemented basis functions in our approach is doubled, which opens up a new channel for the extension of the LAPW and LAPW+LO basis sets. The appearance of new supplemented basis functions absent in the LAPW+LO treatment is closely related with the existence of the u ˙ l -component in the canonical LAPW method. We discuss properties of additional tight binding basis functions and apply the extended basis set for computation of electron energy bands of lanthanum (face and body centered structures) and hexagonal close packed lattice of cadmium. We demonstrate that the new treatment gives lower total energies in comparison with both canonical LAPW and LAPW+LO, with the energy difference more pronounced for intermediate and poor LAPW basis sets.
Directory of Open Access Journals (Sweden)
Marta Cavagnaro
2013-01-01
Full Text Available The safety aspects of the exposure of people to uniform plane waves in the frequency range from 900 MHz to 5 GHz are analyzed. Starting from a human body model available in the literature, representing a man in resting state, two new anatomical models are considered, representing different phases of the respiratory activity: tidal breath and deep breath. These models have been used to evaluate the whole body Specific Absorption Rate (SAR and the 10-g averaged and 1-g averaged SAR. The analysis is performed using a parallel implementation of the finite difference time domain method. A uniform plane wave, with vertical polarization, is used as an incident field since this is the canonical exposure situation used in safety guidelines. Results show that if the incident electromagnetic field is compliant with the reference levels promulgated by the International Commission on Non-Ionizing Radiation Protection and by IEEE, the computed SAR values are lower than the corresponding basic restrictions, as expected. On the other side, when the Federal Communications Commission reference levels are considered, 1-g SAR values exceeding the basic restrictions for exposure at 4 GHz and above are obtained. Furthermore, results show that the whole body SAR values increase passing from the resting state model to the deep breath model, for all the considered frequencies.
Torres, Ana M; Lopez, Jose J; Pueo, Basilio; Cobos, Maximo
2013-04-01
Plane-wave decomposition (PWD) methods using microphone arrays have been shown to be a very useful tool within the applied acoustics community for their multiple applications in room acoustics analysis and synthesis. While many theoretical aspects of PWD have been previously addressed in the literature, the practical advantages of the PWD method to assess the acoustic behavior of real rooms have been barely explored so far. In this paper, the PWD method is employed to analyze the sound field inside a selected set of real rooms having a well-defined purpose. To this end, a circular microphone array is used to capture and process a number of impulse responses at different spatial positions, providing angle-dependent data for both direct and reflected wavefronts. The detection of reflected plane waves is performed by means of image processing techniques applied over the raw array response data and over the PWD data, showing the usefulness of image-processing-based methods for room acoustics analysis.
Takahashi, Yukio; Nishino, Yoshinori; Tsutsumi, Ryosuke; Kubo, Hideto; Furukawa, Hayato; Mimura, Hidekazu; MATSUYAMA, Satoshi; Zettsu, Nobuyuki; Matsubara, Eiichiro; Ishikawa, Tetsuya; Yamauchi, Kazuto
2009-01-01
X-ray waves in the center of the beam waist of nearly diffraction limited focused x-ray beams can be considered to have amplitude and phase that are both almost uniform, i.e., they are x-ray plane waves. Here we report the results of an experimental demonstration of high-resolution diffraction microscopy using the x-ray plane wave of the synchrotron x-ray beam focused using Kirkpatrik-Baez mirrors. A silver nanocube with an edge length of ∼100 nm is illuminated with the x-ray beam focused to ...
Directory of Open Access Journals (Sweden)
Narottam Maity
2016-01-01
Full Text Available Reflection of longitudinal displacement waves in a generalized thermoelastic half space under the action of uniform magnetic field has been investigated. The magnetic field is applied in such a direction that the problem can be considered as a two-dimensional one. The discussion is based on the three theories of generalized thermoelasticity: Lord-Shulman (L-S, Green-Lindsay (G-L, and Green-Naghdi (G-N with energy dissipation. We compute the possible wave velocities for different models. Amplitude ratios have been presented. The effects of magnetic field on various subjects of interest are discussed and shown graphically.
Energy Technology Data Exchange (ETDEWEB)
Hoffmann, T.; Strawinska, J. [Politechnika Poznanska, Poznan (Poland)
1993-12-31
The present considerations are devoted to the description of an electromagnetic field in deformable body within the framework of the conceptional extended electrodynamics. The formal tool used is the classical field theory based on methods of analytical mechanics. The deformation is described by applying the relativistic kinematics of a medium which makes it possible to obtain, as a particular case, three dimensional laws with simple physical interpretation. The dynamics of bodies interacting with an electromagnetic field has been expressed by Lagrange`s equation of motion with a view to obtaining linear field equations. In the domain of wave problems one-dimensional volume waves have been analysed. (author). 19 refs.
Maintz, Stefan; Deringer, Volker L; Tchougréeff, Andrei L; Dronskowski, Richard
2013-11-05
Quantum-chemical computations of solids benefit enormously from numerically efficient plane-wave (PW) basis sets, and together with the projector augmented-wave (PAW) method, the latter have risen to one of the predominant standards in computational solid-state sciences. Despite their advantages, plane waves lack local information, which makes the interpretation of local densities-of-states (DOS) difficult and precludes the direct use of atom-resolved chemical bonding indicators such as the crystal orbital overlap population (COOP) and the crystal orbital Hamilton population (COHP) techniques. Recently, a number of methods have been proposed to overcome this fundamental issue, built around the concept of basis-set projection onto a local auxiliary basis. In this work, we propose a novel computational technique toward this goal by transferring the PW/PAW wavefunctions to a properly chosen local basis using analytically derived expressions. In particular, we describe a general approach to project both PW and PAW eigenstates onto given custom orbitals, which we then exemplify at the hand of contracted multiple-ζ Slater-type orbitals. The validity of the method presented here is illustrated by applications to chemical textbook examples-diamond, gallium arsenide, the transition-metal titanium-as well as nanoscale allotropes of carbon: a nanotube and the C60 fullerene. Remarkably, the analytical approach not only recovers the total and projected electronic DOS with a high degree of confidence, but it also yields a realistic chemical-bonding picture in the framework of the projected COHP method.
Plane Wave-Perturbative Method for Evaluating the Effective Speed of Sound in 1D Phononic Crystals
Directory of Open Access Journals (Sweden)
J. Flores Méndez
2016-01-01
Full Text Available A method for calculating the effective sound velocities for a 1D phononic crystal is presented; it is valid when the lattice constant is much smaller than the acoustic wave length; therefore, the periodic medium could be regarded as a homogeneous one. The method is based on the expansion of the displacements field into plane waves, satisfying the Bloch theorem. The expansion allows us to obtain a wave equation for the amplitude of the macroscopic displacements field. From the form of this equation we identify the effective parameters, namely, the effective sound velocities for the transverse and longitudinal macroscopic displacements in the homogenized 1D phononic crystal. As a result, the explicit expressions for the effective sound velocities in terms of the parameters of isotropic inclusions in the unit cell are obtained: mass density and elastic moduli. These expressions are used for studying the dependence of the effective, transverse and longitudinal, sound velocities for a binary 1D phononic crystal upon the inclusion filling fraction. A particular case is presented for 1D phononic crystals composed of W-Al and Polyethylene-Si, extending for a case solid-fluid.
Prediction of Vertical-Plane Wave Loading and Ship Responses in High Seas
DEFF Research Database (Denmark)
Wang, Zhaohui; Xia, Jinzhu; Jensen, Jørgen Juncher
2000-01-01
The non-linearities in wave- and slamming-induced rigid-body motions and structural responses of ships such as heave, pitch and vertical bending moments are consistently investigated based on a rational time-domain strip method. A hydrodynamic model for predicting sectional green water force.......From the rather extensive computations and comparisons, it is found that non-linear effects are significant in head and bow waes in the motion-wave resonant region for both heave and pitch motions, bow accelerations and vertical bending moments for two container ships considered, whereas not significant...... for a VLCC. The non-linearities in motions and structural loads of conventional monohull ships seem well predicted by the present non-linear strip theory....
A plane wave analysis of coherent holographic image reconstruction by phase transfer
Field, Jeffrey J; Bartels, Randy A
2015-01-01
Fluorescent imaging plays a critical role in a myriad of scientific endeavors, particularly in the biological sciences. Three-dimensional imaging of fluorescent intensity often requires serial data acquisition, that is voxel-by-voxel collection of fluorescent light emitted throughout the specimen with a non-imaging single-element detector. While non-imaging fluorescence detection offers some measure of scattering robustness, the rate at which dynamic specimens can be imaged is severely limited. Other fluorescent imaging techniques utilize imaging detection to enhance collection rates. A notable example is light-sheet fluorescence microscopy, also known as selective-plane illumination microscopy (SPIM), which illuminates a large region within the specimen and collects emitted fluorescent light at an angle either perpendicular or oblique to the illumination light sheet. Unfortunately, scattering of the emitted fluorescent light can cause blurring of the collected images in highly turbid biological media. We rec...
Scattering of plane SH waves by a circular-arc hill with a circular tunnel
Institute of Scientific and Technical Information of China (English)
LIANG Jian-wen(梁建文); LUO Hao(罗昊); Vincent W. Lee
2004-01-01
An analytical solution for scattering of incident SH waves by a circular-arc hill with a concentric circular tunnel was derived by Fourier-Bessel series expansion and auxiliary functions technique. The solution is reduced to solving a set of infinite linear algebraic equations finally. The accuracies of the numerical results are checked by the residual errors of boundary conditions with the truncation order increasing. The numerical results show that the existence and dimension of the tunnel have great effect on motion of the ground surface nearby and dynamic stress concentration of the tunnel.
Fraternale, Federico; Staffilani, Gigliola; Tordella, Daniela
2016-01-01
By deriving conditions for no transient enstrophy growth for two-dimensional small perturbations in the plane Couette and Poiseuille flows, we show that transient kinetic energy growth for small traveling waves is not a sufficient condition for the enstrophy growth. It should be recalled that the vorticity perturbation problem in wall parallel flows was addressed at the beginning of the 20th century by J. L. Synge in an original way and as an alternative and equivalent way of determining flow stability with respect to the classical kinetic energy analysis. However, mathematical difficulties related to the vorticity boundary conditions left the problem open since then. Historically, the discovery of nonmodal perturbation growth and its link to the subcritical transition to turbulence lead to a preferential energy-based analysis. Here, we follow Synge's procedure and extend its work to the nonmodal approach and thus to the initial value problem capable to describe possible transient vorticity growth. Our calcul...
Kim, V T; Pivovarov, G B; Vary, J P; Kim, Victor T.; Matveev, Victor A.; Pivovarov, Grigorii B.; Vary, James P.
2001-01-01
Without a gauge fixing, canonical variables for the light-front SU(2) gluodynamics are determined. The Gauss law is written in terms of the canonical variables. The system is qualified as a generalized dynamical system with first class constraints. Abeliazation is a specific feature of the formulation (most of the canonical variables transform nontrivially only under the action of an Abelian subgroup of the gauge transformations). At finite volume, a discrete spectrum of the light-front Hamiltonian $P_+$ is obtained in the sector of vanishing $P_-$. We obtain, therefore, a quantized form of the classical solutions previously known as non-Abelian plane waves. Then, considering the infinite volume limit, we find that the presence of the mass gap depends on the way the infinite volume limit is taken, which may suggest the presence of different ``phases'' of the infinite volume theory.
Energy Technology Data Exchange (ETDEWEB)
D`yachkov, P.N. [Kurnakov Institute of General and Inorganic Chemistry, Moscow (Russian Federation); Nikolaev, A.V. [Institute of Physcial Chemistry, Moscow (Russian Federation)
1995-10-01
The advent of carbon nanotubes, which are graphite layers convoluted in cylinders several nanometers in diameter and several micrometers in length, as well as the experiments on implanting metal atoms in such tubes open the way to producing nanoconductors and other materials with unique properties. For theorists, the basic challenge is interpreting and predicting the structure and properties of these systems. The linearized augmented-plane-wave method (LAPW) is one of the most accurate methods in the theory of the electronic structure of solids. A generalization of this method for quasi-two-dimensional systems, surface electronic states, and layered crystals is known. The LAPW theory for quasi-unidimensional systems, which exhibit translational symmetry in one direction, has been absent thus far. In this paper, the authors suggest a version of such a theory and use this method to calculate the electronic structure of carbyne (a linear chain of carbon atoms) and carbon nanotube with implanted Sc atoms.
Directory of Open Access Journals (Sweden)
C. H. Schmidt
2009-05-01
Full Text Available The radiation of large antennas and those operating at low frequencies can be determined efficiently by near-field measurement techniques and a subsequent near-field far-field transformation. Various approaches and algorithms have been researched but for electrically large antennas and irregular measurement contours advanced algorithms with low computation complexity are required. In this paper an algorithm employing plane waves as equivalent sources and utilising efficient diagonal translation operators is presented. The efficiency is further enhanced using simple far-field translations in combination with the expensive near-field translations. In this way a low complexity near-field transformation is achieved, which works for arbitrary sample point distributions and incorporates a full probe correction without increasing the complexity.
Mobile Ultrasound Plane Wave Beamforming on iPhone or iPad using Metal- based GPU Processing
Hewener, Holger J.; Tretbar, Steffen H.
Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like the Apple iPad for full signal processing of raw data for ultrasound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobile devices based on consumer electronics realizing the transition from FPGA or ASIC based beamforming into more flexible software beamforming. The massive parallel beamforming processing can be done with the Apple framework "Metal" for advanced graphics and general purpose GPU processing for the iOS platform. We were able to integrate the beamforming reconstruction into our mobile ultrasound processing application with imaging rates up to 70 Hz on iPad Air 2 hardware.
Scattering and Absorption of Gravitational Plane Waves by Rotating Black Holes
Dolan, Sam R
2008-01-01
In this study, we investigate scattering and absorption of planar gravitational waves by a Kerr black hole in vacuum. We compute cross sections for radiation incident along the rotation axis, and consider both co- and counter-rotating circular polarizations. We show that, if a novel series reduction method is employed, the partial wave approach developed by Matzner and coworkers yields accurate results. Phase shifts are computed via a Sasaki-Nakamura transformation, and spheroidal harmonics via a spectral decomposition method. A catalogue of cross sections is presented for a range of parameters ($M\\omega \\le 4$ and $a \\le 0.99M$). In the long- and short-wavelength regimes we find good agreement with perturbative and semi-classical approximations. We confirm that helicity is not conserved: flux scattered in the backward direction has the opposite polarization to the incident radiation. At low frequencies, fast-rotating holes generate superradiance in the $l = 2$, $m = 2$ mode which enhances the back-scattered ...
Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips.
Gómez-Díaz, J S; Esquius-Morote, M; Perruisseau-Carrier, J
2013-10-21
An approach to couple free-space waves and non-resonant plasmons propagating along graphene strips is proposed based on the periodic modulation of the graphene strip width. The solution is technologically very simple, scalable in frequency, and provides customized coupling angle and intensity. Moreover, the coupling properties can be dynamically controlled at a fixed frequency via the graphene electrical field effect, enabling advanced and flexible plasmon excitation-detection strategies. We combine a previously derived scaling law for graphene strips with leaky-wave theory borrowed from microwaves to achieve rigorous and efficient modeling and design of the structure. In particular we analytically derive its dispersion, predict its coupling efficiency and radiated field structure, and design strip configurations able to fulfill specific coupling requirements. The proposed approach and developed methods are essential to the recent and fundamental problem of the excitation-detection of non-resonant plasmons propagating along a continuous graphene strip, and could pave the way to smart all-graphene sensors and transceivers.
Institute of Scientific and Technical Information of China (English)
Chang-Jun Zheng; Hai-Bo Chen; Lei-Lei Chen
2013-01-01
This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/planesymmetric acoustic wave problems.The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only.Moreover,a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived,and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating,translating and saving the multipole/local expansion coefficients of the image domain.The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems.As for exterior acoustic problems,the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method.Details on the implementation of the present method are described,and numerical examples are given to demonstrate its accuracy and efficiency.
Mita, Akifumi; Okamoto, Atsushi; Funakoshi, Hisatoshi
2004-06-01
We have proposed an all-optical authentic memory with the two-wave encryption method. In the recording process, the image data are encrypted to a white noise by the random phase masks added on the input beam with the image data and the reference beam. Only reading beam with the phase-conjugated distribution of the reference beam can decrypt the encrypted data. If the encrypted data are read out with an incorrect phase distribution, the output data are transformed into a white noise. Moreover, during read out, reconstructions of the encrypted data interfere destructively resulting in zero intensity. Therefore our memory has a merit that we can detect unlawful accesses easily by measuring the output beam intensity. In our encryption method, the random phase mask on the input plane plays important roles in transforming the input image into a white noise and prohibiting to decrypt a white noise to the input image by the blind deconvolution method. Without this mask, when unauthorized users observe the output beam by using CCD in the readout with the plane wave, the completely same intensity distribution as that of Fourier transform of the input image is obtained. Therefore the encrypted image will be decrypted easily by using the blind deconvolution method. However in using this mask, even if unauthorized users observe the output beam using the same method, the encrypted image cannot be decrypted because the observed intensity distribution is dispersed at random by this mask. Thus it can be said the robustness is increased by this mask. In this report, we compare two correlation coefficients, which represents the degree of a white noise of the output image, between the output image and the input image in using this mask or not. We show that the robustness of this encryption method is increased as the correlation coefficient is improved from 0.3 to 0.1 by using this mask.
Dorn, H
2003-01-01
Projecting on a suitable subset of coordinates, a picture is constructed in which the conformal boundary of AdS sub 5 xS sup 5 and that of the plane wave resulting in the Penrose limit are located at the same line. In a second line of arguments all AdS sub 5 xS sup 5 and plane wave geodesics are constructed in their integrated form. Performing the Penrose limit, the approach of null geodesics reaching the conformal boundary of AdS sub 5 xS sup 5 to that of the plane wave is studied in detail. At each point these null geodesics of AdS sub 5 xS sup 5 form a cone which degenerates in the limit. (author)
Tunnel effect of fractal fault and transient S-wave velocity rupture (TSVR) of in-plane shear fault
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
Transient S-wave velocity rupture (TSVR) means the velocity of fault rupture propagation is between S-wave velocity βand P-wave velocity α. Its existing in the rupture of in-plane (i.e. strike-slip) fault has been proved, but in 2-dimensional classical model, there are two difficulties in transient S-wave velocity rupture, i.e., initialization difficulty and divergence difficulty in interpreting the realization of TSVR. The initialization difficulty means, when v↑vR (Rayleigh wave velocity), the dynamic stress strength factor K2(t)→+0, and changes from positive into negative in the interval (vR,β). How v transit the forbidden of (vR,β)? The divergence difficulty means K2(t)→+ when v↓. Here we introduce the concept of fractal and tunnel effect that exist everywhere in fault. The structure of all the faults is fractal with multiple cracks. The velocity of fault rupture is differentiate of the length of the fault respect to time, so the rupture velocity is also fractal. The tunnel effect means the dynamic rupture crosses over the interval of the cracks, and the coalescence of the intervals is slower than the propagation of disturbance. Suppose the area of earthquake nucleation is critical or sub-critical propagation everywhere, the arriving of disturbance triggers or accelerates the propagation of cracks tip at once, and the observation system cannot distinguish the front of disturbance and the tip of fracture. Then the speed of disturbance may be identified as fracture velocity, and the phenomenon of TSVR appears, which is an apparent velocity. The real reason of apparent velocity is that the mathematics model of shear rupture is simplified of complex process originally. The dual character of rupture velocity means that the apparent velocity of fault and the real velocity of micro-crack extending, which are different in physics, but are unified in rupture criterion. Introducing the above-mentioned concept to the calculation of K2 (t), the difficulty of
Pollitz, F.F.; Snoke, J. Arthur
2010-01-01
We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the ﬁrst step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by deﬁning a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local ﬁts to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images conﬁrm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat ﬂow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high
Bryan, Sean; Che, George; Doyle, Simon; Flanigan, Daniel; Groppi, Christopher; Johnson, Bradley; Jones, Glenn; Mauskopf, Philip; McCarrick, Heather; Monfardini, Alessandro; Mroczkowski, Tony
2015-01-01
Imaging and spectroscopy at (sub-)millimeter wavelengths are key frontiers in astronomy and cosmology. Large area spectral surveys with moderate spectral resolution (R=50-200) will be used to characterize large scale structure and star formation through intensity mapping surveys in emission lines such as the CO rotational transitions. Such surveys will also be used to study the SZ effect, and will detect the emission lines and continuum spectrum of individual objects. WSPEC is an instrument proposed to target these science goals. It is a channelizing spectrometer realized in rectangular waveguide, fabricated using conventional high-precision metal machining. Each spectrometer is coupled to free space with a machined feed horn, and the devices are tiled into a 2D array to fill the focal plane of the telescope. The detectors will be aluminum Lumped-Element Kinetic Inductance Detectors (LEKIDs). To target the CO lines and SZ effect, we will have bands at 135-175 GHz and 190-250 GHz, each Nyquist-sampled at R~200...
Bryan, Sean; Aguirre, James; Che, George; Doyle, Simon; Flanigan, Daniel; Groppi, Christopher; Johnson, Bradley; Jones, Glenn; Mauskopf, Philip; McCarrick, Heather; Monfardini, Alessandro; Mroczkowski, Tony
2016-07-01
Imaging and spectroscopy at (sub-)millimeter wavelengths are key frontiers in astronomy and cosmology. Large area spectral surveys with moderate spectral resolution (R=50-200) will be used to characterize large-scale structure and star formation through intensity mapping surveys in emission lines such as the CO rotational transitions. Such surveys will also be used to study the the Sunyaev Zeldovich (SZ) effect, and will detect the emission lines and continuum spectrum of individual objects. WSPEC is an instrument proposed to target these science goals. It is a channelizing spectrometer realized in rectangular waveguide, fabricated using conventional high-precision metal machining. Each spectrometer is coupled to free space with a machined feed horn, and the devices are tiled into a 2D array to fill the focal plane of the telescope. The detectors will be aluminum lumped-element kinetic inductance detectors (LEKIDs). To target the CO lines and SZ effect, we will have bands at 135-175 and 190-250 GHz, each Nyquist-sampled at R≈ 200 resolution. Here, we discuss the instrument concept and design, and successful initial testing of a WR10 (i.e., 90 GHz) prototype spectrometer. We recently tested a WR5 (180 GHz) prototype to verify that the concept works at higher frequencies, and also designed a resonant backshort structure that may further increase the optical efficiency. We are making progress towards integrating a spectrometer with a LEKID array and deploying a prototype device to a telescope for first light.
Broadband EM radiation amplification by means of a monochromatically driven two-level system
Soldatov, Andrey V.
2017-02-01
It is shown that a two-level quantum system possessing dipole moment operator with permanent non-equal diagonal matrix elements and driven by external semiclassical monochromatic high-frequency electromagnetic (EM) (laser) field can amplify EM radiation waves of much lower frequency.
Directory of Open Access Journals (Sweden)
T. D. Karamanos
2012-11-01
Full Text Available In this paper, a polarizability matrix retrieval method for bianisotropic metamaterials is presented. Assuming that scatterers can be modeled by electric and magnetic pointdipoles located at their centers, the induced dipole moments are analytically related to the normally incident fields, while the scattered fields are also analytically obtained for two individual cases of normal wave incidence. The latter can be combined with the incident fields, to express the desired polarizabilities, with regard to the measured or simulated scattering parameters. In this way, the polarizability matrix can be extracted by solving the resulting non-linear system of equations. The proposed technique is applied to two different split-ring resonator structures and reveals very good agreement with previously reported techniques.
Yaakob, M. K.; Taib, M. F. M.; Lu, L.; Hassan, O. H.; Yahya, M. Z. A.
2015-11-01
The structural, electronic, elastic, and optical properties of BiFeO3 were investigated using the first-principles calculation based on the local density approximation plus U (LDA + U) method in the frame of plane-wave pseudopotential density functional theory. The application of self-interaction corrected LDA + U method improved the accuracy of the calculated properties. Results of structural, electronic, elastic, and optical properties of BiFeO3, calculated using the LDA + U method were in good agreement with other calculation and experimental data; the optimized choice of on-site Coulomb repulsion U was 3 eV for the treatment of strong electronic localized Fe 3d electrons. Based on the calculated band structure and density of states, the on-site Coulomb repulsion U had a significant effect on the hybridized O 2p and Fe 3d states at the valence and the conduction band. Moreover, the elastic stiffness tensor, the longitudinal and shear wave velocities, bulk modulus, Poisson’s ratio, and the Debye temperature were calculated for U = 0, 3, and 6 eV. The elastic stiffness tensor, bulk modulus, sound velocities, and Debye temperature of BiFeO3 consistently decreased with the increase of the U value.
On AdS/CFT correspondence beyond SUGRA: plane waves, free CFTs and double-trace deformations
Energy Technology Data Exchange (ETDEWEB)
Diaz Vazquez, D.E.
2007-09-13
This thesis deals with three corners of the AdS/CFT Correspondence that lie one step beyond the classical supergravity (SUGRA) approximation. We first explore the BMN limit of the duality and study, in particular, the behavior of field theoretic propagators in the corresponding Penrose limit. We unravel the semiclassical (WKB-) exactness of the propagators in the resulting plane wave background metric. Then, we address the limit of vanishing coupling of the conformal field theory (CFT) at large N. In the simplified scenario of Higher Spin/O(N) Vector Model duality, the conformal partial wave (CPW) expansion of scalar four-point functions are reorganized to make them suggestive of a bulk interpretation in term of a consistent truncated massless higher spin theory and their corresponding exchange Witten graphs. We also explore the connection to the interacting O(N) Vector Model at its infra-red fixed point, at leading large N. Finally, coming back to the gauge theory, we study the effect of a relevant double-trace deformations of the boundary CFT on the partition function and its dual bulk interpretation. We show how the one-loop computation in the Anti-de Sitter (AdS) space correctly reproduces the partition function and conformal anomaly of the boundary theory. In all, we get a clean test of the duality beyond the classical SUGRA approximation in the AdS bulk and at the corresponding next-to-leading 1/N order of the CFT at the conformal boundary. (orig.)
A family of nonlinear Schrödinger equations admitting q-plane wave solutions
Nobre, F. D.; Plastino, A. R.
2017-08-01
Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross-Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross-Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field Φ (x → , t) (besides the usual one Ψ (x → , t)) must be introduced for consistency. The new field can be identified with Ψ* (x → , t) only when q → 1. For q ≠ 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields Ψ (x → , t) and Φ (x → , t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by Ψ (x → , t) and Φ (x → , t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics.
Numerical modeling of extended short wave infrared InGaAs focal plane arrays
Glasmann, Andreu; Wen, Hanqing; Bellotti, Enrico
2016-05-01
Indium gallium arsenide (In1-xGaxAs) is an ideal material choice for short wave infrared (SWIR) imaging due to its low dark current and excellent collection efficiency. By increasing the indium composition from 53% to 83%, it is possible to decrease the energy gap from 0.74 eV to 0.47 eV and consequently increase the cutoff wavelength from 1.7 μm to 2.63 μm for extended short wavelength (ESWIR) sensing. In this work, we apply our well-established numerical modeling methodology to the ESWIR InGaAs system to determine the intrinsic performance of pixel detectors. Furthermore, we investigate the effects of different buffer/cap materials. To accomplish this, we have developed composition-dependent models for In1-xGaxAs, In1-xAlxAs, and InAs1-y Py. Using a Green's function formalism, we calculate the intrinsic recombination coefficients (Auger, radiative) to model the diffusion-limited behavior of the absorbing layer under ideal conditions. Our simulations indicate that, for a given total thickness of the buffer and absorbing layer, structures utilizing a linearly graded small-gap InGaAs buffer will produce two orders of magnitude more dark current than those with a wide gap, such as InAlAs or InAsP. Furthermore, when compared with experimental results for ESWIR photodiodes and arrays, we estimate that there is still a 1.5x magnitude of reduction in dark current before reaching diffusion-limited behavior.
Ba, Zhenning; Yin, Xiao
2016-06-01
A multidomain indirect boundary element method (IBEM) is proposed to study the wave scattering of plane SH waves by complex local site in a layered half-space. The new method, using both the full-space and layered half-space Green's functions as its fundamental solutions can also be regarded as a coupled method of the full-space IBEM and half-space IBEM. First, the whole model is decomposed into independent closed regions and an opened layered half-space region with all of the irregular interfaces; then, fictitious uniformly distributed loads are applied separately on the boundaries of each region, and scattered fields of the closed regions and the opened layered half-space region are constructed by calculating the full-space and layered half-space Green's functions, respectively; finally, all of the regions are assembled to establish the linear algebraic system that arises from discretization. The densities of the distributed loads are determined directly by solving the algebraic system. The accuracy and capability of the new approach are verified extensively by comparing its results with those of published approaches for a class of hills, valleys and embedded inclusions. And the capability of the new method is further displayed when it is used to investigate a hill-triple layered valley-hill coupled topography in a multilayered half-space. All of the numerical calculations presented in this paper demonstrate that the new method is very suitable for solving multidomain coupled multilayered wave scattering problems with the merits of high accuracy and representing the scattered fields in different kinds of regions more reasonably and flexibly.
Voss, D. E.; Koslover, R. A.; Cremer, C. D.; Silvestro, J.; Miner, L. M.
1990-05-01
The High Power Microwaves (HPM) susceptibility testing often requires irradiating test objects at the highest fluences possible. For aperture antennas, the highest fluences are generally found in the radiating near field region. For valid effects testing, the energy coupled to the object interior must accurately replicate that which would occur in a true weapon environment (plane wave illumination). Some believe that valid testing requires object placement at distances from the aperture exceeding 2 D squared/lambda (D=antenna effective diameter). Many also believe testing at farther away than 2 D squared/lambda guarantees plane wave-like coupling conditions. Neither view is correct. Testing in the reactive field region (less than lambda from the aperture) is generally invalid due to dominance of reactive coupling. For testing in the radiating near field, determination of validity is less trivial. An investigation was performed quantifying deviations from plane wave coupling. The measurements, using an instrumented Maverick missile in an anechoic chamber, and supported by theory, indicate conditions for which testing the Maverick missile accurately simulates plane wave coupling.
2007-10-08
Melkov,3 Vasil Tiberkevich,4 and Andrei N. Slavin4 1Dipartimento di Fisica della Materia e Tecnologie Fisiche Avanzate, University of Messina...nanocontact. In Eq. 1, the unit vector p defining the spin-polarization direction is parallel to the direction ez of the in-plane external magnetic field...linear theory,3 the propagating spin- wave mode excited at the threshold is a cylindrical spin- wave with the wave vector kL=1.2/Rc and frequency L
Akhlagh Moayed, Alireza; Dang, Shannon; Ramahi, Omar M.; Bizheva, Kostadinka K.
2009-02-01
The early stages of ocular diseases such as Diabetic Retinopathy are manifested by morphological changes in retinal tissue occurring on cellular level. Therefore, a number of ophthalmic diseases can be diagnosed at an early stage by detecting spatial and temporal variations in the scattering profile of retinal tissue. It was recently demonstrated that, OCT can be used to probe the functional response of retinal photoreceptors to external light stimulation [1]-[3]. fUHROCT measures localized differential changes in the retina reflectivity over time resulting from external light stimulation of the retina. Currently the origins of the observed reflectivity changes are not well understood. However, due to the complex nature of retinal physiology using purely experimental approaches in this case is problematic. For example fUHROCT is sensitive to small changes in the refractive index of biological tissue which as demonstrated previously, can result from a number of processes such as membrane hyperpolarization, osmotic swelling, metabolic changes, etc. In this paper, we present a computational model of interaction between photoreceptor cells and optical plane wave based on the Finite Integration Technique (FIT).
Bakker, J F; Paulides, M M; Christ, A; Kuster, N; van Rhoon, G C
2010-06-07
To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SAR(wb)) and the peak 10 g spatial-averaged SAR (SAR(10g)). The objective of this study is to assess if the SAR in children remains below the basic restrictions upon exposure at the reference levels. Finite difference time domain (FDTD) modeling was used to calculate the SAR in six children and two adults when exposed to all 12 orthogonal plane wave configurations. A sensitivity study showed an expanded uncertainty of 53% (SAR(wb)) and 58% (SAR(10g)) due to variations in simulation settings and tissue properties. In this study, we found that the basic restriction on the SAR(wb) is occasionally exceeded for children, up to a maximum of 45% in small children. The maximum SAR(10g) values, usually found at body protrusions, remain under the limit for all scenarios studied. Our results are in good agreement with the literature, suggesting that the recommended ICNIRP reference levels may need fine tuning.
Bakker, J. F.; Paulides, M. M.; Christ, A.; Kuster, N.; van Rhoon, G. C.
2010-06-01
To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SARwb) and the peak 10 g spatial-averaged SAR (SAR10g). The objective of this study is to assess if the SAR in children remains below the basic restrictions upon exposure at the reference levels. Finite difference time domain (FDTD) modeling was used to calculate the SAR in six children and two adults when exposed to all 12 orthogonal plane wave configurations. A sensitivity study showed an expanded uncertainty of 53% (SARwb) and 58% (SAR10g) due to variations in simulation settings and tissue properties. In this study, we found that the basic restriction on the SARwb is occasionally exceeded for children, up to a maximum of 45% in small children. The maximum SAR10g values, usually found at body protrusions, remain under the limit for all scenarios studied. Our results are in good agreement with the literature, suggesting that the recommended ICNIRP reference levels may need fine tuning.
Papadakis, Panagiotis I; Piperakis, George S; Kalogerakis, Michael A
2015-02-01
This work studies the reflection coefficient of a plane wave incident on a seafloor consisting of two layers (sediment and substrate), whose interface is linear but not parallel to the water-sediment interface. This is an extension of the well-established and studied reflection coefficient concept for seafloors with parallel layers. Moreover this study introduces the concept of the Coherent Reflection Coefficient (CRC) that extends the usual Rayleigh reflection coefficient definition not only at the water-sediment interface but inside the water column as well. The mathematical formulation of the CRC is derived and its numerical implementation is explained. Based on this implementation a numerical code is developed and incorporated-among other codes-in a user-friendly graphics toolbox that was built to facilitate CRC calculations. Numerical examples for realistic seafloors are presented and the derived results are compared to similar ones for parallel layers, indicating that even for small inclination angles the reflection coefficient difference between parallel and slanted interface layers is substantial, hence cannot be ignored. An imminent application of the extended seafloor model and the CRC introduced in this work is the enhancement of geophysics inversion schemes for the estimation of the seafloor parameters.
Bashinov, Aleksei V.; Gonoskov, Arkady A.; Kim, A. V.; Marklund, Mattias; Mourou, G.; Sergeev, Aleksandr M.
2013-04-01
A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features of the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed.
D'Alessandro, Luca; Bahr, Bichoy; Daniel, Luca; Weinstein, Dana; Ardito, Raffaele
2017-09-01
The use of Phononic Crystals (PnCs) as smart materials in structures and microstructures is growing due to their tunable dynamical properties and to the wide range of possible applications. PnCs are periodic structures that exhibit elastic wave scattering for a certain band of frequencies (called bandgap), depending on the geometric and material properties of the fundamental unit cell of the crystal. PnCs slabs can be represented by plane-extruded structures composed of a single material with periodic perforations. Such a configuration is very interesting, especially in Micro Electro-Mechanical Systems industry, due to the easy fabrication procedure. A lot of topologies can be found in the literature for PnCs with square-symmetric unit cell that exhibit complete 2D bandgaps; however, due to the application demand, it is desirable to find the best topologies in order to guarantee full bandgaps referred to in-plane wave propagation in the complete 3D structure. In this work, by means of a novel and fast implementation of the Bidirectional Evolutionary Structural Optimization technique, shape optimization is conducted on the hole shape obtaining several topologies, also with non-square-symmetric unit cell, endowed with complete 3D full bandgaps for in-plane waves. Model order reduction technique is adopted to reduce the computational time in the wave dispersion analysis. The 3D features of the PnC unit cell endowed with the widest full bandgap are then completely analyzed, paying attention to engineering design issues.
Oberhofer, Harald; Blumberger, Jochen
2010-12-01
We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( { } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.
Frontal plane T-wave axis orientation predicts coronary events: Findings from the Moli-sani study.
Iacoviello, Licia; Bonaccio, Marialaura; Di Castelnuovo, Augusto; Costanzo, Simona; Rago, Livia; De Curtis, Amalia; Assanelli, Deodato; Badilini, Fabio; Vaglio, Martino; Persichillo, Mariarosaria; Macfarlane, Peter W; Cerletti, Chiara; Donati, Maria Benedetta; de Gaetano, Giovanni
2017-09-01
The orientation of the frontal plane T-wave axis (T axis) is a reliable measure of ventricular repolarisation. We investigated the association between T-axis and the risk of coronary heart disease (CHD), heart failure (HF), atrial fibrillation (AF), stroke and cardiovascular (CVD) mortality. A sample of 21,287 Moli-sani participants randomly recruited from the general adult (≥35 y) Italian population, free of CVD disease, were followed for a median of 4.4 years. T-axis was measured from a standard 12-lead resting ECG. After adjusting for CVD risk factors, subjects with abnormal T-axis showed an increase in the risk of both CHD (Hazard Ratio (HR) = 2.65; 95% CI = 1.67-4.21), HF (HR = 2.56; 1.80-3.63), AF (HR = 2.48; 1.56-3.94) and CVD mortality (HR = 2.83; 1.50-5.32). The association with CHD and HF, but not with AF or CVD death, remained significant after further adjustment for ECG abnormalities. Subjects with abnormal T-axis showed higher levels of subclinical inflammation, hs-troponin I and hs-NT-proBNP (p T-axis orientation is associated with an increased risk of both CHD and HF, independently of common CVD risk factors and other ECG abnormalities. This association was partially explained by increased hs-troponin I and hs-NT-proBNP levels. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimal Control Of Nonlinear Wave Energy Point Converters
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Zhou, Qiang; Kramer, Morten
2013-01-01
In this paper the optimal control law for a single nonlinear point absorber in irregular sea-states is derived, and proven to be a closed-loop controller with feedback from measured displacement, velocity and acceleration of the floater. However, a non-causal integral control component dependent...... idea behind the control strategy is to enforce the stationary velocity response of the absorber into phase with the wave excitation force at any time. The controller is optimal under monochromatic wave excitation. It is demonstrated that the devised causal controller, in plane irregular sea states......, absorbs almost the same power as the optimal controller....
Third-order theory for multi-directional irregular waves
DEFF Research Database (Denmark)
Madsen, Per A.; Fuhrman, David R.
2012-01-01
at the free surface are also provided, and the formulation incorporates the effect of an ambient current with the option of specifying zero net volume flux. Harmonic resonance may occur at third order for certain combinations of frequencies and wavenumber vectors, and in this situation the perturbation theory...... breaks down due to singularities in the transfer functions. We analyse harmonic resonance for the case of a monochromatic short-crested wave interacting with a plane wave having a different frequency, and make long-term simulations with a high-order Boussinesq formulation in order to study the evolution...
Directory of Open Access Journals (Sweden)
C. T. Duba
2012-05-01
Full Text Available Using the shallow water equations for a rotating layer of fluid, the wave and dispersion equations for Rossby waves are developed for the cases of both the standard β-plane approximation for the latitudinal variation of the Coriolis parameter f and a zonal variation of the shallow water speed. It is well known that the wave normal diagram for the standard (mid-latitude Rossby wave on a β-plane is a circle in wave number (ky,kx space, whose centre is displaced −β/2 ω units along the negative kx axis, and whose radius is less than this displacement, which means that phase propagation is entirely westward. This form of anisotropy (arising from the latitudinal y variation of f, combined with the highly dispersive nature of the wave, gives rise to a group velocity diagram which permits eastward as well as westward propagation. It is shown that the group velocity diagram is an ellipse, whose centre is displaced westward, and whose major and minor axes give the maximum westward, eastward and northward (southward group speeds as functions of the frequency and a parameter m which measures the ratio of the low frequency-long wavelength Rossby wave speed to the shallow water speed. We believe these properties of group velocity diagram have not been elucidated in this way before. We present a similar derivation of the wave normal diagram and its associated group velocity curve for the case of a zonal (x variation of the shallow water speed, which may arise when the depth of an ocean varies zonally from a continental shelf.
Institute of Scientific and Technical Information of China (English)
Vincent W.Lee; Luo Hao(罗昊); Liang Jianwen(梁建文)
2004-01-01
A closed-form analytic solution of two-dimensional scattering and diffraction of plane SH waves by a semicylindrical hill with a semi-cylindrical concentric tunnel inside an elastic half-space is presented using the cylindrical wave functions expansion method. The solution is reduced to solving a set of infinite linear algebraic equations. Fourier expansion theorem with the form of complex exponential function and cosine function is used. Numerical solutions are obtained by truncation of the infinite equations. The accuracy of the presented numerical results is carefully verified.
Ochirbat, G
2000-01-01
A plane medium, whose dielectric tensor's principal values arbitrarily depend upon intensity, is considered. The problems of the TM and TE waves, within the problem of light scattering, are reduced to quadrature. A question of integrability of the full system of Maxwell equations is discussed. A closed equation has been obtained for an auxiliary variable for a nonlinearity of Kerr type. A scheme for integrating the full system of Maxwell equations by solving the equation over the auxiliary variable is suggested.
Singh, Mithun Kuniyil Ajith; Jaeger, Michael; Frenz, Martin; Steenbergen, Wiendelt
2017-01-01
Reflection artifacts caused by acoustic inhomogeneities constitute a major problem in epi-mode biomedical photoacoustic imaging. Photoacoustic transients from the skin and superficial optical absorbers traverse into the tissue and reflect off echogenic structures to generate reflection artifacts. These artifacts cause difficulties in the interpretation of images and reduce contrast and imaging depth. We recently developed a method called PAFUSion (photoacoustic-guided focused ultrasound) to circumvent the problem of reflection artifacts in photoacoustic imaging. We already demonstrated that the photoacoustic signals can be backpropagated using synthetic aperture pulse-echo data for identifying and reducing reflection artifacts in vivo. In this work, we propose an alternative variant of PAFUSion in which synthetic backpropagation of photoacoustic signals is based on multi-angled plane-wave ultrasound measurements. We implemented plane-wave and synthetic aperture PAFUSion in a handheld ultrasound/photoacoustic imaging system and demonstrate reduction of reflection artifacts in phantoms and in vivo measurements on a human finger using both approaches. Our results suggest that, while both approaches are equivalent in terms of artifact reduction efficiency, plane-wave PAFUSion requires less pulse echo acquisitions when the skin absorption is the main cause of reflection artifacts. PMID:28736669
Gao, Xin-jiang; Tang, Zun-lie; Zhang, Xiu-chuan; Chen, Yang; Jiang, Li-qun; Cheng, Hong-bing
2009-07-01
Significant progress has been achieved in technology of the InGaAs focal plane arrays (FPA) detector operating in short wave infrared (SWIR) last two decades. The no cryogenic cooling, low manufacturing cost, low power, high sensitivity and maneuverability features inherent of InGaAs FPA make it as a mainstream SWIR FPA in a variety of critical military, national security, aerospace, telecommunications and industrial applications. These various types of passive image sensing or active illumination image detecting systems included range-gated imaging, 3-Dimensional Ladar, covert surveillance, pulsed laser beam profiling, machine vision, semiconductor inspection, free space optical communications beam tracker, hyperspectroscopy imaging and many others. In this paper the status and perspectives of hybrid InGaAs FPA which is composed of detector array (PDA) and CMOS readout integrate circuit (ROIC) are reviewed briefly. For various low light levels applications such as starlight or night sky illumination, we have made use of the interface circuit of capacitive feedback transimpedance amplifier (CTIA) in which the integration capacitor was adjustable, therefore implements of the physical and electrical characteristics matches between detector arrays and readout intergrate circuit was achieved excellently. Taking into account the influences of InGaAs detector arrays' optoelectronic characteristics on performance of the FPA, we discussed the key parameters of the photodiode in detailed, and the tradeoff between the responsivity, dark current, impedance at zero bias and junction capacitance of photosensitive element has been made to root out the impact factors. As a result of the educed approach of the photodiode's characteristics optimizing which involve with InGaAs PDA design and process, a high performance InGaAs FPA of 30um pixel pitch and 320×256 format has been developed of which the response spectrum range over 0.9um to 1.7um, the mean peak detectivity (λ=1.55
Vadali, Ramkumar V; Shi, Yan; Kumar, Sameer; Kale, Laxmikant V; Tuckerman, Mark E; Martyna, Glenn J
2004-12-01
Many systems of great importance in material science, chemistry, solid-state physics, and biophysics require forces generated from an electronic structure calculation, as opposed to an empirically derived force law to describe their properties adequately. The use of such forces as input to Newton's equations of motion forms the basis of the ab initio molecular dynamics method, which is able to treat the dynamics of chemical bond-breaking and -forming events. However, a very large number of electronic structure calculations must be performed to compute an ab initio molecular dynamics trajectory, making the efficiency as well as the accuracy of the electronic structure representation critical issues. One efficient and accurate electronic structure method is the generalized gradient approximation to the Kohn-Sham density functional theory implemented using a plane-wave basis set and atomic pseudopotentials. The marriage of the gradient-corrected density functional approach with molecular dynamics, as pioneered by Car and Parrinello (R. Car and M. Parrinello, Phys Rev Lett 1985, 55, 2471), has been demonstrated to be capable of elucidating the atomic scale structure and dynamics underlying many complex systems at finite temperature. However, despite the relative efficiency of this approach, it has not been possible to obtain parallel scaling of the technique beyond several hundred processors on moderately sized systems using standard approaches. Consequently, the time scales that can be accessed and the degree of phase space sampling are severely limited. To take advantage of next generation computer platforms with thousands of processors such as IBM's BlueGene, a novel scalable parallelization strategy for Car-Parrinello molecular dynamics is developed using the concept of processor virtualization as embodied by the Charm++ parallel programming system. Charm++ allows the diverse elements of a Car-Parrinello molecular dynamics calculation to be interleaved with low
Monochromatic imaging instrumentation for applications in aeronomy of the earth and planets
Baumgardner, Jeffrey; Flynn, Brian; Mendillo, Michael
1992-01-01
Monochromatic imaging instrumentation has been developed that uses narrow-band (12 A FWHP) interference filters or plane reflection gratings for 2D imaging and imaging spectrograph applications. By changing the optics in front of the filter or grating, the field of view of the instruments can be varied from 180 deg to 6 deg. In the case of the 2D monochromatic imager, the 12 mm-diameter filtered image is formed at about f/1 on the input photocathode of an intensified CCD camera (380 x 488 pixels). The sensitivities of the systems are about 50-100 R s (S/N about 2). Examples of data taken with both of these instruments include detection and mapping of Jupiter's sodium magnetonebula and stable auroral red arcs in the terrestrial ionosphere.
DEFF Research Database (Denmark)
Larsen, Niels Vesterdal; Breinbjerg, Olav
2004-01-01
To facilitate the validation of the numerical Method of Auxiliary Sources an analytical Method of Auxiliary Sources solution is derived in this paper. The Analytical solution is valid for transverse magnetic, and electric, plane wave scattering by circular impedance Cylinders, and it is derived...... by transformation of the exact eigenfunction series solution. The transformation employs the Hankel function wave transformation to express the eigenfunction series of higher-order Hankel functions, with their singularities at the coordinate system origin as a superposition of zero-order Hankel functions...... with their singularities at different positions away from the origin. The transformation necessitates a truncation of the wave transformation but the inaccuracy introduced hereby is shown to be negligible. The analytical Method of Auxiliary Sources solution is employed as a reference to investigate the accuracy...
Energy Technology Data Exchange (ETDEWEB)
Alshits, V.I.; Darinskii, A.N. [Russian Academy of Sciences, Moscow (Russian Federation); Radovich, A. [Kielce Technological Univ., Kielce (Poland)
1995-05-01
The theory of resonance reflection is formulated for elastic waves at the interface between two anisotropic media under conditions of sliding contact. The phenomenon under study arises in the close vicinity of a certain incidence angle for which the tangential wave vector component of the bulk wave is equal to the real part of the wave vector for the leaky mode. The relations presenting the behavior of wave-response parameters near the leaky mode resonance are derived for arbitrary crystal anisotropy. In particular, the behavior of reflection, transmission, and transformation of the bulk mode to the nonuniform one is discussed. 18 refs.
Directory of Open Access Journals (Sweden)
Fontara I.-K.
2015-03-01
Full Text Available This work addresses the evaluation of the seismic wave field in a graded half-plane with free-surface and/or sub-surface relief subjected to shear horizontally (SH-polarized wave, radiating from an embedded seismic source. The considered boundary value problem is transformed into a system of boundary integral equations (BIEs along the boundaries of the free-surface and of any sub-surface relief, using an analytically derived frequency-dependent Green’s function for a quadratically inhomogeneous in depth half-plane. The numerical solution yields synthetic seismic signals at any point of the half-plane in both frequency and time domain following application of Fast Fourier Transform (FFT. Finally, in the companion paper, the verification and numerical simulation studies demonstrate the accuracy and efficiency of the present computational approach. The proposed BIE tool possesses the potential to reveal the sensitivity of the seismic signal to the type and properties of the seismic source, to the existence and type of the material gradient and to the lateral inhomogeneity, due to the free-surface and/or sub-surface relief peculiarities.
Directory of Open Access Journals (Sweden)
O. W. Roberts
2014-08-01
Full Text Available Recent observations of astrophysical magnetic fields have shown the presence of fluctuations being wave-like (propagating in the plasma frame and those described as being structure-like (advected by the plasma bulk velocity. Typically with single spacecraft missions it is impossible to differentiate between these two fluctuations, due to the inherent spatio-temporal ambiguity associated with a single point measurement. However missions such as Cluster which contain multiple spacecraft have allowed temporal and spatial changes to be resolved, with techniques such as the k-filtering technique. While this technique does not assume Taylor's hypothesis as is necessary with single spacecraft missions, it does require weak stationarity of the time series, and that the fluctuations can be described by a superposition of plane waves with random phase. In this paper we test whether the method can cope with a synthetic signal which is composed of a combination of non-random phase coherent structures with a mean radius d and a mean separation λ, as well as plane waves with random phase.
Directory of Open Access Journals (Sweden)
O. W. Roberts
2014-12-01
Full Text Available Recent observations of astrophysical magnetic fields have shown the presence of fluctuations being wave-like (propagating in the plasma frame and those described as being structure-like (advected by the plasma bulk velocity. Typically with single-spacecraft missions it is impossible to differentiate between these two fluctuations, due to the inherent spatio-temporal ambiguity associated with a single point measurement. However missions such as Cluster which contain multiple spacecraft have allowed for temporal and spatial changes to be resolved, using techniques such as k filtering. While this technique does not assume Taylor's hypothesis it requires both weak stationarity of the time series and that the fluctuations can be described by a superposition of plane waves with random phases. In this paper we test whether the method can cope with a synthetic signal which is composed of a combination of non-random-phase coherent structures with a mean radius d and a mean separation λ, as well as plane waves with random phase.
Modulation Equations for Roll Waves of a liquid film Down an Inclined Plane as a Power-Law Fluid
Institute of Scientific and Technical Information of China (English)
Kan.ZHU; Abdelaziz.Boudlal; Gilmar.Mompean.Mompean
2014-01-01
Roll waves of finite amplitude on a thin layer of non-Newtonian fluid modeled as a power-law fluid are considered. In the long wave approximation, the flow is governed by a non-homogeneous hyperbolic system of equations. As the linearized instability analysis of a uniform flow delivers only a diagnosis of instability, the nonlinear stability is investigated and the criterion for roll waves based on the hyperbolicity of the modulation equation is suggested. The main problem in defining the roll wave stability region on a roll wave diagram is due to the singularities of functions for the mean values and their derivatives near the boundaries of roll wave existence. Asymptotic formulae for nonlinear stability of roll waves of small and maximal amplitudes are derived. Numerical calculation reveals that for a Newtonian fluid, as the bottom inclination decreases downwardly the amplitude of admissible waves diminishes, and the stability domain reduces until it disappears. These results remain valid for a slightly non-Newtonian fluid. For highly non-Newtonian fluid, a transition in the nature of stability is observed.
Kattawar, G. W.
1980-01-01
The multipole expansion obtained by Morita et al. (1968) of the Gaussian laser beam used to levitate an aerosol particle in order that its complete phase matrix may be measured is compared with that of Tsai and Pogorzelski (1975) in order to demonstrate the effect of the incorrect expansion used by Morita. Errors incurred by the use of an equation in which one side satisfies the scalar wave equation while the other side does not and can be reduced to a plane wave amplitude are calculated as functions of the inverse of the wave number times the beam waist, the wave number times the radial spherical coordinate and the angular spherical coordinate. Errors on the order of a few percent, considered undetectable are obtained in the squared-field amplitudes due to the expansion, however, they are found to become significant (several tens of percent) when the angle is zero. It is concluded that the expansion of Morita should only be used in the regions where the spherical angle is less than 0.01 and its product with the wave number and the radial spherical coordinate is less than unity.
Status report on the tunable monochromatic gamma—ray source
Institute of Scientific and Technical Information of China (English)
M.Bertschy; W.Mondelaers; 等
1996-01-01
The tunable monochromatic gamma-ray source at the Ghent 15MeV linac is described.The characteristics of the monochromatic beam are given,and some applications,as the detection of heavy elements in other materials,are presented.
Diffusion of Sound Waves in a Turbulent Atmosphere
Lyon, Richard H.
1960-01-01
The directional and frequency diffusion of a plane monochromatic 2 sound wave in statistically homogeneous, isotropic, and stationary turbulence is analyzed theoretically. The treatment is based on the diffusion equation for the energy density of sound waves, using the scattering cross section derived by Kraichnan for the type of turbulence assumed here. A form for the frequency-wave number spectrum of the turbulence is adopted which contains the pertinent parameters of the flow and is adapted to ease of calculation. A new approach to the evaluation of the characteristic period of the flow is suggested. This spectrum is then related to the scattering cross section. Finally, a diffusion equation is derived as a small-angle scattering approximation to the rigorous transport equation. The rate of spread of the incident wave in frequency and direction is calculated, as well as the power spectrum and autocorrelation for the wave.
Blokhin, Alexander; Tkachev, Dmitry
2016-10-01
We study the classical problem for a flow of stationary inviscid non-heat-conducting gas in thermodynamical equilibrium moving onto a planar infinite wedge. Under the fulfillment of the Lopatinski condition on the shock (neutral stability) the correctness of the linearized mixed problem (main solution is a weak shock) is proven and the representation of the classical solution is obtained and in that case (unlike the case of a uniform Lopatinski condition i.e. absolutely stable attached shock) there are additionally plane waves in representation. For finite initial data solution goes to prescribed regime given infinite time.
Energy Technology Data Exchange (ETDEWEB)
Gadomsky, O. N., E-mail: gadomsky@mail.ru; Shchukarev, I. A., E-mail: blacxpress@gmail.com [Ul’yanovsk State University (Russian Federation)
2016-08-15
It is shown that external optical radiation in the 450–1200 nm range can be efficiently transformed under the action of bounded light beams to a surface wave that propagates along the external and internal boundaries of a plane-parallel layer with a quasi-zero refractive index. Reflection regimes with complex and real angles of refraction in the layer are considered. The layer with a quasi-zero refractive index in this boundary problem is located on a highly reflective metal substrate; it is shown that the uniform low reflection of light is achieved in the wavelength range under study.
Energy Technology Data Exchange (ETDEWEB)
Khenata, R.; Baltache, H.; Sahnoun, M.; Driz, M.; Rerat, M.; Abbar, B
2003-08-01
A theoretical study of structural and electronic properties of GeC, SnC and GeSn is presented using the full potential linearized augmented plane wave method. In this approach, the generalized gradient approximation was used for the exchange-correlation potential. Results are given for lattice constant, bulk modulus and its pressure derivative in both zinc-blende and rocksalt structures. Band structure, density of states and band gap pressure coefficients in zinc-blende structure are also given. The results are compared with previous calculations and with experimental measurements.
Directory of Open Access Journals (Sweden)
G. AHMAD
1967-06-01
Full Text Available The energy ratios of the reflected and refracted waves
at the boundary between transversely isotropic media have been investigated.
The energy equation has been derived on two bases, namely as (a
double of the kinetic energy, (ft double of the potential energy. The ratios
of the derived waves to that of the incident quasilongitudinal wave have been
calculated for the particular case, where the symmetry axes of the media
coincide with the normal to the boundary surface. The influence of varying
the different elastic parameters is shown in a few diagrams
Neto, A.
2008-01-01
A novel strategy for broad band focal plane array design is proposed. Its purpose is to couple the radiation from a Large FID reflector system to an array of Kinetic Inductance detectors that are being investigated and realized at SRON. To maximize the benefits from using their BW properties the ide
Neto, A.; Iacono, A.; Gerini, G.; Baselmans, J.J.A.; Yates, S.J.C.; Baryshev, A.; Hoovers, H.F.C.
2009-01-01
This work highlights some of the results of a cooperation between TNO and SRON (Space Research Organization Netherlands) which is now going on with renewed efforts since almost two years. A novel strategy for broad band focal plane array design is proposed. Its purpose is to couple the radiation fro
Mitri, F G
2016-01-01
Analytical expressions for the axial and transverse acoustic radiation forces as well as the radiation torque per length are derived for a rigid elliptical cylinder placed arbitrarily in the field of in plane progressive, quasi-standing or standing waves. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a fluid particle suspended in air, because of the significant acoustic impedance mismatch at the particle's boundary. Based on the partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force compone...
Park, D H; Pagán, V R; Murphy, T E; Luo, J; Jen, A K-Y; Herman, W N
2015-04-06
We report in-plane slotted patch antenna-coupled electro-optic phase modulators with a carrier-to-sideband ratio (CSR) of 22 dB under an RF power density of 120 W/m(2) and a figure of merit of 2.0 W(-1/2) at the millimeter wave frequencies of 36-37 GHz based on guest-host type of second-order nonlinear polymer SEO125. CSR was improved more than 20 dB by using a SiO(2) protection layer. We demonstrate detection of 3 GHz modulation of the RF carrier. We also derive closed-form expressions for the modulated phase of optical wave and carrier-to-sideband ratio. Design, simulation, fabrication, and experimental results are discussed.
Institute of Scientific and Technical Information of China (English)
杜建科; 沈亚鹏; 高波
2004-01-01
A theoretical treatment of the scattering of anti-plane shear (SH) waves is provided by a single crack in an unbounded transversely isotropic electro-magneto-elastic medium. Based on the differential equations of equilibrium, electric displacement and magnetic induction intensity differential equations, the governing equations for SH waves were obtained. By means of a linear transform, the governing equations were reduced to one Helmholtz and two Laplace equations. The Cauchy singular integral equations were gained by making use of Fourier transform and adopting electro-magneto impermeable boundary conditions. The closed form expression for the resulting stress intensity factor at the crack was achieved by solving the appropriate singular integral equations using Chebyshev polynomial. Typical examples are provided to show the loading frequency upon the local stress fields around the crack tips. The study reveals the importance of the electromagneto-mechanical coupling terms upon the resulting dynamic stress intensity factor.
Directory of Open Access Journals (Sweden)
Fontara I.-K.
2015-06-01
Full Text Available The mechanical model and the accompanied computational technique, based on the boundary integral equation method (BIEM and Green’s function for continuously inhomogeneous half-plane were described in the first part of this work. 2D elastodynamic problem for quadratically inhomogeneous and heterogeneous geological area was defined in the first part of our work. The aim of the current second part is to demon-trate the accuracy and the convergence of the proposed computational tool. Furthermore, subsequent extensive parametric study will illustrate, that the seismic wave field is a complex result of mutual play of different key factors as free-surface relief, wave characteristics, as frequency and wavelength, seismic source properties, type and characteristics of the material gradient, existence of different type of heterogeneities and their interactions.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Vibration energy transmission at corner interface of two infinite plates rigidly jointed at arbitrary angles was studied by wave approach so as to investigate the effect of blocking mass used for reducing plane bending wave transmission. Two local coordinate systems were introduced and six new non-dimensional coefficients implying corresponding ratio governing characteristic impedances of plates or blocking mass were introduced to simplify formulations of transmission and reflection coefficients. Five samples were tested in experiment.Discussions were carried out based on the comparison between prediction and experiment in terms of insertion loss. It is concluded that blocking mass at corner interface acts like a "lowpass filter", effective for vibration attenuation above certain frequency. The value of TL and IL in "attenuation band" depends mainly on mass per unit length and band width of "attenuation band" on mass moment of inertia per unit length of the blocking mass.
Unz, H.; Roskam, J.
1979-01-01
The theory of acoustic plane wave normally incident on a clamped panel in a rectangular duct is developed. The coupling theory between the elastic vibrations of the panel (plate) and the acoustic wave propagation in infinite space and in the rectangular duct is considered. The partial differential equation which governs the vibration of the panel (plate) is modified by adding to its stiffness (spring) forces and damping forces, and the fundamental resonance frequency and the attenuation factor are discussed. The noise reduction expression based on the theory is found to agree well with the corresponding experimental data of a sample aluminum panel in the mass controlled region, the damping controlled region, and the stiffness controlled region. All the frequency positions of the upward and downward resonance spikes in the sample experimental data are identified theoretically as resulting from four cross interacting major resonance phenomena: the cavity resonance, the acoustic resonance, the plate resonance, and the wooden back panel resonance.
Energy Technology Data Exchange (ETDEWEB)
Mateos Iguacel, C. [Laboratorio de Hidraulica del CEDEX, Ministerio de Fomento (Spain)
1997-06-01
Equations are set out for water movement in a flat-bottomed weir with converging training walls, which provoke the generation of wave fronts. A two dimensional, stationary analysis is made, thus deducing the characteristic lines as well as the evolution ratios throughout them in terms of fluid speeds and local wave celerities. The results of the numerical model that resolves the equation are congruent with the experimental results. (Author) 6 refs.
Segregation of helicity in inertial wave packets
Ranjan, A.
2017-03-01
Inertial waves are known to exist in the Earth's rapidly rotating outer core and could be important for the dynamo generation. It is well known that a monochromatic inertial plane wave traveling parallel to the rotation axis (along positive z ) has negative helicity while the wave traveling antiparallel (negative z ) has positive helicity. Such a helicity segregation, north and south of the equator, is necessary for the α2-dynamo model based on inertial waves [Davidson, Geophys. J. Int. 198, 1832 (2014), 10.1093/gji/ggu220] to work. The core is likely to contain a myriad of inertial waves of different wave numbers and frequencies. In this study, we investigate whether this characteristic of helicity segregation also holds for an inertial wave packet comprising waves with the same sign of Cg ,z, the z component of group velocity. We first derive the polarization relations for inertial waves and subsequently derive the resultant helicity in wave packets forming as a result of superposition of two or more waves. We find that the helicity segregation does hold for an inertial wave packet unless the wave numbers of the constituent waves are widely separated. In the latter case, regions of opposite color helicity do appear, but the mean helicity retains the expected sign. An illustration of this observation is provided by (a) calculating the resultant helicity for a wave packet formed by superposition of four upward-propagating inertial waves with different wave vectors and (b) conducting the direct numerical simulation of a Gaussian eddy under rapid rotation. Last, the possible effects of other forces such as the viscous dissipation, the Lorentz force, buoyancy stratification, and nonlinearity on helicity are investigated and discussed. The helical structure of the wave packet is likely to remain unaffected by dissipation or the magnetic field, but can be modified by the presence of linearly stable stratification and nonlinearity.
Shepherd, James J; Booth, George H; Kresse, Georg; Alavi, Ali
2012-01-01
Using the finite simulation-cell homogeneous electron gas (HEG) as a model, we investigate the convergence of the correlation energy to the complete basis set (CBS) limit in methods utilising plane-wave wavefunction expansions. Simple analytic and numerical results from second-order M{\\o}ller-Plesset theory (MP2) suggest a 1/M decay of the basis-set incompleteness error where M is the number of plane waves used in the calculation, allowing for straightforward extrapolation to the CBS limit. As we shall show, the choice of basis set truncation when constructing many-electron wavefunctions is far from obvious, and here we propose several alternatives based on the momentum transfer vector, which greatly improve the rate of convergence. This is demonstrated for a variety of wavefunction methods, from MP2 to coupled-cluster doubles theory (CCD) and the random-phase approximation plus second-order screened exchange (RPA+SOSEX). Finite basis-set energies are presented for these methods and compared with exact benchm...
Tanaka, Masanobu; Hörning, Marcel; Kitahata, Hiroyuki; Yoshikawa, Kenichi
2015-10-01
In excitable media such as cardiac tissue and Belousov-Zhabotinsky reaction medium, spiral waves tend to anchor (pin) to local heterogeneities. In general, such pinned waves are difficult to eliminate and may progress to spatio-temporal chaos. Heterogeneities can be classified as either the absence or presence of diffusive interaction with the surrounding medium. In this study, we investigated the difference in the unpinning of spiral waves from obstacles with and without diffusive interaction, and found a profound difference. The pacing period required for unpinning at fixed obstacle size is larger in case of diffusive obstacles. Further, we deduced a generic theoretical framework that can predict the minimal unpinning period. Our results explain the difference in pacing periods between for the obstacles with and without diffusive interaction, and the difference is interpreted in terms of the local decrease of spiral wave velocity close to the obstacle boundary caused in the case of diffusive interaction.
Energy Technology Data Exchange (ETDEWEB)
Tanaka, Masanobu [Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Hörning, Marcel [Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501 (Japan); Kitahata, Hiroyuki, E-mail: kitahata@chiba-u.jp [Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522 (Japan); Yoshikawa, Kenichi [Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan)
2015-10-15
In excitable media such as cardiac tissue and Belousov-Zhabotinsky reaction medium, spiral waves tend to anchor (pin) to local heterogeneities. In general, such pinned waves are difficult to eliminate and may progress to spatio-temporal chaos. Heterogeneities can be classified as either the absence or presence of diffusive interaction with the surrounding medium. In this study, we investigated the difference in the unpinning of spiral waves from obstacles with and without diffusive interaction, and found a profound difference. The pacing period required for unpinning at fixed obstacle size is larger in case of diffusive obstacles. Further, we deduced a generic theoretical framework that can predict the minimal unpinning period. Our results explain the difference in pacing periods between for the obstacles with and without diffusive interaction, and the difference is interpreted in terms of the local decrease of spiral wave velocity close to the obstacle boundary caused in the case of diffusive interaction.
On the round-trip time for a photon propagating in the field of a plane gravitational wave
Rakhmanov, Malik
2014-01-01
A network of large-scale laser interferometers is currently employed for searches of gravitational waves from various astrophysical sources. The frequency dependence of the dynamic response of these detectors introduces corrections to their antenna patterns which in principle can affect the outcome of the associated data-analysis algorithms. The magnitude of these corrections and the corresponding systematic errors have recently been estimated for searches of periodic and stochastic gravitational waves (CQG 25 (2008) 184017). However, the calculation of the detector response in that paper followed the traditional semi-rigorous approach which does not properly take into account the curved nature of spacetime. The question then arises as to whether the results will be the same if the calculation is done within the rigorous framework of general relativity. In this paper we provide such a derivation of the response of the detectors to gravitational waves. We obtain the photon propagation time from the solution of...
DEFF Research Database (Denmark)
Karamehmedovic, Mirza; Breinbjerg, Olav
2002-01-01
The Method of Auxiliary Sources (MAS) is applied to 3D scattering problems involving spherical impedance scatterers. The MAS results are compared with the reference spherical wave expansion (SWE) solution. It is demonstrated that good agreement is achieved between the MAS and SWE results....
Directory of Open Access Journals (Sweden)
Adam Martowicz
2015-01-01
Full Text Available The paper addresses the problem of numerical dispersion in simulations of wave propagation in solids. This characteristic of numerical models results from both spatial discretization and temporal discretization applied to carry out transient analyses. A denser mesh of degrees of freedom could be a straightforward solution to mitigate numerical dispersion, since it provides more advantageous relation between the model length scale and considered wavelengths. However, this approach also leads to higher computational effort. An alternative approach is the application of nonlocal discretization schemes, which employ a relatively sparse spatial distribution of nodes. Numerical analysis carried out to study the propagation of elastic waves in isotropic solid materials is demonstrated. Fourier-based nonlocal discretization for continuum mechanics is introduced for a two-dimensional model undergoing out-of-plane wave propagation. The results show gradual increase of the effectiveness of this approach while expanding the region of nonlocal interactions in the numerical model. A challenging case of high ratio between the model length scale and wavelength is investigated to present capability of the proposed approach. The elaborated discretization method also provides the perspective of accurate representation of any arbitrarily shaped dispersion relation based on physical properties of modelled materials.
Study on paper moisture measurement method by monochromatic light sources
Mo, Changtao; Du, Xin; He, Ping; Zhang, Lili; Li, Nan; Wang, Ming
2010-10-01
We design the emission and detection optical paths of three monochromatic infrared light sources with different wavelength. The three light sources are placed according to the different angles, so that the three kinds of monochromatic lights are converged on the same point of the sample. Using the method, we can detect the same point and improve the measurement accuracy. We choose the standard near-infrared monochromatic light source, so that we can save some equipments, such as tungsten- halogen lamp, filtered wheel, collimation focalizer, electric machine, and so on. In particular, we save the cumbersome cooling system, reduce the volume of the instrument greatly and reduce the cost. The three monochromatic light sources are supplied by the same pulse power source, to ensure their synchronous working.
Indian Academy of Sciences (India)
Baljeet Singh
2000-12-01
A solution of the field equations governing small motions of a micropolar viscoelastic solid half-space with stretch is employed to study the reflection and transmission at the interface between a liquid and a micropolar viscoelastic solid with stretch. The amplitude ratios for various reflected and refracted waves are computed and depicted graphically. Effects of axial stretch and viscosity on the amplitude ratios are discussed.
Hedayatrasa, Saeid; Abhary, Kazem; Uddin, Mohammad; Ng, Ching-Tai
2016-04-01
This paper presents a topology optimization of single material phononic crystal plate (PhP) to be produced by perforation of a uniform background plate. The primary objective of this optimization study is to explore widest exclusive bandgaps of fundamental (first order) symmetric or asymmetric guided wave modes as well as widest complete bandgap of mixed wave modes (symmetric and asymmetric). However, in the case of single material porous phononic crystals the bandgap width essentially depends on the resultant structural integration introduced by achieved unitcell topology. Thinner connections of scattering segments (i.e. lower effective stiffness) generally lead to (i) wider bandgap due to enhanced interfacial reflections, and (ii) lower bandgap frequency range due to lower wave speed. In other words higher relative bandgap width (RBW) is produced by topology with lower effective stiffness. Hence in order to study the bandgap efficiency of PhP unitcell with respect to its structural worthiness, the in-plane stiffness is incorporated in optimization algorithm as an opposing objective to be maximized. Thick and relatively thin Polysilicon PhP unitcells with square symmetry are studied. Non-dominated sorting genetic algorithm NSGA-II is employed for this multi-objective optimization problem and modal band analysis of individual topologies is performed through finite element method. Specialized topology initiation, evaluation and filtering are applied to achieve refined feasible topologies without penalizing the randomness of genetic algorithm (GA) and diversity of search space. Selected Pareto topologies are presented and gradient of RBW and elastic properties in between the two Pareto front extremes are investigated. Chosen intermediate Pareto topology, even not extreme topology with widest bandgap, show superior bandgap efficiency compared with the results reported in other works on widest bandgap topology of asymmetric guided waves, available in the literature
Evarestov, Robert A.; Blokhin, Evgeny; Gryaznov, Denis; Kotomin, Eugene A.; Maier, Joachim
2011-04-01
The atomic, electronic structure and phonon frequencies have been calculated in cubic and low-temperature tetragonal SrTiO3 phases at the ab initio level. We demonstrate that the use of the hybrid exchange-correlation PBE0 functional gives the best agreement with experimental data. The results for the standard generalized gradient approximation (PBE) and hybrid PBE0 functionals are compared for the two types of approaches: a linear combination of atomic orbitals (CRYSTAL09 computer code) and plane waves (VASP5.2 code). The relation between cubic and tetragonal phases and the relevant antiferrodistortive phase transition is discussed in terms of group theory and is illustrated with analysis of calculated soft-mode frequencies at the Γ and R points in the Brillouin zone. Based on phonon calculations, the temperature dependence of the heat capacity is in good agreement with experiment.
Preston, Thomas C; Reid, Jonathan P
2015-06-01
The angular scattering of light from a homogeneous spherical particle in a zeroth-order Bessel beam is calculated using a generalized Lorenz-Mie theory. We investigate the dependence of the angular scattering on the semi-apex angle of the Bessel beam and discuss the major features of the resulting scattering plots. We also compare Bessel beam scattering to plane wave scattering and provide criterion for when the difference between the two cases can be considered negligible. Finally, we discuss a method for characterizing spherical particles using angular light scattering. This work is useful to researchers who are interested in characterizing particles trapped in optical beams using angular dependent light scattering measurements.
Liu, Hai-Tao; Sang, Jian-Bing; Zhou, Zhen-Gong
2016-10-01
This paper investigates a functionally graded piezoelectric material (FGPM) containing two parallel cracks under harmonic anti-plane shear stress wave based on the non-local theory. The electric permeable boundary condition is considered. To overcome the mathematical difficulty, a one-dimensional non-local kernel is used instead of a two-dimensional one for the dynamic fracture problem to obtain the stress and the electric displacement fields near the crack tips. The problem is formulated through Fourier transform into two pairs of dual-integral equations, in which the unknown variables are jumps of displacements across the crack surfaces. Different from the classical solutions, that the present solution exhibits no stress and electric displacement singularities at the crack tips.
Kuznetsov, G. N.; Lebedev, O. V.
2012-09-01
The possibility of approximating the sound field in the region of interference maxima using the equivalent plane wave model with the actual amplitude and the average "effective" phase velocity calculated or measured by the phase gradient at the array aperture is discussed. The method is substantiated by studying the mode, interference, and phase structures of the low-frequency sound field along with the spatial responses of an extended linear array. For bottom-moored or towed geophysical arrays whose sizes are large compared to the wavelength, both the necessity and the possibility of reducing the error in taking the bearing of a sound source in a waveguide are justified. The use of the proposed model is recommended for approximate matching of the array to the transfer function of the waveguide to reduce the bearing error.
Lester, H. C.; Posey, J. W.
1976-01-01
A discrete frequency study is made of the influence of source characteristics on the optimal properties of acoustically lined uniform and two section ducts. Two simplified sources, a plane wave and a monopole, are considered in some detail and over a greater frequency range than has been previously studied. Source and termination impedance effects are given limited examination. An example of a turbomachinery source and three associated source variants is also presented. Optimal liner designs based on modal theory approach the Cremer criterion at low frequencies and the geometric acoustics limit at high frequencies. Over an intermediate frequency range, optimal two section liners produced higher transmission losses than did the uniform configurations. Source distribution effects were found to have a significant effect on optimal liner design, but source and termination impedance effects appear to be relatively unimportant.
Rod and Rod-driven Function in Achromatopsia and Blue Cone Monochromatism
Moskowitz, Anne; Hansen, Ronald M.; Akula, James D.; Eklund, Susan E.; Fulton, Anne B.
2008-01-01
Purpose To evaluate rod photoreceptor and postreceptor retinal function in pediatric patients with achromatopsia (ACHR) and blue cone monochromatism (BCM) using contemporary electroretinographic (ERG) procedures. Methods Fifteen patients (age 1 to 20 years) with ACHR and six patients (age 4 to 22 years) with BCM were studied. ERG responses to full-field stimuli were obtained in scotopic and photopic conditions. Rod photoreceptor (Srod, Rrod) and rod-driven postreceptor (log σ, Vmax) response parameters were calculated from the a-wave and b-wave. The ERG records were digitally filtered to demonstrate the oscillatory potentials (OPs); a sensitivity parameter, log SOPA1/2, and an amplitude parameter, SOPAmax, were used to characterize the OP response. Response parameters were compared to those of 12 normal control subjects. Results As expected, photopic responses were non-detectable in patients with ACHR and BCM. In addition, mean scotopic photoreceptor (Rrod) and postreceptor (Vmax and SOPAmax) amplitude parameters were significantly reduced compared to those in normal controls. The flash intensity required to evoke a half maximum b-wave amplitude (log σ) was significantly increased. Conclusions The results of this study provide evidence that deficits in rod and rod mediated function occur in the primary cone dysfunction syndromes, achromatopsia and blue cone monochromatism. PMID:18824728
Poppeliers, Christian; Pavlis, Gary L.
2003-05-01
In part 1 we developed the theoretical foundations of a prestack migration procedure to image forward scattered P to S (PdS) converted waves in the coda of teleseismic P waves. This paper addresses the issue of how to optimally stack data from multiple events migrated by this procedure. We apply matrix perturbation theory to develop an objective way to quantify noise in deconvolved PdS data. Application of the theory demonstrates that an optimal stack requires weighting the migrated data from each event by a signal-to-noise ratio criterion. We also find that the migrated PdS images have to be binned by back azimuth and balanced prior to the final stack. This is necessary to mitigate coherent noise that results from aliased microseism noise that is enhanced by our processing method. We processed 23 events recorded by the Lodore array in northwestern Colorado with our procedure. The results indicate the presence of a major, lithospheric scale discontinuity defined by a south dipping boundary within the crust that we interpret as the subsurface expression of the Cheyenne Belt. The suture is also marked by a transition in crustal thickness from 35 km on the Archean side to over 40 km on the Colorado Plateau side. We also observe a strong difference in the lithospheric mantle PdS conversion signature on opposite sides of the suture that suggests delamination and northward convergence of the Colorado lithosphere beneath the Wyoming province.
被动毫米波焦面阵成像技术%Passive millimeter wave focal plane array imaging technology
Institute of Scientific and Technical Information of China (English)
王楠楠; 邱景辉; 张鹏宇; 邓维波
2011-01-01
以安全检查为背景,研究了近距离被动毫米波焦面阵成像的关键技术.其中包括采用基模高斯波束法结合几何光学法分析系统准光路；设计多波束宽角扫描透镜天线；提出一种新型结构的介质棒天线,该天线易于排成紧密阵列且能够为透镜提供良好的照射；研制工作于Ka频段的高灵敏度、小型化直接检波式辐射计等.给出了20通道被动毫米波焦面阵成像系统的实验结果,表明该系统可用于室内近距离探测人体隐匿物品.%Under the background of safety inspection, the key technologies of near-range passive millimeter wave focal plane array imaging are studied. The analysis of the system quasi-optics were carried out using fundamental Gaussian beam method combined with geometrical optics method. A multi-beam wide-angle scanning lens antenna was designed. A new dielectric rod antenna was devised, which is prone to be aligned in close arrays and provide good radiation to the lens. Miniaturized direct-detection radiometers were fabricated with high-sensitive in Ka-band . Experimental results of the 20-chan-nel passive millimeter wave focal plane array imaging system are presented, which can be used to detect hidden objects on human bodies in near range indoors.
Electromagnetic Characteristics of Microstrip Circuits Under Plane Wave Illumination%平面波照射下微带电路的电磁特性
Institute of Scientific and Technical Information of China (English)
李守荣; 李莹; 孙震; 王帆
2013-01-01
基于十字结微带结构的等效电路,建立了平面波照射下不连续微带电路的电磁敏感性模型.利用场耦合理论计算入射平面波在微带电路终端产生的等效源表达式,并分别对十字结微带结构和单级放大器等电路的电磁敏感性模型进行计算和仿真验证.结果显示,仿真结果与测量结果具有很好的一致性,且仿真时间短,有助于设计者更加快速准确地预测电磁干扰对不连续微带电路的影响.%Based on the equivalent circuit of the microstrip cross bend, the electromagnetic sensitivity model of discontinuous microstrip circuits with the presence of a uniform plane incident wave is estab-lished,.First,the analytical expressions are modeled as equivalent voltage and current sources for discussing the global effect of the incident plane wave on the associated interconnects. Then,these field-induced equiv alent source expressions are incorporated into ADS circuit solver,and a fast model is established for analy zing the output responses of microstrip circuits,such as the cross bend and the single-stage amplifier. The corresponding simulated results from the proposed model are also validated by comparing the results from the measurements. With the merit of short simulation time, the proposed approach would be an efficient method to solve the electromagnetic susceptibility problems associated with the discontinuous microstrip circuits.
Directory of Open Access Journals (Sweden)
Héctor Torres-Silva
2007-04-01
Full Text Available En este trabajo se estudia la propagación de ondas electromagnéticas en medios quirales isotrópicos y los efectos producidos por un plano frontera entre tales medios. En analogía con el fenómeno de reflexión y refracción de ondas electromagnéticas planas en dieléctricos ordinarios, se estudian los aspectos cinéticos y dinámicos de estos fenómenos, tal como la intensidad de las componentes de onda y el cambio en la polarización de la onda al cruzar la frontera. Como un prerrequisito, mostramos que la solución de onda plana debe ser escrita como una superposición conveniente de las amplitudes quirales circularmente polarizadas en ambos lados de la interfaz. Se presenta el conjunto apropiado de condiciones que la solución debe satisfacer en la frontera y el sistema de ecuaciones que debe ser resuelto para los coeficientes de amplitud de manera de satisfacer las condiciones de frontera. Las ecuaciones pueden ser resueltas explícitamente para algunos casos y configuraciones particulares (por ejemplo, incidencia normal, las características prominentes de estas soluciones pueden ser analizadas en algún detalle. También se presenta un desarrollo de la solución general de las ecuaciones. Este trabajo podría ser aplicado en diseño de microondas en muy altas frecuencias y en líneas de transmisión no simétricas.This work is concerned with the propagation of electromagnetic waves in isotropic chiral media and with the effects produced by a plane boundary between two such media. In analogy with the phenomena of reflection and refraction of plane electromagnetic waves in ordinary dielectrics, the kinematical and dynamical aspects of these phenomena are studied, in situations such as the intensity of the various wave components and the change in the polarization of the wave, as it crosses the boundary. As a prerequisite to this, we show that the plane wave solution must be written as a suitable superposition of the circularly polarized
Institute of Scientific and Technical Information of China (English)
Liang Jun
2007-01-01
In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown is the jump of displacements across the crack surfaces. These equations are solved to obtain the relations between the electric filed, the magnetic flux field and the dynamic stress field near the crack tips using the Schmidt method. Numerical examples are provided to show the effect pf the functionally graded parameter and the circular frequency of the incident waves upon the stress, the electric displacement and the magnetic flux intensity factors of the crack.
Energy Technology Data Exchange (ETDEWEB)
Karzova, M., E-mail: masha@acs366.phys.msu.ru [Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France); Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Yuldashev, P.; Khokhlova, V. [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Ollivier, S.; Blanc-Benon, Ph. [Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France)
2015-10-28
Mach stem is a well-known structure typically observed in the process of strong (acoustic Mach numbers greater than 0.4) step-shock waves reflection from a rigid boundary. However, this phenomenon has been much less studied for weak shocks in nonlinear acoustic fields where Mach numbers are in the range from 0.001 to 0.01 and pressure waveforms have more complicated waveforms than step shocks. The goal of this work was to demonstrate experimentally how nonlinear reflection occurs in air for very weak spherically divergent acoustic spark-generated pulses resembling an N-wave. Measurements of reflection patterns were performed using a Mach-Zehnder interferometer. A thin laser beam with sub-millimeter cross-section was used to obtain the time resolution of 0.4 µs, which is 6 times higher than the time resolution of the condenser microphones. Pressure waveforms were reconstructed using the inverse Abel transform applied to the phase of the signal measured by the interferometer. The Mach stem formation was observed experimentally as a result of collision of the incident and reflected shock pulses. It was shown that irregular reflection of the pulse occurred in a dynamic way and the length of the Mach stem increased linearly while the pulse propagated along the surface. Since the front shock of the spark-generated pulse was steeper than the rear shock, irregular type of reflection was observed only for the front shock of the pulse while the rear shock reflection occurred in a regular regime.
Al-Saidi, W A; Krakauer, Henry; Zhang, Shiwei
2007-05-21
The authors present phaseless auxiliary-field (AF) quantum Monte Carlo (QMC) calculations of the ground states of some hydrogen-bonded systems. These systems were selected to test and benchmark different aspects of the new phaseless AF QMC method. They include the transition state of H+H(2) near the equilibrium geometry and in the van der Walls limit, as well as the H(2)O, OH, and H(2)O(2) molecules. Most of these systems present significant challenges for traditional independent-particle electronic structure approaches, and many also have exact results available. The phaseless AF QMC method is used either with a plane wave basis with pseudopotentials or with all-electron Gaussian basis sets. For some systems, calculations are done with both to compare and characterize the performance of AF QMC under different basis sets and different Hubbard-Stratonovich decompositions. Excellent results are obtained using as input single Slater determinant wave functions taken from independent-particle calculations. Comparisons of the Gaussian based AF QMC results with exact full configuration interaction show that the errors from controlling the phase problem with the phaseless approximation are small. At the large basis-size limit, the AF QMC results using both types of basis sets are in good agreement with each other and with experimental values.
Institute of Scientific and Technical Information of China (English)
Jianwen Liang; Zhongxian Liu
2009-01-01
This paper investigates in detail the nature of diffraction of plane P waves around a canyon in poroelastic half-space, and studies the effects of incident frequency, drainage condition, porosity, etc, on the diffraction of waves. It is shown that the surface displacement amplitudes of the drained case are close to those of the undrained case, however, the surface displacement amplitudes of the dry case are very different from those of the saturated (either drained or undrained) cases. There are large phase shift between the dry case and the saturated cases, as well as slightly longer resultant wavelengths for the undrained case than those for the drained case and longer resultant wavelengths for the drained case than those for the dry case. For small porosity the surface displacement amplitudes for the saturated cases are almost identical to those for the dry case; while for large porosity, the effect of drainage condition becomes significant, and the surface displacement amplitudes for the undrained case are larger than those for the drained case. As the incident frequency increases, the effect of porosity becomes significant, and more significant for the undrained case than that for the drained case. As the porosity increases, the pore pressures increase significantly but their oscillations become smoother. As the incident frequency increases, the pore pressures become more complicated.
Institute of Scientific and Technical Information of China (English)
2007-01-01
In this paper, the dynamic stress field near crack tips in the functionally graded materials subjected to the harmonic anti-plane shear stress waves was investi- gated by means of the non-local theory. The traditional concepts of the non-local theory were extended to solve the fracture problem of functionally graded materials. To make the analysis tractable, it was assumed that the material properties vary exponentially with coordinate parallel to the crack. By use of the Fourier transform, the problem can be solved with the help of a pair of dual integral equations, in which the unknown variable was the displacement on the crack surfaces. To solve the dual integral equations, the displacement on the crack surfaces was expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solutions yield a finite hoop stress at crack tips, thus allowing us to use the maximum stress as a fracture criterion. The magnitude of the finite dynamic stress field depends on the crack length, the parameter describing the functionally graded materials, the circular frequency of the incident waves and the lattice parameter of materials.
Institute of Scientific and Technical Information of China (English)
ZHANG PeiWei; ZHOU ZhenGong; WU LinZhi
2007-01-01
In this paper, the dynamic stress field near crack tips in the functionally graded materials subjected to the harmonic anti-plane shear stress waves was investigated by means of the non-local theory. The traditional concepts of the non-local theory were extended to solve the fracture problem of functionally graded materials.To make the analysis tractable, it was assumed that the material properties vary exponentially with coordinate parallel to the crack. By use of the Fourier transform,the problem can be solved with the help of a pair of dual integral equations, in which the unknown variable was the displacement on the crack surfaces. To solve the dual integral equations, the displacement on the crack surfaces was expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solutions yield a finite hoop stress at crack tips, thus allowing us to use the maximum stress as a fracture criterion. The magnitude of the finite dynamic stress field depends on the crack length, the parameter describing the functionally graded materials, the circular frequency of the incident waves and the lattice parameter of materials.
Local Runup Amplification By Resonant Wave Interactions
Stefanakis, Themistoklis; Dutykh, Denys
2011-01-01
Until now the analysis of long wave runup on a plane beach has been focused on finding its maximum value, failing to capture the existence of resonant regimes. One-dimensional numerical simulations in the framework of the Nonlinear Shallow Water Equations (NSWE) are used to investigate the Boundary Value Problem (BVP) for plane and non-trivial beaches. Monochromatic waves, as well as virtual wave-gage recordings from real tsunami simulations, are used as forcing conditions to the BVP. Resonant phenomena between the incident wavelength and the beach slope are found to occur, which result in enhanced runup of non-leading waves. The evolution of energy reveals the existence of a quasi-periodic state for the case of sinusoidal waves, the energy level of which, as well as the time required to reach that state, depend on the incident wavelength for a given beach slope. Dispersion is found to slightly reduce the value of maximum runup, but not to change the overall picture. Runup amplification occurs for both leadin...
Institute of Scientific and Technical Information of China (English)
Jun Liang; Shiping Wu; Shanyi Du
2007-01-01
In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material den-sity are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kemel is used instead of a two-dimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform,the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displace-ments across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solu-tions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoret-ical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant param-eters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the fre-quency of the incident waves and the lattice parameter of materials.
Can even monochromatic radiation ensure ideal invisibility?
Energy Technology Data Exchange (ETDEWEB)
Rozanov, Nikolai N [St. Petersburg State University of Information Technologies, Mechanics and Optics, St.-Petersburg (Russian Federation)
2011-07-31
Discusses conclusions reached by A E Dubinov and D A Mytareva in their paper 'Invisible cloaking of material bodies using the wave flow method' (Usp. Fiz. Nauk 180 475 (2010) [Phys. Usp. 53 455 (2010)]) on whether the perfect optical cloaking of material objects is possible. (letters to the editors)
Westphal, Maximillian S.; Lim, Sara N.; Nahar, Sultana N.; Chowdhury, Enam; Pradhan, Anil K.
2017-08-01
With the advent of monochromatic and quasi-monochromatic x-ray sources, we explore their potential with computational and experimental studies on propagation through a combination of low and high-Z (atomic number) media for applications to imaging and detection. The multi-purpose code GEANT4 and a new code PHOTX are employed in numerical simulations, and a variety of x-ray sources are considered: conventional broadband devices with well-known spectra, quasi-monochromatic laser driven sources, and monochromatic synchrotron x-rays. Phantom samples consisting of layers of low-Z and high-Z material are utilized, with atomic-molecular species ranging from H2O to gold. Differential and total attenuation of x-ray fluxes from the different x-ray sources are illustrated through simulated x-ray images. Main conclusions of this study are: I. It is shown that a 65 keV Gaussian quasi-monochromatic source is capable of better contrast with less radiation exposure than a common 120 kV broadband simulator. II. A quantitative measure is defined and computed as a metric to compare the efficacy of any two x-ray sources, as a function of concentration of high-Z moieties in predominantly low-Z environment and depth of penetration. III. Characteristic spectral features of \
Frequency-locked pulse sequencer for high-frame-rate monochromatic tissue motion imaging.
Azar, Reza Zahiri; Baghani, Ali; Salcudean, Septimiu E; Rohling, Robert
2011-04-01
To overcome the inherent low frame rate of conventional ultrasound, we have previously presented a system that can be implemented on conventional ultrasound scanners for high-frame-rate imaging of monochromatic tissue motion. The system employs a sector subdivision technique in the sequencer to increase the acquisition rate. To eliminate the delays introduced during data acquisition, a motion phase correction algorithm has also been introduced to create in-phase displacement images. Previous experimental results from tissue- mimicking phantoms showed that the system can achieve effective frame rates of up to a few kilohertz on conventional ultrasound systems. In this short communication, we present a new pulse sequencing strategy that facilitates high-frame-rate imaging of monochromatic motion such that the acquired echo signals are inherently in-phase. The sequencer uses the knowledge of the excitation frequency to synchronize the acquisition of the entire imaging plane to that of an external exciter. This sequencing approach eliminates any need for synchronization or phase correction and has applications in tissue elastography, which we demonstrate with tissue-mimicking phantoms.
Characteristics of light reflected from a dense ionization wave with a tunable velocity
Zhidkov, A; Fujii, T; Nemoto, K; Koga, J; Bulanov, S V
2009-01-01
An optically-dense ionization wave (IW) produced by two femtosecond laser pulses focused cylindrically and crossing each other is shown to be an efficient coherent x-ray converter. The resulting velocity of a quasi-plane IW in the vicinity of pulse intersection increases with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing an easy tuning the wavelength of x-rays. The x-ray spectra of a converted, lower frequency coherent light change from the monochromatic to a high order harmonic-like with the duration of ionizing pulses and the intensity of scattered pulses; the spectrum are not symmetrical at Vc.
Energy Technology Data Exchange (ETDEWEB)
Izumi, N; Turner, R; Barbee, T; Koch, J; Welser, L; Mansini, R
2004-04-15
We have developed a software package for image reconstruction of a multiple monochromatic x-ray imaging diagnostics (MMI) for diagnostic of inertial conferment fusion capsules. The MMI consists of a pinhole array, a multi-layer Bragg mirror, and a charge injection device image detector (CID). The pinhole array projects {approx}500 sub-images onto the CID after reflection off the multi-layer Bragg mirror. The obtained raw images have continuum spectral dispersion on its vertical axis. For systematic analysis, a computer-aided reconstruction of the quasi-monochromatic image is essential.
Amplitude-preserving plane-wave prestack time migration for AVO analysis%用于AVO分析的振幅保真平面波叠前时间偏移
Institute of Scientific and Technical Information of China (English)
王棣; 程玖兵; 郑晓东; 王华忠; 马在田
2008-01-01
To support amplitude variation with offset (AVO) analysis in complex structure areas, we introduce an amplitude-preserving plane-wave prestack time migration approach based on the double-square-root wave equation in media with little lateral velocity variation.In its implementation, a data mapping algorithm is used to obtain offset-plane-wave data sets from the common-midpoint gathers followed by a non-recursive phase-shift solution with amplitude correction to generate common-image gathers in offset-ray-parameter domain and a structural image. Theoretical model tests and a real data example show that our prestack time migration approach is helpful for AVO analysis in complex geological environments.
Energy Technology Data Exchange (ETDEWEB)
Bednarski, M; Pszczola, J; Bodnar, W [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, A Mickiewicza Avenue 30, 30-059 Krakow (Poland); Stoch, P; Zachariasz, P; Suwalski, J, E-mail: pszczola@agh.edu.pl [Institute of Atomic Energy, 05-400 Swierk-Otwock (Poland)
2011-05-01
{sup 57}Fe Moessbauer effect spectra were collected at 4.2 K for the Ho(Fe{sub 1-x}Co{sub x}){sub 2} C15 Laves phases. The hyperfine interaction parameters, i.e. isomer shift, the magnetic hyperfine field and the quadrupole interaction parameter, were determined for the individual Fe/Co nearest neighbourhoods of iron atoms and also as average values for the sample as bulk. As a result of Fe/Co substitution, Slater-Pauling-type dependences for magnetic hyperfine fields corresponding to both the local area and the sample as bulk were observed, and a linear correlation between the local magnetic hyperfine field and the average magnetic hyperfine field was observed. Magnetic moments of atoms were obtained from band structure calculations using the full-potential linearized augmented plane wave method. The magnetic hyperfine field obtained from the experiment correlates linearly (but separately for weak and strong ferromagnetic areas) with the magnetic moment calculated per transition metal atom.
Fang, Changming; Li, Wun-Fan; Koster, Rik S; Klimeš, Jiří; van Blaaderen, Alfons; van Huis, Marijn A
2015-01-07
Knowledge about the intrinsic electronic properties of water is imperative for understanding the behaviour of aqueous solutions that are used throughout biology, chemistry, physics, and industry. The calculation of the electronic band gap of liquids is challenging, because the most accurate ab initio approaches can be applied only to small numbers of atoms, while large numbers of atoms are required for having configurations that are representative of a liquid. Here we show that a high-accuracy value for the electronic band gap of water can be obtained by combining beyond-DFT methods and statistical time-averaging. Liquid water is simulated at 300 K using a plane-wave density functional theory molecular dynamics (PW-DFT-MD) simulation and a van der Waals density functional (optB88-vdW). After applying a self-consistent GW correction the band gap of liquid water at 300 K is calculated as 7.3 eV, in good agreement with recent experimental observations in the literature (6.9 eV). For simulations of phase transformations and chemical reactions in water or aqueous solutions whereby an accurate description of the electronic structure is required, we suggest to use these advanced GW corrections in combination with the statistical analysis of quantum mechanical MD simulations.
Bandura, A V; Sofo, J O; Kubicki, J D
2006-04-27
Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO2 (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H2O present. A classical interatomic force field has been developed to describe bulk SnO2 and SnO2-H2O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO2 are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H2O molecules agree well between the ab initio and force field predictions. H2O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.
Zhang, Tian; Chen, Lin; Wang, Bing; Li, Xun
2015-06-01
We investigate optical field enhancement for a wide mid-infrared range, originating from the excitation of graphene plasmons, by introducing a graded dielectric grating of varying period underneath a graphene monolayer. Excitation of the plasmonic mode can be achieved by illuminating a normal-incidence plane wave on the gratings due to guided-mode resonance. The gratings of varying period enable the excitation of the plasmonic mode with a very high field enhancement factor (to the order of magnitude of 1000) within a wide spectral band, which leads to the frequency-dependent spatially separated localization of the infrared spectrum modes. We also demonstrate that the excitation position of the plasmonic mode can be freely tuned by varying the thickness of the interlayer as well as the chemical potential of the graphene monolayer. This structure enables the design of two-dimensional plasmonic photonic circuits and metamaterials targeted towards numerous potential applications including optoelectronic detectors, light-harvest devices, on-chip optical interconnects, biosensors, and light-matter interactions.
Wirgin, A
2006-01-01
We treat the case of a flat stress-free surface (i.e., the ground in seismological applications) separating air from a homogeneous, isotropic, solid substratum overlain by a homogeneous, isotropic, solid layer (in contact with the ground) solicited by a SH plane body wave incident in the substratum. The analysis is first carried out in the frequency domain and subsequently in the time domain. The frequency domain response is {\\it normal} in that no resonances are excited (a resonance is here understood to be a situation in which the response is infinite in the absence of dissipation). The translation of this in the time domain is that the scattered pulse is of relatively-short duration. The duration of the pulse is shown to be largely governed by radiation damping which shows up in the imaginary parts of the complex eigenfrequencies of the configuration. Three methods are elaborated for the computation of the time history and give rise to the same numerical solutions for a large variety of configurations of i...
Institute of Scientific and Technical Information of China (English)
Xiao-Pin Tang; Zi-Qiang Yang; Zong-Jun Shi; Feng Lan
2016-01-01
A method of designing an E-plane power combiner composed of two quarter-arc bent rectangular waveguides is proposed for sub-THz and THz waves.The quarter-arc bent-waveguide power combiner has a simple geometry which is easy to design and fabricate.By HFSS codes,the physical mechanism and performance of the power combiner are analyzed,and the relationship between the output characteristics and the structure/operating parameters is given.Simulation results show that our power combiner is suitable for the combining of two equalpower and reversed-phase signals,the bandwidth of the combiner is wide and can be adjusted by the radius of the quarter-arc,and the isolation performance of the combiner can be improved by adding thin film resistive septa at the junction of two quarter-arc bent waveguides.Meanwhile,an approximate method based on the analytic geometrical analysis is given to design this power combiner for different frequency bands.
Directory of Open Access Journals (Sweden)
Larry W. Burggraf
2013-07-01
Full Text Available To find low energy SinCn structures out of hundreds to thousands of isomers we have developed a general method to search for stable isomeric structures that combines Stochastic Potential Surface Search and Pseudopotential Plane-Wave Density Functional Theory Car-Parinello Molecular Dynamics simulated annealing (PSPW-CPMD-SA. We enhanced the Sunders stochastic search method to generate random cluster structures used as seed structures for PSPW-CPMD-SA simulations. This method ensures that each SA simulation samples a different potential surface region to find the regional minimum structure. By iterations of this automated, parallel process on a high performance computer we located hundreds to more than a thousand stable isomers for each SinCn cluster. Among these, five to 10 of the lowest energy isomers were further optimized using B3LYP/cc-pVTZ method. We applied this method to SinCn (n = 4–12 clusters and found the lowest energy structures, most not previously reported. By analyzing the bonding patterns of low energy structures of each SinCn cluster, we observed that carbon segregations tend to form condensed conjugated rings while Si connects to unsaturated bonds at the periphery of the carbon segregation as single atoms or clusters when n is small and when n is large a silicon network spans over the carbon segregation region.
Liu, Y. H.; Ma, Y. M.; He, Z.; Cui, T.; Liu, B. B.; Zou, G. T.
2007-10-01
We present a detailed investigation of CaCl2 under high pressure in CaCl2 (Pnnm,Z = 2) and α-PbO2 (Pbcn, Z = 4) phases, respectively. Theoretical calculations are performed by using the ab initio pseudopotential plane-wave method based on the density functional method. We estimate the transition pressure between the two phases by the crossing point of their enthalpies, which are equivalent to the Gibbs free energy at zero temperature, after optimizing the structures under high pressure. Our results show that the transition happens at about 2.9 GPa, which is in agreement with the experimental data. We calculate the structural parameters, charge transfers, bond structures, density of states and optical properties. The calculated results show that there are no charge transfers in CaCl2 structure under high pressure. It is found that the transitions from the Cl 3p to Ca 4s and Cl 3s to Ca 3p orbitals contribute mainly to the dielectric function. The optical properties of CaCl2 (Pnnm, Z = 2) do not vary much under pressure. However, some of the dispersion curves of optical constants in the α-PbO2 (Pbcn, Z = 4) phase are changed significantly under pressure.
Energy Technology Data Exchange (ETDEWEB)
Liu, Y H; Ma, Y M; He, Z; Cui, T; Liu, B B; Zou, G T [National Lab of Superhard Materials, Jilin University, Changchun 130012 (China)
2007-10-24
We present a detailed investigation of CaCl{sub 2} under high pressure in CaCl{sub 2} (Pnnm,Z = 2) and {alpha}-PbO{sub 2} (Pbcn, Z = 4) phases, respectively. Theoretical calculations are performed by using the ab initio pseudopotential plane-wave method based on the density functional method. We estimate the transition pressure between the two phases by the crossing point of their enthalpies, which are equivalent to the Gibbs free energy at zero temperature, after optimizing the structures under high pressure. Our results show that the transition happens at about 2.9 GPa, which is in agreement with the experimental data. We calculate the structural parameters, charge transfers, bond structures, density of states and optical properties. The calculated results show that there are no charge transfers in CaCl{sub 2} structure under high pressure. It is found that the transitions from the Cl 3p to Ca 4s and Cl 3s to Ca 3p orbitals contribute mainly to the dielectric function. The optical properties of CaCl{sub 2} (Pnnm, Z = 2) do not vary much under pressure. However, some of the dispersion curves of optical constants in the {alpha}-PbO{sub 2} (Pbcn, Z = 4) phase are changed significantly under pressure.
Rivero, Pablo; Loschen, Christoph; Moreira, Ibério De P R; Illas, Francesc
2009-11-15
This work explores the performance of periodic plane wave density functional theory calculations with an on-site Coulomb correction to the standard LDA and GGA exchange-correlation potential--commonly used to describe strongly correlated solids--in describing the magnetic coupling constant of a series of molecular compounds representative of dinuclear Cu complexes and of organic diradicals. The resulting LDA+U or GGA+U formalisms, lead to results comparable to experiment and to those obtained by means of standard hybrid functionals provided that the value of the U parameter is adequately chosen. Hence, these methods offer an alternative efficient computational scheme to correct LDA and GGA approaches to adequately describe the electronic structure and magnetic coupling in large molecular magnetic systems, although at the expenses of introducing an empirical (U) parameter. For all investigated copper dinuclear systems, the LDA+U and GGA+U approaches lead to an improvement in the description of magnetic properties over the original LDA and GGA schemes with an accuracy similar to that arising from the hybrid B3LYP functional, by increasing the on-site Coulomb repulsion with a moderate U value. Nevertheless, the introduction of an arbitrary U value in the 0-10 eV range most often provides the correct ground-state spin distribution and the correct sign of the magnetic coupling constant.
Mitri, F. G.
2016-07-01
This paper presents two key contributions; the first concerns the development of analytical expressions for the axial and transverse acoustic radiation forces exerted on a 2D rigid elliptical cylinder placed in the field of plane progressive, quasi-standing, or standing waves with arbitrary incidence. The second emphasis is on the acoustic radiation torque per length. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a cylindrical fluid column trapped in air because of the significant acoustic impedance mismatch at the particle boundary. Based on the rigorous partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force components and torque, showing the transition from the progressive to the (equi-amplitude) standing wave behavior, are performed with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes of the ellipse, the dimensionless size parameter, as well as the angle of incidence ranging from end-on to broadside incidence. The results show that the elliptical geometry has a direct influence on the radiation force and torque, so that the standard theory for circular cylinders (at normal incidence) leads to significant miscalculations when the cylinder cross section becomes non-circular. Moreover, the elliptical cylinder experiences, in addition to the acoustic radiation force, a radiation torque that vanishes for the circular cylinder case. The application of the formalism presented here may be extended to other 2D surfaces of
On monochromatic arm exponents for 2D critical percolation
Beffara, Vincent
2009-01-01
We investigate the so-called monochromatic arm exponents for critical percolation in two dimensions. These exponents, describing the probability of observing j disjoint macroscopic paths, are shown to exist and to form a different family from the (now well-understood) polychromatic exponents.
Kernels by Monochromatic Paths and Color-Perfect Digraphs
Directory of Open Access Journals (Sweden)
Galeana-Śanchez Hortensia
2016-05-01
Full Text Available For a digraph D, V (D and A(D will denote the sets of vertices and arcs of D respectively. In an arc-colored digraph, a subset K of V(D is said to be kernel by monochromatic paths (mp-kernel if (1 for any two different vertices x, y in N there is no monochromatic directed path between them (N is mp-independent and (2 for each vertex u in V (D \\ N there exists v ∈ N such that there is a monochromatic directed path from u to v in D (N is mp-absorbent. If every arc in D has a different color, then a kernel by monochromatic paths is said to be a kernel. Two associated digraphs to an arc-colored digraph are the closure and the color-class digraph CC(D. In this paper we will approach an mp-kernel via the closure of induced subdigraphs of D which have the property of having few colors in their arcs with respect to D. We will introduce the concept of color-perfect digraph and we are going to prove that if D is an arc-colored digraph such that D is a quasi color-perfect digraph and CC(D is not strong, then D has an mp-kernel. Previous interesting results are generalized, as for example Richardson′s Theorem.
Classical stabilization of the hydrogen atom in a monochromatic field
Energy Technology Data Exchange (ETDEWEB)
Benvenuto, F.; Casati, G. (Dipartimento di Fisica dell' Universita, Via Castelnuovo 7, 22100 Como (Italy)); Shepelyansky, D.L. (Laboratoire de Physique Quantique, Universite Paul Sabatier, 31062, Toulouse (France))
1993-02-01
We report the results of analytical and numerical investigations on the ionization of a classical atom in a strong, linearly polarized, monochromatic field. We show that the ionization probability decreases with increasing field intensity at field amplitudes much larger than the classical chaos border. This effect should be observable in real laboratory experiments.
Applications of the wave kinetic approach: from laser wakefields to drift wave turbulence
Trines, R. M. G. M.; Bingham, R.; Silva, L. O.; Mendonça, J. T.; Shukla, P. K.; Murphy, C. D.; Dunlop, M. W.; Davies, J. A.; Bamford, R.; Vaivads, A.; Norreys, P. A.
2010-12-01
Nonlinear wave-driven processes in plasmas are normally described by either a monochromatic pump wave that couples to other monochromatic waves, or as a random phase wave coupling to other random phase waves. An alternative approach involves a random or broadband pump coupling to monochromatic and/or coherent structures in the plasma. This approach can be implemented through the wave-kinetic model. In this model, the incoming pump wave is described by either a bunch (for coherent waves) or a sea (for random phase waves) of quasi-particles. This approach has been applied to both photon acceleration in laser wakefields and drift wave turbulence in magnetized plasma edge configurations. Numerical simulations have been compared to experiments, varying from photon acceleration to drift mode-zonal flow turbulence, and good qualitative correspondences have been found in all cases.
Park, Jongchan; Lee, KyeoReh; Cho, Yong-Hoon; Park, YongKeun
2016-01-01
Due to its time-reversal nature, optical phase conjugation generates a monochromatic light wave which retraces its propagation paths. Here, we demonstrate the regeneration of a subwavelength optical focus by phase conjugation. Monochromatic light from a subwavelength source is scattered by random nanoparticles, and the scattered light is phase conjugated at the far-field region by coupling its wavefront into a single-mode optical reflector using a spatial light modulator. Then the conjugated beam retraces its propagation paths and forms a refocus on the source at the subwavelength scale. This is the first direct experimental realization of subwavelength focusing beyond the diffraction limit with far-field time reversal in the optical domain.
Institute of Scientific and Technical Information of China (English)
赵立强; 柯亮
2013-01-01
利用M atlab数值模拟复色平面光波与复色发散球面光波相遇发生复杂干涉现象时的光强度分布，由数值模拟直观地看到：对于同一级次的干涉圆环形条纹，波长短的光波形成的干涉圆环处于内侧，波长长的光波形成的干涉圆环处于外侧，且它们都是同心圆；波长长的光波形成的圆环形干涉条纹相邻条纹之间的距离比波长短的形成的圆环形干涉条纹相邻条纹之间的距离大。%Making use of Matlab numerical software ,the intensity distribution of the interference between polychromatic plane light wave and divergent spherical light wave was simulated .The results of the numerical simulation were as follows :for the same interference order ,the inner interference ring corresponded to long-wavelength ,while the outer ring corresponded to short-wavelength ,and they were all concentric circles ;the distance of the adjacent stripes formed by light of long-wavelength was greater than that of the adjacent stripes formed by light of short-wavelength .
Directory of Open Access Journals (Sweden)
Junlei Zhao
2017-01-01
Full Text Available It is necessary to know the distribution of the Chinese eye’s aberrations in clinical environment to guide high-resolution retinal imaging system design for large Chinese population application. We collected the monochromatic wave aberration of 332 healthy eyes and 344 diseased eyes in Chinese population across a 6.0-mm pupil. The aberration statistics of Chinese eyes including healthy eyes and diseased eyes were analyzed, and some differences of aberrations between the Chinese and European race were concluded. On this basis, the requirement for adaptive optics (AO correction of the Chinese eye’s monochromatic aberrations was analyzed. The result showed that a stroke of 20μm and ability to correct aberrations up to the 8th Zernike order were needed for reflective wavefront correctors to achieve near diffraction-limited imaging in both groups for a reference wavelength of 550nm and a pupil diameter of 6.0mm. To verify the analysis mentioned above, an AO flood-illumination system was established, and high-resolution retinal imaging in vivo was achieved for Chinese eye including both healthy and diseased eyes.
基于低相干光平面波照明的数字全息显微测量%Digital holographic microscopy illuminated by low-coherent plane waves
Institute of Scientific and Technical Information of China (English)
卢文龙; 游雾; 刘晓军
2012-01-01
提出将基于低相干光平面波照明的离轴数字全息显微方法应用于微纳表面测量,结合角谱算法,可在更近的距离以高分辨率重建由平面波记录的数字全息图.在发光二极管平面波照明全息实验中,通过单幅离轴全息图对标准刻线板进行了强度像和相位像的重建.在重建过程中,未发生频谱重叠的现象.对其三维表面形貌的评定结果显示重建的横向参数值与纵向参数值均与标准值具有很好的一致性.%Off-axis digital holographic microscopy in mirco-nano surface measurement was proposed, which was based on the illumination of low coherent plane wave. Compared with sphere-wave inter- ferometry illuminated by lasers, low-coherent plane-wave interferometry could effectively avoid the influence of freckles and multiple-reflections. Combined with angular spectrum algorithm, digital holo- grams illuminated by plane wave could be reconstructed with smaller distances and higher resolutions. In the experiment illuminated by LED（light emitting diode）rs plane wave, the intensity-contrast and phase contrast images of a standard grating plate were reconstructed by a single off-axis hologram. Overlaps did not appear in the frequency spectrum during the reconstructed process. The evaluation of the three dimensional surface topography reveals that the reconstructed axial and lateral parameters are both in good accordance with their standard values.
Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
2015-09-01
The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU's) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH3, CO2, formic acid, and benzene.
Energy Technology Data Exchange (ETDEWEB)
Del Ben, Mauro, E-mail: mauro.delben@chem.uzh.ch; Hutter, Jürg, E-mail: hutter@chem.uzh.ch [Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); VandeVondele, Joost, E-mail: Joost.VandeVondele@mat.ethz.ch [Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich (Switzerland)
2015-09-14
The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU’s) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH{sub 3}, CO{sub 2}, formic acid, and benzene.
Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
2015-09-14
The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU's) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH3, CO2, formic acid, and benzene.
Institute of Scientific and Technical Information of China (English)
章韦芳; 贾昌春; 肖全志; 陈姣姣
2011-01-01
在玻恩近似理论中分别采用扭曲波、平面波、库仑波,计算在250、150、54.4 eV三种入射能下氢原子(e,2e)反应的三重微分截面(TDCS),并与实验数据进行对比.发现在这些入射能下,采用扭曲波和平面波描述入射电子所得的TDCS相差不大;但当考虑散射电子与核的库仑相互作用时,其计算结果比扭曲波描述的更符合实验数据.%In the(e,2e)reaction of hydrogen,distorted wave,plane wave and Coulomb wave in the Born approximation theory were to calculate the triple differential cross sections(TDCS)at incident energies of 250,150 and 54.4 eV respectively,and the theoretical results were compared with experiments.The authors found that there was little difference between the results from the two models,one using the description of plane wave and the other of distorted wave.However,if the interaction between the scattered electron and the nucleus was considered,the result of the calculation coincided with the result of the experiments was better-than the calculation resulted from the description of distorted wave.
Directory of Open Access Journals (Sweden)
B. C. Pandey
1970-07-01
Full Text Available A study of the structure of the contact region has been made taking into account the effects of viscosity, heat conduction and radiative heat transfer. Analytical solutions for the temperature, velocity and pressure distributions in a uniformly moving contact region have been obtained under the optically thick-gas approximation when the thermal conductivity and absorption coefficients are given by power laws. Applying the analysis of the contact region to the situation when a plane shock is reflected from a plane heat-conducting wall it has been shown that the reflected shock is attenuated due to the combined effects of molecular heat conduction and radiative heat conduction.
Trace chemical characterization using monochromatic X-ray undulator radiation
Eba; Numako; Iihara; Sakurai
2000-06-01
An efficient Johansson-type X-ray fluorescence spectrometer has been developed for advanced X-ray spectroscopic analysis with third-generation synchrotron radiation. Kalpha and Kbeta X-ray fluorescence spectra for trace metals have been collected by a Ge(220) analyzing crystal with a Rowland radius of 150 mm, under monochromatic X-ray excitation at the undulator beamline at the SPring-8. The energy resolution is approximately 10 eV for most of the K lines for 3d transition metals. In light of the greatly improved efficiency, as well as the excellent signal-to-background ratio, the relative and absolute detection limits achieved are 1 ppm and 1.2 ng of copper in a carbon matrix, respectively. The energy resolution of the present spectrometer permits the observation of some chemical effects in Kbeta spectra. It has been demonstrated that the changes in Kbeta5 and Kbeta'' intensity for iron and cobalt compounds can be used for the analysis of chemical states. Resonant X-ray fluorescent spectra are another important application of monochromatic excitation. In view of trace chemical characterization, the present spectrometer can be a good alternative to a conventional Si(Li) detector system when combined with highly brilliant X-rays.
Tarabrin, S. P.
2007-12-01
The interaction of a weak gravitational wave with a Fabry-Perot cavity is analysed beyond the long-wavelength approximation in the input-mirror locally Lorentzian frame of reference taking the light pressure into account. The generalised expressions are obtained for the coefficient of pondermotive optical rigidity, the motion law of the moving mirror of the cavity and the response function of the cavity. It is shown that the latter is a sum of two phase shifts of a circulating light wave: the phase incursion after reflection from the moving mirror and the phase incursion due to the direct interaction of gravitational and light waves in the cavity. The possibility of the resonance detection of high-frequency gravitational waves by using the optical rigidity effect is considered.
Towne, Dudley H
1988-01-01
This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.
Energy Technology Data Exchange (ETDEWEB)
Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp [Department of Physics, Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8521 (Japan)
2015-12-15
Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves from anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.
Role of spatial dispersion of electromagnetic wave at its transmission through quantum well
Korovin, L I; Contreras-Solorio, D A; Pavlov, S T
2001-01-01
The theory on the light transmission through the quantum well, placed in the strong magnetic field, perpendicular to the well plane, wherein the interzone transitions take place, is developed. The light wave length is assumed to be comparable with the well width. The formulae for reflection, absorption and transmission wherein the spatial dispersion of the monochromatic light wave and the difference in the reflection indices of the quantum well and the barrier are accounted for, are obtained. It is shown that accounting for these factors effects the reflection most of all, because along with the reflection, caused by the interzonal transitions in the quantum well there appears the additional reflection from the well boundaries. The most radical changes in the reflection take place in the case, when the reverse radiation lifetime of the excited state in the quantum well is shorter as compared to the reverse non-radiation lifetime
Institute of Scientific and Technical Information of China (English)
徐红玉; 杨先健; 陈殿云; 刘丰军
2001-01-01
With the aid of theory on wave propagation and Snell theorem, atheoretical study is presented on propagation characteristics of plane wave when it passes through layered elastic medium. Exact solution of dynamic equation is derived. The curves which represent the relations between transiting wave amplitude and medium parameters and incident angle are obtained by numerical computation. The results show that transiting wave amplitude is dependent on not only medium parameters but also interlining thickness and incident angle.%运用波的传播理论及Snell定律研究了平面P波通过弹性层状介质时的传播特性，求得波动方程的解析解，在此基础上利用数值计算绘出了反射﹑透射系数与介质参数及入射角的关系曲线。结果表明透射系数不仅与介质参数有关，而且与夹层厚度和入射角有关，严格控制夹层厚度和入射角可获得满意的隔振效果，为屏障隔振理论在工程中的应用提供了理论基础。
On the detectability of Galactic dark matter annihilation into monochromatic gamma-rays
Institute of Scientific and Technical Information of China (English)
唐志成; 袁强; 毕效军; 陈国明
2011-01-01
Monochromatic y-rays are thought to be the smoking gun signal for identifying dark matter annihilation. However, the flux of monochromatic y-rays is usually suppressed by virtual quantum effects since dark matter should be neutral and does not couple with
Destefanis, V.; Kerlain, A.
2016-09-01
Minority-carrier lifetime measurements have been carried out on Hg0.77Cd0.23Te (111)B materials with gap suitable for detection in the Long-Wave Infrared (LWIR) band. The materials were grown on top of CdZnTe substrates using a liquid-phase epitaxy (LPE) process. From measurements done at 80 K, a clear difference in terms of minority-carrier lifetimes was obtained, as expected, between p-intrinsic (≤5 ns) and n-extrinsic doped samples (420 ns). Minority-carrier lifetimes were also measured as a function of temperature for the n-type samples. Auger-1-limited lifetimes were demonstrated over a wide temperature range (from 80 K to 300 K) with negligible Radiative or Shockley-Read-Hall lifetime contributions. Predictions of dark current densities are made from those lifetime measurements, assuming an Auger-1-limited lifetime. The agreement is very good between the predictions and dark current densities measured from p-on- n 640 × 512 pixels LWIR HgCdTe focal-plane arrays with 15- μm pitch from SOFRADIR, Agreement between predicted and measured dark currents and Rule'07 for LWIR is also demonstrated herein. Finally, minority-carrier lifetime measurements are demonstrated as a predictive method for focal-plane array performance. State-of-the-art dark currents from SOFRADIR p-on- n LWIR focal-plane arrays based upon high-quality HgCdTe materials are also illustrated.
Institute of Scientific and Technical Information of China (English)
丁晓浩; 齐辉; 赵元博
2016-01-01
利用Green函数法、复变函数法及保角映射技术研究了SH波作用下直角域中直线裂纹对椭圆形夹杂动应力集中系数的影响.采用保角映射法和镜像叠加原理构造了一个能自动满足直角平面两个直线边界应力自由边界条件的散射位移场,并取含有椭圆形夹杂的直角域中任意一点承受时间谐和的出平面线源载荷作用下的位移基本解作为适合的Green函数.利用裂纹"切割"技术构造直线裂纹,进而得出裂纹与椭圆形夹杂共存时的位移场和应力场.通过具体算例讨论了入射波数、裂纹角度、裂纹长度等因素对椭圆形夹杂周边动应力集中系数的影响.%The scattering problem of SH-wave by elliptic inclusion in right-angle plane with an arbitrary beeline crack was analyzed by Green's function,complex function method and conformal mapping method.The conformal map-ping method and image method were employed to construct the scattering wave function,which satisfies the condi-tion that stress is free on the straight boundaries of the right angle planes.An essential solution to the displacement field of an elastic right-angle plane containing an elliptic inclusion,whose any point bore an anti-plane harmonic line source load,was taken as Green's function.The beeline crack was constructed with crack-division technique,and the expressions of displacement and stress fields were given when crack and elliptic inclusion co-exist.The dynamic stress concentration factor(DSCF)on the edge of elliptic inclusion was given and the influences of incident wave number,crack angle,crack length and other parameters on DSCF of elliptic inclusion were discussed.
Contrast imaging with a monochromatic x-ray scanner
Pole, Donald J.; Popovic, Kosta; Williams, Mark B.
2008-03-01
We are currently developing a monochromatic x-ray source for small animal tomographic imaging. This source consists of a conventional cone beam microfocus x-ray tube with a tungsten target coupled to a filter that uses Bragg diffraction to transmit only x-rays within a narrow energy range (~3 keV FWHM). A tissue-equivalent mouse phantom was used to a) evaluate how clearly CT imaging using the quasi-monoenergetic beam is able to differentiate tissue types compared to conventional polyenergetic CT, and b) to test the ability of the source and Bragg filter combination to perform dual energy, iodine contrast enhanced imaging. Single slice CT scans of the phantom were obtained both with polyenergetic (1.8 mm Al filtration) and quasi-monoenergetic beams. Region of interest analysis showed that pixel value variance was signifcantly reduced in the quasi-monochromatic case compared to the polyenergetic case, suggesting a reduction in the variance of the linear attenuation coefficients of the tissue equivalent materials due to the narrower energy spectrum. To test dual energy iodine K-edge imaging, vials containing solutions with a range of iodine contrasts were added to the phantom. Single-slice CT scans were obtained using spectra with maximum values at 30 and 35 keV, respectively. Analysis of the resulting difference images (35 keV image - 30 keV image) shows that the magnitude of the difference signal produced by iodine exceeds that of bone for iodine concentrations above ~20 mg/ml, and that of muscle and fat tissues for iodine concentrations above ~5 mg/ml.
On the detectability of Galactic dark matter annihilation into monochromatic gamma-rays
Institute of Scientific and Technical Information of China (English)
TANG Zhi-Cheng; YUAN Qiang; BI Xiao-Jun; CHEN Guo-Ming
2011-01-01
Monochromatic γ-rays are thought to be the smoking gun signal for identifying dark matter annihilation. However, the flux of monochromatic γ-rays is usually suppressed by virtual quantum effects since dark matter should be neutral and does not couple with γ-rays directly. In this work, we study the detection strategy of the monochromatic γ-rays in a future space-based detector. The flux of monochromatic γ-rays between 50 GeV and several TeV is calculated by assuming the supersymmetric neutralino as a typical dark matter candidate. The detection both by focusing on the Galactic center and in a scan mode that detects γ-rays from the whole Galactic halo are compared. The detector performance for the purpose of monochromatic γ-ray detection, with different energy and angular resolution, field of view, and background rejection efficiencies, is carefully studied with both analytical and fast Monte-Carlo methods.
On the Detectability of Galactic Dark Matter Annihilation into Monochromatic Gamma-rays
Tang, Zhi-Cheng; Bi, Xiao-Jun; Chen, Guo-Ming
2010-01-01
Monochromatic gamma-rays are thought to be the smoking gun signal for identifying the dark matter annihilation. However, the flux of monochromatic gamma-rays is usually suppressed by the virtual quantum effects since dark matter should be neutral and does not couple with gamma-rays directly. In the work we study the detection strategy of the monochromatic gamma-rays in a future space-based detector. The monochromatic gamma-ray flux is calculated by assuming supersymmetric neutralino as a typical dark matter candidate. We discuss both the detection focusing on the Galactic center and in a scan mode which detects gamma-rays from the whole Galactic halo are compared. The detector performance for the purpose of monochromatic gamma-rays detection, with different energy and angular resolution, field of view, background rejection efficiencies, is carefully studied with both analytical and fast Monte-Carlo method.
Westphal, Maximillian; Lim, Sara; Nahar, Sultana; Pradhan, Anil
2016-05-01
Aimed at monochromatic X-ray imaging and therapy, broadband, monochromatic, and quasi-monochromatic X-ray sources and propagation through low and high-Z (HZ) media were studied with numerically and experimentally. Monte Carlo simulations were performed using the software package Geant4, and a new code Photx, to simulate X-ray image contrast, depth of penetration, and total attenuation. The data show that monochromatic and quasi-monochromatic X-rays achieve improved contrast at lower absorbed radiation doses compared to conventional broadband 120 kV or CT scans. Experimental quasi-monochromatic high-intensity laser-produced plasma sources and monochromatic synchrotron beam data are compared. Physical processes responsible for X-ray photoexcitation and absorption are numerically modelled, including a novel mechanism for accelerating Kα resonance fluorescence via twin monochromatic X-ray beam. Potential applications are medical diagnostics and high-Z material detection. Acknowledgement: Ohio Supercomputer Center, Columbus, OH.
Institute of Scientific and Technical Information of China (English)
张根昌; 齐辉; 刘平安
2013-01-01
The scattering of SH-wave with arbitrary incident angle by a circular lining in a right-angle plane is studied together with its influence on the seismic ground motion. The problem in a right-angle plane is transformed into the scattering of SH-wave in half-space by using the complex function method, the multi-polar coordinate transformation and the image method. According to the boundary conditions , the solution of the problem can be reduced to a series of algebraic equations. The numerical examples show that the concentration of the dynamic stress and the ground motion are related with the different wave numbers, the angle, the geometrical location and the thickness of the circular cavity.%研究了以任意方向入射的平面SH波对直角平面区域内圆形衬砌的散射与地震动问题.利用复变函数法、多极坐标移动技术及镜像法,将直角平面区域内的波场延拓于半无限空间,根据边界条件将该问题的解答可归结为对一组无穷代数方程组的求解问题,通过算例考虑衬砌的动应力集中和地表位移.结果表明,衬砌的动应力集中和地表位移幅值取决于入射波频率、角度、衬砌的位置和厚度比.
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...
Hu, Jiaqi; Li, Qi; Cui, Shanshan
2014-10-20
In terahertz inline digital holography, zero-order diffraction light and conjugate images can cause the reconstructed image to be blurred. In this paper, three phase retrieval algorithms are applied to conduct reconstruction based on the same near-field diffraction propagation conditions and image-plane constraints. The impact of different object-plane constraints on CW terahertz inline digital holographic reconstruction is studied. The results show that in the phase retrieval algorithm it is not suitable to impose restriction on the phase when the object is not isolated in the transmission-type CW terahertz inline digital holography. In addition, the effects of zero-padding expansion, boundary replication expansion, and apodization operation on reconstructed images are studied. The results indicate that the conjugate image can be eliminated, and a better reconstructed image can be obtained by adopting an appropriate phase retrieval algorithm after the normalized hologram extending to the minimum area, which meets the applicable range of the angular spectrum reconstruction algorithm by means of boundary replication.
Fusion of colour and monochromatic images with edge emphasis
Directory of Open Access Journals (Sweden)
Rade M. Pavlović
2014-02-01
Full Text Available We propose a novel method to fuse true colour images with monochromatic non-visible range images that seeks to encode important structural information from monochromatic images efficiently but also preserve the natural appearance of the available true chromacity information. We utilise the β colour opponency channel of the lαβ colour as the domain to fuse information from the monochromatic input into the colour input by the way of robust grayscale fusion. This is followed by an effective gradient structure visualisation step that enhances the visibility of monochromatic information in the final colour fused image. Images fused using this method preserve their natural appearance and chromacity better than conventional methods while at the same time clearly encode structural information from the monochormatic input. This is demonstrated on a number of well-known true colour fusion examples and confirmed by the results of subjective trials on the data from several colour fusion scenarios. Introduction The goal of image fusion can be broadly defined as: the representation of visual information contained in a number of input images into a single fused image without distortion or loss of information. In practice, however, a representation of all available information from multiple inputs in a single image is almost impossible and fusion is generally a data reduction task. One of the sensors usually provides a true colour image that by definition has all of its data dimensions already populated by the spatial and chromatic information. Fusing such images with information from monochromatic inputs in a conventional manner can severely affect natural appearance of the fused image. This is a difficult problem and partly the reason why colour fusion received only a fraction of the attention than better behaved grayscale fusion even long after colour sensors became widespread. Fusion method Humans tend to see colours as contrasts between opponent
Institute of Scientific and Technical Information of China (English)
李兴财; 王虎
2014-01-01
The intensity of scattering field and the wave absorption properties of particle is determined by the internal electromagnetic field of particle.Based on the equivalent radius of the micro-surface for ellipsoid and the Mie scattering theory,we discuss the electromagnetic field distribution for a partially charged spheroid which illuminated by a plane wave,and make a comparison with uncharged particle.The numerical simulation results show that the surface charges have a significant effect on the internal and the external electromagnetic field distribution for particle, and hence influence its electromagnetic wave attenuation properties.%颗粒内部场强决定了粒子散射场强度及其对入射电磁波的吸收作用。借助椭球面的等效球面微元半径及带电球体粒子的 Mie 散射理论讨论了平面波入射下局部带电椭球体内外场强分布，并与不带电椭球粒子的结果进行了比较。数值结果表明：颗粒表面电荷显著改变了颗粒内外电磁场的分布规律及其强度，从而影响粒子的电磁散射性质。
Focal-plane sensor-processor chips
Zarándy, Ákos
2011-01-01
Focal-Plane Sensor-Processor Chips explores both the implementation and application of state-of-the-art vision chips. Presenting an overview of focal plane chip technology, the text discusses smart imagers and cellular wave computers, along with numerous examples of current vision chips.
Energy Technology Data Exchange (ETDEWEB)
Finn, Lee Samuel; Thorne, Kip S.
2000-12-15
Results are presented from high-precision computations of the orbital evolution and emitted gravitational waves for a stellar-mass object spiraling into a massive black hole in a slowly shrinking, circular, equatorial orbit. The focus of these computations is inspiral near the innermost stable circular orbit (isco) -- more particularly, on orbits for which the angular velocity {Omega} is 0.03{approx}<{Omega}/{Omega}{sub isco}{<=}1.0. The computations are based on the Teuksolsky-Sasaki-Nakamura formalism, and the results are tabulated in a set of functions that are of order unity and represent relativistic corrections to low-orbital-velocity formulas. These tables can form a foundation for future design studies for the LISA space-based gravitational-wave mission. A first survey of applications to LISA is presented: Signal to noise ratios S/N are computed and graphed as functions of the time-evolving gravitational-wave frequency for the lowest three harmonics of the orbital period, and for various representative values of the hole's mass M and spin a and the inspiraling object's mass {mu}, with the distance to Earth chosen to be r{sub o}=1 Gpc. These S/N's show a very strong dependence on the black-hole spin, as well as on M and {mu}. Graphs are presented showing the range of the {l_brace}M,a,{mu}{r_brace} parameter space, for which S/N>10 at r{sub 0}=1 Gpc during the last year of inspiral. The hole's spin a has a factor of {approx}10 influence on the range of M (at fixed {mu}) for which S/N>10, and the presence or absence of a white-dwarf--binary background has a factor of {approx}3 influence. A comparison with predicted event rates shows strong promise for detecting these waves, but not beyond about 1 Gpc if the inspiraling object is a white dwarf or neutron star. This argues for a modest lowering of LISA's noise floor. A brief discussion is given of the prospects for extracting information from the observed waves.
Sex and vision II: color appearance of monochromatic lights
Directory of Open Access Journals (Sweden)
Abramov Israel
2012-09-01
Full Text Available Abstract Background Because cerebral cortex has a very large number of testosterone receptors, we examined the possible sex differences in color appearance of monochromatic lights across the visible spectrum. There is a history of men and women perceiving color differently. However, all of these studies deal with higher cognitive functions which may be culture-biased. We study basic visual functions, such as color appearance, without reference to any objects. We present here a detailed analysis of sex differences in primary chromatic sensations. Methods We tested large groups of young adults with normal vision, including spatial and temporal resolution, and stereopsis. Based on standard color-screening and anomaloscope data, we excluded all color-deficient observers. Stimuli were equi-luminant monochromatic lights across the spectrum. They were foveally-viewed flashes presented against a dark background. The elicited sensations were measured using magnitude estimation of hue and saturation. When the only permitted hue terms are red (R yellow (Y, green (G, blue (B, alone or in combination, such hue descriptions are language-independent and the hue and saturation values can be used to derive a wide range of color-discrimination functions. Results There were relatively small but clear and significant, differences between males and females in the hue sensations elicited by almost the entire spectrum. Generally, males required a slightly longer wavelength to experience the same hue as did females. The spectral loci of the unique hues are not correlated with anomaloscope matches; these matches are directly determined by the spectral sensitivities of L- and M-cones (genes for these cones are on the X-chromosomes. Nor are there correlations between loci of pairs of unique hues (R, Y, G, B. Wavelength-discrimination functions derived from the scaling data show that males have a broader range of poorer discrimination in the middle of the spectrum. The
Soto, F.; Berger, H.; Cabo, L.; Carballeira, C.; Mosqueira, J.; Pavuna, D.; Vidal, F.
2007-03-01
The fluctuation-diamagnetism (FD) above the superconducting transition was measured in 2H-NbSe2 single crystals. The moderate uniaxial anisotropy of this compound, and some experimental improvements, allowed us to measure the superconducting fluctuation effects in the two main crystallographic directions. These results reveal that the nonlocal electrodynamic effects on the FD are highly anisotropic, and they also discard a possible contribution to the FD coming from the charge-density waves (CDWs) appearing below TCDW>TC in 2H-NbSe2 , in agreement with a phenomenological estimate.
The effect of monochromatic infrared energy on diabetic wound healing.
He, Yayi; Yip, Selina Ly; Cheung, Kwok-Kuen; Huang, Lin; Wang, Shijie; Cheing, Gladys Ly
2013-12-01
This study examined the effect of monochromatic infrared energy (MIRE) on diabetic wound healing. Fifteen diabetic rats were given MIRE intervention on their skin wounds located on the dorsum and compared with 15 control diabetic rats. Assessments were conducted for each group at weeks 1, 2 and 4 post wounding (five rats at each time point) by calculating the percentage of wound closures (WCs) and performing histological and immunohistochemical staining on sections of wound tissue. Evaluations of WCs and histological examinations of reepithelialisation, cellular content and granulation tissue formation showed no significant difference between the MIRE and the control group at each time point. Through semi-quantitative immunohistochemical staining, the deposition of type I collagen in the MIRE group was found to have improved when compared with the control group at the end of week 2 (P = 0.05). No significant differences in the myofibroblast population were detected between the two groups. In conclusion, MIRE appeared to promote collagen deposition in the early stage of wound healing in diabetic rats, but the overall wound healing in the MIRE group was not significantly different from that of the control group. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.
How accurate are infrared luminosities from monochromatic photometric extrapolation?
Lin, Zesen; Kong, Xu
2016-01-01
Template-based extrapolations from only one photometric band can be a cost-effective method to estimate the total infrared (IR) luminosities ($L_{\\mathrm{IR}}$) of galaxies. By utilizing multi-wavelength data that covers across 0.35--500\\,$\\mathrm{\\mu m}$ in GOODS-North and GOODS-South fields, we investigate the accuracy of this monochromatic extrapolated $L_{\\mathrm{IR}}$ based on three IR spectral energy distribution (SED) templates (\\citealt[CE01]{Chary2001}; \\citealt[DH02]{Dale2002}; \\citealt[W08]{Wuyts2008a}) out to $z\\sim 3.5$. We find that the CE01 template provides the best estimate of $L_{\\mathrm{IR}}$ in {\\it Herschel}/PACS bands, while the DH02 template performs best in {\\it Herschel}/SPIRE bands. To estimate $L_{\\mathrm{IR}}$, we suggest that extrapolations from the available longest wavelength PACS band based on the CE01 template can be a good estimator. Moreover, if PACS measurement is unavailable, extrapolations from SPIRE observations but based on the \\cite{Dale2002} template can also provide ...
Cell response to quasi-monochromatic light with different coherence
Budagovsky, A. V.; Solovykh, N. V.; Budagovskaya, O. N.; Budagovsky, I. A.
2015-04-01
The problem of the light coherence effect on the magnitude of the photoinduced cell response is discussed. The origins of ambiguous interpretation of the known experimental results are considered. Using the biological models, essentially differing in anatomy, morphology and biological functions (acrospires of radish, blackberry microsprouts cultivated in vitro, plum pollen), the effect of statistical properties of quasi-monochromatic light (λmax = 633 nm) on the magnitude of the photoinduced cell response is shown. It is found that for relatively low spatial coherence, the cell functional activity changes insignificantly. The maximal enhancement of growing processes (stimulating effect) is observed when the coherence length Lcoh and the correlation radius rcor are greater than the cell size, i.e., the entire cell fits into the field coherence volume. In this case, the representative indicators (germination of seeds and pollen, the spears length) exceeds those of non-irradiated objects by 1.7 - 3.9 times. For more correct assessment of the effect of light statistical properties on photocontrol processes, it is proposed to replace the qualitative description (coherent - incoherent) with the quantitative one, using the determination of spatial and temporal correlation functions and comparing them with the characteristic dimensions of the biological structures, e.g., the cell size.
First Sub-arcsecond Collimation of Monochromatic Neutrons
Energy Technology Data Exchange (ETDEWEB)
Wagh, Apoorva G; Abbas, Sohrab; Treimer, Wolfgang, E-mail: nintsspd@barc.gov.in
2010-11-01
We have achieved the tightest collimation to date of a monochromatic neutron beam by diffracting neutrons from a Bragg prism, viz. a single crystal prism operating in the vicinity of Bragg incidence. An optimised silicon {l_brace}111{r_brace} Bragg prism has collimated 5.26A neutrons down to 0.58 arcsecond. In conjunction with a similarly optimised Bragg prism analyser of opposite asymmetry, this ultra-parallel beam yielded a 0.62 arcsecond wide rocking curve. This beam has produced the first SUSANS spectrum in Q {approx} 10{sup -6} A{sup -1} range with a hydroxyapatite casein protein sample and demonstrated the instrument capability of characterising agglomerates upto 150 {mu}m in size. The super-collimation has also enabled recording of the first neutron diffraction pattern from a macroscopic grating of 200 {mu}m period. An analysis of this pattern yielded the beam transverse coherence length of 175 {mu}m (FWHM), the greatest achieved to date for A wavelength neutrons.
Coloring random graphs online without creating monochromatic subgraphs
Mütze, Torsten; Spöhel, Reto
2011-01-01
Consider the following random process: The vertices of a binomial random graph $G_{n,p}$ are revealed one by one, and at each step only the edges induced by the already revealed vertices are visible. Our goal is to assign to each vertex one from a fixed number $r$ of available colors immediately and irrevocably without creating a monochromatic copy of some fixed graph $F$ in the process. Our first main result is that for any $F$ and $r$, the threshold function for this problem is given by $p_0(F,r,n)=n^{-1/m_1^*(F,r)}$, where $m_1^*(F,r)$ denotes the so-called \\emph{online vertex-Ramsey density} of $F$ and $r$. This parameter is defined via a purely deterministic two-player game, in which the random process is replaced by an adversary that is subject to certain restrictions inherited from the random setting. Our second main result states that for any $F$ and $r$, the online vertex-Ramsey density $m_1^*(F,r)$ is a computable rational number. Our lower bound proof is algorithmic, i.e., we obtain polynomial-time...
Cell response to quasi-monochromatic light with different coherence
Energy Technology Data Exchange (ETDEWEB)
Budagovsky, A V; Solovykh, N V [I.V.Michurin All-Russian Recearch Institute of Fruit Crops Genetics and Breeding (Russian Federation); Budagovskaya, O N [I.V.Michurin All-Russia Research and Development Institute of Gardening, Michurinsk, Tambov region (Russian Federation); Budagovsky, I A [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)
2015-04-30
The problem of the light coherence effect on the magnitude of the photoinduced cell response is discussed. The origins of ambiguous interpretation of the known experimental results are considered. Using the biological models, essentially differing in anatomy, morphology and biological functions (acrospires of radish, blackberry microsprouts cultivated in vitro, plum pollen), the effect of statistical properties of quasi-monochromatic light (λ{sub max} = 633 nm) on the magnitude of the photoinduced cell response is shown. It is found that for relatively low spatial coherence, the cell functional activity changes insignificantly. The maximal enhancement of growing processes (stimulating effect) is observed when the coherence length L{sub coh} and the correlation radius r{sub cor} are greater than the cell size, i.e., the entire cell fits into the field coherence volume. In this case, the representative indicators (germination of seeds and pollen, the spears length) exceeds those of non-irradiated objects by 1.7 – 3.9 times. For more correct assessment of the effect of light statistical properties on photocontrol processes, it is proposed to replace the qualitative description (coherent – incoherent) with the quantitative one, using the determination of spatial and temporal correlation functions and comparing them with the characteristic dimensions of the biological structures, e.g., the cell size. (biophotonics)
Reichert, R, S.; Biringen, S.; Howard, J. E.
1999-01-01
LINER is a system of Fortran 77 codes which performs a 2D analysis of acoustic wave propagation and noise suppression in a rectangular channel with a continuous liner at the top wall. This new implementation is designed to streamline the usage of the several codes making up LINER, resulting in a useful design tool. Major input parameters are placed in two main data files, input.inc and nurn.prm. Output data appear in the form of ASCII files as well as a choice of GNUPLOT graphs. Section 2 briefly describes the physical model. Section 3 discusses the numerical methods; Section 4 gives a detailed account of program usage, including input formats and graphical options. A sample run is also provided. Finally, Section 5 briefly describes the individual program files.
Corner diffraction coefficients for the quarter plane
DEFF Research Database (Denmark)
Hansen, Thorkild B.
1991-01-01
The current near a right-angled corner on a perfectly conducting flat scatterer illuminated by a plane wave is expressed as a sum of three currents. The first is the physical optics current, which describes the surface effect. The second is the fringe wave current, which is found from the half-pl...
Relations between integrated and monochromatic luminosities of flat-spectrum radio quasars
Institute of Scientific and Technical Information of China (English)
Zhi-Fu Chen; Zhao-Yu Chen; Yi-Ping Qin; Min-Feng Gu; Lian-Zhong Lü; Cheng-Yue Su; You-Bing Li; Ye Chen
2011-01-01
We employ a sample of 362 flat-spectrum radio quasars (FSRQs) to calculate their integrated luminosities by integrating the spectral energy distribution (SED) constructed with multi-band (radio, IR, optical, UV and X-ray) data.We compare these luminosities with those estimated from monochromatic luminosities by multiplying them by the conventional bolometric correction factors.Our analysis shows that the integrated luminosities calculated from the SED are much larger than the bolometric luminosities estimated from monochromatic luminosities.Their departing behavior tightly correlates with radio luminosities.The relations between integrated and monochromatic luminosities are explored, which are regarded as empirical relations that might be more suitable to be applied to estimate integrated luminosities of FSRQs from their monochromatic luminosities.
A monochromatized chopped beam of cold neutrons for low background experiments
Energy Technology Data Exchange (ETDEWEB)
Bussiere, A. (Lab. de Physique des Particules, 74 - Annecy le Vieux (France)); Grivot, P. (Inst. des Sciences Nucleaires, 38 - Grenoble (France)); Kossakowski, R. (Lab. de Physique des Particules, 74 - Annecy le Vieux (France)); Liaud, P. (Lab. de Physique des Particules, 74 - Annecy le Vieux (France)); Saintignon, P. de (Inst. des Sciences Nucleaires, 38 - Grenoble (France)); Schreckenbach, K. (Inst. Laue-Langevin, 38 - Grenoble (France))
1993-07-15
The design and performance of a monochromatized, chopped beam of cold neutrons are described. The beam is particularly suited for experiments where a low level of gamma ray and diffused neutron background is required. (orig.)
Emission of monochromatic microwave radiation from a nonequilibrium condensation of excited magnons
Vannucchi, FS; Vasconcellos, AR; Luzzi,R.
2013-01-01
The observation of monochromatic emission of radiation from a nonequilibrium Bose-Einstein-like condensate of magnons suggests the possibility of creating a monochromatic microwave generator pumped by incoherent broadband sources. The device would have a tunable emitted frequency as a function of the applied constant magnetic field. We present an analysis of the mechanisms of interaction between the condensate of magnons and the radiation field producing the super-radiant emission of photons....
Swash Zone Response under Various Wave Regimes
DEFF Research Database (Denmark)
Vicinanza, Diego; Baldock, Tom; Contestabile, Pasquale
2011-01-01
The modelling of swash zone (SZ) sediment transport and the resulting morphodynamics have been areas of active research over the last decade. However, many details are still to be understood, whose knowledge will be greatly advanced by the collection of high-quality data under the controlled large......-scale laboratory conditions. The research describes tests carried out in the large wave flume of the Maritime Engineering Laboratory at Catalonia University of Technology, to investigate the SZ under the storm conditions. Its main aim was to compare beach-profile responses for monochromatic waves, monochromatic...
Monochromatic 4-term arithmetic progressions in 2-colorings of $\\mathbb Z_n$
Lu, Linyuan
2011-01-01
This paper is motivated by a recent result of Wolf \\cite{wolf} on the minimum number of monochromatic 4-term arithmetic progressions(4-APs, for short) in $\\Z_p$, where $p$ is a prime number. Wolf proved that there is a 2-coloring of $\\Z_p$ with 0.000386% fewer monochromatic 4-APs than random 2-colorings; the proof is probabilistic and non-constructive. In this paper, we present an explicit and simple construction of a 2-coloring with 9.3% fewer monochromatic 4-APs than random 2-colorings. This problem leads us to consider the minimum number of monochromatic 4-APs in $\\Z_n$ for general $n$. We obtain both lower bound and upper bound on the minimum number of monochromatic 4-APs in all 2-colorings of $\\Z_n$. Wolf proved that any 2-coloring of $\\Z_p$ has at least $(1/16+o(1))p^2$ monochromatic 4-APs. We improve this lower bound into $(7/96+o(1))p^2$. Our results on $\\Z_n$ naturally apply to the similar problem on $[n]$ (i.e., $\\{1,2,..., n\\}$). In 2008, Parillo, Robertson, and Saracino \\cite{prs} constructed a 2-...