Pawlak, Rémy; Kisiel, Marcin; Klinovaja, Jelena; Meier, Tobias; Kawai, Shigeki; Glatzel, Thilo; Loss, Daniel; Meyer, Ernst
2016-11-01
Motivated by the striking promise of quantum computation, Majorana bound states (MBSs) in solid-state systems have attracted wide attention in recent years. In particular, the wavefunction localisation of MBSs is a key feature and is crucial for their future implementation as qubits. Here we investigate the spatial and electronic characteristics of topological superconducting chains of iron atoms on the surface of Pb(110) by combining scanning tunnelling microscopy and atomic force microscopy. We demonstrate that the Fe chains are mono-atomic, structured in a linear manner and exhibit zero-bias conductance peaks at their ends, which we interpret as signature for a MBS. Spatially resolved conductance maps of the atomic chains reveal that the MBSs are well localised at the chain ends (≲25 nm), with two localisation lengths as predicted by theory. Our observation lends strong support to use MBSs in Fe chains as qubits for quantum-computing devices.
Pawlak, Remy; Klinovaja, Jelena; Meier, Tobias; Kawai, Shigeki; Glatzel, Thilo; Loss, Daniel; Meyer, Ernst
2015-01-01
Motivated by the striking promise of quantum computation, Majorana bound states (MBSs) in solid-state systems have attracted wide attention in recent years. In particular, the wavefunction localization of MBSs is a key feature and crucial for their future implementation as qubits. Here, we investigate the spatial and electronic characteristics of topological superconducting chains of iron atoms on the surface of Pb(110) by combining scanning tunneling microscopy (STM) and atomic force microscopy (AFM). We demonstrate that the Fe chains are mono-atomic, structured in a linear fashion, and exhibit zero-bias conductance peaks at their ends which we interprete as signature for a Majorana bound state. Spatially resolved conductance maps of the atomic chains reveal that the MBSs are well localized at the chain ends (below 25 nm), with two localization lengths as predicted by theory. Our observation lends strong support to use MBSs in Fe chains as qubits for quantum computing devices.
Atomistic theory for the damping of vibrational modes in monoatomic gold chains
DEFF Research Database (Denmark)
Engelund, Mads; Brandbyge, Mads; Jauho, Antti-Pekka
2009-01-01
of the atoms forming the contact is taken into account. The dynamical matrix is computed with density-functional theory in the atomic chain and the contacts using finite atomic displacements while an empirical method is employed for the bulk substrate. As a specific example, we present results...
Impulse absorption by horizontal magnetic granular chain
Directory of Open Access Journals (Sweden)
Dingxin Leng
2016-02-01
Full Text Available The granular medium is known as a protecting material for shock mitigation. We study the impulse absorption of an alignment of magnetic spheres placed horizontally under a non-uniform magnetic field. The phenomenon of the wave dispersion is presented. This system can absorb 85% ∼ 95% (88% ∼ 98% of the incident peak force (energy under the applied magnetic field strength in 0.1 T ∼ 1.0 T. The shock attenuation capacities are enhanced by the increment of field strength. With an intelligent control system, it is conceivable that the magnetic granular chain may offer possibilities in developing adaptive shock protectors.
Multiple impacts in dissipative granular chains
Nguyen, Ngoc Son
2014-01-01
The extension of collision models for single impacts between two bodies, to the case of multiple impacts (which take place when several collisions occur at the same time in a multibody system) is a challenge in Solid Mechanics, due to the complexity of such phenomena, even in the frictionless case. This monograph aims at presenting the main multiple collision rules proposed in the literature. Such collisions typically occur in granular materials, the simplest of which are made of chains of aligned balls. These chains are used throughout the book to analyze various multiple impact rules which extend the classical Newton (kinematic restitution), Poisson (kinetic restitution) and Darboux-Keller (energetic or kinetic restitution) approaches for impact modelling. The shock dynamics in various types of chains of aligned balls (monodisperse, tapered, decorated, stepped chains) is carefully studied and shown to depend on several parameters: restitution coefficients, contact stiffness ratios, elasticity coefficients (...
Ma, Liang-Cai; Ma, Ling; Zhang, Jian-Min
2017-07-01
By using first-principles calculations based on density-functional theory, the stability, magnetic and electronic properties of Fe and Co monoatomic chains encapsulated into copper nanotube are systematically investigated. The binding energies of the hybrid structures are remarkably higher than those of corresponding freestanding TM chains, indicating the TM chains are significantly stabilized after encapsulating into copper nanotube. The formed bonds between outer Cu and inner TM atoms show some degree of covalent bonding character. The magnetic ground states of Fe@CuNW and Co@CuNW hybrid structures are ferromagnetic, and both spin and orbital magnetic moments of inner TM atoms have been calculated. The magnetocrystalline anisotropy energies (MAE) of the hybrid structures are enhanced by nearly fourfold compared to those of corresponding freestanding TM chains, indicating that the hybrid structures can be used in ultrahigh density magnetic storage. Furthermore, the easy magnetization axis switches from that along the axis in freestanding Fe chain to that perpendicular to the axis in Fe@CuNT hybrid structure. The large spin polarization at the Fermi level also makes the hybrid systems interesting as good potential materials for spintronic devices.
Wave propagation in random granular chains.
Manjunath, Mohith; Awasthi, Amnaya P; Geubelle, Philippe H
2012-03-01
The influence of randomness on wave propagation in one-dimensional chains of spherical granular media is investigated. The interaction between the elastic spheres is modeled using the classical Hertzian contact law. Randomness is introduced in the discrete model using random distributions of particle mass, Young's modulus, or radius. Of particular interest in this study is the quantification of the attenuation in the amplitude of the impulse associated with various levels of randomness: two distinct regimes of decay are observed, characterized by an exponential or a power law, respectively. The responses are normalized to represent a vast array of material parameters and impact conditions. The virial theorem is applied to investigate the transfer from potential to kinetic energy components in the system for different levels of randomness. The level of attenuation in the two decay regimes is compared for the three different sources of randomness and it is found that randomness in radius leads to the maximum rate of decay in the exponential regime of wave propagation.
Static Structure of Two-Dimensional Granular Chain
Institute of Scientific and Technical Information of China (English)
WEN Ping-Ping; LI Liang-Sheng; ZHENG Ning; SHI Qing-Fan
2010-01-01
@@ Static packing structures of two-dimensional granular chains are investigated experimentally.It is shown that the packing density approximates the saturation with the exponential law as the length of chain increases.The packing structures are globally disordered,while the local square crystallization is found by using the radial distribution function.This characteristic phase of chain packing is similar to a liquid crystal state,and has properties between a conventional liquid and solid crystal.
Visualising stress-chain morphology during granular shear
Mair, K.; Hazzard, J. F.; Heath, A.
2004-05-01
Active faults often contain distinct accumulations of granular wear material. During shear, this granular material accommodates stress and strain in heterogeneous manner that may influence fault stability. We present new work to visualise evolving stress distributions during granular shear. Our 3D numerical models consist of granular layers subjected to normal loading and shear, where gouge particles are simulated by individual spheres interacting at points of contact according to simple laws. During shear we observe the transient microscopic processes and resulting macroscopic mechanical behaviour that emerge from interactions of thousands of particles. We track particle translations and contact forces to determine the nature of internal stress accommodation with accumulated slip for different initial configurations. We view model outputs using novel 3D visualisation techniques. Our results highlight the prevalence of transient force or stress chain networks that preferentially transmit enhanced stresses across our layers. We demonstrate that particle size distribution (psd) strongly controls the nature and persistence of the stress chain networks. Models having a narrow (or relatively uniform) psd exhibit localised stress chains with a dominant orientation, whereas wider psd models show diffuse stress chain webs that take a range of orientations. First order macroscopic friction, is insensitive to these distinct stress chain morphologies, however, wider psd models with diffuse stress chains are linked to enhanced friction fluctuations i.e. second order macroscopic effects. Our results are consistent with predictions, based on recent laboratory observations, that stress chain morphologies are sensitive to grain characteristics such as psd. Our numerical approach offers the potential to investigate correlations between stress chain geometry, evolution and resulting macroscopic friction, thus allowing us to explore ideas that heterogeneous stress distributions in
Short Pulse Dynamics in Strongly Nonlinear Dissipative Granular Chains
Rosas, Alexandre; Romero, Aldo H.; Nesterenko, Vitali F.; Lindenberg, Katja
2008-01-01
We study the energy decay properties of a pulse propagating in a strongly nonlinear granular chain with damping proportional to the relative velocity of the grains. We observe a wave disturbance that at low viscosities consists of two parts exhibiting two entirely different time scales of dissipation. One part is an attenuating solitary wave, is dominated by discreteness and nonlinearity effects as in a dissipationless chain, and has the shorter lifetime. The other is a purely dissipative sho...
A quasi-unidimensional granular chain to attenuate impact.
Machado, L P; Rosas, A; Lindenberg, K
2014-11-01
We study via numerical simulations a granular chain not only with decreasing radii (forward tapering) in geometric progression, but also decorated with grains positioned on the top and bottom of the chain, without altering its original length. The decorating grains act as an auxiliary chain which traps part of the energy and linear momentum, both propagating as a pulse due to disturbances produced at the end of the chain. Thus, this configuration optimizes the impact attenuation and aligns the chain naturally (by symmetry) which facilitates the construction of the experimental setup. Furtheremore, since the decorating grain radii increase along the chain, this new type of chain is necessarily short in order to avoid precompression. Nevertheless, even with short chains, it is possible to mitigate impacts almost completely.
Wave propagation of spectral energy content in a granular chain
Shrivastava, Rohit Kumar; Luding, Stefan
2017-06-01
A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.
Wave propagation of spectral energy content in a granular chain
Directory of Open Access Journals (Sweden)
Shrivastava Rohit Kumar
2017-01-01
Full Text Available A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.
Short-pulse dynamics in strongly nonlinear dissipative granular chains.
Rosas, Alexandre; Romero, Aldo H; Nesterenko, Vitali F; Lindenberg, Katja
2008-11-01
We study the energy decay properties of a pulse propagating in a strongly nonlinear granular chain with damping proportional to the relative velocity of the grains. We observe a wave disturbance that at low viscosities consists of two parts exhibiting two entirely different time scales of dissipation. One part is an attenuating solitary wave, dominated by discreteness and nonlinearity effects as in a dissipationless chain, and has the shorter lifetime. The other is a purely dissipative shocklike structure with a much longer lifetime and exists only in the presence of dissipation. The range of viscosities and initial configurations that lead to this complex wave disturbance are explored.
Oscillating collision of the granular chain on static wall
Ma, Liang; Huang, Decai; Chen, Weizhong; Jiao, Tengfei; Sun, Min; Hu, Fenglan; Su, Jiaye
2017-02-01
Collision of the granular chain on static wall is investigated by discrete element method. Collision time and traveling time are proposed on the basis of the characteristics of the collision of a single grain with a wall and the propagation of interaction force wave in a granular chain to explain the collision process. Simulation results show that an oscillating collision force is generated when the force waves successively arrive at the wall. For the collision of a mono-dispersed chain, the simulation data are in good agreement with the predicted relationship between the maximum chain length of nmax and the first maximum collision force FA. Rigid wall and soft wall are defined as nmax = 1 and nmax ≥ 2, respectively. Two similar processes of oscillating collisions occur when a light or a heavy impure grain is introduced. In these processes, two maximum collision forces, namely, FA and FB, are observed, respectively. The simulation results about the influence of the mass and position of light impure grain on the collision force FB further confirm our theoretical predictions.
Breathers in a locally resonant granular chain with precompression
Liu, Lifeng; James, Guillaume; Kevrekidis, Panayotis; Vainchtein, Anna
2016-09-01
We study a locally resonant granular material in the form of a precompressed Hertzian chain with linear internal resonators. Using an asymptotic reduction, we derive an effective nonlinear Schrödinger (NLS) modulation equation. This, in turn, leads us to provide analytical evidence, subsequently corroborated numerically, for the existence of two distinct types of discrete breathers related to acoustic or optical modes: (a) traveling bright breathers with a strain profile exponentially vanishing at infinity and (b) stationary and traveling dark breathers, exponentially localized, time-periodic states mounted on top of a non-vanishing background. The stability and bifurcation structure of numerically computed exact stationary dark breathers is also examined. Stationary bright breathers cannot be identified using the NLS equation, which is defocusing at the upper edges of the phonon bands and becomes linear at the lower edge of the optical band.
Inelastic Electron Transport in Monoatomic Wires
Institute of Scientific and Technical Information of China (English)
ZHANG Jin; CHEN Jing-Zhe; CHEN Qing; REN Shang-Fen; HAN Ru-Shan
2007-01-01
@@ Based on non-equilibrium Green's function theory and density functional theory, we investigate the vibrational property and electron-phonon (el-ph) interaction induced inelastic scattering in electron transport through metallic monoatomic wires.
Energy Technology Data Exchange (ETDEWEB)
Biedermann, Kerstin
2012-07-12
In this work, the occupied and unoccupied electronic states of vicinal Si(111)-Au surfaces were investigated. The research focused on amending the experimental electronic band structure by two-photon photoemission and laser-based photoemission and bringing it in line with theoretical band structure calculations. This work dealt with the Si(553)-Au, the Si(111)-(5x2)-Au and the Si(557)-Au surface. Angle-resolved UV-photoelectron spectroscopy gave access to the occupied part of the band structure and thus to the energetic position, the dispersion and the symmetry of the occupied states. Bichromatic two-photon photoemission, however, revealed information about the energetics and, in addition, about the dynamics of unoccupied states on a femtosecond timescale. Notably, the selective polarization of the laser pulses allowed for distinguishing and classifying many of the states with respect to their symmetry. All three surfaces exhibited both surface and bulk states in the occupied part of the band structure. They could be clearly identified and separated from surface contributions by means of tight-binding calculations of the bulk band structure of silicon and by comparison to each other. An added similarity of these surfaces are the one-dimensional Rashba-split gold states, which definitely show dispersion along the chains but not perpendicular to them. All surfaces exhibit states which can easily be assigned to the gold chains. Additional features, however, cannot be attributed clearly to the characteristics of the complex surface reconstruction in all cases. An assignment to surface states was only successfully accomplished for Si(553)-Au. The primary emphasis of this photoemission study was on the Si(553)-Au surface, which shows the smallest defect density in comparison to the other surfaces and hence exhibits the sharpest peaks in the experimental spectra. In accordance with ab-initio band structure calculations this surface also displays, in addition to one
Using MR Elastography to Image Force Chains in a Quasi-Static Granular Assembly
Sanfratello, L.; Altobelli, S. A.; Behringer, R. P.; Fukushima, E.
2008-03-01
Questions about the internal structure of dense granular assemblies remain unanswered for lack of 3D experimental data. It is known from 2D observations and from the boundaries of 3D systems that non-uniform stresses are present on container boundaries as well as at the bottom of granular piles. These forces are seen in 2D to be distributed by force chains, where most of the stress is transmitted through a small number of chains with much of the assembly transmitting little or none of the force. However, force chains have yet to be fully visualized in 3D. We propose a variation of magnetic resonance elastography (MRE) to image 3D force chains within a densely packed granular assembly. MRE is an MRI technique whereby small periodic displacements within an elastic material can be measured. Multiple bipolar motion encoding gradients incorporated into a typical pulse sequence, and applied at the frequency of mechanical oscillations, are used to detect the displacements. We have verified our MRE technique using a gel (Perma-Gel). We now extend this method to image force chains within a 3D granular assembly of particles under stress, on top of which is superimposed a small-amplitude vibration. It is our hypothesis that significant coherent displacements will be found only along force chains while most particles will move randomly. Experimental results will be presented.
Long-term behavior of granular chains held between walls is really equilibrium
Przedborski, Michelle; Sen, Surajit; Harroun, Thad
Granular chains have been the focus of a number of studies, in part due to their numerous applications, ranging from shock absorption and vibration reduction to energy localization. Force impulses to an unloaded granular chain result in a propagating solitary wave (SW), analogous to a soliton of the Korteweg-de Vries equation. When SWs collide with a boundary or another SW, secondary solitary waves (SSWs) are produced as grains break contact. A consequence of this process is the transition from a non-ergodic, SW dominant, phase to the stable ``quasi-equilibrium'' (QEQ) phase, thought to be distinct from true thermodynamic equilibrium due to the absence of equipartitioning of energy. We show that, in the absence of energy dissipation, when granular systems are allowed to evolve to extremely long times, the number of SSWs becomes sufficiently large that the system actually approaches a true equilibrium phase. In this extreme-time limit, energy in fact becomes equipartitioned among all grains, and we illustrate how the specific heat and kinetic energy fluctuations can be predicted by the generalized equipartition theorem, regardless of the degree of the interaction potential. This opens up the possibility that granular systems should be treated by equilibrium statistical mechanics. This work was supported by a Vanier Canada Graduate Scholarship.
What causes the emergence of force chains in granular materials?
Kp, Krishnaraj; R Nott, Prabhu
2016-11-01
A dense collection of grains may be viewed as a network of contacts which transmit forces. Force transmission in this network is influenced by constraints of geometry and packing, making it significantly different from information, transportation, or power networks. Experiments on two-dimensional disks report the presence of anisotropic quasi-linear structures called force chains, which are assumed to be the cause of their uncommon macroscopic behaviour. Studies have tried to quantify the properties of these structures, but the problem largely remains unresolved. We show using a simple discrete model, that force chain-like features are generic to any Euclidean packing of particles. The packing structure is sufficient to predict the essential features of the force network, regardless of the external forcing or boundary conditions. Using a novel method to study the structure of packing, we quantify the long range correlations in the system. The method reveals important, phase transition-like, properties in particle packings, the critical parameters and exponents of which characterize the geometry of the particle arrangements.
Sudden Chain Energy Transfer Events in Vibrated Granular Media
Rivas, Nicolás; Ponce, Suomi; Soto, Rodrigo; Cordero, Patricio; Mujica, Nicolás; Risso, Dino; Gallet, Basille
2012-02-01
In a mixture of two species of grains of equal size but different mass, placed in a vertically vibrated shallow box, there is spontaneous segregation. Once the system is at least partly segregated and clusters of the heavy particles have formed, there are sudden peaks of the horizontal kinetic energy of the heavy particles, that is otherwise small. Together with the energy peaks the clusters rapidly expand and the segregation is partially lost. The process repeats once segregation has taken place again, either randomly or with some regularity in time depending on the experimental or numerical parameters. An explanation for these events is provided based on the existence of a fixed point for an isolated particle bouncing with only vertical motion. The horizontal energy peaks occur when the energy stored in the vertical motion is partly transferred into horizontal energy through a chain reaction of collisions between heavy particles.
Energy Content & Spectral Energy Representation of Wave Propagation in a Granular Chain
Shrivastava, Rohit; Luding, Stefan
2017-04-01
A mechanical wave is propagation of vibration with transfer of energy and momentum. Studying the energy as well as spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing for the study of internal structure of solids. Wave propagation through granular materials is often accompanied by energy attenuation which is quantified by Quality factor and this parameter has often been used to characterize material properties, hence, determining the Quality factor (energy attenuation parameter) can also help in determining the properties of the material [3], studied experimentally in [2]. The study of Energy content (Kinetic, Potential and Total Energy) of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain can assist in understanding the energy attenuation due to disorder as a function of propagation distance. The spectral analysis of the energy signal can assist in understanding dispersion as well as attenuation due to scattering in different frequencies (scattering attenuation). The selection of one-dimensional granular chain also helps in studying only the P-wave attributes of the wave and removing the influence of shear or rotational waves. Granular chains with different mass distributions have been studied, by randomly selecting masses from normal, binary and uniform distributions and the standard deviation of the distribution is considered as the disorder parameter, higher standard deviation means higher disorder and lower standard deviation means lower disorder [1]. For obtaining macroscopic/continuum properties, ensemble averaging has been invoked. Instead of analyzing deformation-, velocity- or stress
Experimental and Simulation Analysis for the Impact of a Two-Link Chain with Granular Matter
Directory of Open Access Journals (Sweden)
Eliza A. Banu
2015-01-01
Full Text Available The resistance force of the granular matter is modeled as a linear superposition of a static (quadratic depth-dependent resistance force and a dynamic (quadratic velocity-dependent frictional force. The impact is defined from the moment the end point of the system comes in contact with the granular matter surface until the vertical linear velocity of the end point is zero. The variables of interest are the final depth at the end of the penetration phase and the stopping time. The results for a two-link kinematic chain with two points of contact were compared to the results obtained by applying the resistance force formulation developed to corresponding CAD simulation models. The results revealed that the final displacement increases with initial velocity, while the stopping time decreases. The sensitivity to the initial velocity was studied and an improvement to the resistance force formulated as a result. A series of expressions are proposed for the resistance force coefficients.
The impact of fluid flow on force chains in granular media
Mahabadi, Nariman; Jang, Jaewon
2017-01-01
Fluid flow through granular media is an important process found in nature and various engineering applications. The effect of fluid flow on the evolution of force chains in the granular media is explored using the photoelasticity theory. A transparent cell is designed to contain several photoelastic disks of different sizes and to allow fluid flow through the particle packing. Water is injected into the cell while the particle packing is under confining stress. Several images are taken for the conditions of different confining stresses and fluid injection rates. An algorithm of an image processing technique is developed to detect the orientation and magnitude of contact forces. The results show that forces in parallel and transverse to the flow direction increase with increasing water velocity, while parallel force shows a higher increasing rate.
Power-Law Behavior in Signal Scattering Process in Vertical Granular Chain with Light Impurities
Institute of Scientific and Technical Information of China (English)
XU Ai-Guo
2001-01-01
We investigate the scattering process of impulse in vertical granular chain with light impurities. When the perturbation is weak, the quantities describing the reflection rate exhibit power-law behavior with the impurity depth. The exponent is nearly independent of vi. When the perturbation is very strong, the vertical chain shows similar behavior to that of the horizontal chain, so the exponent is nearly zero. Our numerical investigation begins from the weak perturbation region and extends to the nonlinear region and found a peak of the exponent. The difficulty in extending the numerical investigation to a stronger perturbation region is analyzed.PACS numbers: 45.70.-n, 43.25.+y, 46.40.Cd
Embryo as an active granular fluid: stress-coordinated cellular constriction chains
Holcomb, Michael; Gao, Guo-Jie; Thomas, Jeffrey; Blawzdziewicz, Jerzy
2016-11-01
Mechanical stress plays an intricate role in gene expression in individual cells and sculpting of developing tissues. Motivated by our observation of the cellular constriction chains (CCCs) during the initial phase of ventral furrow formation in the Drosophila melanogaster embryo, we propose an active granular fluid (AGF) model that provides valuable insights into cellular coordination in the apical constriction process. In our model, cells are treated as circular particles connected by a predefined force network, and they undergo a random constriction process in which the particle constriction probability P is a function of the stress exerted on the particle by its neighbors. We find that when P favors tensile stress, constricted particles tend to form chain-like structures. In contrast, constricted particles tend to form compact clusters when P favors compression. A remarkable similarity of constricted-particle chains and CCCs observed in vivo provides indirect evidence that tensile-stress feedback coordinates the apical constriction activity.
Power—Law in Depth—Dependence of Signal Speed in Vertical Granular Chain
Institute of Scientific and Technical Information of China (English)
XUAi－Guo; HongJongbae
2001-01-01
The signal generated by an initial perturbation dispersively propagates in the vertical granular chain under gravity.For the power-law-type contact force,the signal speed follows power-law with the depth.When the perturbation is very weak,the exponent is 1/2(1-1/p).When the perturbation is very strong,the exponent approaches zero.The transition of the exponent from oscillatory regime with weak nonlinearity to quasi-solitary regime with strong nonlinearity is smooth.
Mechanical energy fluctuations in granular chains: the possibility of rogue fluctuations or waves.
Han, Ding; Westley, Matthew; Sen, Surajit
2014-09-01
The existence of rogue or freak waves in the ocean has been known for some time. They have been reported in the context of optical lattices and the financial market. We ask whether such waves are generic to late time behavior in nonlinear systems. In that vein, we examine the dynamics of an alignment of spherical elastic beads held within fixed, rigid walls at zero precompression when they are subjected to sufficiently rich initial conditions. Here we define such waves generically as unusually large energy fluctuations that sustain for short periods of time. Our simulations suggest that such unusually large fluctuations ("hot spots") and occasional series of such fluctuations through space and time ("rogue fluctuations") are likely to exist in the late time dynamics of the granular chain system at zero dissipation. We show that while hot spots are common in late time evolution, rogue fluctuations are seen in purely nonlinear systems (i.e., no precompression) at late enough times. We next show that the number of such fluctuations grows exponentially with increasing nonlinearity whereas rogue fluctuations decrease superexponentially with increasing precompression. Dissipation-free granular alignment systems may be possible to realize as integrated circuits and hence our observations may potentially be testable in the laboratory.
Granular chains with soft boundaries: Slowing the transition to quasi-equilibrium
Przedborski, Michelle; Sen, Surajit
2015-01-01
We present here a detailed numerical study of the dynamical behaviour of `soft' uncompressed grains in a granular chain where the grains interact via the intrinsically nonlinear Hertz force. It is well known that such a chain supports the formation of solitary waves (SWs). Here, however, the system response to the material properties of the grains and boundaries is further explored. In particular, we examine the details of the transition of the system from a SW phase to an equilibrium-like (or quasi-equilibrium) phase and for this reason we ignore the effects of dissipation in this study. We find that the soft walls slow the reflection of SWs at the boundaries of the system, which in turn slows the journey to quasi-equilibrium. Moreover, the increased grain-wall compression as the boundaries are softened results in fewer average grain-grain contacts at any given time in the quasi-equilibrium phase. These effects lead to increased kinetic energy fluctuations in the short term in softer systems. We conclude wit...
Soliton-Like Pulses in Vertical Granular Chain Under Gravity: Particle-Like or Wave-Like?
Institute of Scientific and Technical Information of China (English)
XU Ai-Guo; HONG Jongbae
2001-01-01
We numerically study the propagation, reflection and collision of soliton-like pulses in the vertical granular chain under gravity. For the pure granular chain system, during the propagation and reflection processes at the fixed end, it behaves like a particle. When it is reflected at the free end, it behaves as neither particle-like nor wave-like.When the strengths of the two colliding soliton-like pulses are close, they collide just like particles. When their strengths are greatly different, they collide just like waves. For the soliton behavior in the collision process, from particle-like to wave-like, there is a critical value θC for the ratio θ of the strengths of the two initial pulses. For the two-layer granular chain, if the mass of the grains in the second layeris less than that in the first layer, the soliton-like pulse in the first layer usually excites about [1/m] soliton-like pulses in the second layer.``
Gélat, P.; Yang, J.; Thomas, P. J.; Hutchins, D. A.; Akanji, O.; Davis, L. A. J.; Freear, S.; Harput, S.; Saffari, N.
2016-01-01
There has been recent interest in the transmission of acoustic signals along granular chains of spherical beads to produce waveforms of relevance to biomedical ultrasound applications. Hertzian contact between adjacent beads can introduce different harmonic content into the signal as it propagates. This transduction mechanism has the potential to be of use in both diagnostic and therapeutic ultrasound applications, and is the object of the study presented here. Although discrete dynamics models of this behaviour exist, a more comprehensive solution must be sought if changes in shape and deformation of individual beads are to be considered. Thus, the finite element method was used to investigate the dynamics of a granular chain of six, 1 mm diameter chrome steel spherical beads excited at one end using a sinusoidal displacement signal at 73 kHz. Output from this model was compared with the solution provided by the discrete dynamics model, and good overall agreement obtained. In addition, it was able to resolve the complex dynamics of the granular chain, including the multiple collisions which occur. It was demonstrated that under dynamic excitation conditions, the inability of discrete mechanics models to account for elastic deformation of the beads when these lose contact, could lead to discrepancies with experimental observations.
Yang, Yang Yang; Liu, Shi Wei; Yang, Qiong; Zhang, Zhen Bin; Duan, Wen Shan; Yang, Lei
2016-07-01
The paper work relates to Nesterenko's problem to further study the solitary wave when the strong external force acts on the granular chain. We also study the problem under the long-wavelength approximation and find that such kind of solitary wave in system with the initial prestress can be described by the Korteweg-de Vries (KdV) equation. It is found that the results of analytical and numerical are in an excellent agreement. Furthermore, we study the scattering of the KdV solitary wave in different granular materials both in theoretical and numerical methods. It is found that the numbers and the amplitudes of both the reflected and the transmitted waves depend not only on the amplitude of the incident solitary wave but also on the variations of both sides of the discontinuity such as the mass, Young's modulus or radius of the grains.
The characters of nonlinear vibration in the two-dimensional discrete monoatomic lattice
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2005-01-01
The two-dimensional discrete monoatomic lattice is analyzed. Taking nearest-neighbor interaction into account, the characters of the nonlinear vibration in two-dimensional discrete monoatomic lattice are described by the two-dimensional cubic nonlinear Schrodinger equation. Considering the quartic nonlinear potential, the two-dimensional discrete-soliton trains and the solutions perturbed by the neck mode are presented.
Demonstrating an In Situ Topological Band Transition in Cylindrical Granular Chains
Chaunsali, R.; Kim, E.; Thakkar, A.; Kevrekidis, P. G.; Yang, J.
2017-07-01
We numerically investigate and experimentally demonstrate an in situ topological band transition in a highly tunable mechanical system made of cylindrical granular particles. This system allows us to tune its interparticle stiffness in a controllable way, simply by changing the contact angles between the cylinders. The spatial variation of particles' stiffness results in an in situ transition of the system's topology. This manifests as the emergence of a boundary mode in the finite system, which we observe experimentally via laser Doppler vibrometry. When two topologically different systems are placed adjacently, we analytically predict and computationally and experimentally demonstrate the existence of a finite-frequency topologically protected mode at their interface.
Structure of gold monoatomic wires connected to two electrodes
Energy Technology Data Exchange (ETDEWEB)
Zoubkoff, Remi [Centre de Recherche en Matiere Condensee et Nanosciences, CNRS, Campus de Luminy, Case 913, 13288 Marseille Cedex 9 (France)]. E-mail: zoubkoff@crmcn.univ-mrs.fr; Vega, L. de la [Departamento de Fisica de la Materia Condensada C-V, Facultad de Ciencias, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Martin-Rodero, A. [Departamento de Fisica de la Materia Condensada C-V, Facultad de Ciencias, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Levy Yeyati, A. [Departamento de Fisica de la Materia Condensada C-V, Facultad de Ciencias, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Saul, Andres [Centre de Recherche en Matiere Condensee et Nanosciences, CNRS, Campus de Luminy, Case 913, 13288 Marseille Cedex 9 (France)
2007-09-01
In this work, we present calculations concerning the stability of infinite monoatomic Au wires and finite Au wires between electrodes. For the systems with the electrodes, that we represent by FCC slabs with (0 0 1) surfaces, the total energy calculations have been performed with a spd non-orthogonal tight-binding Hamiltonian. For the infinite wires, the calculations were also compared to semi-empirical and first principle ones. For the infinite wires and small enough inter-atomic distances, we find that a zig-zag structure is most stable than the linear one, in agreement with previous calculations. For the system between electrodes, one gets an almost concave or a symmetric broken edges structure depending on the inter-atomic distance.
Shen, Y.; Kevrekidis, P. G.; Sen, S.; Hoffman, A.
2014-08-01
Our aim in the present work is to develop approximations for the collisional dynamics of traveling waves in the context of granular chains in the presence of precompression. To that effect, we aim to quantify approximations of the relevant Hertzian FPU-type lattice through both the Korteweg-de Vries (KdV) equation and the Toda lattice. Using the availability in such settings of both one-soliton and two-soliton solutions in explicit analytical form, we initialize such coherent structures in the granular chain and observe the proximity of the resulting evolution to the underlying integrable (KdV or Toda) model. While the KdV offers the possibility to accurately capture collisions of solitary waves propagating in the same direction, the Toda lattice enables capturing both copropagating and counterpropagating soliton collisions. The error in the approximation is quantified numerically and connections to bounds established in the mathematical literature are also given.
Directory of Open Access Journals (Sweden)
Valerian Cerempei
2011-06-01
Full Text Available The article investigates phase stability for the mixtures of monoatomic alcohols (ethanol, butanol with gasoline in the presence of water. There have been determined the optimal storage conditions of mixtures depending on their composition and mixing conditions. The positive influence of butanol on the phase stability of ethanol-gasoline mixtures was detected.
Energy Technology Data Exchange (ETDEWEB)
Postawa, Z
2004-06-15
This paper reviews our recent work on computer simulations of monoatomic and cluster bombardment of metal and organic surfaces. The investigated surfaces are irradiated with keV monoatomic (C, Ar, Ga) and polyatomic (C{sub 60}) projectiles that are recognized as valuable sources for desorption of high mass particles in secondary ion and neutral mass spectrometry (SIMS/SNMS) experiments. The analysis of the results reveals that the C{sub 60} ion beam enables to perform chemical imaging with higher sensitivity, better depth resolution, and lower contamination than monoatomic projectiles with similar kinetic energy. For monoatomic projectiles, the development of a linear collision cascade is the predominant mechanism responsible for the ejection of particles. In contrast, strongly nonlinear, collective processes occur during C{sub 60} bombardment. These nonlinear processes lead to the enhanced removal of material and the formation of a macroscopic crater. This paper presents theoretical insight into possible mechanisms responsible for the observed behavior with the emphasis on the phenomena important to the SIMS/SNMS community.
DEFF Research Database (Denmark)
Mitarai, Namiko; Nakanishi, Hiizu
2012-01-01
Granular material is a collection of macroscopic particles that are visible with naked eyes. The non-equilibrium nature of the granular materials makes their rheology quite different from that of molecular systems. In this minireview, we present the unique features of granular materials focusing...
Pereira, M A; Pires, O. C.; Mota, M.; Alves, M.M.
2001-01-01
The aim of the present work was to study the maximum potential methane production in batch assays of sludge samples taken along the operation of two EGSB reactors (RI inoculated with granular sludge and RII inoculated with suspended sludge) fed with increasing oleic acid concentrations between 2 and 8 gCOD/l (HRT=1 day). After removing the residual substrate, the sludge was incubated in batch vials without any added carbon source. A maximum methane production rate of 152±21 mlCH4(...
Localizing energy in granular materials
Przedborski, Michelle A; Sen, Surajit
2016-01-01
A device for absorbing and storing short duration impulses in an initially uncompressed one-dimensional granular chain is presented. Simply stated, short regions of sufficiently soft grains are embedded in a hard granular chain. These grains exhibit long-lived standing waves of predictable frequencies regardless of the timing of the arrival of solitary waves from the larger matrix. We explore the origins, symmetry, and energy content of the soft region and its intrinsic modes.
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
The basic ideas and principles of granular computing (GrC) have been studied explicitly or implicitly in many fields in isolation. With the recent renewed and fast growing interest, it is time to extract the commonality from a diversity of fields and to study systematically and formally the domain independent principles of granular computing in a unified model. A framework of granular computing can be established by applying its own principles. We examine such a framework from two perspectives,granular computing as structured thinking and structured problem solving. From the philosophical perspective or the conceptual level,granular computing focuses on structured thinking based on multiple levels of granularity. The implementation of such a philosophy in the application level deals with structured problem solving.
Study of uncertainties of height measurements of monoatomic steps on Si 5 × 5 using DFT
Charvátová Campbell, Anna; Jelínek, Pavel; Klapetek, Petr
2017-03-01
The development of nanotechnology gives rise to new demands on standards for dimensional measurements. Monoatomic steps on, e.g. silicon are a suitable length standard with a very low nominal value. The quantum-mechanical nature of objects consisting of only a few atomic layers in one or more dimensions can no longer be neglected and it is necessary to make a transition from the classical picture to a quantum approach in the field of uncertainty analysis. In this contribution, sources of uncertainty for height measurements using atomic force microscopy (AFM) in contact mode are discussed. Results of density functional theory (DFT) modeling of AFM scans on a monoatomic step on silicon 5× 5 are presented. Van der Waals forces for the interaction of a spherical tip and an infinite step are calculated classically. Height measurements in constant force mode at different forces are simulated. In our approach, we model the tip apex and the monoatomic step as systems of individual atoms. As interatomic forces act on the sample and the tip of the microscope, the atoms of both relax in order to reach equilibrium positions. This leads to changes in those quantities that are finally interpreted as the resultant height of the step. The presence of van der Waals forces induces differences between the forces acting on atoms at different distances of the step. The behavior of different tips is studied along with their impact on the resulting AFM scans. Because the shape of the tip apex is usually unknown in real experiments, this variance in the height result due to different tips is interpreted as a source of uncertainty.
Romanova, M. S.; Rydalevskaya, M. A.
2017-05-01
Perfect gas mixtures that result from thermal ionization of spatially and chemically homogeneous monoatomic gases are considered. Equilibrium concentrations of the components of such mixtures are determined using integration over the momentum space and summation with respect to energy levels of the distribution functions that maximize the entropy of system under condition for constancy of the total number of nuclei and electrons. It is demonstrated that such a method allows significant simplification of the calculation of the equilibrium composition for ionized mixtures at different temperatures and makes it possible to study the degree of ionization of gas versus gas density and number in the periodic table of elements.
Energy Technology Data Exchange (ETDEWEB)
Krawiec, M.; Kwapinski, T.; Jalochowski, M. [Institute of Physics and Nanotechnology Center, M. Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 1, 20-031 Lublin (Poland)
2005-02-01
We study electronic and topographic properties of the Si(335) surface, containing Au wires parallel to the steps. We use scanning tunneling microscopy (STM) supplemented by reflection of high energy electron diffraction (RHEED) technique. The STM data show the space and voltage dependent oscillations of the distance between STM tip and the surface which can be explained within one band tight binding Hubbard model. We calculate the STM current using nonequilibrium Keldysh Green function formalism. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
The kink-soliton and antikink-soliton in quasi-one-dimensional nonlinear monoatomic lattice
Institute of Scientific and Technical Information of China (English)
XU; Quan; TIAN; Qiang
2005-01-01
The quasi-one-dimensional nonlinear monoatomic lattice is analyzed. The kink-soliton and antikink-soliton are presented. When the interaction of the lattice is strong in the x-direction and weak in the y-direction, the two-dimensional (2D) lattice changes to a quasi-one-dimensional lattice. Taking nearest-neighbor interaction into account, the vibration equation can be transformed into the KPI, KPII and MKP equation. Considering the cubic nonlinear potential of the vibration in the lattice, the kink-soliton solution is presented. Considering the quartic nonlinear potential and the cubic interaction potential, the kink-soliton and antikink-soliton solutions are presented.
Pairing preferences of the model mono-valence mono-atomic ions investigated by molecular simulation.
Zhang, Qiang; Zhang, Ruiting; Zhao, Ying; Li, HuanHuan; Gao, Yi Qin; Zhuang, Wei
2014-05-14
We carried out a series of potential of mean force calculations to study the pairing preferences of a series of model mono-atomic 1:1 ions with evenly varied sizes. The probabilities of forming the contact ion pair (CIP) and the single water separate ion pair (SIP) were presented in the two-dimensional plots with respect to the ion sizes. The pairing preferences reflected in these plots largely agree with the empirical rule of matching ion sizes in the small and big size regions. In the region that the ion sizes are close to the size of the water molecule; however, a significant deviation from this conventional rule is observed. Our further analysis indicated that this deviation originates from the competition between CIP and the water bridging SIP state. The competition is mainly an enthalpy modulated phenomenon in which the existing of the water bridging plays a significant role.
Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition
Energy Technology Data Exchange (ETDEWEB)
Ohtsuki, T., E-mail: ohtsuki@spring8.or.jp; Kotsugi, M.; Ohkochi, T. [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kojima, T.; Mizuguchi, M.; Takanashi, K. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)
2014-01-28
FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu{sub 3}Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that the FeCo thin films show fourfold in-plane magnetic anisotropy along 〈110〉 direction, and that the magnetic domain structure is composed only of 90∘ wall.
Some open problems in granular matter mechanics
Institute of Scientific and Technical Information of China (English)
Qicheng Sun; Guangqian Wang; Kaiheng Hu
2009-01-01
Granular matter is a large assemblage of solid particles,which is fundamentally different from any other type of matters,such as solid and liquid.Most models presented for granular matter are phenomenological and are only suitable for solving engineering problems.Many fundamental mechanical problems remain open.By analyzing characteristics of internal state structure,we propose that granularmatter is intrinsically multiscale,i.e.microscale of particle size,mesoscale of force chain,and macroscale of the bulk of granular matter.The correlations among difference scales would be crucial.The mesoscale force chain network is determined by both particle properties and macroscopic boundary conditions.The evolution of the force the chain network contributes to macroscopic mechanical properties of granular matter.In addition,we discuss the drawbacks in simplifying contact forces in the current models,and the difficulties in analyzing the interaction of interstitial fluid in wet granular matter.As an appropriate application of granular matter,debris flow can be studied with granular matter mechanics;meanwhile,debris flow brings more challenges which certainly motivate future studies on granular matter.(C) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences.Published by Elsevier Limited and Science in China Press.All rights reserved.
Immunoglobulins in granular corneal dystrophy Groenouw type I
DEFF Research Database (Denmark)
Møller, H U; Bojsen-Møller, M; Schrøder, H D
1993-01-01
Three patients with granular corneal dystrophy Groenouw type I underwent corneal grafting, and cryostat sections of the corneal buttons were examined immunohistochemically for immunoglobulins. Positive results were obtained for IgG, Kappa-, and Lambda chains with immunofluorescence technique...
Institute of Scientific and Technical Information of China (English)
宜晨虹; 慕青松; 苗天德
2009-01-01
The discrete element method is used to research the distribution of forces within the two-dimensional granular system under gravity. The force chains among the particles are generated according to the magnitudes of the forces. Then the simulation results are compared with the well-known q-model, a-model and experimental results obtained through the photoelastic test under the same conditions. According to the computational solution, we conclude that the simulation results are similar to the experimental results are some what different from the two probability models. In addition, we also obtained that the probability distribution of the force is very uneven. The probability of the large force decays exponentially and the distribution of the force chains takes on a fraetal character.%用离散元的方法模拟了仅有重力作用的二维颗粒系统内部力的分布情况,并根据力的大小得到颗粒之间的应力链.模拟结果与颗粒介质研究中的两个著名模型q模型和a模型作了对比,并与光弹实验的结果作了比较.对比结果表明,模拟结果与实验相似,而与两个概率模型有一定的差异.另外计算结果还表明,颗粒介质中力大小的概率分布极为不均匀,较大的力概率呈指数衰减,应力链的分布具有分形特征.
On Granular Knowledge Structures
Zeng, Yi
2008-01-01
Knowledge plays a central role in human and artificial intelligence. One of the key characteristics of knowledge is its structured organization. Knowledge can be and should be presented in multiple levels and multiple views to meet people's needs in different levels of granularities and from different perspectives. In this paper, we stand on the view point of granular computing and provide our understanding on multi-level and multi-view of knowledge through granular knowledge structures (GKS). Representation of granular knowledge structures, operations for building granular knowledge structures and how to use them are investigated. As an illustration, we provide some examples through results from an analysis of proceeding papers. Results show that granular knowledge structures could help users get better understanding of the knowledge source from set theoretical, logical and visual point of views. One may consider using them to meet specific needs or solve certain kinds of problems.
Cystic Granular Cell Ameloblastoma
Thillaikarasi, Rathnavel; Balaji, Jayaram; Gupta, Bhawna; Ilayarja, Vadivel; Vani, Nandimandalam Venkata; Vidula, Balachander; Saravanan, Balasubramaniam; Ponniah, Irulandy
2010-01-01
Ameloblastoma is a locally aggressive benign epithelial odontogenic tumor, while unicystic ameloblastoma is a relatively less aggressive variant. Although rare in unicystic or cystic ameloblastoma, granular cell change in ameloblastoma is a recognized phenomenon. The purpose of the present article is to report a case of cystic granular cell ameloblastoma in 34-year old female.
Discrete Element Modeling of Complex Granular Flows
Movshovitz, N.; Asphaug, E. I.
2010-12-01
Granular materials occur almost everywhere in nature, and are actively studied in many fields of research, from food industry to planetary science. One approach to the study of granular media, the continuum approach, attempts to find a constitutive law that determines the material's flow, or strain, under applied stress. The main difficulty with this approach is that granular systems exhibit different behavior under different conditions, behaving at times as an elastic solid (e.g. pile of sand), at times as a viscous fluid (e.g. when poured), or even as a gas (e.g. when shaken). Even if all these physics are accounted for, numerical implementation is made difficult by the wide and often discontinuous ranges in continuum density and sound speed. A different approach is Discrete Element Modeling (DEM). Here the goal is to directly model every grain in the system as a rigid body subject to various body and surface forces. The advantage of this method is that it treats all of the above regimes in the same way, and can easily deal with a system moving back and forth between regimes. But as a granular system typically contains a multitude of individual grains, the direct integration of the system can be very computationally expensive. For this reason most DEM codes are limited to spherical grains of uniform size. However, spherical grains often cannot replicate the behavior of real world granular systems. A simple pile of spherical grains, for example, relies on static friction alone to keep its shape, while in reality a pile of irregular grains can maintain a much steeper angle by interlocking force chains. In the present study we employ a commercial DEM, nVidia's PhysX Engine, originally designed for the game and animation industry, to simulate complex granular flows with irregular, non-spherical grains. This engine runs as a multi threaded process and can be GPU accelerated. We demonstrate the code's ability to physically model granular materials in the three regimes
Brilliantov, Nikolai
2003-01-01
While there is not yet any general theory for granular materials, significant progress has been achieved for dilute systems, also called granular gases. The contributions in this book address both the kinetic approach one using the Boltzmann equation for dissipative gases as well as the less established hydrodynamic description. The last part of the book is devoted to driven granular gases and their analogy with molecular fluids. Care has been taken so as to present the material in a pedagogical and self-contained way and this volume will thus be particularly useful to nonspecialists and newcomers to the field.
Congenital granular cell epulis.
Conrad, Rachel; Perez, Mia C N
2014-01-01
Congenital granular cell epulis is a rarely reported lesion of unknown histogenesis with a strong predilection for the maxillary alveolar ridge of newborn girls. Microscopically, it demonstrates nests of polygonal cells with granular cytoplasm, a prominent capillary network, and attenuated overlying squamous epithelium. The lesion lacks immunoreactivity for S-100, laminin, chromogranin, and most other markers except neuron-specific enolase and vimentin. Through careful observation of its unique clinical, histopathologic, and immunohistochemical features, this lesion can be distinguished from the more common adult granular cell tumor as well as other differential diagnoses.
Granular computing: perspectives and challenges.
Yao, JingTao; Vasilakos, Athanasios V; Pedrycz, Witold
2013-12-01
Granular computing, as a new and rapidly growing paradigm of information processing, has attracted many researchers and practitioners. Granular computing is an umbrella term to cover any theories, methodologies, techniques, and tools that make use of information granules in complex problem solving. The aim of this paper is to review foundations and schools of research and to elaborate on current developments in granular computing research. We first review some basic notions of granular computing. Classification and descriptions of various schools of research in granular computing are given. We also present and identify some research directions in granular computing.
Folli, Viola; Leuzzi, Luca; Conti, Claudio
2012-01-01
Granular materials have been studied for decades, also driven by industrial and technological applications. These very simple systems, composed by agglomerations of mesoscopic particles, are characterized, in specific regimes, by a large number of metastable states and an extreme sensitivity (e.g., in sound transmission) on the arrangement of grains; they are not substantially affected by thermal phenomena, but can be controlled by mechanical solicitations. Laser emission from shaken granular matter is so far unexplored; here we provide experimental evidence that it can be affected and controlled by the status of motion of the granular, we also find that competitive random lasers can be observed. We hence demonstrate the potentialities of gravity affected moving disordered materials for optical applications, and open the road to a variety of novel interdisciplinary investigations, involving modern statistical mechanics and disordered photonics.
Folli, Viola; Puglisi, Andrea; Leuzzi, Luca; Conti, Claudio
2012-06-15
Granular materials have been studied for decades, driven by industrial and technological applications. These very simple systems, composed of agglomerations of mesoscopic particles, are characterized, in specific regimes, by a large number of metastable states and an extreme sensitivity (e.g., in sound transmission) to the arrangement of grains; they are not substantially affected by thermal phenomena, but can be controlled by mechanical solicitations. Laser emission from shaken granular matter is so far unexplored. Here we provide experimental evidence that laser emission can be affected and controlled by the status of the motion of the granular material; we also find that competitive random lasers can be observed. We hence demonstrate the potentialities of gravity-affected moving disordered materials for optical applications, and open the road to a variety of novel interdisciplinary investigations, involving modern statistical mechanics and disordered photonics.
Failure of granular assemblies
Welker, Philipp
2011-01-01
This work investigates granular assemblies subjected to increasing external forces in the quasi-static limit. In this limit, the systems evolution depends on static properties of the system, but is independent of the particles inertia. At the failure, which occurs at a certain value of the external forces, the particles motions increase quickly. In this thesis, the properties of granular systems during the weakening process and at the failure are investigated with the Discrete Element Meth...
Institute of Scientific and Technical Information of China (English)
Andrzej Skowron
2006-01-01
Solving complex problems by multi-agent systems in distributed environments requires new approximate reasoning methods based on new computing paradigms. One such recently emerging computing paradigm is Granular Computing(GC). We discuss the Rough-Granular Computing(RGC) approach to modeling of computations in complex adaptive systems and multiagent systems as well as for approximate reasoning about the behavior of such systems. The RGC methods have been successfully applied for solving complex problems in areas such as identification of objects or behavioral patterns by autonomous systems, web mining, and sensor fusion.
Marston, J. O.
2013-07-15
We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.
Stress transmission and incipient yield flow in dense granular materials
Blumenfeld, Raphael
2010-05-01
Jammed granular matter transmits stresses non-uniformly like no conventional solid, especially when it is on the verge of failure. Jamming is caused by self-organization of granular matter under external loads, often giving rise to networks of force chains that support the loads non-uniformly. An ongoing debate in the literature concerns the correct way to model the static stress field in such media: good old elasticity theory or newcomer isostaticity theory. The two differ significantly and, in particular in 2D, isostaticity theory leads naturally to force chain solutions. More recently, it has been proposed that real granular materials are made of mixtures of regions, some behaving elastically and some isostatically. The theory to describe these systems has been named stato-elasticity. In this paper, I first present the rationale for stato-elasticity theory. An important step towards the construction of this theory is a good understanding of stress transmission in the regions of pure isostatic states. A brief description is given of recently derived general solutions for 2D isostatic regions with nonuniform structures, which go well beyond the over-simplistic picture of force chains. I then show how the static stress equations are related directly to incipient yield flow and derive the equations that govern yield and creep rheology of dense granular matter at the initial stages of failure. These equations are general and describe strains in granular materials of both rigid and compliant particles.
The rise of granular computing
Institute of Scientific and Technical Information of China (English)
YAO Yi-yu
2008-01-01
This paper has two purposes. One is to present a critical examination of the rise of granular computing and the other is to suggest a triarchic theory of granular computing. By examining the reasons, justifications, and motivations for the rise of granular computing, we may be able to fully appreciate its scope, goal and potential values. The results enable us to formulate a triarchic theory in the light of research results from many disciplines. The three components of the theory are labeled as the philosophy, the methodology, and the computation. The integration of the three offers a unified view of gran-ular computing as a way of structured thinking, a method of structured problem solving, and a paradigm of structured infor-mation processing, focusing on hierarchical granular structures. The triarchic theory is an important effort in synthesizing the various theories and models of granular computing.
Three Perspectives of Granular Computing
Institute of Scientific and Technical Information of China (English)
Yiyu(Y.Y.) Yao
2006-01-01
As an emerging field of study, granular computing has received much attention. Many models, frameorks, methods and techniques have been proposed and studied. It is perhaps the time to seek for a general and unified view so that fundamental issues can be examined and clarified. This paper examines granular computing from three perspectives. By viewing granular computing as a way of structured thinking,we focus on its philosophical foundations in modeling human perception of the reality. By viewing granular computing as a method of structured problem solving, we examine its theoretical and methodological foundations in solving a wide range of real-world problems. By viewing granular computing as a paradigm of information processing,we turn our attention to its more concrete techniques. The three perspectives together offer a holistic view of granular computing.
Nonlinear Phononic Periodic Structures and Granular Crystals
2012-02-10
of the advanced delay equation (13) and they compared the numerically obtained solutions with those of approximated PDEs. Recently, Starosvetsky... KdV ), a nonlinear partial differential equation , and have been discovered in myriad systems and discrete nonlinear lattices of all the above types...granular chain, and derived the following KdV equation : t 0 0 1/2 2 2 2 2 0 0 0 0 0 0, 2 6 , , . 6 xx x xc uc A R c R c Rc m σξ ξ γξ ξξ ξ δ γ σ δ
Mathematical models of granular matter
Mariano, Paolo; Giovine, Pasquale
2008-01-01
Granular matter displays a variety of peculiarities that distinguish it from other appearances studied in condensed matter physics and renders its overall mathematical modelling somewhat arduous. Prominent directions in the modelling granular flows are analyzed from various points of view. Foundational issues, numerical schemes and experimental results are discussed. The volume furnishes a rather complete overview of the current research trends in the mechanics of granular matter. Various chapters introduce the reader to different points of view and related techniques. New models describing granular bodies as complex bodies are presented. Results on the analysis of the inelastic Boltzmann equations are collected in different chapters. Gallavotti-Cohen symmetry is also discussed.
Sanchez, Mauricio A; Castro, Juan R
2017-01-01
In this book, a series of granular algorithms are proposed. A nature inspired granular algorithm based on Newtonian gravitational forces is proposed. A series of methods for the formation of higher-type information granules represented by Interval Type-2 Fuzzy Sets are also shown, via multiple approaches, such as Coefficient of Variation, principle of justifiable granularity, uncertainty-based information concept, and numerical evidence based. And a fuzzy granular application comparison is given as to demonstrate the differences in how uncertainty affects the performance of fuzzy information granules.
Granular flows : fluidization and anisotropy
Wortel, Gerrit Herman
2014-01-01
This work discusses the flow of granular materials (e.g. sand). Even though a single particle is a simple object, the collective behavior of billions of particles can be very complex. In a surprisingly large amount of cases, it is not exactly known how a granular material behaves, and this while the
Bulldozing of granular material
Sauret, A; Caulfield, C P; McElwaine, J N
2014-01-01
We investigate the bulldozing motion of a granular sandpile driven forwards by a vertical plate. The problem is set up in the laboratory by emplacing the pile on a table rotating underneath a stationary plate; the continual circulation of the bulldozed material allows the dynamics to be explored over relatively long times, and the variation of the velocity with radius permits one to explore the dependence on bulldozing speed within a single experiment. We measure the time-dependent surface shape of the dune for a range of rotation rates, initial volumes and radial positions, for four granular materials, ranging from glass spheres to irregularly shaped sand. The evolution of the dune can be separated into two phases: a rapid initial adjustment to a state of quasi-steady avalanching perpendicular to the blade, followed by a much slower phase of lateral spreading and radial migration. The quasi-steady avalanching sets up a well-defined perpendicular profile with a nearly constant slope. This profile can be scale...
Behringer, Robert P.
2015-01-01
Granular materials are one of a class of materials which undergo a transition from mechanically unstable to mechanically stable states as key system parameters change. Pioneering work by Liu and Nagel and O'Hern et al. focused on models consisting of frictionless grains. In this case, density, commonly expressed in terms of the packing fraction, ϕ, is of particular importance. For instance, O'Hern et al. found that there is a minimum ϕ =ϕJ, such that below this value there are no jammed states, and that above this value, all stress-isotropic states are jammed. Recently, simulations and experiments have explored the case of grains with friction. This case is more subtle, and ϕ does not play such a simple role. Recently, several experiments have shown that there exists a range of relatively low ϕ's such that at the same ϕ it is possible to have jammed, unjammed, and fragile states in the sense of Cates et al. This review discusses some of this recent work, and contrasts the cases of jamming for frictionless and frictional granular systems.
Using a Time Granularity Table for Gradual Granular Data Aggregation
DEFF Research Database (Denmark)
Iftikhar, Nadeem; Pedersen, Torben Bach
2010-01-01
The majority of today’s systems increasingly require sophisticated data management as they need to store and to query large amounts of data for analysis and reporting purposes. In order to keep more “detailed” data available for longer periods, “old” data has to be reduced gradually to save space...... is 6 months old aggregate to 2 minutes level from 1 minute level and so on. The proposed solution introduces a time granularity based data structure, namely a relational time granularity table that enables long term storage of old data by maintaining it at different levels of granularity and effective...
Assessing continuum postulates in simulations of granular flow
Energy Technology Data Exchange (ETDEWEB)
Rycroft, Chris; Kamrin, Ken; Bazant, Martin
2008-08-26
Continuum mechanics relies on the fundamental notion of a mesoscopic volume"element" in which properties averaged over discrete particles obey deterministic relationships. Recent work on granular materials suggests a continuum law may be inapplicable, revealing inhomogeneities at the particle level, such as force chains and slow cage breaking. Here, we analyze large-scale three-dimensional Discrete-Element Method (DEM) simulations of different granular flows and show that an approximate"granular element" defined at the scale of observed dynamical correlations (roughly three to five particle diameters) has a reasonable continuum interpretation. By viewing all the simulations as an ensemble of granular elements which deform and move with the flow, we can track material evolution at a local level. Our results confirm some of the hypotheses of classical plasticity theory while contradicting others and suggest a subtle physical picture of granular failure, combining liquid-like dependence on deformation rate and solid-like dependence on strain. Our computational methods and results can be used to guide the development of more realistic continuum models, based on observed local relationships betweenaverage variables.
Advanced Granular System Modeling Project
National Aeronautics and Space Administration — Spaceports of the future will utilize new granular materials in unique applications including insulation for cryogenic tanks and Lunar regolith processing for usable...
Quantifying Interparticle Forces and Heterogeneity in 3D Granular Materials.
Hurley, R C; Hall, S A; Andrade, J E; Wright, J
2016-08-26
Interparticle forces in granular materials are intimately linked to mechanical properties and are known to self-organize into heterogeneous structures, or force chains, under external load. Despite progress in understanding the statistics and spatial distribution of interparticle forces in recent decades, a systematic method for measuring forces in opaque, three-dimensional (3D), frictional, stiff granular media has yet to emerge. In this Letter, we present results from an experiment that combines 3D x-ray diffraction, x-ray tomography, and a numerical force inference technique to quantify interparticle forces and their heterogeneity in an assembly of quartz grains undergoing a one-dimensional compression cycle. Forces exhibit an exponential decay above the mean and partition into strong and weak networks. We find a surprising inverse relationship between macroscopic load and the heterogeneity of interparticle forces, despite the clear emergence of two force chains that span the system.
Granular mechanics of normally consolidated fine soils
Yanqui, Calixtro
2017-06-01
In this paper, duality is demonstrated to be one of the inherent properties of granular packings, by mapping the stress-strain curve into the diagram that relates the pore ratio and the localization of the contact point. In this way, it is demonstrated that critical state is not related to the maximum void ratio, but to a unique value related to two different angles of packing, one limiting the domain of the dense state, and other limiting the domain of the loose state. As a consequence, packings can be dilative or contractive, as mutually exclusive states, except by the critical state point, where equations for both granular packings are equally valid. Further analysis shows that stresses, in a dilative packing, are transmitted by chains of contact forces, and, in a contractive packing, by shear forces. So that, stresses, for the first case, depend on the initial void ratio, and, for the second case, are independent. As it is known, normally consolidated and lightly overconsolidated fine soils are in loose state, and, hence, their strength is constant, because it does not depend on their initial void ratio; except at the critical state, for which, the consolidated-drained angle of friction is related to the plasticity index or the liquid limit. In this fashion, experimental results reported by several authors around the world are confronted with the theory, showing a good agreement.
Granular Superconductors and Gravity
Noever, David; Koczor, Ron
1999-01-01
As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.
Herrmann, H. J.; Müller, M.
For the last ten years there has been an enormous progress in the simulation of granular media like sand or powders. These simulations consist in simulating trajectories of each particle individually. Essentially one has to solve the Newton's equations including the effects of Coulomb friction and the physics occuring at a collision. But the details of the trajectories are not important for the collective behaviour. Therefore simplifications are introduced on the smallest scales. I will introduce various methods like molecular dynamics that are used to simulate large amounts of particles (over 109). Some of these medhods are based on the exploitation of parallelisation and metacomputing. Other approaches are more stochastic (DSMC Direct Simulation Monte Carlo) which simplify the calculation of collisions, positions and collision times. Very successful has been also the use of cellular automata which have been able to predict details such as the logarithmic tale of sand heaps. I will also discuss numerical techniques used for the surrounding fluid. This can be water in the case of sedimentation or air when one studies the formation of dunes in the desert. The calculation of velocity and pressure field of the fluid are done using multigrid techniques on parallel computers. We will compare the performance of the various techniques and show some benchmarks on the dependence on the size of the system, the density of particles and the number of processors used.
Ambler, Michael; Vorselaars, Bart; Allen, Michael P; Quigley, David
2017-02-21
We apply the capillary wave method, based on measurements of fluctuations in a ribbon-like interfacial geometry, to determine the solid-liquid interfacial free energy for both polytypes of ice I and the recently proposed ice 0 within a mono-atomic model of water. We discuss various choices for the molecular order parameter, which distinguishes solid from liquid, and demonstrate the influence of this choice on the interfacial stiffness. We quantify the influence of discretisation error when sampling the interfacial profile and the limits on accuracy imposed by the assumption of quasi one-dimensional geometry. The interfacial free energies of the two ice I polytypes are indistinguishable to within achievable statistical error and the small ambiguity which arises from the choice of order parameter. In the case of ice 0, we find that the large surface unit cell for low index interfaces constrains the width of the interfacial ribbon such that the accuracy of results is reduced. Nevertheless, we establish that the interfacial free energy of ice 0 at its melting temperature is similar to that of ice I under the same conditions. The rationality of a core-shell model for the nucleation of ice I within ice 0 is questioned within the context of our results.
Ambler, Michael; Vorselaars, Bart; Allen, Michael P.; Quigley, David
2017-02-01
We apply the capillary wave method, based on measurements of fluctuations in a ribbon-like interfacial geometry, to determine the solid-liquid interfacial free energy for both polytypes of ice I and the recently proposed ice 0 within a mono-atomic model of water. We discuss various choices for the molecular order parameter, which distinguishes solid from liquid, and demonstrate the influence of this choice on the interfacial stiffness. We quantify the influence of discretisation error when sampling the interfacial profile and the limits on accuracy imposed by the assumption of quasi one-dimensional geometry. The interfacial free energies of the two ice I polytypes are indistinguishable to within achievable statistical error and the small ambiguity which arises from the choice of order parameter. In the case of ice 0, we find that the large surface unit cell for low index interfaces constrains the width of the interfacial ribbon such that the accuracy of results is reduced. Nevertheless, we establish that the interfacial free energy of ice 0 at its melting temperature is similar to that of ice I under the same conditions. The rationality of a core-shell model for the nucleation of ice I within ice 0 is questioned within the context of our results.
Popok, V. N.; Jensen, J.; Vučković, S.; Mackova, A.; Trautmann, C.
2009-10-01
The formation of nanostructures on rutile (TiO2) surfaces formed after the implantation of kiloelectronvolt-energy Ar_n^+ cluster ions and megaelectronvolt- to gigaelectronvolt-energy multiply charged heavy ions (Iq+, Taq+ and Uq+) is studied. Despite the differences in stopping and energy transfer mechanisms between the kiloelectronvolt-energy cluster ions and megaelectronvolt-energy monoatomic ions, their impacts lead to a similar type of surface damage, namely craters. For the cluster ion implantation the craters are caused by the multiple-collision effect (dominated by nuclear stopping) and the high density of energy and momentum transferred to the target, while for the case of megaelectronvolt multiply charged ions the craters are probably formed due to the Coulomb explosion and fast energy transfer caused by the electronic stopping. At ion energies in the gigaelectronvolt range, nanosize protrusions, so-called hillocks, are observed on the surface. It is suggested that electronic stopping leads to the formation of continuous tracks and the transferred energy is high enough to melt the material along the whole projectile path. Elastic rebound of the tension between the molten and solid state phases leads to liquid flow, expansion and quenching of the melt, thus forming the hillocks. Atomic force microscopy measurements carried out under different environmental conditions (temperature and atmosphere) suggest that the damaged material at the nanosize impact spots has very different water affinity properties (higher hydrophilicity or water adsorption) compared with the non-irradiated rutile surface.
Defining and testing a granular continuum element
Energy Technology Data Exchange (ETDEWEB)
Rycroft, Chris H.; Kamrin, Ken; Bazant, Martin Z.
2007-12-03
Continuum mechanics relies on the fundamental notion of amesoscopic volume "element" in which properties averaged over discreteparticles obey deterministic relationships. Recent work on granularmaterials suggests a continuum law may be inapplicable, revealinginhomogeneities at the particle level, such as force chains and slow cagebreaking. Here, we analyze large-scale Discrete-Element Method (DEM)simulations of different granular flows and show that a "granularelement" can indeed be defined at the scale of dynamical correlations,roughly three to five particle diameters. Its rheology is rather subtle,combining liquid-like dependence on deformation rate and solid-likedependence on strain. Our results confirm some aspects of classicalplasticity theory (e.g., coaxiality of stress and deformation rate),while contradicting others (i.e., incipient yield), and can guide thedevelopment of more realistic continuum models.
Silo Collapse under Granular Discharge
Gutiérrez, G.; Colonnello, C.; Boltenhagen, P.; Darias, J. R.; Peralta-Fabi, R.; Brau, F.; Clément, E.
2015-01-01
We investigate, at a laboratory scale, the collapse of cylindrical shells of radius R and thickness t induced by a granular discharge. We measure the critical filling height for which the structure fails upon discharge. We observe that the silos sustain filling heights significantly above an estimation obtained by coupling standard shell-buckling and granular stress distribution theories. Two effects contribute to stabilize the structure: (i) below the critical filling height, a dynamical stabilization due to granular wall friction prevents the localized shell-buckling modes to grow irreversibly; (ii) above the critical filling height, collapse occurs before the downward sliding motion of the whole granular column sets in, such that only a partial friction mobilization is at play. However, we notice also that the critical filling height is reduced as the grain size d increases. The importance of grain size contribution is controlled by the ratio d /√{R t }. We rationalize these antagonist effects with a novel fluid-structure theory both accounting for the actual status of granular friction at the wall and the inherent shell imperfections mediated by the grains. This theory yields new scaling predictions which are compared with the experimental results.
Granular Dynamics During Impact
Nordstrom, K. N.; Lim, E.; Harrington, M.; Losert, W.
2014-06-01
We study the impact of a projectile onto a bed of 3 mm grains immersed in an index-matched fluid. We vary the amount of prestrain on the sample, strengthening the force chains within the system. We find this affects only the prefactor of the linear depth-dependent term in the stopping force. We propose a simple model to account for the strain dependence of this term, owing to increased pressure in the pile. Interestingly, we find that the presence of the fluid does not affect the impact dynamics, suggesting that dynamic friction is not a factor. Using a laser sheet scanning technique to visualize internal grain motion, we measure the trajectory of each grain throughout an impact. Microscopically, our results indicate that weaker initial force chains result in more irreversible, plastic rearrangements, suggesting static friction between grains does play a substantial role in the energy dissipation.
Inherent Segregation in Granular Media
Directory of Open Access Journals (Sweden)
Sánchez-Guzmán J.
2011-10-01
Full Text Available A study of the inherent segregation within granular media due to the relative size of the different particles is presented. A numerical model is used to simulate granular structures. For both simulation and granular structures evaluations, probability theory is widely used. Particles are idealized by disks (2D model and spheres (3D model. Strictly uniform grain size materials, bimodal (two particle sizes and continuous are simulated. Two variables representing segregation and allowing appreciating the grain-size parameters effects are considered. In uniform materials, the presence of spontaneous structuring is observed. In bimodal and continuous materials, inherent segregation mainly depends on the ratio between maximum and minimum diameters of particle. Some practical implications of inherent segregation in geotechnical problems and other disciplines are remarked.
Instability in Shocked Granular Gases
Sirmas, Nick; Radulescu, Matei
2013-01-01
Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.
Instability in shocked granular gases
Sirmas, Nick; Falle, Sam; Radulescu, Matei
2014-05-01
Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.
Interfacial Instability during Granular Erosion.
Lefebvre, Gautier; Merceron, Aymeric; Jop, Pierre
2016-02-12
The complex interplay between the topography and the erosion and deposition phenomena is a key feature to model granular flows such as landslides. Here, we investigated the instability that develops during the erosion of a wet granular pile by a dry dense granular flow. The morphology and the propagation of the generated steps are analyzed in relation to the specific erosion mechanism. The selected flowing angle of the confined flow on a dry heap appears to play an important role both in the final state of the experiment, and for the shape of the structures. We show that the development of the instability is governed by the inertia of the flow through the Froude number. We model this instability and predict growth rates that are in agreement with the experiment results.
Granular cell ameloblastoma of mandible.
Jansari, Trupti R; Samanta, Satarupa T; Trivedi, Priti P; Shah, Manoj J
2014-01-01
Ameloblastoma is a neoplasm of odontogenic epithelium, especially of enamel organ-type tissue that has not undergone differentiation to the point of hard tissue formation. Granular cell ameloblastoma is a rare condition, accounting for 3-5% of all ameloblastoma cases. A 30-year-old female patient presented with the chief complaint of swelling at the right lower jaw region since 1 year. Orthopantomogram and computed tomography scan was suggestive of primary bone tumor. Histopathologically, diagnosis of granular cell ameloblastoma of right mandible was made.
Buslaev, Alexander; Bugaev, Alexander; Yashina, Marina; Schadschneider, Andreas; Schreckenberg, Michael; TGF11
2013-01-01
This book continues the biannual series of conference proceedings, which has become a classical reference resource in traffic and granular research alike. It addresses new developments at the interface between physics, engineering and computational science. Complex systems, where many simple agents, be they vehicles or particles, give rise to surprising and fascinating phenomena. The contributions collected in these proceedings cover several research fields, all of which deal with transport. Topics include highway, pedestrian and internet traffic, granular matter, biological transport, transport networks, data acquisition, data analysis and technological applications. Different perspectives, i.e. modeling, simulations, experiments and phenomenological observations, are considered.
Unifying suspension and granular rheology.
Boyer, François; Guazzelli, Élisabeth; Pouliquen, Olivier
2011-10-28
Using an original pressure-imposed shear cell, we study the rheology of dense suspensions. We show that they exhibit a viscoplastic behavior similarly to granular media successfully described by a frictional rheology and fully characterized by the evolution of the friction coefficient μ and the volume fraction ϕ with a dimensionless viscous number I(v). Dense suspension and granular media are thus unified under a common framework. These results are shown to be compatible with classical empirical models of suspension rheology and provide a clear determination of constitutive laws close to the jamming transition.
Phase Diagram of Vertically Shaken Granular Matter
Eshuis, P; Lohse, D; Van der Meer, D; Van der Weele, K; Bos, Robert; Eshuis, Peter; Lohse, Detlef; Meer, Devaraj van der; Weele, Ko van der
2006-01-01
A shallow, vertically shaken granular bed in a quasi 2-D container is studied experimentally yielding a wider variety of phenomena than in any previous study: (1) bouncing bed, (2) undulations, (3) granular Leidenfrost effect, (4) convection rolls, and (5) granular gas. These phenomena and the transitions between them are characterized by dimensionless control parameters and combined in a full experimental phase diagram.
Granular Dynamics during Impact
Nordstrom, Kerstin; Lim, Emily; Harrington, Matthew; Losert, Wolfgang
2013-01-01
We study the impact of a projectile onto a bed of 3 mm grains immersed in an index-matched fluid. Specifically, we vary the amount of prestrain on the sample, strengthening the force chains within the system. We find this affects only the prefactor of linear depth-dependent term in the stopping force. We therefore attribute this term to pressure within the material, and not the grain-intruder friction as is sometimes suggested. Using a laser sheet scanning technique to visualize internal grai...
From Numeric Models to Granular System Modeling
Directory of Open Access Journals (Sweden)
Witold Pedrycz
2015-03-01
To make this study self-contained, we briefly recall the key concepts of granular computing and demonstrate how this conceptual framework and its algorithmic fundamentals give rise to granular models. We discuss several representative formal setups used in describing and processing information granules including fuzzy sets, rough sets, and interval calculus. Key architectures of models dwell upon relationships among information granules. We demonstrate how information granularity and its optimization can be regarded as an important design asset to be exploited in system modeling and giving rise to granular models. With this regard, an important category of rule-based models along with their granular enrichments is studied in detail.
Numeric Modeling of Granular Asteroid Growth
Beaumont, Benjamin; Lazzati, D.
2014-01-01
It is believed that planetesimals and asteroids are created by the constructive collisions of smaller objects, loosely bound under the effect of self-gravity and/or contact forces. However, the internal dynamics of these collisions and whether they trigger growth or fragmentation are poorly understood. Prior research in the topic has established regimes for the results of constructive collisions of particles under contact forces, but neglects gravity, a critical component once particles are no longer touching, and force chains, an uneven distribution of force inherent to granular materials. We run simulations binary collisions of clusters of particles modeled as hard spheres. Our simulations take into account self-gravity, dissipation of energy, friction, and use a potential function for overlapping particles to study force chains. We present here the collision outcome for clusters with variable masses, particle counts, velocities, and impact parameter. We compare our results to other models and simulations, and find that the collisions remain constructive at higher energies than classically predicted.
HYPERELASTIC MODELS FOR GRANULAR MATERIALS
Energy Technology Data Exchange (ETDEWEB)
Humrickhouse, Paul W; Corradini, Michael L
2009-01-29
A continuum framework for modeling of dust mobilization and transport, and the behavior of granular systems in general, has been reviewed, developed and evaluated for reactor design applications. The large quantities of micron-sized particles expected in the international fusion reactor design, ITER, will accumulate into piles and layers on surfaces, which are large relative to the individual particle size; thus, particle-particle, rather than particle-surface, interactions will determine the behavior of the material in bulk, and a continuum approach is necessary and justified in treating the phenomena of interest; e.g., particle resuspension and transport. The various constitutive relations that characterize these solid particle interactions in dense granular flows have been discussed previously, but prior to mobilization their behavior is not even fluid. Even in the absence of adhesive forces between particles, dust or sand piles can exist in static equilibrium under gravity and other forces, e.g., fluid shear. Their behavior is understood to be elastic, though not linear. The recent “granular elasticity” theory proposes a non-linear elastic model based on “Hertz contacts” between particles; the theory identifies the Coulomb yield condition as a requirement for thermodynamic stability, and has successfully reproduced experimental results for stress distributions in sand piles. The granular elasticity theory is developed and implemented in a stand- alone model and then implemented as part of a finite element model, ABAQUS, to determine the stress distributions in dust piles subjected to shear by a fluid flow. We identify yield with the onset of mobilization, and establish, for a given dust pile and flow geometry, the threshold pressure (force) conditions on the surface due to flow required to initiate it. While the granular elasticity theory applies strictly to cohesionless granular materials, attractive forces are clearly important in the interaction of
One_dimensional chains of gold clusters on the surface of highly oriented pyrolytic graphite
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
We have investigated the growth of gold nanoclusters on thesurface of highly oriented pyrolytic graphite in ultrahigh vacuum. Studies of ultrahigh vacuum scanning tunneling microscopy revealed that the size distribution of gold clusters was very narrow and quasi-one-dimensional chains of gold nanoclusters of approximately 2 nm diameter were produced after being annealed at 74℃. Unlike the results obtained by previous workers, these chains of gold clusters were not formed along steps on the substrate surface, and some of them could even go across monoatomic steps. The orientation of chains of gold clusters was also dependent on the size of gold nanoclusters. These results suggest the viability of a new route to the creation of ordered nanoscale structures.
Stress Response of Granular Systems
Ramola, Kabir; Chakraborty, Bulbul
2017-10-01
We develop a framework for stress response in two dimensional granular media, with and without friction, that respects vector force balance at the microscopic level. We introduce local gauge degrees of freedom that determine the response of contact forces between constituent grains on a given, disordered, contact network, to external perturbations. By mapping this response to the spectral properties of the graph Laplacian corresponding to the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for localization using exact diagonalization studies of network Laplacians of soft disk packings. Finally, we discuss the role of other constraints, such as torque balance, in determining the stability of a granular packing to external perturbations.
Stress Response of Granular Systems
Ramola, Kabir; Chakraborty, Bulbul
2017-08-01
We develop a framework for stress response in two dimensional granular media, with and without friction, that respects vector force balance at the microscopic level. We introduce local gauge degrees of freedom that determine the response of contact forces between constituent grains on a given, disordered, contact network, to external perturbations. By mapping this response to the spectral properties of the graph Laplacian corresponding to the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for localization using exact diagonalization studies of network Laplacians of soft disk packings. Finally, we discuss the role of other constraints, such as torque balance, in determining the stability of a granular packing to external perturbations.
Creep and stick-slip in subglacial granular beds forced by ocean tides
DEFF Research Database (Denmark)
Damsgaard, Anders; Egholm, David Lundbek; Beem, Lucas H.
rearrangements of load-bearing force chains within the granular sediments drive the mechanical transitions. Cyclic variations in driving stresses or pore-water pressure, caused by ocean tides, give rise to strain-rate dependent creeping motion at stress levels below the point of failure, while disruption...
Creep and stick-slip in subglacial granular beds forced by variations in water pressure
DEFF Research Database (Denmark)
Damsgaard, Anders; Egholm, David Lundbek; Beem, Lucas H.
of grain and fluid dynamics to show that rapid rearrangements of load-bearing force chains within the granular sediments drive mechanical transitions between stability and failure. Cyclic variations in driving stresses or pore-water pressure give rise to strain-rate dependent creeping motion at stress...
Bipedal locomotion in granular media
Kingsbury, Mark; Zhang, Tingnan; Goldman, Daniel
Bipedal walking, locomotion characterized by alternating swing and double support phase, is well studied on ground where feet do not penetrate the substrate. On granular media like sand however, intrusion and extrusion phases also occur. In these phases, relative motion of the two feet requires that one or both feet slip through the material, degrading performance. To study walking in these phases, we designed and studied a planarized bipedal robot (1.6 kg, 42 cm) that walked in a fluidized bed of poppy seeds. We also simulated the robot in a multibody software environment (Chrono) using granular resistive force theory (RFT) to calculate foot forces. In experiment and simulation, the robot experienced slip during the intrusion phase, with the experiment presenting additional slip due to motor control error during the double support phase. This exaggerated slip gave insight (through analysis of ground reaction forces in simulation) into how slip occurs when relative motion exists between the two feet in the granular media, where the foot with higher relative drag forces (from its instantaneous orientation, rotation, relative direction of motion, and depth) remains stationary. With this relationship, we generated walking gaits for the robot to walk with minimal slip.
Segregating photoelastic particles in free-surface granular flows
Thomas, Amalia L.; Vriend, Nathalie M.
2016-11-01
We experimentally investigate bimodal avalanches of photoelastic discs between two narrow side-walls. We visualize the physical phenomena that occur during segregation and quantify the dynamic appearance of force chains within the bulk of the flow from fringe patterns using photoelastic theory. The photoelastic technique has been used in granular research for almost half a century and has been applied in a variety of quasi-steady systems. We have now adapted the technique to perform well within dynamic granular flows where collisions are short-lived and force chains are formed and broken continuously. Our photoelastic urethane discs are cast in-house to provide high-resolution fringe patterns and a high stress-optic coefficient. In addition we carried out stress relaxation tests to study the viscoelastic properties of the photoelastic material, and measured the speed of force transmission and dampening from a moving particle onto a static chain of particles. In our avalanche experiments, we also employ particle tracking and particle velocimetry techniques to measure the general flow field within the avalanche. The overall goal of our work is to investigate and quantify the influence of the distribution of forces on the fundamental processes that drive segregation.
Micromechanical Behavior and Modelling of Granular Soil
1989-07-01
elasticity, hypoelasticity , plasticity and viscoplasticity. Despite the large number of models , there is no consensus yet within the research community on...Classification) (U) Micromechanical Behavior and Modelling of Granular MOWo I... 12. PERSONAL AUTHOR(S) Emmanuel Petrakis and Ricardo Dobry 13a. TYPE OF...Institute (RPI) on the behavior and modelling of granular media is summarized. The final objective is to develol a constitutive law for granular soil
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yijing, E-mail: yzhng123@illinois.edu; Moore, Keegan J.; Vakakis, Alexander F. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); McFarland, D. Michael [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)
2015-12-21
We study passive pulse redirection and nonlinear targeted energy transfer in a granular network composed of two semi-infinite, ordered homogeneous granular chains mounted on linear elastic foundations and coupled by weak linear stiffnesses. Periodic excitation in the form of repetitive half-sine pulses is applied to one of the chains, designated as the “excited chain,” whereas the other chain is initially at rest and is regarded as the “absorbing chain.” We show that passive pulse redirection and targeted energy transfer from the excited to the absorbing chain can be achieved by macro-scale realization of the spatial analog of the Landau-Zener quantum tunneling effect. This is realized by finite stratification of the elastic foundation of the excited chain and depends on the system parameters (e.g., the percentage of stratification) and on the parameters of the periodic excitation. Utilizing empirical mode decomposition and numerical Hilbert transforms, we detect the existence of two distinct nonlinear phenomena in the periodically forced network; namely, (i) energy localization in the absorbing chain due to sustained 1:1 resonance capture leading to irreversible pulse redirection from the excited chain, and (ii) continuous energy exchanges in the form of nonlinear beats between the two chains in the absence of resonance capture. Our results extend previous findings of transient passive energy redirection in impulsively excited granular networks and demonstrate that steady state passive pulse redirection in these networks can be robustly achieved under periodic excitation.
Evaluation of static and dynamic contact stresses in simulated granular particles using strain gages
Energy Technology Data Exchange (ETDEWEB)
Xu, Y.; Shukla, A. (Univ. of Rhode Island, Kingston (United States))
1993-01-01
The application of strain gages for the determination of static and dynamic contact loads in granular particles is demonstrated. For experimental convenience, the granular particles are simulated by circular disks fabricated from Homalite-100, a brittle polyester material. Stress field equations in the vicinity of the contact points are carefully evaluated to optimize the relative position of strain gages. The results obtained from strain gages were compared with those obtained using the optical technique of photoelasticity for both static and dynamic problems. Finally, as an example, strain gages are used to study wave propagation in a single chain assembly of disks.
2010-11-21
Methods in Geomechanics 33 pp 1737-1768. Tordesillas, A, Shi, J and Muhlhaus, H (2009) “Non-coaxiality and force chain evolution” International...Buckling force chains in dense granular assemblies: physical and numerical experiments” Geomechanics and Geoengineering 4(1) pp 3-16. Tordesillas, A...J, Tshaikiwsky, T (2010) “Stress-dilatancy and force chain evolution”, International Journal of Numerical and Analytical Methods in Geomechanics DOI
Perspicuity and Granularity in Refinement
Boiten, Eerke
2011-01-01
This paper reconsiders refinements which introduce actions on the concrete level which were not present at the abstract level. It draws a distinction between concrete actions which are "perspicuous" at the abstract level, and changes of granularity of actions between different levels of abstraction. The main contribution of this paper is in exploring the relation between these different methods of "action refinement", and the basic refinement relation that is used. In particular, it shows how the "refining skip" method is incompatible with failures-based refinement relations, and consequently some decisions in designing Event-B refinement are entangled.
Quantum percolation in granular metals.
Feigel'man, M V; Ioselevich, A S; Skvortsov, M A
2004-09-24
Theory of quantum corrections to conductivity of granular metal films is developed for the realistic case of large randomly distributed tunnel conductances. Quantum fluctuations of intergrain voltages (at energies E much below the bare charging energy scale E(C)) suppress the mean conductance g (E) much more strongly than its standard deviation sigma(E). At sufficiently low energies E(*) any distribution becomes broad, with sigma(E(*)) approximately g (E(*)), leading to strong local fluctuations of the tunneling density of states. The percolative nature of the metal-insulator transition is established by a combination of analytic and numerical analysis of the matrix renormalization group equations.
Theoretical model of granular compaction
Energy Technology Data Exchange (ETDEWEB)
Ben-Naim, E. [Los Alamos National Lab., NM (United States); Knight, J.B. [Princeton Univ., NJ (United States). Dept. of Physics; Nowak, E.R. [Univ. of Illinois, Urbana, IL (United States). Dept. of Physics]|[Univ. of Chicago, IL (United States). James Franck Inst.; Jaeger, H.M.; Nagel, S.R. [Univ. of Chicago, IL (United States). James Franck Inst.
1997-11-01
Experimental studies show that the density of a vibrated granular material evolves from a low density initial state into a higher density final steady state. The relaxation towards the final density follows an inverse logarithmic law. As the system approaches its final state, a growing number of beads have to be rearranged to enable a local density increase. A free volume argument shows that this number grows as N = {rho}/(1 {minus} {rho}). The time scale associated with such events increases exponentially e{sup {minus}N}, and as a result a logarithmically slow approach to the final state is found {rho} {infinity} {minus}{rho}(t) {approx_equal} 1/lnt.
Two Classes of Models of Granular Computing
Institute of Scientific and Technical Information of China (English)
Daowu Pei
2006-01-01
This paper reviews a class of important models of granular computing which are induced by equivalence relations, or by general binary relations, or by neighborhood systems, and propose a class of models of granular computing which are induced by coverings of the given universe.
Granular cell tumors of the tracheobronchial tree.
Maten, van der J; Blaauwgeers, JL; Sutedja, G.; Kwa, HB; Postmus, P.E.; Wagenaar, SS
2003-01-01
OBJECTIVE: To describe the population-based incidence and clinical characteristics of granular cell tumors of the tracheobronchial tree. METHODS: All newly registered tracheobronchial granular cell tumors in the Dutch Network and National Database for Pathology for 10 consecutive years (1990-1999) w
Characterization of Unbound Granular Materials for Pavements
Araya, A.A.
2011-01-01
This research is focused on the characterization of the mechanical behavior of unbound granular road base materials (UGMs). An extensive laboratory investigation is described, in which various methods for determination of the mechanical properties of granular materials are examined for their applica
Energy Technology Data Exchange (ETDEWEB)
Hogan, Conor [Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia, via Fosso del Cavaliere 100, 00133 Rome (Italy); Department of Physics and European Theoretical Spectroscopy Facility (ETSF), University of Rome ' ' Tor Vergata' ' , Via della Ricerca Scientifica 1, 00133 Rome (Italy); McAlinden, Niall; McGilp, John F. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)
2012-06-15
We present a joint experimental-theoretical study of the reflectance anisotropy of clean and gold-covered Si(557), a vicinal surface of Si(111) upon which gold forms quasi-one-dimensional (1D) chains parallel to the steps. By means of first-principles calculations, we analyse the close relationship between the various surface structural motifs and the optical properties. Good agreement is found between experimental and computed spectra of single-step models of both clean and Au-adsorbed surfaces. Spectral fingerprints of monoatomic gold chains and silicon step edges are identified. The role of spin-orbit coupling (SOC) on the surface optical properties is examined, and found to have little effect. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Erosion and basal forces in granular flow experiments
Sanvitale, Nicoletta; Bowman, Elisabeth
2016-04-01
Extreme mass wasting avalanche events such as rock, snow and ice avalanches, debris flows, and pyroclastic flows are among the most hazardous geological phenomena. These events driven by gravity, can travel for long distance and high speed, increasing their volumes as they can entertain material along their path. The erosion of material and its entrainment can greatly affect the overall dynamics of transportation, either enhancing or impeding the avalanche mobility depending on flow dynamics and characteristics of the substrate. However, the mechanisms and processes acting at the base as they travel over deformable or erodible substrates are still poor understood. Experiments, simulations and field measurements indicate that large fluctuations can occur in basal forces and stresses, which may be the result of non-uniform load transfer within the mass, and rolling, bouncing and sliding of the particles along the bed. In dense granular materials, force distributions can propagate through filamentary chain structures that carry a large fraction of the forces within the system. Photoelastic experiments on two-dimensional, monodisperse, gravity-driven flows have shown that force chains can transmit high localized forces to the boundary of dense granular flows. Here we describe the preliminary setup and results of 2D experiments on polydisperse granular flows of photoelastic disks down a small flume designed to acquire the forces exerted at the boundaries of the flow and to analyze their effects on an erodible bed. The intended outcome of this research is to provide better information on the complex mechanism of erosion and its effects on avalanche behaviour.
Luding, Stefan; Bovy, Piet; Schreckenberg, Michael; Wolf, Dietrich
2005-01-01
These proceedings are the fifth in the series Traffic and Granular Flow, and we hope they will be as useful a reference as their predecessors. Both the realistic modelling of granular media and traffic flow present important challenges at the borderline between physics and engineering, and enormous progress has been made since 1995, when this series started. Still the research on these topics is thriving, so that this book again contains many new results. Some highlights addressed at this conference were the influence of long range electric and magnetic forces and ambient fluids on granular media, new precise traffic measurements, and experiments on the complex decision making of drivers. No doubt the “hot topics” addressed in granular matter research have diverged from those in traffic since the days when the obvious analogies between traffic jams on highways and dissipative clustering in granular flow intrigued both c- munities alike. However, now just this diversity became a stimulating feature of the ...
Where are signal molecules likely to be located in anaerobic granular sludge?
Feng, Huajun; Ding, Yangcheng; Wang, Meizhen; Zhou, Guanglan; Zheng, Xin; He, Hongzhen; Zhang, Xueqin; Shen, Dongsheng; Shentu, Jiali
2014-03-01
Quorum sensing is a concentration-sensing mechanism that plays a vital role in sludge granulation. In this study, the regularities of distribution of different signal molecules, including intra- and interspecific signal molecules (diffusible signal factor, DSF), interspecific signal molecules (autoinducter-2, AI-2) and intraspecific signal molecules (acyl-homoserine lactones, AHLs), from three types of anaerobic granular sludge were investigated. The results showed that 70-90% of DSF was distributed in sludge, while AI-2 in the Water phase accounted for over 80% of the total content. Interestingly, there was a positive correlation between DSF and AI-2, which played opposite roles in granulation. Moreover, more than 55% of short and medium acyl chain AHLs tended to spread in aqueous water, while the long acyl chain AHLs were closer to granular sludge than the short and medium acyl chain AHLs. With the exception of one type of sludge, the percentage of long acyl chain AHLs in the sludge phase was greater than 70%. The different distributions of signal molecules were primarily determined based on their physicochemical properties, including molecular weight and solubility in water or organic solutions. In addition, the basic properties of sludge, such as the granular level or the production of EPS, were closely related to the diversity, distribution and concentration of signal molecules. As a medium in granulation, extracellular polymeric substances production was regulated by different signal molecules from different parts of anaerobic granular sludge. This study provides a foundation for investigation of quorum sensing in the system of anaerobic granular sludge.
Partially saturated granular column collapse
Turnbull, Barbara; Johnson, Chris
2017-04-01
Debris flows are gravity-driven sub-aerial mass movements containing water, sediments, soil and rocks. These elements lead to characteristics common to dry granular media (e.g. levee formation) and viscous gravity currents (viscous fingering and surge instabilities). The importance of pore fluid in these flows is widely recognised, but there is significant debate over the mechanisms of build up and dissipation of pore fluid pressure within debris flows, and the resultant effect this has on dilation and mobility of the grains. Here we specifically consider the effects of the liquid surface in the flow. We start with a simple experiment constituting a classical axisymmetric granular column collapse, but with fluid filling the column up to a depth comparable to the depth of grains. Thus, as the column collapses, capillary forces may be generated between the grains that prevent dilation. We explore a parameter space to uncover the effects of fluid viscosity, particle size, column size, aspect ratio, grain shape, saturation level, initial packing fraction and significantly, the effects of fine sediments in suspension which can alter the capillary interaction between wetted macroscopic grains. This work presents an initial scaling analysis and attempts to relate the findings to current debris flow modelling approaches.
Pöschel, Thorsten; Kühne, Reinhart; Schreckenberg, Michael; Wolf, Dietrich
2007-01-01
The conference series Tra?c and Granular Flow has been established in 1995 and has since then been held biannually. At that time, the investigation of granular materials and tra?c was still somewhat exotic and was just starting to become popular among physicists. Originally the idea behind this conference series was to facilitate the c- vergence of the two ?elds, inspired by the similarities of certain phenomena and the use of similar theoretical methods. However, in recent years it has become clear that probably the di?erences between the two systems are much more interesting than the similarities. Nevertheless, the importance of various interrelations among these ?elds is still growing. The workshop continues to o?er an opportunity to stimulate this interdisciplinary research. Over the years the spectrum of topics has become much broader and has included also problems related to topics ranging from social dynamics to - ology. The conference manages to bring together people with rather di?erent background, r...
Modeling Size Polydisperse Granular Flows
Lueptow, Richard M.; Schlick, Conor P.; Isner, Austin B.; Umbanhowar, Paul B.; Ottino, Julio M.
2014-11-01
Modeling size segregation of granular materials has important applications in many industrial processes and geophysical phenomena. We have developed a continuum model for granular multi- and polydisperse size segregation based on flow kinematics, which we obtain from discrete element method (DEM) simulations. The segregation depends on dimensionless control parameters that are functions of flow rate, particle sizes, collisional diffusion coefficient, shear rate, and flowing layer depth. To test the theoretical approach, we model segregation in tri-disperse quasi-2D heap flow and log-normally distributed polydisperse quasi-2D chute flow. In both cases, the segregated particle size distributions match results from full-scale DEM simulations and experiments. While the theory was applied to size segregation in steady quasi-2D flows here, the approach can be readily generalized to include additional drivers of segregation such as density and shape as well as other geometries where the flow field can be characterized including rotating tumbler flow and three-dimensional bounded heap flow. Funded by The Dow Chemical Company and NSF Grant CMMI-1000469.
颗粒介质弹性的弛豫∗%Relaxation of granular elasticity
Institute of Scientific and Technical Information of China (English)
孙其诚; 刘传奇; 周公旦
2015-01-01
In granular materials, particles constitute a complex force chains network through contact with each other, and elastic energies are stored due to deformation of particles. This elastic behavior is macroscopic manifestation of inter-particle contacts. Elastic constants or elastic moduli are of fundamental importance for granular material. Due to the hyper-static property of inter-particle forces, the bulk elastic energy stored in the contacts is metastable in the viewpoint of energy landscape, i.e. a high energy state may approaches a more stable state (i.e. relatively lower state) under the action of external perturbations or internal stress, resulting in the elastic modulus reduction. This process is the so-called elasticity relaxation. It may be more obvious in granular materials. The time-dependent behavior of granular materials, especially the creep, has been studied in experiments and numerical simulations, while the stress relaxation has few reported investigations. Stress relaxation is defined as the process in vohich the initial strain is maintained and the stress decays with the time. From energetic viewpoint, elastic energy is stored in the deformation of particles. The granular system is in a metastable state when confined in a state easy to break the balance. Generally speaking, the shape and grading of particles, volume fraction, surface friction properties, initial structure features, ageing time, loading strain rate will all play important roles in stress relaxation. In this work, it is believed that the elastic relaxation is the only mechanism to describe the stress relaxation, and the mechanism of it is analyzed from the viewpoint of the potential energy surface. Stress relaxation is calculated by means of the so-called two-granular temperature theory (TGT) we developed previously (Sun Q et al. 2015 Sci. Rep. 5 9652). The stress decays fast at the beginning, then decreases gradually slowly to a stable value. The logarithmic fit is first proposed
Numerical Simulations of Granular Processes
Richardson, Derek C.; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis; Yu, Yang; Matsumura, Soko
2014-11-01
Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a completely different gravitational environment than on the Earth. Understanding and modeling these motions can aid in the interpretation of imaged surface features that may exhibit signatures of constituent material properties. Also, upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the parallelized N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). Ongoing and recently completed projects include: impacts into granular materials using different projectile shapes [5]; possible tidal resurfacing of asteroid Apophis during its 2029 encounter [6]; the Brazil-nut effect in low gravity [7]; and avalanche modeling.Acknowledgements: DCR acknowledges NASA (grants NNX08AM39G, NNX10AQ01G, NNX12AG29G) and NSF (AST1009579). PM acknowledges the French agency CNES. SRS works on the NEOShield Project funded under the European Commission’s FP7 program agreement No. 282703. SM acknowledges support from the Center for Theory and Computation at U Maryland and the Dundee Fellowship at U Dundee. Most simulations were performed using the YORP cluster in the Dept. of Astronomy at U Maryland and on the Deepthought High-Performance Computing Cluster at U Maryland.References: [1] Richardson, D.C. et al. 2000, Icarus 143, 45; [2] Stadel, J. 2001, Ph.D. Thesis, U Washington; [3] Schwartz, S.R. et al. 2012, Gran
76 FR 4936 - Granular Polytetrafluoroethylene Resin From Italy
2011-01-27
... COMMISSION Granular Polytetrafluoroethylene Resin From Italy AGENCY: United States International Trade... antidumping duty order on granular polytetrafluoroethylene resin (``granular PTFE resin'') from Italy. DATES... on granular PTFE resin from Italy and Japan (75 FR 67082-67083 and 67105-67108, November 1,...
21 CFR 133.145 - Granular cheese for manufacturing.
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Granular cheese for manufacturing. 133.145 Section... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for manufacturing conforms to the definition and standard of identity prescribed for granular cheese by § 133.144...
Shear failure of granular materials
Degiuli, Eric; Balmforth, Neil; McElwaine, Jim; Schoof, Christian; Hewitt, Ian
2012-02-01
Connecting the macroscopic behavior of granular materials with the microstructure remains a great challenge. Recent work connects these scales with a discrete calculus [1]. In this work we generalize this formalism from monodisperse packings of disks to 2D assemblies of arbitrarily shaped grains. In particular, we derive Airy's expression for a symmetric, divergence-free stress tensor. Using these tools, we derive, from first-principles and in a mean-field approximation, the entropy of frictional force configurations in the Force Network Ensemble. As a macroscopic consequence of the Coulomb friction condition at contacts, we predict shear failure at a critical shear stress, in accordance with the Mohr-Coulomb failure condition well known in engineering. Results are compared with numerical simulations, and the dependence on the microscopic geometric configuration is discussed. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310
Aerofractures in Confined Granular Media
Eriksen, Fredrik K.; Turkaya, Semih; Toussaint, Renaud; Måløy, Knut J.; Flekkøy, Eirik G.
2015-04-01
We will present the optical analysis of experimental aerofractures in confined granular media. The study of this generic process may have applications in industries involving hydraulic fracturing of tight rocks, safe construction of dams, tunnels and mines, and in earth science where phenomena such as mud volcanoes and sand injectites are results of subsurface sediment displacements driven by fluid overpressure. It is also interesting to increase the understanding the flow instability itself, and how the fluid flow impacts the solid surrounding fractures and in the rest of the sample. Such processes where previously studied numerically [Niebling 2012a, Niebling 2012b] or in circular geometries. We will here explore experimentally linear geometries. We study the fracturing patterns that form when air flows into a dense, non-cohesive porous medium confined in a Hele-Shaw cell - i.e. into a packing of dry 80 micron beads placed between two glass plates separated by ~1mm. The cell is rectangular and fitted with a semi-permeable boundary to the atmosphere - blocking beads but not air - on one short edge, while the other three edges are impermeable. The porous medium is packed inside the cell between the semi-permeable boundary and an empty volume at the sealed side where the air pressure can be set and kept at a constant overpressure (1-2bar). Thus, for the air trapped inside the cell to release the overpressure it has to move through the solid. At high enough overpressures the air flow deforms the solid and increase permeability in some regions along the air-solid interface, which results in unstable flow and aerofracturing. Aerofractures are thought to be an analogue to hydrofractures, and an advantage of performing aerofracturing experiments in a Hele-Shaw cell is that the fracturing process can easily be observed in the lab. Our experiments are recorded with a high speed camera with a framerate of 1000 frames per second. In the analysis, by using various image
Wet granular walkers and climbers
Energy Technology Data Exchange (ETDEWEB)
Khan, Z S; Steinberger, A; Seemann, R; Herminghaus, S, E-mail: audrey.steinberger@ens-lyon.fr [Max Planck Institute for Dynamics and Self-Organization, Bunsenstrasse 10, D-37073 Goettingen (Germany)
2011-05-15
Mechanisms of locomotion in microscopic systems are of great interest not only for technological applications but also for the sake of understanding, and potentially harnessing, processes far from thermal equilibrium. Downscaling is a particular challenge and has led to a number of interesting concepts, including thermal ratchet systems and asymmetric swimmers. Here we present a granular ratchet system employing a particularly robust mechanism that can be implemented in various settings. The system consists of wetted spheres of different sizes that adhere to each other, and are subject to a symmetric oscillating, zero average external force field. An inherent asymmetry in the mutual force network leads to force rectification and hence to locomotion. We present a simple model that accounts for the observed behaviour, underscores its robustness and suggests a potential scalability of the concept.
Kinetic approach to granular gases.
Puglisi, A; Loreto, V; Marini Bettolo Marconi, U; Vulpiani, A
1999-05-01
We address the problem of the so-called "granular gases," i.e., gases of massive particles in rapid movement undergoing inelastic collisions. We introduce a class of models of driven granular gases for which the stationary state is the result of the balance between the dissipation and the random forces which inject energies. These models exhibit a genuine thermodynamic limit, i.e., at fixed density the mean values of kinetic energy and dissipated energy per particle are independent of the number N of particles, for large values of N. One has two regimes: when the typical relaxation time tau of the driving Brownian process is small compared with the mean collision time tau(c) the spatial density is nearly homogeneous and the velocity probability distribution is Gaussian. In the opposite limit tau>tau(c) one has strong spatial clustering, with a fractal distribution of particles, and the velocity probability distribution strongly deviates from the Gaussian one. Simulations performed in one and two dimensions under the Stosszahlansatz Boltzmann approximation confirm the scenario. Furthermore, we analyze the instabilities bringing to the spatial and the velocity clusterization. Firstly, in the framework of a mean-field model, we explain how the existence of the inelasticity can lead to a spatial clusterization; on the other hand, we discuss, in the framework of a Langevin dynamics treating the collisions in a mean-field way, how a non-Gaussian distribution of velocity can arise. The comparison between the numerical and the analytical results exhibits an excellent agreement.
Linguistic granular model: design and realization
Institute of Scientific and Technical Information of China (English)
YUE Shihong; LI Ping; SONG Zhihuan
2005-01-01
A new linguistic granular model is proposed and the effect of its parameters on the output is analyzed. The design of the model consists of two stages: using conditional fuzzy clustering for information granular, and integrating all information granules to final output. The integrating tool is fuzzy integral based on fuzzy measure, and the generalization of fuzzy integral increases flexibility of the linguistic granular model greatly. A heuristic algorithm to determine the parameters in the fuzzy integral is used to realize the linguistic model. Two experiments verify the feasibility of the proposed model.
Energy decay in a granular gas collapse
Almazán, Lidia; Serero, Dan; Salueña, Clara; Pöschel, Thorsten
2017-01-01
An inelastic hard ball bouncing repeatedly off the ground comes to rest in finite time by performing an infinite number of collisions. Similarly, a granular gas under the influence of external gravity, condenses at the bottom of the confinement due to inelastic collisions. By means of hydrodynamical simulations, we find that the condensation process of a granular gas reveals a similar dynamics as the bouncing ball. Our result is in agreement with both experiments and particle simulations, but disagrees with earlier simplified hydrodynamical description. Analyzing the result in detail, we find that the adequate modeling of pressure plays a key role in continuum modeling of granular matter.
Granular-relational data mining how to mine relational data in the paradigm of granular computing ?
Hońko, Piotr
2017-01-01
This book provides two general granular computing approaches to mining relational data, the first of which uses abstract descriptions of relational objects to build their granular representation, while the second extends existing granular data mining solutions to a relational case. Both approaches make it possible to perform and improve popular data mining tasks such as classification, clustering, and association discovery. How can different relational data mining tasks best be unified? How can the construction process of relational patterns be simplified? How can richer knowledge from relational data be discovered? All these questions can be answered in the same way: by mining relational data in the paradigm of granular computing! This book will allow readers with previous experience in the field of relational data mining to discover the many benefits of its granular perspective. In turn, those readers familiar with the paradigm of granular computing will find valuable insights on its application to mining r...
Self-organized magnetic particles to tune the mechanical behavior of a granular system
Cox, Meredith; Wang, Dong; Barés, Jonathan; Behringer, Robert P.
2016-09-01
Above a certain density a granular material jams. This property can be controlled by either tuning a global property, such as the packing fraction or by applying shear strain, or at the micro-scale by tuning grain shape, inter-particle friction or externally controlled organization. Here, we introduce a novel way to change a local granular property by adding a weak anisotropic magnetic interaction between particles. We measure the evolution of the pressure, P, and coordination number, Z, for a packing of 2D photo-elastic disks, subject to uniaxial compression. A fraction R m of the particles have embedded cuboidal magnets. The strength of the magnetic interactions between particles is too weak to have a strong direct effect on P or Z when the system is jammed. However, the magnetic interactions play an important role in the evolution of latent force networks when systems containing a large enough fraction of the particles with magnets are driven through unjammed to jammed states. In this case, a statistically stable network of magnetic chains self-organizes before jamming and overlaps with force chains once jamming occurs, strengthening the granular medium. This property opens a novel way to control mechanical properties of granular materials.
Microbiological aspects of granular methanogenic sludge
Dolfing, J.
1987-01-01
The settling characteristics of anaerobic sludge are enhanced by the formation of microbial conglomerates. Various types of conglomerates having different structures, were distinguished in the present study, viz. granules, pellets and flocs (chapter 1). Granular methanogenic sludge, often
Noise induces rare events in granular media.
Khain, Evgeniy; Sander, Leonard M
2016-09-01
The granular Leidenfrost effect [B. Meerson, et al., Phys. Rev. Lett. 91, 024301 (2003)PRLTAO0031-900710.1103/PhysRevLett.91.024301; P. Eshuis et al., Phys. Rev. Lett. 95, 258001 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.258001] is the levitation of a mass of granular matter when a wall below the grains is vibrated, giving rise to a hot granular gas below the cluster. We find by simulation that for a range of parameters the system is bistable: the levitated cluster can occasionally break and give rise to two clusters and a hot granular gas above and below. We use techniques from the theory of rare events to compute the mean transition time for breaking to occur. This requires the introduction of a two-component reaction coordinate.
Helical Locomotion in a Granular Medium
Darbois Texier, Baptiste; Ibarra, Alejandro; Melo, Francisco
2017-08-01
The physical mechanisms that bring about the propulsion of a rotating helix in a granular medium are considered. A propulsive motion along the axis of the rotating helix is induced by both symmetry breaking due to the helical shape, and the anisotropic frictional forces undergone by all segments of the helix in the medium. Helix dynamics is studied as a function of helix rotation speed and its geometrical parameters. The effect of the granular pressure and the applied external load were also investigated. A theoretical model is developed based on the anisotropic frictional force experienced by a slender body moving in a granular material, to account for the translation speed of the helix. A good agreement with experimental data is obtained, which allows for predicting the helix design to propel optimally within granular media. These results pave the way for the development of an efficient sand robot operating according to this mode of locomotion.
Sliding through a superlight granular medium.
Pacheco-Vázquez, F; Ruiz-Suárez, J C
2009-12-01
We explore the penetration dynamics of an intruder in a granular medium composed of expanded polystyrene spherical particles. Three features distinguish our experiment from others studied so far in granular physics: (a) the impact is horizontal, decoupling the effects of gravity and the drag force; (b) the density of the intruder rho(i) is up to 350 times larger than the density of the granular medium rho(m); and (c) the way the intruder moves through the material, sliding at the bottom of the column with small friction. Under these conditions we find that the final penetration D scales with (rho(i)/rho(m)) and the drag force Fd and D saturate with the height of the granular bed.
[Granular cell tumor of the larynx].
Modrzyński, M; Wróbel, B; Zawisza, E; Drozd, K
1999-09-01
Granular cell tumor is an unusual growth of probably neuroectodermal histogenesis, first reported by Abrikossoff in 1926 with the name of myoblastenmyoma. Authors described a case of a 54 year man with laryngeal seat of granular-cell myoblastoma. In this case Abrikossoff tumor was located in the right vocal chord. The tumor was treated successfully surgically by microlaryngoscopy. The etiology, clinical features and diagnostic difficulties are discussed.
Small-signal analysis of granular semiconductors
Energy Technology Data Exchange (ETDEWEB)
Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey, E-mail: aapo.varpula@tkk.f [Department of Micro and Nanosciences, Aalto University, PO Box 13500, FI-00076 Aalto, Espoo (Finland)
2010-11-01
The small-signal ac response of granular n-type semiconductors is calculated analytically using the drift-diffusion theory when electronic trapping at grain boundaries is present. An electrical equivalent circuit (EEC) model of a granular n-type semiconductor is presented. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is very good in a broad frequency range at low dc bias voltages.
Evolution of network architecture in a granular material under compression
Papadopoulos, Lia; Puckett, James G.; Daniels, Karen E.; Bassett, Danielle S.
2016-09-01
As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. Force chains are a prime example of such structures, and are thought to constrain bulk properties such as mechanical stability and acoustic transmission. However, capturing and characterizing the evolving nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. A growing body of work has shown that graph theoretic approaches may provide a useful foundation for tackling these problems. Here, we extend the current approaches by utilizing multilayer networks as a framework for directly quantifying the progression of mesoscale architecture in a compressed granular system. We examine a quasi-two-dimensional aggregate of photoelastic disks, subject to biaxial compressions through a series of small, quasistatic steps. Treating particles as network nodes and interparticle forces as network edges, we construct a multilayer network for the system by linking together the series of static force networks that exist at each strain step. We then extract the inherent mesoscale structure from the system by using a generalization of community detection methods to multilayer networks, and we define quantitative measures to characterize the changes in this structure throughout the compression process. We separately consider the network of normal and tangential forces, and find that they display a different progression throughout compression. To test the sensitivity of the network model to particle properties, we examine whether the method can distinguish a subsystem of low-friction particles within a bath of higher-friction particles. We find that this can be achieved by considering the network of tangential forces, and that the community structure is better able to separate the subsystem than a purely local measure of interparticle forces alone. The results discussed throughout this study
DISCRETE AND CONTINUUM MODELLING OF GRANULAR FLOW
Institute of Scientific and Technical Information of China (English)
H. P. Zhu; Y. H. WU; A. B. Yu
2005-01-01
This paper analyses three popular methods simulating granular flow at different time and length scales:discrete element method (DEM), averaging method and viscous, elastic-plastic continuum model. The theoretical models of these methods and their applications to hopper flows are discussed. It is shown that DEM is an effective method to study the fundamentals of granular flow at a particle or microscopic scale. By use of the continuum approach, granular flow can also be described at a continuum or macroscopic scale. Macroscopic quantities such as velocity and stress can be obtained by use of such computational method as FEM. However, this approach depends on the constitutive relationship of materials and ignores the effect of microscopic structure of granular flow. The combined approach of DEM and averaging method can overcome this problem. The approach takes into account the discrete nature of granular materials and does not require any global assumption and thus allows a better understanding of the fundamental mechanisms of granular flow. However, it is difficult to adapt this approach to process modelling because of the limited number of particles which can be handled with the present computational capacity, and the difficulty in handling non-spherical particles.Further work is needed to develop an appropriate approach to overcome these problems.
Contact micromechanics in granular media with clay
Energy Technology Data Exchange (ETDEWEB)
Ita, Stacey Leigh [Univ. of California, Berkeley, CA (United States)
1994-08-01
Many granular materials, including sedimentary rocks and soils, contain clay particles in the pores, grain contacts, or matrix. The amount and location of the clays and fluids can influence the mechanical and hydraulic properties of the granular material. This research investigated the mechanical effects of clay at grain-to-grain contacts in the presence of different fluids. Laboratory seismic wave propagation tests were conducted at ultrasonic frequencies using spherical glass beads coated with Montmorillonite clay (SWy-1) onto which different fluids were adsorbed. For all bead samples, seismic velocity increased and attenuation decreased as the contact stiffnesses increased with increasing stress demonstrating that grain contacts control seismic transmission in poorly consolidated and unconsolidated granular material. Coating the beads with clay added stiffness and introduced viscosity to the mechanical contact properties that increased the velocity and attenuation of the propagating seismic wave. Clay-fluid interactions were studied by allowing the clay coating to absorb water, ethyl alcohol, and hexadecane. Increasing water amounts initially increased seismic attenuation due to clay swelling at the contacts. Attenuation decreased for higher water amounts where the clay exceeded the plastic limit and was forced from the contact areas into the surrounding open pore space during sample consolidation. This work investigates how clay located at grain contacts affects the micromechanical, particularly seismic, behavior of granular materials. The need for this work is shown by a review of the effects of clays on seismic wave propagation, laboratory measurements of attenuation in granular media, and proposed mechanisms for attenuation in granular media.
Alternative types of molecule-decorated atomic chains in Au–CO–Au single-molecule junctions
Directory of Open Access Journals (Sweden)
Zoltán Balogh
2015-06-01
Full Text Available We investigate the formation and evolution of Au–CO single-molecule break junctions. The conductance histogram exhibits two distinct molecular configurations, which are further investigated by a combined statistical analysis. According to conditional histogram and correlation analysis these molecular configurations show strong anticorrelations with each other and with pure Au monoatomic junctions and atomic chains. We identify molecular precursor configurations with somewhat higher conductance, which are formed prior to single-molecule junctions. According to detailed length analysis two distinct types of molecule-affected chain-formation processes are observed, and we compare these results to former theoretical calculations considering bridge- and atop-type molecular configurations where the latter has reduced conductance due to destructive Fano interference.
A Complex Network Analysis of Granular Fabric Evolution in Three-Dimensions
2011-01-01
fundamental significance to geomechanics and, more broadly, to geotechnical engineering analysis and design. As with other complex systems, the behavior of...formalism of Com- plex Networks and only recently have there been attempts to characterize granular networks that arise in geomechanical settings. We...J. Shi, and T. Tshaikiwsky. Stress-dilatancy and force chain evolution. International Journal for Numerical and Analytical Methods in Geomechanics
Self-assembled granular towers
Pacheco-Vazquez, Felipe; Moreau, Florian; Vandewalle, Nicolas; Dorbolo, Stephan; GroupResearch; Applications in Statistical Physics Team
2013-03-01
When some water is added to sand, cohesion among the grains is induced. In fact, only 1% of liquid volume respect to the total pore space of the sand is necessary to built impressive sandcastles. Inspired on this experience, the mechanical properties of wet piles and sand columns have been widely studied during the last years. However, most of these studies only consider wet materials with less than 35% of liquid volume. Here we report the spontaneous formation of granular towers produced when dry sand is poured on a highly wet sand bed: The impacting grains stick on the wet grains due to instantaneous liquid bridges created during the impact. The grains become wet by the capillary ascension of water and the process continues, giving rise to stable narrow sand towers. Actually, the towers can reach the maximum theoretical limit of stability predicted by previous models, only expected for low liquid volumes. The authors would like to thank FNRS and Conacyt Mexico for financial support. FPV is a beneficiary of a movility grant from BELSPO/Marie Curie and the University of Liege.
Driven fragmentation of granular gases.
Cruz Hidalgo, Raúl; Pagonabarraga, Ignacio
2008-06-01
The dynamics of homogeneously heated granular gases which fragment due to particle collisions is analyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze both the kinetics and relevant distribution functions these systems develop. The work combines analytical and numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation probabilities is considered, and its implications for the system kinetics are discussed. We show that generically these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the long velocity tail is essentially exponential independently of the heating frequency and the breaking rule. However, for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity distribution follows a generalized exponential behavior f(c) approximately exp(-cn) , with n approximately 1.2 , regarding less the fragmentation mechanisms.
Mechanics of granular environments; Mecanique des milieux granulaires
Energy Technology Data Exchange (ETDEWEB)
Lanier, J. [Universite Joseph-Fourier, Grenoble I, 38 (France)
2001-07-01
This book aims at presenting different aspects of the behaviour of granular materials as encountered in natural environments (mainly soils), in industries involving the handling of granular products (cereals..) or powders (chemistry, metal industry..). It brings together the contributions of various specialists of physics and mechanics: mechanics of collisions between solids; gravity flows; grain flows; solid transport as example of two-phase granular flow; wave propagation inside a model of granular environment; propagation of waves in soils; enrockments and stability of rocky slopes; soils behaviour; coupled heat and mass transfers in granular environments; thermo-mechanical properties of granular environments. (J.S.)
Pulling rigid bodies through granular material
Kubik, Ryan; Dressaire, Emilie
2016-11-01
The need for anchoring systems in granular materials such as sand is present in the marine transportation industry, e.g. to layout moorings, keep vessels and docks fixed in bodies of water, build oil rigs, etc. The holding power of an anchor is associated with the force exerted by the granular media. Empirical evidence indicates that the holding power depends on the size and shape of the anchoring structure. In this model study, we use a two-dimensional geometry in which a rigid body is pulled through a granular media at constant velocity to determine the drag and lift forces exerted by a granular medium on a moving object. The method allows measuring the drag force and recording the trajectory of the rigid object through the sand. We systematically vary the size and geometry of the rigid body, the properties of the granular medium and the extraction speed. For different initial positions of a cylindrical object pulled horizontally through the medium, we record large variations in magnitude of the drag and a significant lift force that pulls the object out of the sand.
Characteristics of undulatory locomotion in granular media
Peng, Zhiwei; Pak, On Shun; Elfring, Gwynn J.
2016-03-01
Undulatory locomotion is ubiquitous in nature and observed in different media, from the swimming of flagellated microorganisms in biological fluids, to the slithering of snakes on land, or the locomotion of sandfish lizards in sand. Despite the similarity in the undulating pattern, the swimming characteristics depend on the rheological properties of different media. Analysis of locomotion in granular materials is relatively less developed compared with fluids partially due to a lack of validated force models but recently a resistive force theory in granular media has been proposed and shown useful in studying the locomotion of a sand-swimming lizard. Here we employ the proposed model to investigate the swimming characteristics of a slender filament, of both finite and infinite length, undulating in a granular medium and compare the results with swimming in viscous fluids. In particular, we characterize the effects of drifting and pitching in terms of propulsion speed and efficiency for a finite sinusoidal swimmer. We also find that, similar to Lighthill's results using resistive force theory in viscous fluids, the sawtooth swimmer is the optimal waveform for propulsion speed at a given power consumption in granular media. The results complement our understanding of undulatory locomotion and provide insights into the effective design of locomotive systems in granular media.
Microstructure evolution during impact on granular matter.
Kondic, L; Fang, X; Losert, W; O'Hern, C S; Behringer, R P
2012-01-01
We study the impact of an intruder on a dense granular material. The process of impact and interaction between the intruder and the granular particles is modeled using discrete element simulations in two spatial dimensions. In the first part of the paper we discuss how the intruder's dynamics depends on (1) the intruder's properties, including its size, shape and composition, (2) the properties of the grains, including friction, polydispersity, structural order, and elasticity, and (3) the properties of the system, including its size and gravitational field. It is found that polydispersity and related structural order, and frictional properties of the granular particles, play a crucial role in determining impact dynamics. In the second part of the paper we consider the response of the granular system itself. We discuss the force networks that develop, including their topological evolution. The influence of friction and structural order on force propagation, including the transition from hyperbolic-like to elastic-like behavior is discussed, as well as the affine and nonaffine components of the grain dynamics. Several broad observations include the following: tangential forces between granular particles are found to play a crucial role in determining impact dynamics; both force networks and particle dynamics are correlated with the dynamics of the intruder itself. © 2012 American Physical Society
Basic properties of solitary waves in granular crystals
Hasan, M. Arif; Nemat-Nasser, Sia
We consider a chain of lightly contacting identical spherical elastic granules and provide explicit analytical expressions to fully characterize solitary waves (SWs) that may be generated in the chain by an impact or an applied shock force. These SWs consist of individual packages of linear momentum/energy transmitted across the granules through Hertzian contacts. They are nonlinear translational waves (involving no vibrations) that propagate through the granular chain without distortion, i.e., without any temporal evolution in shape or size. In particular, we focus on a fully-formed SW and provide analytical expressions for the associated peak value as well as the time variation of the granules' displacement, velocity, acceleration, and compressive contact force acting across any two contacting granules. In addition, by considering a SW as an "effective particle", we provide explicit analytical expressions for its linear momentum, total energy, equivalent (or effective) mass and effective velocity. All of the above mentioned results are shown to depend only on the peak value of the SW's contact force and the properties of the granules, i.e., their diameter, density, and elastic moduli. Then we provide a simple recipe to calculate the peak value of the SW's contact force in terms of a given shock force. Finally, we check by numerical simulations the accuracy of the analytical predictions.
Effects of self-organization on transport in granular matter: A network-based approach
Smart, A.; Umbanhowar, P.; Ottino, J.
2007-07-01
Granular matter may be one of the simplest prototypes of what have come to be regarded as complex systems —systems where simple interactions can lead to rich, often surprising, global behavior. For example, interparticle contacts in a granular system give rise to networks that are 1) heterogeneous, i.e., a few particles support high compressive force, while many others support relatively little, and 2) self-organized, i.e., spatially correlated strong forces tend to form a sub-network of interconnecting "force chains". Using numerical simulations, we investigate the influence of heterogeneity and self-organization on the transport properties of granular matter, with particular attention to heat conduction —a phenomenon of ubiquitous importance in engineering and nature. We find that self-organization in the granular network promotes efficient transport. Furthermore, a network-attack experiment suggests that contacts with high betweenness centrality, not necessarily those with highest local heat transfer coefficient, most significantly influence transport behavior. We find that concepts of network theory yield valuable insight —both qualitative and quantitative— into the observed behavior.
Granular computing with multiple granular layers for brain big data processing.
Wang, Guoyin; Xu, Ji
2014-12-01
Big data is the term for a collection of datasets so huge and complex that it becomes difficult to be processed using on-hand theoretical models and technique tools. Brain big data is one of the most typical, important big data collected using powerful equipments of functional magnetic resonance imaging, multichannel electroencephalography, magnetoencephalography, Positron emission tomography, near infrared spectroscopic imaging, as well as other various devices. Granular computing with multiple granular layers, referred to as multi-granular computing (MGrC) for short hereafter, is an emerging computing paradigm of information processing, which simulates the multi-granular intelligent thinking model of human brain. It concerns the processing of complex information entities called information granules, which arise in the process of data abstraction and derivation of information and even knowledge from data. This paper analyzes three basic mechanisms of MGrC, namely granularity optimization, granularity conversion, and multi-granularity joint computation, and discusses the potential of introducing MGrC into intelligent processing of brain big data.
Perfect fluid flow from granular jet impact
Ellowitz, Jake; Zhang, Wendy W
2012-01-01
Experiments on the impact of a densely-packed jet of non-cohesive grains onto a fixed target show that the impact produces an ejecta sheet comprised of particles in collimated motion. The ejecta sheet leaves the target at a well-defined angle whose value agrees quantitatively with the sheet angle produced by water jet impact. Motivated by these experiments, we examine the idealized problem of dense granular jet impact onto a frictionless target in two dimensions. Numerical results for the velocity and pressure fields within the granular jet agree quantitatively with predictions from an exact solution for 2D perfect-fluid impact. This correspondence demonstrates that the continuum limit controlling the coherent collective motion in dense granular impact is Euler flow.
Computational Granular Dynamics Models and Algorithms
Pöschel, Thorsten
2005-01-01
Computer simulations not only belong to the most important methods for the theoretical investigation of granular materials, but also provide the tools that have enabled much of the expanding research by physicists and engineers. The present book is intended to serve as an introduction to the application of numerical methods to systems of granular particles. Accordingly, emphasis is placed on a general understanding of the subject rather than on the presentation of the latest advances in numerical algorithms. Although a basic knowledge of C++ is needed for the understanding of the numerical methods and algorithms in the book, it avoids usage of elegant but complicated algorithms to remain accessible for those who prefer to use a different programming language. While the book focuses more on models than on the physics of granular material, many applications to real systems are presented.
Wet granular matter a truly complex fluid
Herminghaus, Stephan
2013-01-01
This is a monograph written for the young and advanced researcher who is entering the field of wet granular matter and keen to understand the basic physical principles governing this state of soft matter. It treats wet granulates as an instance of a ternary system, consisting of the grains, a primary, and a secondary fluid. After addressing wetting phenomena in general and outlining the basic facts on dry granular systems, a chapter on basic mechanisms and their effects is dedicated to every region of the ternary phase diagram. Effects of grain shape and roughness are considered as well. Rather than addressing engineering aspects such as existing books on this topic do, the book aims to provide a generalized framework suitable for those who want to understand these systems on a more fundamental basis. Readership: For the young and advanced researcher entering the field of wet granular matter.
Vibration-induced liquefaction of granular suspensions.
Hanotin, C; Kiesgen de Richter, S; Marchal, P; Michot, L J; Baravian, C
2012-05-11
We investigate the mechanical behavior of granular suspensions subjected to coupled vibrations and shear. At high shear stress, whatever the mechanical vibration energy and bead size, the system behaves like a homogeneous suspension of hard spheres. At low shear stress, in addition to a dependence on bead size, vibration energy drastically influences the viscosity of the material that can decrease by more than 2 orders of magnitude. All experiments can be rationalized by introducing a hydrodynamical Peclet number defined as the ratio between the lubrication stress induced by vibrations and granular pressure. The behavior of vibrated wet and dry granular materials can then be unified by assimilating the hookean stress in dry media to the lubrication stress in suspensions.
Characteristics of undulatory locomotion in granular media
Peng, Zhiwei; Elfring, Gwynn J
2015-01-01
Undulatory locomotion is ubiquitous in nature and observed in different media, from the swimming of flagellated microorganisms in biological fluids, to the slithering of snakes on land, or the locomotion of sandfish lizards in sand. Despite the similarity in the undulating pattern, the swimming characteristics depend on the rheological properties of different media. Analysis of locomotion in granular materials is relatively less developed compared with fluids partially due to a lack of validated force models but recently a resistive force theory in granular media has been proposed and shown useful in studying the locomotion of a sand-swimming lizard. Here we employ the proposed model to investigate the swimming characteristics of a slender filament, of both finite and infinite length, undulating in a granular medium and compare the results with swimming in viscous fluids. In particular, we characterize the effects of drifting and pitching in terms of propulsion speed and efficiency for a finite sinusoidal swi...
Compaction dynamics of wet granular packings
Vandewalle, Nicolas; Ludewig, Francois; Fiscina, Jorge E.; Lumay, Geoffroy
2013-03-01
The extremely slow compaction dynamics of wet granular assemblies has been studied experimentally. The cohesion, due to capillary bridges between neighboring grains, has been tuned using different liquids having specific surface tension values. The characteristic relaxation time for compaction τ grows strongly with cohesion. A kinetic model, based on a free volume kinetic equations and the presence of a capillary energy barrier (due to liquid bridges), is able to reproduce quantitatively the experimental curves. This model allows one to describe the cohesion in wet granular packing. The influence of relative humidity (RH) on the extremely slow compaction dynamics of a granular assembly has also been investigated in the range 20 % - 80 % . Triboelectric and capillary condensation effects have been introduced in the kinetic model. Results confirm the existence of an optimal condition at RH ~ 45 % for minimizing cohesive interactions between glass beads.
Ultrasound features of orbital granular cell tumor.
Ayres, Bernadete; Miller, Neil R; Eberhart, Charles G; Dibernardo, Cathy W
2009-01-01
The authors report the echographic characteristics of a rare orbital granular cell tumor and correlate these findings with histopathology. A 56-year-old woman presented with proptosis. Complete ophthalmic and ultrasound examinations were performed. Ultrasound revealed an oval, well-outlined orbital mass in the intraconal space with low-medium reflectivity and regular internal structure. An orbitotomy with complete excision of the tumor was performed. Histopathologic evaluation showed sheets and nests of cells with abundant eosinophilic and granular cytoplasm in a uniform distribution throughout the lesion. The echographic characteristics correlated well with the morphologic surgical findings and the histologic architecture. This is the first report describing the echographic characteristics of orbital granular cell tumor.
11th Traffic and Granular Flow Conference
Daamen, Winnie
2016-01-01
The Conference on Traffic and Granular Flow brings together international researchers from different fields ranging from physics to computer science and engineering to discuss the latest developments in traffic-related systems. Originally conceived to facilitate new ideas by considering the similarities of traffic and granular flow, TGF'15, organised by Delft University of Technology, now covers a broad range of topics related to driven particle and transport systems. Besides the classical topics of granular flow and highway traffic, its scope includes data transport (Internet traffic), pedestrian and evacuation dynamics, intercellular transport, swarm behaviour and the collective dynamics of other biological systems. Recent advances in modelling, computer simulation and phenomenology are presented, and prospects for applications, for example to traffic control, are discussed. The conference explores the interrelations between the above-mentioned fields and offers the opportunity to stimulate interdisciplinar...
Multiscale modelling of fluid-immersed granular media
Clément, Christian Paul André René
2010-01-01
In this thesis we present numerical simulation studies of fluid-immersed granular systems using models of varying scales and complexities. These techniques are used to examine the effects of an interstitial fluid on the dynamics of dense granular beds within a number of vibrated systems. After an introduction to the field of granular materials, we present the techniques used to model both the granular dynamics and the fluid flow. We introduce various multiscale techniques to couple the mo...
Performance of Anammox granular sludge bed reactor started up with nitrifying granular sludge
Institute of Scientific and Technical Information of China (English)
ZHENG Ping; LIN Feng-mei; HU Bao-lan; CHEN Jian-song
2004-01-01
The anaerobic ammonia oxidation(Anammox) granular sludge bed reactor was started up successfully withnitrifying granular sludge. During the operation, the nitrifying granular sludge was gradually converted into Anammoxgranular sludge with good settling property and high conversion activity. The Anammox reactor worked well with theshortest HRT of 2.43 h. Under the condition that HRT was 6.39 h and influent concentration of ammonia and nitritewas 10 mmol/L, the removal of ammonia and nitrite was 97.17% and 100.00%, respectively. Corresponding
International Workshop on Traffic and Granular Flow
Herrmann, Hans; Schreckenberg, Michael; Wolf, Dietrich; Social, Traffic and Granular Dynamics
2000-01-01
"Are there common phenomena and laws in the dynamic behavior of granular materials, traffic, and socio-economic systems?" The answers given at the international workshop "Traffic and Granular Flow '99" are presented in this volume. From a physical standpoint, all these systems can be treated as (self)-driven many-particle systems with strong fluctuations, showing multistability, phase transitions, non-linear waves, etc. The great interest in these systems is due to several unexpected new discoveries and their practical relevance for solving some fundamental problems of today's societies. This includes intelligent measures for traffic flow optimization and methods from "econophysics" for stabilizing (stock) markets.
A kinetic approach to granular gases
Puglisi, A.; Loreto, V.; Marconi, U. Marini Bettolo; Vulpiani, A.
1998-01-01
We address the problem of the so-called ``granular gases'', i.e. gases of massive particles in rapid movement undergoing inelastic collisions. We introduce a class of models of driven granular gases for which the stationary state is the result of the balance between the dissipation and the random forces which inject energies. These models exhibit a genuine thermodynamic limit, i.e. at fixed density the mean values of kinetic energy and dissipated energy per particle are independent of the num...
Challenges in Predicting Planetary Granular Mechanics
Metzger, Philip T.
2005-01-01
Through the course of human history, our needs in agriculture, habitat construction, and resource extraction have driven us to gain more experience working with the granular materials of planet Earth than with any other type of substance in nature, with the possible exception being water. Furthermore, throughout the past two centuries we have seen a dramatic and ever growing interest among scientists and engineers to understand and predict both its static and rheological properties. Ironically, however, despite this wealth of experience we still do not have a fundamental understanding of the complex physical phenomena that emerge even as just ordinary sand is shaken, squeezed or poured. As humanity is now reaching outward through the solar system, not only robotic ally but also with our immediate human presence, the need to understand and predict granular mechanics has taken on a new dimension. We must learn to farm, build and mine the regoliths of other planets where the environmental conditions are different than on Earth, and we are rapidly discovering that the effects of these environmental conditions are not trivial. Some of the relevant environmental features include the regolith formation processes throughout a planet's geologic and hydrologic history, the unknown mixtures of volatiles residing within the soil, the relative strength of gravitation, d the atm9spheric pressure and its seasonal variations. The need to work with soils outside our terrestrial experience base provides us with both a challenge and an opportunity. The challenge is to learn how to extrapolate our experience into these new planetary conditions, enabling the engineering decisions that are needed right now as we take the next few steps in solar system exploration. The opportunity is to use these new planetary environments as laboratories that will help us to see granular mechanics in new ways, to challenge our assumptions, and to help us finally unravel the elusive physics that lie
Granular Impact Dynamics: Acoustics and Fluctuations
Clark, Abram H
2012-01-01
In the corresponding fluid dynamics video, created for the APS DFD 2012 Gallery of Fluid Motion, we show high-speed videos of 2D granular impact experiments, where an intruder strikes a collection of bidisperse photoelastic disks from above. We discuss the force beneath the intruder, which is strongly fluctuating in space and time. These fluctuations correspond to acoustic pulses which propagate into the medium. Analysis shows that this process, in our experiments, is dominated by collisions with grain clusters. The energy from these collisions is carried into the granular medium along networks of grains, where is it dissipated.
Anaerobic granular sludge and biofilm reactors
DEFF Research Database (Denmark)
Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye
2003-01-01
by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...
76 FR 39896 - Granular Polytetrafluoroethylene Resin From Italy
2011-07-07
... COMMISSION Granular Polytetrafluoroethylene Resin From Italy Determination On the basis of the record \\1... antidumping duty order on granular polytetrafluoroethylene resin from Italy would be likely to lead to... Granular Polytetrafluoroethylene Resin from Italy: Investigation No. 731-TA-385 (Third Review). By order...
Computational study on the behaviors of granular materials under mechanical cycling
Wang, Xiaoliang; Ye, Minyou; Chen, Hongli
2015-11-01
Considering that fusion pebble beds are probably subjected to the cyclic compression excitation in their future applications, we presented a computational study to report the effect of mechanical cycling on the behaviors of granular matter. The correctness of our numerical experiments was confirmed by a comparison with the effective medium theory. Under the cyclic loads, the fast granular compaction was observed to evolve in a stretched exponential law. Besides, the increasing stiffening in packing structure, especially the decreasing moduli pressure dependence due to granular consolidation, was also observed. For the force chains inside the pebble beds, both the internal force distribution and the spatial distribution of force chains would become increasingly uniform as the external force perturbation proceeded and therefore produced the stress relief on grains. In this case, the originally proposed 3-parameter Mueth function was found to fail to describe the internal force distribution. Thereby, its improved functional form with 4 parameters was proposed here and proved to better fit the data. These findings will provide more detailed information on the pebble beds for the relevant fusion design and analysis.
Computational study on the behaviors of granular materials under mechanical cycling
Energy Technology Data Exchange (ETDEWEB)
Wang, Xiaoliang; Ye, Minyou; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2015-11-07
Considering that fusion pebble beds are probably subjected to the cyclic compression excitation in their future applications, we presented a computational study to report the effect of mechanical cycling on the behaviors of granular matter. The correctness of our numerical experiments was confirmed by a comparison with the effective medium theory. Under the cyclic loads, the fast granular compaction was observed to evolve in a stretched exponential law. Besides, the increasing stiffening in packing structure, especially the decreasing moduli pressure dependence due to granular consolidation, was also observed. For the force chains inside the pebble beds, both the internal force distribution and the spatial distribution of force chains would become increasingly uniform as the external force perturbation proceeded and therefore produced the stress relief on grains. In this case, the originally proposed 3-parameter Mueth function was found to fail to describe the internal force distribution. Thereby, its improved functional form with 4 parameters was proposed here and proved to better fit the data. These findings will provide more detailed information on the pebble beds for the relevant fusion design and analysis.
Granular contact dynamics using mathematical programming methods
DEFF Research Database (Denmark)
Krabbenhoft, K.; Lyamin, A. V.; Huang, J.
2012-01-01
A class of variational formulations for discrete element analysis of granular media is presented. These formulations lead naturally to convex mathematical programs that can be solved using standard and readily available tools. In contrast to traditional discrete element analysis, the present...
Discrete element modelling of granular materials
Van Baars, S.
1996-01-01
A new model is developed by the author, which does not use the equations of motion but the equations of equilibrium to describe granular materials. The numerical results show great similarities with reality and can generally be described by an advanced Mohr-Coulomb model. However, many contacts betw
Micromechanical study of plasticity of granular materials
Kruyt, N.P.
2010-01-01
Plastic deformation of granular materials is investigated from the micromechanical viewpoint, in which the assembly of particles and interparticle contacts is considered as a mechanical structure. This is done in three ways. Firstly, by investigating the degree of redundancy of the system by compari
Localized fluidization in a granular medium.
Philippe, P; Badiane, M
2013-04-01
We present here experimental results on the progressive development of a fluidized zone in a bed of grains, immersed in a liquid, under the effect of a localized upward flow injected through a small orifice at the bottom of the bed. Visualization inside the model granular medium consisting of glass beads is made possible by the combined use of two optical techniques: refractive index matching between the liquid and the beads and planar laser-induced fluorescence. Gradually increasing the injection rate, three regimes are successively observed: static bed, fluidized cavity that does not open to the upper surface of the granular bed, and finally fluidization over the entire height of the granular bed inside a fluidized chimney. The phase diagram is plotted and partially interpreted using a model previously developed by Zoueshtiagh and Merlen [F. Zoueshtiagh and A. Merlen, Phys. Rev. E 75, 053613 (2007)]. A typical sequence, where the flow rate is first increased and then decreased back to zero, reveals a strong hysteretic behavior since the stability of the fluidized cavity is considerably strengthened during the defluidization phase. This effect can be explained by the formation of force arches within the granular packing when the chimney closes up at the top of the bed. A study of the expansion rate of the fluidized cavity was also conducted as well as the analysis of the interaction between two injection orifices with respect to their spacing.
Experimental velocity distributions in a granular submonolayer
Cadillo-Martínez, Alejandra T.; Sánchez, Rodrigo
2017-01-01
Experimental speed distributions are obtained for driven granular submonolayers of binary mixtures of single spheres and dimers of spheres. The results are well-described by a distribution originally developed for a single-species one-dimensional system. This suggests that such a distribution may be extended to other mixtures such as systems exhibiting aggregation and dissociation.
Scales and kinetics of granular flows.
Goldhirsch, I.
1999-09-01
When a granular material experiences strong forcing, as may be the case, e.g., for coal or gravel flowing down a chute or snow (or rocks) avalanching down a mountain slope, the individual grains interact by nearly instantaneous collisions, much like in the classical model of a gas. The dissipative nature of the particle collisions renders this analogy incomplete and is the source of a number of phenomena which are peculiar to "granular gases," such as clustering and collapse. In addition, the inelasticity of the collisions is the reason that granular gases, unlike atomic ones, lack temporal and spatial scale separation, a fact manifested by macroscopic mean free paths, scale dependent stresses, "macroscopic measurability" of "microscopic fluctuations" and observability of the effects of the Burnett and super-Burnett "corrections." The latter features may also exist in atomic fluids but they are observable there only under extreme conditions. Clustering, collapse and a kinetic theory for rapid flows of dilute granular systems, including a derivation of boundary conditions, are described alongside the mesoscopic properties of these systems with emphasis on the effects, theoretical conclusions and restrictions imposed by the lack of scale separation. (c) 1999 American Institute of Physics.
Anomalous intruder response in diverse granular systems
Oyarte Galvez, Loreto Alejandra
2017-01-01
The definition of granular matter is extremely broad; any collection of conglomeration of particles larger than 100 micrometers can be considered as part of this group, and virtually the entire universe is composed of them. Examples are found in many fields, e.g. in nature (dunes, avalanches,
On the granular stress-geometry equation
DeGiuli, Eric; Schoof, Christian
2014-01-01
Using discrete calculus, we derive the missing stress-geometry equation for rigid granular materials in two dimensions, in the mean-field approximation. We show that i) the equation imposes that the voids cannot carry stress, ii) stress transmission is generically elliptic and has a quantitative relation to anisotropic elasticity, and iii) the packing fabric plays an essential role.
Granular materials interacting with thin flexible rods
Neto, Alfredo Gay; Campello, Eduardo M. B.
2017-04-01
In this work, we develop a computational model for the simulation of problems wherein granular materials interact with thin flexible rods. We treat granular materials as a collection of spherical particles following a discrete element method (DEM) approach, while flexible rods are described by a large deformation finite element (FEM) rod formulation. Grain-to-grain, grain-to-rod, and rod-to-rod contacts are fully permitted and resolved. A simple and efficient strategy is proposed for coupling the motion of the two types (discrete and continuum) of materials within an iterative time-stepping solution scheme. Implementation details are shown and discussed. Validity and applicability of the model are assessed by means of a few numerical examples. We believe that robust, efficiently coupled DEM-FEM schemes can be a useful tool to the simulation of problems wherein granular materials interact with thin flexible rods, such as (but not limited to) bombardment of grains on beam structures, flow of granular materials over surfaces covered by threads of hair in many biological processes, flow of grains through filters and strainers in various industrial segregation processes, and many others.
Granular avalanches down inclined and vibrated planes
Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine
2016-09-01
In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999), 10.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.
Random packing of colloids and granular matter
Wouterse, A.
2008-01-01
This thesis deals with the random packing of colloids and granular matter. A random packing is a stable disordered collection of touching particles, without long-range positional and orientational order. Experimental random packings of particles with the same shape but made of different materials sh
Mechanical properties of wet granular materials
Energy Technology Data Exchange (ETDEWEB)
Fournier, Z; Geromichalos, D; Herminghaus, S; Kohonen, M M; Mugele, F; Scheel, M; Schulz, M; Schulz, B; Schier, Ch; Seemann, R; Skudelny, A
2005-03-09
We elaborate on the impact of liquids upon the mechanical properties of granular materials. We find that most of the experimental and simulation results may be accounted for by a simple model assuming frictionless, spherical grains, with a hysteretic attractive interaction between neighbouring grains due to capillary forces.
Granular materials interacting with thin flexible rods
Neto, Alfredo Gay; Campello, Eduardo M. B.
2016-01-01
In this work, we develop a computational model for the simulation of problems wherein granular materials interact with thin flexible rods. We treat granular materials as a collection of spherical particles following a discrete element method (DEM) approach, while flexible rods are described by a large deformation finite element (FEM) rod formulation. Grain-to-grain, grain-to-rod, and rod-to-rod contacts are fully permitted and resolved. A simple and efficient strategy is proposed for coupling the motion of the two types (discrete and continuum) of materials within an iterative time-stepping solution scheme. Implementation details are shown and discussed. Validity and applicability of the model are assessed by means of a few numerical examples. We believe that robust, efficiently coupled DEM-FEM schemes can be a useful tool to the simulation of problems wherein granular materials interact with thin flexible rods, such as (but not limited to) bombardment of grains on beam structures, flow of granular materials over surfaces covered by threads of hair in many biological processes, flow of grains through filters and strainers in various industrial segregation processes, and many others.
Bipotential continuum models for granular mechanics
Goddard, Joe
2014-03-01
Most currently popular continuum models for granular media are special cases of a generalized Maxwell fluid model, which describes the evolution of stress and internal variables such as granular particle fraction and fabric,in terms of imposed strain rate. It is shown how such models can be obtained from two scalar potentials, a standard elastic free energy and a ``dissipation potential'' given rigorously by the mathematical theory of Edelen. This allows for a relatively easy derivation of properly invariant continuum models for granular media and fluid-particle suspensions within a thermodynamically consistent framework. The resulting continuum models encompass all the prominent regimes of granular flow, ranging from the quasi-static to rapidly sheared, and are readily extended to include higher-gradient or Cosserat effects. Models involving stress diffusion, such as that proposed recently by Kamrin and Koval (PRL 108 178301), provide an alternative approach that is mentioned in passing. This paper provides a brief overview of a forthcoming review articles by the speaker (The Princeton Companion to Applied Mathematics, and Appl. Mech. Rev.,in the press, 2013).
Granular cell tumour of the urinary bladder
Directory of Open Access Journals (Sweden)
Christoph von Klot
2012-04-01
Full Text Available With only 16 cases reported in the literature, the mostly benign granular cell tumour of the urinary bladder is exceptionally rare. We present the case of a 68-year old patient with one of these lesions demonstrating our histological findings including several immunohistochemical stainings used to differentiate between other more common entities.
Granular analyzing of weapon SoS demand description
Institute of Scientific and Technical Information of China (English)
Zhao Qingsong; Yang Kewei; Chen Yingwu; Li Mengjun
2009-01-01
The systematism of weapon combat is the typical characteristic of a modern battlefield. The process of combat is complex and the demand description of weapon system of systems (SOS) is difficult. Granular analyzing is an important method for solving the complex problem in the world. Granular thinking is introduced into the demand description of weapon SoS. Granular computing and granular combination based on a relation of compatibility is proposed. Based on the level of degree and degree of detail, the granular resolution of weapon SoS is defined and an example is illustrated at the end.
Influence of loading pulse duration on dynamic load transfer in a simulated granular medium
Shukla, A.; Sadd, M. H.; Xu, Y.; Tai, Q. M.
1993-11-01
AN EXPERIMENTAL and numerical investigation was conducted to study the dynamic response of granular media when subjected to impact loadings with different periods or wavelengths. The granular medium was simulated by a one-dimensional assembly of circular disks arranged in a straight single chain. In the experimental study, the dynamic loading was produced using projectile impact from a gas gun onto one end of the granular assembly, and the measured wave signal was collected using strain gages. The numerical simulations were conducted using the distinct element method. It was found from the experiments and numerical simulations that input waves with a short period (τ ≈ 90 μs) will propagate in this granular medium with little waveform change under steady amplitude attenuation ; whereas longer waves (τ $̆200 μs) will propagate with significant waveform dispersion. For these longer wavelength signals, the smooth waveform will undergo separation into a series of short oscillatory signals, and this rearrangement of energy allows a portion of the transmitted signal to increase in amplitude during the initial phases of propagation. Thus the granular medium acts as a nonlinear wave guide, and local microstructure and contact nonlinearity will allow input signals of sufficiently long wavelength to excite resonant sub-units of the medium to produce this observed ringing separation. Following a modeling scheme originally proposed by NESTERENKO[J. Appl. Mech. Tech. Phys. 5,733 (1983)], a nonlinear wave equation model was developed which is related to soliton dynamics and leads to travelling wave solutions of specific wavelength found in our experimental and numerical studies.
Granular flow over inclined channels with constrictions
Tunuguntla, Deepak; Weinhart, Thomas; Thornton, Anthony; Bokhove, Onno
2013-04-01
Study of granular flows down inclined channels is essential in understanding the dynamics of natural grain flows like landslides and snow avalanches. As a stepping stone, dry granular flow over an inclined channel with a localised constriction is investigated using both continuum methods and particle simulations. Initially, depth-averaged equations of motion (Savage & Hutter 1989) containing an unknown friction law are considered. The shallow-layer model for granular flows is closed with a friction law obtained from particle simulations of steady flows (Weinhart et al. 2012) undertaken in the open source package Mercury DPM (Mercury 2010). The closed two-dimensional (2D) shallow-layer model is then width-averaged to obtain a novel one-dimensional (1D) model which is an extension of the one for water flows through contraction (Akers & Bokhove 2008). Different flow states are predicted by this novel one-dimensional theory. Flow regimes with distinct flow states are determined as a function of upstream channel Froude number, F, and channel width ratio, Bc. The latter being the ratio of the channel exit width and upstream channel width. Existence of multiple steady states is predicted in a certain regime of F - Bc parameter plane which is in agreement with experiments previously undertaken by (Akers & Bokhove 2008) and for granular flows (Vreman et al. 2007). Furthermore, the 1D model is verified by solving the 2D shallow granular equations using an open source discontinuous Galerkin finite element package hpGEM (Pesch et al. 2007). For supercritical flows i.e. F > 1 the 1D asymptotics holds although the two-dimensional oblique granular jumps largely vary across the converging channel. This computationally efficient closed 1D model is validated by comparing it to the computationally more expensiveaa three-dimensional particle simulations. Finally, we aim to present a quasi-steady particle simulation of inclined flow through two rectangular blocks separated by a gap
Wong, Chun Wa; Yasui, Kosuke
2006-06-01
The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is incorrect because it neglects the energy gained when a link leaves a subchain. The maximum chain tension measured by Calkin and March for the falling folded chain is given a simple if rough interpretation. Other aspects of the falling folded chain are briefly discussed.
Diode-like behavior of I–V curves of CoFe–(Al–O)/Si(100) granular thin films
Energy Technology Data Exchange (ETDEWEB)
Tuan Anh, Nguyen [ITIMS, Hanoi University of Science and Technology (HUST), Hanoi 10000 (Viet Nam); Hanoi Community College (HCC), Trung Kinh, Cau giay, Hanoi 10000 (Viet Nam); Van Cuong, Giap [ITIMS, Hanoi University of Science and Technology (HUST), Hanoi 10000 (Viet Nam); HungYen University of Technology and Education (UTEHY), Khoai chau, Hung Yen 39000 (Viet Nam); Anh Tuan, Nguyen, E-mail: tuanna@itims.edu.vn [ITIMS, Hanoi University of Science and Technology (HUST), Hanoi 10000 (Viet Nam)
2015-01-15
In this study, the electrical performance of (Co{sub 70}Fe{sub 30}){sub x}(Al–O){sub 1−x} (where x=0.1 and 0.3) granular thin films sputtered on Si(1 0 0) substrates, which were subsequently annealing at 350 °C for 1 h in vacuum, was investigated. The millimeter-sized samples were installed in an in-plane lateral Ag electrode configuration on the surface. The current–voltage (I–V) characteristics were measured in bias voltages of approximately ±7 V. The I–V curves demonstrated the so-called large Coulomb gaps and diode-like asymmetric behavior similar to a Zener diode-type rectification. This remarkable behavior was evaluated using the most suitable transport models. Results suggest that an effective magnetic diode could be fabricated from millimeter-sized magnetic granular thin films. - Highlights: • The granular MTJ systems can induce a strong collective Coulomb blockage effect. • Isolated magnetic nanoparticles can form asymmetric nano-double barrier MTJ chains. • Discrete system can induce diode-like rectification as a molecular electronic rectifier. • Irreversible cotunneling through nano-double barrier MTJ chains yields rectification. • Magnetic tunnel diodes can be created simply from the granular MTJ-type thin films.
Constitutive relations for steady, dense granular flows
Vescovi, D.; Berzi, D.; di Prisco, C. G.
2011-12-01
In the recent past, the flow of dense granular materials has been the subject of many scientific works; this is due to the large number of natural phenomena involving solid particles flowing at high concentration (e.g., debris flows and landslides). In contrast with the flow of dilute granular media, where the energy is essentially dissipated in binary collisions, the flow of dense granular materials is characterized by multiple, long-lasting and frictional contacts among the particles. The work focuses on the mechanical response of dry granular materials under steady, simple shear conditions. In particular, the goal is to obtain a complete rheology able to describe the material behavior within the entire range of concentrations for which the flow can be considered dense. The total stress is assumed to be the linear sum of a frictional and a kinetic component. The frictional and the kinetic contribution are modeled in the context of the critical state theory [8, 10] and the kinetic theory of dense granular gases [1, 3, 7], respectively. In the critical state theory, the granular material approaches a certain attractor state, independent on the initial arrangement, characterized by the capability of developing unlimited shear strains without any change in the concentration. Given that a disordered granular packing exists only for a range of concentration between the random loose and close packing [11], a form for the concentration dependence of the frictional normal stress that makes the latter vanish at the random loose packing is defined. In the kinetic theory, the particles are assumed to interact through instantaneous, binary and uncorrelated collisions. A new state variable of the problem is introduced, the granular temperature, which accounts for the velocity fluctuations. The model has been extended to account for the decrease in the energy dissipation due to the existence of correlated motion among the particles [5, 6] and to deal with non
Wong, C W; Wong, Chun Wa; Yasui, Kosuke
2006-01-01
The one-dimensional falling motion of a bungee chain suspended from a rigid support and of a chain falling from a resting heap on a table is studied. Their Lagrangians are found to contain no explicit time dependence. As a result, these falling chains are conservative systems. Each of their Lagrange's equations of motion is shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show in particular that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is incorrect because it neglects the energy gained when the transferred link is emitted by the emitting subchain. The maximum chain tension measured by Calkin and March for the falling bungee chain is given a simple if rough interpretation. In the simplified one-dimensional treatment, the kinetic energy of the center of mass of the falling bungee chain is found to be converted by the chain tension at the rigid support into the internal kinetic energy of the chain. However, as t...
Scaling of granular convective velocity and timescale of asteroidal resurfacing
Yamada, Tomoya; Ando, Kousuke; Morota, Tomokatsu; Katsuragi, Hiroaki
Granular convection is one of the well-known phenomena observed in a vertically vibrated granular bed. Recently, the possbile relation between granular convection and asteroidal surface processes has been discussed. The granular convection on the surface of small asteroids might be induced by seismic vibration resulting from meteorite impacts. To quantitatively evaluate the timescale of asteroidal resurfacing by granular convection, the granular convective velocity under various conditions must be revealed. As a first step to approach this problem, we experimentally study the velocity scaling of granular convection using a vertically vibrated glass-beads layer. By systematic experiments, a scaling form of granular convective velocity has been obtained. The obtained scaling form implies that the granular convective velocity can be written by a power-law product of two characteristic velocity components: vibrational and gravitational velocities. In addition, the system size dependence is also scaled. According to the scaling form, the granular convective velocity is almost proportional to gravitatinal acceleration. Using this scaling form, we have estimated the resurfacing timescale on small asteroid surface.
Applying MDL to Learning Best Model Granularity
Gao, Q; Vitanyi, P; Gao, Qiong; Li, Ming; Vitanyi, Paul
2000-01-01
The Minimum Description Length (MDL) principle is solidly based on a provably ideal method of inference using Kolmogorov complexity. We test how the theory behaves in practice on a general problem in model selection: that of learning the best model granularity. The performance of a model depends critically on the granularity, for example the choice of precision of the parameters. Too high precision generally involves modeling of accidental noise and too low precision may lead to confusion of models that should be distinguished. This precision is often determined ad hoc. In MDL the best model is the one that most compresses a two-part code of the data set: this embodies ``Occam's Razor.'' In two quite different experimental settings the theoretical value determined using MDL coincides with the best value found experimentally. In the first experiment the task is to recognize isolated handwritten characters in one subject's handwriting, irrespective of size and orientation. Based on a new modification of elastic...
Sound scattering in dense granular media
Institute of Scientific and Technical Information of China (English)
JIA XiaoPing; LAURENT J; KHIDAS Y; LANGLOIS V
2009-01-01
The sound propagation in a dense granular medium is basically characterized by the ratio of wave-length to the grain size. Two types of wave transport are distinguished: one corresponds to coherent waves in the long wavelength limit, the other to short-wavelength scattered waves by the inhomoge-neous contact force networks. These multiply scattered elastic waves are shown to exhibit a diffusive characteristics of transport over long distances of propagation. Determination of the transport mean free path l* and the inelastic absorption (Q~(-1)) allows the inference of the structural properties of the material such as the heterogeneity and internal dissipation. The relevance of our experiments for seismological applications is discussed. Moreover, we apply the correlation technique of the configu-ration-specific sound scattering to monitoring the dynamic behaviour of the granular medium (irre-versible rearrangements) under strong vibration, shearing and thermal cycling, respectively.
Chevoir, François; Gondret, Philippe; Lassarre, Sylvain; Lebacque, Jean-Patrick; Schreckenberg, Michael
2009-01-01
This book covers several research fields, all of which deal with transport. Three main topics are treated: road traffic, granular matter, and biological transport. Different points of view, i.e. modelling, simulations, experiments, and phenomenological observations, are considered. Sub-topics include: highway or urban vehicular traffic (dynamics of traffic, macro/micro modelling, measurements, data analysis, security issues, psychological issues), pedestrian traffic, animal traffic (e.g. social insects), collective motion in biological systems (molecular motors...), granular flow (dense flows, intermittent flows, solid/liquid transition, jamming, force networks, fluid and solid friction), networks (biological networks, urban traffic, the internet, vulnerability of networks, optimal transport networks) and cellular automata applied to the various aforementioned fields.
Velocity distributions in dilute granular systems.
van Zon, J S; MacKintosh, F C
2005-11-01
We investigate the idea that velocity distributions in granular gases are determined mainly by eta, the coefficient of restitution and q, which measures the relative importance of heating (or energy input) to collisions. To this end, we study by numerical simulation the properties of inelastic gases as functions of eta, concentration phi, and particle number N with various heating mechanisms. For a wide range of parameters, we find Gaussian velocity distributions for uniform heating and non-Gaussian velocity distributions for boundary heating. Comparison between these results and velocity distributions obtained by other heating mechanisms and for a simple model of a granular gas without spatial degrees of freedom, shows that uniform and boundary heating can be understood as different limits of q, with q>1 and q < or approximately 1 respectively. We review the literature for evidence of the role of q in the recent experiments.
Evaluating Energy Flux in Vibrofluidized Granular Bed
Directory of Open Access Journals (Sweden)
N. A. Sheikh
2013-01-01
Full Text Available Granular flows require sustained input of energy for fluidization. A level of fluidization depends on the amount of heat flux provided to the flow. In general, the dissipation of the grains upon interaction balances the heat inputs and the resultant flow patterns can be described using hydrodynamic models. However, with the increase in packing fraction, the heat fluxes prediction of the cell increases. Here, a comparison is made for the proposed theoretical models against the MD simulations data. It is observed that the variation of packing fraction in the granular cell influences the heat flux at the base. For the elastic grain-base interaction, the predictions vary appreciably compared to MD simulations, suggesting the need to accurately model the velocity distribution of grains for averaging.
Mathematics and Mechanics of Granular Materials
Hill, James M
2005-01-01
Granular or particulate materials arise in almost every aspect of our lives, including many familiar materials such as tea, coffee, sugar, sand, cement and powders. At some stage almost every industrial process involves a particulate material, and it is usually the cause of the disruption to the smooth running of the process. In the natural environment, understanding the behaviour of particulate materials is vital in many geophysical processes such as earthquakes, landslides and avalanches. This book is a collection of current research from some of the major contributors in the topic of modelling the behaviour of granular materials. Papers from every area of current activity are included, such as theoretical, numerical, engineering and computational approaches. This book illustrates the numerous diverse approaches to one of the outstanding problems of modern continuum mechanics.
Erosion dynamics of a wet granular medium.
Lefebvre, Gautier; Jop, Pierre
2013-09-01
Liquid may give strong cohesion properties to a granular medium, and confer a solidlike behavior. We study the erosion of a fixed circular aggregate of wet granular matter subjected to a flow of dry grains inside a half-filled rotating drum. During the rotation, the dry grains flow around the fixed obstacle. We show that its diameter decreases linearly with time for low liquid content, as wet grains are pulled out of the aggregate. This erosion phenomenon is governed by the properties of the liquids. The erosion rate decreases exponentially with the surface tension while it depends on the viscosity to the power -1. We propose a model based on the force fluctuations arising inside the flow, explaining both dependencies: The capillary force acts as a threshold and the viscosity controls the erosion time scale. We also provide experiments using different flowing grains, confirming our model.
Compaction of granular material inside confined geometries
Marks, Benjy; Sandnes, Bjornar; Dumazer, Guillaume; Eriksen, Jon Alm; Måløy, Knut Jørgen
2015-06-01
In both nature and the laboratory, loosely packed granular materials are often compacted inside confined geometries. Here, we explore such behaviour in a quasi-two dimensional geometry, where parallel rigid walls provide the confinement. We use the discrete element method to investigate the stress distribution developed within the granular packing as a result of compaction due to the displacement of a rigid piston. We observe that the stress within the packing increases exponentially with the length of accumulated grains, and show an extension to current analytic models which fits the measured stress. The micromechanical behaviour is studied for a range of system parameters, and the limitations of existing analytic models are described. In particular, we show the smallest sized systems which can be treated using existing models. Additionally, the effects of increasing piston rate, and variations of the initial packing fraction, are described.
Seismic wave propagation in granular media
Tancredi, Gonzalo; López, Francisco; Gallot, Thomas; Ginares, Alejandro; Ortega, Henry; Sanchís, Johnny; Agriela, Adrián; Weatherley, Dion
2016-10-01
Asteroids and small bodies of the Solar System are thought to be agglomerates of irregular boulders, therefore cataloged as granular media. It is a consensus that many asteroids might be considered as rubble or gravel piles.Impacts on their surface could produce seismic waves which propagate in the interior of these bodies, thus causing modifications in the internal distribution of rocks and ejections of particles and dust, resulting in a cometary-type comma.We present experimental and numerical results on the study of propagation of impact-induced seismic waves in granular media, with special focus on behavior changes by increasing compression.For the experiment, we use an acrylic box filled with granular materials such as sand, gravel and glass spheres. Pressure inside the box is controlled by a movable side wall and measured with sensors. Impacts are created on the upper face of the box through a hole, ranging from free-falling spheres to gunshots. We put high-speed cameras outside the box to record the impact as well as piezoelectic sensors and accelerometers placed at several depths in the granular material to detect the seismic wave.Numerical simulations are performed with ESyS-Particle, a software that implements the Discrete Element Method. The experimental setting is reproduced in the numerical simulations using both individual spherical particles and agglomerates of spherical particles shaped as irregular boulders, according to rock models obtained with a 3D scanner. The numerical experiments also reproduces the force loading on one of the wall to vary the pressure inside the box.We are interested in the velocity, attenuation and energy transmission of the waves. These quantities are measured in the experiments and in the simulations. We study the dependance of these three parameters with characteristics like: impact speed, properties of the target material and the pressure in the media.These results are relevant to understand the outcomes of impacts in
Velocity Fluctuations in Electrostatically Driven Granular Media
Aranson, I. S.; Olafsen, J. S.
2001-01-01
We study experimentally the particle velocity fluctuations in an electrostatically driven dilute granular gas. The experimentally obtained velocity distribution functions have strong deviations from Maxwellian form in a wide range of parameters. We have found that the tails of the distribution functions are consistent with a stretched exponential law with typical exponents of the order 3/2. Molecular dynamic simulations shows qualitative agreement with experimental data. Our results suggest t...
A model for collisions in granular gases
Brilliantov, Nikolai V.; Spahn, Frank; Hertzsch, Jan-Martin; Poeschel, Thorsten
2002-01-01
We propose a model for collisions between particles of a granular material and calculate the restitution coefficients for the normal and tangential motion as functions of the impact velocity from considerations of dissipative viscoelastic collisions. Existing models of impact with dissipation as well as the classical Hertz impact theory are included in the present model as special cases. We find that the type of collision (smooth, reflecting or sticky) is determined by the impact velocity and...
Convection in horizontally shaken granular material
Saluena, Clara; Poeschel, Thorsten
1998-01-01
In horizontally shaken granular material different types of pattern formation have been reported. We want to deal with the convection instability which has been observed in experiments and which recently has been investigated numerically. Using two dimensional molecular dynamics we show that the convection pattern depends crucial on the inelastic properties of the material. The concept of restitution coefficient provides arguments for the change of the behaviour with variing inelasticity.
Structure and stability of methanogenic granular sludge.
Grotenhuis, J.T.C.
1992-01-01
Immobilization of anaerobic bacteria was essential for the development of high rate anaerobic systems for the treatment of waste waters. The most widely applied anaerobic reactor type in which solids retention time is uncoupled from the hydraulic retention time is the Upflow Anaerobic Sludge Blanket (UASB) reactor. In this reactor type methanogenic granular sludge is formed by self-immobilization of methanogenic consortia. The aim of the work presented in this thesis was to study microbiologi...
Legged-locomotion on inclined granular media
Rieser, Jennifer; Qian, Feifei; Goldman, Daniel
Animals traverse a wide variety of complex environments, including situations in which the ground beneath them can yield (e.g. dry granular media in desert dunes). Locomotion strategies that are effective on level granular media can fail when traversing a granular slope. Taking inspiration from successful legged-locomotors in sandy, uneven settings, we explore the ability of a small (15 cm long, 100 g), six-c-shaped legged robot to run uphill in a bed of 1-mm-diameter poppy seeds, using an alternating tripod gait. Our fully automated experiments reveal that locomotor performance can depend sensitively on both environmental parameters such as the inclination angle and volume fraction of the substrate, and robot morphology and control parameters like leg shape, step frequency, and the friction between the feet of the robot and the substrate. We assess performance by measuring the average speed of the robot, and we find that the robot tends to perform better at higher step frequency and lower inclination angles, and that average speed decreases more rapidly with increasing angle for higher step frequency.
Transport analogy for segregation and granular rheology
Liu, Siying; McCarthy, Joseph J.
2017-08-01
Here, we show a direct connection between density-based segregation and granular rheology that can lead to insight into both problems. Our results exhibit a transition in the rate of segregation during simple shear that occurs at I ˜0.5 and mimics a coincident regime change in flow rheology. We propose scaling arguments that support a packing fraction criterion for this transition that can both explain our segregation results as well as unify existing literature studies of granular rheology. By recasting a segregation model in terms of rheological parameters, we establish an approach that not only collapses results for a wide range of conditions, but also yields a direct relationship between the coordination number z and the segregation velocity. Moreover, our approach predicts the precise location of the observed regime change or saturation. This suggests that it is possible to rationally design process operating conditions that lead to significantly lower segregation extents. These observations can have a profound impact on both the study of granular flow or mixing as well as industrial practice.
Force transmission in cohesive granular media
Radjai, Farhang; Topin, Vincent; Richefeu, Vincent; Voivret, Charles; Delenne, Jean-Yves; Azéma, Emilien; El Youssoufi, Said
2010-05-01
We use numerical simulations to investigate force and stress transmission in cohesive granular media covering a wide class of materials encountered in nature and industrial processing. The cohesion results either from capillary bridges between particles or from the presence of a solid binding matrix filling fully or partially the interstitial space. The liquid bonding is treated by implementing a capillary force law within a debonding distance between particles and simulated by the discrete element method. The solid binding matrix is treated by means of the Lattice Element Method (LEM) based on a lattice-type discretization of the particles and matrix. Our data indicate that the exponential fall-off of strong compressive forces is a generic feature of both cohesive and noncohesive granular media both for liquid and solid bonding. The tensile forces exhibit a similar decreasing exponential distribution, suggesting that this form basically reflects granular disorder. This is consistent with the finding that not only the contact forces but also the stress components in the bulk of the particles and matrix, accessible from LEM simulations in the case of solid bonding, show an exponential fall-off. We also find that the distribution of weak compressive forces is sensitive to packing anisotropy, particle shape and particle size distribution. In the case of wet packings, we analyze the self-equilibrated forces induced by liquid bonds and show that the positive and negative particle pressures form a bi-percolating structure.
Mechanics of Granular Materials (MGM) Flight Hardware
1997-01-01
A test cell for the Mechanics of Granular Materials (MGM) experiment is shown in its on-orbit configuration in Spacehab during preparations for STS-89. The twin locker to the left contains the hydraulic system to operate the experiment. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Note: Because the image on the screen was muted in the original image, its brightness and contrast are boosted in this rendering to make the test cell more visible. Credit: NASA/Marshall Space Flight Center (MSFC)
Rough – Granular Computing knowledge discovery models
Directory of Open Access Journals (Sweden)
Mohammed M. Eissa
2016-11-01
Full Text Available Medical domain has become one of the most important areas of research in order to richness huge amounts of medical information about the symptoms of diseases and how to distinguish between them to diagnose it correctly. Knowledge discovery models play vital role in refinement and mining of medical indicators to help medical experts to settle treatment decisions. This paper introduces four hybrid Rough – Granular Computing knowledge discovery models based on Rough Sets Theory, Artificial Neural Networks, Genetic Algorithm and Rough Mereology Theory. A comparative analysis of various knowledge discovery models that use different knowledge discovery techniques for data pre-processing, reduction, and data mining supports medical experts to extract the main medical indicators, to reduce the misdiagnosis rates and to improve decision-making for medical diagnosis and treatment. The proposed models utilized two medical datasets: Coronary Heart Disease dataset and Hepatitis C Virus dataset. The main purpose of this paper was to explore and evaluate the proposed models based on Granular Computing methodology for knowledge extraction according to different evaluation criteria for classification of medical datasets. Another purpose is to make enhancement in the frame of KDD processes for supervised learning using Granular Computing methodology.
Morphological clues to wet granular pile stability
Scheel, M.; Seemann, R.; Brinkmann, M.; di Michiel, M.; Sheppard, A.; Breidenbach, B.; Herminghaus, S.
2008-03-01
When a granular material such as sand is mixed with a certain amount of liquid, the surface tension of the latter bestows considerable stiffness to the material, which enables, for example, sand castles to be sculpted. The geometry of the liquid interface within the granular pile is of extraordinary complexity and strongly varies with the liquid content. Surprisingly, the mechanical properties of the pile are largely independent of the amount of liquid over a wide range. We resolve this puzzle with the help of X-ray microtomography, showing that the remarkable insensitivity of the mechanical properties to the liquid content is due to the particular organization of the liquid in the pile into open structures. For spherical grains, a simple geometric rule is established, which relates the macroscopic properties to the internal liquid morphologies. We present evidence that this concept is also valid for systems with non-spherical grains. Hence, our results provide new insight towards understanding the complex physics of a large variety of wet granular systems including land slides, as well as mixing and agglomeration problems.
Granular dampers: does particle shape matter?
Pourtavakoli, Hamzeh; Parteli, Eric J. R.; Pöschel, Thorsten
2016-07-01
By means of particle-based numerical simulations using the discrete element method, we address the question of how the performance of granular dampers is affected by the shape of the granular particles. In consistence with previous experiments performed with nearly spherical particles we find that independently of the particles’ shape, the granular system is characterized by a gas-like regime for small amplitudes of the container’s oscillation and by a collect-and-collide regime for large amplitude forcing. Both regimes are separated by an optimal operation mode—the critical amplitude of the damping oscillation for which the energy dissipation is maximal—which is independent of the particle shape for given conditions of particle mass, material properties and number of particles. However, in the gas-like regime, we find that spherical particles lead to more efficient energy dissipation compared to complex shaped particles of the same mass. In this regime, a dependence on the damper’s efficiency on the particle shape is found.
Accretion Dynamics on Wet Granular Materials.
Saingier, Guillaume; Sauret, Alban; Jop, Pierre
2017-05-19
Wet granular aggregates are common precursors of construction materials, food, and health care products. The physical mechanisms involved in the mixing of dry grains with a wet substrate are not well understood and difficult to control. Here, we study experimentally the accretion of dry grains on a wet granular substrate by measuring the growth dynamics of the wet aggregate. We show that this aggregate is fully saturated and its cohesion is ensured by the capillary depression at the air-liquid interface. The growth dynamics is controlled by the liquid fraction at the surface of the aggregate and exhibits two regimes. In the viscous regime, the growth dynamics is limited by the capillary-driven flow of liquid through the granular packing to the surface of the aggregate. In the capture regime, the capture probability depends on the availability of the liquid at the saturated interface, which is controlled by the hydrostatic depression in the material. We propose a model that rationalizes our observations and captures both dynamics based on the evolution of the capture probability with the hydrostatic depression.
Small solar system bodies as granular systems
Hestroffer, Daniel; Campo Bagatín, Adriano; Losert, Wolfgang; Opsomer, Eric; Sánchez, Paul; Scheeres, Daniel J.; Staron, Lydie; Taberlet, Nicolas; Yano, Hajime; Eggl, Siegfried; Lecomte, Charles-Edouard; Murdoch, Naomi; Radjai, Fahrang; Richardson, Derek C.; Salazar, Marcos; Schwartz, Stephen R.; Tanga, Paolo
2017-06-01
Asteroids and other Small Solar System Bodies (SSSBs) are currently of great scientific and even industrial interest. Asteroids exist as the permanent record of the formation of the Solar System and therefore hold many clues to its understanding as a whole, as well as insights into the formation of planetary bodies. Additionally, SSSBs are being investigated in the context of impact risks for the Earth, space situational awareness and their possible industrial exploitation (asteroid mining). In all these aspects, the knowledge of the geophysical characteristics of SSSB surface and internal structure are of great importance. Given their size, constitution, and the evidence that many SSSBs are not simple monoliths, these bodies should be studied and modelled as self-gravitating granular systems in general, or as granular systems in micro-gravity environments in particular contexts. As such, the study of the geophysical characteristics of SSSBs is a multi-disciplinary effort that lies at the crossroads between Granular Mechanics, Celestial Mechanics, Soil Mechanics, Aerospace Engineering and Computer Sciences.
Structural characterization of submerged granular packings
Jakšić, Z. M.; Šćepanović, J. R.; Lončarević, I.; Budinski-Petković, Lj.; Vrhovac, S. B.; Belić, A.
2014-12-01
We consider the impact of the effective gravitational acceleration on microstructural properties of granular packings through experimental studies of spherical granular materials saturated within fluids of varying density. We characterize the local organization of spheres in terms of contact connectivity, distribution of the Delaunay free volumes, and the shape factor (parameter of nonsphericity) of the Voronoï polygons. The shape factor gives a clear physical picture of the competition between less and more ordered domains of particles in experimentally obtained packings. As the effective gravity increases, the probability distribution of the shape factor becomes narrower and more localized around the lowest values of the shape factor corresponding to regular hexagon. It is found that curves of the pore distributions are asymmetric with a long tail on the right-hand side, which progressively reduces while the effective gravity gets stronger for lower densities of interstitial fluid. We show that the distribution of local areas (Voronoï cells) broadens with decreasing value of the effective gravity due to the formation of lose structures such as large pores and chainlike structures (arches or bridges). Our results should be particularly helpful in testing the newly developed simulation techniques involving liquid-related forces associated with immersed granular particles.
Small solar system bodies as granular systems
Directory of Open Access Journals (Sweden)
Hestroffer Daniel
2017-01-01
Full Text Available Asteroids and other Small Solar System Bodies (SSSBs are currently of great scientific and even industrial interest. Asteroids exist as the permanent record of the formation of the Solar System and therefore hold many clues to its understanding as a whole, as well as insights into the formation of planetary bodies. Additionally, SSSBs are being investigated in the context of impact risks for the Earth, space situational awareness and their possible industrial exploitation (asteroid mining. In all these aspects, the knowledge of the geophysical characteristics of SSSB surface and internal structure are of great importance. Given their size, constitution, and the evidence that many SSSBs are not simple monoliths, these bodies should be studied and modelled as self-gravitating granular systems in general, or as granular systems in micro-gravity environments in particular contexts. As such, the study of the geophysical characteristics of SSSBs is a multi-disciplinary effort that lies at the crossroads between Granular Mechanics, Celestial Mechanics, Soil Mechanics, Aerospace Engineering and Computer Sciences.
The role of fluid viscosity in an immersed granular collapse
Directory of Open Access Journals (Sweden)
Yang Geng Chao
2017-01-01
Full Text Available Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM and discrete element method (DEM. It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.
Mutiscale Modeling of Segregation in Granular Flows
Energy Technology Data Exchange (ETDEWEB)
Sun, Jin [Iowa State Univ., Ames, IA (United States)
2007-01-01
Modeling and simulation of segregation phenomena in granular flows are investigated. Computational models at different scales ranging from particle level (microscale) to continuum level (macroscale) are employed in order to determine the important microscale physics relevant to macroscale modeling. The capability of a multi-fluid model to capture segregation caused by density difference is demonstrated by simulating grain-chaff biomass flows in a laboratory-scale air column and in a combine harvester. The multi-fluid model treats gas and solid phases as interpenetrating continua in an Eulerian frame. This model is further improved by incorporating particle rotation using kinetic theory for rapid granular flow of slightly frictional spheres. A simplified model is implemented without changing the current kinetic theory framework by introducing an effective coefficient of restitution to account for additional energy dissipation due to frictional collisions. The accuracy of predicting segregation rate in a gas-fluidized bed is improved by the implementation. This result indicates that particle rotation is important microscopic physics to be incorporated into the hydrodynamic model. Segregation of a large particle in a dense granular bed of small particles under vertical. vibration is studied using molecular dynamics simulations. Wall friction is identified as a necessary condition for the segregation. Large-scale force networks bearing larger-than-average forces are found with the presence of wall friction. The role of force networks in assisting rising of the large particle is analyzed. Single-point force distribution and two-point spatial force correlation are computed. The results show the heterogeneity of forces and a short-range correlation. The short correlation length implies that even dense granular flows may admit local constitutive relations. A modified minimum spanning tree (MST) algorithm is developed to asymptotically recover the force statistics in the
Meng, Zong; Liu, Yuan-Fa; Jin, Qing-Zhe; Huang, Jian-Hua; Song, Zhi-Hua; Wang, Feng-Yan; Wang, Xing-Guo
2011-02-23
Six rectangular block all beef tallow (BT)-based and all palm oil (PO)-based model shortenings prepared on a laboratory scale, respectively denoted BTMS and POMS, were stored under temperature fluctuation cycles of 5-20 °C until granular crystals were observed. The lipid composition and thermal, polymorphic, and isothermal crystallization behaviors of the granular crystals and their surrounding materials separated from BTMS and POMS, respectively, were evaluated. The changes of nanostructure including the aggregation of high-melting triacylglycerols (TAGs) and polymorphic transformation from β' form of double chain length structures to complicated crystal structures, in which the β and β' form crystals of triple and double chain length structures simultaneously coexist, had occurred in granular crystals compared with surrounding materials, whether in BTMS or in POMS. Consequently, a slower crystallization rate appeared in granular crystal parts of both model shortenings noted above, which would yield larger and fewer crystals indicated by the Avrami model analysis that would further aggregate to form large granular crystals.
Granular computing analysis and design of intelligent systems
Pedrycz, Witold
2013-01-01
Information granules, as encountered in natural language, are implicit in nature. To make them fully operational so they can be effectively used to analyze and design intelligent systems, information granules need to be made explicit. An emerging discipline, granular computing focuses on formalizing information granules and unifying them to create a coherent methodological and developmental environment for intelligent system design and analysis. Granular Computing: Analysis and Design of Intelligent Systems presents the unified principles of granular computing along with its comprehensive algo
Preliminary 2D numerical modeling of common granular problems
Wyser, Emmanuel; Jaboyedoff, Michel
2017-04-01
Granular studies received an increasing interest during the last decade. Many scientific investigations were successfully addressed to acknowledge the ubiquitous behavior of granular matter. We investigate liquid impacts onto granular beds, i.e. the influence of the packing and compaction-dilation transition. However, a physically-based model is still lacking to address complex microscopic features of granular bed response during liquid impacts such as compaction-dilation transition or granular bed uplifts (Wyser et al. in review). We present our preliminary 2D numerical modeling based on the Discrete Element Method (DEM) using nonlinear contact force law (the Hertz-Mindlin model) for disk shape particles. The algorithm is written in C programming language. Our 2D model provides an analytical tool to address granular problems such as i) granular collapses and ii) static granular assembliy problems. This provides a validation framework of our numerical approach by comparing our numerical results with previous laboratory experiments or numerical works. Inspired by the work of Warnett et al. (2014) and Staron & Hinch (2005), we studied i) the axisymetric collapse of granular columns. We addressed the scaling between the initial aspect ratio and the final runout distance. Our numerical results are in good aggreement with the previous studies of Warnett et al. (2014) and Staron & Hinch (2005). ii) Reproducing static problems for regular and randomly stacked particles provides a valid comparison to results of Egholm (2007). Vertical and horizontal stresses within the assembly are quite identical to stresses obtained by Egholm (2007), thus demonstating the consistency of our 2D numerical model. Our 2D numerical model is able to reproduce common granular case studies such as granular collapses or static problems. However, a sufficient small timestep should be used to ensure a good numerical consistency, resulting in higher computational time. The latter becomes critical
Period tripling causes rotating spirals in agitated wet granular layers.
Huang, Kai; Rehberg, Ingo
2011-07-08
Pattern formation of a thin layer of vertically agitated wet granular matter is investigated experimentally. Rotating spirals with three arms, which correspond to the kinks between regions with different colliding phases, are the dominating pattern. This preferred number of arms corresponds to period tripling of the agitated granular layer, unlike predominantly subharmonic Faraday crispations in dry granular matter. The chirality of the spatiotemporal pattern corresponds to the rotation direction of the spirals.
Experimental Observation of Kink in a Perfect Bidimensional Granular System
Institute of Scientific and Technical Information of China (English)
ZHANG Peng; MIAO Guo-Qing; HUANG Kai; YUN Yi; WEI Rong-Jue
2005-01-01
@@ The kink formation in a vertical vibrated granular layer has been widely studied in three-dimensional systems, but there are few if any experimental reports on bidimensional granular layers. We report the kink formation newly found in a perfect bidimensional granular system. We measure the range of the driving frequencies and dimensionless accelerations for kinks. Furthermore, we observe a heaping process, which is caused by co-operative action of the kink-associated convection and the sidewall-associated convection.
Intragranular fracture and frictional effects in granular materials under pressure-shear loading
Peterson, Amanda; Foster, John; Vogler, Tracy
2013-06-01
Research efforts have been undertaken in recent years to investigate the dynamic behavior of granular materials. Many of the investigations have been experimental in nature, consisting of several rounds of Kolsky bar tests on sand with varying moisture content and confining pressures as well as traditional plate impact. More recently, pressure-shear experiments on both sand and granular tungsten carbide have been performed. In order to investigate the mesoscale physics that affect the bulk response observed in experiments, we have undertaken a computational simulation effort. The simulations are conducted using a massively parallel computational peridynamics code capable of modeling many thousand individual grains at high resolution resulting in simulations that consist of several million degrees of freedom. Individual intragranular fracture and discrete contact with friction are modeled explicitly in the simulations. Thus, these simulations treat aspects of the problem that were not represented well in previous mesoscale simulations with Eulerian hydrocodes. Results from these simulations are compared with results from pressure-shear experiments on sand and granular tungsten carbide. A discussion of the effects of fracture and friction on force chain formation and bulk wave propagation in the samples is included.
Ice flow dynamics forced by rapid water pressure variations in subglacial granular beds
DEFF Research Database (Denmark)
Damsgaard, Anders; Egholm, David Lundbek; Beem, Lucas H.;
2016-01-01
mechanical processes driving transitions from stability to slip. We performed computational experiments that show how rearrangements of load-bearing force chains within the granular sediments drive the mechanical transitions. Cyclic variations in pore water pressure give rise to rate-dependent creeping......Glaciers and ice streams can move by deforming underlying water-saturated sediments, and the nonlinear mechanics of these materials are often invoked as the main reason for initiation, persistence, and shutdown of fast-flowing ice streams. Existing models have failed to fully explain the internal...
GRANULAR CELL TUMOR OF BREAST (CYTOLOGICAL DIAGNOSIS CONFIRMED BY HISTOPATHOLOGY
Directory of Open Access Journals (Sweden)
Divvya
2014-10-01
Full Text Available Granular cell tumor is a tumor derived from Schwann cells of peripheral nerves and it can occur throughout the body. About 5% of granular cell tumors occur in breast and are mostly benign in nature. We report a case of 30 year old female who presented with a swelling in right breast which on histo pathological examination revealed features consistent with granular cell tumor. This case is highlighted to reveal the importance of histopathology in differentiating granular cell tumor from carcinoma breast which is difficult based on clinical, radiological and cytological examination alone.
Granular Solid-liquid Transition: Experiment and Simulation
Fei, M.; Xu, X.; Sun, Q.
2015-12-01
Granular media are amorphous materials, which differs from traditional solid or liquid. In different circumstance, granular behavior varies from solid-like to liquid-like, and the transitions between these regimes are always related to many complex natural progresses such as the failure of soil foundation and the occurrence of landslide and debris flow. The mechanic of elastic instability during the transition from solid-like to liquid-like regime, and the quantitative description of irreversible deformation during flow are the key problems to interpret these transition phenomena. In this work, we developed a continuum model with elastic stable condition and irreversible flow rule of granular material based on a thermal dynamical model, the Two-Granular-Temperature model (TGT). Since infinitesimal elastic deformation in solid-like regime and significant plastic large deformation in liquid-like regime can coexist in the granular solid-liquid transition process, the material point method (MPM) was used to build an effective numerical model. Collapse of rectangular granular pile contains both the transition from granular solid to granular liquid and the inverse process, thus in this work we carried out collapse experiment with clay particles, and simulated the experiment with our continuum model and an open-source DEM model YADE to study the transition processes. Results between experiment and simulations were compared and good agreements on collapse shape and velocity profiles were achieved, and the new model proposed in this work seems to work well on the description of granular solid-liquid transition.
A hydrodynamic model for granular material flows including segregation effects
Gilberg, Dominik; Klar, Axel; Steiner, Konrad
2017-06-01
The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.
Revuz, D
1984-01-01
This is the revised and augmented edition of a now classic book which is an introduction to sub-Markovian kernels on general measurable spaces and their associated homogeneous Markov chains. The first part, an expository text on the foundations of the subject, is intended for post-graduate students. A study of potential theory, the basic classification of chains according to their asymptotic behaviour and the celebrated Chacon-Ornstein theorem are examined in detail. The second part of the book is at a more advanced level and includes a treatment of random walks on general locally compact abelian groups. Further chapters develop renewal theory, an introduction to Martin boundary and the study of chains recurrent in the Harris sense. Finally, the last chapter deals with the construction of chains starting from a kernel satisfying some kind of maximum principle.
Coupled discrete element modeling of fluid injection into dense granular media
Zhang, Fengshou; Damjanac, Branko; Huang, Haiying
2013-06-01
The coupled displacement process of fluid injection into a dense granular medium is investigated numerically using a discrete element method (DEM) code PFC2D® coupled with a pore network fluid flow scheme. How a dense granular medium behaves in response to fluid injection is a subject of fundamental and applied research interests to better understand subsurface processes such as fluid or gas migration and formation of intrusive features as well as engineering applications such as hydraulic fracturing and geological storage in unconsolidated formations. The numerical analysis is performed with DEM executing the mechanical calculation and the network model solving the Hagen-Poiseuille equation between the pore spaces enclosed by chains of particles and contacts. Hydromechanical coupling is realized by data exchanging at predetermined time steps. The numerical results show that increase in the injection rate and the invading fluid viscosity and decrease in the modulus and permeability of the medium result in fluid flow behaviors displaying a transition from infiltration-governed to infiltration-limited and the granular medium responses evolving from that of a rigid porous medium to localized failure leading to the development of preferential paths. The transition in the fluid flow and granular medium behaviors is governed by the ratio between the characteristic times associated with fluid injection and hydromechanical coupling. The peak pressures at large injection rates when fluid leakoff is limited compare well with those from the injection experiments in triaxial cells in the literature. The numerical analysis also reveals intriguing tip kinematics field for the growth of a fluid channel, which may shed light on the occurrence of the apical inverted-conical features in sandstone and magma intrusion in unconsolidated formations.
Segregation induced fingering instabilities in granular avalanches
Woodhouse, Mark; Thornton, Anthony; Johnson, Chris; Kokelaar, Pete; Gray, Nico
2013-04-01
It is important to be able to predict the distance to which a hazardous natural granular flows (e.g. snow slab avalanches, debris-flows and pyroclastic flows) might travel, as this information is vital for accurate assessment of the risks posed by such events. In the high solids fraction regions of these flows the large particles commonly segregate to the surface, where they are transported to the margins to form bouldery flow fronts. In many natural flows these bouldery margins experience a much greater frictional force, leading to frontal instabilities. These instabilities create levees that channelize the flow vastly increasing the run-out distance. A similar effect can be observed in dry granular experiments, which use a combination of small round and large rough particles. When this mixture is poured down an inclined plane, particle size segregation causes the large particles to accumulate near the margins. Being rougher, the large particles experience a greater friction force and this configuration (rougher material in front of smoother) can be unstable. The instability causes the uniform flow front to break up into a series of fingers. A recent model for particle size-segregation has been coupled to existing avalanche models through a particle concentration dependent friction law. In this talk numerical solutions of this coupled system are presented and compared to both large scale experiments carried out at the USGS flume and more controlled small scale laboratory experiments. The coupled depth-averaged model captures the accumulation of large particles at the flow front. We show this large particle accumulation at the head of the flow can lead to the break-up of the initially uniform front into a series of fingers. However, we are unable to obtain a fully grid-resolved numerical solution; the width of the fingers decreases as the grid is refined. By considering the linear stability of a steady, fully-developed, bidisperse granular layer it is shown that
A performance -based method for granular based method for granular -paste mix design
Hoornahad, H.; Koenders, E.A.B.
2014-01-01
In this paper a performance-based method for the design of granular-paste mixtures will be proposed. Focus will be on the selection and proportioning of constituents to produce a mixture with a pre-defined shape holding ability. Shape holding ability of mixtures will be characterized by the shape
Directory of Open Access Journals (Sweden)
Rognon Pierre
2017-01-01
Full Text Available Dense granular flows exhibit fascinating kinematic patterns characterised by strong fluctuations in grain velocities. In this paper, we analyse these fluctuations and discuss their possible role on macroscopic properties such as effective viscosity, non-locality and shear-induced diffusion. The analysis is based on 2D experimental granular flows performed with the stadium shear device and DEM simulations. We first show that, when subjected to shear, grains self-organised into clusters rotating like rigid bodies. The average size of these so-called granular vortices is found to increase and diverge for lower inertial numbers, when flows decelerate and stop. We then discuss how such a microstructural entity and its associated internal length scale, possibly much larger than a grain, may be used to explain two important properties of dense granular flows: (i the existence of shear-induced diffusion of grains characterised by a shear-rate independent diffusivity and (ii the development of boundary layers near walls, where the viscosity is seemingly lower than the viscosity far from walls.
Numerical simulations of granular dynamics II. Particle dynamics in a shaken granular material
Murdoch, Naomi; Richardson, Derek C; Nordstrom, Kerstin; Berardi, Christian R; Green, Simon F; Losert, Wolfgang
2013-01-01
Surfaces of planets and small bodies of our Solar System are often covered by a layer of granular material that can range from a fine regolith to a gravel-like structure of varying depths. Therefore, the dynamics of granular materials are involved in many events occurring during planetary and small-body evolution thus contributing to their geological properties. We demonstrate that the new adaptation of the parallel N-body hard-sphere code pkdgrav has the capability to model accurately the key features of the collective motion of bidisperse granular materials in a dense regime as a result of shaking. As a stringent test of the numerical code we investigate the complex collective ordering and motion of granular material by direct comparison with laboratory experiments. We demonstrate that, as experimentally observed, the scale of the collective motion increases with increasing small-particle additive concentration. We then extend our investigations to assess how self-gravity and external gravity affect collect...
Pion showers in highly granular calorimeters
Indian Academy of Sciences (India)
Jaroslav Cvach; on behalf of the CALICE Collaboration
2012-10-01
New results on properties of hadron showers created by pion beam at 8–80 GeV in high granular electromagnetic and hadron calorimeters are presented. Data were used for the ﬁrst time to investigate the separation of the neutral and charged hadron showers. The result is important to verify the prediction of the PFA algorithm based up to now on the simulated data only. Next, the properties of hadron showers were compared to different physics lists of GEANT4 version 9.3.
Unifying Suspension and Granular flows near Jamming
Directory of Open Access Journals (Sweden)
DeGiuli Eric
2017-01-01
Full Text Available Rheological properties of dense flows of hard particles are singular as one approaches the jamming threshold where flow ceases, both for granular flows dominated by inertia, and for over-damped suspensions. Concomitantly, the lengthscale characterizing velocity correlations appears to diverge at jamming. Here we review a theoretical framework that gives a scaling description of stationary flows of frictionless particles. Our analysis applies both to suspensions and inertial flows of hard particles. We report numerical results in support of the theory, and show the phase diagram that results when friction is added, delineating the regime of validity of the frictionless theory.
Kinetics of Nitrogen Diffusion in Granular Manganese
Institute of Scientific and Technical Information of China (English)
ZHANG Jin-zhu; XU Chu-shao; ZHAO Yue-ping
2008-01-01
The kinetics and the influence of time on granular manganese nitriding were studied by means of a vacuum resistance furnace, X-ray diffraction technique, and LECO TC-436 oxygen/nitrogen determinator. The longer the nitriding time, the more the nitrogen pickup. Except for a trace of oxide MnO that developed, the metal manganese could thoroughly be nitrided to form Mn4N and a little ζ-phase (the stoichiometric components as Mn2N) with the nitriding time lasting. A kinetic model is developed to reveal the nitriding situation and agrees well with the experimental results.
Speckle visibility spectroscopy and variable granular fluidization.
Dixon, P K; Durian, D J
2003-05-09
We introduce a dynamic light scattering technique capable of resolving motion that changes systematically, and rapidly, with time. It is based on the visibility of a speckle pattern for a given exposure duration. Applying this to a vibrated layer of glass beads, we measure the granular temperature and its variation with phase in the oscillation cycle. We observe several transitions involving jammed states, where the grains are at rest during some portion of the cycle. We also observe a two-step decay of the temperature on approach to jamming.
Fluidization of a horizontally driven granular monolayer.
Heckel, Michael; Sack, Achim; Kollmer, Jonathan E; Pöschel, Thorsten
2015-06-01
We consider the transition of a horizontally vibrated monodisperse granular monolayer between its condensed state and its three-dimensional gaseous state as a function of the vibration parameters, amplitude, and frequency as well as particle number density. The transition is characterized by an abrupt change of the dynamical state which leaves its fingerprints in several measurable quantities including dissipation rate, sound emission, and a gap size which characterizes the sloshing motion of the material. The transition and its pronounced hysteresis is explained through the energy due to the collective motion of the particles relative to the container.
Collapse of granular media subjected to wetting
Directory of Open Access Journals (Sweden)
El Korchi Fatima Zahra
2017-01-01
Full Text Available This paper focuses on the collapse of granular materials subjected to wetting action. For soils, the collapse potential depends on several parameters such as liquid limit, matric suction, compactness, initial water content and the amount of fine particles. The effect of grain size, which plays a key role in the rearrangement of grains, remains little studied and poorly understood. To investigate the capillary origin of the collapse phenomenon, we present an experimental study on macroscopic and local scales. Our results show the effect of grain size and water content on collapse.
Longitudinal Viscous Flow in Granular Gases
Santos, Andres
2008-01-01
The flow characterized by a linear longitudinal velocity field $u_x(x,t)=a(t)x$, where $a(t)={a_0}/({1+a_0t})$, a uniform density $n(t)\\propto a(t)$, and a uniform temperature $T(t)$ is analyzed for dilute granular gases by means of a BGK-like model kinetic equation in $d$ dimensions. For a given value of the coefficient of normal restitution $\\alpha$, the relevant control parameter of the problem is the reduced deformation rate $a^*(t)=a(t)/\
Sensors for the CMS High Granularity Calorimeter
Maier, Andreas Alexander
2017-01-01
The CMS experiment is currently developing high granularity calorimeter endcapsfor its HL-LHC upgrade. The design foresees silicon sensors as the active material for the high radiation region close to the beampipe. Regions of lower radiation are additionally equipped with plastic scintillator tiles. This technology is similar to the calorimeter prototypes developed in the framework of the Linear Collider by the CALICE collaboration. The current status of the silicon sensor development is presented. Results of single diode measurements are shown as well as tests of full 6-inch hexagonal sensor wafers. A short summary of test beam results concludes the article.
Archimedes' principle in fluidized granular systems.
Huerta, D A; Sosa, Victor; Vargas, M C; Ruiz-Suárez, J C
2005-09-01
We fluidize a granular bed in a rectangular container by injecting energy through the lateral walls with high-frequency sinusoidal horizontal vibrations. In this way, the bed is brought to a steady state with no convection. We measured buoyancy forces on light spheres immersed in the bed and found that they obey Archimedes' principle. The buoyancy forces decrease when we reduce the injected energy. By measuring ascension velocities as a function of gamma, we can evaluate the frictional drag of the bed; its exponential dependence agrees very well with previous findings. Rising times of the intruders ascending through the bed were also measured, they increase monotonically as we increase the density.
Structure and cluster formation in granular media
Indian Academy of Sciences (India)
S Luding
2005-06-01
The two most important phenomena at the basis of granular media are excluded volume and dissipation. The former is captured by the hard sphere model and is responsible for, e.g., crystallization, the latter leads to interesting structures like clusters in non-equilibrium dynamical, freely cooling states. The freely cooling system is examined concerning the energy decay and the cluster evolution in time. Corrections for crystallization and multi-particle contacts are provided, which become more and more important with increasing density.
Starting to move through a granular medium
Energy Technology Data Exchange (ETDEWEB)
Costantino, D. J. [Pennsylvania State University; Scheidemantel, T. [Pennsylvania State University; Stone, Matthew B [ORNL; Conger, C. [Pennsylvania State University; Klein, K. [Pennsylvania State University; Lohr, M. [Pennsylvania State University; Modig, Z. [Pennsylvania State University; Schiffer, P. [Pennsylvania State University
2008-01-01
We explore the process of initiating motion through a granular medium by measuring the force required to push a flat circular plate upward from underneath the medium. In contrast to previous measurements of the drag and penetration forces, which were conducted during steady state motion, the initiation force has a robust dependence on the diameter of the grains forming the pile. We attribute this dependence to the requirement for local dilation of the grains around the circumference of the plate, as evidenced by an observed linear dependence of the initiation force on the plate diameter.
Brine Transport Experiments in Granular Salt
Energy Technology Data Exchange (ETDEWEB)
Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-06
To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.
Uphill solitary waves in granular flows
Martínez, E.; Pérez-Penichet, C.; Sotolongo-Costa, O.; Ramos, O.; Måløy, K. J.; Douady, S.; Altshuler, E.
2007-03-01
We have experimentally observed uphill solitary waves in the surface flow on a granular material. A heap is constructed by injecting sand between two vertical glass plates separated by a distance much larger than the average grain size, with an open boundary. As the heap reaches the open boundary, solitary fluctuations appear on the flowing layer and move “up the hill” (i.e., against the direction of the flow). We explain the phenomenon in the context of stop-and-go traffic models.
Flow and segregation in sheared granular slurries
Barentin, C.; Azanza, E.; Pouligny, B.
2004-04-01
We study the behaviour of a granular slurry, i.e., a very concentrated suspension of heavy (denser than the fluid) and polydisperse particles sheared between two parallel-plane circular disks. For small gaps, the slurry behaves as a 2d system with a characteristic radial size segregation of particles. For large gaps, the slurry responds as a 3d system, with considerable vertical segregation and a concomitant 2-phase (fluid, solid) flow structure. The thickness ζ of the fluid phase is the 2d-3d gap crossover. Surprisingly, ζ is found to be nearly unaffected by very large changes in the particle size distribution.
Modelling of dc characteristics for granular semiconductors
Energy Technology Data Exchange (ETDEWEB)
Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey, E-mail: aapo.varpula@tkk.f [Department of Micro and Nanosciences, Aalto University, PO Box 13500, FI-00076 Aalto, Espoo (Finland)
2010-11-01
The dc characteristics of granular n-type semiconductors are calculated analytically with the drift-diffusion theory. Electronic trapping at the grain boundaries (GBs) is taken into account. The use of quadratic and linear GB potential profiles in the calculation is compared. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is excellent in a large voltage range. The results show that electronic trapping at the GBs has a remarkable effect on the highly nonlinear I-V characteristics of the material.
Gravity-driven dense granular flows
Energy Technology Data Exchange (ETDEWEB)
ERTAS,DENIZ; GREST,GARY S.; HALSEY,THOMAS C.; DEVINE,DOV; SILBERT,LEONARDO E.
2000-03-29
The authors report and analyze the results of numerical studies of dense granular flows in two and three dimensions, using both linear damped springs and Hertzian force laws between particles. Chute flow generically produces a constant density profile that satisfies scaling relations suggestive of a Bagnold grain inertia regime. The type for force law has little impact on the behavior of the system. Failure is not initiated at the surface, consistent with the absence of surface flows and different principal stress directions at vs. below the surface.
Herbold, E. B.; Nesterenko, V. F.; Benson, D. J.; Cai, J.; Vecchio, K. S.; Jiang, F.; Addiss, J. W.; Walley, S. M.; Proud, W. G.
2008-11-01
The variation of metallic particle size and sample porosity significantly alters the dynamic mechanical properties of high density granular composite materials processed using a cold isostatically pressed mixture of polytetrafluoroethylene (PTFE), aluminum (Al), and tungsten (W) powders. Quasistatic and dynamic experiments are performed with identical constituent mass fractions with variations in the size of the W particles and pressing conditions. The relatively weak polymer matrix allows the strength and fracture modes of this material to be governed by the granular type behavior of agglomerated metal particles. A higher ultimate compressive strength was observed in relatively high porosity samples with small W particles compared to those with coarse W particles in all experiments. Mesoscale granular force chains of the metallic particles explain this unusual phenomenon as observed in hydrocode simulations of a drop-weight test. Macrocracks forming below the critical failure strain for the matrix and unusual behavior due to a competition between densification and fracture in dynamic tests of porous samples were also observed. Numerical modeling of shock loading of this granular composite material demonstrated that the internal energy, specifically thermal energy, of the soft PTFE matrix can be tailored by the W particle size distribution.
Numerical simulations of granular dynamics II: Particle dynamics in a shaken granular material
Murdoch, Naomi; Michel, Patrick; Richardson, Derek C.; Nordstrom, Kerstin; Berardi, Christian R.; Green, Simon F.; Losert, Wolfgang
2012-05-01
Surfaces of planets and small bodies of our Solar System are often covered by a layer of granular material that can range from a fine regolith to a gravel-like structure of varying depths. Therefore, the dynamics of granular materials are involved in many events occurring during planetary and small-body evolution thus contributing to their geological properties. We demonstrate that the new adaptation of the parallel N-body hard-sphere code pkdgrav has the capability to model accurately the key features of the collective motion of bidisperse granular materials in a dense regime as a result of shaking. As a stringent test of the numerical code we investigate the complex collective ordering and motion of granular material by direct comparison with laboratory experiments. We demonstrate that, as experimentally observed, the scale of the collective motion increases with increasing small-particle additive concentration. We then extend our investigations to assess how self-gravity and external gravity affect collective motion. In our reduced-gravity simulations both the gravitational conditions and the frequency of the vibrations roughly match the conditions on asteroids subjected to seismic shaking, though real regolith is likely to be much more heterogeneous and less ordered than in our idealised simulations. We also show that collective motion can occur in a granular material under a wide range of inter-particle gravity conditions and in the absence of an external gravitational field. These investigations demonstrate the great interest of being able to simulate conditions that are to relevant planetary science yet unreachable by Earth-based laboratory experiments.
Density-Driven segregation in Binary and Ternary Granular Systems
Windows-Yule, Kit; Parker, David
2015-01-01
We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of
Density-Driven segregation in Binary and Ternary Granular Systems
Windows-Yule, Kit; Parker, David
2015-01-01
We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of
Convective and segregative mechanisms in vibrofluidised granular systems
Windows-Yule, Kit
2015-01-01
Granular materials display a host of fascinating behaviours both remarkably similar to and strikingly different from those exhibited by classical solids, liquids and gases. Due to the ubiquity of granular materials, and their far-reaching importance in multitudinous natural and industrial processes,
An investigation into clustering and segregation in granular materials
Gonzalez Briones, J.S.L.
2013-01-01
In this thesis, I studied the dynamics of granular matter by means of theory, simulations, and experiments. I studied how patterns emerge from a seemly unrelated ensemble of grains in different configurations. I focused on cluster formations in free cooling granular gases, developed an algorithm for
Convective and segregative mechanisms in vibrofluidised granular systems
Windows-Yule, C.R.
2015-01-01
Granular materials display a host of fascinating behaviours both remarkably similar to and strikingly different from those exhibited by classical solids, liquids and gases. Due to the ubiquity of granular materials, and their far-reaching importance in multitudinous natural and industrial processes,
A Granular Computing Model Based on Tolerance relation
Institute of Scientific and Technical Information of China (English)
WANG Guo-yin; HU Feng; HUANG Hai; WU Yu
2005-01-01
Granular computing is a new intelligent computing theory based on partition of problem concepts. It is an important problem in Rough Set theory to process incomplete information systems directly. In this paper, a granular computing model based on tolerance relation for processing incomplete information systems is developed. Furthermore, a criteria condition for attribution necessity is proposed in this model.
Granularity of ATLAS Tile Calorimeter studied through simulations
Romero Hernandez, Anabel Cristina
2015-01-01
A small study, done through simulations, of the energy resolution of ATLAS Tile Calorimeter dependence on granularity is presented. The results could indicate that finer granularity of the calorimeter gives better energy resolution, although it would require better statistics to be sure.
Schema Design Alternatives for Multi-Granular Data Warehousing
DEFF Research Database (Denmark)
Iftikhar, Nadeem; Pedersen, Torben Bach
2010-01-01
that the schema designs are intended to simply store data at the same single level of granularity. This paper on the other hand, presents several extended dimensional data warehousing schema design alternatives to store both detail and aggregated data at different levels of granularity. The paper presents three...
Discrete and continuum descriptions of shaken granular matter
Rivas Abud, Nicolás
2015-01-01
The subject of this thesis is the dynamics of granular materials. Granular matter is defined as collections of macroscopic, dissipative particles. The size of the individual particles (grains) must be large enough so that thermal fluctuations may be ignored. The loss of kinetic energy at every grain
Surface effects in the acetylation of granular potato starch
Steeneken, P.A.M.; Woortman, A.J.J.
2008-01-01
The occurrence of surface effects in the acetylation of granular potato starch with acetic anhydride to degrees of substitution 0.04-0.2 was studied by two different approaches. The first approach involved the fractionation of granular starch acetates into five different size classes and analysis of
Nonlinear instability and convection in a vertically vibrated granular bed
Shukla, P.; Ansari, I.H.; van der Meer, Roger M.; Lohse, Detlef; Alam, M.
2014-01-01
The nonlinear instability of the density-inverted granular Leidenfrost state and the resulting convective motion in strongly shaken granular matter are analysed via a weakly nonlinear analysis of the hydrodynamic equations. The base state is assumed to be quasi-steady and the effect of harmonic
75 FR 67105 - Granular Polytetrafluoroethylene Resin From Italy and Japan
2010-11-01
... COMMISSION Granular Polytetrafluoroethylene Resin From Italy and Japan AGENCY: United States International... granular polytetrafluoroethylene resin from Italy and Japan. SUMMARY: The Commission hereby gives notice... polytetrafluoroethylene resin from Italy and Japan would be likely to lead to continuation or recurrence of...
USE OF GRANULAR GRAPHITE FOR ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE
Granular graphite is a potential electrode material for the electrochemical remediation of refractory chlorinated organic compounds such as trichloroethylene (TCE). However, the use of granular graphite can complicate the experimental results. On one hand, up to 99% of TCE was re...
Bioconversion of Selenate in Methanogenic Anaerobic Granular Sludge
Astratinei, V.; Hullebusch, van E.D.; Lens, P.N.L.
2006-01-01
The capacity of anaerobic granular sludge to remove selenate from contaminated wastewater was investigated. The potential of different types of granular sludge to remove selenate from the liquid phase was compared to that of suspended sludge and contaminated soil and sediment samples. The selenate r
Surface effects in the acetylation of granular potato starch
Steeneken, P.A.M.; Woortman, A.J.J.
2008-01-01
The occurrence of surface effects in the acetylation of granular potato starch with acetic anhydride to degrees of substitution 0.04-0.2 was studied by two different approaches. The first approach involved the fractionation of granular starch acetates into five different size classes and analysis of
Thermomechanics of the granular bed T-joint water heater
Teplitskii, Yu. S.; Belonovich, D. G.
2012-11-01
On the basis of the heat transfer model taking into account the radiative transport the temperature distribution and the resistance of the water heater with a granular packing having two independent air inlets have been investigated. The generalized dependence for calculating the resistance of the granular bed has been obtained.
Large mid-esophageal granular cell tumor: benign versus malignant
Directory of Open Access Journals (Sweden)
Prarthana Roselil Christopher
2015-06-01
Full Text Available Granular cell tumors are rare soft tissue neoplasms, among which only 2% are malignant, arising from nervous tissue. Here we present a case of a large esophageal granular cell tumor with benign histopathological features which metastasized to the liver, but showing on positron emission tomography-computerized tomography standardized uptake value suggestive of a benign lesion.
Nonlinear instability and convection in a vertically vibrated granular bed
Shukla, P.; Ansari, I.H.; Meer, van der R.M.; Lohse, D.; Alam, M.
2014-01-01
The nonlinear instability of the density-inverted granular Leidenfrost state and the resulting convective motion in strongly shaken granular matter are analysed via a weakly nonlinear analysis of the hydrodynamic equations. The base state is assumed to be quasi-steady and the effect of harmonic shak
Granular Leidenfrost effect: Experiment and theory of floating particle clusters
Eshuis, Peter; Meer, van der Devaraj; Weele, van der Ko; Lohse, Detlef
2005-01-01
Granular material is vertically vibrated in a 2D container: above a critical shaking strength, and for a sufficient number of beads, a crystalline cluster is elevated and supported by a dilute gaseous layer of fast beads underneath. We call this phenomenon the granular Leidenfrost effect. The experi
Long-range interactions in dilute granular systems
Müller, Micha-Klaus
2008-01-01
In this thesis, on purpose, we focussed on the most challenging, longest ranging potentials. We analyzed granular media of low densities obeying 1/r long-range interaction potentials between the granules. Such systems are termed granular gases and differ in their behavior from ordinary gases by diss
Statistics of large contact forces in granular matter
van Eerd, A.R.T.
2008-01-01
Granular materials such as sand have both liquid-like and solid-like properties similar to both liquids and solids. Dry sand in an hour-glass can flow just like water, while sand in a sand castle closely resembles a solid. Because of these interesting properties granular matter has received much att
2006-01-01
6 August 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a chain of clustered and battered craters. These were formed by secondary impact. That is, somewhere to the south (beyond the bottom of this image), a large impact crater formed. When this occurred, material ejected from the crater was thrown tens to hundreds of kilometers away. This material then impacted the martian surface, forming clusters and chains of smaller craters. Location near: 15.8oN, 35.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Northern Spring
Plowing of granular surface by a vertical blade
Judge, Vachitar Singh; Dressaire, Emilie; Sauret, Alban
2016-11-01
The interaction of a blade with a layer of fluid is an important industrial problem involved in coating of substrates, removing of snow, plowing the fields for agriculture. Most experimental and theoretical work has focused on the drag and lift forces on plowing blade as it is dragged on a granular surface or studying the flow of the fluid while plowing. However the study of deformation of a granular surface by a vertical plow blade has received less attention, despite significant practical and fundamental implications. In this study, we investigate experimentally the behavior of a granular substrate as a vertical plow blade of finite width is translated at constant speed. The vertical blade directs the granular material outward and sand piles form on either sides. We characterize the dynamics of plowing by measuring and rationalizing the influence of the width of the vertical plow blade, the height of the plow blade, and the depth granular substrate.
Formalization for Granular Computing Based on Logical Formulas
Institute of Scientific and Technical Information of China (English)
Lin Yan; Qing Liu
2006-01-01
In order to make formalization for granular computing, some kinds of formulas are constructed on a universe by a logical method. Every formula expresses a property, and can separate a semantic set which consists of all of the objects satisfying the formula. Therefore a granular space on the universe is produced based on the formulas,and the semantic sets separated by the formulas are taken as a formal definition for granules ,and are called abstract granules. Furthermore, it is proved that any specific granule from an extended mathematical system can be formalized into an abstract granule ,the conclusions is obtained that specific granules from approximate spaces and information systems can also be formalized into abstract granules. Based on a granular space and abstract granules, granular computing is defined, which finally realizes the goal of formalization for granular computing.
Self-burrowing seeds: drag reduction in granular media
Jung, Wonjong; Choi, Sung Mok; Kim, Wonjung; Kim, Ho-Young
2014-11-01
We present the results of a combined experimental and theoretical investigation of drag reduction of self-burrowing seeds in granular media. In response to environmental changes in humidity, the awn (a tail-like appendage of seed) of Pelargonium carnosum exhibits coiling-uncoiling deformation which induces the thrust and rotary motions of the head of the seed against the surface of the soil. Using various sizes of glass beads that mimic the granular soil, we measure the thrust forces required for the seed of Pelargonium carnosum to penetrate into granular media with and without rotation. Our quantitative measurements show that the rotation of the seed remarkably reduces the granular drag as compared to the drag against the non-spinning seed. This leads us to conclude that the hygroscopically active awns of Pelargonium carnosum enables its seed to dig into the relatively coarse granular soils.
The dynamics of thin vibrated granular layers
Energy Technology Data Exchange (ETDEWEB)
Melby, P [Department of Physics, Georgetown University, Washington, DC 20057 (United States); Vega Reyes, F [Department of Physics, Georgetown University, Washington, DC 20057 (United States); Prevost, A [Laboratoire de Physique Statistique de l' Ecole Normale Superieure, CNRS-UMR 8550, 24 rue Lhomond, 75231 Paris cedex 05 (France); Robertson, R [Department of Physics, Georgetown University, Washington, DC 20057 (United States); Kumar, P [Department of Physics, Georgetown University, Washington, DC 20057 (United States); Egolf, D A [Department of Physics, Georgetown University, Washington, DC 20057 (United States); Urbach, J S [Department of Physics, Georgetown University, Washington, DC 20057 (United States)
2005-06-22
We describe a series of experiments and computer simulations on vibrated granular media in a geometry chosen to eliminate gravitationally induced settling. The system consists of a collection of identical spherical particles on a horizontal plate vibrating vertically, with or without a confining lid. Previously reported results are reviewed, including the observation of homogeneous, disordered liquid-like states, an instability to a 'collapse' of motionless spheres on a perfect hexagonal lattice, and a fluctuating, hexagonally ordered state. In the presence of a confining lid we see a variety of solid phases at high densities and relatively high vibration amplitudes, several of which are reported for the first time in this article. The phase behaviour of the system is closely related to that observed in confined hard-sphere colloidal suspensions in equilibrium, but with modifications due to the effects of the forcing and dissipation. We also review measurements of velocity distributions, which range from Maxwellian to strongly non-Maxwellian depending on the experimental parameter values. We describe measurements of spatial velocity correlations that show a clear dependence on the mechanism of energy injection. We also report new measurements of the velocity autocorrelation function in the granular layer and show that increased inelasticity leads to enhanced particle self-diffusion.
Drop floating on a granular raft
Jambon-Puillet, Etienne; Josserand, Christophe; Protiere, Suzie
2015-11-01
When a droplet comes in contact with a bath of the same liquid, it coalesces to minimize the surface energy. This phenomenon reduces emulsion stability and is usually fought with surfactant molecules. Another way to slow down coalescence is to use colloidal solid particles. In this case the particles spontaneously migrate to the interface to form ``Pickering'' emulsions and act as a barrier between droplets. Here we use dense, large particles (~ 500 μm) which form a monolayer at an oil/water interface that we call a granular raft. When a droplet is placed on top of such a raft, for a given set of particle properties (contact angle/size), the raft prevents coalescence indefinitely. However, in contrast to what happens when a droplet is placed on a hydrophobic surface and never wets the surface, here the droplet is strongly anchored to the raft and deforms it. We will use this specific configuration to probe the mechanical response of the granular raft: by controlling the droplet volume we can impose tensile or compressive stresses. Finally we will show that the drop, spherical at first, slowly takes a more complex shape as it's volume increases. This shape is not reversible as the drop volume is decreased. The drop can become oblate or prolate with wrinkling of the raft.
Size segregation in a granular bore
Edwards, A. N.; Vriend, N. M.
2016-10-01
We investigate the effect of particle-size segregation in an upslope propagating granular bore. A bidisperse mixture of particles, initially normally graded, flows down an inclined chute and impacts with a closed end. This impact causes the formation of a shock in flow thickness, known as a granular bore, to travel upslope, leaving behind a thick deposit. This deposit imprints the local segregated state featuring both pure and mixed regions of particles as a function of downstream position. The particle-size distribution through the depth is characterized by a thin purely small-particle layer at the base, a significant linear transition region, and a thick constant mixed-particle layer below the surface, in contrast to previously observed S-shaped steady-state concentration profiles. The experimental observations agree with recent progress that upward and downward segregation of large and small particles respectively is asymmetric. We incorporate the three-layer, experimentally observed, size-distribution profile into a depth-averaged segregation model to modify it accordingly. Numerical solutions of this model are able to match our experimental results and therefore motivate the use of a more general particle-size distribution profile.
Origin of Rigidity in Dry Granular Solids
Sarkar, Sumantra; Bi, Dapeng; Zhang, Jie; Behringer, R. P.; Chakraborty, Bulbul
2013-08-01
Solids are distinguished from fluids by their ability to resist shear. In traditional solids, the resistance to shear is associated with the emergence of broken translational symmetry as exhibited by a nonuniform density pattern. In this work, we focus on the emergence of shear rigidity in a class of solids where this paradigm is challenged. Dry granular materials have no energetically or entropically preferred density modulations. We show that, in contrast to traditional solids, the emergence of shear rigidity in these granular solids is a collective process, which is controlled solely by boundary forces, the constraints of force and torque balance, and the positivity of the contact forces. We develop a theoretical framework based on these constraints, which connects rigidity to broken translational symmetry in the space of forces, not positions of grains. We apply our theory to experimentally generated shear-jammed states and show that these states are indeed characterized by a persistent, non-uniform density modulation in force space, which emerges at the shear-jamming transition.
Congenital granular cell epulis of a newborn
Directory of Open Access Journals (Sweden)
Kshitij O Bang
2012-01-01
Full Text Available The congenital granular cell epulis (CGCE is a rare tumor, which is apparent at birth. The histogenesis is still uncertain, but several theories, including origin from epithelial, undifferentiated mesenchymal cells, pericytes, fibroblasts, smooth muscle cells, and nerve-related cells have been proposed. This case report describes management of a 2-day-old baby girl having a large, round, soft, single 3 × 4 cm, pedunculated swelling, on the lower anterior ridge, which was causing difficulty in feeding. Clinical diagnosis of congenital epulis (CE was made and lesion was excised under conscious sedation. A vessel running over the surface of the lesion was continuous on the alveolar ridge. To reduce intra-operative hemorrhage transfixion suture was passed around the vessel on the alveolar ridge. Then the lesion was excised from the base of peduncle with a scalpel. Histopathologically, the diagnosis of a congenital granular cell lesion of the jaw was given. Follow up of 3 months shows no signs of recurrence. CGCE may interfere with feeding, requiring a conservative excision as soon as the child is fit to undergo surgery. Tendency for recurrence and malignant transformation has not been documented.
Pressure-shear experiments on granular materials.
Energy Technology Data Exchange (ETDEWEB)
Reinhart, William Dodd (Sandia National Laboratories, Albuquerque, NM); Thornhill, Tom Finley, III (, Sandia National Laboratories, Albuquerque, NM); Vogler, Tracy John; Alexander, C. Scott (Sandia National Laboratories, Albuquerque, NM)
2011-10-01
Pressure-shear experiments were performed on granular tungsten carbide and sand using a newly-refurbished slotted barrel gun. The sample is a thin layer of the granular material sandwiched between driver and anvil plates that remain elastic. Because of the obliquity, impact generates both a longitudinal wave, which compresses the sample, and a shear wave that probes the strength of the sample. Laser velocity interferometry is employed to measure the velocity history of the free surface of the anvil. Since the driver and anvil remain elastic, analysis of the results is, in principal, straightforward. Experiments were performed at pressures up to nearly 2 GPa using titanium plates and at higher pressure using zirconium plates. Those done with the titanium plates produced values of shear stress of 0.1-0.2 GPa, with the value increasing with pressure. On the other hand, those experiments conducted with zirconia anvils display results that may be related to slipping at an interface and shear stresses mostly at 0.1 GPa or less. Recovered samples display much greater particle fracture than is observed in planar loading, suggesting that shearing is a very effective mechanism for comminution of the grains.
Rainwater Channelization and Infiltration in Granular Media
Cejas, Cesare; Wei, Yuli; Barrois, Remi; Durian, Douglas; Dreyfus, Remi; Compass Team
2013-03-01
We investigate the formation of fingered flow in dry granular media under simulated rainfall using a quasi-2D experimental set-up composed of a random close packing of mono-disperse glass beads. We determine effects of grain diameter and surface wetting properties on the formation and infiltration of water channels. For hydrophilic granular media, rainwater initially infiltrates a shallow top layer of soil creating a uniform horizontal wetting front before instabilities occur and grow to form water channels. For hydrophobic media, rainwater ponds on the soil surface rather than infiltrates and water channels may still occur at a later time when the hydraulic pressure of the ponding water exceeds the capillary repellency of the soil. We probe the kinetics of the fingering instabilities that serve as precursors for the growth and drainage of water channels. We also examine the effects of several different methods on improving rainwater channelization such as varying the level of pre-saturation, modifying the soil surface flatness, and adding superabsorbent hydrogel particles.
Sand transport, erosion and granular electrification
DEFF Research Database (Denmark)
Merrison, J.P.
2012-01-01
The transport of granular materials by wind has a major impact on our environment through sand/soil erosion and the generation and transport of atmospheric dust aerosols. Terrestrially the transport of dust involves billions of tons of material every year, influencing the global climate and impac......The transport of granular materials by wind has a major impact on our environment through sand/soil erosion and the generation and transport of atmospheric dust aerosols. Terrestrially the transport of dust involves billions of tons of material every year, influencing the global climate...... can affect grain transport through the generation of intense electric fields and processes of electrostatic assembly. Importantly the transport of sand is characterized by saltation, which is known to be an active process for erosion and therefore a source for dust and sand formation. Using novel...... erosion simulation techniques the link between grain transport rates and erosion rates has been quantified. Furthermore this can be linked to production rates for dust and has been associated with chemical and mineral alteration through a process of mechanical activation of fractured surfaces. This work...
Magnetic resonance imaging of granular materials
Stannarius, Ralf
2017-05-01
Magnetic Resonance Imaging (MRI) has become one of the most important tools to screen humans in medicine; virtually every modern hospital is equipped with a Nuclear Magnetic Resonance (NMR) tomograph. The potential of NMR in 3D imaging tasks is by far greater, but there is only "a handful" of MRI studies of particulate matter. The method is expensive, time-consuming, and requires a deep understanding of pulse sequences, signal acquisition, and processing. We give a short introduction into the physical principles of this imaging technique, describe its advantages and limitations for the screening of granular matter, and present a number of examples of different application purposes, from the exploration of granular packing, via the detection of flow and particle diffusion, to real dynamic measurements. Probably, X-ray computed tomography is preferable in most applications, but fast imaging of single slices with modern MRI techniques is unmatched, and the additional opportunity to retrieve spatially resolved flow and diffusion profiles without particle tracking is a unique feature.
Discrete particle modelling of granular roll waves
Tsang, Jonathan; Dalziel, Stuart; Vriend, Nathalie
2016-11-01
A granular current flowing down an inclined chute or plane can undergo an instability that leads to the formation of surface waves, known as roll waves. Examples of roll waves are found in avalanches and debris flows in landslides, and in many industrial processes. Although related to the Kapitza instability of viscous fluid films, granular roll waves are not yet as well understood. Laboratory experiments typically measure the surface height and velocity of a current as functions of position and time, but they do not give insight into the processes below the surface: in particular, the possible formation of a boundary layer at the free surface as well as the base. To overcome this, we are running discrete particle model (DPM) simulations. Simulations are validated against our laboratory experiments, but they also allow us to examine a much larger range of parameters, such as material properties, chute geometry and particle size dispersity, than that which is possible in the lab. We shall present results from simulations in which we vary particle size and dispersity, and examine the implications on roll wave formation and propagation. Future work will include simulations in which the shape of the chute is varied, both cross-sectionally and in the downstream direction. EPSRC studentship (Tsang) and Royal Society Research Fellowship (Vriend).
Nonlocal modeling of granular flows down inclines.
Kamrin, Ken; Henann, David L
2015-01-07
Flows of granular media down a rough inclined plane demonstrate a number of nonlocal phenomena. We apply the recently proposed nonlocal granular fluidity model to this geometry and find that the model captures many of these effects. Utilizing the model's dynamical form, we obtain a formula for the critical stopping height of a layer of grains on an inclined surface. Using an existing parameter calibration for glass beads, the theoretical result compares quantitatively to existing experimental data for glass beads. This provides a stringent test of the model, whose previous validations focused on driven steady-flow problems. For layers thicker than the stopping height, the theoretical flow profiles display a thickness-dependent shape whose features are in agreement with previous discrete particle simulations. We also address the issue of the Froude number of the flows, which has been shown experimentally to collapse as a function of the ratio of layer thickness to stopping height. While the collapse is not obvious, two explanations emerge leading to a revisiting of the history of inertial rheology, which the nonlocal model references for its homogeneous flow response.
Compaction and shear settlement of granular materials
Morland, L. W.
1993-03-01
S HEARING of granular materials causes rearrangement of the granular structure which induces irreversible volume decrease and shear strain, in addition to reversible strain. A model is presented which describes the reversible strain by a hypoelastic law, and the irreversible compaction and shear by evolutionary laws. The latter are differential relations defining the progress of irreversible strain as an appropriate time-independent monotonic loading parameter increases, which incorporate dependence on the current state, and which require a direction for the irreversible shear strain increment. Such a model allows a variety of choices and combinations for the loading parameter, shear increment direction and arguments reflecting the current state. A wide selection of possible choices is incorporated in a systematic analysis of the initial shearing response of an unstressed material. It is shown that a physically sensible response restricts the choice to essentially two forms of dependence, and further restricts the initial shapes of the constitutive functions. The simpler model form reduces to three coupled non-linear differential equations for shearing, from which some general conclusions can be drawn, and numerical illustrations for shear stress and shear strain cycling are presented for simple valid model functions.
Lizard locomotion in heterogeneous granular media
Schiebel, Perrin; Goldman, Daniel
2014-03-01
Locomotion strategies in heterogeneous granular environments (common substrates in deserts), are relatively unexplored. The zebra-tailed lizard (C. draconoides) is a useful model organism for such studies owing to its exceptional ability to navigate a variety of desert habitats at impressive speed (up to 50 body-lengths per second) using both quadrapedal and bidepal gaits. In laboratory experiments, we challenge the lizards to run across a field of boulders (2.54 cm diameter glass spheres or 3.8 cm 3D printed spheres) placed in a lattice pattern and embedded in a loosely packed granular medium of 0.3 mm diameter glass particles. Locomotion kinematics of the lizard are recorded using high speed cameras, with and without the scatterers. The data reveals that unlike the lizard's typical quadrupedal locomotion using a diagonal gait, when scatterers are present the lizard is most successful when using a bipedal gait, with a raised center of mass (CoM). We propose that the kinematics of bipedal running in conjunction with the lizard's long toes and compliant hind foot are the keys to this lizard's successful locomotion in the presence of such obstacles. NSF PoLS
Granular motions near the threshold of entrainment
Valyrakis, Manousos; Alexakis, athanasios-Theodosios
2016-04-01
Our society is continuously impacted by significant weather events many times resulting in catastrophes that interrupt our normal way of life. In the context of climate change and increasing urbanisation these "extreme" hydrologic events are intensified both in magnitude and frequency, inducing costs of the order of billions of pounds. The vast majority of such costs and impacts (even more to developed societies) are due to water related catastrophes such as the geomorphic action of flowing water (including scouring of critical infrastructure, bed and bank destabilisation) and flooding. New tools and radically novel concepts are in need, to enable our society becoming more resilient. This presentation, emphasises the utility of inertial sensors in gaining new insights on the interaction of flow hydrodynamics with the granular surface at the particle scale and for near threshold flow conditions. In particular, new designs of the "smart-sphere" device are discussed with focus on the purpose specific sets of flume experiments, designed to identify the exact response of the particle resting at the bed surface for various below, near and above threshold flow conditions. New sets of measurements are presented for particle entrainment from a Lagrangian viewpoint. Further to finding direct application in addressing real world challenges in the water sector, it is shown that such novel sensor systems can also help the research community (both experimentalists and computational modellers) gain a better insight on the underlying processes governing granular dynamics.
Tordesillas, Antoinette; Pucilowski, Sebastian; Lin, Qun; Peters, John F.; Behringer, Robert P.
2016-05-01
We relate the micromechanics of vortex evolution to that of force chain buckling and, on this basis, formulate the conditions for strain localization in a continuum model of dense granular media. Using the traditional bifurcation analysis of shear bands, we show that kinematic vortex fields are in fact solutions to the boundary value problem satisfying null boundary conditions. To establish an empirical basis for our study, we first develop a method to identify the location of the core and boundary of each vortex from a given displacement field in two dimensions. We then employ this method to characterize the residual deformation field (i.e., the deviation of particle motions from the continuum deformation) in a physical experiment and a discrete element simulation of dense granular samples submitted to biaxial compression. Vortices in the failure regime are essentially confined to the shear band. Primary vortices, the clear majority, rotate in the same direction as the shear band; secondary vortices, the so-called wakes, rotate in the opposite direction. Primary vortices align in spatial succession along the central axis of the band; wakes form next to the band boundaries, in between and beside two adjacent primary vortices. Force chain buckling, the governing mechanism for shear bands, is responsible for vortex formation in the failure regime. Vortex dynamics are consistent with stick-slip dynamics. From quiescent conditions of jamming or stick, vortical motions arise from force chain buckling and associated relative particle rotations and sliding; these in turn precipitate intermittent periods of unjamming or slip, evident in the attendant drops in stress ratio and bursts in both kinetic energy and local nonaffine deformation. A kinematic vortex field inside shear bands is proposed that is consistent with the equations of continuum mechanics and the underlying instability of force chain buckling: such a field is periodic with a repeating unit cell comprising a
Graphene Oxide as a Monoatomic Blocking Layer
DEFF Research Database (Denmark)
Petersen, Søren; Glyvradal, Magni; Bøggild, Peter
2012-01-01
Monolayer graphene oxide (mGO) is shown to effectively protect molecular thin films from reorganization and function as an atomically thin barrier for vapor-deposited Ti/Al metal top electrodes. Fragile organic Langmuir–Blodgett (LB) films of C22 fatty acid cadmium salts (cadmium(II) behenate) were...
Dartevelle, SéBastien
2004-08-01
Geophysical granular materials display a wide variety of behaviors and features. Typically, granular flows (1) are multiphase flows, (2) are very dissipative over many different scales, (3) display a wide range of grain concentrations, and (4), as a final result of these previous features, display complex nonlinear, nonuniform, and unsteady rheologies. Therefore the objectives of this manuscript are twofold: (1) setting up a hydrodynamic model which acknowledges the multiphase nature of granular flows and (2) defining a comprehensive rheological model which accounts for all the different forms of viscous dissipations within granular flows at any concentration. Hence three important regimes within granular flows must be acknowledged: kinetic (pure free flights of grain), kinetic-collisional, and frictional. The momentum and energy transfer will be different according to the granular regimes, i.e., strain rate dependent in the kinetic and kinetic-collisional cases and strain rate independent in the frictional case. A "universal" granular rheological model requires a comprehensive unified stress tensor able to adequately describe viscous stress within the flow for any of these regimes, and without imposing a priori what regime will dominate over the others. The kinetic-collisional viscous regime is defined from a modified Boltzmann's kinetic theory of dense gas. The frictional viscous regime is defined from the plastic potential and the critical state theories which account for compressibility of granular matter (e.g., dilatancy, consolidation, and critical state). In the companion paper [, 2004] we will introduce a multiphase computer code, (G)MFIX, which accounts for all the granular regimes and rheology and present typical simulations of diluted (e.g., plinian clouds) and concentrated geophysical granular flows (i.e., pyroclastic flows and surges).
准静态颗粒流流动规律的热力学分析%Non-equilibrium thermo dynamic analysis of quasi-static granular flows
Institute of Scientific and Technical Information of China (English)
刘中淼; 孙其诚; 宋世雄; 史庆藩
2014-01-01
本文分析了颗粒流的介观结构及其特征,提出了颗粒流的双颗粒温度概念T kin 和T conf,表征颗粒无序运动和构型无序演化的程度；进而作为非平衡变量,与经典非平衡热力学(classical irreversible thermodynamics, CIT)变量共同构成颗粒流的热力学状态变量集,确定了颗粒流的能量转换规律和熵产生率等,发展了颗粒流双颗粒温度(two granular temperate, TGT)模型。以体积恒定的简单剪切准静态颗粒流为例,结合离散元模拟(discrete element method, DEM),确定了双颗粒温度模型所需的材料参数,分析了颗粒流发展段的规律和稳恒段的有效摩擦系数。%Granular flow is usually divided into three kinds of flow pattern, namely quasi static flow, slow flow, and rapid flow. The core issue of the research is the constitutive relation. A series of constitutive relations of application value have been received up to now, however, the study on principal theory is insufficient. Granular flow has an emergent mesoscopic structure, such as force chain network and vortex, involving complex irreversible processes. This paper studies its mesoscopic structure and principal characters, introduces the concept of two granular temperatures T conf and T kin of the granular flow to characterize the degree of chaotic motion and disordered configuration evolution, sets them as the non-equilibrium variables to constitute the thermodynamic state variables set for granular flow with the classical irreversible thermodynamic (CIT) variables, also determines the granular flow law of energy conversion and the entropy production rate, etc., and develops the two granular temperatures (TGT) model. Taking the simple shear quasi-static granular flow in a constant volume as example, and combining it with the discrete element method (DEM), this work confirms the material parameters needed for the TGT model, and analyzes the law of developing period and the effective coefficient of
Electronic and magnetic properties of spiral spin-density-wave states in transition-metal chains
Tanveer, M.; Ruiz-Díaz, P.; Pastor, G. M.
2016-09-01
The electronic and magnetic properties of one-dimensional (1D) 3 d transition-metal nanowires are investigated in the framework of density functional theory. The relative stability of collinear and noncollinear (NC) ground-state magnetic orders in V, Mn, and Fe monoatomic chains is quantified by computing the frozen-magnon dispersion relation Δ E (q ⃗) as a function of the spin-density-wave vector q ⃗. The dependence on the local environment of the atoms is analyzed by varying systematically the lattice parameter a of the chains. Electron correlation effects are explored by comparing local spin-density and generalized-gradient approximations to the exchange and correlation functional. Results are given for Δ E (q ⃗) , the local magnetic moments μ⃗i at atom i , the magnetization-vector density m ⃗(r ⃗) , and the local electronic density of states ρi σ(ɛ ) . The frozen-magnon dispersion relations are analyzed from a local perspective. Effective exchange interactions Ji j between the local magnetic moments μ⃗i and μ⃗j are derived by fitting the ab initio Δ E (q ⃗) to a classical 1D Heisenberg model. The dominant competing interactions Ji j at the origin of the NC magnetic order are identified. The interplay between the various Ji j is revealed as a function of a in the framework of the corresponding magnetic phase diagrams.
Granular Media under Vibration in Zero Gravity: Transition from Rattling to Granular Gas
Evesque, P; Zhai, G; Hou, M
2011-01-01
We report on different experimental behaviours of granular dissipative matter excited by vibration as studied during the 43rd ESA campaign of Airbus A300-0g from CNES. The effect of g-jitter is quantified through the generation of a rattle effect. The French-European team's electromagnetic set-up is used, with 20Hz cam recording and high speed camera for a short duration (1s) during each parabola.
On the submerging of a spherical intruder into granular beds
Directory of Open Access Journals (Sweden)
Wu Chuan-Yu
2017-01-01
Full Text Available Granular materials are complex systems and their mechanical behaviours are determined by the material properties of individual particles, the interaction between particles and the surrounding media, which are still incompletely understood. Using an advanced discrete element method (DEM, we simulate the submerging process of a spherical projectile (an intruder into granular materials of various properties with a zero penetration velocity (i.e. the intruder is touching the top surface of the granular bed and released from stationary and examine its settling behaviour. By systematically changing the density and size of the intruder and the particle density (i.e. the density of the particles in the granular bed, we find that the intruder can sink deep into the granular bed even with a zero penetration velocity. Furthermore, we confirm that under certain conditions the granular bed can behave like a Newtonian liquid and the submerging intruder can reach a constant velocity, i.e. the terminal velocity, identical to the settling of a sphere in a liquid, as observed experimentally. A mathematical model is also developed to predict the maximum penetration depth of the intruder. The model predictions are compared with experimental data reported in the literature,good agreement was obtained, demonstrating the model can accurately predict the submerging behaviour of the intruder in the granular media.
S-100 Negative Granular Cell Tumor of the Oral Cavity.
Solomon, Lynn W; Velez, Ines
2016-09-01
Classic granular cell tumor is a mesenchymal neoplasm that commonly occurs on the skin, but is not infrequently found in the oral cavity, primarily on the dorsal tongue. Diagnosis is usually straightforward with hematoxylin and eosin stained slides. Immunohistochemical studies on classic granular cell tumor shows positive immunostaining for S-100 and vimentin, while CD68 is variably positive. We report a case of otherwise unremarkable oral granular cell tumor that was immunohistochemically negative for S-100, and positive for vimentin and CD68, and discuss the differential diagnosis. The results of the immunohistochemical studies in our case are compared with those of classic S-100 positive oral granular cell tumors, as well as cutaneous and oral S-100 negative granular cell tumors. Classic S-100 positive granular cell tumors and S-100 negative granular cell tumors of the oral cavity can only be distinguished by immunohistochemical studies; however, the necessity of this distinction is unclear, as both are benign lesions in which recurrence is unlikely.
Mori, Kentaro; Kaneko, Kenji; Hashizume, Yutaka
2017-06-01
The short fiber mixing method is well known as one of the method to improve the strength of gran- ular soils in geotechnical engineering. Mechanical properties of the short fiber mixing granular materials are influenced by many factors, such as the mixture ratio of the short fiber, the material of short fiber, the length, and the orientation. In particular, the mixture ratio of the short fibers is very important in mixture design. In the past study, we understood that the strength is reduced by too much short fiber mixing by a series of tri-axial compression experiments. Namely, there is "optimum mixture ratio" in the short fiber mixing granular soils. In this study, to consider the mechanism of occurrence of the optimum mixture ratio, we carried out the numerical experiments by granular element method. As the results, we can understand that the strength decrease when too much grain-fiber contact points exist, because a friction coefficient is smaller than the grain-grain contact points.
Viscoinertial regime of immersed granular flows
Amarsid, L.; Delenne, J.-Y.; Mutabaruka, P.; Monerie, Y.; Perales, F.; Radjai, F.
2017-07-01
By means of extensive coupled molecular dynamics-lattice Boltzmann simulations, accounting for grain dynamics and subparticle resolution of the fluid phase, we analyze steady inertial granular flows sheared by a viscous fluid. We show that, for a broad range of system parameters (shear rate, confining stress, fluid viscosity, and relative fluid-grain density), the frictional strength and packing fraction can be described by a modified inertial number incorporating the fluid effect. In a dual viscous description, the effective viscosity diverges as the inverse square of the difference between the packing fraction and its jamming value, as observed in experiments. We also find that the fabric and force anisotropies extracted from the contact network are well described by the modified inertial number, thus providing clear evidence for the role of these key structural parameters in dense suspensions.
Shape of impact craters in granular media.
de Vet, Simon J; de Bruyn, John R
2007-10-01
We present the results of experiments studying the shape of craters formed by the normal impact of a solid spherical projectile into a deep noncohesive granular bed at low energies. The resultant impact crater surfaces are accurately digitized using laser profilometry, allowing for the detailed investigation of the crater shape. We find that these impact craters are very nearly hyperbolic in profile. Crater radii and depths are dependent on impact energy, as well as the projectile density and size. The precise crater shape is a function of the crater aspect ratio. While the dimensions of the crater are highly dependent on the impact energy, we show that the energy required to excavate the crater is only a tiny fraction (0.1%-0.5%) of the kinetic energy of the projectile.
Hyperstaticity and loops in frictional granular packings
Tordesillas, Antoinette; Lam, Edward; Metzger, Philip T.
2009-06-01
The hyperstatic nature of granular packings of perfectly rigid disks is analyzed algebraically and through numerical simulation. The elementary loops of grains emerge as a fundamental element in addressing hyperstaticity. Loops consisting of an odd number of grains behave differently than those with an even number. For odd loops, the latent stresses are exterior and are characterized by the sum of frictional forces around each loop. For even loops, the latent stresses are interior and are characterized by the alternating sum of frictional forces around each loop. The statistics of these two types of loop sums are found to be Gibbsian with a "temperature" that is linear with the friction coefficient μ when μ<1.
Laws of granular solids: geometry and topology.
DeGiuli, Eric; McElwaine, Jim
2011-10-01
In a granular solid, mechanical equilibrium requires a delicate balance of forces at the disordered grain scale. To understand how macroscopic rigidity can emerge in this amorphous solid, it is crucial that we understand how Newton's laws pass from the disordered grain scale to the laboratory scale. In this work, we introduce an exact discrete calculus, in which Newton's laws appear as differential relations at the scale of a single grain. Using this calculus, we introduce gauge variables that describe identically force- and torque-balanced configurations. In a first, intrinsic formulation, we use the topology of the contact network, but not its geometry. In a second, extrinsic formulation, we introduce geometry with the Delaunay triangulation. These formulations show, with exact methods, how topology and geometry in a disordered medium are related by constraints. In particular, we derive Airy's expression for a divergence-free, symmetric stress tensor in two and three dimensions.
Granular neural networks, pattern recognition and bioinformatics
Pal, Sankar K; Ganivada, Avatharam
2017-01-01
This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinf...
Frictional granular mechanics: A variational approach
Energy Technology Data Exchange (ETDEWEB)
Holtzman, R.; Silin, D.B.; Patzek, T.W.
2009-10-16
The mechanical properties of a cohesionless granular material are evaluated from grain-scale simulations. Intergranular interactions, including friction and sliding, are modeled by a set of contact rules based on the theories of Hertz, Mindlin, and Deresiewicz. A computer generated, three-dimensional, irregular pack of spherical grains is loaded by incremental displacement of its boundaries. Deformation is described by a sequence of static equilibrium configurations of the pack. A variational approach is employed to find the equilibrium configurations by minimizing the total work against the intergranular loads. Effective elastic moduli are evaluated from the intergranular forces and the deformation of the pack. Good agreement between the computed and measured moduli, achieved with no adjustment of material parameters, establishes the physical soundness of the proposed model.
Bubbles Rising Through a Soft Granular Material
Le Mestre, Robin; MacMinn, Chris; Lee, Sungyon
2016-11-01
Bubble migration through a soft granular material involves a strong coupling between the bubble dynamics and the deformation of the material. This is relevant to a variety of natural processes such as gas venting from sediments and gas exsolution from magma. Here, we study this process experimentally by injecting air bubbles into a quasi-2D packing of soft hydrogel beads and measuring the size, speed, and morphology of the bubbles as they rise due to buoyancy. Whereas previous work has focused on deformation resisted by intergranular friction, we focus on the previously inaccessible regime of deformation resisted by elasticity. At low confining stress, the bubbles are irregular and rounded, migrating via local rearrangement. At high confining stress, the bubbles become unstable and branched, migrating via pathway opening. The authors thank The Royal Society for support (International Exchanges Ref IE150885).
Gaussian kinetic model for granular gases.
Dufty, James W; Baskaran, Aparna; Zogaib, Lorena
2004-05-01
A kinetic model for the Boltzmann equation is proposed and explored as a practical means to investigate the properties of a dilute granular gas. It is shown that all spatially homogeneous initial distributions approach a universal "homogeneous cooling solution" after a few collisions. The homogeneous cooling solution (HCS) is studied in some detail and the exact solution is compared with known results for the hard sphere Boltzmann equation. It is shown that all qualitative features of the HCS, including the nature of overpopulation at large velocities, are reproduced by the kinetic model. It is also shown that all the transport coefficients are in excellent agreement with those from the Boltzmann equation. Also, the model is specialized to one having a velocity independent collision frequency and the resulting HCS and transport coefficients are compared to known results for the Maxwell model. The potential of the model for the study of more complex spatially inhomogeneous states is discussed.
Blow up Analysis for Anomalous Granular Gases
Rey, Thomas
2011-01-01
We investigate in this article the long-time behaviour of the solutions to the energy-dependent, spatially-homogeneous, inelastic Boltzmann equation for hard spheres. This model describes a diluted gas composed of hard spheres under statistical description, that dissipates energy during collisions. We assume that the gas is "anomalous", in the sense that the energy dissipation increases when the temperature decreases. This allows the gas to cool down in finite time. We study the existence, uniqueness and attractiveness of blow up profiles for this model and the cooling law associated, generalizing the classical Haff's Law for granular gases. To this end, we give some new estimates about the third order moment of the inelastic Boltzmann equation with drift term and we introduce new strongly "non-linear" self-similar variables
Geometrical families of mechanically stable granular packings
Gao, Guo-Jie; Blawzdziewicz, Jerzy; O'Hern, Corey S.
2009-12-01
We enumerate and classify nearly all of the possible mechanically stable (MS) packings of bidipserse mixtures of frictionless disks in small sheared systems. We find that MS packings form continuous geometrical families, where each family is defined by its particular network of particle contacts. We also monitor the dynamics of MS packings along geometrical families by applying quasistatic simple shear strain at zero pressure. For small numbers of particles (N16 , we observe an increase in the period and random splittings of the trajectories caused by bifurcations in configuration space. We argue that the ratio of the splitting and contraction rates in large systems will determine the distribution of MS-packing geometrical families visited in steady state. This work is part of our long-term research program to develop a master-equation formalism to describe macroscopic slowly driven granular systems in terms of collections of small subsystems.
Information granularity, big data, and computational intelligence
Chen, Shyi-Ming
2015-01-01
The recent pursuits emerging in the realm of big data processing, interpretation, collection and organization have emerged in numerous sectors including business, industry, and government organizations. Data sets such as customer transactions for a mega-retailer, weather monitoring, intelligence gathering, quickly outpace the capacities of traditional techniques and tools of data analysis. The 3V (volume, variability and velocity) challenges led to the emergence of new techniques and tools in data visualization, acquisition, and serialization. Soft Computing being regarded as a plethora of technologies of fuzzy sets (or Granular Computing), neurocomputing and evolutionary optimization brings forward a number of unique features that might be instrumental to the development of concepts and algorithms to deal with big data. This carefully edited volume provides the reader with an updated, in-depth material on the emerging principles, conceptual underpinnings, algorithms and practice of Computational Intelligenc...
Frictional granular mechanics: A variational approach
Energy Technology Data Exchange (ETDEWEB)
Holtzman, R.; Silin, D.B.; Patzek, T.W.
2009-10-16
The mechanical properties of a cohesionless granular material are evaluated from grain-scale simulations. Intergranular interactions, including friction and sliding, are modeled by a set of contact rules based on the theories of Hertz, Mindlin, and Deresiewicz. A computer generated, three-dimensional, irregular pack of spherical grains is loaded by incremental displacement of its boundaries. Deformation is described by a sequence of static equilibrium configurations of the pack. A variational approach is employed to find the equilibrium configurations by minimizing the total work against the intergranular loads. Effective elastic moduli are evaluated from the intergranular forces and the deformation of the pack. Good agreement between the computed and measured moduli, achieved with no adjustment of material parameters, establishes the physical soundness of the proposed model.
Cotunneling and polaronic effect in granular systems
Ioselevich, A. S.; Sivak, V. V.
2017-06-01
We theoretically study the conductivity in arrays of metallic grains due to the variable-range multiple cotunneling of electrons with short-range (screened) Coulomb interaction. The system is supposed to be coupled to random stray charges in the dielectric matrix that are only loosely bounded to their spatial positions by elastic forces. The flexibility of the stray charges gives rise to a polaronic effect, which leads to the onset of Arrhenius-type conductivity behavior at low temperatures, replacing conventional Mott variable-range hopping. The effective activation energy logarithmically depends on temperature due to fluctuations of the polaron barrier heights. We present the unified theory that covers both weak and strong polaron effect regimes of hopping in granular metals and describes the crossover from elastic to inelastic cotunneling.
Granular segregation driven by particle interactions.
Lozano, C; Zuriguel, I; Garcimartín, A; Mullin, T
2015-05-01
We report the results of an experimental study of particle-particle interactions in a horizontally shaken granular layer that undergoes a second order phase transition from a binary gas to a segregation liquid as the packing fraction C is increased. By focusing on the behavior of individual particles, the effect of C is studied on (1) the process of cluster formation, (2) cluster dynamics, and (3) cluster destruction. The outcomes indicate that the segregation is driven by two mechanisms: attraction between particles with the same properties and random motion with a characteristic length that is inversely proportional to C. All clusters investigated are found to be transient and the probability distribution functions of the separation times display a power law tail, indicating that the splitting probability decreases with time.
Surface Instability of a Vertically Oscillating Granular Layer
Institute of Scientific and Technical Information of China (English)
SUI Lei; MIAO Guo-Qing; WEI Rong-Jue
2001-01-01
In the study of the surface instability of a vertically oscillating granular layer, we obtained experimentally thephase diagram for the surface states of the layer in the driving frequency-acceleration plane, and measured thedispersion relation for the surface waves in a granular layer in comparison to that in viscous fluids. Our experiments show that the onset dimensionless acceleration increases with the driving frequency, and the wavelengthof the surface waves increases with the depth of granular layer. These experimental results are in agreement withour theoretical model qualitatively.
Microscopic study on stress-strain relation of granular materials
Institute of Scientific and Technical Information of China (English)
LIU SiHong; YAO YangPing; SUN QiCheng; LI TieJun; LIU MinZhi
2009-01-01
A biaxial shearing test on granular materials is numerically simulated by distinct element method (DEM). The evolution of the microstructures of granular materials during isotropic compression and shearing is investigated, on which a yield function is derived. The new yield function has a similar form as the one used in the modified Cam-clay model and explains the yield characteristics of granular materials under the isotropic compression and shear process through the change of the contact distribution N(θ) defining the contacts at particle contact angle θ.
Granular flow over inclined channels with linear contraction
Tunuguntla, D R; Thornton, A R; Bokhove, O
2015-01-01
We consider dry granular flow down an inclined chute with a localised contraction theoretically and numerically. The flow regimes are predicted through a novel extended one-dimensional hydraulic theory. A discrete particle method validated empirical constitutive law is used to close this one-dimensional asymptotic model. The one-dimensional model is verified by solving the two-dimensional shallow granular equations through discontinuous Galerkin finite element method (DGFEM). For supercritical flows, the one-dimensional asymptotic theory surprisingly holds although the two-dimensional oblique granular jumps largely vary across the converging channel.
Tunnel magnetoresis-tance(TMR) in ferromagnetic metalinsulator granular films
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
We review the recently discovered tunnel-type giant magnetoresistance (GMR) in ferromagnetic metal- insulator granular thin films, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal particles. The theoretical and ex-perimental results including electrical resistivity, magnetore-sistance and their temperature dependence are described. Limitations to the applications of the ferromagnetic metal- insulator granular films are also discussed. Additionally, a brief survey of another two magnetic properties, high- fre-quency property and giant Hall effect (GHE) associated strongly with the granular structures is also presented.
Hydrodynamic modeling of granular flows in a modified Couette cell.
Jop, Pierre
2008-03-01
We present simulations of granular flows in a modified Couette cell, using a continuum model recently proposed for dense granular flows. Based on a friction coefficient, which depends on an inertial number, the model captures the positions of the wide shear bands. We show that a smooth transition in velocity-profile shape occurs when the height of the granular material is increased, leading to a differential rotation of the central part close to the surface. The numerical predictions are in qualitative agreement with previous experimental results. The model provides predictions for the increase of the shear band width when the rotation rate is increased.
Some fundamental aspects of the continuumization problem in granular Media
Peters, John F.
The central problem of devising mathematical models of granular materials is how to define a granular medium as a continuum. This paper outlines the elements of a theory that could be incorporated in discrete models such as the Discrete-Element Method, without recourse to a continuum description. It is shown that familiar concepts from continuum mechanics such as stress and strain can be defined for interacting discrete quantities. Established concepts for constitutive equations can likewise be applied to discrete quantities. The key problem is how to define the constitutive response in terms of truncated strain measures that are a practical necessity for analysis of large granular systems.
Institute of Scientific and Technical Information of China (English)
金鑫鑫; 金峰; 刘宁; 孙其诚
2016-01-01
The granular system has complicated force chain network and multiple relaxation mechanisms. The different relaxation mechanisms have largely effects on others. The force chains divide the whole system into many soft zones which dominate the main dissipation process. The system evolves into lower potential energy state gradually and forms directional arrangement under an external load. During the evolution, the complex relaxation behaviors such as transport and migrant processes, make it diﬃcult to distinguish different dissipated mechanisms. Each single physical mechanism stripping from multiple mechanisms should be studied in depth. While among all the mechanisms, the structure evolution plays a crucial role and needs to be paid more attention to. From the view of potential energy, the detailed energy transformation is illustrated. The granular system is often at a metastable state. When the external disturbance is large enough, the system would step over the energy barrier to a new state. The height of energy barrier is related to the packing structure and grain property. In energy landscape, there exist many energy valleys which correspond to different metastable states. The grain rearrangement and structure reorganization are two main evolution processes at a quasi-static state. The former brings about major potential energy change because of friction and forms certain contact relations. While the latter evolves on the basis of the skeleton formed by grain rearrangement and reaches lower energy state. The conversion among different energy valleys can be used to explain stress relaxation process. In a complex granular system, the choosing of appropriate internal state variables becomes important, which can reflect specific relaxation process and internal characteristics. The energy fluctuation in the system has a huge influence on dissipation process and macroscopic response and is an effective internal variable to have an insight into the structure evolution
1987-01-01
Free cells containing large dense granules first appear in the leptomeninges of spinal cord at E14 in the mouse and at E16 in the rabbit. These ages represent a similar stage of development of the spinal cord and meninges. Despite the early appearance of granular pial cells, granular perithelial cells are not found around blood vessels in the spinal cord until 5 days postnatum in the mouse and E28 in the rabbit. The first appearance of granular perithelial cells coincides with the development...
Non-Steady Oscillatory Flow in Coarse Granular Materials
DEFF Research Database (Denmark)
Andersen, O. H.; Gent, M. R. A. van; Meer, J. W. van der;
1992-01-01
Stationary and oscillatory flow through coarse granular materials have been investigated experimentally at Delft Hydraulics in their oscillating water tunnel with the objective of determining the coefficients of the extended Forchheimer equation. Cylinders, spheres and different types of rock hav...
Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation
Bartacek, J.; Fermoso, F.G.; Baldo-Urrutia, A.M.; Hullebusch, van E.D.; Lens, P.N.L.
2008-01-01
The influence of cobalt speciation on the toxicity of cobalt to methylotrophic methanogenesis in anaerobic granular sludge was investigated. The cobalt speciation was studied with three different media that contained varying concentrations of complexing ligands [carbonates, phosphates and ethylenedi
Massive granular cell ameloblastoma with dural extension and atypical morphology
Directory of Open Access Journals (Sweden)
Vandana Raghunath
2014-01-01
Full Text Available Ameloblastomas are rare histologically benign, locally aggressive tumors arising from the oral ectoderm that occasionally reach a gigantic size. Giant ameloblastomas are a rarity these days with the advent of panoramic radiography in routine dental practice. Furthermore, the granular cell variant is an uncommon histological subtype of ameloblastoma where the central stellate reticulum like cells in tumor follicles is replaced by granular cells. Although granular cell ameloblastoma (GCA is considered to be a destructive tumor with a high recurrence rate, the significance of granular cells in predicting its biologic behavior is debatable. However, we present a rare case of giant GCA of remarkable histomorphology showing extensive craniofacial involvement and dural extension that rendered a good prognosis following treatment.
Wave propagation and energy dissipation in viscoelastic granular media
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In terms of viscoelasticity, the relevant theory of wave in granular media is analyzed in this paper.Under the conditions of slight deformation of granules, wave equation, complex number expressions of propagation vector and attenuation vector, attenuation coefficient expressions of longitudinal wave and transverse wave,etc, are analyzed and deduced. The expressions of attenuation coefficients of viscoelastic longitudinal wave and transverse wave show that the attenuation of wave is related to frequency. The higher the frequency is, the more the attenuation is, which is tested by the laboratory experiment. In addition, the energy dissipation is related to the higher frequency wave that is absorbed by granular media. The friction amongst granular media also increase the energy dissipation. During the flowing situation the expression of transmission factor of energy shows that the granular density difference is the key factor which leads to the attenuation of vibrating energy.This has been proved by the experiment results.
An Emotional Agent Model Based on Granular Computing
Directory of Open Access Journals (Sweden)
Jun Hu
2012-01-01
Full Text Available Affective computing has a very important significance for fulfilling intelligent information processing and harmonious communication between human being and computers. A new model for emotional agent is proposed in this paper to make agent have the ability of handling emotions, based on the granular computing theory and the traditional BDI agent model. Firstly, a new emotion knowledge base based on granular computing for emotion expression is presented in the model. Secondly, a new emotional reasoning algorithm based on granular computing is proposed. Thirdly, a new emotional agent model based on granular computing is presented. Finally, based on the model, an emotional agent for patient assistant in hospital is realized, experiment results show that it is efficient to handle simple emotions.
Instationary compaction wave propagation in highly porous cohesive granular media
Gunkelmann, Nina; Ringl, Christian; Urbassek, Herbert M.
2016-07-01
We study the collision of a highly porous granular aggregate of adhesive \\upmu m-sized silica grains with a hard wall using a granular discrete element method. A compaction wave runs through the granular sample building up an inhomogeneous density profile. The compaction is independent of the length of the aggregate, within the regime of lengths studied here. Also short pulses, as they might be exerted by a piston pushing the granular material, excite a compaction wave that runs through the entire material. The speed of the compaction wave is larger than the impact velocity but considerably smaller than the sound speed. The wave speed is related to the compaction rate at the colliding surface and the average slope of the linear density profile.
A particle-based method for granular flow simulation
Chang, Yuanzhang
2012-03-16
We present a new particle-based method for granular flow simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke\\'s law, is included in the momentum governing equation to handle the friction of granular materials. Viscosity force is also added to simulate the dynamic friction for the purpose of smoothing the velocity field and further maintaining the simulation stability. Benefiting from the Lagrangian nature of the SPH method, large flow deformation can be well handled easily and naturally. In addition, a signed distance field is also employed to enforce the solid boundary condition. The experimental results show that the proposed method is effective and efficient for handling the flow of granular materials, and different kinds of granular behaviors can be well simulated by adjusting just one parameter. © 2012 Science China Press and Springer-Verlag Berlin Heidelberg.
Self-Structuring of Granular material under Capillary Bulldozing
Dumazer, Guillaume; Sandnes, Bjørnar; Ayaz, Monem; Måløy, Knut Jørgen; Flekkøy, Eirik
2017-06-01
An experimental observation of the structuring of a granular suspension under the progress of a gas/liquid meniscus in a narrow tube is reported here. The granular material is moved and compactifies as a growing accumulation front. The frictional interaction with the confining walls increases until the pore capillary entry pressure is reached. The gas then penetrates the clogged granular packing and a further accumulation front is formed at the far side of the plug. This cyclic process continues until the gas/liquid interface reaches the tube's outlet, leaving a trail of plugs in the tube. Such 1D pattern formation belongs to a larger family of patterning dynamics observed in 2D Hele-Shaw geometry. The cylindrical geometry considered here provides an ideal case for a theoretical modelling for forced granular matter oscillating between a long frictional phase and a sudden viscous fluidization.
Technical note: Measurement and expression of granular filter ...
African Journals Online (AJOL)
Technical note: Measurement and expression of granular filter cleanliness. ... To aid the systematic analysis of filter media and the troubleshooting of problem filters, this paper firstly proposes a standard procedure for ... Article Metrics.
76 FR 8774 - Granular Polytetrafluoroethylene Resin From Japan
2011-02-15
... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Granular Polytetrafluoroethylene Resin From Japan AGENCY: United States International Trade... polytetrafluoroethylene resin from Japan would be likely to lead to continuation or recurrence of material injury....
Investigation of granular impact using positron emission particle tracking
Marston, Jeremy O.
2015-04-01
We present results from an experimental study of granular impact using a combination of high-speed video and positron emission particle tracking (PEPT). The PEPT technique exploits the annihilation of photons from positron decay to determine the position of tracer particles either inside a small granular bed or attached to the object which impacts the bed. We use dense spheres as impactors and the granular beds are comprised of glass beads which are fluidised to achieve a range of different initial packing states. For the first time, we have simultaneously investigated both the trajectory of the sphere, the motion of particles in a 3-D granular bed and particles which jump into the resultant jet, which arises from the collapse of the cavity formed by the impacting sphere.
Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation
Bartacek, J.; Fermoso, F.G.; Baldo-Urrutia, A.M.; Hullebusch, van E.D.; Lens, P.N.L.
2008-01-01
The influence of cobalt speciation on the toxicity of cobalt to methylotrophic methanogenesis in anaerobic granular sludge was investigated. The cobalt speciation was studied with three different media that contained varying concentrations of complexing ligands [carbonates, phosphates and
Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation
Bartacek, J.; Fermoso, F.G.; Baldo-Urrutia, A.M.; Hullebusch, van E.D.; Lens, P.N.L.
2008-01-01
The influence of cobalt speciation on the toxicity of cobalt to methylotrophic methanogenesis in anaerobic granular sludge was investigated. The cobalt speciation was studied with three different media that contained varying concentrations of complexing ligands [carbonates, phosphates and ethylenedi
Similitude study of a moving bed granular filter
Energy Technology Data Exchange (ETDEWEB)
Robert C. Brown; Huawei Shi; Gerald Colver; Saw-Choon Soo [Iowa State University, IA (United States)
2003-12-10
The goal of this study was to evaluate the performance of a moving bed granular filter designed for hot gas clean up. This study used similitude theory to devise experiments that were conducted at near-ambient conditions while simulating the performance of filters operated at elevated temperatures and pressures (850{sup o}C and 1000 kPa). These experiments revealed that the proposed moving bed granular filter can operate at high collection efficiencies, typically exceeding 99%, and low pressure drops without the need for periodic regeneration through the use of a continuous flow of fresh granular filter media in the filter. In addition, important design constraints were discovered for the successful operation of the proposed moving bed granular filter.
The propagation of blast pulses through dampened granular media
Badham, Henry; Chalmers, Max; Nguyen, Thuy-Tien Ngoc; Proud, William Graham
2017-01-01
The propagation of stress through granular and dampened granular material has been reported previously, the addition of significant amounts of liquid in granular beds causes the mechanism of transmission of blast from one of percolation through the bed pores to one of stress transmission through the granules of the bed. It has been shown, however, that limited amounts liquid can retard propagation within blast-loaded beds by approximately an order of magnitude. This paper presents data on percolation through dampened granular beds using a shock tube as the pressure driver. The effect of particle shape and size was investigated using angular grains of quartz sand as well as smooth glass microspheres. The effect of addition of small amounts of liquids is presented.
BOOK REVIEW: Kinetic Theory of Granular Gases
Trizac, Emmanuel
2005-11-01
Granular gases are composed of macroscopic bodies kept in motion by an external energy source such as a violent shaking. The behaviour of such systems is quantitatively different from that of ordinary molecular gases: due to the size of the constituents, external fields have a stronger effect on the dynamics and, more importantly, the kinetic energy of the gas is no longer a conserved quantity. The key role of the inelasticity of collisions has been correctly appreciated for about fifteen years, and the ensuing consequences in terms of phase behaviour or transport properties studied in an increasing and now vast body of literature. The purpose of this book is to help the newcomer to the field in acquiring the essential theoretical tools together with some numerical techniques. As emphasized by the authors—who were among the pioneers in the domain— the content could be covered in a one semester course for advanced undergraduates, or it could be incorporated in a more general course dealing with the statistical mechanics of dissipative systems. The book is self-contained, clear, and avoids mathematical complications. In order to elucidate the main physical ideas, heuristic points of views are sometimes preferred to a more rigorous route that would lead to a longer discussion. The 28 chapters are short; they offer exercises and worked examples, solved at the end of the book. Each part is supplemented with a relevant foreword and a useful summary including take-home messages. The editorial work is of good quality, with very few typographical errors. In spite of the title, kinetic theory stricto sensu is not the crux of the matter covered. The authors discuss the consequences of the molecular chaos assumption both at the individual particle level and in terms of collective behaviour. The first part of the book addresses the mechanics of grain collisions. It is emphasized that considering the coefficient of restitution ɛ —a central quantity governing the
Energy-Consistent Multiscale Algorithms for Granular Flows
2014-08-07
8-98) v Prescribed by ANSI Std. Z39.18 30-07-2014 Final 01-MAY-2011 - 30-APR-2014 AFOSR YIP Energy-Consistent Multiscale Algorithms for Granular...document the achievements made as a result of this Young Investigator Program ( YIP ) project. We worked on the development of multi scale energy... YIP ) project. We worked on the development of multi scale energy-consistent algorithms to simulate and capture flow phenomena in granular
Knowledge Granularity and Representation of Knowledge: Towards Knowledge Grid
Mach, Maria A.; Owoc, Mieczyslaw L.
2010-01-01
International audience; Knowledge granularity, usually identified with the size of knowledge granules, seems to be real challenge for knowledge consumers as well as for knowledge creators. In this paper, relationships between knowledge granularity as a result of different ways of a knowledge representation are considered. The paper deals with the problem of developing knowledge grid in the context of encapsulation of knowledge including different dimensions and measures. The origin of the pro...
Nonequilibrium Statistical Mechanics and Hydrodynamics for a Granular Fluid
Dufty, James W.
2007-01-01
Granular fluids consist of collections of activated mesoscopic or macroscopic particles (e.g., powders or grains) whose flows often appear similar to those of normal fluids. To explore the qualitative and quantitative description of these flows an idealized model for such fluids, a system of smooth inelastic hard spheres, is considered. The single feature distinguishing granular and normal fluids being explored in this way is the inelasticity of collisions. The dominant differences observed i...
Nonergodic dynamics of force-free granular gases
Bodrova, Anna; Chechkin, Aleksei V.; Cherstvy, Andrey G.; Metzler, Ralf
2015-01-01
We study analytically and by event-driven molecular dynamics simulations the nonergodic and aging properties of force-free cooling granular gases with both constant and velocity-dependent (viscoelastic) restitution coefficient $\\varepsilon$ for particle pair collisions. We compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behavior of the ensembl...
Technology of producing granular fertilizers on an organic basis
Острога, Руслан Алексеевич; Юхименко, Николай Петрович; Михайловский, Яков Эммануилович; Литвиненко, Андрей Владимирович
2016-01-01
The possibility of producing granular fertilizers on an organic basis due to disposal of organic waste of poultry farms is proved. It is shown that such waste has a form of very liquid suspensions. Therefore, to minimize power consumption for their processing, granulation in the fluidized bed apparatus is the optimum technology of producing a granular product. Temperature conditions and operating parameters of organic suspension granulation process are experimentally determined. The existence...
Swirling flows in horizontally vibrated beds of dense granular materials
Institute of Scientific and Technical Information of China (English)
Ali Bakhshinejad; Piroz Zamankhan
2012-01-01
In a series of experiments,a granular material in a rectangular container with two hollow cylinders was studied as it underwent horizontal vibrations.At the peak values of acceleration,novel swirling granular flows were observed in the cylinders while the grains cascaded down the outer surface of the piles that formed outside the cylinders.Computer simulations were performed that supported our interpretation of the behaviour observed in the experiments.
Particle deposition in granular media. Annual progress report
Energy Technology Data Exchange (ETDEWEB)
Tien, C.
1980-01-01
Studies performed under Contract DE-AC02-79-ER10386.A000 Particle Deposition in Granular Media during the period June 1, 1979 to date are described. These studies include the design and construction of apparatus for filtration experiments and a complete trajectory analysis for the calculation of the initial collection efficiency of granular media. The results of the trajectory analysis have been used to develop a generalized correlation of the collection efficiency.
A FINE GRANULAR JOINT SOURCE CHANNEL CODING METHOD
Institute of Scientific and Technical Information of China (English)
Zhuo Li; Shen Lansun; Zhu Qing
2003-01-01
An improved FGS (Fine Granular Scalability) coding method is proposed in this letter, which is based on human visual characteristics. This method adjusts FGS coding frame rate according to the evaluation of video sequences so as to improve the coding efficiency and subject perceived quality of reconstructed images. Finally, a fine granular joint source channel coding is proposed based on the source coding method, which not only utilizes the network resources efficiently, but guarantees the reliable transmission of video information.
The Microstructural Response of Granular Soil Under Uniaxial Strain
1993-10-01
contacts or granular motions will provide insight into more accurate modeling of the material response. The microstructural theory can be directly...use of a flow rule, the ramifications of using an associated or nonassociated flow rule for modeling the response of granular materials will also be...plasticity-based models has been developed over the past 30 yr. Common variations include perfect (ideal) plasticity, hypoelasticity , and viscoplasticity
Controlled Dynamics of Interfaces in a Vibrated Granular Layer
Aranson, I S; Kwok, W; Karapetrov, G; Welp, U; Crabtree, G W; Vinokur, V M; Tsimring, L S
1999-01-01
We present experimental study of a topological excitation, {\\it interface}, in a vertically vibrated layer of granular material. We show that these interfaces, separating regions of granular material oscillation with opposite phases, can be shifted and controlled by a very small amount of an additional subharmonic signal, mixed with the harmonic driving signal. The speed and the direction of interface motion depends sensitively on the phase and the amplitude of the subharmonic driving.
Study of Network Traffic Analysis Model Based on Time Granularity
Institute of Scientific and Technical Information of China (English)
Tan,Xi-aoling; Xu,Yong; Mei,Chenggang; Liu,Lan
2005-01-01
An analytic research on establishing different traffic models on the traffic nature of different time granularity can provide necessary academic foundation for network design and simulation as well as ensuring the quality of service and network management. This paper aims to make simulant predication by means of corresponding math tools on the modeling of real traftic of the different time granularity. The experimental results indicate that the predicated traffic is close to the real traffic distribution.
Frost susceptibility of sub-base gravel used in Pearl-Chain Bridges: an experimental investigation
DEFF Research Database (Denmark)
Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Andersen, Iben Brøndum
2016-01-01
This study investigates frost susceptibility of sub-base gravel determined by the ASTM D5918-13 standard as a conservative estimate of the frost heave risk of fill in overfilled arch bridges, particularly in Pearl-Chain Bridges. Frost heave of granular materials has been of great research interest...
Reitz, Meredith; Stark, Colin; Hung, Chi-Yao; Smith, Breannan; Grinspin, Eitan; Capart, Herve; Li, Liming; Crone, Timothy; Hsu, Leslie; Ling, Hoe
2014-05-01
A complete theoretical understanding of geophysical granular flow is essential to the reliable assessment of landslide and debris flow hazard and for the design of mitigation strategies, but several key challenges remain. Perhaps the most basic is a general treatment of the processes of internal energy dissipation, which dictate the runout velocity and the shape and scale of the affected area. Currently, dissipation is best described by macroscopic, empirical friction coefficients only indirectly related to the grain-scale physics. Another challenge is describing the forces exerted at the boundaries of the flow, which dictate the entrainment of further debris and the erosion of cohesive surfaces. While the granular effects on these boundary forces have been shown to be large compared to predictions from continuum approximations, the link between granular effects and erosion or entrainment rates has not been settled. Here we present preliminary results of a multi-disciplinary study aimed at improving our understanding of granular flow energy dissipation and boundary forces, through an effort to connect grain-scale physics to macroscopic behaviors. Insights into grain-scale force distributions and energy dissipation mechanisms are derived from discrete contact-dynamics simulations. Macroscopic erosion and flow behaviors are documented from a series of granular flow experiments, in which a rotating drum half-filled with grains is placed within a centrifuge payload, in order to drive effective gravity levels up to ~100g and approach the forces present in natural systems. A continuum equation is used to characterize the flowing layer depth and velocity resulting from the force balance between the down-slope pull of gravity and the friction at the walls. In this presentation we will focus on the effect of granular-specific physics such as force chain networks and grain-grain collisions, derived from the contact dynamics simulations. We will describe our efforts to
Dynamic Properties of Two-Dimensional Polydisperse Granular Gases
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We propose a two-dimensional model of polydisperse granular mixtures with a power-law size distribution in the presence of stochastic driving. A fractal dimension D is introduced as a measurement of the inhomogeneity of the size distribution of particles. We define the global and partial granular temperatures of the multi-component mixture. By direct simulation Monte Carlo, we investigate how the inhomogeneity of the size distribution influences the dynamic properties of the mixture, focusing on the granular temperature, dissipated energy, velocity distribution, spatial clusterization, and collision time. We get the following results: a single granular temperature does not characterize a multi-component mixture and each species attains its own "granular temperature"; The velocity deviation from Gaussian distribution becomes more and more pronounced and the partial density of the assembly is more inhomogeneous with the increasing value of the fractal dimension D; The global granular temperature decreases and average dissipated energy per particle increases as the value of D augments.
Flow of Dense Granular Media; A Peculiar Liquid
Pouliquen, Olivier
2007-11-01
Rice flowing out of a silo, rocks tumbling down a slope, sand avalanching on a dune, are examples of simple granular flows. Their description still represents a challenge due to the lack of constitutive laws able to describe the rich phenomenology observed with granular materials. However, the numerous experiments and simulations carried out during the last ten years have given keys for a better understanding. This talk will review the general properties of granular flows, before focusing on the dense flow regime where granular media flow like a liquid. In this regime, simple constitutive laws can be proposed, in which the granular fluid is described as a peculiar visco-plastic liquid. This talk will show that this approach gives quantitative predictions in several configurations, providing a relevant framework for adressing granular hydrodynamic problems. The second part of this presentation will discuss the limits of this approach, the important open problems, and the consequences of this development for the more complex case of mixture of grains and fluid. This work has been done with Pierre Jop, Yoel Forterre and Mickael Paihla.
Pneumatic fractures in confined granular media
Eriksen, Fredrik K.; Toussaint, Renaud; Turquet, Antoine L.; Mâløy, Knut J.; Flekkøy, Eirik G.
2017-06-01
We perform experiments where air is injected at a constant overpressure Pin, ranging from 5 to 250 kPa, into a dry granular medium confined within a horizontal linear Hele-Shaw cell. The setup allows us to explore compacted configurations by preventing decompaction at the outer boundary, i.e., the cell outlet has a semipermeable filter such that beads are stopped while air can pass. We study the emerging patterns and dynamic growth of channels in the granular media due to fluid flow, by analyzing images captured with a high speed camera (1000 images/s). We identify four qualitatively different flow regimes, depending on the imposed overpressure, ranging from no channel formation for Pin below 10 kPa, to large thick channels formed by erosion and fingers merging for high Pin around 200 kPa. The flow regimes where channels form are characterized by typical finger thickness, final depth into the medium, and growth dynamics. The shape of the finger tips during growth is studied by looking at the finger width w as function of distance d from the tip. The tip profile is found to follow w (d ) ∝dβ , where β =0.68 is a typical value for all experiments, also over time. This indicates a singularity in the curvature d2d /d w2˜κ ˜d1 -2 β , but not of the slope d w /d d ˜dβ -1 , i.e., more rounded tips rather than pointy cusps, as they would be for the case β >1 . For increasing Pin, the channels generally grow faster and deeper into the medium. We show that the channel length along the flow direction has a linear growth with time initially, followed by a power-law decay of growth velocity with time as the channel approaches its final length. A closer look reveals that the initial growth velocity v0 is found to scale with injection pressure as v0∝Pin3/2 , while at a critical time tc there is a cross-over to the behavior v (t ) ∝t-α , where α is close to 2.5 for all experiments. Finally, we explore the fractal dimension of the fully developed patterns. For
Simulating granular materials by energy minimization
Krijgsman, D.; Luding, S.
2016-11-01
Discrete element methods are extremely helpful in understanding the complex behaviors of granular media, as they give valuable insight into all internal variables of the system. In this paper, a novel discrete element method for performing simulations of granular media is presented, based on the minimization of the potential energy in the system. Contrary to most discrete element methods (i.e., soft-particle method, event-driven method, and non-smooth contact dynamics), the system does not evolve by (approximately) integrating Newtons equations of motion in time, but rather by searching for mechanical equilibrium solutions for the positions of all particles in the system, which is mathematically equivalent to locally minimizing the potential energy. The new method allows for the rapid creation of jammed initial conditions (to be used for further studies) and for the simulation of quasi-static deformation problems. The major advantage of the new method is that it allows for truly static deformations. The system does not evolve with time, but rather with the externally applied strain or load, so that there is no kinetic energy in the system, in contrast to other quasi-static methods. The performance of the algorithm for both types of applications of the method is tested. Therefore we look at the required number of iterations, for the system to converge to a stable solution. For each single iteration, the required computational effort scales linearly with the number of particles. During the process of creating initial conditions, the required number of iterations for two-dimensional systems scales with the square root of the number of particles in the system. The required number of iterations increases for systems closer to the jamming packing fraction. For a quasi-static pure shear deformation simulation, the results of the new method are validated by regular soft-particle dynamics simulations. The energy minimization algorithm is able to capture the evolution of the
Tripathi, Anurag; Khakhar, D. V.
2011-09-01
We study, computationally, the sedimentation of a sphere of higher mass in a steady, gravity-driven granular flow of otherwise identical spheres, on a rough inclined plane. Taking a hydrodynamic approach at the scale of the particle, we find the drag force to be given by a modified Stokes law and the buoyancy force by the Archimedes principle, with excluded volume effects taken into account. We also find significant differences between the hydrodynamic case and the granular case, which are highlighted.
The effect of DL-2-bromopalmitate on the utilization of palmitic acid by rat granular pneumocytes.
Heinemann, H O; Pietra, G G; Wagner, M; Minda, M
1979-02-06
The effect of DL-2-bromopalmitate (BrPA), an analogue of palmitic acid (PA), on the utilization of this fatty acid by rat lungs was investigated by a combination of anatomic and biochemical methods. The experiments were performed in vitro on two types of preparations, isolated perfused lungs and lung slices. In the isolated lung preparation the substrate reached the lung via the capillaries, in lung slices via the alveolar epithelium. Electron microscope autoradiography showed that BrPA depressed uptake of PA by granular pneumocytes. Radioactivity recovered by tissue analysis and capture of CO2 established that PA oxidation and incorporation into phospholipids and triglycerides was depressed by BrPA. A close correlation was found between the reduction in radioactivity in phospholipids and the grain density over lamellar bodies. The study shows that BrPA reversibly interferes with the uptake and utilization of long chain fatty by granular pneumocytes. BrPA appears as a useful tool to study palmitate metabolism and surfactant production by the lung.
Vertical slow drag of an intruder in a laterally confined granular medium
Directory of Open Access Journals (Sweden)
Duri Agnès
2017-01-01
Full Text Available The study of force transmission and typologies of motions in a powder bed under low shear solicitation constitutes a challenging issue to achieve a monitoring of most of processes. This work relies on the characterisation of particle mobility in the neighbourhood of a moving intruder in ascendant vertical motion. Vertical force measurements and Particle Image Velocimetry (PIV technique are used to identify different typologies of particle motions (compaction, loading and rupture of the chain forces, lateral collapsing, avalanches… of a granular bed ensiled in a semi-confined cell and with a free surface on its top. Force fluctuations during the blade displacement are highlighted and correlated with the dimensionless blade speed but also with the force profile in the static state. The velocity field analysis allows quantifying the shear-banding characteristics corresponding to the blade influence on grain displacements and the impact of the intruder in the motion direction. This signal contains periodical fluctuations which are correlated with the vertical force fluctuations in a specific zone of the granular bed.
Measuring the influence of industry sector membership on supply chain disruption reporting.
Alcantara, Patrick
2015-01-01
The global Supply Chain Resilience Survey by the Business Continuity Institute and Zurich Insurance is a comprehensive study on the state of supply chains in different organisations worldwide. As a benchmarking tool, it also contains data about business continuity arrangements in place to ensure supply chain resilience. Given this study's historically qualitative approach to reporting, this paper aims to introduce quantitative analysis. In this paper, responses that report membership in Standard Industrial Classification 2007 industry sectors from the 2013 Supply Chain Resilience Survey were disaggregated and related to supply chain disruption reporting. A chi-square test of independence reveals that membership in a particular industry sector influences reporting of supply chain disruption. Nonetheless, the relationship between these variables is weak. This study demonstrates interesting differences between industry sectors in terms of supply chain resilience. Further research is required in terms of other variables in order to provide granularity and relevant findings to supply chain planners.
Penetration in bimodal, polydisperse granular material
Kouraytem, N.; Thoroddsen, S. T.; Marston, J. O.
2016-11-01
We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between δ =0.5 D0 and δ =7 D0 , which, for mono-modal media only, could be correlated in terms of the total drop height, H =h +δ , as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [ds˜O (30 ) μ m ] were added to the larger particles [dl˜O (200 -500 ) μ m ] , with a size ratio, ɛ =dl/ds , larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.
Experiments and DEM Simulations of Granular Ratcheting
Directory of Open Access Journals (Sweden)
Zorzi Gianluca
2017-01-01
Full Text Available In this work we studied the effect of cyclic loading on a granular packing by means of numerical simulations and experiments. A confined packing of glass beads was prepared and one of the walls was moved cyclically with a prescribed amplitude of the order of the particle diameter. Different amplitudes were tested, and their effect on the free surface evolution, the force transmitted to the moving wall and the displacement patterns in the material was characterized. Discrete numerical simulations were also carried out with the specific purpose of evaluating the effect of the particle shape on the dynamics of the system. The displacement amplitude of the moving wall was shown to increase the maximum force experienced at the end of the compressive phase of the wall movement; the angularity of the particles had a similar effect. Force-wall displacement curves displayed a peculiar hysteretic behavior. The evolution of the system towards an asymptotic state was shown to be faster for spheres than for angular particles; the latter displayed an interesting long-time evolution of the force-displacement paths which deserves deeper investigations.
Negative magnetoresistance slope in superconducting granular films
Energy Technology Data Exchange (ETDEWEB)
Shapiro, Boris Ya., E-mail: shapib@mail.biu.ac.il; Shapiro, Irina; Levi, Daniel; Shaulov, Avner; Yeshurun, Yosef
2014-06-15
Highlights: • The theory explaining recently observed negative magneto-resistance slope in ultra-thin YBa{sub 2}Cu{sub 2}O{sub 7−δ} films is developed. • Considering film as an array of the Josephson junctions, we solve the sine-Gordon equations including a viscosity term. • The solution yields a negative magneto-resistance slope setting in agreement with the experimental results. - Abstract: A phenomenological theory is developed to explain the recently observed negative magnetoresistance slope in ultra-thin granular YBa{sub 2}Cu{sub 2}O{sub 7−δ} films. Viewing this system as a two-dimensional array of extended Josephson junctions, we numerically solve the sine-Gordon equations including a viscosity term that increases linearly with the external field. The solution yields a negative magnetoresistance slope setting in at a field that is determined by the geometry and thus independent of temperature, in agreement with the experimental results.
Hydrodynamics of nearly smooth granular gases.
Goldhirsch, I; Noskowicz, S H; Bar-Lev, O
2005-11-17
Hydrodynamic equations of motion for a monodisperse collection of nearly smooth homogeneous spheres have been derived from the corresponding Boltzmann equation, using a Chapman-Enskog expansion around the elastic smooth spheres limit. Because in the smooth limit the rotational degrees of freedom are uncoupled from the translational ones, it turns out that the required hydrodynamic fields include (in addition to the standard density, velocity, and translational granular temperature fields) the (infinite) set of number densities, n(s,r, t), corresponding to the continuum of values of the angular velocities. The Chapman-Enskog expansion was carried out to high (up to 10th) order in a Sonine polynomial expansion by using a novel computer-aided method. One of the consequences of these equations is that the asymptotic spin distribution in the homogeneous cooling state for nearly smooth, nearly elastic spheres, is highly non-Maxwellian. The simple sheared flow possesses a highly non-Maxwellian distribution as well. In the case of wall-bounded shear, it is shown that the angular velocity injected at the boundaries has a finite penetration length.
Mechanics of coupled granular/fluid flows
Vinningland, J.; Toussaint, R.; Johnsen, O.; Flekkoy, E. G.; Maloy, K. J.
2006-12-01
We introduce a hybrid numerical model for coupled flow of solid grains and intersticial fluid, which renders for complex hydrodynamic interactions between mobile grains. This model treats the solid phase as discrete particles, interacting mechanically with the other particles and with the intersticial flowing fluid. The fluid is described by continuum equations rendering for its advection by the local grains, superposed to a pressure diffusion ruled by a Darcy flow with a permeability depending on the local solid fraction. This model is aimed at describing accurately such coupled flow. This model is tested for two model situations, where it is compared to experimental results: 1/ Injection of a localized overpressure in a grain/fluid filled cell lying horizontally, where gravity is unimportant. 2/ Sedimentation of heavy grains falling into an initially grain-free fluid region. The development of pattern-forming instabilities is obtained in these two situations, corresponding to granular/fluid equivalents of the two-fluids Saffman-Taylor and Rayleigh-Taylor instabilities. Numerical and experimental results are shown to be consistent with each other.
Increasing granular flow rate with obstructions
Directory of Open Access Journals (Sweden)
Alan Murray
2016-03-01
Full Text Available We describe a simple experiment involving spheres rolling down an inclined plane towards a bottleneck and through a gap. Results of the experiment indicate that flow rate can be increased by placing an obstruction at optimal positions near the bottleneck. We use the experiment to develop a computer simulation using the PhysX physics engine. Simulations confirm the experimental results and we state several considerations necessary to obtain a model that agrees well with experiment. We demonstrate that the model exhibits clogging, intermittent and continuous flow, and that it can be used as a tool for further investigations in granular flow. Received: 22 November 2015, Accepted: 19 February 2016; Edited by: L. A. Pugnaloni; Reviewed by: C. M. Carlevaro, Instituto de Física de Líquidos y Sistemas Biológicos, La Plata, Argentina; DOI: http://dx.doi.org/10.4279/PIP.080003 Cite as: A Murray, F Alonso-Marroquin, Papers in Physics 8, 080003 (2016
Molecular dynamics simulations of vibrated granular gases.
Barrat, Alain; Trizac, Emmanuel
2002-11-01
We present molecular dynamics simulations of monodisperse or bidisperse inelastic granular gases driven by vibrating walls, in two dimensions (without gravity). Because of the energy injection at the boundaries, a situation often met experimentally, density and temperature fields display heterogeneous profiles in the direction perpendicular to the walls. A general equation of state for an arbitrary mixture of fluidized inelastic hard spheres is derived and successfully tested against numerical data. Single-particle velocity distribution functions with non-Gaussian features are also obtained, and the influence of various parameters (inelasticity coefficients, density, etc.) are analyzed. The validity of a recently proposed random restitution coefficient model is assessed through the study of projected collisions onto the direction perpendicular to that of energy injection. For the binary mixture, the nonequipartition of translational kinetic energy is studied and compared both to experimental data and to the case of homogeneous energy injection ("stochastic thermostat"). The rescaled velocity distribution functions are found to be very similar for both species.
Enhancing bulk superconductivity by engineering granular materials
Mayoh, James; García García, Antonio
2014-03-01
The quest for higher critical temperatures is one of the main driving forces in the field of superconductivity. Recent theoretical and experimental results indicate that quantum size effects in isolated nano-grains can boost superconductivity with respect to the bulk limit. Here we explore the optimal range of parameters that lead to an enhancement of the critical temperature in a large three dimensional array of these superconducting nano-grains by combining mean-field, semiclassical and percolation techniques. We identify a broad range of parameters for which the array critical temperature, TcArray, can be up to a few times greater than the non-granular bulk limit, Tc 0. This prediction, valid only for conventional superconductors, takes into account an experimentally realistic distribution of grain sizes in the array, charging effects, dissipation by quasiparticles and limitations related to the proliferation of thermal fluctuations for sufficiently small grains. For small resistances we find the transition is percolation driven. Whereas at larger resistances the transition occurs above the percolation threshold due to phase fluctuations. JM acknowledes support from an EPSRC Ph.D studentship, AMG acknowledges support from EPSRC, grant No. EP/I004637/1, FCT, grant PTDC/FIS/111348/2009 and a Marie Curie International Reintegration Grant PIRG07-GA-2010-268172.
Penetration of projectiles into granular targets
Ruiz-Suárez, J. C.
2013-06-01
Energetic collisions of subatomic particles with fixed or moving targets have been very valuable to penetrate into the mysteries of nature. But the mysteries are quite intriguing when projectiles and targets are macroscopically immense. We know that countless debris wandering in space impacted (and still do) large asteroids, moons and planets; and that millions of craters on their surfaces are traces of such collisions. By classifying and studying the morphology of such craters, geologists and astrophysicists obtain important clues to understand the origin and evolution of the Solar System. This review surveys knowledge about crater phenomena in the planetary science context, avoiding detailed descriptions already found in excellent papers on the subject. Then, it examines the most important results reported in the literature related to impact and penetration phenomena in granular targets obtained by doing simple experiments. The main goal is to discern whether both schools, one that takes into account the right ingredients (planetary bodies and very high energies) but cannot physically reproduce the collisions, and the other that easily carries out the collisions but uses laboratory ingredients (small projectiles and low energies), can arrive at a synergistic intersection point.
Collision Statistics of Driven Polydisperse Granular Gases
Institute of Scientific and Technical Information of China (English)
CHEN Zhi-Yuan; ZHANG Duan-Ming; LI Zhong-Ming; YANG Feng-Xia; GUO Xin-Ping
2008-01-01
We present a dynamicai model of two-dimensional polydisperse granular gases with fractal size distribution, in which the disks are subject to inelastic mutual collisions and driven by standard white noise. The inhomogeneity of the disk size distribution can be measured by a fractal dimension df. By Monte Carlo simulations, we have mainly investigated the effect of the inhomogeneity on the statistical properties of the system in the same inelasticity case. Some novel results are found that the average energy of the system decays exponentiaUy with a tendency to achieve a stable asymptotic value, and the system finally reaches a nonequilibrium steady state after a long evolution time. Furthermore, the inhomogeneity has great influence on the steady-state statisticai properties. With the increase of the fractal dimension df, the distributions of path lengths and free times between collisions deviate more obviously from expected theoretical forms for elastic spheres and have an overpopulation of short distances and time bins. The collision rate increases with df, but it is independent of time. Meanwhile, the velocity distribution deviates more strongly from the Gaussian one, but does not demonstrate any apparent universal behavior.
Granular gas in a periodic lattice
Dorbolo, S.; Brandenbourger, M.; Damanet, F.; Dister, H.; Ludewig, F.; Terwagne, D.; Lumay, G.; Vandewalle, N.
2011-11-01
Glass beads are placed in the compartments of a horizontal square grid. This grid is then vertically shaken. According to the reduced acceleration Γ of the system, the granular material exhibits various behaviours. By counting the number of beads in each compartment after shaking, it is possible to define three regimes. At low accelerations, the grains remain in their compartment, and the system is frozen. For very large accelerations, the grains bounce out of the compartments and behave as a 'binomial gas': the system is homogeneous. For intermediate accelerations, grains form clusters, i.e. grains gather in some particular compartments. In that regime, the probability for a bead to escape from a site depends on the number of beads contained in the concerned compartment. The escape probability has been measured with respect to the number of beads in a compartment. Above a given number of beads, the beads remain trapped in the compartment. A basic numerical model reproduces some of the results and allows us to explore the dependence on the initial conditions.
Modeling density segregation in granular flow
Xiao, Hongyi; Lueptow, Richard; Umbanhowar, Paul
2015-11-01
A recently developed continuum-based model accurately predicts segregation in flows of granular mixtures varying in particle size by considering the interplay of advection, diffusion and segregation. In this research, we extend the domain of the model to include density driven segregation. Discrete Element Method (DEM) simulations of density bidisperse flows of mono-sized particles in a quasi-2D bounded heap were performed to determine the dependence of the density driven segregation velocity on local shear rate, particle concentration, and a segregation length which scales with the particle size and the logarithm of the density ratio. With these inputs, the model yields theoretical predictions of density segregation patterns that quantitatively match the DEM simulations over a range of density ratios (1.11-3.33) and flow rates (19.2-113.6 cm3/s). Matching experiments with various combinations of glass, steel and ceramic particles were also performed which reproduced the segregation patterns obtained in both the simulations and the theory.
Adhesion of Vibrio cholerae to granular starches.
Gancz, Hanan; Niderman-Meyer, Orly; Broza, Meir; Kashi, Yechezkel; Shimoni, Eyal
2005-08-01
Cholera is a severe diarrheal disease caused by specific serogroups of Vibrio cholerae that are pathogenic to humans. Cholera can become epidemic and deadly without adequate medical care. Appropriate rehydration therapy can reduce the mortality rate from as much as 50% of the affected individuals to disease. To further reduce the symptoms associated with cholera, improvements in oral rehydration solution (ORS) by starch incorporation were suggested. Here, we report that V. cholerae adheres to starch granules incorporated in ORS. Adhesion of 98% of the cells was observed within 2 min when cornstarch granules were used. Other starches showed varied adhesion rates, indicating that starch source and composition play an important role in the interaction of V. cholerae and starch granules. Sugars metabolized by V. cholerae showed a repressive effect on the adhesion process. The possible mechanisms involved are discussed. Comparing V. cholerae adhesion with the adhesion of other pathogens suggests the involvement of starch degradation capabilities. This adhesion to granular starch can be used to improve ORT.
Autophagy in granular corneal dystrophy type 2.
Choi, Seung-Il; Kim, Eung Kweon
2016-03-01
Autophagy is a lysosomal degradative process that is essential for cellular homeostasis and metabolic stress adaptation. Defective autophagy is involved in the pathogenesis of many diseases including granular corneal dystrophy type 2 (GCD2). GCD2 is an autosomal dominant disorder caused by substitution of histidine for arginine at codon 124 (R124H) in the transforming growth factor β-induced gene (TGFBI) on chromosome 5q31. Transforming growth factor β-induced protein (TGFBIp) is degraded by autophagy, but mutant-TGFBIp accumulates in autophagosomes and/or lysosomes, despite significant activation of basal autophagy, in GCD2 corneal fibroblasts. Furthermore, inhibition of autophagy induces cell death of GCD2 corneal fibroblasts through active caspase-3. As there is currently no pharmacological treatment for GCD2, development of novel therapies is required. A potential strategy for preventing cytoplasmic accumulation of mutant-TGFBIp in GCD2 corneal fibroblasts is to enhance mutant-TGFBIp degradation. This could be achieved by activation of the autophagic pathway. Here, we will consider the role and the potential therapeutic benefits of autophagy in GCD2, with focus on TGFBIp degradation, in light of the recently established role of autophagy in protein degradation.
Penetration in bimodal, polydisperse granular material
Kouraytem, N.
2016-11-07
We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between delta = 0.5D(0) and delta = 7D(0), which, for mono-modal media only, could be correlated in terms of the total drop height, H = h + delta, as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [d(s) similar to O(30) mu m] were added to the larger particles [d(l) similar to O(200 - 500) mu m], with a size ratio, epsilon = d(l)/d(s), larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.
Granular cell tumors of the urinary bladder
Directory of Open Access Journals (Sweden)
Kayani Naila
2007-03-01
Full Text Available Abstract Background Granular cell tumors (GCTs are extremely rare lesions of the urinary bladder with only nine cases being reported in world literature of which one was malignant. Generally believed to be of neural origin based on histochemical, immunohistochemical, and ultrastructural studies; they mostly follow a clinically benign course but are commonly mistaken for malignant tumors since they are solid looking, ulcerated tumors with ill-defined margins. Materials and methods We herein report two cases of GCTs, one benign and one malignant, presenting with gross hematuria in a 14- and a 47-year-old female, respectively. Results Histopathology revealed characteristic GCTs with positive immunostaining for neural marker (S-100 and negative immunostaining for epithelial (cytokeratin, Cam 5.2, AE/A13, neuroendocrine (neuron specific enolase, chromogranin A, and synaptophysin and sarcoma (desmin, vimentin markers. The benign tumor was successfully managed conservatively with transurethral resection alone while for the malignant tumor, radical cystectomy, hysterectomy with bilateral salpingo-oophorectomy, anterior vaginectomy, plus lymph node dissection was done. Both cases show long-term disease free survival. Conclusion We recommend careful pathologic assessment for establishing the appropriate diagnosis and either a conservative or aggressive surgical treatment for benign or localized malignant GCT of the urinary bladder, respectively.
Granular discharge rate for submerged hoppers
Directory of Open Access Journals (Sweden)
T. J. Wilson
2014-10-01
Full Text Available The discharge of spherical grains from a hole in the bottom of a right circular cylinder is measured with the entire system underwater. We find that the discharge rate depends on filling height, in contrast to the well-known case of dry non-cohesive grains. It is further surprising that the rate increases up to about twenty five percent, as the hopper empties and the granular pressure head decreases. For deep filling, where the discharge rate is constant, we measure the behavior as a function of both grain and hole diameters. The discharge rate scale is set by the product of hole area and the terminal falling speed of isolated grains. But there is a small-hole cutoff of about two and half grain diameters, which is larger than the analogous cutoff in the Beverloo equation for dry grains. Received: 11 September 2014, Accepted: 10 October 2014; Reviewed by: L. Staron, CNRS, Universite Pierre et Marie Curie, Institut Le Rond d'Alembert, Paris, France; Edited by: L. A. Pugnaloni; DOI: http://dx.doi.org/10.4279/PIP.060009 Cite as: T J Wilson, C R Pfeifer, N Meysingier, D J Durian, Papers in Physics 6, 060009 (2014
System size effects on the mechanical response of cohesive-frictional granular ensembles
Singh, Saurabh; Kandasami, Ramesh Kannan; Mahendran, Rupesh Kumar; Murthy, Tejas
2017-06-01
Shear resistance in granular ensembles is a result of interparticle interaction and friction. However, even the presence of small amounts of cohesion between the particles changes the landscape of the mechanical response considerably. Very often such cohesive frictional (c-ϕ) granular ensembles are encountered in nature as well as while handling and storage of granular materials in the pharmaceutical, construction and mining industries. Modeling of these c-ϕ materials, especially in engineering applications have relied on the oft-made assumption of a "continua" and have utilized the popular tenets of continuum plasticity theory. We present an experimental investigation on the fundamental mechanics of c-ϕ materials specifically; we investigate if there exists a system size effect and any additional length scales beyond the continuum length scale on their mechanical response. For this purpose, we conduct a series of 1-D compression (UC) tests on cylindrical specimens reconstituted in the laboratory with a range of model particle-binder combinations such as sandcement, sand-epoxy, and glass ballotini-epoxy mixtures. Specimens are reconstituted to various diameters ranging from 10 mm to 150 mm (with an aspect ratio of 2) to a predefined packing fraction. In addition to the effect of the type of binder (cement, epoxy) and system size, the mean particle size is also varied from 0.5 to 2.5 mm. The peak strength of these materials is significant as it signals the initiation of the cohesive-bond breaking and onset of mobilization of the inter particle frictional resistance. For these model systems, the peak strength is a strong function of the system size of the ensemble as well as the mean particle size. This intriguing observation is counter to the traditional notion of a continuum plastic typical granular ensemble. Microstructure studies in a computed-tomograph have revealed the existence of a web patterned `entangled-chain' like structure, we argue that this ushers
Factors influencing the density profiles of granular flux in a two-dimensional inclined channel
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The two-dimensional dilute granular flow on a smooth incline bounded by rough sidewalls is investigated experimentally, and the transverse density profiles of granular flux (ξ = ρ v) across the channel are measured. The results show that the transverse density profiles of granular flux are symmetric about the channel center and that the density of granular flux near the boundary is clearly lower than that of the center. There is a critical width of channel Wc for the transition of the density of granular flux. The density of granular flux near the boundary decays with the increasing of inclination (sinθ ) of the channel.
Factors influencing the density profiles of granular flux in a two-dimensional inclined channel
Institute of Scientific and Technical Information of China (English)
BAO DeSong; ZHOU Ying; ZHANG XunSheng; TANG XiaoWei
2009-01-01
The two-dimensional dilute granular flow on a smooth incline bounded by rough sidewalls is investigated experimentally, and the transverse density profiles of granular flux (ξ=pv) across the channel are measured. The results show that the transverse density profiles of granular flux are symmetric about the channel center and that the density of granular flux near the boundary is clearly lower than that of the center. There is a critical width of channel Wc for the transition of the density of granular flux. The density of granular flux near the boundary decays with the increasing of inclination (sinθ) of the channel.
Topological and geometric measurements of force chain structure
Giusti, Chad; Owens, Eli T; Daniels, Karen E; Bassett, Danielle S
2016-01-01
Developing quantitative methods for characterizing structural properties of force chains in densely packed granular media is an important step toward understanding or predicting large-scale physical properties of a packing. A promising framework in which to develop such methods is network science, which can be used to translate particle locations and force contacts to a graph in which particles are represented by nodes and forces between particles are represented by weighted edges. Applying network-based community-detection techniques to extract force chains opens the door to developing statistics of force chain structure, with the goal of identifying shape differences across packings, and providing a foundation on which to build predictions of bulk material properties from mesoscale network features. Here, we discuss a trio of related but fundamentally distinct measurements of mesoscale structure of force chains in arbitrary 2D packings, including a novel statistic derived using tools from algebraic topology...
Surface photovoltage investigation of gold chains on Si(111) by two-photon photoemission
Energy Technology Data Exchange (ETDEWEB)
Otto, Sebastian; Biedermann, Kerstin; Fauster, Thomas [Lehrstuhl fuer Festkoerperphysik, Universitaet Erlangen-Nuernberg, Staudtstr. 7, D-91058 Erlangen (Germany)
2011-07-01
We present surface photovoltage measurements on Si(111)-(7 x 7) with monoatomic gold chains. The gold coverage was varied between zero and 0.6 ML, where the Si(111)-(5 x 2)-Au reconstruction covers the surface completely. During the two-photon photoemission experiments the p- or n-doped samples were illuminated by infrared (IR, E{sub IR}=1.55 eV) and ultraviolet (UV, E{sub UV}=4.65 eV) laser pulses. For all coverages the photovoltage was determined for sample temperatures of 90 K and 300 K by variation of the IR and UV laser power. P-doped as well as n-doped Si(111) wafers show a linear dependence of the photovoltage on gold coverage. This stands in contrast to scanning tunneling spectroscopy measurements, which show a coverage-independent photovoltage over a wide coverage range for n-doped wafers. While for p-doped wafers our experimentally determined photovoltage is in agreement with previous reports, for n-doped wafers the observed values are lower than expected.
Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge
Energy Technology Data Exchange (ETDEWEB)
Lv, Yuancai, E-mail: donkey1204@hotmail.com [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Chen, Yuancai, E-mail: chenyc@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Song, Wenzhe, E-mail: songwenzhe007@126.com [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Hu, Yongyou, E-mail: ppyyhu@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China)
2014-09-15
Graphical abstract: In this work, an aerobic column reactor was placed before the USB to maintain micro-oxygen condition in the reactor and the micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L{sup −1}) was successfully obtained. PCP degradation by the micro-aerobic system was studied and the variance of microbial community was also discussed by using PCR-DGGE analysis. - Highlights: • Micro-aerobic granular sludge was cultivated in column-type combined reactors. • PCP biodegradation, VFA accumulation and biogas production were studied. • The function of Methanogenic archaeon in the system was investigated. • Fluctuation and diversity of microbial community were discussed by DGGE analysis. • The dominated microorganisms were identified by 16S rDNA sequences. - Abstract: Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L{sup −1}) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH{sub 4}/h g VSS) and aerobic activity (SOUR: 2.21 mMO{sub 2}/h g VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro
GRANULOMETRIC COMPOSITION OF GRANULAR STARCH SWEETENERS
Directory of Open Access Journals (Sweden)
V. V. Ananskikh
2015-01-01
Full Text Available There was developed a technology to produce starch sweeteners in granular form, which allows to obtain ready product in dry freeflowing state, without separation of mother liquor with valuable nutritional components, for short period of time. During granulation dextrose is crystallized on the surface of seed granules and it increases their size up to determined value, after that granules are destroyed, forming new centers of granules formation. The sizes of granules are in the range of 3–7 mm. The analysis of experimental data shows, that density of granules is decrease with increase of size of granules. Increasing the load for crushing granules at increase of their size is connected with increase of strength due to its mass increase. However, with increase of granule size the specific load per unit of cross-sectional area (tensile strength is decreased. With increase of moisture content of granules the load for destruction is decreased. The tensile strength is decreased with increase of granule size and moisture content. The value of the optimal average granule size is determined using experimental data on change of critical stress arising inside of granules of different size, from the action of load, determined experimentally for each granule, and specific load in granules of seed layer from external forces at mixing of granule layer. Substituting the known values corresponding to experimental installation, in equations, obtained based on experimental data, we find optimal average size of granule for existing boundary conditions, obtained in the experimental installation d = 3,78 mm. The size of granule at starch sweeteners production could be change in certain limits depending on the height of seed layer of granules in granulator. The greater height of seed layer, the smaller average size of granules obtained at granulation.
Instabilities in granular gas–solid flows
Gómez González, Rubén; Garzó, Vicente
2017-04-01
A linear stability analysis of the hydrodynamic equations with respect to the homogeneous cooling state is performed to study the conditions for stability of a suspension of solid particles immersed in a viscous gas. The dissipation in such systems arises from two different sources: inelasticity in particle collisions and viscous friction dissipation due to the influence of the gas phase on the solid particles. The starting point is a suspension model based on the (inelastic) Enskog kinetic equation. The effect of the interstitial gas phase on the dynamics of grains is modeled though a viscous drag force. The study is carried out in two different steps. First, the transport coefficients of the system are obtained by solving the Enskog equation by means of the Chapman–Enskog method up to first order in spatial gradients. Explicit expressions for the Navier–Stokes transport coefficients are obtained in terms of the volume fraction, the coefficient of restitution and the friction coefficient characterizing the amplitude of the external force. Once the transport properties are known, then the corresponding linearized hydrodynamic equations are solved to get the dispersion relations. In contrast to previous studies (Garzó et al 2016 Phys. Rev. E 93 012905), the hydrodynamic modes are analytically obtained as functions of the parameter space of the system. For a d-dimensional system, as expected linear stability shows d ‑ 1 transversal (shear) modes and a longitudinal ‘heat’ mode to be unstable with respect to long enough wavelength excitations. The results also show that the main effect of the gas phase is to decrease the value of the critical length L c (beyond which the system becomes unstable) with respect to its value for a dry granular fluid. Comparison with direct numerical simulations for L c shows a qualitative good agreement for conditions of practical interest.
Locating the origin of stick slip instabilities in sheared granular layers
Korkolis, Evangelos; Niemeijer, André
2017-04-01
Acoustic emission (AE) monitoring is a non-invasive technique widely used to evaluate the state of materials and structures. We have developed a system that can locate the source of AE events associated with unstable sliding (stick-slip) of sheared granular layers during laboratory friction experiments. Our aim is to map the spatial distribution of energy release due to permanent microstructural changes, using AE source locations as proxies. This will allow us to determine the distribution of applied work in a granular medium, which will be useful in developing constitutive laws that describe the frictional behavior of such materials. The AE monitoring system is installed on a rotary shear apparatus. This type of apparatus is used to investigate the micromechanical processes responsible for the macroscopic frictional behavior of granular materials at large shear displacements. Two arrays of 8 piezoelectric sensors each are installed into the ring-shaped steel pistons that confine our samples. The sensors are connected to a high-speed, multichannel oscilloscope that can record full waveforms. The apparatus is also equipped with a system that continuously records normal and lateral (shear) loads and displacements, as well as pore fluid pressure. Thus, we can calculate the frictional and volumetric response of our granular aggregates, as well as the location of AE sources. Here, we report on the results of room temperature experiments on granular aggregates consisting of glass beads or segregated mixtures of glass beads and calcite, at up to 5 MPa normal stress and sliding velocities between 1 and 100 μm/s. Under these conditions, glass beads exhibit unstable sliding behavior accompanied by significant AE activity, whereas calcite exhibits stable sliding and produces no AEs. We recorded a range of unstable sliding behaviors, from fast, regular stick slip at high normal stress (> 4 MPa) and sliding velocities below 20 μm/s, to irregular stick slip at low normal
Granular Corneal Dystrophy Manifesting after Radial Keratotomy
Directory of Open Access Journals (Sweden)
Sepehr Feizi
2008-12-01
Full Text Available
PURPOSE: To report manifestation of granular corneal dystrophy after radial keratotomy (RK. CASE REPORT: A 32-year-old man presented with white radial lines in both corneas. He had undergone uncomplicated RK in both eyes 8 years ago. Preoperative refraction had been OD: -3.5 -0.75@180 and OS: -3.0 -0.5@175. Uncorrected visual acuity was OD: 8/10 and OS: 7/10; best corrected visual acuity was 9/10 in both eyes with OD: -0.5 -0.5@60 and OS: -0.75 -0.5@80. Slit lamp examination revealed discrete well-demarcated whitish lesions with clear intervening stroma in the central anterior cornea consistent with granular dystrophy. Similar opacities were present within the RK incisions. CONCLUSION: Granular dystrophy deposits may appear within RK incisions besides other previously reported locations.
2013-02-19
... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Granular Polytetrafluoroethylene Resin From Italy: Rescission of... on certain granular polytetrafluoroethylene (``PTFE'') resin from Italy. The period of review...
A Terradynamics of Legged Locomotion on Granular Media
Li, Chen; Goldman, Daniel I; 10.1126/science.1229163
2013-01-01
The theories of aero- and hydrodynamics predict animal movement and device design in air and water through the computation of lift, drag, and thrust forces. Although models of terrestrial legged locomotion have focused on interactions with solid ground, many animals move on substrates that flow in response to intrusion. However, locomotor-ground interaction models on such flowable ground are often unavailable. We developed a force model for arbitrarily-shaped legs and bodies moving freely in granular media, and used this "terradynamics" to predict a small legged robot's locomotion on granular media using various leg shapes and stride frequencies. Our study reveals a complex but generic dependence of stresses in granular media on intruder depth, orientation, and movement direction and gives insight into the effects of leg morphology and kinematics on movement.
Hard sphere dynamics for normal and granular fluids.
Dufty, James W; Baskaran, Aparna
2005-06-01
A fluid of N smooth, hard spheres is considered as a model for normal (elastic collision) and granular (inelastic collision) fluids. The potential energy is discontinuous for hard spheres so that the pairwise forces are singular and the usual forms of Newtonian and Hamiltonian mechanics do not apply. Nevertheless, particle trajectories in the N particle phase space are well defined and the generators for these trajectories can be identified. The first part of this presentation is a review of the generators for the dynamics of observables and probability densities. The new results presented in the second part refer to applications of these generators to the Liouville dynamics for granular fluids. A set of eigenvalues and eigenfunctions of the generator for this Liouville dynamics system is identified in a special stationary representation. This provides a class of exact solutions to the Liouville equation that are closely related to hydrodynamics for granular fluids.
Mechanisms of intruder motion in cyclically sheared granular media
Zheng, Hu; Barés, Jonathan; Wang, Dong; Behringer, Robert
2016-11-01
We perform an experimental study showing how an intruder, a Teflon disk that experiences a moderate constant force, F, can advance through a granular material that is subject to quasi-static cyclic shear. The large Teflon disk is embedded in a layer of smaller bidisperse photoelastic disks. The granular medium and disk are contained in a horizontal cell, which is deformed from a square to a parallelogram and back again. The area of the cell remains constant throughout, and the protocol corresponds to cyclical simple shear. We find that the net intruder motion per cycle increases as a power law in Nc. The intruder motion relative to the granular background occurs primarily following strain reversals. We acknowledge support from NSF Grant No. DMR1206351, NASA Grant No. NNX15AD38G and the W.M. Keck Foundation.
Granular bed filtration of high temperature biomass gasification gas.
Stanghelle, Daniel; Slungaard, Torbjørn; Sønju, Otto K
2007-06-18
High temperature cleaning of producer gas from biomass gasification has been investigated with a granular filter. Field tests were performed for several hours on a single filter element at about 550 degrees C. The results show cake filtration on the granular material and indicate good filtration of the biomass gasification producer gas. The relatively low pressure drop over the filter during filtration is comparable to those of bag filters. The granular filter can operate with high filtration velocities compared to bag filters and maintain high efficiency and a low residual pressure. This work is a part of the BioSOFC-up project that has a goal of utilizing the producer gas from the gasification plant in a solid oxide fuel cell (SOFC). The BioSOFC-up project will continue to the end of 2007.
The behaviour of free-flowing granular intruders
Directory of Open Access Journals (Sweden)
Wyburn Edward
2017-01-01
Full Text Available Particle shape affects both the quasi-static and dynamic behaviour of granular media. There has been significant research devoted to the flowability of systems of irregularly shaped particles, as well as the flow of grains around fixed intruders, however the behaviour of free flowing intruders within granular flows remains comparatively unexplored. Here, the effect of the shape of these intruder particles is studied, looking at the kinematic behaviour of the intruders and in particular their tendency of orientation. Experiments are carried out within the Stadium Shear Device, which is a novel apparatus able to continuously apply simple shear conditions to two-dimensional grain analogues. It is found that the intruder shows different behaviour to that of the bulk flow, and that this behaviour is strongly shape dependent. These insights could lead to the development of admixtures that alter the flowability of granular materials.
Granular chaos and mixing: Whirled in a grain of sand
Energy Technology Data Exchange (ETDEWEB)
Shinbrot, Troy, E-mail: shinbrot@rutgers.edu [Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States)
2015-09-15
In this paper, we overview examples of chaos in granular flows. We begin by reviewing several remarkable behaviors that have intrigued researchers over the past few decades, and we then focus on three areas in which chaos plays an intrinsic role in granular behavior. First, we discuss pattern formation in vibrated beds, which we show is a direct result of chaotic scattering combined with dynamical dissipation. Next, we consider stick-slip motion, which involves chaotic scattering on the micro-scale, and which results in complex and as yet unexplained peculiarities on the macro-scale. Finally, we examine granular mixing, which we show combines micro-scale chaotic scattering and macro-scale stick-slip motion into behaviors that are well described by dynamical systems tools, such as iterative mappings.
Shock front width and structure in supersonic granular flows.
Boudet, J F; Amarouchene, Y; Kellay, H
2008-12-19
The full structure of a shock front around a blunt body in a quasi-two-dimensional granular flow is studied. Two features, a large density gradient and a very small thickness of the front, characterize this shock and make it different from shocks in molecular gases. Both of these features can be understood using a modified version of the granular kinetic theory. Our model separates the particles into two subpopulations: fast particles having experienced no collisions and randomly moving particles. This separation is motivated by direct measurements of the particle velocities which show a bimodal distribution. Our results not only shed new light on the use of the granular kinetic theory under extreme conditions (shock formation) but bring new insight into the physics of shocks in general.
Excited response of granular ores in vibrating field
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The dynamical theory was utilized to probe into the law of the excited response of granular ores generated by the exciting action of exciter and the influence of wave propagation in vibrating field. The exciter with double axes was presented as an example, and the principle of exciter and its mathematical expression of the excitation force were given. The granular ores have viscidity and damping speciality, on the basis of which the motion equation of excited response of ores was established and the approximate expression of mode-displacement by harmonic excitation and the steady effect solution of coordinate response were deduced. Utilizing the step-by-step integration method, the recursion relation matrix of displacement, velocity and acceleration of the excited response of ores were obtained, and the computational flow chart and a computational example were given. The results show that the excited response can change the dynamical character and the flowing characteristic of granular ores.
Modelling the field behaviour of a granular expansive barrier
Alonso, Eduardo; Hoffmann, Christian
The large scale “Engineered Barrier” (EB) experiment, performed at the Mont Terri Underground Laboratory is described. A coupled hydromechanical model is then used to simulate the test performance. Constitutive parameters for the bentonite granular backfill are based on experimental work described in a companion paper. An elastoplastic model describes the granular fill, while the host rock is simulated by a damage model. Predictions of EDZ development around the tunnel are compared with some indirect measurements. Calculated evolutions of relative humidity and stresses within the buffer are compared with sensor records. Good agreement was found for the bentonite blocks supporting the canister. The granular expansive fill exhibit a more irregular behavior. Calculated displacements of the canister agree in absolute terms with actual measurements.
Dynamic Distribution Model with Prime Granularity for Parallel Computing
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Dynamic distribution model is one of the best schemes for parallel volume rendering. However, in homogeneous cluster system, since the granularity is traditionally identical, all processors communicate almost simultaneously and computation load may lose balance. Due to problems above, a dynamic distribution model with prime granularity for parallel computing is presented.Granularities of each processor are relatively prime, and related theories are introduced. A high parallel performance can be achieved by minimizing network competition and using a load balancing strategy that ensures all processors finish almost simultaneously. Based on Master-Slave-Gleaner (MSG) scheme, the parallel Splatting Algorithm for volume rendering is used to test the model on IBM Cluster 1350 system. The experimental results show that the model can bring a considerable improvement in performance, including computation efficiency, total execution time, speed, and load balancing.
Hierarchical modular granular neural networks with fuzzy aggregation
Sanchez, Daniela
2016-01-01
In this book, a new method for hybrid intelligent systems is proposed. The proposed method is based on a granular computing approach applied in two levels. The techniques used and combined in the proposed method are modular neural networks (MNNs) with a Granular Computing (GrC) approach, thus resulting in a new concept of MNNs; modular granular neural networks (MGNNs). In addition fuzzy logic (FL) and hierarchical genetic algorithms (HGAs) are techniques used in this research work to improve results. These techniques are chosen because in other works have demonstrated to be a good option, and in the case of MNNs and HGAs, these techniques allow to improve the results obtained than with their conventional versions; respectively artificial neural networks and genetic algorithms.
Langevin Simulation of Non-Uniform Granular Gases
Institute of Scientific and Technical Information of China (English)
张端明; 雷雅洁; 潘贵军; 郁伯铭
2003-01-01
We present and study a fractal model of a non-uniform granular system for the first time, based on which we numerically solve the dynamics actions in the system successfully in one-dimensional case. The multi-mixture is composed of N different particles, whose granularity distribution has the fractal characteristic. The particles are subject to inelastic mutual collisions and obey to Langevin equation between collisions. Far from the equilibrium,i.e. the given typical relaxation time T of the driving Brownian process is much larger than the mean collision time Tc, the results of simulation indicate that the degree of inhomogeneity in the granularity distribution signed by the fractal dimension D of size distribution has great influence on the dynamics actions of the system. The velocity distribution deviates obviously from the Gaussian distribution and the particles cluster more pronouncedly with the larger value of D in the system. The velocity distribution and spatial clusterization change with D are presented.
Liquidity crisis, granularity of the order book and price fluctuations
Cristelli, M.; Alfi, V.; Pietronero, L.; Zaccaria, A.
2010-01-01
We introduce a microscopic model for the dynamics of the order book to study how the lack of liquidity influences price fluctuations. We use the average density of the stored orders (granularity g) as a proxy for liquidity. This leads to a Price Impact Surface which depends on both volume ω and g. The dependence on the volume (averaged over the granularity) of the Price Impact Surface is found to be a concave power law function g ˜ ωδ with δ ≈ 0.59. Instead the dependence on the granularity is φ(ω,g|ω) ˜ gα with α ≈ -1, showing a divergence of price fluctuations in the limit g → 0. Moreover, even in intermediate situations of finite liquidity, this effect can be very large and it is a natural candidate for understanding the origin of large price fluctuations.
Explaination of nonlocal granular fluidity in terms of microscopic fluctuations
Zhang, Qiong; Kamrin, Ken
A recently proposed granular constitutive law has shown capability to predict nonlocal granular rheology using a variable denoted ``granular fluidity''. This work is aimed at finding the microscopic physical meaning of fluidity in terms of fluctuations such as fluctuation of normalized shear stress and fluctuation of velocity. We try to predict the fluidity as a function of the fluctuation of normalized shear stress, and also test Eyring equation and kinetic theory based on the theoretical prediction proposed in other work. We find a consistent definition for the fluidity to be proportional to the product of the velocity fluctuations and some function of packing fraction divided by the average diameter of the grains. This definition shows predictive ability in multiple geometries for which flow behavior is nonlocal. It is notable that the fluidity is well-defined as a function of kinematic state variables, as one would hope for a quantity of this nature.
The cytology of a thyroid granular cell tumor.
Chang, Shu-Mei; Wei, Chang-Kuo; Tseng, Chih-En
2009-01-01
Granular cell tumor (GCT) of the thyroid is rare. Before this report, only four cases of thyroid GCT have been reported, none of which presented a cytopathological examination. In this paper, we report the fine needle aspiration cytology and pathological analysis of a thyroid GCT from a 12-year-old girl who presented with a painless neck mass. The tumor cells were single, in syncytial clusters, or pseudofollicles, contained small round, oval, or spindle nuclei, indistinct nucleoli, and a large amount of grayish, granular fragile cytoplasm. The background contained granular debris and naked nuclei. A differential diagnosis of thyroid GCT with more frequent thyroid lesions containing cytoplasmic granules, including Hurthle cells, macrophages, follicular cells, and cells of black thyroid syndrome, was also performed.
Flowability of granular materials with industrial applications - An experimental approach
Torres-Serra, Joel; Romero, Enrique; Rodríguez-Ferran, Antonio; Caba, Joan; Arderiu, Xavier; Padullés, Josep-Manel; González, Juanjo
2017-06-01
Designing bulk material handling equipment requires a thorough understanding of the mechanical behaviour of powders and grains. Experimental characterization of granular materials is introduced focusing on flowability. A new prototype is presented which performs granular column collapse tests. The device consists of a channel whose design accounts for test inspection using visualization techniques and load measurements. A reservoir is attached where packing state of the granular material can be adjusted before run-off to simulate actual handling conditions by fluidisation and deaeration of the pile. Bulk materials on the market, with a wide range of particle sizes, can be tested with the prototype and the results used for classification in terms of flowability to improve industrial equipment selection processes.
Magnetic avalanches in granular ferromagnets: thermal activated collective behavior
Chern, Gia-Wei
2017-02-01
We present a numerical study on the thermal activated avalanche dynamics in granular materials composed of ferromagnetic clusters embedded in a non-magnetic matrix. A microscopic dynamical simulation based on the reaction-diffusion process is developed to model the magnetization process of such systems. The large-scale simulations presented here explicitly demonstrate inter-granular collective behavior induced by thermal activation of spin tunneling. In particular, we observe an intriguing criticality controlled by the rate of energy dissipation. We show that thermal activated avalanches can be understood in the framework of continuum percolation and the emergent dissipation induced criticality is in the universality class of 3D percolation transition. Implications of these results to the phase-separated states of colossal magnetoresistance materials and other artificial granular magnetic systems are also discussed.
Positron emission particle tracking and its application to granular media.
Parker, D J
2017-05-01
Positron emission particle tracking (PEPT) is a technique for tracking a single radioactively labelled particle. Accurate 3D tracking is possible even when the particle is moving at high speed inside a dense opaque system. In many cases, tracking a single particle within a granular system provides sufficient information to determine the time-averaged behaviour of the entire granular system. After a general introduction, this paper describes the detector systems (PET scanners and positron cameras) used to record PEPT data, the techniques used to label particles, and the algorithms used to process the data. This paper concentrates on the use of PEPT for studying granular systems: the focus is mainly on work at Birmingham, but reference is also made to work from other centres, and options for wider diversification are suggested.
Flowability of granular materials with industrial applications - An experimental approach
Directory of Open Access Journals (Sweden)
Torres-Serra Joel
2017-01-01
Full Text Available Designing bulk material handling equipment requires a thorough understanding of the mechanical behaviour of powders and grains. Experimental characterization of granular materials is introduced focusing on flowability. A new prototype is presented which performs granular column collapse tests. The device consists of a channel whose design accounts for test inspection using visualization techniques and load measurements. A reservoir is attached where packing state of the granular material can be adjusted before run-off to simulate actual handling conditions by fluidisation and deaeration of the pile. Bulk materials on the market, with a wide range of particle sizes, can be tested with the prototype and the results used for classification in terms of flowability to improve industrial equipment selection processes.
Intracranial meningioma with polygonal granular cell appearance in a Chihuahua.
Takeuchi, Yoshinori; Ohnishi, Yumi; Matsunaga, Satoru; Nakayama, Hiroyuki; Uetsuka, Koji
2008-05-01
A menigioma with polygonal granular cell proliferation in an 11-year and 8-month-old male Chihuahua is described. The tumor was observed under the dura matter of the right cerebrum. Microscopically, the tumor consisted of solid growth foci of small- or large- sized polygonal cells, with pale-stained nuclei, prominent nucleoli, and fine granular to foamy eosinophilic cytoplasm. Some of the proliferating cells contained variable amounts of cytoplasmic PAS-positive granules. Immunohistochemical analysis revealed that neoplastic cells were positive for vimentin and S-100 protein. Ultrastructurally, the neoplastic cells contained vesicular structures with a few small round-shaped bodies in the cytoplasm. We diagnosed the case as canine meningioma with granular cell appearance.
Graphs: Associated Markov Chains
2012-01-01
In this research paper, weighted / unweighted, directed / undirected graphs are associated with interesting Discrete Time Markov Chains (DTMCs) as well as Continuous Time Markov Chains (CTMCs). The equilibrium / transient behaviour of such Markov chains is studied. Also entropy dynamics (Shannon entropy) of certain structured Markov chains is investigated. Finally certain structured graphs and the associated Markov chains are studied.
A Fractal Model for the Effective Thermal Conductivity of Granular Flow with Non-uniform Particles
Institute of Scientific and Technical Information of China (English)
ZHANG Duan-Ming; LEI Ya-Jie; YU Bo-Ming; ZHANG Mei-Jun; HUANG Ming-Tao; LI Zhi-Hua; GUAN Li
2002-01-01
The equipartition of energy applied in binary mixture of granular flow is extended to granular flow withnon-uniform particles. Based on the fractal characteristic of granular flow with non-uniform particles as well as energyequipartition, a fractal velocity distribution function and a fractal model of effective thermal conductivity are derived.Thermal conduction resulted from motions of particles in the granular flow, as well as the effect of fractal dimension oneffective thermal conductivity, is discussed.
Continuum modeling of rate-dependent granular flows in SPH
Hurley, Ryan C.; Andrade, José E.
2016-09-01
We discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker-Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. This technique may therefore be attractive for modeling the time-dependent evolution of natural and industrial flows.
Building designed granular towers one drop at a time.
Chopin, Julien; Kudrolli, Arshad
2011-11-11
A dense granular suspension dripping on an imbibing surface is observed to give rise to slender mechanically stable structures that we call granular towers. Successive drops of grain-liquid mixtures are shown to solidify rapidly upon contact with a liquid absorbing substrate. A balance of excess liquid flux and drainage rate is found to capture the typical growth and height of the towers. The tower width is captured by the Weber number, which gives the relative importance of inertia and capillary forces. Various symmetric, smooth, corrugated, zigzag, and chiral structures are observed by varying the impact velocity and the flux rate from droplet to jetting regime.
A Granularity-Aware Parallel Aggregation Method for Data Streams
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This paper focuses on the parallel aggregation processing of data streams based on the shared-nothing architecture. A novel granularity-aware parallel aggregating model is proposed. It employs parallel sampling and linear regression to describe the characteristics of the data quantity in the query window in order to determine the partition granularity of tuples, and utilizes equal depth histogram to implement partitioning. This method can avoid data skew and reduce communication cost. The experiment results on both synthetic data and actual data prove that the proposed method is efficient, practical and suitable for time-varying data streams processing.
Terahertz scattering by granular composite materials: An effective medium theory
Kaushik, Mayank; Ng, Brian W.-H.; Fischer, Bernd M.; Abbott, Derek
2012-01-01
Terahertz (THz) spectroscopy and imaging have emerged as important tools for identification and classification of various substances, which exhibit absorption characteristics at distinct frequencies in the THz range. The spectral fingerprints can potentially be distorted or obscured by electromagnetic scattering caused by the granular nature of some substances. In this paper, we present THz time domain transmission measurements of granular polyethylene powders in order to investigate an effective medium theory that yields a parameterized model, which can be used to estimate the empirical measurements to good accuracy.
Congenital granular cell lesion: A rare tumor of new born
Directory of Open Access Journals (Sweden)
Rajesh Kumar
2013-01-01
Full Text Available Congenital granular cell tumor (CGCT, or congenital epulis, is an uncommon benign soft tissue lesion that usually arises from the alveolar mucosa of neonates and may cause respiratory and feeding problems. The histogenesis and clinical history of the lesion remains obscure. Treatment involves surgical excision and recurrences are rare. The present report describes a case of congenital granular cell lesion (CGCL in the anterior segment of maxillary alveolar ridge of a 2-month-old female. This lesion was causing feeding problem and was excised under local anesthesia, with no recurrence even after 3 years.
Motility of small nematodes in wet granular media
Juarez, G; Sznitman, J; Arratia, P E
2010-01-01
The motility behavior of the \\textit{Caenorhabditis elegans} is investigated in wet granular medium as a function of area density ($\\phi$) and dispersity. Surprisingly, the locomotion speed increases in granular media compared to free swimming. The surrounding structure of the medium leads to enhanced undulatory propulsion due to its ability to sustain a finite shear stress and convert lateral force into forward motion. For $\\phi > 0.55$, the nematode is observed to change its gate from swimming to crawling in polydisperse media \\textit{only}. This highlights the subtle difference in local structure between media.
A FINE GRANULAR JOINT SOURCE CHANNEL CODING METHOD
Institute of Scientific and Technical Information of China (English)
ZhuoLi; ShenLanusun
2003-01-01
An improved FGS (Fine Granular Scalability) coding method is proposed in this letter,which is based on human visual characteristics.This method adjusts FGS coding frame rate according to the evaluation of video sequences so as to improve the coding efficiency and subject perceived quality of reconstructed images.Finally,a fine granular joint source channel coding is proposed based on the source coding method,which not only utilizes the network resources efficiently,but guarantees the reliable transmission of video information.
Multi-Scale Dynamics, Control, and Simulation of Granular Spacecraft
Quadrelli, Marco B.; Basinger, Scott; Swartzlander, Grover
2013-01-01
In this paper, we present some ideas regarding the modeling, dynamics and control aspects of granular spacecraft. Granular spacecraft are complex multibody systems composed of a spatially disordered distribution of a large number of elements, for instance a cloud of grains in orbit. An example of application is a spaceborne observatory for exoplanet imaging, where the primary aperture is a cloud instead of a monolithic aperture. A model is proposed of a multi-scale dynamics of the grains and cloud in orbit, as well as a control approach for cloud shape maintenance and alignment, and preliminary simulation studies are carried out for the representative imaging system.
Identifying Granularity Differences between Large Biomedical Ontologies through Rules.
Sun, Pengfei; Zhang, Songmao
2010-11-13
The objective of this study is to identify the granularity differences as well as similarity between large biomedical ontologies through rules. Two anatomical ontologies were selected, and based on a set of concept mappings obtained through simple string matching techniques, we constructed rules to distinguish among different types of subclasses and classifications. 82% of the concept mappings have exactly the same classification in subclasses between the two ontologies. Other mappings are classified in different granularity, including additional subclasses, detailed classification, and different intermediate classification concepts. Using rules and the rule inference engine enables an automatic and scalable investigation of the structural incompatibility among biomedical ontologies.
Stress distribution and surface instability of an inclined granular layer
Institute of Scientific and Technical Information of China (English)
Zheng He-Peng; Jiang Yi-Min; Peng Zheng
2013-01-01
Static granular materials may avalanche suddenly under continuous quasi-static drives.This phenomenon,which is important in many engineering applications,can be explained by analyzing the stability of the elastic solutions.We show this for a granular layer driven by its inclination angle in gravity,where the elastic problem can be solved generally and analytically.It is found that a loss of stability may occur only at the free surface of the layer.This result is considered to be relevant for understanding surface avalanches and the flows observed experimentally.
An experimental study of the elastic theory for granular flows
Guo, Tongtong; Campbell, Charles S.
2016-08-01
This paper reports annular shear cell measurements granular flows with an eye towards experimentally confirming the flow regimes laid out in the elastic theory of granular flow. Tests were carried out on four different kinds of plastic spherical particles under both constant volume flows and constant applied stress flows. In particular, observations were made of the new regime in that model, the elastic-inertial regime, and the predicted transitions between the elastic-inertial and both the elastic-quasistatic and pure inertial regimes.
Continuum modeling of rate-dependent granular flows in SPH
Hurley, Ryan C.; Andrade, José E.
2017-01-01
We discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker-Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. This technique may therefore be attractive for modeling the time-dependent evolution of natural and industrial flows.
Injected power and entropy flow in a heated granular gas
Visco, P.; Puglisi, A.; Barrat, A.; Trizac, E.; van Wijland, F.
2005-10-01
Our interest goes to the power injected in a heated granular gas and to the possibility to interpret it in terms of entropy flow. We numerically determine the distribution of the injected power by means of Monte Carlo simulations. Then, we provide a kinetic-theory approach to the computation of such a distribution function. Finally, after showing why the injected power does not satisfy a fluctuation relation à la Gallavotti-Cohen, we put forward a new quantity which does fulfill such a relation, and is not only applicable in a variety of frameworks outside the granular world, but also experimentally accessible.
Dynamic process of biosorption of long-chain fatty acids by anaerobic granular sludge
Hwu, C.S.; Tseng, S.K.; Lettinga, G.
1994-01-01
The preoptic area is anatomically divided into medial and lateral portions and both are involved in the regulation of sleep-wakefulness and body temperature. We have recently reported the specific role of the adrenoceptors, present in the medial preoptic area, in the regulation of those functions.
Dynamic process of biosorption of long-chain fatty acids by anaerobic granular sludge
Hwu, C.S.; Tseng, S.K.; Lettinga, G.
1994-01-01
The preoptic area is anatomically divided into medial and lateral portions and both are involved in the regulation of sleep-wakefulness and body temperature. We have recently reported the specific role of the adrenoceptors, present in the medial preoptic area, in the regulation of those functions. I
Universality of the electrical transport in granular metals
Bakkali, Hicham; Dominguez, Manuel; Batlle, Xavier; Labarta, Amílcar
2016-07-01
The universality of the ac electrical transport in granular metals has been scarcely studied and the actual mechanisms involved in the scaling laws are not well understood. Previous works have reported on the scaling of capacitance and dielectric loss at different temperatures in Co-ZrO2 granular metals. However, the characteristic frequency used to scale the conductivity spectra has not been discussed, yet. This report provides unambiguous evidence of the universal relaxation behavior of Pd-ZrO2 granular thin films over wide frequency (11 Hz-2 MHz) and temperature ranges (40-180 K) by means of Impedance Spectroscopy. The frequency dependence of the imaginary parts of both the impedance Z″ and electrical modulus M″ exhibit respective peaks at frequencies ωmax that follow a thermal activation law, ωmax ∝ exp(T1/2). Moreover, the real part of electrical conductivity σ‧ follows the Jonscher’s universal power law, while the onset of the conductivity dispersion also corresponds to ωmax. Interestingly enough, ωmax can be used as the scaling parameter for Z″, M″ and σ‧, such that the corresponding spectra collapse onto single master curves. All in all, these facts show that the Time-Temperature Superposition Principle holds for the ac conductance of granular metals, in which both electron tunneling and capacitive paths among particles compete, exhibiting a well-characterized universal behavior.
Micro-macro and rheology in sheared granular matter
Singh, Abhinendra
2014-01-01
Soil, made up of countless interacting grains is a perfect example of granular materials. When soil is sheared, the flow is confined to narrow regions called flowing zones. In this thesis, DEM simulations are used to study the flowing zones induced by the geometry called the splitbottom geometry, wi
Statistics of the Elastic Behavior of Granular Materials
Kruyt, Nicolaas P.; Rothenburg, L.
2001-01-01
The elastic behaviour of isotropic assemblies of granular materials consisting of two-dimensional, bonded and non-rotating particles is studied from the micromechanical viewpoint. Discrete element simulations have been performed of assemblies of 50,000 particles with various coordination numbers
Granular computing in decision approximation an application of rough mereology
Polkowski, Lech
2015-01-01
This book presents a study in knowledge discovery in data with knowledge understood as a set of relations among objects and their properties. Relations in this case are implicative decision rules and the paradigm in which they are induced is that of computing with granules defined by rough inclusions, the latter introduced and studied within rough mereology, the fuzzified version of mereology. In this book basic classes of rough inclusions are defined and based on them methods for inducing granular structures from data are highlighted. The resulting granular structures are subjected to classifying algorithms, notably k—nearest neighbors and bayesian classifiers. Experimental results are given in detail both in tabular and visualized form for fourteen data sets from UCI data repository. A striking feature of granular classifiers obtained by this approach is that preserving the accuracy of them on original data, they reduce substantially the size of the granulated data set as well as the set of granular...
Tapped granular column dynamics: simulations, experiments and modeling
Rosato, A.D.; Zuo, L.; Blackmore, D.; Wu, H.; Horntrop, D.J.; Parker, D.J.; Windows-Yule, C.R.
2015-01-01
This paper communicates the results of a synergistic investigation that initiates our long term research goal of developing a continuum model capable of predicting a variety of granular flows. We consider an ostensibly simple system consisting of a column of inelastic spheres subjected to discrete t
Entropy Maximization in the Force Network Ensemble for Granular Solids
Tighe, B.P.; Van Eerd, A.R.T.; Vlugt, T.J.H.
2008-01-01
A long-standing issue in the area of granular media is the tail of the force distribution, in particular, whether this is exponential, Gaussian, or even some other form. Here we resolve the issue for the case of the force network ensemble in two dimensions. We demonstrate that conservation of the to
Pesticide Removal by Combined Ozonation and Granular Activated Carbon Filtration
Orlandini, E.
1999-01-01
This research aimed to idendfy and understand mechanisms that underlie the beneficial effect of ozonation on removal of pesdcides and other micropoUutants by Granular Activated Carbon (GAC) filtradon. This allows optimization of the combination of these two processes, termed Biological Activated Car
Jamming by compressing a system of granular crosses
Directory of Open Access Journals (Sweden)
Zheng Hu
2017-01-01
Full Text Available A disordered stress-free granular packing can be jammed, transformed into a mechanically rigid structure, by increasing the density of particles or by applying shear deformation. The jamming behavior of systems made of 2D circular discs has been investigated in detail, but very little is known about jamming for non-spherical particles, and particularly, non-convex particles. Here, we perform an experimental study on jamming by compression of a system of quasi-2D granular crosses made of photo-elastic crosses. We measure the pressure evolution during cyclic compression and decompression. The Jamming packing fraction of these quasi-2D granular crosses is ϕJ ≃ 0.475, which is much smaller than the value ϕJ ≃ 0.84 for-2D granular disks. The packing fraction shifts systematically to higher values under compressive cycling, corresponding to systematic shifts in the stress-strain response curves. Associated with these shifts are rotations of the crosses, with minimal changes in their centers of mass.
Failure Mechanism of True 2D Granular Flows
Nguyen, Cuong T; Fukagawa, R
2015-01-01
Most previous experimental investigations of two-dimensional (2D) granular column collapses have been conducted using three-dimensional (3D) granular materials in narrow horizontal channels (i.e., quasi-2D condition). Our recent research on 2D granular column collapses by using 2D granular materials (i.e., aluminum rods) has revealed results that differ markedly from those reported in the literature. We assume a 2D column with an initial height of h0 and initial width of d0, a defined as their ratio (a =h0/d0), a final height of h , and maximum run-out distance of d . The experimental data suggest that for the low a regime (a 0.65), the ratio of a to (d-d0)/d0, h0/h , or d/d0 is expressed by power-law relations. In particular, the following power-function ratios (h0/h=1.42a^2/3 and d/d0=4.30a^0.72) are proposed for every a >0.65. In contrast, the ratio (d-d0)/d0=3.25a^0.96 only holds for 0.651.5. In addition, the influence of ground contact surfaces (hard or soft beds) on the final run-out distance and destru...
The stress and ballistic properties of granular materials
Proud, William G.; Chapman, David J.; Eakins, Daniel E.
2017-01-01
Granular materials are widespread in nature and in manufacturing. Their particulate nature gives a compressive strength of a similar order of magnitude as many continuous solids, a vanishingly small tensile strength and variable shear strength, highly dependent on the loading conditions. Previous studies have shown the effect of composition, morphology and particle size, however, compared to metals and polymers, granular materials are not so well understood. This paper will present some recent results for granular materials, placing these within the wider context. Two areas will be dealt with (i) the effect of the skeletal strength of the material and (ii) the displacements associated with ballistic impact. One clear observation is the similarity of behavior of quartz-sands in compression across a range of particle size. However, the precise pathway of compression is strongly dependent on the initial conditions e.g. density and connectivity within the granular bed, as emphasized by some data for quasi-static compression of sand. To fully embrace the range of behaviours seen requires the development of a suitable parameter to describe the material, the paper concludes with a discussion of one of those approaches.
Gratuitous dechlorination of chloroethanes by methanogenic granular sludge
Eekert, van M.H.A.; Stams, A.J.M.; Field, J.A.; Schraa, G.
1999-01-01
The dechlorinating activity of a methanogenic granular sludge from a methanol-fed upflow anaerobic sludge blanket reactor was investigated with chlorinated ethanes. This unadapted methanogenic consortium degraded all chloroethanes tested. The product formation rates decreased with the number of chlo
The formation of small scale granularities in latex particles
Zukoski, C. F.; Saville, D. A.
1985-01-01
A series of latices were synthesized using emulsifier-free emulsion copolymerization of styrene and sodium styrene sulfonic acid. The final latex particles display an internal granular structure which can be ascribed to the primary particles present in the early stages of particle growth. In these systems, the primary particles appear to have maintained their integrity during the swelling and growth stage.
Micromechanical study of elastic moduli of loose granular materials
Kruyt, N.P.; Agnolin, I.; Luding, S.; Rothenburg, L.
2010-01-01
In micromechanics of the elastic behaviour of granular materials, the macro-scale continuum elastic moduli are expressed in terms of micro-scale parameters, such as coordination number (the average number of contacts per particle) and interparticle contact stiffnesses in normal and tangential direct
Statics and kinematics of discrete Cosserat-type granular materials
Kruyt, N.P.
2003-01-01
A theoretical framework is presented for the statics and kinematics of discrete Cosserat-type granular materials. In analogy to the force and moment equilibrium equations for particles, compatibility equations for closed loops are formulated in the two-dimensional case for relative displacements and
Kinetics and mass transfer phenomena in anaerobic granular sludge
Gonzalez-Gil, G.; Seghezzo, L.; Lettinga, G.; Kleerebezem, R.
2001-01-01
The kinetic properties of acetate-degrading methanogenic granular sludge of different mean diameters were assessed at different up-flow velocities (Vup). Using this approach, the influence of internal and external mass transfer could be estimated. First, the apparent Monod constant (KS) for each dat
Destabilization of confined granular packings due to fluid flow
Monloubou, Martin; Sandnes, Bjørnar
2016-04-01
Fluid flow through granular materials can cause fluidization when fluid drag exceeds the frictional stress within the packing. Fluid driven failure of granular packings is observed in both natural and engineered settings, e.g. soil liquefaction and flowback of proppants during hydraulic fracturing operations. We study experimentally the destabilization and flow of an unconsolidated granular packing subjected to a point source fluid withdrawal using a model system consisting of a vertical Hele-Shaw cell containing a water-grain mixture. The fluid is withdrawn from the cell at a constant rate, and the emerging flow patterns are imaged in time-lapse mode. Using Particle Image Velocimetry (PIV), we show that the granular flow gets localized in a narrow channel down the center of the cell, and adopts a Gaussian velocity profile similar to those observed in dry grain flows in silos. We investigate the effects of the experimental parameters (flow rate, grain size, grain shape, fluid viscosity) on the packing destabilization, and identify the physical mechanisms responsible for the observed complex flow behaviour.
Statistics of the elastic behaviour of granular materials
Kruyt, N.P.; Rothenburg, L.
2001-01-01
The elastic behaviour of isotropic assemblies of granular materials consisting of two-dimensional, bonded and non-rotating particles is studied from the micromechanical viewpoint. Discrete element simulations have been performed of assemblies of 50,000 particles with various coordination numbers (av
Formation, characterization and mathematical modeling of the aerobic granular sludge
Energy Technology Data Exchange (ETDEWEB)
Ni, Bing-Jie [Queensland Univ., Brisbane, QLD (Australia). Advanced Water Management Centre
2013-07-01
Reports on successful aerobic granulation of sludge in pilot-scale reactor for treatment of low-strength municipal wastewater and identifies the key factors responsible for this process. Develops comprehensive models for sludge granulation, microbial interactions and microbial products formation to provide insights into the dynamics of all the soluble and solid components in aerobic granular sludge system. Demonstrates accelerated start-up and optimization of the anaerobic ammonia oxidation process by seeding the reactor with aerobic granules. Aerobic granular sludge technology will play an important role as an innovative technology alternative to the present activated sludge process in industrial and municipal wastewater treatment in the near future. Intended to fill the gaps in the studies of aerobic granular sludge, this thesis comprehensively investigates the formation, characterization and mathematical modeling of aerobic granular sludge, through integrating the process engineering tools and advanced molecular microbiology. The research results of this thesis contributed significantly to the advance of understanding and optimization of the bacterial granulation processes, the next generation of technology for cost-effective biological wastewater treatment.
Global and local superconductivity in boron-doped granular diamond.
Zhang, Gufei; Turner, Stuart; Ekimov, Evgeny A; Vanacken, Johan; Timmermans, Matias; Samuely, Tomás; Sidorov, Vladimir A; Stishov, Sergei M; Lu, Yinggang; Deloof, Bart; Goderis, Bart; Van Tendeloo, Gustaaf; Van de Vondel, Joris; Moshchalkov, Victor V
2014-04-02
Strong granularity-correlated and intragrain modulations of the superconducting order parameter are demonstrated in heavily boron-doped diamond situated not yet in the vicinity of the metal-insulator transition. These modulations at the superconducting state (SC) and at the global normal state (NS) above the resistive superconducting transition, reveal that local Cooper pairing sets in prior to the global phase coherence.
Newton vs Stokes : competing forces in granular matter
Gerner, van Henk Jan
2009-01-01
Granular materials can be encountered everywhere and are very important in industry. The first step in understanding these materials is normally to focus upon gravity and mechanical contact forces only. While this is a valid approximation when the particles are large, for smaller particles also the
Green-Kubo Representation of the Viscosity of Granular Gases
2005-07-13
Green-Kubo representation of the viscosity of granular gases J. Javier Brey Área de Física Teórica, Universidad de Sevilla. Apartado de Correos 1065...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Área de Física Teórica, Universidad de Sevilla. Apartado de Correos
Editorial: Modelling and computational challenges in granular materials
Weinhart, Thomas; Thornton, Anthony Richard; Einav, Itai
2015-01-01
This is the editorial for the special issue on “Modelling and computational challenges in granular materials” in the journal on Computational Particle Mechanics (CPM). The issue aims to provide an opportunity for physicists, engineers, applied mathematicians and computational scientists to discuss
77 FR 59979 - Pure Magnesium (Granular) From China
2012-10-01
... this five-year review. Background The Commission instituted this review on February 1, 2012 (77 FR 5049) and determined on May 7, 2012 that it would conduct an expedited review (77 FR 32668, June 1, 2012... COMMISSION Pure Magnesium (Granular) From China Determination On the basis of the record \\1\\ developed in...
Interface stability of granular filter structures under currents
Verheij, H.J.; Hoffmans, G.; Dorst, K.; Van de Sande, S.
2012-01-01
Granular filters are used for protection of structures against scour and erosion. For a proper functioning it is necessary that the interfaces between the filter structure, the subsoil and the water flowing above the filter structure are stable. Stability means that there is no transport of subsoil
Granular cell tumor with orbital involvement in a child
Energy Technology Data Exchange (ETDEWEB)
Reis, Fabiano [Universidade Estadual de Campinas (FCM/UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Radiologia; Iyeyasu, Josie Naomi; Carvalho, Keila Monteiro de [Universidade Estadual de Campinas (FCM/UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Oftalmo-Otorrinolaringologia; Altemani, Albina Messias [Universidade Estadual de Campinas (FCM/UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Anatomia Patologica
2011-09-15
The authors report a rare case of granular cell tumor in the left medial rectus muscle of a seven-year-old boy. Clinical, pathologic and radiologic findings of the present case are described and a brief literature review is undertaken. (author)
Anaerobic granular sludge : characterization, and factors affecting its functioning
Alphenaar, P.A.
1994-01-01
Many UASB reactors are designed in such a fashion that the presence of granular sludge is necessary for a proper purification process. For achieving an optimum wastewater purification with such reactors, knowledge of the factors that determine the growth, retention and disintegration of
ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODES
Electrochemical dechlorination of TCE was conducted in a glass column using granular graphite as electrodes. A constant voltage of 15 volt was applied resulting in 60-62 mA of current. Approximately 4-6% of the TCE was dechlorinated. Among the reduced TCE, more than 95% was compl...
General scaling relations for locomotion in granular media.
Slonaker, James; Motley, D Carrington; Zhang, Qiong; Townsend, Stephen; Senatore, Carmine; Iagnemma, Karl; Kamrin, Ken
2017-05-01
Inspired by dynamic similarity in fluid systems, we have derived a general dimensionless form for locomotion in granular materials, which is validated in experiments and discrete element method (DEM) simulations. The form instructs how to scale size, mass, and driving parameters in order to relate dynamic behaviors of different locomotors in the same granular media. The scaling can be derived by assuming intrusion forces arise from resistive force theory or equivalently by assuming the granular material behaves as a continuum obeying a frictional yield criterion. The scalings are experimentally confirmed using pairs of wheels of various shapes and sizes under many driving conditions in a common sand bed. We discuss why the two models provide such a robust set of scaling laws even though they neglect a number of the complexities of granular rheology. Motivated by potential extraplanetary applications, the dimensionless form also implies a way to predict wheel performance in one ambient gravity based on tests in a different ambient gravity. We confirm this using DEM simulations, which show that scaling relations are satisfied over an array of driving modes even when gravity differs between scaled tests.
Anaerobic granular sludge : characterization, and factors affecting its functioning
Alphenaar, P.A.
1994-01-01
Many UASB reactors are designed in such a fashion that the presence of granular sludge is necessary for a proper purification process. For achieving an optimum wastewater purification with such reactors, knowledge of the factors that determine the growth, retention and disintegration of ana
Local rheology of suspensions and dry granular materials
de Cagny, H.; Fall, A.; Denn, M.M.; Bonn, D.
2015-01-01
The flow of dry and wet granular media is investigated in a Couette geometry using magnetic resonance imaging in order to test the applicability of the "fluidity model" for nonlocality in these materials. Local volume fraction measurements show that the systems become heterogeneous during flow. We f
Physics of Granular Materials: Investigations in Support of Astrobiology
Marshall, John R.
2002-01-01
This publication list is submitted as a summary of the work conducted under Cooperative Agreement 1120. The goal of the 1120 research was to study granular materials within a planetary, astrophysical, and astrobiological context. This involved research on the physical, mechanical and electrostatic properties of granular systems, as well as the examination of these materials with atomic force microscopy and x-ray analysis. Instruments for analyzing said materials in planetary environments were developed, including the MECA (Mars Environment Compatibility Assessment) experiment for the MSP '01 lander, the ECHOS/MATADOR experiment for the MSP '03 lander, an ISRU experiment for the '03 lander, and MiniLEAP technology. Flight experiments for microgravity (Space Station and Shuttle) have also been developed for the study of granular materials. As expressed in the publications, work on 1120 encompassed laboratory research, theoretical modeling, field experiments, and flight experiments: a series of successful new models were developed for understanding the behavior of triboelectrostatically charged granular masses, and 4 separate instruments were selected for space flight. No inventions or patents were generated by the research under this Agreement.
Solitary granular avalanches: stability, fingering and theoretical modeling
Malloggi, Florent; Andreotti, Bruno; Clément, Eric; Aronson, Igor; Tsimring, Lev
2008-03-01
Avalanching processes do not only occur in the air as we know of snow avalanches, mud flows and land-slides. Such events frequently happen below the see level as they take many forms from turbidity currents to thick sediment waves. In this study we report results on laboratory scale avalanche experiments taking place both in the air and under-water. In both cases a family of stable solitary erosion/deposition waves is observed [1]. At higher inclination angles, we show the existence of a long wavelength transverse instability followed by a coarsening and the onset of a fingering pattern. While the experiments strongly differ by the spatial and time scales, the agreement between the stability diagrams, the wavelengths selection and the avalanche morphology suggest a common erosion/deposition scenario. We also use these erosion/deposition waves to investigate the dynamics of granular flow and jamming in the frame work of the Partial Fluidization Theory (PFT) proposed by Aronson et al. to describe the dynamics of granular matter near jamming [2]. [1] F. Malloggi et al. Europhysics Letters, 2006, Erosion waves: Transverse instabilities and fingering 75, 825-831 [2] I. S. Aranson et al.. Transverse instability of avalanches in granular flows down an incline. Physical Review E, 2006, 73, 050302; I.S.Aronson et al., Non rheological properties of granular flows: exploring the near jamming limit, preprint (2007).
Electrokinetic copper and iron migration in anaerobic granular sludge
Virkutyte, J.; Sillanpää, M.J.; Lens, P.N.L.
2006-01-01
The application of low-level direct electric current (0.15 mA cm¿2) as an electrokinetic technique to treat copper-contaminated mesophilic anaerobic granular sludge was investigated. The sludge was obtained from a full scale UASB reactor treating paper-mill wastewater and was artificially contaminat
On the degradation of granular materials due to internal erosion
Wang, Xiaoliang; Li, Jiachun
2015-10-01
A new state-based elasto-plastic constitutive relationship along with the discrete element model is established to estimate the degradation of granular materials due to internal erosion. Four essential effects of internal erosion such as the force network damage and relaxation are proposed and then incorporated into the constitutive relationship to formulate internal erosion impacts on the mechanical behavior of granular materials. Most manifestations in the degradation of granular materials, such as reduction of peak strength and dilatancy are predicted by the modified constitutive relationship in good agreement with the discrete element method (DEM) simulation. In particular, the sudden reduction of stress for conspicuous mass erosion in a high stress state is captured by force network damage and the relaxation mechanism. It is concluded that the new modified constitutive relationship is a potential theory to describe the degradation of granular materials due to internal erosion and would be very useful, for instance, in the prediction and assessment of piping disaster risk during the flood season.
Validation of DEM prediction for granular avalanches on irregular terrain
Mead, Stuart R.; Cleary, Paul W.
2015-09-01
Accurate numerical simulation can provide crucial information useful for a greater understanding of destructive granular mass movements such as rock avalanches, landslides, and pyroclastic flows. It enables more informed and relatively low cost investigation of significant risk factors, mitigation strategy effectiveness, and sensitivity to initial conditions, material, or soil properties. In this paper, a granular avalanche experiment from the literature is reanalyzed and used as a basis to assess the accuracy of discrete element method (DEM) predictions of avalanche flow. Discrete granular approaches such as DEM simulate the motion and collisions of individual particles and are useful for identifying and investigating the controlling processes within an avalanche. Using a superquadric shape representation, DEM simulations were found to accurately reproduce transient and static features of the avalanche. The effect of material properties on the shape of the avalanche deposit was investigated. The simulated avalanche deposits were found to be sensitive to particle shape and friction, with the particle shape causing the sensitivity to friction to vary. The importance of particle shape, coupled with effect on the sensitivity to friction, highlights the importance of quantifying and including particle shape effects in numerical modeling of granular avalanches.
Martian gullies: possible formation mechanism by dry granular material..
Cedillo-Flores, Y.; Durand-Manterola, H. J.
section Some of the geomorphological features in Mars are the gullies Some theories developed tried explain its origin either by liquid water liquid carbon dioxide or flows of dry granular material We made a comparative analysis of the Martian gullies with the terrestrial ones We propose that the mechanism of formation of the gullies is as follows In winter CO 2 snow mixed with sand falls in the terrain In spring the CO 2 snow sublimate and gaseous CO 2 make fluid the sand which flows like liquid eroding the terrain and forming the gullies By experimental work with dry granular material we simulated the development of the Martian gullies injecting air in the granular material section We present the characteristics of some terrestrial gullies forms at cold environment sited at Nevado de Toluca Volcano near Toluca City M e xico We compare them with Martian gullies choose from four different areas to target goal recognize or to distinguish to identify possible processes evolved in its formation Also we measured the lengths of those Martian gullies and the range was from 24 m to 1775 meters Finally we present results of our experimental work at laboratory with dry granular material
Interface stability of granular filter structures under currents
Verheij, H.J.; Hoffmans, G.; Dorst, K.; Van de Sande, S.
2012-01-01
Granular filters are used for protection of structures against scour and erosion. For a proper functioning it is necessary that the interfaces between the filter structure, the subsoil and the water flowing above the filter structure are stable. Stability means that there is no transport of subsoil
Avalanche Statistics of Driven Granular Slides in a Miniature Mound
Juanico, D E; Batac, R; Monterola, C
2008-01-01
We examine avalanche statistics of rain- and vibration-driven granular slides in miniature soil mounds using experimental and numerical approaches. A crossover from power-law to non power-law avalanche-size statistics is demonstrated as a generic driving rate $\
Electrokinetic copper and iron migration in anaerobic granular sludge
Virkutyte, J.; Sillanpää, M.J.; Lens, P.N.L.
2006-01-01
The application of low-level direct electric current (0.15 mA cm¿2) as an electrokinetic technique to treat copper-contaminated mesophilic anaerobic granular sludge was investigated. The sludge was obtained from a full scale UASB reactor treating paper-mill wastewater and was artificially contaminat
Closure relations for shallow granular flows from particle simulations
Weinhart, Thomas; Thornton, Anthony Richard; Luding, Stefan; Bokhove, Onno
The Discrete Particle Method (DPM) is used to model granular flows down an inclined chute. We observe three major regimes: static piles, steady uniform flows and accelerating flows. For flows over a smooth base, other (quasi-steady) regimes are observed where the flow is either highly energetic and
Hexagons and Interfaces in a Vibrated Granular Layer
Aranson, I S; Vinokur, V M
1998-01-01
The order parameter model based on parametric Ginzburg-Landau equation is used to describe high acceleration patterns in vibrated layer of granular material. At large amplitude of driving both hexagons and interfaces emerge. Transverse instability leading to formation of ``decorated'' interfaces and labyrinthine patterns, is found. Additional sub-harmonic forcing leads to controlled interface motion.
Pesticide Removal by Combined Ozonation and Granular Activated Carbon Filtration
Orlandini, E.
1999-01-01
This research aimed to idendfy and understand mechanisms that underlie the beneficial effect of ozonation on removal of pesdcides and other micropoUutants by Granular Activated Carbon (GAC) filtradon. This allows optimization of the combination of these two processes, termed Biological Activated
The dechlorination of cyclodiene pesticides by methanogenic granular sludge
Baczynski, T.H.; Grotenhuis, J.T.C.; Knipscheer, P.
2004-01-01
Cyclodiene pesticides: aldrin, isodrin, dieldrin and endrin were dechlorinated by methanogenic granular sludge in spiked batch tests. Initial pesticides concentration was 7 or 9 mg1(-1). Two monodechlorinated analogues were formed during the conversions of aldrin and isodrin. Dieldrin was
Granular starch hydrolysis for fuel ethanol production
Wang, Ping
Granular starch hydrolyzing enzymes (GSHE) convert starch into fermentable sugars at low temperatures (≤48°C). Use of GSHE in dry grind process can eliminate high temperature requirements during cooking and liquefaction (≥90°C). In this study, GSHE was compared with two combinations of commercial alpha-amylase and glucoamylase (DG1 and DG2, respectively). All three enzyme treatments resulted in comparable ethanol concentrations (between 14.1 to 14.2% v/v at 72 hr), ethanol conversion efficiencies and ethanol and DDGS yields. Sugar profiles for the GSHE treatment were different from DG1 and DG2 treatments, especially for glucose. During simultaneous saccharification and fermentation (SSF), the highest glucose concentration for the GSHE treatment was 7% (w/v); for DG1 and DG2 treatments, maximum glucose concentration was 19% (w/v). GSHE was used in one of the fractionation technologies (enzymatic dry grind) to improve recovery of germ and pericarp fiber prior to fermentation. The enzymatic dry grind process with GSHE was compared with the conventional dry grind process using GSHE with the same process parameters of dry solids content, pH, temperature, time, enzyme and yeast usages. Ethanol concentration (at 72 hr) of the enzymatic process was 15.5% (v/v), which was 9.2% higher than the conventional process (14.2% v/v). Distillers dried grains with solubles (DDGS) generated from the enzymatic process (9.8% db) was 66% less than conventional process (28.3% db). Three additional coproducts, germ 8.0% (db), pericarp fiber 7.7% (db) and endosperm fiber 5.2% (db) were produced. Costs and amounts of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Proteases also can hydrolyze protein into free amino nitrogen (FAN), which can be used as a yeast nutrient during fermentation. Two types of proteases, exoprotease and endoprotease, were studied; protease and urea
The Role of Short-Chain Conjugated Poly-(R)-3-Hydroxybutyrate (cPHB) in Protein Folding
Reusch, Rosetta N.
2013-01-01
Poly-(R)-3-hydroxybutyrate (PHB), a linear polymer of R-3-hydroxybutyrate (R-3HB), is a fundamental constituent of biological cells. Certain prokaryotes accumulate PHB of very high molecular weight (10,000 to >1,000,000 residues), which is segregated within granular deposits in the cytoplasm; however, all prokaryotes and all eukaryotes synthesize PHB of medium-chain length (~100–200 residues) which resides within lipid bilayers or lipid vesicles, and PHB of short-chain length (
Discrete Element study of granular material - Bumpy wall interface behavior
El Cheikh, Khadija; Rémond, Sébastien; Pizette, Patrick; Vanhove, Yannick; Djelal, Chafika
2016-09-01
This paper presents a DEM study of a confined granular material sheared between two parallel bumpy walls. The granular material consists of packed dry spherical particles. The bumpiness is modeled by spheres of a given diameter glued on horizontal planes. Different bumpy surfaces are modeled by varying diameter or concentration of glued spheres. The material is sheared by moving the two bumpy walls at fixed velocity. During shear, the confining pressure applied on each bumpy wall is controlled. The effect of wall bumpiness on the effective friction coefficient and on the granular material behavior at the bumpy walls is reported for various shearing conditions. For given bumpiness and confining pressure that we have studied, it is found that the shear velocity does not affect the shear stress. However, the effective friction coefficient and the behavior of the granular material depend on the bumpiness. When the diameter of the glued spheres is larger than about the average grains diameter of the medium, the latter is uniformly sheared and the effective friction coefficient remains constant. For smaller diameters of the glued spheres, the effective friction coefficient increases with the diameter of glued spheres. The influence of glued spheres concentration is significant only for small glued spheres diameters, typically half of average particle diameter of the granular material. In this case, increasing the concentration of glued spheres leads to a decrease in effective friction coefficient and to shear localization at the interface. For different diameters and concentrations of glued spheres, we show that the effect of bumpiness on the effective friction coefficient can be characterized by the depth of interlocking.
Effect of volume fraction on granular avalanche dynamics.
Gravish, Nick; Goldman, Daniel I
2014-09-01
We study the evolution and failure of a granular slope as a function of prepared volume fraction, ϕ(0). We rotated an initially horizontal layer of granular material (0.3-mm-diam glass spheres) to a 45° angle while we monitor the motion of grains from the side and top with high-speed video cameras. The dynamics of grain motion during the tilt process depended sensitively on ϕ(0)∈[0.58-0.63] and differed above or below the granular critical state, ϕ(c), defined as the onset of dilation as a function of increasing volume fraction. For ϕ(0)-ϕ(c)avalanche. Precursor compaction events began at an initial angle θ(0)=7.7±1.4° and occurred intermittently prior to the onset of an avalanche. Avalanches occurred at the maximal slope angle θ(m)=28.5±1.0°. Granular material at ϕ(0)-ϕ(c)>0 did not experience precursor compaction prior to avalanche flow, and instead experienced a single dilational motion at θ(0)=32.1±1.5° prior to the onset of an avalanche at θ(m)=35.9±0.7°. Both θ(0) and θ(m) increased with ϕ(0) and approached the same value in the limit of random close packing. The angle at which avalanching grains came to rest, θ(R)=22±2°, was independent of ϕ(0). From side-view high-speed video, we measured the velocity field of intermittent and avalanching flow. We found that flow direction, depth, and duration were affected by ϕ(0), with ϕ(0)-ϕ(c)0. Our study elucidates how initial conditions-including volume fraction-are important determinants of granular slope stability and the onset of avalanches.
Energy bursts in vibrated shallow granular systems
Rivas, N.; Risso, D.; Soto, R.; Cordero, P.
2011-03-01
In a mixture of two species of inelastic spheres of equal size but different mass, placed in a vertically vibrated shallow box (large horizontal dimensions and height comparable to the grains' size), there is spontaneous segregation. Once the system is at least partly segregated energy bursts recurrently take place: the horizontal kinetic energy of the heavy particles, that normally is small, suddenly increases an order of magnitude. An explanation of these events is provided based on the existence of a fixed point for an isolated particle bouncing with only vertical motion between the top and bottom plates. Energy bursts occur when clusters of heavy particles start a chain reaction of collisions that transfer vertical energy to horizontal energy producing an expansion of the cluster.
The Thermal Conductivity Theory of Non-uniform Granular Flow and the Mechanism Analysis
Institute of Scientific and Technical Information of China (English)
ZHANGDuan-Ming; LEIYa-Jie; YUBo-Ming; PANGui-Jun
2003-01-01
According to the fractal characteristics appearing in non-uniform granular system, we found the fractal model to study the effective thermal conductivity in the mixed system. Considering the quasi-equilibrium, we bring forward the fractal velocity probability distribution function. The equipartition of energy is employed to the non-uniform granular system, and the granular temperature is derived. We investigate the thermal conductivity in granular flow due to the movement of the particles, namely the heat transfer induced by the streaming mode only. The thermal conductivity in the mixed system changes with the fractal parameters such as the solid fraction v, structural character parameter η, and fractal dimension D of size distribution. These parameters depict the characteristics of the thermal conductivity in the actual complex granular system. Comparing our conclusion with the correlative experimental data and the theoretical conclusion of binary mixture of granular materials, the results can qualitatively confirm the generality of our prediction on the granular system.
Time-resolved dynamics of granular matter by random laser emission
Folli, Viola; Puglisi, Andrea; Leuzzi, Luca; Conti, Claudio
2013-01-01
Because of the huge commercial importance of granular systems, the second-most used material in industry after water, intersecting the industry in multiple trades, like pharmacy and agriculture, fundamental research on grain-like materials has received an increasing amount of attention in the last decades. In photonics, the applications of granular materials have been only marginally investigated. We report the first phase-diagram of a granular as obtained by laser emission. The dynamics of vertically-oscillated granular in a liquid solution in a three-dimensional container is investigated by employing its random laser emission. The granular motion is function of the frequency and amplitude of the mechanical solicitation, we show how the laser emission allows to distinguish two phases in the granular and analyze its spectral distribution. This constitutes a fundamental step in the field of granulars and gives a clear evidence of the possible control on light-matter interaction achievable in grain-like system.
Slats, P.A.; Bhola, B.; Evers, J.J.M.; Dijkhuizen, G.
1995-01-01
Logistic chain modelling is very important in improving the overall performance of the total logistic chain. Logistic models provide support for a large range of applications, such as analysing bottlenecks, improving customer service, configuring new logistic chains and adapting existing chains to n
Health supply chain management.
Zimmerman, Rolf; Gallagher, Pat
2010-01-01
This chapter gives an educational overview of: * The actual application of supply chain practice and disciplines required for service delivery improvement within the current health environment. * A rationale for the application of Supply Chain Management (SCM) approaches to the Health sector. * The tools and methods available for supply chain analysis and benchmarking. * Key supply chain success factors.
Windows-Yule, C.R.K.; Rosato, A.D.; Thornton, A.R.; Parker, D.J.
2015-01-01
Using a combination of experimental techniques and discrete particle method simulations, we investigate the resonant behaviour of a dense, vibrated granular system. We demonstrate that a bed of particles driven by a vibrating plate may exhibit marked differences in its internal energy dependent on t
Wave Propagation In Strongly Nonlinear Two-Mass Chains
Wang, Si Yin; Herbold, Eric B.; Nesterenko, Vitali F.
2010-05-01
We developed experimental set up that allowed the investigation of propagation of oscillating waves generated at the entrance of nonlinear and strongly nonlinear two-mass granular chains composed of steel cylinders and steel spheres. The paper represents the first experimental data related to the propagation of these waves in nonlinear and strongly nonlinear chains. The dynamic compressive forces were detected using gauges imbedded inside particles at depths equal to 4 cells and 8 cells from the entrance gauge detecting the input signal. At these relatively short distances we were able to detect practically perfect transparency at low frequencies and cut off effects at higher frequencies for nonlinear and strongly nonlinear signals. We also observed transformation of oscillatory shocks into monotonous shocks. Numerical calculations of signal transformation by non-dissipative granular chains demonstrated transparency of the system at low frequencies and cut off phenomenon at high frequencies in reasonable agreement with experiments. Systems which are able to transform nonlinear and strongly nonlinear waves at small sizes of the system are important for practical applications such as attenuation of high amplitude pulses.
Shape Effects on Jamming of Granular Materials
Farhadi, Somayeh
slow relaxation towards an unjammed state in ellipses is associated with the possibility of small and slow changes in their orientations, which then allow a more efficient packing. In order to study the stress fluctuations, we implement photoelastic properties of the particles. We are able to track the g 2 (a measure of local stress) of each particle throughout the entire experiment. Unlike disks, the power spectra of g2, P(ω), is not rate invariant for ellipses. In other words, all curves of RP(ω) vs. ω/R (where R is the shear rate) with different values of R, collapse to a single curve for disks, but not for ellipses. The rate invariance of spectra was previously studied for sheared spherical glass beads and semi-2D pentagonal particles. This is the first experimental work in which the fluctuations of granular systems composed of elongated particles is addressed. We have also studied the formation and destruction of stress avalanches during Couette shear in both systems of disks and ellipses. In particular, we introduce measures which characterize the size and shape of stress avalanches. Analysis of these measures shows that the build-up and release of stress in both systems of disks and ellipses have similar distributions which indicates that the deformation of particles in a Couette cell does not resemble stick-slip behavior. We also find that the build-up and release of stress is faster is larger avalanches. Cyclic isotropic compression is performed on semi-2D systems of bi-disperse disks and identical ellipses with aspect ratio 2, which are composed of photoelastic particles. In each compression cycle, the system is compressed with a total strain of 1.6% and then expanded to the initial state. After completion of each half cycle, the system is allowed to relax, then imaged by two synchronized cameras. The packing fraction, φ, of compressed states are chosen above the isotopic jamming point (point J). In both systems of disks and ellipses, we observed
Characterization of granular flows from the generated seismic signal
Farin, Maxime; Mangeney, Anne; Toussaint, Renaud; De Rosny, Julien; Trinh, Phuong-Thu
2016-04-01
Landslides, rock avalanche and debris flows represent a major natural hazard in steep landscapes. Recent studies showed that the seismic signal generated by these events can provide quantitative information on their location and amplitude. However, owing to the lack of visual observations, the dynamics of gravitational events is still not well understood. A burning challenge is to establish relations between the characteristics of the landslide (volume, speed, runout distance,...) and that of the emitted seismic signal (maximum amplitude, seismic energy, frequencies,...). We present here laboratory experiments of granular columns collapse on an inclined plane. The seismic signal generated by the collapse is recorded by piezoelectric accelerometers sensitive in a wide frequency range (1 Hz - 56 kHz). The granular column is made of steel beads of the same diameter, between 1 mm and 3 mm that are initially contained in a cylinder. The column collapses when the cylinder is removed. A layer of steel beads is glued on the surface of the plane to provide basal roughness. For horizontal granular flows, we show that it is possible to distinguish the phases of acceleration and deceleration of the flow in the emitted seismic signal. Indeed, the signal envelope is symmetrical with respect to its maximum, separating the acceleration from the deceleration. When the slope angle increases, we observe that the signal envelope looses its symmetry: it stays unchanged during the acceleration but it is significantly extended during the deceleration. In addition, we propose a semi-empirical scaling law to describe the increase of the elastic energy radiated by a granular flow when the slope angle increases. The fit of this law with the seismic data allows us to retrieve the friction angle of the granular material, which is a crucial rheological parameter. Finally, we show that the ratio of the radiated elastic energy over the potential energy lost of granular flows, i.e. their seismic
Manciu, M; Sen, S
2000-01-01
We demonstrate that the propagation of solitons, soliton-like excitations and acoustic pulses discussed in the preceding article can be used to detect buried impurities in a chain of elastic grains with Hertzkur contacts. We also present preliminary data for 3D granular beds, where soliton-like objects can form and can be used to probe for buried impurities, thus suggesting that soliton-pulse spectroscopy has the potential to become a valuable tool for probing the structural properties of granular assemblies. The effects of restitution are briefly discussed. We refer to available experiments which support our contention.
Matsushita, Yuki; Fujita, Shuichi; Kawasaki, Goro; Hirota, Yoshinosuke; Rokutanda, Satoshi; Yamashita, Kentaro; Yanamoto, Souichi; Ikeda, Tohru; Umeda, Masahiro
2015-01-01
Granular cell ameloblastoma is classified as a histological subtype of solid/multicystic ameloblastoma. Usual granular cell ameloblastoma is histologically characterized by granular changes of stellate-like cells located in the inner portion of the epithelial follicles. Here we report a case of another type of granular cell ameloblastoma, showing predominant anastomosing double-stranded trabeculae of granular cells. This type of granular cell ameloblastoma is extremely rare, and the World Health Organization classification does not contain the entity. We tentatively termed it 'anastomosing granular cell ameloblastoma' in this report. The present case suggests the importance of differential diagnosis because the histology of 'anastomosing granular cell ameloblastoma' resembles that of salivary gland oncocytoma rather than that of usual granular cell ameloblastoma. The trabeculae observed in our case continued to the peripheral cells of a small amount of epithelial sheets of plexiform ameloblastoma, and the tumor cells were positive for CK19, which is regarded as an immunohistochemical marker of odontogenic epithelium. Similar to usual granular cell ameloblastoma, the tumor cells had CD68-positive granules. For precise diagnosis of this condition, immunohistochemistry using CK19 and CD68, as well as detailed histological observation, are recommended. © 2014 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd.
Wyser, Emmanuel; Abellan, Antonio; Carrea, Dario; Rudaz, Benjamin; Jaboyedoff, Michel
2015-04-01
Granular impacts have been extensively studied but much remains to be investigated regarding the complex topic of liquid-to-granular impact. Its applications to Geosciences are of interest regarding recent advances in the investigation of the raindrop erosion or the sediment flux. In our study, we focus on the quantification of both the excavated and deposited volumes resulting from a water-droplet impact onto a fine granular. The quantification of the existing relationships between the impact energy, the packing fraction and the excavated volume is also of interest. Indeed, the relationship between the packing fraction and the excavated volume has still to be investigated for constant impact energy (fixed height of fall and droplet size). Moreover, the volume distribution of the granular matter around the impact target has still to be achieved regarding the previous studies. Much of the previous work was focused on the ejected particles distribution but less is known about the volume distribution of the ejected mass. In this study, we have developed a specific methodology in order to investigate these two topics, as follows: a) First of all, we carried out experimental investigations in laboratory on a setup inspired by the previous works of Long et al. (2014) and Furbish et al. (2007). Granular samples were prepared using a compaction device in order to produce various packing fractions. Pre- and post-impact surface geometries were recorded using a high precision 3D scanner (KONICA MINOLTA VIVID 9i). This provided an accurate point cloud of the impact crater and ejecta deposits. b) Afterwards, we processed each point cloud pairs using different softwares (PolyWorks & MATLAB). We used an accurate change detection method by computing orthogonal distance from points (post-geometry) to reference meshed surface (pre-geometry) to extract the points belonging to deposits (positive distance) or crater (negative distance). Then, we used the computational geometry toolbox
Electromagnetic response of a highly granular hadronic calorimeter
Energy Technology Data Exchange (ETDEWEB)
Adloff, C.; Blaha, J.; Blaising, J.J. [Savoie Univ., CNRS/IN2P3, Annecy-le-Vieux (FR). Lab. d' Annecy-le-Vieux de Physique des Particules] (and others)
2010-12-15
The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and incidence angles. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described. (orig.)
Impact craters in granular media: grains against grains.
Pacheco-Vázquez, F; Ruiz-Suárez, J C
2011-11-18
Impact experiments in granular media are usually performed with solid projectiles that do not fragment at all. Contrastingly, we study here the morphology produced by the impact of spherical granular projectiles whose structure is utterly lost after collision. Simple and complex craters are observed, depending on the packing fraction of the balls. Their diameters D and depths z are analyzed as a function of the drop height h. We find the same power law D ∝ h(1/4) obtained with solid spheres, but a discontinuity at a certain threshold height, related to the cohesive energy of the projectiles, shows up. Counterintuitively, instead of a monotonic increase with the collisional energy, z becomes constant above this threshold.
The calculation of resonance capture in granular fuels
Energy Technology Data Exchange (ETDEWEB)
Askew, J.R.; Harris, D.W.G.; Hutton, J.L.
1971-02-15
The methods used in the UK for the calculation of resonance capture in granular HTR fuels follow the long established path of determining a 'geometric equivalence' which equates the resonance shielding to that in a homogeneous mixture of the resonance absorber in hydrogen. Simple collision probability arguments, usually for the black limit, were used for AGR and SGHW systems. For granular fuel a 'grey' equivalence, convenient for numerical use, has been adopted, and the geometric solution performed in two ways: by a synthetic collision probability model which is rapid and appropriate for design work and by a Monte Carlo model which allows details of the grain lattice structure to be studied. The results are in good agreement, and are shown to give good results compared with measured relative conversion ratios in the NESTOR stack experiments.