WorldWideScience

Sample records for mono-energetic gamma generator

  1. Coaxial Mono-Energetic Gamma Generator for Active Interrogation

    International Nuclear Information System (INIS)

    Ludewigt, Bernhard A.; Antolak, A.J.; Henestroza, E.; Leitner, M.; Leung, K.-N.; Waldron, W.; Wilde, S.; Kwan, J.W.

    2008-01-01

    Compact mono-energetic photon sources are sought for active interrogation systems to detect shielded special nuclear materials in, for example, cargo containers, trucks and other vehicles. A prototype gamma interrogation source has been designed and built that utilizes the 11B(p,gamma)12C reaction to produce 12 MeV gamma-rays which are near the peak of the photofission cross section. In particular, the 11B(p,gamma)12C resonance at 163 kV allows the production of gammas at low proton acceleration voltages, thus keeping the design of a gamma generator comparatively small and simple. A coaxial design has been adopted with a toroidal-shaped plasma chamber surrounding a cylindrical gamma production target. The plasma discharge is driven by a 2 MHz rf-power supply (capable up to 50 kW) using a circular rf-antenna. Permanent magnets embedded in the walls of the plasma chamber generate a multi-cusp field that confines the plasma and allows higher plasma densities and lower gas pressures. About 100 proton beamlets are extracted through a slotted plasma electrode towards the target at the center of the device that is at a negative 180 kV. The target consists of LaB6 tiles that are brazed to a water-cooled cylindrical structure. The generator is designed to operate at 500 Hz with 20 mu s long pulses, and a 1percent duty factor by pulsing the ion source rf-power. A first-generation coaxial gamma source has been built for low duty factor experiments and testing.

  2. VELOCIRAPTOR: An X-band photoinjector and linear accelerator for the production of Mono-Energetic {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.G., E-mail: anderson131@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551 (United States); Albert, F.; Bayramian, A.J.; Beer, G.; Bonanno, R.E.; Cross, R.R.; Deis, G.; Ebbers, C.A.; Gibson, D.J.; Hartemann, F.V.; Houck, T.L.; Marsh, R.A.; McNabb, D.P.; Messerly, M.J.; Scarpetti, R.D.; Shverdin, M.Y.; Siders, C.W.; Wu, S.S.; Barty, C.P.J. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551 (United States); Adolphsen, C.E. [SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025 (United States); and others

    2011-11-21

    The rf photoinjector and linear accelerator in the Mono-Energetic Gamma-ray (MEGa-ray) facility at LLNL is presented. This machine uses 11.4 GHz rf technology to accelerate a high-brightness electron beam up to 250 MeV to produce MeV {gamma}-rays through Compton scattering with a Joule-class laser pulse. Compton scattering-based generation of high flux, narrow bandwidth {gamma}-rays places stringent requirements on the performance of the accelerator. The component parts of the accelerator are presented and their requirements described. Simulations of expected electron beam parameters and the resulting light source properties are presented.

  3. Generation of laser Compton gamma-rays using Compact ERL

    International Nuclear Information System (INIS)

    Shizuma, Toshiyuki; Hajima, Ryoichi; Nagai, Ryoji; Hayakawa, Takehito; Mori, Michiaki; Seya, Michio

    2015-01-01

    Nondestructive isotope-specific assay system using nuclear resonance fluorescence has been developed at JAEA. In this system, intense, mono-energetic laser Compton scattering (LCS) gamma-rays are generated by combining an energy recovery linac (ERL) and laser enhancement cavity. As technical development for such an intense gamma-ray source, we demonstrated generation of LCS gamma-rays using Compact ERL (supported by the Ministry of Education, Culture, Sports, Science and Technology) developed in collaboration with KEK. We also measured X-ray fluorescence for elements near iron region by using mono-energetic LCS gamma-rays. In this presentation, we will show results of the experiment and future plan. (author)

  4. Development of high pressure deuterium gas targets for the generation of intense mono-energetic fast neutron beams

    International Nuclear Information System (INIS)

    Guzek, J.; Richardson, K.; Franklyn, C.B.; Waites, A.; McMurray, W.R.; Watterson, J.I.W.; Tapper, U.A.S.

    1999-01-01

    Two different technical solutions to the problem of generation of mono-energetic fast neutron beams on the gaseous targets are presented here. A simple and cost-effective design of a cooled windowed gas target system is described in the first part of this paper. It utilises a thin metallic foil window and circulating deuterium gas cooled down to 100 K. The ultimate beam handling capability of such target is determined by the properties of the window. Reliable performance of this gas target system was achieved at 1 bar of deuterium gas, when exposed to a 45 μA beam of 5 MeV deuterons, for periods in excess of 6 h. Cooling of the target gas resulted in increased fast neutron output and improved neutron to gamma-ray ratio. The second part of this paper discusses the design of a high pressure, windowless gas target for use with pulsed, low duty cycle accelerators. A rotating seal concept was applied to reduce the gas load in a differentially pumped system. This allows operation at 1.23 bar of deuterium gas pressure in the gas cell region. Such a gas target system is free from the limitations of the windowed target but special attention has to be paid to the heat dissipation capability of the beam dump, due to the use of a thin target. The rotating seal concept is particularly suitable for use with accelerators such as radio-frequency quadrupole (RFQ) linacs that operate with a very high peak current at low duty cycle. The performance of both target systems was comprehensively characterized using the time-of-flight (TOF) technique. This demonstrated that very good quality mono-energetic fast neutron beams were produced with the slow neutron and gamma-ray component below 10% of the total target output

  5. Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources

    Science.gov (United States)

    Barty, Christopher P.J.

    2013-02-05

    A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.

  6. Novel design concepts for generating intense accelerator based beams of mono-energetic fast neutrons

    International Nuclear Information System (INIS)

    Franklyn, C.B.; Govender, K.; Guzek, J.; Beer, A. de; Tapper, U.A.S.

    2001-01-01

    Full text: Successful application of neutron techniques in research, medicine and industry depends on the availability of suitable neutron sources. This is particularly important for techniques that require mono-energetic fast neutrons with well defined energy spread. There are a limited number of nuclear reactions available for neutron production and often the reaction yield is low, particularly for thin targets required for the production of mono-energetic neutron beams. Moreover, desired target materials are often in a gaseous form, such as the reactions D(d,n) 3 He and T(d,n) 3 He, requiring innovative design of targets, with sufficient target pressure and particle beam handling capability. Additional requirements, particularly important in industrial applications, and for research institutions with limited funds, are the cost effectiveness as well as small size, coupled with reliable and continuous operation of the system. Neutron sources based on high-power, compact radio-frequency quadrupole (RFQ) linacs can satisfy these criteria, if used with a suitable target system. This paper discusses the characteristics of a deuteron RFQ linear accelerator system coupled to a high pressure differentially pumped deuterium target. Such a source, provides in excess of 10 10 mono- energetic neutrons per second with minimal slow neutron and gamma-ray contamination, and is utilised for a variety of applications in the field of mineral identification and materials diagnostics. There is also the possibility of utilising a proposed enhanced system for isotope production. The RFQ linear accelerator consists of: 1) Deuterium 25 keV ion source injector; 2) Two close-coupled RFQ resonators, each powered by an rf amplifier supplying up to 300 kW of peak power at 425 MHz; 3) High energy beam transport system consisting of a beam line, a toroid for beam current monitoring, two steering magnets and a quadrupole triplet for beam focusing. Basic technical specifications of the RFQ linac

  7. 2 keV filters of quasi-mono-energetic neutrons

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; El-Mesiry, M.S.; Bashter, I.I.; Saleh, A.; Fathallah, M.

    2013-01-01

    A simulation study for the production of 2 keV filters of quasi-mono-energetic neutrons based on the deep interference minima in the 45 Sc total cross-section was carried out. A computer code QMENF-II was adapted to calculate the optimum amounts of the 45 Sc as a main filter element and additional component ones to obtain sufficient intensity at high resolution and purity of the filtered quasi-mono-energetic neutrons. The emitted neutron spectrum from nuclear reactor and from the reaction of 2.6 MeV protons on a lithium fluoride target at the accelerator beam port, are used for simulation

  8. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    Science.gov (United States)

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A Study on Mono-energetic Beam Source Using Characteristic X-ray for Substance Identification System

    International Nuclear Information System (INIS)

    Lee, Hwan Soo

    2009-02-01

    A new mono-energetic beam source was developed by using characteristic X-ray for improving performance of the substance identification system. Most of inspection systems use X-ray tubes for their source modules. However, the broad energy spectrum of X-ray tube causes an increase of uncertainty. In this study, it was found that mono-energetic beam sources can be generated by using X-ray tube and the designed target filter assembly. In order to investigate the monoenergetic beam source, the sensitivity study was conducted with a series of different X-ray tube potentials, radiator and filter materials using Monte Carlo simulation. The developed beam sources have a mono-energy peak at 69 keV, 78 keV and 99 keV, and they are named as characteristic X-ray beam BEAM69, BEAM78 and BEAM99, respectively. The characteristic X-ray beam intensity was over thirty three times more than that of hardening beam used previous work at Hanyang University. And BEAM69 and BEAM99 were applied to the substance identification system as a source. The relative error between results of characteristic X-ray beams and 69 keV and 99 keV photons was about 2% on the average for five unknown materials. In comparison with experiment results by using hardening beam, characteristic X-ray beam achieves better accuracy which is about 6.46 % on the average. Hence, it is expected that the developed characteristic X-ray beam source helps lower uncertainty of the inspection system, and the inspection time will be reduced considerably due to its high beam intensity

  10. Simulated and measured neutron/gamma light output distribution for poly-energetic neutron/gamma sources

    Science.gov (United States)

    Hosseini, S. A.; Zangian, M.; Aghabozorgi, S.

    2018-03-01

    In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the present study, the neutron-gamma discrimination based on the light output distribution was performed using the zero crossing method. As a case study, 241Am-9Be source was considered and the simulated and measured neutron/gamma light output distributions were compared. There is an acceptable agreement between the discriminated neutron/gamma light output distributions obtained from the simulation and experiment.

  11. Ion-induced gammas for photofission interrogation of HEU.

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee (Sandia National Laboratories, Albuquerque, NM); Antolak, Arlyn J.; Morse, Daniel H.; Provencio, Paula Polyak (Sandia National Laboratories, Albuquerque, NM)

    2006-03-01

    High-energy photons and neutrons can be used to actively interrogate for heavily shielded special nuclear material (SNM), such as HEU (highly enriched uranium), by detecting prompt and/or delayed induced fission signatures. In this work, we explore the underlying physics for a new type of photon source that generates high fluxes of mono-energetic gamma-rays from low-energy (<500 keV) proton-induced nuclear reactions. The characteristic energies (4- to 18-MeV) of the gamma-rays coincide with the peak of the photonuclear cross section. The source could be designed to produce gamma-rays of certain selected energies, thereby improving the probability of detecting shielded HEU or providing a capability to determine enrichment inside sealed containers. The fundamental physics of such an interrogation source were studied in this LDRD through scaled ion accelerator experiments and radiation transport modeling. The data were used to assess gamma and neutron yields, background, and photofission-induced signal levels from several (p,{gamma}) target materials under consideration.

  12. Gamma spectra pictures using a digital plotter. Program MONO

    International Nuclear Information System (INIS)

    Los Arcos Merino, J.M.

    1978-01-01

    The program MONO has been written for a CALCOMP-936 digital plotter operating off- -line with a UMI VAC 1106 computer, to obtain graphic representations of single gamma spectra stored on magnetic tape. It allows to plot the whole spectrum or only a part, as well as to draw a given spectrum on the same or different picture than the previous one. Ten representation scales are available and at up nine comment lines can be written in a graphic. (Author) 4 refs

  13. Stabilized super-thermite colloids: A new generation of advanced highly energetic materials

    Science.gov (United States)

    Elbasuney, Sherif; Gaber Zaky, M.; Radwan, Mostafa; Mostafa, Sherif F.

    2017-10-01

    One of the great impetus of nanotechnology on energetic materials is the achievement of nanothermites (metal-oxide/metal) which are characterized by massive heat output. Yet, full exploitation of super-thermites in highly energetic systems has not been achieved. This manuscript reports on the sustainable fabrication of colloidal Fe2O3 and CuO nanoparticles for thermite applications. TEM micrographs demonstrated mono-dispersed Fe2O3 and CuO with an average particle size of 3 and 15 nm respectively. XRD diffractograms demonstrated highly crystalline materials. SEM micrographs demonstrated a great tendency of the developed oxides to aggregate over drying process. The effective integration and dispersion of mono-dispersed colloidal thermite particles into energetic systems are vital for enhanced performance. Aluminum is of interest as highly energetic metal fuel. In this paper, synthesized Fe2O3 and CuO nanoparticles were re-dispersed in isopropyl alcohol (IPA) with aluminum nanoparticles using ultrasonic prope homogenizer. The colloidal thermite peraticles can be intgegrated into highly energetic system for subsequent nanocomposite development. Thanks to stabilization of colloidal CuO nanoparticles in IPA which could offer intimate mixing between oxidizer and metal fuel. The stabilization mechanism of CuO in IPA was correlated to steric stabilization with solvent molecules. This approach eliminated nanoparticle drying and the re-dispersion of dry aggregates into energetic materials. This manuscript shaded the light on the real development of colloidal thermite mixtures and their integration into highly energetic systems.

  14. A dual neutron/gamma source for the Fissmat Inspection for Nuclear Detection (FIND) system.

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee (Sandia National Laboratories, Albuquerque, NM); King, Michael; Rossi, Paolo (Sandia National Laboratories, Albuquerque, NM); McDaniel, Floyd Del (Sandia National Laboratories, Albuquerque, NM); Morse, Daniel Henry; Antolak, Arlyn J.; Provencio, Paula Polyak (Sandia National Laboratories, Albuquerque, NM); Raber, Thomas N.

    2008-12-01

    Shielded special nuclear material (SNM) is very difficult to detect and new technologies are needed to clear alarms and verify the presence of SNM. High-energy photons and neutrons can be used to actively interrogate for heavily shielded SNM, such as highly enriched uranium (HEU), since neutrons can penetrate gamma-ray shielding and gamma-rays can penetrate neutron shielding. Both source particles then induce unique detectable signals from fission. In this LDRD, we explored a new type of interrogation source that uses low-energy proton- or deuteron-induced nuclear reactions to generate high fluxes of mono-energetic gammas or neutrons. Accelerator-based experiments, computational studies, and prototype source tests were performed to obtain a better understanding of (1) the flux requirements, (2) fission-induced signals, background, and interferences, and (3) operational performance of the source. The results of this research led to the development and testing of an axial-type gamma tube source and the design/construction of a high power coaxial-type gamma generator based on the {sup 11}B(p,{gamma}){sup 12}C nuclear reaction.

  15. Estimation of neutron energy distributions from prompt gamma emissions

    Science.gov (United States)

    Panikkath, Priyada; Udupi, Ashwini; Sarkar, P. K.

    2017-11-01

    A technique of estimating the incident neutron energy distribution from emitted prompt gamma intensities from a system exposed to neutrons is presented. The emitted prompt gamma intensities or the measured photo peaks in a gamma detector are related to the incident neutron energy distribution through a convolution of the response of the system generating the prompt gammas to mono-energetic neutrons. Presently, the system studied is a cylinder of high density polyethylene (HDPE) placed inside another cylinder of borated HDPE (BHDPE) having an outer Pb-cover and exposed to neutrons. The emitted five prompt gamma peaks from hydrogen, boron, carbon and lead can be utilized to unfold the incident neutron energy distribution as an under-determined deconvolution problem. Such an under-determined set of equations are solved using the genetic algorithm based Monte Carlo de-convolution code GAMCD. Feasibility of the proposed technique is demonstrated theoretically using the Monte Carlo calculated response matrix and intensities of emitted prompt gammas from the Pb-covered BHDPE-HDPE system in the case of several incident neutron spectra spanning different energy ranges.

  16. Dual scattering foil design for poly-energetic electron beams

    International Nuclear Information System (INIS)

    Kainz, K K; Antolak, J A; Almond, P R; Bloch, C D; Hogstrom, K R

    2005-01-01

    The laser wakefield acceleration (LWFA) mechanism can accelerate electrons to energies within the 6-20 MeV range desired for therapy application. However, the energy spectrum of LWFA-generated electrons is broad, on the order of tens of MeV. Using existing laser technology, the therapeutic beam might require a significant energy spread to achieve clinically acceptable dose rates. The purpose of this work was to test the assumption that a scattering foil system designed for a mono-energetic beam would be suitable for a poly-energetic beam with a significant energy spread. Dual scattering foil systems were designed for mono-energetic beams using an existing analytical formalism based on Gaussian multiple-Coulomb scattering theory. The design criterion was to create a flat beam that would be suitable for fields up to 25 x 25 cm 2 at 100 cm from the primary scattering foil. Radial planar fluence profiles for poly-energetic beams with energy spreads ranging from 0.5 MeV to 6.5 MeV were calculated using two methods: (a) analytically by summing beam profiles for a range of mono-energetic beams through the scattering foil system, and (b) by Monte Carlo using the EGS/BEAM code. The analytic calculations facilitated fine adjustments to the foil design, and the Monte Carlo calculations enabled us to verify the results of the analytic calculation and to determine the phase-space characteristics of the broadened beam. Results showed that the flatness of the scattered beam is fairly insensitive to the width of the input energy spectrum. Also, results showed that dose calculated by the analytical and Monte Carlo methods agreed very well in the central portion of the beam. Outside the useable field area, the differences between the analytical and Monte Carlo results were small but significant, possibly due to the small angle approximation. However, these did not affect the conclusion that a scattering foil system designed for a mono-energetic beam will be suitable for a poly-energetic

  17. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    Science.gov (United States)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  18. Gamma ray generator

    Science.gov (United States)

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  19. Study of gamma propagation by using the ZEUS mono-kinetic code

    International Nuclear Information System (INIS)

    Vergnaud, Therese

    1969-10-01

    As studies of radiation protection often require the knowledge of heating due to capture gamma of thermal neutrons, the authors report an attempt of assessment of neutrons and γ propagation by using the same code (Zeus) which computes particle scattering by implementing a mono-kinetic Monte Carlo method. With this method, it is possible to study rather complex geometries and gamma source distributions directly obtained by a previous calculation of thermal neutrons. However, this method is not suitable for the study of energy degradation of gamma rays during their propagation. An approximate shock law is used to take shock-induced energy loss into account. This method is tested for different materials or media (either light like water and aluminium, or heavy like iron). Results are compared with those obtained by Goldstein with the method of moments. Results obtained by using Zeus are discussed: some of them appear to be over-estimated [fr

  20. Gamma spectra pictures using a digital plotter. Program MONO; Representacion de Espectros directos mediante un trazado digital. Prograa MONO

    Energy Technology Data Exchange (ETDEWEB)

    Los Arcos, J M

    1978-07-01

    The program MONO has been written for a CALCOMP-936 digital plotter operating off- -line with a UMI VAC 1106 computer, to obtain graphic representations of single gamma spectra stored on magnetic tape. It allows to plot the whole spectrum or only a part, as well as to draw a given spectrum on the same or different picture than the previous one. Ten representation scales are available and at up nine comment lines can be written in a graphic. (Author) 4 refs.

  1. Oxygen vacancies in oxides studied by annihilation of mono-energetic positrons

    Energy Technology Data Exchange (ETDEWEB)

    Hugenschmidt, Christoph; Pikart, Philip [ZWE FRM II, Technische Universitaet Muenchen, Lichtenbergstrasse 1, 85747 Garching (Germany); Physik-Department E21, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany); Schreckenbach, Klaus [Physik-Department E21, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany)

    2009-07-01

    Oxygen vacancies play a fundamental role for the material properties of various oxides, e.g. charge carrier density in high-Tc superconductors, magnetic properties of diluted magnetic semiconductors or paramagnetic properties of SiO{sub 2}. In this study, open volume defects in (metal) oxides are investigated by Doppler-broadening spectroscopy (DBS) of the positron annihilation. More detailed information about the chemical surrounding at the positron annihilation site is gained by additional coincident DBS experiments, where a signature of positrons annihilating with electrons from oxygen is observed. The mono-energetic positron beam at NEPOMUC was used which allows depth dependent measurements, and hence the investigation of thin oxide layers. Recent results for metallic oxides such as ZnO are presented and compared with various non-metallic oxides such as amorphous and crystalline SiO{sub 2}, oxygen terminated Si-surface, and ice. The role of neutral and charged oxygen vacancies and the application of the positron annihilation technique to study oxygen vacancies will be discussed.

  2. The sub-energetic gamma-ray burst GRB 031203 as a cosmic analogue to the nearby GRB 980425.

    Science.gov (United States)

    Soderberg, A M; Kulkarni, S R; Berger, E; Fox, D W; Sako, M; Frail, D A; Gal-Yam, A; Moon, D S; Cenko, S B; Yost, S A; Phillips, M M; Persson, S E; Freedman, W L; Wyatt, P; Jayawardhana, R; Paulson, D

    2004-08-05

    Over the six years since the discovery of the gamma-ray burst GRB 980425, which was associated with the nearby (distance approximately 40 Mpc) supernova 1998bw, astronomers have debated fiercely the nature of this event. Relative to bursts located at cosmological distance (redshift z approximately 1), GRB 980425 was under-luminous in gamma-rays by three orders of magnitude. Radio calorimetry showed that the explosion was sub-energetic by a factor of 10. Here we report observations of the radio and X-ray afterglow of the recent GRB 031203 (refs 5-7), which has a redshift of z = 0.105. We demonstrate that it too is sub-energetic which, when taken together with the low gamma-ray luminosity, suggests that GRB 031203 is the first cosmic analogue to GRB 980425. We find no evidence that this event was a highly collimated explosion viewed off-axis. Like GRB 980425, GRB 031203 appears to be an intrinsically sub-energetic gamma-ray burst. Such sub-energetic events have faint afterglows. We expect intensive follow-up of faint bursts with smooth gamma-ray light curves (common to both GRB 031203 and 980425) to reveal a large population of such events.

  3. Irradiation of micro-organisms with mono-energetic X-rays; biological consequences of the Auger effect

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, A; Muetze, B [Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.)

    1978-07-01

    The radiation resonance effect reported previously for isolated biomolecules has now for the first time been observed in a cellular system. Dried bacteria, Micrococcus denitrificans, in which TdR in DNA was partially substituted by BUdR, were subjected to mono-energetic X-rays of energies below or above the K-edge for Br. Subsequently, the colony-forming ability was assayed. For photon energy slightly above the K-edge, the lethality/rad was greater than that below the K-edge. This is interpreted in terms of the Auger effect initiated selectively by photo-absorption in constituent Br atoms. The differential absorption of low-energy photons in constituent atoms of DNA is also discussed.

  4. Theoretical model of Orion gamma emission: acceleration, propagation and interaction of energetic particles in the interstellar medium

    International Nuclear Information System (INIS)

    Parizot, Etienne

    1997-01-01

    This research thesis reports the development of a general model for the study of the propagation and interaction of energetic particles (cosmic rays, and so on) in the interstellar medium (ISM). The first part addresses the development of theoretical and numerical tools. The author presents cosmic rays and energetic particles, presents and describes the various processes related to high-energy particles (matter ionisation, synchrotron and Bremsstrahlung radiation, Compton scattering, nuclear processes), addresses the transport and acceleration of energetic particles (plasmas, magnetic fields and energetic particles, elements of kinetic theory, transport and acceleration of energetic particles), and describes the general model of production of γ nuclear lines and of secondary nuclei. The second part addresses the gamma signature of a massive star in a dense medium: presentation and description of massive stars and of the circumstellar medium, life, death and gamma resurrection of a massive star at the heart of a cloud. The third part addresses the case of the gamma emission by Orion, and more particularly presents a theoretical model of this emission. Some generalities and perspectives (theoretical as well as observational) are then stated [fr

  5. Advanced virtual monochromatic reconstruction of dual-energy unenhanced brain computed tomography in children: comparison of image quality against standard mono-energetic images and conventional polychromatic computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Juil [Seoul National University Children' s Hospital, Department of Radiology, Seoul (Korea, Republic of); Choi, Young Hun [Seoul National University Children' s Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One [Seoul National University Children' s Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Pak, Seong Yong [Siemens Healthineers, Seoul (Korea, Republic of); Krauss, Bernhard [Siemens Healthineers, Forchheim (Germany)

    2017-11-15

    Advanced virtual monochromatic reconstruction from dual-energy brain CT has not been evaluated in children. To determine the most effective advanced virtual monochromatic imaging energy level for maximizing pediatric brain parenchymal image quality in dual-energy unenhanced brain CT and to compare this technique with conventional monochromatic reconstruction and polychromatic scanning. Using both conventional (Mono) and advanced monochromatic reconstruction (Mono+) techniques, we retrospectively reconstructed 13 virtual monochromatic imaging energy levels from 40 keV to 100 keV in 5-keV increments from dual-source, dual-energy unenhanced brain CT scans obtained in 23 children. We analyzed gray and white matter noise ratios, signal-to-noise ratios and contrast-to-noise ratio, and posterior fossa artifact. We chose the optimal mono-energetic levels and compared them with conventional CT. For Mono+maximum optima were observed at 60 keV, and minimum posterior fossa artifact at 70 keV. For Mono, optima were at 65-70 keV, with minimum posterior fossa artifact at 75 keV. Mono+ was superior to Mono and to polychromatic CT for image-quality measures. Subjective analysis rated Mono+superior to other image sets. Optimal virtual monochromatic imaging using Mono+ algorithm demonstrated better image quality for gray-white matter differentiation and reduction of the artifact in the posterior fossa. (orig.)

  6. The redshift and afterglow of the extremely energetic gamma-ray burst GRB 080916C

    CERN Document Server

    Greiner, J.; Kruehler, T.; Kienlin, A.v.; Rau, A.; Sari, R.; Fox, Derek B.; Kawai, N.; Afonso, P.; Ajello, M.; Berger, E.; Cenko, S.B.; Cucchiara, A.; Filgas, R.; Klose, S.; Yoldas, A.Kuepue; Lichti, G.G.; Loew, S.; McBreen, S.; Nagayama, T.; Rossi, A.; Sato, S.; Szokoly, G.; Yoldas, A.; Zhang, X.-L.

    2009-01-01

    The detection of GeV photons from gamma-ray bursts (GRBs) has important consequences for the interpretation and modelling of these most-energetic cosmological explosions. The full exploitation of the high-energy measurements relies, however, on the accurate knowledge of the distance to the events. Here we report on the discovery of the afterglow and subsequent redshift determination of GRB 080916C, the first GRB detected by the Fermi Gamma-Ray Space Telescope with high significance detection of photons at >0.1 GeV. Observations were done with 7-channel imager GROND at the 2.2m MPI/ESO telescope, the SIRIUS instrument at the Nagoya-SAAO 1.4m telescope in South Africa, and the GMOS instrument at Gemini-S. The afterglow photometric redshift of z=4.35+-0.15, based on simultaneous 7-filter observations with the Gamma-Ray Optical and Near-infrared Detector (GROND), places GRB 080916C among the top 5% most distant GRBs, and makes it the most energetic GRB known to date. The detection of GeV photons from such a dista...

  7. Generation of monoenergetic ion beams via ionization dynamics (Conference Presentation)

    Science.gov (United States)

    Lin, Chen; Kim, I. Jong; Yu, Jinqing; Choi, Il Woo; Ma, Wenjun; Yan, Xueqing; Nam, Chang Hee

    2017-05-01

    The research on ion acceleration driven by high intensity laser pulse has attracted significant interests in recent decades due to the developments of laser technology. The intensive study of energetic ion bunches is particularly stimulated by wide applications in nuclear fusion, medical treatment, warm dense matter production and high energy density physics. However, to implement such compact accelerators, challenges are still existing in terms of beam quality and stability, especially in applications that require higher energy and narrow bandwidth spectra ion beams. We report on the acceleration of quasi-mono-energetic ion beams via ionization dynamics in the interaction of an intense laser pulse with a solid target. Using ionization dynamics model in 2D particle-in-cell (PIC) simulations, we found that high charge state contamination ions can only be ionized in the central spot area where the intensity of sheath field surpasses their ionization threshold. These ions automatically form a microstructure target with a width of few micron scale, which is conducive to generate mono-energetic beams. In the experiment of ultraintense (< 10^21 W/cm^2) laser pulses irradiating ultrathin targets each attracted with a contamination layer of nm-thickness, high quality < 100 MeV mono-energetic ion bunches are generated. The peak energy of the self-generated micro-structured target ions with respect to different contamination layer thickness is also examined This is relatively newfound respect, which is confirmed by the consistence between experiment data and the simulation results.

  8. The Dawn of Nuclear Photonics with Laser-based Gamma-rays

    International Nuclear Information System (INIS)

    Barty, C.J.

    2011-01-01

    A renaissance in nuclear physics is occurring around the world because of a new kind of incredibly bright, gamma-ray light source that can be created with short pulse lasers and energetic electron beams. These highly Mono-Energetic Gamma-ray (MEGa-ray) sources produce narrow, laser-like beams of incoherent, tunable gamma-rays and are enabling access and manipulation of the nucleus of the atom with photons or so called 'Nuclear Photonics'. Just as in the early days of the laser when photon manipulation of the valence electron structure of the atom became possible and enabling to new applications and science, nuclear photonics with laser-based gamma-ray sources promises both to open up wide areas of practical isotope-related, materials applications and to enable new discovery-class nuclear science. In the United States, the development of high brightness and high flux MEGa-ray sources is being actively pursued at the Lawrence Livermore National Laboratory in Livermore (LLNL), California near San Francisco. The LLNL work aims to create by 2013 a machine that will advance the state of the art with respect to source the peak brightness by 6 orders of magnitude. This machine will create beams of 1 to 2.3 MeV photons with color purity matching that of common lasers. In Europe a similar but higher photon energy gamma source has been included as part of the core capability that will be established at the Extreme Light Infrastructure Nuclear Physics (ELI-NP) facility in Magurele, Romania outside of Bucharest. This machine is expected to have an end point gamma energy in the range of 13 MeV. The machine will be co-located with two world-class, 10 Petawatt laser systems thus allowing combined intense-laser and gamma-ray interaction experiments. Such capability will be unique in the world. In this talk, Dr. Chris Barty from LLNL will review the state of the art with respect to MEGa-ray source design, construction and experiments and will describe both the ongoing projects

  9. Pair creation by very high-energy photons in gamma-ray bursts a unified picture for the energetics of GRBs

    CERN Document Server

    Totani, T

    1999-01-01

    The extreme energetics of the gamma-ray burst (GRB) 990123 have revealed that some GRBs emit quite a large amount of energy, and the total energy release from GRBs seems to change from burst to burst by a factor of 10/sup 2/-10/sup $9 3/ as E/sub gamma , iso/~10/sup 52-55/ erg, where E/sub gamma , iso/ is the observed GRB energy when the radiation is isotropic. If all GRBs are triggered by similar events, such a wide dispersion in energy release seems odd. The $9 author proposes a unified picture for the energetics of GRBs, in which all GRB events release roughly the same amount of energy E/sub iso/~10 /sup 55-56/ erg relativistic motion, with the baryon load problem almost resolved. A mild $9 dispersion in the initial Lorentz factor ( Gamma ) results in a difference of E/sub gamma , iso/ by up to a factor of m/sub p//m/sub e/~10/sup 3/. Protons work as `a hidden energy reservoir' of the total GRB energy, and E/sub gamma , $9 iso/ depends on the energy transfer efficiency from protons into electrons (or posit...

  10. A pulsed, mono-energetic and angular-selective UV photo-electron source for the commissioning of the KATRIN experiment

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, J. [Institut fuer Kernphysik, WWU Muenster, Muenster (Germany); Karlsruhe Institute of Technology, IEKP, Eggenstein-Leopoldshafen (Germany); Ranitzsch, P.C.O.; Hannen, V.; Ortjohann, H.W.; Rest, O.; Winzen, D.; Zacher, M.; Weinheimer, C. [Institut fuer Kernphysik, WWU Muenster, Muenster (Germany); Beck, M. [Institut fuer Kernphysik, WWU Muenster, Muenster (Germany); Johannes-Gutenberg Universitaet, Institut fuer Physik, Mainz (Germany); Beglarian, A. [Karlsruhe Institute of Technology, IPE, Eggenstein-Leopoldshafen (Germany); Erhard, M.; Groh, S.; Kraus, M. [IEKP, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Schloesser, K.; Thuemmler, T. [Karlsruhe Institute of Technology, IKP, Karlsruhe (Germany); Valerius, K. [Institut fuer Kernphysik, WWU Muenster, Muenster (Germany); Karlsruhe Institute of Technology, IKP, Karlsruhe (Germany); Wierman, K.; Wilkerson, J.F. [University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States)

    2017-06-15

    The KATRIN experiment aims to determine the neutrino mass scale with a sensitivity of 200 meV/c{sup 2} (90% C.L.) by a precision measurement of the shape of the tritium β-spectrum in the endpoint region. The energy analysis of the decay electrons is achieved by a MAC-E filter spectrometer. To determine the transmission properties of the KATRIN main spectrometer, a mono-energetic and angular-selective electron source has been developed. In preparation for the second commissioning phase of the main spectrometer, a measurement phase was carried out at the KATRIN monitor spectrometer where the device was operated in a MAC-E filter setup for testing. The results of these measurements are compared with simulations using the particle-tracking software ''Kassiopeia'', which was developed in the KATRIN collaboration over recent years. (orig.)

  11. The energetics of electric organ discharge generation in gymnotiform weakly electric fish.

    Science.gov (United States)

    Salazar, Vielka L; Krahe, Rüdiger; Lewis, John E

    2013-07-01

    Gymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.

  12. High-energy particle production in solar flares (SEP, gamma-ray and neutron emissions). [solar energetic particles

    Science.gov (United States)

    Chupp, E. L.

    1987-01-01

    Electrons and ions, over a wide range of energies, are produced in association with solar flares. Solar energetic particles (SEPs), observed in space and near earth, consist of electrons and ions that range in energy from 10 keV to about 100 MeV and from 1 MeV to 20 GeV, respectively. SEPs are directly recorded by charged particle detectors, while X-ray, gamma-ray, and neutron detectors indicate the properties of the accelerated particles (electrons and ions) which have interacted in the solar atmosphere. A major problem of solar physics is to understand the relationship between these two groups of charged particles; in particular whether they are accelerated by the same mechanism. The paper reviews the physics of gamma-rays and neutron production in the solar atmosphere and the method by which properties of the primary charged particles produced in the solar flare can be deduced. Recent observations of energetic photons and neutrons in space and at the earth are used to present a current picture of the properties of impulsively flare accelerated electrons and ions. Some important properties discussed are time scale of production, composition, energy spectra, accelerator geometry. Particular attention is given to energetic particle production in the large flare on June 3, 1982.

  13. Plasma driven neutron/gamma generator

    Science.gov (United States)

    Leung, Ka-Ngo; Antolak, Arlyn

    2015-03-03

    An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.

  14. Dust Generation Resulting from Desiccation of Playa Systems: Studies on Mono and Owens Lakes, California

    Science.gov (United States)

    Gill, Thomas Edward

    1995-01-01

    Playas, evaporites, and aeolian sediments frequently are linked components within the Earth system. Anthropogenic water diversions from terminal lakes form playas that release fugitive dust. These actions, documented worldwide, simulate aeolian processes activated during palaeoclimatic pluvial/interpluvial transitions, and have significant environmental impacts. Pluvial lakes Russell and Owens in North America's Great Basin preceded historic Mono and Owens Lakes, now desiccated by water diversions into dust-generating, evaporite -encrusted playas. Geochemical and hydrologic cycles acting on the Owens (Dry) Lake playa form three distinct crust types each year. Although initial dust production results from deflation of surface efflorescences after the playa dries, most aerosols are created by saltation abrasion of salt/silt/clay crusts at crust/ sand sheet contacts. The warm-season, clastic "cemented" crust is slowest to degrade into dust. If the playa surface is stabilized by an unbroken, non-efflorescent crust, dust formation is discouraged. When Mono Lake's surFace elevation does not exceed 1951 meters (6400 feet), similar processes will also generate dust from its saline lower playa. Six factors--related to wind, topography, groundwater, and sediments--control dust formation at both playas. These factors were combined into a statistical model relating suspended dust concentrations to playa/lake morphometry. The model shows the extent and severity of Mono Lake dust storms expands significantly below the surface level 6376 feet (1943.5 meters). X-ray diffraction analysis of Mono Basin soils, playa sediments, and aerosols demonstrates geochemical cycling of materials through land, air and water during Mono Lake's 1982 low stand. Soils and clastic playa sediments contain silicate minerals and tephra. Saline groundwater deposited calcite, halite, thenardite, gaylussite, burkeite and glauberite onto the lower playa. Aerosols contained silicate minerals (especially

  15. Thickness measurement for the different metals by using Cs-137 gamma source with gamma transmission technique

    International Nuclear Information System (INIS)

    Bueyuek, B.; Tugrul, B.

    2009-01-01

    The purpose of this study is an experimental analysis of thickness measurement for various metals with the gamma transmission technique using Cs-137 as the radioisotope source. Lead, steel, brass, and aluminum, which are frequently used metals in industry, were chosen for the experiments. As the radioisotope source Cs-137 was preferred for the study since it has long half-life, it is mono energetic, and it penetrates the metals that were studied. Experiments were observed in the constant experimental geometry. Calibration curves for the four metal samples were plotted using the obtained results. To test the plotted calibration curves, counts for determining thickness measurement were collected for each sample and the obtained relative count values were used in conjunction with the plotted calibration curves for each sample to determine its thickness. The thicknesses of the samples have been measured with a micrometer and the results were comparatively analyzed with the measurement results obtained by the gamma transmission technique. The results of the analyses revealed that the thickness measurement values obtained with the gamma transmission technique and the thickness measurement values obtained with the conventional technique significantly converge to each other and the difference between the two values is at an acceptable level. Therefore the reliability of thickness measurements with the gamma transmission technique and the resulting calibration curves have been demonstrated.

  16. Development of the Advanced Energetic Pair Telescope (AdEPT) for Medium-Energy Gamma-Ray Astronomy

    Science.gov (United States)

    Hunter, Stanley D.; Bloser, Peter F.; Dion, Michael P.; McConnell, Mark L.; deNolfo, Georgia A.; Son, Seunghee; Ryan, James M.; Stecker, Floyd W.

    2011-01-01

    Progress in high-energy gamma-ray science has been dramatic since the launch of INTEGRAL, AGILE and FERMI. These instruments, however, are not optimized for observations in the medium-energy (approx.0.3< E(sub gamma)< approx.200 MeV) regime where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. We outline some of the major science goals of a medium-energy mission. These science goals are best achieved with a combination of two telescopes, a Compton telescope and a pair telescope, optimized to provide significant improvements in angular resolution and sensitivity. In this paper we describe the design of the Advanced Energetic Pair Telescope (AdEPT) based on the Three-Dimensional Track Imager (3-DTI) detector. This technology achieves excellent, medium-energy sensitivity, angular resolution near the kinematic limit, and gamma-ray polarization sensitivity, by high resolution 3-D electron tracking. We describe the performance of a 30x30x30 cm3 prototype of the AdEPT instrument.

  17. On an analytical formulation for the mono-energetic neutron space-kinetic equation in full cylinder symmetry

    International Nuclear Information System (INIS)

    Oliveira, F.R.; Bodmann, B.E.J.; Vilhena, M.T.; Carvalho, F.

    2017-01-01

    Highlights: • The present work presents an exact solution to neutron spatial kinetic equation. • It is an exact solution in a heterogeneous cylinder with temporal dependence. • The solution was constructed through the separation of variables method. - Abstract: In the present work we discuss a system of partial differential equations that model neutron space-kinetics in cylindrical geometry and are defined by two sectionally homogeneous cylinder cells, mono-energetic neutrons and one group of delayed neutron precursors. The solution is determined using the technique of variable separation. The associated complete spectra with respect to each variable separation are analysed and truncated such as to allow a parameterized global solution. For the obtained solution we present some numerical results for the scalar neutron flux and its time dependence and projection on the cylinder axis z and the radial and cylinder axis projection. As a case study we consider an insertion of an absorbing medium in the upper cylinder cell. Continuity of the scalar flux at the interface between the two cylinder elements and conserved current density is explained and related to scale invariance of the partial differential equation system together with the initial and boundary conditions. Some numerical results for the scalar angular neutron flux and associated current densities are shown.

  18. Energetic proton generation in ultra-intense laser-solid interactions

    International Nuclear Information System (INIS)

    Wilks, S.C.; Langdon, A.B.; Cowan, T.E.; Roth, M.; Singh, M.; Hatchett, S.; Key, M. H.; Pennington, D.; MacKinnon, A.; Snavely, R.A.

    2001-01-01

    An explanation for the energetic ions observed in the PetaWatt experiments is presented. In solid target experiments with focused intensities exceeding 10 20 W/cm 2 , high-energy electron generation, hard bremsstrahlung, and energetic protons have been observed on the backside of the target. In this report, an attempt is made to explain the physical process present that will explain the presence of these energetic protons, as well as explain the number, energy, and angular spread of the protons observed in experiment. In particular, we hypothesize that hot electrons produced on the front of the target are sent through to the back off the target, where they ionize the hydrogen layer there. These ions are then accelerated by the hot electron cloud, to tens of MeV energies in distances of order tens of μm, whereupon they end up being detected in the radiographic and spectrographic detectors

  19. Calculation of gamma ray dose buildup factors in water for isotropic point, plane mono directional and line sources using MCNP code

    International Nuclear Information System (INIS)

    Atak, H.; Celikten, O. S.; Tombakoglu, M.

    2009-01-01

    Gamma ray dose buildup factors in water for isotropic point, plane mono directional and infinite/finite line sources were calculated using the MCNP code. The buildup factors are determined for gamma ray energies of 1, 2, 3 and 4 Mev and for shield thicknesses of 1, 2, 4 and 7 mean free paths. The calculated buildup factors were then fitted in the Taylor and Berger forms. For the line sources a buildup factor table was also constructed using the Sievert function and the constants in Taylor form derived in this study to compare with the Monte Carlo results. All buildup factors were compared with the tabulated data given in literature. In order to reduce the statistical errors on buildup factors, 'forced collision' option was used in the MCNP calculations.

  20. Feasibility of Strong and Quasi-Monochromatic Gamma-Ray Generation by the Laser Compton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiyoung; Rehman, Haseeb ur; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    This is because LCS γ-rays are energy-tunable, quasi-monochromatic, and beam-like. The photon intensity of the mono-chromatic LCS gamma-ray should be high or strong for efficient and high transmutation rate. It was recently reported that a so-called energy-recovery linac system is able to produce a very high-intensity LCS photons in the order of approximately 1013 photons/s economically. It however did not evaluate quality of the LCS photon beam although a quasi-monoenergetic LCS beam is of huge importance in the photo-nuclear transmutation reactions. It is upon this observation that this paper was prepared. Specifically, this work attempts to quantify intensity of the quasi-monochromatic LCS beam from the said linac system. In addition, this paper aims to discuss general characteristics of the LCS photon, and possible approaches to increase its intensity. This paper presents essential characteristics of the laser Compton scattering (LCS) in terms of its photon energy, cross-section and photon intensity. By using different combinations of electron energy, laser energy and scattering angle, we can effectively generate high-intensity and highly-chromatic LCS gamma-rays. Our preliminary analyses indicate that, in view of Compton cross-section, higher-energy photon can be better generated by increasing the electron energy rather than increasing the laser energy. However, in order to maximize the intensity of monochromatic beam, the laser energy should be maximized for a targeted LCS photon energy.

  1. Fermi motion versus co-operative effects in subthreshold pion and energetic gamma production

    International Nuclear Information System (INIS)

    Knoll, J.

    1986-06-01

    Various reaction mechanisms proposed to explain the production of pions at 'sub-threshold' energies and of energetic gammas are examined. They range from the nucleon-nucleon single collision mechanism to a co-operative multi-nucleon process. With a shell model prescription for the initial state energies the single collision picture cannot explain the data. The participation of many nucleons in the pion production process appears to be necessary. We present a statistical model which demands the co-operative action of several of the target and projectile nucleons in the pion production process. The formation of composite fragments alongside with the produced pion is seen to be vital to understand the experimental data within this model. (orig.)

  2. Determination of Proton dose distal fall-off location by detecting right-angled prompt gamma rays

    International Nuclear Information System (INIS)

    Seo, Kyu Seok

    2006-02-01

    or 50 cm distance by PGS system. And then We found there exists a clear correlation between the proton beam distal fall-off location and the right-angled prompt gamma ray distribution. Finally, a 70 MeV mono-energetic proton beam (pencil) was irradiated onto the eye of a head phantom (KPHEAD, which is a voxel phantom for a human head) to calculate the distribution of radiation dose distribution in the phantom and the distribution of the right-angled prompt gamma rays. there still exist a correlation between the proton beams distal fall-off location and the right-angled prompt gamma ray distribution in a KPHEAD for a 70 MeV mono-energetic proton beam

  3. Measurement of neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photon induced reaction on natC using laser electron photon beam at NewSUBARU

    Science.gov (United States)

    Itoga, Toshiro; Nakashima, Hiroshi; Sanami, Toshiya; Namito, Yoshihito; Kirihara, Yoichi; Miyamoto, Shuji; Takemoto, Akinori; Yamaguchi, Masashi; Asano, Yoshihiro

    2017-09-01

    Photo-neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photons on natC were measured using laser Compton scattering facility at NewSUBARU BL01. The photon energy spectra were evaluated through measurements and simulations with collimator sizes and arrangements for the laser electron photon. The neutron energy spectra for the natC(g,xn) reaction were measured at 60 degrees in horizontal and 90 degrees in horizontal and vertical with respect to incident photon. The spectra show almost isotropic angular distribution and flat energy distribution from detection threshold to upper limit defined by reaction Q-value.

  4. What's Mono?

    Science.gov (United States)

    ... mono? Have you ever heard of the "kissing disease"? If you said that it's mono, you're absolutely correct. But you don't get mono only from kissing. Infectious mononucleosis, called mono for short, is caused by the Epstein-Barr virus (EBV), which is a type of herpes ...

  5. Long Duration Gamma-Ray Flares & Solar Energetic Particles — Is there a Connection?

    Science.gov (United States)

    de Nolfo, G. A.; Boezio, M.; Bruno, A.; Christian, E. R.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Ryan, J. M.; Share, G.; Stochaj, S.

    2017-12-01

    Little is known still about the origin of the high-energy and sustained emission from Long Duration Gamma-Ray Flares (LDGRFs), identified with Compton Gamma-Ray Observatory (CGRO), the Solar Maximum Mission (SMM), and now Fermi. Though Fermi/LAT has identified dozens of flares with LDGRF emission, the nature of this emission has been a challenge to explain both due to the extreme energies and long durations. The highest energy emission has generally been attributed to pion production from the interaction of high-energy protons with the ambient matter, suggesting that particle acceleration occurs over large volumes extending high in the corona, either from stochastic acceleration within large coronal loops or from back precipitation from CME-driven shocks. It is possible to test these models by making direct comparisons between the accelerated ion population at the flare derived from the observations of Fermi/LAT with PAMELA measurements of solar energetic particles in the energy range corresponding to the pion-related emission observed with Fermi. For nearly a dozen SEP events, we compare the two populations (SEPs in space and the interacting population at the Sun) and discuss the implications in terms of particle acceleration and transport models.

  6. Use of borated polyethylene to improve low energy response of a prompt gamma based neutron dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Priyada, P.; Ashwini, U.; Sarkar, P.K., E-mail: pradip.sarkar@manipal.edu

    2016-05-21

    The feasibility of using a combined sample of borated polyethylene and normal polyethylene to estimate neutron ambient dose equivalent from measured prompt gamma emissions is investigated theoretically to demonstrate improvements in low energy neutron dose response compared to only polyethylene. Monte Carlo simulations have been carried out using the FLUKA code to calculate the response of boron, hydrogen and carbon prompt gamma emissions to mono energetic neutrons. The weighted least square method is employed to arrive at the best linear combination of these responses that approximates the ICRP fluence to dose conversion coefficients well in the energy range of 10{sup −8} MeV to 14 MeV. The configuration of the combined system is optimized through FLUKA simulations. The proposed method is validated theoretically with five different workplace neutron spectra with satisfactory outcome. - Highlights: • An improved method is proposed for estimating H⁎(10) using prompt gamma emissions. • A combination of BHDPE and HDPE cylinders is used as a sample. • Linear combination of prompt gamma intensities approximates ICRP-DCC closely. • Feasibility of the method was tested theoretically using workplace neutron spectra.

  7. Measurement of neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photon induced reaction on natC using laser electron photon beam at NewSUBARU

    Directory of Open Access Journals (Sweden)

    Itoga Toshiro

    2017-01-01

    Full Text Available Photo-neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photons on natC were measured using laser Compton scattering facility at NewSUBARU BL01. The photon energy spectra were evaluated through measurements and simulations with collimator sizes and arrangements for the laser electron photon. The neutron energy spectra for the natC(g,xn reaction were measured at 60 degrees in horizontal and 90 degrees in horizontal and vertical with respect to incident photon. The spectra show almost isotropic angular distribution and flat energy distribution from detection threshold to upper limit defined by reaction Q-value.

  8. A kinetic model for stress generation in thin films grown from energetic vapor fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Chason, E.; Karlson, M. [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States); Colin, J. J.; Abadias, G. [Institut P' , Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, SP2MI, Téléport 2, Bd M. et P. Curie, F-86962 Chasseneuil-Futuroscope (France); Magnfält, D.; Sarakinos, K. [Nanoscale Engineering Division, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2016-04-14

    We have developed a kinetic model for residual stress generation in thin films grown from energetic vapor fluxes, encountered, e.g., during sputter deposition. The new analytical model considers sub-surface point defects created by atomic peening, along with processes treated in already existing stress models for non-energetic deposition, i.e., thermally activated diffusion processes at the surface and the grain boundary. According to the new model, ballistically induced sub-surface defects can get incorporated as excess atoms at the grain boundary, remain trapped in the bulk, or annihilate at the free surface, resulting in a complex dependence of the steady-state stress on the grain size, the growth rate, as well as the energetics of the incoming particle flux. We compare calculations from the model with in situ stress measurements performed on a series of Mo films sputter-deposited at different conditions and having different grain sizes. The model is able to reproduce the observed increase of compressive stress with increasing growth rate, behavior that is the opposite of what is typically seen under non-energetic growth conditions. On a grander scale, this study is a step towards obtaining a comprehensive understanding of stress generation and evolution in vapor deposited polycrystalline thin films.

  9. Study of the $e^+ e^- \\to Z\\gamma\\gamma \\to q\\overline{q}\\gamma\\gamma$ Process at LEP

    CERN Document Server

    Acciarri, M.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Ambrosi, G.; Anderhub, H.; Andreev, Valery P.; Angelescu, T.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, L.; Balandras, A.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Bhattacharya, S.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buffini, A.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.M.; Casaus, J.; Castellini, G.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chang, Y.H.; Chaturvedi, U.K.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Csilling, A.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; D'Alessandro, R.; de Asmundis, R.; Deglon, P.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dova, M.T.; Duchesneau, D.; Dufournaud, D.; Duinker, P.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Erne, F.C.; Ewers, A.; Extermann, P.; Fabre, M.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gau, S.S.; Gentile, S.; Gheordanescu, N.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hasan, A.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hidas, P.; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hoorani, H.; Hou, S.R.; Hu, Y.; Iashvili, I.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Khan, R.A.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, D.; Kim, J.K.; Kirkby, Jasper; Kiss, D.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Kopp, A.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Lugnier, L.; Luminari, L.; Lustermann, W.; Ma, W.G.; Maity, M.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Marian, G.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; von der Mey, M.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Moulik, T.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Oulianov, A.; Palomares, C.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Paramatti, R.; Park, H.K.; Park, I.H.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Raven, G.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Rodin, J.; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Seganti, A.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stone, A.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Sztaricskai, T.; Tang, X.W.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Valente, E.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobov, A.A.; Vorvolakos, A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, A.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Ye, J.B.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhu, G.Y.; Zhu, R.Y.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.

    2001-01-01

    The process e^+e^- -> Z gamma gamma -> q q~ gamma gamma$ is studied in 0.5\\,fb-1$ of data collected with the L3 detector at centre-of-mass energies between 130.1 GeV and 201.7 GeV. Cross sections are measured and found to be consistent with the Standard Model expectations. The study of the least energetic photon constrains the quartic gauge boson couplings to -0.008 GeV-2 < a_0/\\Lambda^2 < 0.005 GeV-2 and -0.007 GeV-2 < a_c/\\Lambda^2 < 0.011 GeV-2, at 95% confidence level.

  10. Forming a constant density medium close to long gamma-ray burst

    NARCIS (Netherlands)

    Marle, A.J.; Langer, N.; Achterberg, A; Garia-Segura, G.

    2006-01-01

    Aims. The progenitor stars of long Gamma-Ray Bursts (GRBs) are thought to be Wolf-Rayet stars, which generate a massive and energetic wind. Nevertheless, about 25 percent of all GRB afterglows light curves indicate a constant density medium close to the exploding star. We explore various ways to

  11. Gamma ray induced chromophore modification of softwood thermomechanical pulp

    International Nuclear Information System (INIS)

    Robert, S.; Daneault, C.; Viel, C.; Lepine, F.

    1992-01-01

    This study focuses on bleaching a softwood (black spruce, balsam fur) thermomechanical pulp with gamma rays. Gamma rays are known for their enormous penetrating power, along with their ionizing properties. They can generate highly energetic radicals capable of oxidizing lignin chromophores. The authors studied the influence of isopropyl alcohol, sodium borohydride, oxygen, hydrogen peroxide, nitrogen dioxide and water along with gamma ray irradiation of the pulps. The authors measured the optimal dose and dose rate, along with the influence of the radical scavengers like oxygen on the bleaching effect of gamma irradiated pulps. They observe various degrees of bleaching of these pulps. Evidence relates this bleaching to the generation of perhydroxyl anions upon irradiation of water. Also, they were able to pinpoint the influence of the dose rate on the rate of formation and disappearance of these perhydroxyl anions and their influence on bleaching kinetics. Stability toward photoyellowing, and photoyellowing's kinetic of papers from these pulps was also studied

  12. PSR J1838–0537: DISCOVERY OF A YOUNG, ENERGETIC GAMMA-RAY PULSAR

    International Nuclear Information System (INIS)

    Pletsch, H. J.; Allen, B.; Aulbert, C.; Fehrmann, H.; Guillemot, L.; Kramer, M.; Baring, M. G.; Camilo, F.; Caraveo, P. A.; Marelli, M.; Grove, J. E.; Ray, P. S.; Kerr, M.; Ransom, S. M.; Saz Parkinson, P. M.

    2012-01-01

    We report the discovery of PSR J1838–0537, a gamma-ray pulsar found through a blind search of data from the Fermi Large Area Telescope (LAT). The pulsar has a spin frequency of 6.9 Hz and a frequency derivative of –2.2 × 10 –11 Hz s –1 , implying a young characteristic age of 4970 yr and a large spin-down power of 5.9 × 10 36 erg s –1 . Follow-up observations with radio telescopes detected no pulsations; thus PSR J1838–0537 appears radio-quiet as viewed from Earth. In 2009 September the pulsar suffered the largest glitch so far seen in any gamma-ray-only pulsar, causing a relative increase in spin frequency of about 5.5 × 10 –6 . After the glitch, during a putative recovery period, the timing analysis is complicated by the sparsity of the LAT photon data, the weakness of the pulsations, and the reduction in average exposure from a coincidental, contemporaneous change in LAT's sky-survey observing pattern. The pulsar's sky position is coincident with the spatially extended TeV source HESS J1841–055 detected by the High Energy Stereoscopic System (H.E.S.S.). The inferred energetics suggest that HESS J1841–055 contains a pulsar wind nebula powered by the pulsar.

  13. [Application of second generation dual-source computed tomography dual-energy scan mode in detecting pancreatic adenocarcinoma].

    Science.gov (United States)

    Xue, Hua-dan; Liu, Wei; Sun, Hao; Wang, Xuan; Chen, Yu; Su, Bai-yan; Sun, Zhao-yong; Chen, Fang; Jin, Zheng-yu

    2010-12-01

    To analyze the clinical value of multiple sequences derived from dual-source computed tomography (DSCT) dual-energy scan mode in detecting pancreatic adenocarcinoma. Totally 23 patients with clinically or pathologically diagnosed pancreatic cancer were enrolled in this retrospective study. DSCT (Definition Flash) was used and dual-energy scan mode was used in their pancreatic parenchyma phase scan (100kVp/230mAs and Sn140kVp/178mAs) . Mono-energetic 60kev, mono-energetic 80kev, mono-energetic 100kev, mono-energetic 120kev, linear blend image, non-linear blend image, and iodine map were acquired. pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were calculated. One-way ANOVA was used for the comparison of diagnostic values of the above eight different dual-energy derived sequences for pancreatic cancer. The pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were significantly different among eight sequences (P<0.05) . Mono-energetic 60kev image showed the largest parenchyma-tumor CT value [ (77.53 ± 23.42) HU] , and iodine map showed the lowest tumor/parenchyma enhancement ratio (0.39?0.12) and the largest contrast to noise ratio (4.08 ± 1.46) . Multiple sequences can be derived from dual-energy scan mode with DSCT via multiple post-processing methods. Integration of these sequences may further improve the sensitivity of the multislice spiral CT in the diagnosis of pancreatic cancer.

  14. Feasibility study of gamma-ray medical radiography

    International Nuclear Information System (INIS)

    Alyassin, Abdalmajeid M.; Maqsoud, Hamza A.; Mashat, Ahmad M.; Al-Mohr, Al-Sayed; Abdulwajid, Subhan

    2013-01-01

    This research explores the feasibility of using gamma-ray radiography in medical imaging. We will show that gamma-ray medical radiography has the potential to provide alternative diagnostic medical information to X-ray radiography. Approximately one Ci Am-241 radioactive source which emits mono-energetic 59.5 keV gamma rays was used. Several factors that influence the feasibility of this study were tested. They were the radiation source uniformity, image uniformity, and image quality parameters such as contrast, noise, and spatial resolution. In addition, several gamma-ray and X-ray images were acquired using humanoid phantoms. These images were recorded on computed radiography image receptors and displayed on a standard monitor. Visual assessments of these images were then conducted. The Am-241 radioactive source provided relatively uniform radiation exposure and images. Image noise and image contrast were mainly dependent on the exposure time and source size, whereas spatial resolution was dependent on source size and magnification factor. The gamma-ray humanoid phantom images were of lower quality than the X-ray images mainly due to the low radioactivity used and not enough exposure time. Nevertheless, the gamma-ray images displayed most of the main structures contained in the humanoid phantoms. Higher exposure rates and thus lower exposure times were estimated for different pure Am-241 source sizes that are hypothesized to provide high quality images similar to X-ray images. For instance, a 10 mm source size of pure Am-241 with 7 s exposure time should produce images similar in contrast and noise to X-ray images. This research paves the way for the production and usage of a highly radioactive Am-241 source with the potential to lead to the feasibility of acceptable quality medical gamma-ray radiography. - Highlights: ► Characterized the performance of gamma-ray radiography. ► Displayed medical images of humanoid phantoms using gamma radiography. ► Am-241

  15. The energetic implications of curtailing versus storing wind- and solar-generated electricity

    Science.gov (United States)

    Barnhart, C. J.; Dale, M.; Brandt, A. R.; Benson, S. M.

    2013-12-01

    Rapid deployment of power generation technologies harnessing wind and solar resources continues to reduce the carbon intensity of the power grid. But as these technologies comprise a larger fraction of power supply, their variable, weather-dependent nature poses challenges to power grid operation. Today, during times of power oversupply or unfavorable market conditions, power grid operators curtail these resources. Rates of curtailment are expected to increase with increased renewable electricity production. That is unless technologies are implemented that can provide grid flexibility to balance power supply with power demand. Curtailment is an obvious forfeiture of energy and it decreases the profitability of electricity from curtailed generators. What are less obvious are the energetic costs for technologies that provide grid flexibility. We present a theoretical framework to calculate how storage affects the energy return on energy investment (EROI) ratios of wind and solar resources. Our methods identify conditions under which it is more energetically favorable to store energy than it is to simply curtail electricity production. Electrochemically based storage technologies result in much smaller EROI ratios than large-scale geologically based storage technologies like compressed air energy storage (CAES) and pumped hydroelectric storage (PHS). All storage technologies paired with solar photovoltaic (PV) generation yield EROI ratios that are greater than curtailment. Due to their low energy stored on electrical energy invested (ESOIe) ratios, conventional battery technologies reduce the EROI ratios of wind generation below curtailment EROI ratios. To yield a greater net energy return than curtailment, battery storage technologies paired with wind generation need an ESOIe>80. We identify improvements in cycle life as the most feasible way to increase battery ESOIe. Depending upon the battery's embodied energy requirement, an increase of cycle life to 10

  16. Dark matter searches with a mono-Z′ jet

    International Nuclear Information System (INIS)

    Bai, Yang; Bourbeau, James; Lin, Tongyan

    2015-01-01

    We study collider signatures of a class of dark matter models with a GeV-scale dark Z ′ . At hadron colliders, the production of dark matter particles naturally leads to associated production of the Z ′ , which can appear as a narrow jet after it decays hadronically. Contrary to the usual mono-jet signal from initial state radiation, the final state radiation of dark matter can generate the signature of a mono-Z ′ jet plus missing transverse energy. Performing a jet-substructure analysis to tag the Z ′ jet, we show that these Z ′ jets can be distinguished from QCD jets at high significance. Compared to mono-jets, a dedicated search for mono-Z ′ jet events can lead to over an order of magnitude stronger bounds on the interpreted dark matter-nucleon scattering cross sections.

  17. Measurement of energetic radiation caused by thunderstorm activities by a sounding balloon and ground observation

    Science.gov (United States)

    Torii, T.

    2015-12-01

    Energetic radiation caused by thunderstorm activity is observed at various places, such as the ground, high mountain areas, and artificial satellites. In order to investigate the radiation source and its energy distribution, we measured energetic radiation by a sounding balloon, and the ground observation. On the measurement inside/above the thundercloud, we conducted a sounding observation using a radiosonde mounted two GM tubes (for gamma-rays, and for beta/gamma-rays), in addition to meteorological instruments. The balloon passed through a region of strong echoes in a thundercloud shown by radar image, at which time an increase in counting rate of the GM tube about 2 orders of magnitude occurred at the altitude from 5 km to 7.5 km. Furthermore, the counting rate of two GM tubes indicated the tendency different depending on movement of a balloon. This result suggests that the ratio for the gamma-rays (energetic photons) of the beta-rays (energetic electrons) varies according to the place in the thundercloud. Furthermore, we carried out a ground observation of the energetic gamma rays during winter thunderstorm at a coastal area facing the Sea of Japan. Two types of the energetic radiation have been observed at this time. We report the outline of these measurements and analysis in the session of the AGU meeting.

  18. Some of the ball lightning observations could be phosphenes induced by energetic radiation from thunderstorms and lightning

    Science.gov (United States)

    Cooray, G. K.; Cooray, G. V.; Dwyer, J. R.

    2011-12-01

    Ball Lightning was seen and described since antiquity and recorded in many places. However, so far no one has managed to generate them in the laboratory. It is possible that many different phenomena are grouped together and categorized simply as ball lightning. One such phenomenon could be the phosphenes induced in humans by energetic radiation and particles from lightning and thunderstorms. A phosphene is a visual sensation that is characterized by perceiving luminous phenomena without light entering the eye. Phosphenes are generated when electrical signals are created in the retina or the optical nerve by other means in the absence of light stimuli. The fact that energetic radiation produced by radium can give rise to phosphenes was first noted by Giesel in 1899 [1]. A resurge of studies related to the creation of phosphenes by energetic radiation took place after the reports of phosphenes observed in space by Apollo astronauts and first reported by Buzz Aldrin after the Apollo 11 flight to the moon in 1969 [2]. The shapes of the phosphenes observed by astronauts were either rods, comet shaped, or comprised of a single dot, several dots or blobs. The colors were mostly white, but some had been colored yellow, orange, blue, green or red. The majority of the astronauts had perceived some kind of motion in association with the phosphenes. Most of the time, they were moving horizontally (from the periphery of the vision to the center) and sometimes diagonally, but never vertically. Subsequent studies conducted in space and ground confirmed the creation of phosphenes by energetic radiation. From these studies the threshold energy dissipation in the eye tissue necessary for phosphenes induction was estimated to be 10 MeV/cm. In the present study a quantitative analysis of the energetic radiation generated in the form of X-rays, Gamma rays and relativistic electrons by thunderstorms and lightning was made to investigate whether this radiation is strong enough to induce

  19. Isotope specific arbitrary material flow meter

    Science.gov (United States)

    Barty, Christopher P. J.; Post, John C.; Jones, Edwin

    2016-10-25

    A laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.

  20. ESTIMATING LONG GRB JET OPENING ANGLES AND REST-FRAME ENERGETICS

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Adam [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Connaughton, Valerie [Science and Technology Institute, Universities Space Research Association, Huntsville, AL 35805 (United States); Briggs, Michael S.; Burns, Eric, E-mail: adam.m.goldstein@nasa.gov [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States)

    2016-02-10

    We present a method to estimate the jet opening angles of long duration gamma-ray bursts (GRBs) using the prompt gamma-ray energetics and an inversion of the Ghirlanda relation, which is a correlation between the time-integrated peak energy of the GRB prompt spectrum and the collimation-corrected energy in gamma-rays. The derived jet opening angles using this method and detailed assumptions match well with the corresponding inferred jet opening angles obtained when a break in the afterglow is observed. Furthermore, using a model of the predicted long GRB redshift probability distribution observable by the Fermi Gamma-ray Burst Monitor (GBM), we estimate the probability distributions for the jet opening angle and rest-frame energetics for a large sample of GBM GRBs for which the redshifts have not been observed. Previous studies have only used a handful of GRBs to estimate these properties due to the paucity of observed afterglow jet breaks, spectroscopic redshifts, and comprehensive prompt gamma-ray observations, and we potentially expand the number of GRBs that can be used in this analysis by more than an order of magnitude. In this analysis, we also present an inferred distribution of jet breaks which indicates that a large fraction of jet breaks are not observable with current instrumentation and observing strategies. We present simple parameterizations for the jet angle, energetics, and jet break distributions so that they may be used in future studies.

  1. Novel non-viral vectors for gene delivery: synthesis of a second-generation library of mono-functionalized poly-(guanidinium)amines and their introduction into cationic lipids.

    Science.gov (United States)

    Byk, G; Soto, J; Mattler, C; Frederic, M; Scherman, D

    1998-01-01

    The development of new gene delivery technologies is a prerequisite towards gene therapy clinical trials. Because gene delivery mediated by viral vectors remains of limited scope due to immunological and propagation risks, the development of new non-viral gene delivery systems is of crucial importance. We have synthesized a secondary library of mono-functionalized poly-(guanidinium)amines generated from a library of mono-functionalized polyamines applying the concept of "libraries from libraries." The method allows a quick and easy access to mono-functionalized geometrically varied poly-(guanidinium)amines. The new building blocks were introduced into cationic lipids to obtain novel poly-(guanidinium)amine lipids, which are potential DNA vectors for gene delivery. Copyright 1998 John Wiley & Sons, Inc.

  2. How Is Mono Spread?

    Science.gov (United States)

    ... How Is Mono Spread? Print My sister has mononucleosis. I drank out of her drink before we ... that I have mono now? – Kyle* Mono, or mononucleosis, is spread through direct contact with saliva. This ...

  3. Dynamic Model and Control of a Photovoltaic Generation System using Energetic Macroscopic Representation

    Science.gov (United States)

    Solano, Javier; Duarte, José; Vargas, Erwin; Cabrera, Jhon; Jácome, Andrés; Botero, Mónica; Rey, Juan

    2016-10-01

    This paper addresses the Energetic Macroscopic Representation EMR, the modelling and the control of photovoltaic panel PVP generation systems for simulation purposes. The model of the PVP considers the variations on irradiance and temperature. A maximum power point tracking MPPT algorithm is considered to control the power converter. A novel EMR is proposed to consider the dynamic model of the PVP with variations in the irradiance and the temperature. The EMR is evaluated through simulations of a PVP generation system.

  4. International key comparison of neutron fluence measurements in mono-energetic neutron fields: C.C.R.I.(3)-K10

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Wang, Z.; Rong, C. [China Institute of Atomic Energy (CIAE), Beijing, People' s Republic of China (China); Lovestam, G.; Plompen, A.; Puglisi, N. [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Geel (Belgium); Gilliam, D.M.; Eisenhauer, C.M.; Nico, J.S.; Dewey, M.S. [National Institute of Standards and Technology (NIST), Gaithersburg (United States); Kudo, K.; Uritani, A.; Harano, H.; Takeda, N. [National Metrology Institute of Japan (NMIJ), Tsukuba (Japan); Thomas, D.J.; Roberts, N.J.; Bennett, A.; Kolkowski, P. [National Physical Laboratory (NPL), Teddington (United Kingdom); Moisseev, N.N.; Kharitonov, I.A. [Mendeleyev Institute for Metrology (VNIIM), St Petersburg (Russian Federation); Guldbakke, S.; Klein, H.; Nolte, R.; Schlegel, D. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2007-12-15

    C.C.R.I. Section III (neutron measurements) conducted a unique key comparison of neutron fluence measurements in mono-energetic neutron fields. In contrast to former comparisons, here the fluence measurements were performed with the participants' instruments in the same neutron fields at the P.T.B. accelerator facility. Seven laboratories- the C.I.A.E. (China), I.R.M.M. (E.C.), N.M.I.J. (Japan), N.I.S.T. (USA), N.P.L. (UK), P.T.B. (Germany) and the V.N.I.I.M. (Russia)-employed their primary standard reference methods or transfer instruments carefully calibrated against their primary standards, to determine the fluence of 0.144 MeV, 1.2 MeV, 5.0 MeV and 14.8 MeV neutrons and reported calibration coefficients for a selected neutron monitor and each neutron energy with a detailed uncertainty budget for the measurements. The key comparison reference values (K.C.R.V.) were finally evaluated as the weighted mean values of the neutron fluence at 1 m distance from the target in vacuum per neutron monitor count. The uncertainties of each K.C.R.V. amounted to about 1%. The degree of equivalence (D.o.E.), defined as the deviation of the result reported by the laboratories for each energy from the corresponding K.C.R.V., and the associated expanded uncertainty are also reported. The deviations between the results of two laboratories each with the corresponding expanded uncertainties complete the documentation of the degrees of equivalence. (authors)

  5. Food environments select microorganisms based on selfish energetic behavior

    Directory of Open Access Journals (Sweden)

    Diego eMora

    2013-11-01

    Full Text Available Nutrient richness, and specifically the abundance of mono- and disaccharides that characterize several food matrixes, such as milk and grape juice, has allowed the speciation of lactic acid bacteria and yeasts with a high fermentation capacity instead of energetically favorable respiratory metabolism. In these environmental contexts, rapid sugar consumption and lactic acid or ethanol production, accumulation and tolerance, together with the ability to propagate in the absence of oxygen, are several of the ‘winning’ traits that have apparently evolved and become specialized to perfection in these fermenting microorganisms. Here, we summarize and discuss the evolutionary context that has driven energetic metabolism in food-associated microorganisms, using the dairy species Lactococcus lactis and Streptococcus thermophilus among prokaryotes and the bakers’ yeast Saccharomyces cerevisiae among eukaryotes as model organisms.

  6. AGIS: A Next-generation TeV Gamma-ray Observatory

    Science.gov (United States)

    Vandenbroucke, Justin

    2010-05-01

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation array of imaging atmospheric Cherenkov telescopes for gamma-ray astronomy in the 100 GeV to 100 TeV band. TeV astronomy has flourished in the last few years. Together with the extremely successful first year of the Fermi LAT telescope for GeV gamma-ray astronomy, we are now in a golden age of gamma-ray astronomy. AGIS seeks to continue the success of gamma-ray astronomy by discovering hundreds of new TeV sources and improving our understanding of known sources, as well as searching for signals from dark matter annihilation. AGIS will feature 36 Schwarzschild-Couder (SC) telescopes spanning 1 km2. The two-mirror SC design allows a wide field of view (8 deg diameter) and high-resolution (0.05 deg diameter) pixellation. I will present the science capabilities of the AGIS observatory as well as the technical design and current status of the project.

  7. Attenuated right ventricular energetics evaluated using {sup 11}C-acetate PET in patients with pulmonary hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, Keiichiro [Hokkaido University Graduate School of Medicine, Department of Molecular Imaging, Sapporo, Hokkaido (Japan); Ohira, Hiroshi; Tsujino, Ichizo; Sato, Takahiro; Nishimura, Masaharu [Hokkaido University Graduate School of Medicine, First Department of Medicine, Sapporo (Japan); Oyama-Manabe, Noriko [Hokkaido University Hospital, Diagnostic and Interventional Radiology, Sapporo (Japan); Mielniczuk, Lisa; Beanlands, Rob S.B. [Ottawa Heart Institute, Division of Cardiology, Ottawa, Ontario (Canada); Katoh, Chietsugu; Kasai, Katsuhiko [Hokkaido University Graduate School of Medicine, Faculty of Health Science, Sapporo (Japan); Manabe, Osamu; Tomiyama, Yuuki; Tamaki, Nagara [Hokkaido University Graduate School of Medicine, Department of Nuclear Medicine, Sapporo (Japan); Fujii, Satoshi [Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya (Japan); Ito, Yoichi M. [Hokkaido University Graduate School of Medicine, Department of Biostatistics, Sapporo (Japan)

    2014-06-15

    The right ventricle (RV) has a high capacity to adapt to pressure or volume overload before failing. However, the mechanisms of RV adaptation, in particular RV energetics, in patients with pulmonary hypertension (PH) are still not well understood. We aimed to evaluate RV energetics including RV oxidative metabolism, power and efficiency to adapt to increasing pressure overload in patients with PH using {sup 11}C-acetate PET. In this prospective study, 27 patients with WHO functional class II/III PH (mean pulmonary arterial pressure 39.8 ± 13.5 mmHg) and 9 healthy individuals underwent {sup 11}C-acetate PET. {sup 11}C-acetate PET was used to simultaneously measure oxidative metabolism (k{sub mono}) for the left ventricle (LV) and RV. LV and RV efficiency were also calculated. The RV ejection fraction in PH patients was lower than in controls (p = 0.0054). There was no statistically significant difference in LV k{sub mono} (p = 0.09). In contrast, PH patients showed higher RV k{sub mono} than did controls (0.050 ± 0.009 min{sup -1} vs. 0.030 ± 0.006 min{sup -1}, p < 0.0001). PH patients exhibited significantly increased RV power (p < 0.001) and hence increased RV efficiency compared to controls (0.40 ± 0.14 vs. 0.017 ± 0.12 mmHg.mL.min/g, p = 0.001). The RV oxidative metabolic rate was increased in patients with PH. Patients with WHO functional class II/III PH also had increased RV power and efficiency. These findings may indicate a myocardial energetics adaptation response to increasing pulmonary arterial pressure. (orig.)

  8. Simulation of charge generation and transport in semi-conductors under energetic-particle bombardment

    International Nuclear Information System (INIS)

    Martin, R.C.

    1990-01-01

    The passage of energetic ions through semiconductor devices generates excess charge which can produce logic upset, memory change, and device damage. This single event upset (SEU) phenomenon is increasingly important for satellite communications. Experimental and numerical simulation of SEUs is difficult because of the subnanosecond times and large charge densities within the ion track. The objective of this work is twofold: (1) the determination of the track structure and electron-hole pair generation profiles following the passage of an energetic ion; (2) the development and application of a new numerical method for transient charge transport in semiconductor devices. A secondary electron generation and transport model, based on the Monte Carlo method, is developed and coupled to an ion transport code to simulate ion track formation in silicon. A new numerical method is developed for the study of transient charge transport. The numerical method combines an axisymmetric quadratic finite-element formulation for the solution of the potential with particle simulation methods for electron and hole transport. Carrier transport, recombination, and thermal generation of both majority and minority carriers are included. To assess the method, transient one-dimensional solutions for silicon diodes are compared to a fully iterative finite-element method. Simulations of charge collection from ion tracks in three-dimensional axisymmetric devices are presented and compared to previous work. The results of this work for transient current pulses following charged ion passage are in agreement with recent experimental data

  9. Gamma rays in L-B coordinates at CORONAS-I altitude

    Directory of Open Access Journals (Sweden)

    I. N. Myagkova

    2005-09-01

    Full Text Available We present here observations of gamma rays in the energy range between 3.0 and 8.3 MeV gathered by the SONG instrument aboard low-altitude polar-orbiting satellite CORONAS-I throughout the period March-June 1994. We concentrate on the emissions related to the trapped particles and organize CORONAS-I measurements in the magnetic L–B coordinate system. The spatial distribution of the average gamma-ray counts reveals that the most intense fluxes were observed under the inner radiation belt, at L<2, and that they are exclusively confined into the region of stably trapped particles, where daughter gamma rays could result from the interactions within the spacecraft and instrumental matter. In the outer radiation zone (L~4, the enhanced gamma radiation, also detected outside the stably trapping region, shows pronounced longitudinal variations. The observed eastward increase in the gamma-ray count rate suggests quasi-traped energetic (megavolt electrons as a source of the gamma rays both in the upper atmosphere and in the satellite matter, most likely, through the bremsstrahlung process in the studied energy domain. Keywords. Magnetospheric physics (Energetic particles, precipitating; Energetic particles, trapped; Magnetosphereionosphere interactions

  10. AMPX: a modular code system for generating coupled multigroup neutron-gamma libraries from ENDF/B

    Energy Technology Data Exchange (ETDEWEB)

    Greene, N.M.; Lucius, J.L.; Petrie, L.M.; Ford, W.E. III; White, J.E.; Wright, R.Q.

    1976-03-01

    AMPX is a modular system for producing coupled multigroup neutron-gamma cross section sets. Basic neutron and gamma cross-section data for AMPX are obtained from ENDF/B libraries. Most commonly used operations required to generate and collapse multigroup cross-section sets are provided in the system. AMPX is flexibly dimensioned; neutron group structures, and gamma group structures, and expansion orders to represent anisotropic processes are all arbitrary and limited only by available computer core and budget. The basic processes provided will (1) generate multigroup neutron cross sections; (2) generate multigroup gamma cross sections; (3) generate gamma yields for gamma-producing neutron interactions; (4) combine neutron cross sections, gamma cross sections, and gamma yields into final ''coupled sets''; (5) perform one-dimensional discrete ordinates transport or diffusion theory calculations for neutrons and gammas and, on option, collapse the cross sections to a broad-group structure, using the one-dimensional results as weighting functions; (6) plot cross sections, on option, to facilitate the ''evaluation'' of a particular multigroup set of data; (7) update and maintain multigroup cross section libraries in such a manner as to make it not only easy to combine new data with previously processed data but also to do it in a single pass on the computer; and (8) output multigroup cross sections in convenient formats for other codes. (auth)

  11. Bremsstrahlung γ-ray generation by electrons from gas jets irradiated by laser pulses for radiographic testing

    International Nuclear Information System (INIS)

    Oishi, Yuji; Nayuki, Takuya; Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi

    2012-01-01

    Electron generation from a gas jet irradiated by low energy femtosecond laser pulses is studied experimentally as a promising source of radiation for radioisotope-free γ-ray imaging systems. The calculated yield of γ-rays in the 0.5-2 MeV range, produced by low-average-power lasers and gas targets, exceeds the yields from solid tape targets up to 60 times. In addition, an effect of quasi-mono energetic electrons on γ-ray imaging is also discussed.

  12. Phenomena accompanying gradient-B drift injection of energetic ions into Tokamak plasmas

    International Nuclear Information System (INIS)

    Goldston, R.J.; Jassby, D.L.

    1976-01-01

    The application of vertically asymmetric toroidal-field ripple, in order to permit the gradient B-drift injection and subsequent capture of energetic ions, results in a new radial diffusion of banana orbits. The nearly mono-kinetic velocity distribution of gradient B-drifting ions in the outer plasma region represents a large source of free energy; and the nonambipolar inward drift of these ions modifies the radial electric field

  13. A very energetic supernova associated with the gamma-ray burst of 29 March 2003.

    Science.gov (United States)

    Hjorth, Jens; Sollerman, Jesper; Møller, Palle; Fynbo, Johan P U; Woosley, Stan E; Kouveliotou, Chryssa; Tanvir, Nial R; Greiner, Jochen; Andersen, Michael I; Castro-Tirado, Alberto J; Castro Cerón, José María; Fruchter, Andrew S; Gorosabel, Javier; Jakobsson, Páll; Kaper, Lex; Klose, Sylvio; Masetti, Nicola; Pedersen, Holger; Pedersen, Kristian; Pian, Elena; Palazzi, Eliana; Rhoads, James E; Rol, Evert; van den Heuvel, Edward P J; Vreeswijk, Paul M; Watson, Darach; Wijers, Ralph A M J

    2003-06-19

    Over the past five years evidence has mounted that long-duration (>2 s) gamma-ray bursts (GRBs)-the most luminous of all astronomical explosions-signal the collapse of massive stars in our Universe. This evidence was originally based on the probable association of one unusual GRB with a supernova, but now includes the association of GRBs with regions of massive star formation in distant galaxies, the appearance of supernova-like 'bumps' in the optical afterglow light curves of several bursts and lines of freshly synthesized elements in the spectra of a few X-ray afterglows. These observations support, but do not yet conclusively demonstrate, the idea that long-duration GRBs are associated with the deaths of massive stars, presumably arising from core collapse. Here we report evidence that a very energetic supernova (a hypernova) was temporally and spatially coincident with a GRB at redshift z = 0.1685. The timing of the supernova indicates that it exploded within a few days of the GRB, strongly suggesting that core-collapse events can give rise to GRBs, thereby favouring the 'collapsar' model.

  14. Future prospects for. gamma. -ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Fichtel, C [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center

    1981-06-30

    As ..gamma..-ray astronomy moves from the discovery to the exploratory phase, the promise of ..gamma..-ray astrophysics noted by theorists in the late 1940s and 1950s is beginning to be realized. In the future, satellites should carry instruments that will have over an order of magnitude greater sensitivity than those flown thus far, and, for at least some portions of the ..gamma..-ray energy range, these detectors will also have substantially improved energy and angular resolution. The information to be obtained from these experiments should greatly enhance our knowledge of several astrophysical phenomena including the very energetic and nuclear processes associated with compact objects, astrophysical nucleosynthesis, solar particle acceleration, the chemical composition of the planets and other bodies of the Solar System, the structure of our Galaxy, the origin and dynamic pressure effects of the cosmic rays, high energy particles and energetic processes in other galaxies especially active ones, and the degree of matter-antimatter symmetry of the Universe. The ..gamma..-ray results of the forthcoming programs such as Gamma-I, the Gamma Ray Observatory, the ..gamma..-ray burst network, Solar Polar, and very high energy ..gamma..-ray telescopes on the ground will almost certainly provide justification for more sophisticated telescopes. These advanced instruments might be placed on the Space Platform currently under study by N.A.S.A.

  15. Generating Correlated Gamma Sequences for Sea-Clutter Simulation

    Science.gov (United States)

    2012-03-01

    generation of correlated Gamma random fields via SIRP theory is examined in [Conte et al. 1991, Armstrong & Griffiths 1991]. In these papers , the Gamma...2 〉2 + |〈x[n]x∗[n+ k]〉|2 . (4) Because 〈 |x|2 〉2 = z̄2 and |〈x[n]x∗[n+ k]〉|2 ≥ 0, this results in 〈z[n]z[n+ k]〉 ≥ z̄2 if the real- isation of z[n] is...linear map- ping. In a practical situation, a process with a given auto-covariance function would be specified. It is shown that by using an

  16. Tubes, Mono Jets, Squeeze Out and CME

    Energy Technology Data Exchange (ETDEWEB)

    Longacre, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-10-23

    Glasma Flux Tubes, Mono Jets with squeeze out flow around them plus the Chiral Magnetic Effect(CME) are physical phenomenon that generate two particle correlation with respect to the reaction plane in mid-central 20% to 30% Au-Au collision √sNN = 200.0 GeV measured at RHIC.

  17. Evaluation of the Next Generation Gamma Imager

    International Nuclear Information System (INIS)

    Amgarou, Khalil; Timi, Tebug; Blanc de Lanaute, Nicolas; Patoz, Audrey; Talent, Philippe; Menaa, Nabil; Carrel, Frederick; Schoepff, Vincent; Lemaire, Hermine; Gmar, Mehdi; Abou Khalil, Roger; Dogny, Stephane; Varet, Thierry

    2013-06-01

    Towards the end of their life-cycle, nuclear facilities are generally associated with high levels of radiation exposure. The implementation of the ALARA principle requires limiting the radiation exposure of the operating people during the different tasks of maintenance, decontamination and decommissioning. Canberra's latest involvement in the provision of nuclear measurement solutions has led, in the framework of a partnership agreement with CEA LIST, to the development of a new generation gamma imager. The latter, which is designed for an accurate localization of radioactive hotspots, consists of a pixilated chip hybridized to a 1 mm thick CdTe substrate to record photon pulses and a coded mask aperture allowing for background noise subtraction by means of a technique called mask/anti-mask procedure. This greatly contributes to the reduced size and weight of the gamma imager as gamma shielding around the detector is less required. The spatial radioactivity map is automatically superimposed onto a pre-recorded photographic (visible) image of the scene of interest. In an effort to evaluate the performances of the new gamma imager, several experimental tests have been performed on a industrial prototype to investigate its detection response, including gamma imaging sensitivity and angular resolutions, over a wide energy range (at least from 59 keV to 1330 keV). The impact of the background noise was also evaluated together with some future features like energy discrimination and parallax correction. This paper presents and discusses the main results obtained in the above experimental study. A comparison with Monte Carlo simulations using the MCNP code is provided as well. (authors)

  18. Inhibition of [gamma]-endorphin generating endopeptidase activity of rat brain by peptides: Structure activity relationship

    NARCIS (Netherlands)

    Lebouille, J.L.M.; Visser, W.H.; Hendriks, R.W.; Nispen, J.W. van; Greven, H.M.; Burbach, J.P.H.

    1985-01-01

    Gamma-Endorphin generating endopeptidase (gammaEGE) activity is an enzyme activity which converts beta-endorphin into gamma-endorphin and beta-endorphin-(18–31). The inhibitory potency on gammaEGE activity of neuropeptides and analogues or fragments of neuropeptides was tested. Dynorphin-(1–13)

  19. Neutron generators at Purnima Lab

    International Nuclear Information System (INIS)

    Patel, Tarun; Sinha, Amar

    2015-01-01

    Neutron sources are in a great demand in many area like research, nuclear waste management, industrial process control, medical and also security. Major sources of neutrons are nuclear reactors, radioisotopes and accelerator based neutron generators. For many field applications, reactors cannot be used due to its large size, complicated system, high cost and also safety issues. Radioisotopes like Pu-Be, Am-Be, Cf, are extensively used for many industrial applications. But they are limited in their use due to their low source strength and also handling difficulties due to radioactivity. They are also not suitable for pulsed neutron applications. In contrast, compact size, pulsed operation, on/off operation etc.of accelerator based neutron generators make them very popular for many applications. Particle accelerators based on different types of neutron generators have been developed around the world. Among these deuteron accelerator based D-D and D-T neutron generators are widely used as they produce mono-energetic fast neutrons and in particular high yield of D-T neutron can be obtained with less than 300 KV of accelerating voltage

  20. Radiation degradation and hemolytic toxicity evaluation of mono azo reactive dyes

    International Nuclear Information System (INIS)

    Saeed, Q.U.; Bhatti, I.A.; Ashraf, A.

    2017-01-01

    Monoazo reactive dyes have been synthesized and subjected to degradation before their application. Advanced oxidation process has been recognized as a promising radiation technology for the remediation of hazardous organic compounds. Radiation induced degradation of two mono azo reactive dyes have been tried at different absorbed dose, 5 kGy,10 kGy and 15 kGy. Aqueous solutions of these dyes were treated with gamma radiation using Cs 137 radiation source at Nuclear Institute of Agriculture and Biology (NIAB) Faisalabad. Dyes were evaluated spectrophotometrically by UV-visible and fourier transform infra red (FT-IR) spectroscopic techniques before and after irradiation to analyse their percentage decolorization and degradation. Maximum percentage decolorization of 93% and 63% was achieved for mono azo dyes D1 and D2 at 15 kGy absorbed dose. Toxicity study of these dyes was also tested by haemolytic activity assay. Percentage haemolytic activity of untreated dyes was found within permissible limit showing non toxicity of dye solutions. (author)

  1. Investigation of Electricity Generation by Using Gamma Radiation from Spent Fuels

    International Nuclear Information System (INIS)

    Lee, Haneol; Yim, Man-Sung Yim

    2015-01-01

    The purpose of this study is to investigate the electric power generation with scale spent fuel. OrigenArp has analyzed gamma radiation environment of spent fuel assembly, MCNPX has analyzed the scintillator behavior, and experimental work has analyzed the electric output of photovoltaic cell. Gamma radiation environment analysis result indicates gamma source rapidly decreases for the early storage period. Scintillator analysis result calculates the photon flux distribution which enters photovoltaic cell. Photovoltaic cell experiment calculates electric current, voltage current generation per each system unit. Generated electric power can be used to cope with existing safety system (i.e. storage monitoring system) under severe accident or to operate security system under external invasion situation (i.e. passive physical barrier system). Several researchers have shown that converting radiation energy into electric energy is possible. Karl Scharf studied the direct electric conversion of radiation energy by using photovoltaic cells. Researchers in University of Massachusetts Lowell have studied radiation-electric energy conversion by using gadolinium oxide scintillator and dye sensitized solar cell (DSSCs) and N. Horuichi et al. studied radiation-electric energy conversion by using inorganic scintillators and amorphous and crystal photovoltaic cells

  2. Simulation approach to coincidence summing in {gamma}-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dziri, S., E-mail: samir.dziri@iphc.cnrs.fr [Groupe RaMsEs, Institut Pluridisciplinaire Hubert Curien (IPHC), University of Strasbourg, CNRS, IN2P3, UMR 7178, 23 rue de Loess, BP 28, 67037 Strasbourg Cedex 2 (France); Nourreddine, A.; Sellam, A.; Pape, A.; Baussan, E. [Groupe RaMsEs, Institut Pluridisciplinaire Hubert Curien (IPHC), University of Strasbourg, CNRS, IN2P3, UMR 7178, 23 rue de Loess, BP 28, 67037 Strasbourg Cedex 2 (France)

    2012-07-15

    Some of the radionuclides used for efficiency calibration of a HPGe spectrometer are subject to coincidence-summing (CS) and account must be taken of the phenomenon to obtain quantitative results when counting samples to determine their activity. We have used MCNPX simulations, which do not take CS into account, to obtain {gamma}-ray peak intensities that were compared to those observed experimentally. The loss or gain of a measured peak intensity relative to the simulated peak is attributed to CS. CS correction factors are compared with those of ETNA and GESPECOR. Application to a test sample prepared with known radionuclides gave values close to the published activities. - Highlights: Black-Right-Pointing-Pointer Coincidence summing occurs when the solid angle is increased. Black-Right-Pointing-Pointer The loss of counts gives rise to an approximative efficiency curves, this means a wrong quantitative data. Black-Right-Pointing-Pointer To overcome this problem we need mono-energetic source, otherwise, the MCNPX simulation allows by comparison with the experiment data to get the coincidence summing correction factors. Black-Right-Pointing-Pointer By multiplying these factors by the approximative efficiency, we obtain the accurate efficiency.

  3. BROADBAND STUDY OF GRB 091127: A SUB-ENERGETIC BURST AT HIGHER REDSHIFT?

    Energy Technology Data Exchange (ETDEWEB)

    Troja, E.; Sakamoto, T.; Brown, J. C.; Gehrels, N.; Marshall, F. E.; Racusin, J. L. [NASA, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Guidorzi, C. [Physics Department, University of Ferrara, via Saragat 1, I-44122, Ferrara (Italy); Norris, J. P. [Physics Department, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Panaitescu, A. [Space Science and Applications, MS D466, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kobayashi, S.; Mawson, N.; Melandri, A.; Mundell, C. G.; Steele, I. A. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, CH41 1LD Birkenhead (United Kingdom); Omodei, N. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Burrows, D. N. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Evans, P. A. [X-ray and Observational Astronomy Group, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Oates, S. R. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Pal' shin, V. [Ioffe Physico-Technical Institute, Laboratory for Experimental Astrophysics, 26 Polytekhnicheskaya, St Petersburg 194021 (Russian Federation); Preece, R. D. [Department of Physics, University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); and others

    2012-12-10

    GRB 091127 is a bright gamma-ray burst (GRB) detected by Swift at a redshift z = 0.49 and associated with SN 2009nz. We present the broadband analysis of the GRB prompt and afterglow emission and study its high-energy properties in the context of the GRB/SN association. While the high luminosity of the prompt emission and standard afterglow behavior are typical of cosmological long GRBs, its low-energy release (E{sub {gamma}} < 3 Multiplication-Sign 10{sup 49} erg), soft spectrum, and unusual spectral lag connect this GRB to the class of sub-energetic bursts. We discuss the suppression of high-energy emission in this burst, and investigate whether this behavior could be connected with the sub-energetic nature of the explosion.

  4. Highlights of GeV Gamma-Ray Astronomy

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  5. Method to calculating an internal electromagnetic pulse generated in a system under gamma radiation effect; Metod rascheta vnutrennego ehlektromagnitnogo impul`sa, generiruemogo v sisteme pri vozdejstvii gamma-izlucheniya

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikov, S N

    1994-12-31

    A method of calculating internal electromagnetic pulse, generated in the system under effect of gamma radiation is developed. Ratios for basic electron flux characteristics and components of electric and magnetic fields generated by gamma radiation, are indicated for a cylindrical cavity under gamma radiation effect on its surface. To illustrate this a case is considered when a single flux velocity component is present.

  6. 1. Mono([8]annulene)Uranium(4) half-sandwich complexes, 2. Novel syntheses of symmetrically substituted cyclooctatetetraenes

    International Nuclear Information System (INIS)

    Boussie, T.R.

    1991-10-01

    A reproducible, high-yield synthesis of mono([8]annulene)uranium(4)dichloride (1) is reported, along with the X-ray crystal structural of the bis(pyridine) adduct. Metathesis reactions of the half-sandwich complex 1 with a variety of simple alkyl and alkoxy reagents failed to generate any isolable mono-ring complexes. Reactions of 1 with polydentate, delocalized anions did produce stable derivatives, including mono([8]annulene)uranium(4)bis(acetylacetonate) (4). An X-ray crystal structure of 4 is reported

  7. 1. Mono([8]annulene)Uranium(4) half-sandwich complexes, 2. Novel syntheses of symmetrically substituted cyclooctatetetraenes

    Energy Technology Data Exchange (ETDEWEB)

    Boussie, Thomas Richard [Univ. of California, Berkeley, CA (United States)

    1991-10-01

    A reproducible, high-yield synthesis of mono([8]annulene)uranium(4)dichloride (1) is reported, along with the X-ray crystal structural of the bis(pyridine) adduct. Metathesis reactions of the half-sandwich complex 1 with a variety of simple alkyl and alkoxy reagents failed to generate any isolable mono-ring complexes. Reactions of 1 with polydentate, delocalized anions did produce stable derivatives, including mono([8]annulene)uranium(4)bis(acetylacetonate) (4). An X-ray crystal structure of 4 is reported.

  8. 1. Mono((8)annulene)Uranium(4) half-sandwich complexes, 2. Novel syntheses of symmetrically substituted cyclooctatetetraenes

    Energy Technology Data Exchange (ETDEWEB)

    Boussie, T.R.

    1991-10-01

    A reproducible, high-yield synthesis of mono((8)annulene)uranium(4)dichloride (1) is reported, along with the X-ray crystal structural of the bis(pyridine) adduct. Metathesis reactions of the half-sandwich complex 1 with a variety of simple alkyl and alkoxy reagents failed to generate any isolable mono-ring complexes. Reactions of 1 with polydentate, delocalized anions did produce stable derivatives, including mono((8)annulene)uranium(4)bis(acetylacetonate) (4). An X-ray crystal structure of 4 is reported.

  9. THE COLLIMATION AND ENERGETICS OF THE BRIGHTEST SWIFT GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Cenko, S. B.; Butler, N. R.; Bloom, J. S.; Frail, D. A.; Harrison, F. A.; Kulkarni, S. R.; Kasliwal, M. M.; Ofek, E. O.; Rau, A.; Nakar, E.; Chandra, P. C.; Fox, D. B.; Gal-Yam, A.; Kelemen, J.; Moon, D.-S.; Price, P. A.; Soderberg, A. M.; Teplitz, H. I.; Werner, M. W.; Bock, D. C.-J.

    2010-01-01

    Long-duration gamma-ray bursts (GRBs) are widely believed to be highly collimated explosions (bipolar conical outflows with half-opening angle θ∼ 1 0 -10 0 ). As a result of this beaming factor, the true energy release from a GRB is usually several orders of magnitude smaller than the observed isotropic value. Measuring this opening angle, typically inferred from an achromatic steepening in the afterglow light curve (a 'jet' break), has proven exceedingly difficult in the Swift era. Here, we undertake a study of five of the brightest (in terms of the isotropic prompt γ-ray energy release, E γ,iso ) GRBs in the Swift era to search for jet breaks and hence constrain the collimation-corrected energy release. We present multi-wavelength (radio through X-ray) observations of GRBs 050820A, 060418, and 080319B, and construct afterglow models to extract the opening angle and beaming-corrected energy release for all three events. Together with results from previous analyses of GRBs 050904 and 070125, we find evidence for an achromatic jet break in all five events, strongly supporting the canonical picture of GRBs as collimated explosions. The most natural explanation for the lack of observed jet breaks from most Swift GRBs is therefore selection effects. However, the opening angles for the events in our sample are larger than would be expected if all GRBs had a canonical energy release of ∼10 51 erg. The total energy release we measure for the 'hyper-energetic' (E tot ∼> 10 52 erg) events in our sample is large enough to start challenging models with a magnetar as the compact central remnant.

  10. An apparently normal gamma-ray burst with an unusually low luminosity.

    Science.gov (United States)

    Sazonov, S Yu; Lutovinov, A A; Sunyaev, R A

    2004-08-05

    Much of the progress in understanding gamma-ray bursts (GRBs) has come from studies of distant events (redshift z approximately 1). In the brightest GRBs, the gamma-rays are so highly collimated that the events can be seen across the Universe. It has long been suspected that the nearest and most common events have been missed because they are not as collimated or they are under-energetic (or both). Here we report soft gamma-ray observations of GRB 031203, the nearest event to date (z = 0.106; ref. 2). It had a duration of 40 s and peak energy of >190 keV, and therefore appears to be a typical long-duration GRB. The isotropic gamma-ray energy of < or =10(50) erg, however, is about three orders of magnitude smaller than that of the cosmological population. This event--as well as the other nearby but somewhat controversial GRB 980425--is a clear outlier from the isotropic-energy/peak-energy relation and luminosity/spectral-lag relations that describe the majority of GRBs. Radio calorimetry shows that both of these events are under-energetic explosions. We conclude that there does indeed exist a large population of under-energetic events.

  11. Mono-fermentation of shea waste in anaerobic digesters - laboratory ...

    African Journals Online (AJOL)

    For the purpose of understanding the characteristics in performance of the shea waste and to provide the necessary input parameters towards the design of biogas plants, mono-fermentation as an option in anaerobic digestion for energy (methane) generation was investigated. Six horizontal reactors with a liquid volume of ...

  12. Economical aspects of nuclear energetics

    International Nuclear Information System (INIS)

    Celinski, Z.

    2000-01-01

    The economical aspects of nuclear power generation in respect to costs of conventional energetics have been discussed in detail. The costs and competitiveness of nuclear power have been considered on the base of worldwide trends taking into account investment and fuel costs as well as 'social' costs being result of impact of different types of energetics on environment, human health etc

  13. How Long Is Mono Contagious?

    Science.gov (United States)

    ... Here's how it works: Mono is short for mononucleosis . It's usually caused by an infection with the ... May 2018 More on this topic for: Teens Mononucleosis How Do Doctors Test for Mono? Can a ...

  14. Dual Gamma Rhythm Generators Control Interlaminar Synchrony in Auditory Cortex

    Science.gov (United States)

    Ainsworth, Matthew; Lee, Shane; Cunningham, Mark O.; Roopun, Anita K.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.

    2013-01-01

    Rhythmic activity in populations of cortical neurons accompanies, and may underlie, many aspects of primary sensory processing and short-term memory. Activity in the gamma band (30 Hz up to > 100 Hz) is associated with such cognitive tasks and is thought to provide a substrate for temporal coupling of spatially separate regions of the brain. However, such coupling requires close matching of frequencies in co-active areas, and because the nominal gamma band is so spectrally broad, it may not constitute a single underlying process. Here we show that, for inhibition-based gamma rhythms in vitro in rat neocortical slices, mechanistically distinct local circuit generators exist in different laminae of rat primary auditory cortex. A persistent, 30 – 45 Hz, gap-junction-dependent gamma rhythm dominates rhythmic activity in supragranular layers 2/3, whereas a tonic depolarization-dependent, 50 – 80 Hz, pyramidal/interneuron gamma rhythm is expressed in granular layer 4 with strong glutamatergic excitation. As a consequence, altering the degree of excitation of the auditory cortex causes bifurcation in the gamma frequency spectrum and can effectively switch temporal control of layer 5 from supragranular to granular layers. Computational modeling predicts the pattern of interlaminar connections may help to stabilize this bifurcation. The data suggest that different strategies are used by primary auditory cortex to represent weak and strong inputs, with principal cell firing rate becoming increasingly important as excitation strength increases. PMID:22114273

  15. Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy

    International Nuclear Information System (INIS)

    Akrami, Ehsan; Chitsaz, Ata; Nami, Hossein; Mahmoudi, S.M.S.

    2017-01-01

    In this paper, a geothermal based multi-generation energy system, including organic Rankine cycle, domestic water heater, absorption refrigeration cycle and proton exchange membrane electrolyzer, is developed to generate electricity, heating, cooling and hydrogen. For this purpose, energetic, exergetic and exergoeconomic analysis are undertaken upon proposed system. Also, the effects of some important variables, i.e. geothermal water temperature, turbine inlet temperature and pressure, generator temperature, geothermal water mass flow rate and electrolyzer current density on the several parameters such as energy and exergy efficiencies of the proposed system, heating and cooling load, net electrical output power, hydrogen production, unit cost of each system products and total unit cost of the products are investigated. For specified conditions, the results show that energy and exergy efficiencies of the proposed multi-generation system are calculated about 34.98% and 49.17%, respectively. The highest and lowest total unit cost of the products estimated approximately 23.18 and 22.73 $/GJ, respectively, by considering that geothermal water temperature increases from 185 °C to 215 °C. - Highlights: • A multigeneration energy system based on geothermal energy is developed. • The energetic, exergetic and exergoeconomic analysis are undertaken upon proposed system. • The influences of several significant parameters are investigated. • The energy and exergy efficiencies of the entire system are calculated around 34.98% and 49.17%.

  16. PCNA mono-ubiquitination and activation of translesion DNA polymerases by DNA polymerase {alpha}.

    Science.gov (United States)

    Suzuki, Motoshi; Niimi, Atsuko; Limsirichaikul, Siripan; Tomida, Shuta; Miao Huang, Qin; Izuta, Shunji; Usukura, Jiro; Itoh, Yasutomo; Hishida, Takashi; Akashi, Tomohiro; Nakagawa, Yoshiyuki; Kikuchi, Akihiko; Pavlov, Youri; Murate, Takashi; Takahashi, Takashi

    2009-07-01

    Translesion DNA synthesis (TLS) involves PCNA mono-ubiquitination and TLS DNA polymerases (pols). Recent evidence has shown that the mono-ubiquitination is induced not only by DNA damage but also by other factors that induce stalling of the DNA replication fork. We studied the effect of spontaneous DNA replication errors on PCNA mono-ubiquitination and TLS induction. In the pol1L868F strain, which expressed an error-prone pol alpha, PCNA was spontaneously mono-ubiquitinated. Pol alpha L868F had a rate-limiting step at the extension from mismatched primer termini. Electron microscopic observation showed the accumulation of a single-stranded region at the DNA replication fork in yeast cells. For pol alpha errors, pol zeta participated in a generation of +1 frameshifts. Furthermore, in the pol1L868F strain, UV-induced mutations were lower than in the wild-type and a pol delta mutant strain (pol3-5DV), and deletion of the RAD30 gene (pol eta) suppressed this defect. These data suggest that nucleotide misincorporation by pol alpha induces exposure of single-stranded DNA, PCNA mono-ubiquitination and activates TLS pols.

  17. Gamma: A C++ Sound Synthesis Library Further Abstracting the Unit Generator

    DEFF Research Database (Denmark)

    Putnam, Lance Jonathan

    2014-01-01

    Gamma is a C++ library for sound synthesis that was created to address some of the limitations of existing sound synthesis libraries. The first limitation is that unit generators cannot easily be organized into separate sampling domains. This makes it difficult to use unit generators with different...... sample rates and in other domains, namely the frequency domain. The second limitation is that certain internal unit generator algorithms, such as interpolation, cannot be customized. This tends to lead to closed architectures consisting of multiple unit generators with only slight algorithmic differences...

  18. Experimental study of the conditions for universal calibration curve for the gamma-gamma probes in 2Π-geometry

    International Nuclear Information System (INIS)

    Gyurcsak, J.; Chau, N.D.

    1989-01-01

    We present the results of the measurements performed in order of establishing the possibility of constructing the universal calibration curves for gamma-gamma density probes. It has been proved that the unit λ p , in which the source-detector distance should be expressed, has the character of a mean free path of the photons forming the high-energetic part of the spectrum. 8 refs., 12 figs., 7 tabs. (author)

  19. Energetics and beaming of gamma ray burst triggers

    NARCIS (Netherlands)

    Meszaros, P.; Rees, M.J.; Wijers, R.A.M.J.

    1999-01-01

    A wide range of mechanisms have been proposed to supply the energy for gamma-ray bursts (GRB) at cosmological distances. It is a common misconception that some of these, notably NS-NS mergers, cannot meet the energy requirements suggested by recent observations. We show here that GRB energies, even

  20. Resistive interchange mode destabilized by helically trapped energetic ions and its effects on energetic ions and bulk plasmas

    International Nuclear Information System (INIS)

    Du, X.D.; Toi, K.; Osakabe, M.

    2014-10-01

    A resistive interchange mode with bursting behavior and rapid frequency chirping in the range less than 10 kHz is observed for the first time in the magnetic hill region of net current-free, low beta LHD (Large Helical Device) plasmas during high power injection of perpendicular neutral beams. The mode resonates with the precession motion of helically trapped energetic beam ions, following the resonant condition. The radial mode structure is found to be very similar to that of usual pressure-driven interchange mode, of which radial displacement eigenfunction has an even function around the rational surface. This beam driven mode is excited when the beta value of helically trapped energetic ions exceed a certain threshold. The radial transport of helically trapped energetic ions induced by the mode transiently generates significant radial electric field near the plasma peripheral region. Thus generated radial electric field clearly suppresses micro turbulence and improves bulk plasma confinement, suggesting strong flow shear generation. (author)

  1. Mono pile foundation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lyngesen, S.; Brendstrup, C.

    1997-02-01

    The use of mono piles as foundations for maritime structures has been developed during the last decades. The installation requirements within the offshore sector have resulted in equipment enabling driving of piles up to 3-4 m to large penetration depths. The availability of this equipment has made the use of large mono piles feasible as foundations for structures like wind turbines. The mono pile foundations consists of three parts; the bare pile, a conical transition and a boat landing. All parts are prefitted at the yard in order to minimise the installation work that has to be carried out offshore. The study of a mono pile foundations for a 1.5 MW wind turbine has been conducted for two locations, Horns Rev and Roedsand. Three different water depths: 5, 8 and 11 m have been investigated in the study. The on-site welding between pile and conical transition is performed by an automatic welding machine. Final testing and eventually repair of the weld are conducted at least 16 hours after welding. This is followed by final installation of J-tube, tie-in to subsea cables and installation of the impressed current system for corrosive protection of the mono pile. The total cost for procurement and installation of the mono pile using the welded connection is estimated. The price does not include procurement and installation of access platform and boat landing. These costs are estimated to 250.000 DKK. Depending on water depth the cost of the pile ranges from 2,2 to 2,7 million DKK. Procurement and fabrication of the pile are approx. 75% of the total costs. The remaining 25% are due to installation. The total costs are very sensitive to the unit price of pile steel. During the project it became obvious that ice load has a very large influence on the dimensions of the mono pile. (EG)

  2. Particle acceleration and production of energetic photons in SN1987A

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, T.K.; Stanev, Todor; Harding, Alice

    1987-09-24

    Young supernova remnants are likely to be bright sources of energetic photons and neutrinos through the collision of particles accelerated inside the remnant. Interactions of accelerated particles in the expanding envelope or in ambient radiation fields will also produce secondary photons and neutrinos at some level. If > 10/sup 39/ erg s/sup -1/ in protons above 10 TeV is injected into the target region, TeV photons from SN1987A could be observable with present detectors. Synchrotron X rays and ..gamma..-rays up to 10 MeV, generated by accelerated electrons, may well also be detectable. The authors discuss a pulsar wind model for acceleration of particles, and find that it would produce observable signals if the spin period of the pulsar is <10 ms.

  3. Tests of the space gamma spectrometer prototype at the JINR experimental facility with different types of neutron generators

    Science.gov (United States)

    Litvak, M. L.; Vostrukhin, A. A.; Golovin, D. V.; Dubasov, P. V.; Zontikov, A. O.; Kozyrev, A. S.; Krylov, A. R.; Krylov, V. A.; Mitrofanov, I. G.; Mokrousov, M. I.; Repkin, A. N.; Timoshenko, G. N.; Udovichenko, K. V.; Shvetsov, V. N.

    2017-07-01

    The results of the tests of the HPGe gamma spectrometer performed with a planetary soil model and different types of pulse neutron generators are presented. All measurements have been performed at the experimental nuclear planetary science facility (Joint Institute for Nuclear Research) for the physical calibration of active gamma and neutron spectrometers. The aim of the study is to model a space experiment on determining the elemental composition of Martian planetary matter by neutron-induced gamma spectroscopy. The advantages and disadvantages of a gas-filled neutron generator in comparison with a vacuum-tube neutron generator are examined.

  4. Computer generated multi-color graphics in whole body gamma spectral analysis

    International Nuclear Information System (INIS)

    Phillips, W.G.; Curtis, S.P.; Environmental Protection Agency, Las Vegas, NV)

    1984-01-01

    A medium resolution color graphics terminal (512 x 512 pixels) was appended to a computerized gamma spectrometer for the display of whole body counting data. The color display enhances the ability of a spectroscopist to identify at a glance multicolored spectral regions of interest immediate qualitative interpretation. Spectral data from subjects containing low concentrations of gamma emitters obtained by both NaI(T1) and phoswich detectors are viewed by the method. In addition, software generates a multispectral display by which the gross, background, and net spectra are displayed in color simultaneously on a single screen

  5. Compact neutron generator development and applications

    International Nuclear Information System (INIS)

    Leung, Ka-Ngo; Reijonen, Jani; Gicquel, Frederic; Hahto, Sami; Lou, Tak-Pui

    2004-01-01

    The Plasma and Ion Source Technology Group at the Lawrence Berkeley National Laboratory has been engaging in the development of high yield compact neutron generators for the last ten years. Because neutrons in these generators are formed by using either D-D, T-T or D-T fusion reaction, one can produce either mono-energetic (2.4 MeV or 14 MeV) or white neutrons. All the neutron generators being developed by our group utilize 13.5 MHz RF induction discharge to produce a pure deuterium or a mixture of deuterium-tritium plasma. As a result, ion beams with high current density and almost pure atomic ions can be extracted from the plasma source. The ion beams are accelerated to ∼100 keV and neutrons are produced when the beams impinge on a titanium target. Neutron generators with different configurations and sizes have been designed and tested at LBNL. Their applications include neutron activation analysis, oil-well logging, boron neutron capture therapy, brachytherapy, cargo and luggage screening. A novel small point neutron source has recently been developed for radiography application. The source size can be 2 mm or less, making it possible to examine objects with sharper images. The performance of these neutron generators will be described in this paper

  6. The future of high energy gamma ray astronomy and its potential astrophysical implications

    Science.gov (United States)

    Fichtel, C. E.

    1982-01-01

    Future satellites should carry instruments having over an order of magnitude greater sensitivity than those flown thus far as well as improved energy and angular resolution. The information to be obtained from these experiments should greatly enhance knowledge of: the very energetic and nuclear processes associated with compact objects; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies; and the degree of matter-antimatter symmetry of the universe. The relevant aspects of extragalactic gamma ray phenomena are emphasized along with the instruments planned. The high energy gamma ray results of forthcoming programs such as GAMMA-1 and the Gamma Ray Observatory should justify even more sophisticated telescopes. These advanced instruments might be placed on the space station currently being considered by NASA.

  7. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    Science.gov (United States)

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  8. Generation of gamma-ray streaming kernels through cylindrical ducts via Monte Carlo method

    International Nuclear Information System (INIS)

    Kim, Dong Su

    1992-02-01

    Since radiation streaming through penetrations is often the critical consideration in protection against exposure of personnel in a nuclear facility, it has been of great concern in radiation shielding design and analysis. Several methods have been developed and applied to the analysis of the radiation streaming in the past such as ray analysis method, single scattering method, albedo method, and Monte Carlo method. But they may be used for order-of-magnitude calculations and where sufficient margin is available, except for the Monte Carlo method which is accurate but requires a lot of computing time. This study developed a Monte Carlo method and constructed a data library of solutions using the Monte Carlo method for radiation streaming through a straight cylindrical duct in concrete walls of a broad, mono-directional, monoenergetic gamma-ray beam of unit intensity. The solution named as plane streaming kernel is the average dose rate at duct outlet and was evaluated for 20 source energies from 0 to 10 MeV, 36 source incident angles from 0 to 70 degrees, 5 duct radii from 10 to 30 cm, and 16 wall thicknesses from 0 to 100 cm. It was demonstrated that average dose rate due to an isotropic point source at arbitrary positions can be well approximated using the plane streaming kernel with acceptable error. Thus, the library of the plane streaming kernels can be used for the accurate and efficient analysis of radiation streaming through a straight cylindrical duct in concrete walls due to arbitrary distributions of gamma-ray sources

  9. Energetic charged particles above thunderclouds

    International Nuclear Information System (INIS)

    Fullekrug, Martin; Diver, Declan; Pincon, Jean-Louis; Renard, Jean-Baptiste; Phelps, Alan D.R.; Bourdon, Anne; Helling, Christiane; Blanc, Elisabeth; Honary, Farideh; Kosch, Mike; Harrison, Giles; Sauvaud, Jean-Andre; Lester, Mark; Rycroft, Michael; Kosch, Mike; Horne, Richard B.; Soula, Serge; Gaffet, Stephane

    2013-01-01

    The French government has committed to launch the satellite TARANIS to study transient coupling processes between the Earth's atmosphere and near-Earth space. The prime objective of TARANIS is to detect energetic charged particles and hard radiation emanating from thunderclouds. The British Nobel prize winner C. T. R. Wilson predicted lightning discharges from the top of thunderclouds into space almost a century ago. However, new experiments have only recently confirmed energetic discharge processes which transfer energy from the top of thunderclouds into the upper atmosphere and near-Earth space; they are now denoted as transient luminous events, terrestrial gamma-ray flashes and relativistic electron beams. This meeting report builds on the current state of scientific knowledge on the physics of plasmas in the laboratory and naturally occurring plasmas in the Earth's atmosphere to propose areas of future research. The report specifically reflects presentations delivered by the members of a novel Franco-British collaboration during a meeting at the French Embassy in London held in November 2011. The scientific subjects of the report tackle ionization processes leading to electrical discharge processes, observations of transient luminous events, electromagnetic emissions, energetic charged particles and their impact on the Earth's atmosphere. The importance of future research in this area for science and society, and towards spacecraft protection, is emphasized. (authors)

  10. On k-Gamma and k-Beta Distributions and Moment Generating Functions

    Directory of Open Access Journals (Sweden)

    Gauhar Rahman

    2014-01-01

    Full Text Available The main objective of the present paper is to define k-gamma and k-beta distributions and moments generating function for the said distributions in terms of a new parameter k>0. Also, the authors prove some properties of these newly defined distributions.

  11. The emission of Gamma Ray Bursts as a test-bed for modified gravity

    Directory of Open Access Journals (Sweden)

    S. Capozziello

    2015-11-01

    Full Text Available The extreme physical conditions of Gamma Ray Bursts can constitute a useful observational laboratory to test theories of gravity where very high curvature regimes are involved. Here we propose a sort of curvature engine capable, in principle, of explaining the huge energy emission of Gamma Ray Bursts. Specifically, we investigate the emission of radiation by charged particles non-minimally coupled to the gravitational background where higher order curvature invariants are present. The coupling gives rise to an additional force inducing a non-geodesic motion of particles. This fact allows a strong emission of radiation by gravitationally accelerated particles. As we will show with some specific model, the energy emission is of the same order of magnitude of that characterizing the Gamma Ray Burst physics. Alternatively, strong curvature regimes can be considered as a natural mechanism for the generation of highly energetic astrophysical events. Possible applications to cosmology are discussed.

  12. Searching for Dark Matter in the Mono-Jet and Mono-Photon Channels with the ATLAS Detector

    CERN Document Server

    Ratti, Maria Giulia; Carminati, Leonardo

    This work presents searches for dark matter particles in the mono-jet and mono-photon final states using the data collected by the ATLAS experiment during 2015 and 2016. The thesis starts with an introduction to the basic concepts of the Standard Model, followed by a discussion of the dark matter problem and the WIMP hypothesis. The focus then shifts to the description of the experimental facilities to collect the data and reconstruct the collision events. Particular focus is put on the reconstruction and performance of the missing transverse momentum. After characterizing a few theoretical models predicting dark matter particles in the mono-photon and mono-jet final states, the searches in these two signatures are thoroughly discussed, with particular focus on the background estimation techniques. While no significant deviations from the Standard Model predictions are found, the results obtained by these searches further restrict the phase-space where the dark matter particles can lie.

  13. Trans-generational effects induced by alpha and gamma ionizing radiations at Daphnia magna

    International Nuclear Information System (INIS)

    Parisot, Florian

    2015-01-01

    Anthropogenic activities related to the nuclear industry contribute to continuous discharges of radionuclides into terrestrial and aquatic ecosystems. Over the past decades, the ecological risk of ionizing radiation has become a growing public, regulatory and scientific concern for ecosystems protection. Until recently, only few studies focus on exposure situations at low doses of irradiation, although these situations are representative of realistic environmental conditions. Understanding how ionizing radiation affects species over several generations and at various levels of biological organization is a major research goal in radioecology. The aim of this PhD was to bring new knowledge on the effects of ionizing radiation during a multi-generational expose of the aquatic invertebrate, Daphnia magna. A two-step strategy was implemented. First, an external gamma radiation at environmentally relevant dose rates was performed on D. magna over three successive generations (F0, F1 and F2). The objective of this experiment was to examine whether low dose rates of radiation induced increasing effects on survival, growth and reproduction of daphnids over generations and to test a possible accumulation and transmission of DNA alterations from adults to offspring. Results showed an accumulation and a transmission of DNA alterations over generations, together with an increase in effect severity on growth and reproduction from generation F0 to generation F2. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in generation F1. Second, data from the external gamma irradiation and those from an earlier study of internal alpha contamination were analyzed with DEBtox models (Dynamic Energy Budget applied to toxicology), to identify and compare the causes of the trans-generational increase in effect severity between the two types of radiation. In each case, two distinct metabolic modes of action were necessary to explain effects on

  14. SU-C-204-01: A Fast Analytical Approach for Prompt Gamma and PET Predictions in a TPS for Proton Range Verification

    International Nuclear Information System (INIS)

    Kroniger, K; Herzog, M; Landry, G; Dedes, G; Parodi, K; Traneus, E

    2015-01-01

    Purpose: We describe and demonstrate a fast analytical tool for prompt-gamma emission prediction based on filter functions applied on the depth dose profile. We present the implementation in a treatment planning system (TPS) of the same algorithm for positron emitter distributions. Methods: The prediction of the desired observable is based on the convolution of filter functions with the depth dose profile. For both prompt-gammas and positron emitters, the results of Monte Carlo simulations (MC) are compared with those of the analytical tool. For prompt-gamma emission from inelastic proton-induced reactions, homogeneous and inhomogeneous phantoms alongside with patient data are used as irradiation targets of mono-energetic proton pencil beams. The accuracy of the tool is assessed in terms of the shape of the analytically calculated depth profiles and their absolute yields, compared to MC. For the positron emitters, the method is implemented in a research RayStation TPS and compared to MC predictions. Digital phantoms and patient data are used and positron emitter spatial density distributions are analyzed. Results: Calculated prompt-gamma profiles agree with MC within 3 % in terms of absolute yield and reproduce the correct shape. Based on an arbitrary reference material and by means of 6 filter functions (one per chemical element), profiles in any other material composed of those elements can be predicted. The TPS implemented algorithm is accurate enough to enable, via the analytically calculated positron emitters profiles, detection of range differences between the TPS and MC with errors of the order of 1–2 mm. Conclusion: The proposed analytical method predicts prompt-gamma and positron emitter profiles which generally agree with the distributions obtained by a full MC. The implementation of the tool in a TPS shows that reliable profiles can be obtained directly from the dose calculated by the TPS, without the need of full MC simulation

  15. RADHEAT-V3, a code system for generating coupled neutron and gamma-ray group constants and analyzing radiation transport

    International Nuclear Information System (INIS)

    Koyama, Kinji; Taji, Yukichi; Miyasaka, Shun-ichi; Minami, Kazuyoshi.

    1977-07-01

    The modular code system RADHEAT is for producing coupled multigroup neutron and gamma-ray cross section sets, analyzing the neutron and gamma-ray transport, and calculating the energy deposition and atomic displacements due to these radiations in a nuclear reactor or shield. The basic neutron cross sections and secondary gamma-ray production data are taken from ENDF/B and POPOP4 libraries respectively. The system (1) generates multigroup neutron cross sections, energy deposition coefficients and atomic displacement factors due to neutron reactions, (2) generates multigroup gamma-ray cross sections and energy transfer coefficients, (3) generates secondary gamma-ray production cross sections, (4) combines these cross sections into the coupled set, (5) outputs and updates the multigroup cross section libraries in convenient formats for other transport codes, (6) analyzes the neutron and gamma-ray transport and calculates the energy deposition and the number density of atomic displacements in a medium, (7) collapses the cross sections to a broad-group structure, by option, using the weighting functions obtained by one-dimensional transport calculation, and (8) plots, by option, multigroup cross sections, and neutron and gamma-ray distributions. Definitions of the input data required in various options of the code system are also given. (auth.)

  16. Search for Second Generation Leptoquarks with ATLAS at the LHC

    CERN Document Server

    Krobath, Gernot

    The Large Hadron Collider will collide protons with protons at a center-of-mass energy of up to 14 TeV. New physics phenomena and new particles are predicted to be detectable with the ATLAS detector at the Large Hadron Collider. One of these predicted new particles beyond the Standard Model are leptoquarks. This thesis deals with the search for scalar second generation leptoquarks produced in pairs. Second generation leptoquarks decay into a muon-type lepton and a quark. In this thesis the decay of both second generation leptoquarks into a muon and a quark is considered. Since pair production is studied the final state consists of two high-energetic muons and two high-energetic jets. This thesis studies second generation leptoquarks with masses of mLQ = 300 GeV, mLQ = 400 GeV, mLQ = 600 GeV and mLQ = 800 GeV. The best cut variables for the discrimination between the signal and the main Standard Model backgrounds ttbar and Z/gamma* found in this analysis are the pT of the muons, ST (the scalar sum of the trans...

  17. Induction of Micronuclei in Human Fibroblasts across the Bragg Curve of Energetic Si and Fe Ions

    Science.gov (United States)

    Wu, H.; Rusek, A.; Hada, M.

    2006-01-01

    The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X-rays, the presence of shielding does not always reduce the radiation risks for energetic charged particle exposure. Since the dose delivered by the charged particle increases sharply as the particle approaches the end of its range, a position known as the Bragg peak, the Bragg curve does not necessarily represent the biological damage along the particle traversal since biological effects are influenced by the track structure of both primary and secondary particles. Therefore, the biological Bragg curve is dependent on the energy and the type of the primary particle, and may vary for different biological endpoints. We studied micronuclei (MN) induction across the Bragg curve of Si and Fe ions at incident energies of 300 MeV/nucleon and 1 GeV/nucleon. A quantitative biological response curve did not reveal an increased yield of MN at the location of the Bragg peak. However, the ratio of mono- to bi-nucleated cells, which indicates inhibition in cell progression, increased at the Bragg peak location. These results confirm the hypothesis that severely damaged cells at the Bragg peak are likely to go through reproduction death.

  18. Heliospheric Observations of Energetic Particles

    Science.gov (United States)

    Summerlin, Errol J.

    2011-01-01

    Heliospheric observations of energetic particles have shown that, on long time averages, a consistent v^-5 power-law index arises even in the absence of transient events. This implies an ubiquitous acceleration process present in the solar wind that is required to generate these power-law tails and maintain them against adiabatic losses and coulomb-collisions which will cool and thermalize the plasma respectively. Though the details of this acceleration process are being debated within the community, most agree that the energy required for these tails comes from fluctuations in the magnetic field which are damped as the energy is transferred to particles. Given this source for the tail, is it then reasonable to assume that the turbulent LISM should give rise to such a power-law tail as well? IBEX observations clearly show a power-law tail of index approximately -5 in energetic neutral atoms. The simplest explanation for the origins of these ENAs are that they are energetic ions which have charge-exchanged with a neutral atom. However, this would imply that energetic ions possess a v^-5 power-law distribution at keV energies at the source of these ENAs. If the source is presumed to be the LISM, it provides additional options for explaining the, so called, IBEX ribbon. This presentation will discuss some of these options as well as potential mechanisms for the generation of a power-law spectrum in the LISM.

  19. Characterization of Deuteron-Deuteron Neutron Generators

    Science.gov (United States)

    Waltz, Cory Scott

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) was commissioned at the University of California Berkeley. The characterization of the HFNG is presented in the following study. The current generator design produces near mono-energetic 2.45 MeV neutrons at outputs of 108 n/s. Calculations provided show that future conditioning at higher currents and voltages will allow for a production rate over 1010 n/s. Characteristics that effect the operational stability include the suppression of the target-emitted back streaming electrons, target sputtering and cooling, and ion beam optics. Suppression of secondary electrons resulting from the deuterium beam striking the target was achieved via the implementation of an electrostatic shroud with a voltage offset of greater than -400 V relative to the target. Ion beam optics analysis resulted in the creation of a defocussing extraction nozzle, allowing for cooler target temperatures and a more compact design. To calculate the target temperatures, a finite difference method (FDM) solver incorporating the additional heat removal effects of subcooled boiling was developed. Validation of the energy balance results from the finite difference method calculations showed the iterative solver converged to heat removal results within about 3% of the expected value. Testing of the extraction nozzle at 1.43 mA and 100 kV determined that overheating of the target did not occur as the measured neutron flux of the generator was near predicted values. Many factors, including the target stopping power, deuterium atomic species, and target loading ratio, affect the flux distribution of the HFNG neutron generator. A detailed analysis to understand these factors effects is presented. Comparison of the calculated flux of the neutron generator using deuteron depth implantation data, neutron flux distribution data, and deuterium atomic species data matched the experimentally calculated flux determined from indium foil

  20. Active interrogation using energetic protons

    International Nuclear Information System (INIS)

    Morris, Christopher L.; Chung, Kiwhan; Greene, Steven J.; Hogan, Gary E.; Makela, Mark; Mariam, Fesseha; Milner, Edward C.; Murray, Matthew; Saunders, Alexander; Spaulding, Randy; Wang, Zhehui; Waters, Laurie; Wysocki, Frederick

    2010-01-01

    Energetic proton beams provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because they have large fission cross sections, long mean free paths and high penetration, and they can be manipulated with magnetic optics. We have measured time-dependent cross sections and neutron yields for delayed neutrons and gamma rays using 800 MeV and 4 GeV proton beams with a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Measurements of neutron energies yield suggest a signature unique to fissile material. Results are presented in this paper.

  1. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    Science.gov (United States)

    Smith, Donald L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-01-01

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the .sup.16 O(n,p).sup.16 N reaction using .sup.14 -MeV neutrons produced at the neutron source via the .sup.3 H(d,n).sup.4 He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second .sup.16 N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1-2 minutes.

  2. Spatio-energetic cross talk in photon counting detectors: Detector model and correlated Poisson data generator.

    Science.gov (United States)

    Taguchi, Katsuyuki; Polster, Christoph; Lee, Okkyun; Stierstorfer, Karl; Kappler, Steffen

    2016-12-01

    An x-ray photon interacts with photon counting detectors (PCDs) and generates an electron charge cloud or multiple clouds. The clouds (thus, the photon energy) may be split between two adjacent PCD pixels when the interaction occurs near pixel boundaries, producing a count at both of the pixels. This is called double-counting with charge sharing. (A photoelectric effect with K-shell fluorescence x-ray emission would result in double-counting as well). As a result, PCD data are spatially and energetically correlated, although the output of individual PCD pixels is Poisson distributed. Major problems include the lack of a detector noise model for the spatio-energetic cross talk and lack of a computationally efficient simulation tool for generating correlated Poisson data. A Monte Carlo (MC) simulation can accurately simulate these phenomena and produce noisy data; however, it is not computationally efficient. In this study, the authors developed a new detector model and implemented it in an efficient software simulator that uses a Poisson random number generator to produce correlated noisy integer counts. The detector model takes the following effects into account: (1) detection efficiency; (2) incomplete charge collection and ballistic effect; (3) interaction with PCDs via photoelectric effect (with or without K-shell fluorescence x-ray emission, which may escape from the PCDs or be reabsorbed); and (4) electronic noise. The correlation was modeled by using these two simplifying assumptions: energy conservation and mutual exclusiveness. The mutual exclusiveness is that no more than two pixels measure energy from one photon. The effect of model parameters has been studied and results were compared with MC simulations. The agreement, with respect to the spectrum, was evaluated using the reduced χ 2 statistics or a weighted sum of squared errors, χ red 2 (≥1), where χ red 2 =1 indicates a perfect fit. The model produced spectra with flat field irradiation that

  3. Breakage of a Third Generation Gamma Nail: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Takashi Iwakura

    2013-01-01

    Full Text Available The use of intramedullary nails to treat trochanteric fractures of the femur has increased with the increasing size of the elderly population. The third generation Gamma nail is currently one of the most popular devices for the treatment of trochanteric fractures. Nail breakage is a rare complication, possibly resulting from fatigue fracture of the implant. We present the first reported case of breakage of a third generation Gamma nail that was not used to treat a pathological fracture. An 83-year-old woman with an unstable trochanteric fracture of the femur was treated using a third generation Gamma nail. She was referred to our hospital 14 months postoperatively with nail breakage at the opening for the lag screw. The breakage was secondary to nonunion, which was thought to be mainly due to insufficient reduction of the fracture. The broken nail was removed, and the patient underwent cemented bipolar hemiarthroplasty. At followup 18 months later, she was mobile with a walker and asymptomatic with no complications. This case shows that inadequate operation such as insufficient reduction of the trochanteric fracture may result in nonunion and implant breakage, even when using a high-strength, well-designed implant.

  4. Determination of correction factor of radioelement content data generated from Exploranium GR-320 Gamma spectrometer

    International Nuclear Information System (INIS)

    Nasrun, S; Syamsul-Hadi, M; Sumardi

    2000-01-01

    Gamma-ray Spectrometer Exploranium GR-320 is the instrument radiometric survey which is able to measure radioelement content directly in field based on partial gamma-ray energy of elements. Because of the instrument is new and it was granted from the lAEA, so it is necessarily to create a correction factor for the instrument due to be gaining the better data. Correction factor was generated from comparing gamma spectrometer's radioelement content to those of chemical analysed data of calibration pad. The correction factor for Potassium (K) is 1.31, uranium is 1.46, and thorium is 0.39

  5. Prompt-gamma neutron activation analysis system design. Effects of D-T versus D-D neutron generator source selection

    International Nuclear Information System (INIS)

    Shypailo, R.J.; Ellis, K.J.

    2008-01-01

    Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with 14.2 MeV neutrons. To compare the performance of these two units in our present PGNA system, we performed Monte Carlo simulations (MCNP-5; Los Alamos National Laboratory) evaluating the nitrogen reactions produced in tissue-equivalent phantoms and the effects of background interference on the gamma-detectors. Monte Carlo response curves showed increased gamma production per unit dose when using the D-D generator, suggesting that it is the more suitable choice for smaller sized subjects. The increased penetration by higher energy neutrons produced by the D-T generator supports its utility when examining larger, especially obese, subjects. A clinical PGNA analysis design incorporating both neutron generator options may be the best choice for a system required to measure a wide range of subject phenotypes. (author)

  6. MONO FOR CROSS-PLATFORM CONTROL SYSTEM ENVIRONMENT

    International Nuclear Information System (INIS)

    Nishimura, Hiroshi; Timossi, Chris

    2006-01-01

    Mono is an independent implementation of the .NET Framework by Novell that runs on multiple operating systems (including Windows, Linux and Macintosh) and allows any .NET compatible application to run unmodified. For instance Mono can run programs with graphical user interfaces (GUI) developed with the C(number s ign) language on Windows with Visual Studio (a full port of WinForm for Mono is in progress). We present the results of tests we performed to evaluate the portability of our controls system .NET applications from MS Windows to Linux

  7. Synthesis, purification, and time-dependent disposition studies of 9- or 10-mono-iodostearic acid and 9- and 10-mono-iodostearyl carnitine

    International Nuclear Information System (INIS)

    Reed, K.W.

    1985-01-01

    The purpose of this investigation was to evaluate the potential use of radiolabeled 9- or 10-mono-iodostearyl carnitine as a perfusion and metabolic imaging agent for the heart. Radiochemical purity was achieved and determined by the use of silica gel and/or anion exchange resin chromatography. Radiochemical yields of 45-63 and 4% were obtained for the fatty acid and carnitine ester, respectively. Male albino mice were sacrificed at 2, 5, 7, 10, 15, 20, 30, and 50 minutes post-injection with either 125 I 9- or 10-mono-iodostearic acid or 9- or 10-mono-iodostearyl (-) carnitine. The lungs, liver heart, kidney, spleen, pancreas, small intestine, stomach, thyroid, blood, fat, and skeletal muscle tissue were excised and assayed for levels of radioactivity in a NaI crystal well counter. The very low target-to-nontarget ratios obtained with 125 I 9- or 10-mono-iodostearyl carnitine in mice strongly suggest that radioiodinated 9- or 10-mono-iodostearyl carnitine is not suitable for use as a myocardial imaging agent. However, radioiodinated 9- or 10-mono-iodostearic acid showed promise as a myocardial imaging agent and may warrant further investigation

  8. ENERGETIC FERMI/LAT GRB 100414A: ENERGETIC AND CORRELATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Yuji; Tsai, Patrick P. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Huang, Kuiyun [Academia Sinica Institute of Astronomy and Astrophysics, Taipei 106, Taiwan (China); Yamaoka, Kazutaka [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1, Fuchinobe, Sayamihara 229-8558 (Japan); Tashiro, Makoto S., E-mail: urata@astro.ncu.edu.tw [Department of Physics, Saitama University, Shimo-Okubo, Saitama 338-8570 (Japan)

    2012-03-20

    This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E{sup src}{sub peak} of 1458.7{sup +132.6}{sub -106.6} keV and E{sub iso} of 34.5{sup +2.0}{sub -1.8} Multiplication-Sign 10{sup 52} erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of {alpha} = -2.6 {+-} 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 {+-} 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5.{sup 0}8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E{sup src}{sub peak}-E{sub iso} and E{sup src}{sub peak}-E{sub {gamma}} correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.

  9. Physics of energetic ions

    International Nuclear Information System (INIS)

    1999-01-01

    Physics knowledge (theory and experiment) in energetic particles relevant to design of a reactor scale tokamak is reviewed, and projections for ITER are provided in this Chapter of the ITER Physics Basis. The review includes single particle effects such as classical alpha particle heating and toroidal field ripple loss, as well as collective instabilities that might be generated in ITER plasmas by energetic alpha particles. The overall conclusion is that fusion alpha particles are expected to provide an efficient plasma heating for ignition and sustained burn in the next step device. The major concern is localized heat loads on the plasma facing components produced by alpha particle loss, which might affect their lifetime in a tokamak reactor. (author)

  10. Assessment of the suitability of different random number generators for Monte Carlo simulations in gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Cornejo Diaz, N.; Vergara Gil, A.; Jurado Vargas, M.

    2010-01-01

    The Monte Carlo method has become a valuable numerical laboratory framework in which to simulate complex physical systems. It is based on the generation of pseudo-random number sequences by numerical algorithms called random generators. In this work we assessed the suitability of different well-known random number generators for the simulation of gamma-ray spectrometry systems during efficiency calibrations. The assessment was carried out in two stages. The generators considered (Delphi's linear congruential, mersenne twister, XorShift, multiplier with carry, universal virtual array, and non-periodic logistic map based generator) were first evaluated with different statistical empirical tests, including moments, correlations, uniformity, independence of terms and the DIEHARD battery of tests. In a second step, an application-specific test was conducted by implementing the generators in our Monte Carlo program DETEFF and comparing the results obtained with them. The calculations were performed with two different CPUs, for a typical HpGe detector and a water sample in Marinelli geometry, with gamma-rays between 59 and 1800 keV. For the Non-periodic Logistic Map based generator, dependence of the most significant bits was evident. This explains the bias, in excess of 5%, of the efficiency values obtained with this generator. The results of the application-specific assessment and the statistical performance of the other algorithms studied indicate their suitability for the Monte Carlo simulation of gamma-ray spectrometry systems for efficiency calculations.

  11. Assessment of the suitability of different random number generators for Monte Carlo simulations in gamma-ray spectrometry.

    Science.gov (United States)

    Díaz, N Cornejo; Gil, A Vergara; Vargas, M Jurado

    2010-03-01

    The Monte Carlo method has become a valuable numerical laboratory framework in which to simulate complex physical systems. It is based on the generation of pseudo-random number sequences by numerical algorithms called random generators. In this work we assessed the suitability of different well-known random number generators for the simulation of gamma-ray spectrometry systems during efficiency calibrations. The assessment was carried out in two stages. The generators considered (Delphi's linear congruential, mersenne twister, XorShift, multiplier with carry, universal virtual array, and non-periodic logistic map based generator) were first evaluated with different statistical empirical tests, including moments, correlations, uniformity, independence of terms and the DIEHARD battery of tests. In a second step, an application-specific test was conducted by implementing the generators in our Monte Carlo program DETEFF and comparing the results obtained with them. The calculations were performed with two different CPUs, for a typical HpGe detector and a water sample in Marinelli geometry, with gamma-rays between 59 and 1800 keV. For the Non-periodic Logistic Map based generator, dependence of the most significant bits was evident. This explains the bias, in excess of 5%, of the efficiency values obtained with this generator. The results of the application-specific assessment and the statistical performance of the other algorithms studied indicate their suitability for the Monte Carlo simulation of gamma-ray spectrometry systems for efficiency calculations. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Use of MCNP + GADRAS in Generating More Realistic Gamma-Ray Spectra for Plutonium and HEU Objects

    International Nuclear Information System (INIS)

    Rawool-Sullivan, Mohini; Mattingly, John; Mitchell, Dean

    2012-01-01

    The ability to accurately simulate high-resolution gamma spectra from materials that emit both neutrons and gammas is very important to the analysis of special nuclear materials (SNM), e.g., uranium and plutonium. One approach under consideration has been to combine MCNP and GADRAS. This approach is expected to generate more accurate gamma ray spectra for complex three-dimensional geometries than can be obtained from one-dimensional deterministic transport simulations (e.g., ONEDANT). This presentation describes application of combining MCNP and GADRAS in simulating plutonium and uranium spectra.

  13. Spectrum, time structure and direction of incidence of the August 16, 1976 gamma ray burst

    International Nuclear Information System (INIS)

    Sommer, H.; Mueller, D.; Horstman, H.; Bassani, L.

    1977-01-01

    Two major bursts of energetic photons have been recorded with a new balloon-borne instrument during the second transatlantic flight in 1976: One in coincidence with a type III solar radio burst on August 16 and a very energetic gamma ray burst of non-solar origin starting at 16:15.5 UT of August 16. Spectral information of the gamma ray burst has been obtained up to 2 MeV. A crude position of the burst source has been derived from data of a directional detector array after correcting for absorption and scattering in the earth's atmosphere. (author)

  14. The electrophilic lodi nation with 125 I/ 131 I of gamma globulin: Comparison between a solid-phase oxidizing agent (Iodogen), chloramine-T, iodine mono chloride and N-Bromo succinimide

    International Nuclear Information System (INIS)

    El-Wetery, A.S.; Ayyoub, S.; El-Mohty, A.A.; Raieh, M.; Ghonaim, A.Kh.

    1997-01-01

    A new available oxidizing agent, 1, 3, 4, 6-tetra chloro-3α, diphenyl glycoluril(iodogen) was compared with chloramine-T (Ch-T), Iodine-mono chloride (I Cl) and N-Bromo succinimide (NBS) in the radio-iodination of gamma-globulin (γ-G) with 'no-carrier-added' (nca) Na 131 I (T 1/2=8 d). In Phosphate and acetate buffer solution, the optimum reaction conditions with respect to PH, concentration of oxidizing agent, reaction time and concentration of γ-G were determined. The optimum conditions which were found require 100μ l of buffer (pH 7.4, 0.025 M), 500μg γ-G (0.003 μmol), (10-40) μg of oxidizing agent and the desired amount of carrier-free radioiodine. Highest radiochemical yield (>85-90%) were obtained at pH 7.4. Separation and identification of the labelled products were achieved by means of high performance liquid chromatography (HPLC) and thin layer chromatography (TLC). 8 figs., 1 tab

  15. On mono-W signatures in spin-1 simplified models

    International Nuclear Information System (INIS)

    Haisch, Ulrich; Tait, Tim M.P.

    2016-03-01

    The potential sensitivity to isospin-breaking effects makes LHC searches for mono-W signatures promising probes of the coupling structure between the Standard Model and dark matter. It has been shown, however, that the strong sensitivity of the mono-W channel to the relative magnitude and sign of the up-type and down-type quark couplings to dark matter is an artefact of unitarity violation. We provide three different solutions to this mono-W problem in the context of spin-1 simplified models and briefly discuss the impact that our findings have on the prospects of mono-W searches at future LHC runs.

  16. Synthesis and characterization of energetic thermoplastic elastomers for propellant formulations

    Directory of Open Access Journals (Sweden)

    Aparecida M. Kawamoto

    2009-01-01

    Full Text Available Synthesis and characterization of energetic ABA-type thermoplastic elastomers for propellant formulations has been carried out. Following the working plan elaborated, the synthesis and characterization of Poly 3- bromomethyl-3-methyl oxetane (PolyBrMMO, Poly 3- azidomethyl-3-methyl oxetane (PolyAMMO, Poly 3,3-bis-azidomethyl oxetane (PolyBAMO and Copolymer PolyBAMO/AMMO (by TDI end capping has been successfully performed. The thermoplastic elastomers (TPEs were synthesized using the chain elongation process PolyAMMO, GAP and PolyBAMO by diisocyanates. In this method 2.4-toluene diisocyanate (TDI is used to link block A (hard and mono- functional to B (soft and di-functional. For the hard A-block we used PolyBAMO and for the soft B-block we used PolyAMMO or GAP.This is a joint project set up, some years ago, between the Chemistry Division of the Institute of Aeronautics and Space (IAE - subordinated to the Brazilian Ministry of Defense - and the Fraunhofer Institut Chemische Technologie (ICT, in Germany. The products were characterized by different techniques as IR- and (1H,13CNMR spectroscopies, elemental and thermal analyses. New methodologies based on FT-IR analysis have been developed as an alternative for the determination of the molecular weight and CHNO content of the energetic polymers.

  17. Energetic Electron Acceleration and Injection During Dipolarization Events in Mercury's Magnetotail

    Science.gov (United States)

    Dewey, Ryan M.; Slavin, James A.; Raines, Jim M.; Baker, Daniel N.; Lawrence, David J.

    2017-12-01

    Energetic particle bursts associated with dipolarization events within Mercury's magnetosphere were first observed by Mariner 10. The events appear analogous to particle injections accompanying dipolarization events at Earth. The Energetic Particle Spectrometer (3 s resolution) aboard MESSENGER determined the particle bursts are composed entirely of electrons with energies ≳ 300 keV. Here we use the Gamma-Ray Spectrometer high-time-resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetic field dipolarization in Mercury's magnetotail. Between March 2013 and April 2015, we identify 2,976 electron burst events within Mercury's magnetotail, 538 of which are closely associated with dipolarization events. These dipolarizations are detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. Similar to those at Earth, we find that these dipolarizations appear to be low-entropy, depleted flux tubes convecting planetward following the collapse of the inner magnetotail. We find that electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarizations, reaching energies 130 keV and contributing to nightside precipitation. Thermal protons experience only modest betatron acceleration. While only 25% of energetic electron events in Mercury's magnetotail are directly associated with dipolarization, the remaining events are consistent with the Near-Mercury Neutral Line model of magnetotail injection and eastward drift about Mercury, finding that electrons may participate in Shabansky-like closed drifts about the planet. Magnetotail dipolarization may be the dominant source of energetic electron acceleration in Mercury's magnetosphere.

  18. Gamma dose rates to body organs from immersion in a semi-infinite radioactive cloud; an alternate approach using absorbed fraction data for internal radionuclides

    International Nuclear Information System (INIS)

    Gillespie, F.C.

    1982-01-01

    This note shows that reasonable estimates of absorbed γ-dose rates for specific organs arising from whole body immersion in semi-infinite radioactive clouds may be obtained very simply from well known data on absorbed fractions for mono-energetic γ-sources uniformly distributed in the whole body. (author)

  19. Magnetic and gravity studies of Mono Lake, east-central, California

    Science.gov (United States)

    Athens, Noah D.; Ponce, David A.; Jayko, Angela S.; Miller, Matt; McEvoy, Bobby; Marcaida, Mae; Mangan, Margaret T.; Wilkinson, Stuart K.; McClain, James S.; Chuchel, Bruce A.; Denton, Kevin M.

    2014-01-01

    From August 26 to September 5, 2011, the U.S. Geological Survey (USGS) collected more than 600 line-kilometers of shipborne magnetic data on Mono Lake, 20 line-kilometers of ground magnetic data on Paoha Island, 50 gravity stations on Paoha and Negit Islands, and 28 rock samples on Paoha and Negit Islands, in east-central California. Magnetic and gravity investigations were undertaken in Mono Lake to study regional crustal structures and to aid in understanding the geologic framework, in particular regarding potential geothermal resources and volcanic hazards throughout Mono Basin. Furthermore, shipborne magnetic data illuminate local structures in the upper crust beneath Mono Lake where geologic exposure is absent. Magnetic and gravity methods, which sense contrasting physical properties of the subsurface, are ideal for studying Mono Lake. Exposed rock units surrounding Mono Lake consist mainly of Quaternary alluvium, lacustrine sediment, aeolian deposits, basalt, and Paleozoic granitic and metasedimentary rocks (Bailey, 1989). At Black Point, on the northwest shore of Mono Lake, there is a mafic cinder cone that was produced by a subaqueous eruption around 13.3 ka. Within Mono Lake there are several small dacite cinder cones and flows, forming Negit Island and part of Paoha Island, which also host deposits of Quaternary lacustrine sediments. The typical density and magnetic properties of young volcanic rocks contrast with those of the lacustrine sediment, enabling us to map their subsurface extent.

  20. On mono-W signatures in spin-1 simplified models

    Directory of Open Access Journals (Sweden)

    Ulrich Haisch

    2016-09-01

    Full Text Available The potential sensitivity to isospin-breaking effects makes LHC searches for mono-W signatures promising probes of the coupling structure between the Standard Model and dark matter. It has been shown, however, that the strong sensitivity of the mono-W channel to the relative magnitude and sign of the up-type and down-type quark couplings to dark matter is an artifact of unitarity violation. We provide three different solutions to this mono-W problem in the context of spin-1 simplified models and briefly discuss the impact that our findings have on the prospects of mono-W searches at future LHC runs.

  1. Influence of cooling rate on the development of multiple generations of {gamma}' precipitates in a commercial nickel base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.R.P. [Center for Advanced Research and Technology and Department of Materials Science and Engineering, University of North Texas, Denton, TX (United States); Nag, S., E-mail: nag.soumya@gmail.com [Center for Advanced Research and Technology and Department of Materials Science and Engineering, University of North Texas, Denton, TX (United States); Hwang, J.Y. [Center for Advanced Research and Technology and Department of Materials Science and Engineering, University of North Texas, Denton, TX (United States); Viswanathan, G.B.; Tiley, J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, OH (United States); Srinivasan, R. [ExxonMobil Research and Engineering Company, Annandale, NJ (United States); Fraser, H.L. [Center for the Accelerated Maturation of Materials and Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Banerjee, R. [Center for Advanced Research and Technology and Department of Materials Science and Engineering, University of North Texas, Denton, TX (United States)

    2011-09-15

    The compositional and microstructural evolution of different generations of {gamma}' precipitates during the continuous cooling of a commercial nickel base superalloy, Rene88DT, has been characterized by three dimensional atom probe tomography coupled with energy-filtered transmission electron microscopy studies. After solutionizing in the single {gamma} phase field, continuous cooling at a very high rate results in a monomodal size distribution of {gamma}' precipitates with a high nucleation density and non-equilibrium compositions. In contrast, a relatively slower cooling rate ({approx} 24 deg. C/min) results in a multi-modal size distribution of {gamma}' precipitates with the larger first generation primary precipitates exhibiting close to equilibrium composition, along with the smaller scale secondary {gamma}' precipitates, exhibiting non-equilibrium composition (excess of Co and Cr, depleted in Al and Ti). The composition of the {gamma} matrix near these precipitates also exhibits similar trends with the composition being closer to equilibrium near the primary precipitates as compared to the secondary precipitates. - Highlights: {yields} Effect of cooling rate on the precipitation of {gamma}' particles in commercial nickel base superalloy. {yields} Couples EFTEM and 3DAP studies to determine the composition and morphology of {gamma}' precipitates. {yields} Determination of near and far field compositional variations within the gamma matrix leading to subsequent precipitation.

  2. Recent achievements in the field of gamma-ray bursts

    International Nuclear Information System (INIS)

    Lu Tan; Dai Zigao

    2001-01-01

    Recent progresses in the field of gamma-ray bursts is briefly introduced. Gamma-ray bursts are the most energetic explosion since the Big Bang of the universe. Within a few tens of seconds, the energy released in gamma-ray bursts could be several hundred times larger than that released form the sun in its whole life (about 10 billion years). The authors will first briefly discuss the observational facts, based on which the authors will discuss the standard fireball model, the dynamical behavior and evolution of gamma-ray bursts and their afterglows. Then, various observational phenomena that contradict the standard model are given and the importance of these post-standard effects are pointed out. The questions related to the energy source of gamma-ray bursts are still unanswered, and other important questions also remain to be solved

  3. A proposal for spreading and commercializing the (n, gamma) 99Tc generator

    International Nuclear Information System (INIS)

    Yoshida, Kosuke; Hishinuma, Yukio; Tatenuma, Katsuyoshi

    2006-01-01

    A practicability of 99m Tc generator based on (n, gamma) method using PZC (Poly Zirconium Compound), a Mo adsorbent with a high adsorption efficiency, has been studied by the FNCA member countries as a part of the FNCA activities; three research collaboration projects, Technetium Generator Project (TCG), Neutron Activation Analysis Project (NAA) and Neutron Spreading Project (NS) have been set up in order to achieve the significant results of the research reactor use among Asian countries. As a result of the collaboration research, practical data on the 99m Tc elution and 99 Mo breakthrough has recently been obtained by using the new 99m Tc generator based on (n, gamma) method using PZC (indicate 'PZC- 99m Tc generator' as follows). Even though unexpected amount of 99 Mo breakthrough accompanied with the 99m Tc elution treatment were currently occurred, the problem has been solved by subsequently adding an alumina column underneath the generator column containing PZC. In accordance with the realization of the practical PZC- 99m Tc generator, an administering tests to the mice with labeled compound of 99m Tc generated by PZC method have already been started by BATAN, a loading machine to simplify the process of the 99 Mo adsorption to PZC and the 99 Mo-PZC packing to a generator column has been fabricated in BATAN's hot cell to realize a mass production of PZC- 99m Tc generator, and moreover the Japanese and Indonesian patents pertaining to the production process and the loading machine of PZC- 99m Tc generator have been applied with joint application of BATAN and KAKEN Co. By the current collaboration approaches mentioned above, it is clear that the Technetium Generator Project of FNCA is now reaching to a phase where the aims of the project shall be turned from establishment of the practical PZC- 99m C generator to establishment of the delivery system of PZC- 99m Tc generator to put them into commercial use. In this paper, a practical application of the PZC- 99m

  4. Gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  5. Gamma-ray flares from the Crab nebula

    International Nuclear Information System (INIS)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.

    2011-01-01

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10 15 electron volts) electrons in a region smaller than 1.4 * 10 -2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory. (authors)

  6. Niimina Ahubiya: Western Mono Song Genres

    OpenAIRE

    Loether, Christopher

    1993-01-01

    Although Native American communities may lose their ancestral language or other aspects of their traditional culture, music seems to be more resistant to the continual onslaught of the dominant Euro-American culture. Even today, traditional music remains a vital part of Native American communities throughout the United States. In this article I examine one aspect of the musical traditions of the Western Mono, specifically the different types of songs, and their functions within Western Mono s...

  7. The Advanced Gamma-ray Imaging System (AGIS): Next-generation Cherenkov telescopes array.

    Science.gov (United States)

    Vassiliev, Vladimir; AGIS Collaboration

    2010-03-01

    AGIS is a concept for a next-generation ground-based gamma-ray observatory in the energy range from 50 GeV to 200 TeV. AGIS is being designed to have significantly improved sensitivity, angular resolution, and reliability of operation relative to the present generation instruments such as VERITAS and H.E.S.S. The novel technologies of AGIS are expected to enable great advances in the understanding of the populations and physics of sources of high-energy gamma rays in the Milky Way (e.g. SNR, X-ray binaries, dense molecular clouds) and outside the Galaxy (e.g. AGN, GRBs, galaxy clusters, and star-forming galaxies). AGIS will complement and extend the results now being obtained in the GeV range with the Fermi mission providing wide energy coverage, superior angular resolution, and sensitivity to variability on short time scales. AGIS will be a key instrument for identifying and characterizing Fermi LAT sources. In this submission we outline the status of the development of AGIS project, design concept, and principal technologies. As illustrations of the scientific capabilities of AGIS, we review its potential to indirectly search for dark matter and measure cosmological magnetic fields.

  8. Broadband Study of GRB 091127: A Sub-energetic Burst at Higher Redshift?

    Science.gov (United States)

    Troja, E.; Sakamoto, T.; Guidorzi, C.; Norris, J. P.; Panaitescu, A.; Kobayashi, S.; Omodei, N.; Brown, J. C.; Burrows, D. N.; Evans, P. A.; Gehrels, N.; Marshall, F. E.; Mawson, N.; Melandri, A.; Mundell, C. G.; Oates, S. R.; Pal'shin, V.; Preece, R. D.; Racusin, J. L.; Steele, I. A.; Tanvir, N. R.; Vasileiou, V.; Wilson-Hodge, C.; Yamaoka, K.

    2012-12-01

    GRB 091127 is a bright gamma-ray burst (GRB) detected by Swift at a redshift z = 0.49 and associated with SN 2009nz. We present the broadband analysis of the GRB prompt and afterglow emission and study its high-energy properties in the context of the GRB/SN association. While the high luminosity of the prompt emission and standard afterglow behavior are typical of cosmological long GRBs, its low-energy release (E γ < 3 × 1049 erg), soft spectrum, and unusual spectral lag connect this GRB to the class of sub-energetic bursts. We discuss the suppression of high-energy emission in this burst, and investigate whether this behavior could be connected with the sub-energetic nature of the explosion.

  9. Characterizing Scintillator Response with Neutron Time-of-Flight

    Science.gov (United States)

    Palmisano, Kevin; Visca, Hannah; Caves, Louis; Wilkinson, Corey; McClow, Hannah; Padalino, Stephen; Forrest, Chad; Katz, Joe; Sangster, Craig; Regan, Sean

    2017-10-01

    Neutron scintillator diagnostics for ICF can be characterized using the neutron time-of-flight (nTOF) line on Geneseo's 1.7 MV Tandem Pelletron Accelerator. Neutron signals can be differentiated from gamma signals by employing a coincidence method called the associated particle technique (APT). In this measurement, a 2.1 MeV beam of deuterons incident on a deuterated polyethylene target produces neutrons via the d(d,n)3He reaction. A BC-412 plastic scintillator, placed at a scattering angle of 152º, detects 1.76 MeV neutrons in coincidence with the 2.56 MeV 3He ions at an associated angle of 10º. The APT is used to identify the 1.76 MeV neutron while the nTOF line determines its energy. By gating only mono-energetic neutrons, the instrument response function of the scintillator can be determined free from background scattered neutrons and gamma rays. Funded in part by a Grant from the DOE, through the Laboratory for Laser Energetics.

  10. Effect of gamma-irradiation on strength of concrete for nuclear-safety structures

    Czech Academy of Sciences Publication Activity Database

    Vodák, F.; Trtík, K.; Sopko, V.; Kapičková, O.; Demo, Pavel

    2005-01-01

    Roč. 35, - (2005), s. 1447-1451 ISSN 0008-8846 Institutional research plan: CEZ:AV0Z10100521 Keywords : concrete * gamma-irradiation * strength * porosity Subject RIV: JF - Nuclear Energetics Impact factor: 0.727, year: 2005

  11. A {sup 99m}Tc Generator using PZC for (n,{gamma}) {sup 99}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Adang, H G; Mutalib, A; Suparman, I; Hamid,; Purwadi, B; Pancoko, M; Setiowati, S; Yulianti, V; Robertus, D H [Radioisotope Production Center, National Atomic Energy Agency Kawasan PUSPIPTEK, Serpong (Indonesia)

    1998-10-01

    The high performance adsorbent Poly Zirconium Compound (PZC) was produced by Department of Radioisotope, Japan Atomic Energy Research Institute. This compound was developed as an adsorbent for natural Mo (n,{gamma}) {sup 99}Mo-{sup 99m}Tc Generator. In the present paper, we report the performance of the PZC for a {sup 99m}Tc Generator which was focused on the yield, on elution profile and {sup 99}Mo breakthrough. (author)

  12. Neutrons in basic and applied nuclear research - a review

    International Nuclear Information System (INIS)

    Bhattacharya, Sailajananda

    2013-01-01

    Energetic neutron sources, both white and mono-energetic, are widely used In basic nuclear physics as well as various multidisciplinary research. Precise measurement of various neutron induced reaction cross-sections are crucial for the design and development of new generation of reactors, like accelerator driven subcritical systems, nuclear incinerators, etc. A review of some recent trends in neutron induced basic and applied nuclear research will be presented in this talk. (author)

  13. Spatial distribution and polarization of {gamma}-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H. E-mail: shpark@nanum.kaeri.re.kr; Litvinenko, V.N.; Tornow, W.; Montgomery, C

    2001-12-21

    Beams of nearly monochromatic {gamma}-rays are produced via intracavity Compton backscattering in the OK-4/Duke storage ring FEL, the high-intensity {gamma}-ray source (HI{gamma}S). Presently, HI{gamma}S generates {gamma}-ray beams with an energy tunable from 2 to 58 MeV and a maximum flux of 5x10{sup 7} {gamma}-rays per second. The {gamma}-rays are linearly polarized with a degree of polarization close to 100% (V.N. Litvinenko, et al., Predictions and expected performance for the VUV OK-5/Duke Storage Ring FEL with variable polarization, Nucl. Instr. and Meth. A, to be published in this proceeding) and they are collimated to pencil-like semi-monoenergetic beams with RMS energy spreads as low as 0.2%. The detailed theoretical and experimental studies of the {gamma}-ray beam quality were conducted during the last two years (S.H. Park, Thesis, Duke University, Durham, NC, USA, 2000). In this paper, we present the theoretical analysis and the experimental results on the spatial distribution and polarization of {gamma}-rays from the HI{gamma}S facility.

  14. Astronomía gamma con telescopios Cherenkov: hacia un observatorio astronómico abierto a la comunidad

    Science.gov (United States)

    Rovero, A. C.

    Gamma-ray astronomy is opening the way to a universe far more energetic than anyone could have imagined half a century ago. The understanding of the processes of nature which carry a large portion of the energy in the universe, has astrophysical and cosmological implications. The next gen- eration of Cherenkov telescopes, an order of magnitude more sensitive and with higher resolution than the current systems, will mean a significant step forward for ground-based gamma-ray astronomy. This paper presents the current status of this field as well as the next generation of telescopes in this energy range, which are being designed for the first international observa- tory open to the astronomical community. The Cherenkov Telescope Array project and the Argentine sites proposed for the southern observatory are described in this paper. FULL TEXT IN SPANISH

  15. Stability evaluation and correction of a pulsed neutron generator prompt gamma activation analysis system

    Science.gov (United States)

    Source output stability is important for accurate measurement in prompt gamma neutron activation. This is especially true when measuring low-concentration elements such as in vivo nitrogen (~2.5% of body weight). We evaluated the stability of the compact DT neutron generator within an in vivo nitrog...

  16. Reconstruction of mono-vacancies in carbon nanotubes: Atomic relaxation vs. spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Berber, S. [Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571 (Japan)]. E-mail: berber@comas.frsc.tsukuba.ac.jp; Oshiyama, A. [Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571 (Japan)

    2006-04-01

    We have investigated the reconstruction of mono-vacancies in carbon nanotubes using density functional theory (DFT) geometry optimization and electronic structure calculations, employing a numerical basis set. We considered mono-vacancies in achiral nanotubes with diameter range {approx}4-9A. Contrary to previous tight-binding calculations, our results indicate that mono-vacancies could have several metastable geometries, confirming the previous plane-wave DFT results. Formation energy of mono-vacancies is 4.5-5.5eV, increasing with increasing tube diameter. Net magnetic moment decreases from ideal mono-vacancy value after reconstruction, reflecting the reduction of the number of dangling bonds. In spite of the existence of a dangling bond, ground state of mono-vacancies in semiconducting tubes have no spin polarization. Metallic carbon nanotubes show net magnetic moment for most stable structure of mono-vacancy, except for very small diameter tubes.

  17. Reconstruction of mono-vacancies in carbon nanotubes: Atomic relaxation vs. spin polarization

    International Nuclear Information System (INIS)

    Berber, S.; Oshiyama, A.

    2006-01-01

    We have investigated the reconstruction of mono-vacancies in carbon nanotubes using density functional theory (DFT) geometry optimization and electronic structure calculations, employing a numerical basis set. We considered mono-vacancies in achiral nanotubes with diameter range ∼4-9A. Contrary to previous tight-binding calculations, our results indicate that mono-vacancies could have several metastable geometries, confirming the previous plane-wave DFT results. Formation energy of mono-vacancies is 4.5-5.5eV, increasing with increasing tube diameter. Net magnetic moment decreases from ideal mono-vacancy value after reconstruction, reflecting the reduction of the number of dangling bonds. In spite of the existence of a dangling bond, ground state of mono-vacancies in semiconducting tubes have no spin polarization. Metallic carbon nanotubes show net magnetic moment for most stable structure of mono-vacancy, except for very small diameter tubes

  18. MoonBEAM: Gamma-Ray Burst Detectors on SmallSAT

    Science.gov (United States)

    Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.

    2018-01-01

    Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between a spacecraft in Earth and cislunar orbit. MoonBEAM is designed with high TRL components to be flight ready. This instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.

  19. Hot spots in energetic materials generated by infrared and ultrasound, detected by thermal imaging microscopy.

    Science.gov (United States)

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S; Dlott, Dana D

    2014-02-01

    We have observed and characterized hot spot formation and hot-spot ignition of energetic materials (EM), where hot spots were created by ultrasonic or long-wavelength infrared (LWIR) exposure, and were detected by high-speed thermal microscopy. The microscope had 15-20 μm spatial resolution and 8.3 ms temporal resolution. LWIR was generated by a CO2 laser (tunable near 10.6 μm or 28.3 THz) and ultrasound by a 20 kHz acoustic horn. Both methods of energy input created spatially homogeneous energy fields, allowing hot spots to develop spontaneously due to the microstructure of the sample materials. We observed formation of hot spots which grew and caused the EM to ignite. The EM studied here consisted of composite solids with 1,3,5-trinitroperhydro-1,3,5-triazine crystals and polymer binders. EM simulants based on sucrose crystals in binders were also examined. The mechanisms of hot spot generation were different with LWIR and ultrasound. With LWIR, hot spots were most efficiently generated within the EM crystals at LWIR wavelengths having longer absorption depths of ∼25 μm, suggesting that hot spot generation mechanisms involved localized absorbing defects within the crystals, LWIR focusing in the crystals or LWIR interference in the crystals. With ultrasound, hot spots were primarily generated in regions of the polymer binder immediately adjacent to crystal surfaces, rather than inside the EM crystals.

  20. Scour properties of mono bucket foundation

    DEFF Research Database (Denmark)

    Stroescu, Ionut Emanuel; Frigaard, Peter Bak

    2016-01-01

    Field experience proved that the Mono Bucket Foundations (MBFs) have good response against scour development. Moreover, the ratio between large diameter (bucket lid) and the small diameter (shaft tower) is the driving parameter for the process of erosion/backfill, like scour protection diameter...... in the case of scour protected monopiles. However, the structural design to reduce the scour development for MBFs is still open to optimization. The influences of parameters that generate backfill and scour, the transfer load webs and the misalignment with seabed, have not been systematically studied until...... analysis compared with real surveys and existing studies showed good agreements. Scour protection based on collar solution shows high efficiency when scour protection should be required. The paper demonstrates good agreement between field measurements and small-scale studies. The unique value of the field...

  1. Spatial distribution and polarization of gamma-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL

    CERN Document Server

    Park, S H; Tornow, W; Montgomery, C

    2001-01-01

    Beams of nearly monochromatic gamma-rays are produced via intracavity Compton backscattering in the OK-4/Duke storage ring FEL, the high-intensity gamma-ray source (HI gamma S). Presently, HI gamma S generates gamma-ray beams with an energy tunable from 2 to 58 MeV and a maximum flux of 5x10 sup 7 gamma-rays per second. The gamma-rays are linearly polarized with a degree of polarization close to 100% (V.N. Litvinenko, et al., Predictions and expected performance for the VUV OK-5/Duke Storage Ring FEL with variable polarization, Nucl. Instr. and Meth. A, to be published in this proceeding) and they are collimated to pencil-like semi-monoenergetic beams with RMS energy spreads as low as 0.2%. The detailed theoretical and experimental studies of the gamma-ray beam quality were conducted during the last two years (S.H. Park, Thesis, Duke University, Durham, NC, USA, 2000). In this paper, we present the theoretical analysis and the experimental results on the spatial distribution and polarization of gamma-rays fro...

  2. Energetics of the terrestrial bow shock

    Science.gov (United States)

    Hamrin, Maria; Gunell, Herbert; Norqvist, Patrik

    2017-04-01

    The solar wind is the primary energy source for the magnetospheric energy budget. Energy can enter through the magnetopause both as kinetic energy (plasma entering via e.g. magnetic reconnection and impulsive penetration) and as electromagnetic energy (e.g. by the conversion of solar wind kinetic energy into electromagnetic energy in magnetopause generators). However, energy is extracted from the solar wind already at the bow shock, before it encounters the terrestrial magnetopause. At the bow shock the supersonic solar wind is slowed down and heated, and the region near the bow shock is known to host many complex processes, including the accelerating of particles and the generation of waves. The processes at and near the bow shock can be discussed in terms of energetics: In a generator (load) process kinetic energy is converted to (from) electromagnetic energy. Bow shock regions where the solar wind is decelerated correspond to generators, while regions where particles are energized (accelerated and heated) correspond to loads. Recently, it has been suggested that currents from the bow shock generator should flow across the magnetosheath and connect to the magnetospause current systems [Siebert and Siscoe, 2002; Lopez et al., 2011]. In this study we use data from the Magnetospheric MultiScale (MMS) mission to investigate the energetics of the bow shock and the current closure, and we compare with the MHD simulations of Lopez et al., 2011.

  3. Generalized dynamic model and control of ambiguous mono axial vehicle robot

    Directory of Open Access Journals (Sweden)

    Frantisek Duchon

    2016-09-01

    Full Text Available This article deals with the novel concept of ambiguous mono axial vehicle robot. Such robot is a combination of Segway and dicycle, which utilizes the advantages of each chassis. The advantage of dicycle is lower energy consumption during the movement and the higher safety of carried payload. The movable platform inside the ambiguous mono axial vehicle allows using the various sensors or devices. This will change the ambiguous mono axial vehicle to the Segway type robot. Both these modes are necessary to control in the stable mode to ensure the safety of the ambiguous mono axial vehicle’s movement. The main contents of the article contain description of generalized dynamic model of ambiguous mono axial vehicle and related control of ambiguous mono axial vehicle. The proposal is unique in that the same controller is used for both modes. Several simulations verify proposed control schemes and identified parameters. Moreover, the dicycle type of platform has never been used in robotics and that is another novelty.

  4. Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region

    International Nuclear Information System (INIS)

    Kozyra, J.U.; Cravens, T.E.; Nagy, A.F.; Fontheim, E.G.; Ong, R.S.B.

    1984-01-01

    An expression for the linear electromagnetic ion cyclotron convective growth rate has been derived, considering multiple ions in the energetic anisotropic component of the plasma (which provides the free energy for the instability) as well as in the cold component of the plasma. This represents a modification of recent treatments investigating electromagnetic ion cyclotron growth rates which have considered only hydrogen ions in the energetic component. Four major effects on the growth and propagation characteristics result from inclusion of heavy ions in the energetic component. Some wave growth occurs at low frequencies below the corresponding marginally unstable wave mode for each heavy ion. Enhanced quasi-monochronomatic peaks in the convective growth rate appear just below the O + and He + gyrofrequency and can be quite pronounced for certain plasma conditions. Stop bands, decreased group velocity and other effects normally attributed to cold heavy ions can be produced or enhanced by heavy ions in the energetic plasma component. Partial or complete suppression of wave growth at frequencies above the marginally unstable wave mode for a particular energetic heavy ion can greatly alter the growth rates that would occur in the absence of this energetic heavy ion. The expression for the linear electromagnetic ion cyclotron convective growth rate along with appropriate plasma parameters was used to investigate the nature of linear wave growth in the plasmapause region. The frequencies of peaks in the convective growth rate given by this model compare favorably with wave measurements in this region. It is conceivable that through wave-particle interactions, electromagnetic ion cyclotron waves could supply the energy source for various plasmapause region phenomena such as the O + torus, the plasma cloak and stable auroral red arcs

  5. ESA presents INTEGRAL, its space observatory for Gamma-ray astronomy

    Science.gov (United States)

    1998-09-01

    A unique opportunity for journalists and cameramen to view INTEGRAL will be provided at ESA/ESTEC, Noordwijk, the Netherlands on Tuesday 22 September. On show will be the full-size structural thermal model which is now beeing examined in ESA's test centre. Following introductions to the project, the INTEGRAL spacecraft can be seen, filmed and photographed in its special clean room environment.. Media representatives wishing to participate in the visit to ESA's test centre and the presentation of INTEGRAL are kindly requested to return by fax the attached registration form to ESA Public relations, Tel. +33 (0) 1.53.69.71.55 - Fax. +33 (0) 1.53.69.76.90. For details please see the attached programme Gamma-ray astronomy - why ? Gamma-rays cannot be detected from the ground since the earth's atmosphere shields us from high energetic radiation. Only space technology has made gamma-astronomy possible. To avoid background radiation effects INTEGRAL will spend most of its time in the orbit outside earth's radiation belts above an altitude of 40'000 km. Gamma-rays are the highest energy form of electromagnetic radiation. Therefore gamma-ray astronomy explores the most energetic phenomena occurring in nature and addresses some of the most fundamental problems in physics. We know for instance that most of the chemical elements in our bodies come from long-dead stars. But how were these elements formed? INTEGRAL will register gamma-ray evidence of element-making. Gamma-rays also appear when matter squirms in the intense gravity of collapsed stars or black holes. One of the most important scientific objectives of INTEGRAL is to study such compact objects as neutron stars or black holes. Besides stellar black holes there may exist much bigger specimens of these extremely dense objects. Most astronomers believe that in the heart of our Milky Way as in the centre of other galaxies there may lurk giant black holes. INTEGRAL will have to find evidence of these exotic objects. Even

  6. Toward a next-generation high-energy gamma-ray telescope. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, E.D.; Evans, L.L. [eds.

    1997-03-01

    It has been some time between the time of the first Gamma-ray Large Area Space Telescope (GLAST) workshop, Towards a Next Generation High-Energy Gamma-Ray Telescope, in late August 1994, and the publication of a partial proceedings of that meeting. Since then there has been considerable progress in both the technical and project development of GLAST. From its origins at SLAC/Stanford in early 1992, the collaboration has currently grown to more than 20 institutions from France, Germany, Italy, Japan, and the US, and is still growing. About half of these are astrophysics/astronomy institutions; the other half are high-energy physics institutions. About 100 astronomers, astrophysicists, and particle physicists are currently spending some fraction of their time on the GLAST R and D program. The late publication date of this proceedings has resulted in some additions to the original content of the meeting. The first paper is actually a brochure prepared for NASA by Peter Michelson in early 1996. Except for the appendix, the other papers in the proceedings were presented at the conference, and written up over the following two years. Some presentations were never written up.

  7. Towards a next-generation high-energy gamma-ray telescope. Proceedings

    International Nuclear Information System (INIS)

    Bloom, E.D.; Evans, L.L.

    1997-03-01

    It has been some time between the time of the first Gamma-ray Large Area Space Telescope (GLAST) workshop, Towards a Next Generation High-Energy Gamma-Ray Telescope, in late August 1994, and the publication of a partial proceedings of that meeting. Since then there has been considerable progress in both the technical and project development of GLAST. From its origins at SLAC/Stanford in early 1992, the collaboration has currently grown to more than 20 institutions from France, Germany, Italy, Japan, and the US, and is still growing. About half of these are astrophysics/astronomy institutions; the other half are high-energy physics institutions. About 100 astronomers, astrophysicists, and particle physicists are currently spending some fraction of their time on the GLAST R and D program. The late publication date of this proceedings has resulted in some additions to the original content of the meeting. The first paper is actually a brochure prepared for NASA by Peter Michelson in early 1996. Except for the appendix, the other papers in the proceedings were presented at the conference, and written up over the following two years. Some presentations were never written up

  8. Retrofitting of beaters with mono-drive at a beater-wheel mill; Nachruestung von Vorschlaegern mit Mono-Antrieb an einer Schlagradmuehle

    Energy Technology Data Exchange (ETDEWEB)

    Krecher, Johannes J.; Hildebrandt, Rainer [Lignite-Mono-Drive Engineering GmbH, Essen (Germany); Geradts, Paul [RWE Power AG, Grevenbroich (Germany)

    2008-07-01

    Due to a future energy crisis, the use of the domestic brown coal continuously must be strengthened. At the beginning of 2007, the power station Frimmersdorf of RWE Power AG (Essen, Federal Republic of Germany) commissioned Lignite-Mono-Drive Engineering GmbH (Essen, Federal Republic of Germany) with the retrofitting of a N90.60 beater-wheel mill to a mono-drive-system. Thus, the production losses of 20 GWh/a of the 150 MW brown coal block M should be avoided, and the performance of this brown coal block should be increased by nearly 3 MW. Apart from the milling process and drying process, the authors of the contribution under consideration describe the application and operation results of these mono-drive-mills.

  9. Energetic Systems

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetic Systems Division provides full-spectrum energetic engineering services (project management, design, analysis, production support, in-service support,...

  10. Gamma-ray emission profile measurements during JET ICRH discharges

    Energy Technology Data Exchange (ETDEWEB)

    Howarth, P.J.A. [Birmingham Univ. (United Kingdom); Adams, J.M.; Bond, D.S.; Watkins, N. [AEA Technology, Harwell (United Kingdom); Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Belle, P. van [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-12-31

    Ion Cyclotron Resonant Heating (ICRH) that is tuned to minority fuel ions can induce an energy diffusion of the heated species and create high energy tail temperatures of {approx} 1 MeV. The most energetic of these accelerated minority ions can undergo nuclear reactions with impurity Be and C that produces {gamma}-ray emission from the decay of the excited product nuclei. This RF-induced {gamma}-ray emission has been recorded using the JET neutron emission profile diagnostic which is capable of distinguishing neutrons and {gamma}-rays. Appropriate data processing has enabled the RF-induced {gamma}-ray emission signals to be isolated from the {gamma}-ray emission signals associated with neutron interactions in the material surrounding the profile monitor. The 2-d {gamma}-ray emission profiles show that virtually all the radiation originates from the low field side of the RF resonance layer, as expected from RF-induced pitch angle diffusion. The emission profiles indicate the presence of a small population of resonant {sup 3}He ions that possess orbits lying near the passing-trapped boundary. (author) 6 refs., 4 figs.

  11. Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT

    International Nuclear Information System (INIS)

    Anderson, B.; Atwood, W.B.; Dormody, M.; Johnson, R.P.; Porter, T.A.; Primack, J.R.; Sadrozinski, H.F.W.; Parkinson, P.M.S.; Ziegler, M.; Abdo, A.A.; Dermer, C.D.; Grove, J.E.; Gwon, C.; Johnson, W.N.; Lovellette, M.N.; Makeev, A.; Ray, P.S.; Strickman, M.S.; Wolff, M.T.; Wood, K.S.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R.D.; Borgland, A.W.; Cameron, R.A.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Kamae, T.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tajima, H.; Tanaka, T.; Thayer, J.G.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Van Etten, A.; Waite, A.P.; Wang, P.; Watters, K.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E.D.; Borgland, A.W.; Cameron, R.A.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Kamae, T.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tajima, H.; Tanaka, T.; Thayer, J.G.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Van Etten, A.; Waite, A.P.; Wang, P.; Watters, K.; Axelsson, M.; Conrad, J.; Meurer, C.; Ryde, F.; Ylinen, T.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Pierbattista, M.; Starck, J.L.

    2009-01-01

    Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants. (authors)

  12. Design of gamma radiation equipment for studying a bubbling gas fluidized bed. Determination of a radial void fraction profile and bubble velocities in a 0.40 m column

    Energy Technology Data Exchange (ETDEWEB)

    Hoogeveen, M O [Technische Univ. Delft (Netherlands). Lab. voor Fysische Technologie

    1993-12-01

    In this work the possibility of the use of gamma radiation in investigating bubbles in a large three dimensional gas-fluidised bed was examined. A measuring system was designed based upon the absorption of gamma radiation. As high energy (>100 keV) gamma radiation penetrates deeply into matter, it can be used to scan through a gas-solid fluidised bed. The attenuation of a beam of mono-energetic photons is related to the amount of solid particles in the path of the beam. With the gamma absorption technique two parameters can be determined: The void fraction and the bubble velocity. With one narrow beam of gamma radiation a chordal void fraction can be measured in the homogeneous part of the bed. An optimalisation procedure for the void fraction determination led to the choice of Cs-137 as radiation source. This optimalisation procedure concerned minimizing of the standard deviation in the determined chordal void fraction as a function of the energy of gamma radiation. With two narrow parallel beams placed at a distance of 12 cm above each other a bubble velocity can be obtained. A cross-correlation between the two detector responses gives the time shift between the two responses. The system was designed for velocity measurements in the non-homogeneous part of the column. A simulation of the two beam measurement method for an air fluidized bed, 0.40 m in diameter, of polystyrene particles led to the choice of 100 mCi for the source strength for each of the two Cs-137 sources. For a 100 mCi Cs-137 source a shielding of 8 cm of lead is necessary to comply with safety regulations, concerning the use of radioactive materials. A source holder was designed, containing two encapsulated 100 mCi Cs-137 sources, in accordance with the regulations in the licence of the Delft University of Technology for the use of encapsulated sources. (orig.).

  13. Design of gamma radiation equipment for studying a bubbling gas fluidized bed. Determination of a radial void fraction profile and bubble velocities in a 0.40 m column

    International Nuclear Information System (INIS)

    Hoogeveen, M.O.

    1993-12-01

    In this work the possibility of the use of gamma radiation in investigating bubbles in a large three dimensional gas-fluidised bed was examined. A measuring system was designed based upon the absorption of gamma radiation. As high energy (>100 keV) gamma radiation penetrates deeply into matter, it can be used to scan through a gas-solid fluidised bed. The attenuation of a beam of mono-energetic photons is related to the amount of solid particles in the path of the beam. With the gamma absorption technique two parameters can be determined: The void fraction and the bubble velocity. With one narrow beam of gamma radiation a chordal void fraction can be measured in the homogeneous part of the bed. An optimalisation procedure for the void fraction determination led to the choice of Cs-137 as radiation source. This optimalisation procedure concerned minimizing of the standard deviation in the determined chordal void fraction as a function of the energy of gamma radiation. With two narrow parallel beams placed at a distance of 12 cm above each other a bubble velocity can be obtained. A cross-correlation between the two detector responses gives the time shift between the two responses. The system was designed for velocity measurements in the non-homogeneous part of the column. A simulation of the two beam measurement method for an air fluidized bed, 0.40 m in diameter, of polystyrene particles led to the choice of 100 mCi for the source strength for each of the two Cs-137 sources. For a 100 mCi Cs-137 source a shielding of 8 cm of lead is necessary to comply with safety regulations, concerning the use of radioactive materials. A source holder was designed, containing two encapsulated 100 mCi Cs-137 sources, in accordance with the regulations in the licence of the Delft University of Technology for the use of encapsulated sources. (orig.)

  14. Effect of low-dose gamma radiation on HIV replication in human peripheral blood mononuclear cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y. [British Columbia Centre for Excellence in HIV/AIDS, British Columbia (Canada); Conway, B. [British Columbia Centre for Excellence in HIV/AIDS, British Columbia (Canada)]|[British Columbia Centre for Excellence in HIV/AIDS, British Columbia (Canada). Dept. of Medicine; Montaner, J.S.G. [British Columbia Centre for Excellence in HIV/AIDS, British Columbia (Canada)]|[British Columbia Centre for Excellence in HIV/AIDS, British Columbia (Canada). Dept. of Medicine]|[Canadian HIV Trials Network, Vancouver (Canada); O`Shaughnessy, M.V. [British Columbia Centre for Excellence in HIV/AIDS, British Columbia (Canada)]|[British Columbia Centre for Excellence in HIV/AIDS, British Columbia (Canada). Faculty of Medicine]|[Canadian HIV Trials Network, Vancouver (Canada); Greenstock, C.L. [AECL Research, Chalk River, Ontario (Canada). Radiation Biology and Health Physics Branch

    1996-08-01

    Recent studies have demonstrated that UV light and x-irradiation enhance human immunodeficiency virus (HIV) gene expression. There are few published data on related effects of {gamma}-radiation. This may be of clinical relevance, as radiotherapy has been used extensively for the treatment of acquired immunodeficiency syndrome associated conditions. We have studied the effects of {gamma}-radiation on HIV replication in mono-nuclear cells (MC). These cells were obtained from five seronegative healthy donors, exposed to 0-200 cGy {gamma}-radiation, stimulated with phytohemagglutinin-P (PHA-P) for 24 h, infected with a laboratory strain of HIV (HTLV-IIIB, multiplicity of infection = 0.001), then carried in culture for 14 days. Overall, when considering p24 antigen levels on days 7 and 11 in cultures established from cells exposed to 50 cGy, the maximal levels were significantly higher than those measured in the parallel control cultures taken as a whole (P < 0.05), with viral replication enhanced as much as 1000-fold in one case. No significant cytotoxicity was observed following exposure to doses up to 50 cGy. The mechanism of the observed effect remains unknown but may relate to direct gene activation and/or free radical generation, leading to such activation. To date, there is no evidence that viral stimulation occurs following therapeutic radiation in a clinical setting. (author).

  15. Simulation of Nanowires on Metal Vicinal Surfaces: Effect of Growth Parameters and Energetic Barriers

    Science.gov (United States)

    Hamouda, Ajmi B. H.; Blel, Sonia; Einstein, T. L.

    2012-02-01

    Growing one-dimensional metal structures is an important task in the investigation of the electronic and magnetic properties of new devices. We used kinetic Monte-Carlo (kMC) method to simulate the formation of nanowires of several metallic and non-metallic adatoms on Cu and Pt vicinal surfaces. We found that mono-atomic chains form on step-edges due to energetic barriers (the so-called Ehrlich-shwoebel and exchange barriers) on step-edge. Creation of perfect wires is found to depend on growth parameters and binding energies. We measure the filling ratio of nanowires for different chemical species in a wide range of temperature and flux. Perfect wires were obtained at lower deposition rate for all tested adatoms, however we notice different temperature ranges. Our results were compared with experimental ones [Gambardella et al., Surf. Sci.449, 93-103 (2000), PRB 61, 2254-2262, (2000)]. We review the role of impurities in nanostructuring of surfaces [Hamouda et al., Phys. Rev. B 83, 035423, (2011)] and discuss the effect of their energetic barriers on the obtained quality of nanowires. Our work provides experimentalists with optimum growth parameters for the creation of a uniform distribution of wires on surfaces.

  16. Dose rate on the environment generated by a gamma irradiation plant

    International Nuclear Information System (INIS)

    Mangussi, J.

    2011-01-01

    A model for the absorbed dose rate calculation on the surroundings of a gamma irradiation plant is developed. In such plants, a part of the radiation emitted upwards reach the outdoors. The Compton scatterings on the wall of the exhausting pipes through de plant roof and on the outdoors air are modelled. The absorbed dose rate generated by the scattered radiation reaching the outdoors floor is calculated. The results of the models, to be used for the irradiation plant design and for the environmental studies, are showed on tables and graphics. (author) [es

  17. Weak-scale hidden sector and energy transport in fireball models of gamma-ray bursts

    International Nuclear Information System (INIS)

    Demir, Durmus A.; Mosquera Cuesta, Herman J.

    2000-12-01

    The annihilation of pairs of very weakly interacting particles in the neighborhood of gamma-ray sources is introduced here as a plausible mechanism to overcome the baryon load problem. This way we can explain how these very high energy gamma-ray bursts can be powered at the onset of very energetic events like supernovae (collapsars) explosions or coalescences of binary neutron stars. Our approach uses the weak-scale hidden sector models in which the Higgs sector of the standard model is extended to include a gauge singlet that only interacts with the Higgs particle. These particles would be produced either during the implosion of the red supergiant star core or at the aftermath of a neutron star binary merger. The whole energetics and timescales of the relativistic blast wave, the fireball, are reproduced. (author)

  18. Intense energetic electron flux enhancements in Mercury's magnetosphere: An integrated view with high-resolution observations from MESSENGER.

    Science.gov (United States)

    Baker, Daniel N; Dewey, Ryan M; Lawrence, David J; Goldsten, John O; Peplowski, Patrick N; Korth, Haje; Slavin, James A; Krimigis, Stamatios M; Anderson, Brian J; Ho, George C; McNutt, Ralph L; Raines, Jim M; Schriver, David; Solomon, Sean C

    2016-03-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.

  19. Alternative Energetics DC Microgrid With Hydrogen Energy Storage System

    Directory of Open Access Journals (Sweden)

    Zaļeskis Genadijs

    2016-12-01

    Full Text Available This paper is related to an alternative energetics microgrid with a wind generator and a hydrogen energy storage system. The main aim of this research is the development of solutions for effective use of the wind generators in alternative energetics devices, at the same time providing uninterrupted power supply of the critical loads. In this research, it was accepted that the alternative energetics microgrid operates in an autonomous mode and the connection to the conventional power grid is not used. In the case when wind speed is low, the necessary power is provided by the energy storage system, which includes a fuel cell and a tank with stored hydrogen. The theoretical analysis of the storage system operation is made. The possible usage time of the stored hydrogen depends on the available amount of hydrogen and the consumption of the hydrogen by the fuel cell. The consumption, in turn, depends on used fuel cell power. The experimental results suggest that if the wind generator can provide only a part of the needed power, the abiding power can be provided by the fuel cell. In this case, a load filter is necessary to decrease the fuel cell current pulsations.

  20. Professional Android Programming with Mono for Android and NETC#

    CERN Document Server

    McClure, Wallace B; Croft, John J; Dick, Jonathan; Hardy, Chris

    2012-01-01

    A one-of-a-kind book on Android application development with Mono for Android The wait is over! For the millions of .NET/C# developers who have been eagerly awaiting the book that will guide them through the white-hot field of Android application programming, this is the book. As the first guide to focus on Mono for Android, this must-have resource dives into writing applications against Mono with C# and compiling executables that run on the Android family of devices. Putting the proven Wrox Professional format into practice, the authors provide you with the knowledge you need to become a succ

  1. 77 FR 74647 - Application(s) for Duty-Free Entry of Scientific Instruments

    Science.gov (United States)

    2012-12-17

    ... University, 525 Northwestern Ave., West Lafayette, IN 47907-2036. Instrument: DD Neutron Generator... scintillation light and ionization behavior of liquid xenon to neutrons from a mono- energetic neutron source with energies close to 2.5 MeV, each neutron interaction must be resolved separately, and thus arrive...

  2. Determination of correction and conversion factor of exposure rate generated Gamma spectrometer GR-320 to Victoreen data

    International Nuclear Information System (INIS)

    Supardjo-AS; Mappa, Djody-Rachim; Nasrun-Syamsul; Syamsul-Hadi

    2000-01-01

    Exposure rate data of Muria Peninsula were generated from Victoreen-491 measurement and calculation of radioelement content in soil which were measured by Exploranium GR-320, using IAEA formula. However those data are not be comparable so the exposure rate calculated from Gamma Spectrometer data necessarily to be corrected. The correction factor was determinate by measuring the exposure rate of at the NMDC's back yard selected location using Victoreen-491 and Gamma Spectrometer Exploranium GR-320 . Correction factor was created by comparing mean exposure rate data that calculated from 30 data measured by Gamma Spectrometer instrument and to those Victoreen's exposure rate. Conversion factor was gained from comparing of total count data of Gamma Spectrometer Exploranium GR-320 to Victoreen's exposure rate data. The correction factor of Exploranium GR-320's exposure rate is 0.34 μR/hours, and the conversion factor of total count is 0.0092 μR/hours per c/m. Deviation Victoreen 491 = 4.7 % and Gamma Spectrometer Exploranium GR-320 8.6 %

  3. Fatigue Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed thro...... of the natural period, damping ratio, current, stress Spectrum and parameters describing the fatigue strength. Further, soil damping is shown to be significant for the Mono-tower.......In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... through linear-elastic fracture mechanics (LEFM). In determining the cumulative fatigue damage, Palmgren-Miner's rule is applied. Element reliability as well as systems reliability is estimated using first-order reliability methods (FORM). The sensitivity of the systems reliability to various parameters...

  4. Prompt-gamma neutron activation analysis system design: Effects of D-T versus D-D neutron generator source selection

    Science.gov (United States)

    Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with...

  5. Biosynthesis and Degradation of Mono-, Oligo-, and Polysaccharides: Introduction

    Science.gov (United States)

    Wilson, Iain B. H.

    Glycomolecules, whether they be mono-, oligo-, or polysaccharides or simple glycosides, are—as any biological molecules—the products of biosynthetic processes; on the other hand, at the end of their lifespan, they are also subject to degradation. The beginning point, biochemically, is the fixation of carbon by photosynthesis; subsequent metabolism in plants and other organisms results in the generation of the various monosaccharides. These must be activated—typically as nucleotide sugars or lipid-phosphosugars—before transfer by glycosyltransferases can take place in order to produce the wide variety of oligo- and polysaccharides seen in Nature; complicated remodelling processes may take place—depending on the pathway—which result in partial trimming of a precursor by glycosidases prior to the addition of further monosaccharide units. Upon completion of the 'life' of a glycoconjugate, glycosidases will degrade the macromolecule finally into monosaccharide units which can be metabolized or salvaged for incorporation into new glycan chains. In modern glycoscience, a wide variety of methods—genetic, biochemical, analytical—are being employed in order to understand these various pathways and to place them within their biological and medical context. In this chapter, these processes and relevant concepts and methods are introduced, prior to elaboration in the subsequent more specialized chapters on biosynthesis and degradation of mono-, oligo-, and polysaccharides.

  6. Effects of a mixture of non-ortho- and mono-ortho-polychlorinated biphenyls on reproduction in Fundulus heteroclitus (Linnaeus)

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.E.; Gutjahr-Gobell, R.; Pruell, R.J.; Bergen, B. [Environmental Protection Agency, Narragansett, RI (United States); McElroy, A.E. [State Univ. of New York, Stony Brook, NY (United States). Marine Sciences Research Center

    1998-07-01

    To assess the effects of polychlorinated biphenyls (PCBs) on reproduction, female Fundulus heteroclitus were exposed to a mixture of non-ortho- and mono-ortho-PCBs, mimicking the mixture found in fish collected from New Bedford Harbor, Massachusetts, USA, a PCB-contaminated estuary. Exposure was by intraperitoneal injection of the mixture dissolved in corn oil. Doses of 0.76, 3.8, and 19 {micro}g PCB mixture per gram of wet weight produced liver concentrations of 2.99, 12.2, and 32.8 {micro}g non-ortho- and mono-ortho-PCBs per gram of dry liver, with dioxin toxic equivalency concentrations (TEQs) of 0.0963, 0.409, and 0.720 ng/g, respectively. Female mortality was 58%, and egg production was reduced by 77% at the highest dose, compared to controls. Food consumption declined with increasing PCB concentration, suggesting that PCBs act indirectly to reduce fecundity through an energetic effect. Pituitary gonadotropin content appeared to be suppressed at the highest dose, but the ability of ovarian follicles to produce estradiol and testosterone in vitro was not impaired. Significant residue-effects linkages were found, with TEQ emerging as a potential indicator of adverse effects. Mortality was directly related, and egg production was inversely related to log{sub 10}TEQ. Multiple regression analysis indicated that egg production was directly related to pituitary gonadotropin content and food consumption.

  7. Gamma rays, tracers of the interstellar medium and messengers of pulsars and other energetic objects

    International Nuclear Information System (INIS)

    Grenier, I.

    1988-03-01

    Gamma radiation observed in our Galaxy by the COS-B satellite was studied. The interstellar medium was studied at large scale using the fact that diffuse gamma rays are created by the interaction of cosmic rays with any interstellar matter and comparisons with different tracers and star and galaxy counts. Ground-based maps of molecular clouds were also used. Bright compact gamma sources were also analyzed. Results include the detection in Co of a distant spiral arm of the Galaxy (15kpc) and an important molecular complex nearby (300pc); the first Co survey of the Galaxy; measurement of the NH2/WCo ratio and week galactic gradients of cosmic rays; the high energy behavior of the Vela pulsar; the detection of a gamma source; and the discovery of a large supernova remnant which exploded 300pc from the Sun 40,000 years ago [fr

  8. Festival nimega Mono / Ivar Sakk

    Index Scriptorium Estoniae

    Sakk, Ivar, 1962-

    2015-01-01

    Haapsalu graafilise disaini festival Haapsalu Linnagaleriis: sisaldab ülevaate- ja teemanäitust ning väikest sümpoosioni. Temaatilise aastanäituse motiiv on "MONO". Plakateid on ka välismaa tegijatelt. Kuraator Marko Kekishev

  9. The Gamma-Ray Imager GRI

    Science.gov (United States)

    Wunderer, Cornelia B.; GRI Collaboration

    2008-03-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. ESA's INTEGRAL observatory currently provides the astronomical community with a unique tool to investigate the sky up to MeV energies and hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes have been discovered. NASA's GLAST mission will similarly take the next step in surveying the high-energy ( GeV) sky, and NuSTAR will pioneer focusing observations at hard X-ray energies (to 80 keV). There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  10. Prompt gamma ray diagnostics and enhanced hadron-therapy using neutron-free nuclear reactions

    Science.gov (United States)

    Giuffrida, L.; Margarone, D.; Cirrone, G. A. P.; Picciotto, A.; Cuttone, G.; Korn, G.

    2016-10-01

    We propose a series of simulations about the potential use of Boron isotopes to trigger neutron-free (aneutronic) nuclear reactions in cancer cells through the interaction with an incoming energetic proton beam, thus resulting in the emission of characteristic prompt gamma radiation (429 keV, 718 keV and 1435 keV). Furthermore assuming that the Boron isotopes are absorbed in cancer cells, the three alpha-particles produced in each p-11B aneutronic nuclear fusion reactions can potentially result in the enhancement of the biological dose absorbed in the tumor region since these multi-MeV alpha-particles are stopped inside the single cancer cell, thus allowing to spare the surrounding tissues. Although a similar approach based on the use of 11B nuclei has been proposed in [Yoon et al. Applied Physics Letters 105, 223507 (2014)], our work demonstrate, using Monte Carlo simulations, the crucial importance of the use of 10B nuclei (in a solution containing also 11B) for the generation of prompt gamma-rays, which can be applied to medical imaging. In fact, we demonstrate that the use of 10B nuclei can enhance the intensity of the 718 keV gamma-ray peak more than 30 times compared to the solution containing only 11B nuclei. A detailed explanation of the origin of the different prompt gamma-rays, as well as of their application as real-time diagnostics during a potential cancer treatment, is here discussed.

  11. Bis(trialkylsilyl) peroxides as alkylating agents in the copper-catalyzed selective mono-N-alkylation of primary amides.

    Science.gov (United States)

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-06-13

    The copper-catalyzed selective mono-N-alkylation of primary amides with bis(trialkylsilyl) peroxides as alkylating agents was reported. The results of a mechanistic study suggest that this reaction should proceed via a free radical process that includes the generation of alkyl radicals from bis(trialkylsilyl) peroxides.

  12. Generation of synthetic gamma spectra with MATLAB

    International Nuclear Information System (INIS)

    Palmerio, Julian J.; Coppo, Anibal D.

    2009-01-01

    Objectives: The aim of this work is the simulation of gamma spectra using the MATLAB program to generate the calibration curves in efficiency, which will be used to measure radioactive waste in drums. They are necessary for the proper characterization of these drums. A Monte Carlo simulation was basically developed with the random number generator Mersenne Twister and nuclear data obtained from NIST. This paper shows the results obtained and difficulties encountered until today. The physical correction of the simulated spectra has been the only aspect we have been working, up to this moment. Procedures: A simplified representation of the 'Laboratorio de Verificacion y Control de la Calidad' was chosen. Drums with cemented liquid waste are routinely measured in this laboratory. The commercial program MCNP was also used to get a valid reference in the field of simulation of spectra. We analyzed the spectra obtained by MATLAB in the light of classical literature photon detection and the spectrum obtained by MCNP. Conclusions: Currently the program developed seems adequate to simulate a measurement in the 'Laboratorio de Verificacion y Control de la Calidad'. The spectra obtained by MATLAB seem to physically represent what is observed in real spectra. However, it is a slow program. The current development efforts are directed to improve the speed of simulation. An alternative is to use the CUDA language for NVIDIA video cards to parallelized the simulation. An adequate simulation of the electronic measuring chain is also needed to obtain better representations of the shapes of the peaks. (author)

  13. The Effects of Iodine Attenuation on Pulmonary Nodule Volumetry using Novel Dual-Layer Computed Tomography Reconstructions.

    Science.gov (United States)

    den Harder, A M; Bangert, F; van Hamersvelt, R W; Leiner, T; Milles, Julien; Schilham, A M R; Willemink, M J; de Jong, P A

    2017-12-01

    To assess the effect of iodine attenuation on pulmonary nodule volumetry using virtual non-contrast (VNC) and mono-energetic reconstructions. A consecutive series of patients who underwent a contrast-enhanced chest CT scan were included. Images were acquired on a novel dual-layer spectral CT system. Conventional reconstructions as well as VNC and mono-energetic images at different keV levels were used for nodule volumetry. Twenty-four patients with a total of 63 nodules were included. Conventional reconstructions showed a median (interquartile range) volume and diameter of 174 (87 - 253) mm 3 and 6.9 (5.4 - 9.9) mm, respectively. VNC reconstructions resulted in a significant volume reduction of 5.5% (2.6 - 11.2%; p<0.001). Mono-energetic reconstructions showed a correlation between nodule attenuation and nodule volume (Spearman correlation 0.77, (0.49 - 0.94)). Lowering the keV resulted in increased volumes while higher keV levels resulted in decreased pulmonary nodule volumes compared to conventional CT. Novel dual-layer spectral CT offers the possibility to reconstruct VNC and mono-energetic images. Those reconstructions show that higher pulmonary nodule attenuation results in larger nodule volumes. This may explain the reported underestimation in nodule volume on non-contrast enhanced compared to contrast-enhanced acquisitions. • Pulmonary nodule volumes were measured on virtual non-contrast and mono-energetic reconstructions • Mono-energetic reconstructions showed that higher attenuation results in larger volumes • This may explain the reported nodule volume underestimation on non-contrast enhanced CT • Mostly metastatic pulmonary nodules were evaluated, results might differ for benign nodules.

  14. The afterglow, redshift and extreme energetics of the gamma-ray burst of 23 January 1999

    NARCIS (Netherlands)

    Kulkarni, [No Value; Djorgovski, SG; Odewahn, SC; Bloom, JS; Gal, RR; Koresko, CD; Harrison, FA; Lubin, LM; Armus, L; Sari, R; Illingworth, GD; Kelson, DD; Magee, DK; van Dokkum, PG; Frail, DA; Mulchaey, JS; Malkan, MA; McClean, IS; Teplitz, HI; Koerner, D; Kirkpatrick, D; Kobayashi, N; Yadigaroglu, IA; Halpern, J; Piran, T; Goodrich, RW; Chaffee, FH; Feroci, M; Costa, E

    1999-01-01

    Long-lived emission, known as afterglow, has now been detected from about a dozen gamma-ray bursts. Distance determinations place the bursts at cosmological distances, with redshifts,z, ranging from similar to 1 to 3, The energy required to produce these bright gamma-ray flashes is enormous: up to

  15. Gamma radiation stability studies of mercury fulminate

    International Nuclear Information System (INIS)

    Fondeur, F.F.

    2000-01-01

    Mercury fulminate completely decomposed in a gamma source (0.86 Mrad/h) after a dose of 208 Mrad. This exposure equates to approximately 2.4 years in Tank 15H and 4 years in Tank 12H, one of the vessels of concern. Since the tanks lost the supernatant cover layer more than a decade ago, this study suggests that any mercury fulminate or closely related energetic species decomposed long ago if ever formed

  16. Gamma ray detector for solar maximum mission (SMM) of NASA

    International Nuclear Information System (INIS)

    Brunner, W.; Brichzin, K.; Sach, E.

    1981-06-01

    For NASA's Project Solar Maximum Mission-SMM (launch 14.2.80) a Gamma Ray Detector was developed, manufactured and tested to measure solar high energetic Gamma rays and Neutron fluxes within the energy range 10-160 MeV, 4,43 MeV amd 2,23 MeV. The main components of the sensor are 7 NaI crystals 3 x 3 and a CsI crystal 30 cm diameter x 7,5 cm. The rejection of charged particles is done by two plasitc scintillators and 4 CsI-shields. From the beginning of the mission the experiment is working fully successfull. (orig.) [de

  17. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China.

    Directory of Open Access Journals (Sweden)

    Chunping Liu

    Full Text Available Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE, whereas it has a scattered and patchy distribution in South China (SC. In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM. Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST  = 0.073; G'ST  = 0.278 among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.

  18. Genetic Structure and Hierarchical Population Divergence History of Acer mono var. mono in South and Northeast China

    Science.gov (United States)

    Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species’ evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST = 0.073; G′ST = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species’ more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study. PMID:24498039

  19. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China.

    Science.gov (United States)

    Liu, Chunping; Tsuda, Yoshiaki; Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST  = 0.073; G'ST  = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.

  20. Gamma source for active interrogation

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA; Lou, Tak Pui [Berkeley, CA; Barletta, William A [Oakland, CA

    2009-09-29

    A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.

  1. The relativistic feedback discharge model of terrestrial gamma ray flashes

    Science.gov (United States)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  2. Measurements of fission product yield in the neutron-induced fission of {sup 238}U with average energies of 9.35 MeV and 12.52 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Mukerji, Sadhana; Krishnani, Pritam Das; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok [Bhabha Atomic Research Centre, Mumbai (India); Shivashankar, Byrapura Siddaramaiah [Manipal University, Manipal (India); Mulik, Vikas Kaluram [University of Pune, Pune (India)

    2014-07-15

    The yields of various fission products in the neutron-induced fission of {sup 238}U with the flux-weighted averaged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gamma ray spectroscopic technique. The neutrons were generated using the {sup 7}Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.

  3. Gamma beams generation with high intensity lasers for two photon Breit-Wheeler pair production

    Science.gov (United States)

    D'Humieres, Emmanuel; Ribeyre, Xavier; Jansen, Oliver; Esnault, Leo; Jequier, Sophie; Dubois, Jean-Luc; Hulin, Sebastien; Tikhonchuk, Vladimir; Arefiev, Alex; Toncian, Toma; Sentoku, Yasuhiko

    2017-10-01

    Linear Breit-Wheeler pair creation is the lowest threshold process in photon-photon interaction, controlling the energy release in Gamma Ray Bursts and Active Galactic Nuclei, but it has never been directly observed in the laboratory. Using numerical simulations, we demonstrate the possibility to produce collimated gamma beams with high energy conversion efficiency using high intensity lasers and innovative targets. When two of these beams collide at particular angles, our analytical calculations demonstrate a beaming effect easing the detection of the pairs in the laboratory. This effect has been confirmed in photon collision simulations using a recently developed innovative algorithm. An alternative scheme using Bremsstrahlung radiation produced by next generation high repetition rate laser systems is also being explored and the results of first optimization campaigns in this regime will be presented.

  4. Simulating Terrestrial Gamma-ray Flashes using SWORD (Invited)

    Science.gov (United States)

    Gwon, C.; Grove, J.; Dwyer, J. R.; Mattson, K.; Polaski, D.; Jackson, L.

    2013-12-01

    We report on simulations of the relativistic feedback discharges involved with the production of terrestrial gamma-ray flashes (TGFs). The simulations were conducted using Geant4 using the SoftWare for the Optimization of Radiation Detectors (SWORD) framework. SWORD provides a graphical interface for setting up simulations in select high-energy radiation transport engines. Using Geant4, we determine avalanche length, the energy spectrum of the electrons and gamma-rays as they leave the field region, and the feedback factor describing the degree to which the production of energetic particles is self-sustaining. We validate our simulations against previous work in order to determine the reliability of our results. This work is funded by the Office of Naval Research.

  5. Enhanced cooling in mono-crystalline ultra-thin silicon by embedded micro-air channels

    KAUST Repository

    Ghoneim, Mohamed T.; Fahad, Hossain M.; Hussain, Aftab M.; Rojas, Jhonathan Prieto; Sevilla, Galo T.; Alfaraj, Nasir; Lizardo, Ernesto B.; Hussain, Muhammad Mustafa

    2015-01-01

    In today’s digital world, complementary metal oxide semiconductor (CMOS) technology enabled scaling of bulk mono-crystalline silicon (100) based electronics has resulted in their higher performance but with increased dynamic and off-state power consumption. Such trade-off has caused excessive heat generation which eventually drains the charge of battery in portable devices. The traditional solution utilizing off-chip fans and heat sinks used for heat management make the whole system bulky and less mobile. Here we show, an enhanced cooling phenomenon in ultra-thin (>10 μm) mono-crystalline (100) silicon (detached from bulk substrate) by utilizing deterministic pattern of porous network of vertical “through silicon” micro-air channels that offer remarkable heat and weight management for ultra-mobile electronics, in a cost effective way with 20× reduction in substrate weight and a 12% lower maximum temperature at sustained loads. We also show the effectiveness of this event in functional MOS field effect transistors (MOSFETs) with high-κ/metal gate stacks.

  6. Enhanced cooling in mono-crystalline ultra-thin silicon by embedded micro-air channels

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-12-11

    In today’s digital world, complementary metal oxide semiconductor (CMOS) technology enabled scaling of bulk mono-crystalline silicon (100) based electronics has resulted in their higher performance but with increased dynamic and off-state power consumption. Such trade-off has caused excessive heat generation which eventually drains the charge of battery in portable devices. The traditional solution utilizing off-chip fans and heat sinks used for heat management make the whole system bulky and less mobile. Here we show, an enhanced cooling phenomenon in ultra-thin (>10 μm) mono-crystalline (100) silicon (detached from bulk substrate) by utilizing deterministic pattern of porous network of vertical “through silicon” micro-air channels that offer remarkable heat and weight management for ultra-mobile electronics, in a cost effective way with 20× reduction in substrate weight and a 12% lower maximum temperature at sustained loads. We also show the effectiveness of this event in functional MOS field effect transistors (MOSFETs) with high-κ/metal gate stacks.

  7. Terrestrial gamma-ray flash production by lightning

    Science.gov (United States)

    Carlson, Brant E.

    Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Observatory, TGFs consist of one or more ˜1 ms pulses of gamma-rays with a total fluence of ˜1/cm2, typically observed when the satellite is near active thunderstorms. TGFs have subsequently been observed by other satellites to have a very hard spectrum (harder than dN/d E ∝ 1/ E ) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated with measurable lightning discharge. Such discharges are typically observed to occur within 300 km of the sub-satellite point and within several milliseconds of the TGF observation. The production of these intense energetic bursts of photons is the puzzle addressed herein. The presence of high-energy photons implies a source of bremsstrahlung, while bremsstrahlung implies a source of energetic electrons. As TGFs are associated with lightning, fields produced by lightning are naturally suggested to accelerate these electrons. Initial ideas about TGF production involved electric fields high above thunderstorms as suggested by upper atmospheric lightning research and the extreme energies required for lower-altitude sources. These fields, produced either quasi-statically by charges in the cloud and ionosphere or dynamically by radiation from lightning strokes, can indeed drive TGF production, but the requirements on the source lightning are too extreme and therefore not common enough to account for all existing observations. In this work, studies of satellite data, the physics of energetic electron and photon production, and consideration of lightning physics motivate a new mechanism for TGF production by lightning current pulses. This mechanism is then developed and used to make testable predictions. TGF data from satellite observations are compared

  8. Models for the circumstellar medium of long gamma-ray burst progenitor candidates

    NARCIS (Netherlands)

    Marle, A.J. van

    2006-01-01

    Long gamma-ray bursts are highly energetic events that are thought to occur when certain massive stars, that end their lives as Wolf-Rayet stars, collapse at the end of their evolution. We present models of the circumstellar medium around those massive stars that are thought to be possible

  9. An Assessment of Elemental Compositions and Concentrations in a Marble Sample from Hatnub Area using Internal Mono Standard Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Soliman, N.F.; EL-Shershaby, A.; EL-Bahi, S.; Walley El-Dine, N.; Abd El-Halim, E.S.; Afifi, S.

    2012-01-01

    A marble sample was taken from Hatnub area near Asyot, where a high pollution is expected. The sample was specially treated and prepared for elemental analysis using the k 0 -based internal mono standard neutron activation analysis . The irradiation facility of the first Egyptian Training Research Reactor (ETRR-1) was used to irradiate the sample together with gold and zirconium monitor samples. The pneumatic irradiation rabbit system (PIRS) built in the vertical thermal column of the second Egyptian Training Research Reactor (ETRR-2) was used to irradiate another weight of the marble sample and a sample from a certificated reference material JB-1 for short time irradiation. A new method was developed to measure the thermal to epithermal neutron flux ratio and the deviation in the real epithermal neutron spectrum ( 1/E 1±a lpha ) from the ideal (1/E ). The elemental analysis was carried out by high-resolution gamma-ray spectrometry. The accuracy of the internal mono standard method has been evaluated by analyzing the JB-1 certified reference material

  10. Professional iPhone Programming with MonoTouch and .NET/C#

    CERN Document Server

    McClure, Wallace B; Dunn, Craig

    2010-01-01

    What .NET C# developers need to enter the hot field of iPhone apps. iPhone applications offer a hot opportunity for developers. Until the open source MonoTouch project, this field was limited to those familiar with Apple's programming languages. Now .NET and C# developers can join the party. This Wrox guide is the first book to cover MonoTouch, preparing developers to take advantage of this lucrative opportunity.: MonoTouch opens the field of iPhone app development to .NET and C# developers for the first time; the Wrox reputation among .NET developers assures them that this guide covers everyt

  11. Gamma-Ray Bursts: A Radio Perspective

    Directory of Open Access Journals (Sweden)

    Poonam Chandra

    2016-01-01

    Full Text Available Gamma-ray bursts (GRBs are extremely energetic events at cosmological distances. They provide unique laboratory to investigate fundamental physical processes under extreme conditions. Due to extreme luminosities, GRBs are detectable at very high redshifts and potential tracers of cosmic star formation rate at early epoch. While the launch of Swift and Fermi has increased our understanding of GRBs tremendously, many new questions have opened up. Radio observations of GRBs uniquely probe the energetics and environments of the explosion. However, currently only 30% of the bursts are detected in radio bands. Radio observations with upcoming sensitive telescopes will potentially increase the sample size significantly and allow one to follow the individual bursts for a much longer duration and be able to answer some of the important issues related to true calorimetry, reverse shock emission, and environments around the massive stars exploding as GRBs in the early Universe.

  12. Fast gamma oscillations are generated intrinsically in CA1 without the involvement of fast-spiking basket cells.

    Science.gov (United States)

    Craig, Michael T; McBain, Chris J

    2015-02-25

    Information processing in neuronal networks relies on the precise synchronization of ensembles of neurons, coordinated by the diverse family of inhibitory interneurons. Cortical interneurons can be usefully parsed by embryonic origin, with the vast majority arising from either the caudal or medial ganglionic eminences (CGE and MGE). Here, we examine the activity of hippocampal interneurons during gamma oscillations in mouse CA1, using an in vitro model where brief epochs of rhythmic activity were evoked by local application of kainate. We found that this CA1 KA-evoked gamma oscillation was faster than that in CA3 and, crucially, did not appear to require the involvement of fast-spiking basket cells. In contrast to CA3, we also found that optogenetic inhibition of pyramidal cells in CA1 did not significantly affect the power of the oscillation, suggesting that excitation may not be essential for gamma genesis in this region. We found that MGE-derived interneurons were generally more active than CGE interneurons during CA1 gamma, although a group of CGE-derived interneurons, putative trilaminar cells, were strongly phase-locked with gamma oscillations and, together with MGE-derived axo-axonic and bistratified cells, provide attractive candidates for being the driver of this locally generated, predominantly interneuron-driven model of gamma oscillations. Copyright © 2015 the authors 0270-6474/15/353616-09$15.00/0.

  13. Monte Carlo Generators for the Production of a $W$ or $Z/\\gamma^*$ Boson in Association with Jets at ATLAS in Run 2

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    This note documents the Monte Carlo generators used by the ATLAS collaboration at the start of Run 2 for processes where a $W$ or $Z/\\gamma^*$ boson is produced in association with jets. The available event generators are briefly described and comparisons are made with ATLAS measurements of $W$ or $Z/\\gamma^*$+jets performed with Run 1 data, collected at the centre-of-mass energy of 7 TeV. The model predictions are then compared at the Run 2 centre-of-mass energy of 13~TeV. A comparison is also made with an early Run 2 ATLAS $Z/\\gamma^*$+jets data measurement. Investigations into tuning the parameters of the models and evaluating systematic uncertainties on the Monte Carlo predictions are also presented.

  14. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions

    International Nuclear Information System (INIS)

    Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.; Seguin, F. H.; Petrasso, R. D.; Stoeckl, C.; Meyerhofer, D. D.; Nilson, P.; Sangster, T. C.; Le Pape, S.; Mackinnon, A.; Patel, P.

    2012-01-01

    The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005)], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006)]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D 3 He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006)]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed.

  15. Energetic improvement with micro turbines of biogas generated in Rubis WWTP; Aprovechamiento energetico con microturbinas del biogas generado en la EDAR de Rubi

    Energy Technology Data Exchange (ETDEWEB)

    Moragas, L.; Robuste, J.; Vicente, M.; Pozo, A.; Blasco, M.

    2009-07-01

    The WWTP of Rubi (Barcelona, Spain) treats 22.950 m{sup 3}/day by activated sludge system, with mesophilic anaerobic digestion of primary and secondary sludges with a capacity of 3.500 m{sup 3}. Generated biogas is applied by means of indirect heating to digesters at 37 degree centigrade. To improve the energetic performance 2 micro turbines of 65 kW each were installed, with a 29% of unitary electric performance. After 5 months a third turbine was installed to generate more energy in peak hours. this solutions has shown to be very flexible, with reasonable technology and costs. (Author)

  16. Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes

    International Nuclear Information System (INIS)

    Wang Bei; Suzuki, Hiroyuki; Kato, Mitsuyasu

    2008-01-01

    TGF-β activates receptor-regulated Smad (R-Smad) through phosphorylation by type I receptors. Activated R-Smad binds to Smad4 and the complex translocates into the nucleus and stimulates the transcription of target genes through association with co-activators including p300. It is not clear, however, how activated Smad complexes are removed from target genes. In this study, we show that TGF-β enhances the mono-ubiquitination of Smad4. Smad4 mono-ubiquitination was promoted by p300 and suppressed by the c-Ski co-repressor. Smad4 mono-ubiquitination disrupted the interaction with Smad2 in the presence of constitutively active TGF-β type I receptor. Furthermore, mono-ubiquitinated Smad4 was not found in DNA-binding Smad complexes. A Smad4-Ubiquitin fusion protein, which mimics mono-ubiquitinated Smad4, enhanced localization to the cytoplasm. These results suggest that mono-ubiquitination of Smad4 occurs in the transcriptional activator complex and facilitates the turnover of Smad complexes at target genes

  17. Study, simulation and modelling of a gamma photon detector placed on an integral-type eccentric orbit

    International Nuclear Information System (INIS)

    Diallo, N.

    1999-01-01

    Gamma-ray lines are the signature of nuclear reactions and other high-energy processes that take place in the Universe. Their measurement and study provide invaluable information on many important problems in high energy astrophysics, including particle acceleration, physics of compact objects and nucleosynthesis. However the observation of astronomical gamma-ray sources has to be performed above the atmosphere because the Earth's atmosphere is opaque to gamma-rays. Unfortunately at these altitudes, spatial high energy electromagnetic radiation (X and gamma rays) detectors are exposed to intense parasite fluxes of radiation and particles induced by primary galactic cosmic rays. These fluxes as well radiation and secondary particles they generate, constitute a considerable source of background which limits their performances. Our study has been done in the framework of the INTEGRAL mission, a gamma-ray astronomy mission of the European Space Agency. INTEGRAL is devoted to the observation of celestial gamma-ray sources. It consists of two main instruments: an imager IBIS and a high resolution germanium spectrometer SPI (ΔE/E = 1.6 10 -3 at 1.3 MeV). We studied the hadronic component of the SPI background. This component is due to the radioactive decay of unstable nuclides produced by the interactions of cosmic-ray protons with the materials of SPI. It consists of a continuum with gamma ray lines superimposed. To study nuclear processes, Monte Carlo simulations have been performed with the nuclear code TIERCE developed at CEA/DAM. We used the GEANT Monte Carlo code developed at CERN to simulate the germanium detectors response. Background reduction techniques as PSD (Pulse Shape Discrimination) and energetic signatures have been applied in well chosen energy ranges to reduce the background. and improve the SPI sensitivity. With the estimated SPI narrow-line sensitivity level, SPI would be able to detect many gamma ray limes emitted in the active galactic sites

  18. Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2013-01-01

    Full Text Available Deutered polyethylene (CD2n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension, target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets and used geometry (incidence angle, laser spot, secondary target positions.A number of D-D fusion events of the order of 106÷7 per laser shot has been measured.

  19. The generation, validation and testing of a coupled 219-group neutron 36-group gamma ray AMPX-II library

    International Nuclear Information System (INIS)

    Panini, G.C.; Siciliano, F.; Lioi, A.

    1987-01-01

    The main characteristics of a P 3 coupled 219-group neutron 36-group gamma-ray library in the AMPX-II Master Interface Format obtained processing ENDF/B-IV data by means of various AMPX-II System modules are presented in this note both for the more reprocessing aspects and features of the generated component files-neutrons, photon and secondary gamma-ray production cross sections. As far as the neutron data are concerned there is the avaibility of 186 data sets regarding most significant fission products. Results of the additional validation of the neutron data pertaining to eighteen benchmark experiments are also given. Some calculational tests on both neutron and coupled data emphasize the important role of the secondary gamma-ray data in nuclear criticality safety calculations

  20. Inferring repeat-protein energetics from evolutionary information.

    Directory of Open Access Journals (Sweden)

    Rocío Espada

    2017-06-01

    Full Text Available Natural protein sequences contain a record of their history. A common constraint in a given protein family is the ability to fold to specific structures, and it has been shown possible to infer the main native ensemble by analyzing covariations in extant sequences. Still, many natural proteins that fold into the same structural topology show different stabilization energies, and these are often related to their physiological behavior. We propose a description for the energetic variation given by sequence modifications in repeat proteins, systems for which the overall problem is simplified by their inherent symmetry. We explicitly account for single amino acid and pair-wise interactions and treat higher order correlations with a single term. We show that the resulting evolutionary field can be interpreted with structural detail. We trace the variations in the energetic scores of natural proteins and relate them to their experimental characterization. The resulting energetic evolutionary field allows the prediction of the folding free energy change for several mutants, and can be used to generate synthetic sequences that are statistically indistinguishable from the natural counterparts.

  1. Fatigue Reliability Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    1991-01-01

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed thro...... of the natural period, damping ratio, current, stress spectrum and parameters describing the fatigue strength. Further, soil damping is shown to be significant for the Mono-tower.......In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... through linear-elastic fracture mechanics (LEFM). In determining the cumulative fatigue damage, Palmgren-Miner's rule is applied. Element reliability, as well as systems reliability, is estimated using first-order reliability methods (FORM). The sensitivity of the systems reliability to various parameters...

  2. Energetic materials and methods of tailoring electrostatic discharge sensitivity of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Michael A.; Heaps, Ronald J.; Wallace, Ronald S.; Pantoya, Michelle L.; Collins, Eric S.

    2016-11-01

    An energetic material comprising an elemental fuel, an oxidizer or other element, and a carbon nanofiller or carbon fiber rods, where the carbon nanofiller or carbon fiber rods are substantially homogeneously dispersed in the energetic material. Methods of tailoring the electrostatic discharge sensitivity of an energetic material are also disclosed.

  3. MONTE CARLO SIMULATION MODEL OF ENERGETIC PROTON TRANSPORT THROUGH SELF-GENERATED ALFVEN WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Afanasiev, A.; Vainio, R., E-mail: alexandr.afanasiev@helsinki.fi [Department of Physics, University of Helsinki (Finland)

    2013-08-15

    A new Monte Carlo simulation model for the transport of energetic protons through self-generated Alfven waves is presented. The key point of the model is that, unlike the previous ones, it employs the full form (i.e., includes the dependence on the pitch-angle cosine) of the resonance condition governing the scattering of particles off Alfven waves-the process that approximates the wave-particle interactions in the framework of quasilinear theory. This allows us to model the wave-particle interactions in weak turbulence more adequately, in particular, to implement anisotropic particle scattering instead of isotropic scattering, which the previous Monte Carlo models were based on. The developed model is applied to study the transport of flare-accelerated protons in an open magnetic flux tube. Simulation results for the transport of monoenergetic protons through the spectrum of Alfven waves reveal that the anisotropic scattering leads to spatially more distributed wave growth than isotropic scattering. This result can have important implications for diffusive shock acceleration, e.g., affect the scattering mean free path of the accelerated particles in and the size of the foreshock region.

  4. Observations and Interpretations of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Event

    Science.gov (United States)

    Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Barghouty, A. f.; Cohen, C. M. S.; Cummings, A. c.; Labrador, A. W.; vonRosenvinge, T. T.

    2009-01-01

    We discuss recently reported observations of energetic neutral hydrogen atoms (ENAs) from an X9 solar flare/coronal mass ejection event on 5 December 2006, located at E79. The observations were made by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV energetic neutral hydrogen atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. Taking into account ENA losses, we find that the observed ENAs must have been produced in the high corona at heliocentric distances > or equal to 2 solar radii. Although there are no CME images from this event, it is shown that CME-shock-accelerated protons can, in principle, produce a time-history consistent with the observations.

  5. MoonBEAM: A Beyond Earth-Orbit Gamma-Ray Burst Detector for Gravitational-Wave Astronomy

    Science.gov (United States)

    Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.

    2018-01-01

    Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between different orbits. We present here a gamma-ray SmallSat concept in Earth-Moon L3 halo orbit that is capable of rapid response and provide a timing baseline for localization improvement when partnered with an Earth-orbit instrument. Such an instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.

  6. Developing C# Apps for iPhone and iPad using MonoTouch

    CERN Document Server

    Costanich, Bryan

    2011-01-01

    Developing C# Applications for iPhone and iPad using MonoTouch shows you how to use your existing C# skills to write apps for the iPhone and iPad. Fortunately, there's MonoTouch, Novell's .NET library that allows C# developers to write C# code that executes in iOS. Furthermore, MonoTouch allows you to address all the unique functions of the iPhone, iPod Touch, and iPad. And the big plus: You needn't learn any Objective-C to master MonoTouch!. Former Microsoft engineer and published app-store developer Bryan Costanich shows you how to use the tools you already know to create native apps in iOS

  7. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  8. NuSTAR Discovery Of A Young, Energetic Pulsar Associated with the Luminous Gamma-Ray Source HESS J1640-465

    Science.gov (United States)

    Gotthelf, E. V.; Tomsick, J. A.; Halpern, J. P.; Gelfand, J. D.; Harrison, F. A.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Hailey, J. C.; Kaspi, V. M.; hide

    2014-01-01

    We report the discovery of a 206 ms pulsar associated with the TeV gamme-ray source HESS J1640-465 using the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray observatory. PSR J1640-4631 lies within the shelltype supernova remnant (SNR) G338.3-0.0, and coincides with an X-ray point source and putative pulsar wind nebula (PWN) previously identified in XMM-Newton and Chandra images. It is spinning down rapidly with period derivative P = 9.758(44) × 10(exp -13), yielding a spin-down luminosity E = 4.4 × 10(exp 36) erg s(exp -1), characteristic age tau(sub c) if and only if P/2 P = 3350 yr, and surface dipole magnetic field strength B(sub s) = 1.4×10(exp 13) G. For the measured distance of 12 kpc to G338.3-0.0, the 0.2-10 TeV luminosity of HESS J1640-465 is 6% of the pulsar's present E. The Fermi source 1FHL J1640.5-4634 is marginally coincident with PSR J1640-4631, but we find no gamma-ray pulsations in a search using five years of Fermi Large Area Telescope (LAT) data. The pulsar energetics support an evolutionary PWN model for the broadband spectrum of HESS J1640-465, provided that the pulsar's braking index is n approximately equal to 2, and that its initial spin period was P(sub 0) approximately 15 ms.

  9. Observations Of Gamma-ray Loud Blazars With The VLBA At 5 GHz

    Science.gov (United States)

    Linford, Justin; Taylor, G. B.; Romani, R.; Readhead, A. C. S.; Reeves, R.; Richards, J. L.; Helmboldt, J. F.

    2011-01-01

    The Fermi Gamma-ray Space Telescope has been scanning the sky for more than a year. About half of the sources detected by Fermi's Large Area Telesope (LAT) are active galactic nuclei (AGN). Nearly all of these gamma-ray loud AGN are blazars; strong, compact radio emitters that exhibit variability in their flux and apparent superluminal motion in their jets. Several groups are currently monitoring the radio properties of these gamma-ray loud blazars. We present results from both archival and contemporaneous observations of 200 LAT-detected blazars using the Very Long Baseline Array (VLBA) at a frequency of 5 GHz (wavelength of 6 cm). Our large, flux-limited sample provides unique insights into the mechanism that produces strong gamma-ray emissions. We explore the parsec-scale properties of the cores and jets of these highly energetic objects, including core polarization. We compare the gamma-ray loud blazars to their gamma-ray quiet counterparts in the VLBA Imaging and Polarimetry Survey (VIPS). We also investigate the differences between the BL Lacertae objects (BL Lacs) and flat-spectrum radio quasars (FSRQs).

  10. EGRET upper limits to the high-energy gamma-ray emission from the millisecond pulsars in nearby globular clusters

    Science.gov (United States)

    Michelson, P. F.; Bertsch, D. L.; Brazier, K.; Chiang, J.; Dingus, B. L.; Fichtel, C. E.; Fierro, J.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.

    1994-01-01

    We report upper limits to the high-energy gamma-ray emission from the millisecond pulsars (MSPs) in a number of globular clusters. The observations were done as part of an all-sky survey by the energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during Phase I of the CGRO mission (1991 June to 1992 November). Several theoretical models suggest that MSPs may be sources of high-energy gamma radiation emitted either as primary radiation from the pulsar magnetosphere or as secondary radiation generated by conversion into photons of a substantial part of the relativistic e(+/-) pair wind expected to flow from the pulsar. To date, no high-energy emission has been detected from an individual MSP. However, a large number of MSPs are expected in globular cluster cores where the formation rate of accreting binary systems is high. Model predictions of the total number of pulsars range in the hundreds for some clusters. These expectations have been reinforced by recent discoveries of a substantial number of radio MSPs in several clusters; for example, 11 have been found in 47 Tucanae (Manchester et al.). The EGRET observations have been used to obtain upper limits for the efficiency eta of conversion of MSP spin-down power into hard gamma rays. The upper limits are also compared with the gamma-ray fluxes predicted from theoretical models of pulsar wind emission (Tavani). The EGRET limits put significant constraints on either the emission models or the number of pulsars in the globular clusters.

  11. Fermi observations of high-energy gamma-ray emission from GRB 080916C.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, G; Baring, M G; Bastieri, D; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, E D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, T H; Burrows, D; Busetto, G; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, A; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; Deklotz, M; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dingus, B L; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, J; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hernando Morat, J A; Hoover, A; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knödlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, F; Kuss, M; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S-H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, S; McEnery, J E; McGlynn, S; Meegan, C; Mészáros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, V; Pinchera, M; Piron, F; Porter, T A; Preece, R; Rainò, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, S; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Reyes, L C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Segal, K N; Sgrò, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, J-L; Stecker, F W; Steinle, H; Stephens, T E; Strickman, M S; Suson, D J; Tagliaferri, G; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M

    2009-03-27

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

  12. Fermi Observations of high-energy gamma-ray emissions from GRB 080916C

    CERN Document Server

    Abdo, A A; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, Guido; Baring, Matthew G; Bastieri, Denis; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, Elliott D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, Thompson H; Burrows, David N; Busetto, Giovanni; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, Annalisa; Charles, E; Chekhtman, A; Cheung, C.C.Teddy; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, Johann; Cominsky, Lynn R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; DeKlotz, M; Dermer, C D; De Angelis, Alessandro; de Palma, F; Digel, S W; Dingus, B L; do Couto e Silva, Eduardo; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, Justin D; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, Thomas Lynn; Godfrey, Gary L; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M H; Grove, J.Eric; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, Alice K; Hayashida, M; Hays, Elizabeth A; Hernando Morata, J A; Hoover, A; Hughes, R E; Johannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, Tsuneyoshi; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knodlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, Frederick Gabriel Ivar; Kuss, Michael; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, Pasquale; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, Sheila; McEnery, J E; McGlynn, S; Meegan, C; Miszaros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, Igor Vladimirovich; Murgia, Simona; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, Takashi; Okumura, Akira; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, Vahe; Pinchera, M; Piron, F; Porter, Troy A; Preece, R; Rainr, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, Soebur; Rea, N; Reimer, A; Reimer, O; Reposeur, Thierry; Reyes, Luis C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F W; Sanchez, D; Sander, A; Parkinson, P.M.Saz; Scargle, J D; Schalk, T L; Segal, K N; Sgro, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, Jean-Luc; Stecker, Floyd William; Steinle, H; Stephens, T E; Strickman, M S; Suson, Daniel J; Tagliaferri, G.; Tajima, Hiroyasu; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, Diego F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M

    2009-01-01

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

  13. Investigation of advanced electron bunch generation and diagnostics in the BOND laboratory at DESY

    OpenAIRE

    Kononenko, Olena; Bohlen, Simon; Gruse, Jan-Niclas; Karstensen, Sven; Libov, Vladyslav; Ludwig, Kai; Martinez de la Ossa, Alberto; Marutzky, Frank; Niroula, Avinash; Osterhoff, Jens; Quast, Martin; Schaper, Lucas; Dale, John; Schwinkendorf, Jan-Patrick; Streeter, Matthew

    2016-01-01

    Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is poss...

  14. Mono-energy coronary angiography with a compact light source

    Science.gov (United States)

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noël, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-03-01

    While conventional x-ray tube sources reliably provide high-power x-ray beams for everyday clinical practice, the broad spectra that are inherent to these sources compromise the diagnostic image quality. For a monochromatic x-ray source on the other hand, the x-ray energy can be adjusted to optimal conditions with respect to contrast and dose. However, large-scale synchrotron sources impose high spatial and financial demands, making them unsuitable for clinical practice. During the last decades, research has brought up compact synchrotron sources based on inverse Compton scattering, which deliver a highly brilliant, quasi-monochromatic, tunable x-ray beam, yet fitting into a standard laboratory. One application that could benefit from the invention of these sources in clinical practice is coronary angiography. Being an important and frequently applied diagnostic tool, a high number of complications in angiography, such as renal failure, allergic reaction, or hyperthyroidism, are caused by the large amount of iodine-based contrast agent that is required for achieving sufficient image contrast. Here we demonstrate monochromatic angiography of a porcine heart acquired at the MuCLS, the first compact synchrotron source. By means of a simulation, the CNR in a coronary angiography image achieved with the quasi-mono-energetic MuCLS spectrum is analyzed and compared to a conventional x-ray-tube spectrum. The results imply that the improved CNR achieved with a quasi-monochromatic spectrum can allow for a significant reduction of iodine contrast material.

  15. Electron Acceleration by Stochastic Electric Fields in Thunderstorms: Terrestrial Gamma-Ray Flashes

    Science.gov (United States)

    Alnussirat, S.; Miller, J. A.; Christian, H. J., Jr.; Fishman, G. J.

    2016-12-01

    Terrestrial gamma-ray flashes (TGFs) are energetic pulses of photons, which are intense and short, originating in the atmosphere during thunderstorm activity. Despite the number of observations, the production mechanism(s) of TGFs and other energetic particles is not well understood. However, two mechanisms have been suggested as a source of TGFs: (1) the relativistic runaway electron avalanche mechanism (RREA), and (2) the lightning leader mechanism. The RREA can account for the TGF observations, but requires restrictive or unrealistic assumptions. The lightning leader channel is also expected to produce runaway electrons, but through inhomogeneous, small scale, strong electric fields. In this work we use the Boltzmann equation to model the electron acceleration by the lightning leader mechanism, and we derive the gamma-ray spectrum from the electron distribution function. The electric fields at the tip of the leaders are assumed to be stochastic in space and time. Since the physics involved in the lightening leader is not known, we test different cases of the stochastic acceleration agent. From this modeling we hope to investigate the possibility and efficiency of stochastic acceleration in thunderstorm.

  16. Instrument for observing transient cosmic gamma-ray sources for the ISEE-C Heliocentric spacecraft

    International Nuclear Information System (INIS)

    Evans, W.D.; Aiello, W.P.; Klebesadel, R.W.

    1977-12-01

    Satellite instrumentation that would serve as one element of a three-satellite network to provide precise directional information for the recently discovered cosmic gamma-ray bursts is described. The proposed network would be capable of determining source locations with uncertainties of less than one arc minute, sufficient for a meaningful optical and radio search. The association of the gamma bursts with a known type of astrophysical object provides the most direct method for establishing source distances and thus defining the overall energetics of the emission process

  17. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions

    Science.gov (United States)

    Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.; Séguin, F. H.; Petrasso, R. D.; Stoeckl, C.; Meyerhofer, D. D.; Nilson, P.; Sangster, T. C.; Le Pape, S.; Mackinnon, A.; Patel, P.

    2012-01-01

    The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005), 10.1364/OPN.16.7.000030], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006), 10.1103/PhysRevLett.97.045001]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D3He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006), 10.1063/1.2228252]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed.

  18. Enhanced cooling in mono-crystalline ultra-thin silicon by embedded micro-air channels

    Directory of Open Access Journals (Sweden)

    Mohamed T. Ghoneim

    2015-12-01

    Full Text Available In today’s digital world, complementary metal oxide semiconductor (CMOS technology enabled scaling of bulk mono-crystalline silicon (100 based electronics has resulted in their higher performance but with increased dynamic and off-state power consumption. Such trade-off has caused excessive heat generation which eventually drains the charge of battery in portable devices. The traditional solution utilizing off-chip fans and heat sinks used for heat management make the whole system bulky and less mobile. Here we show, an enhanced cooling phenomenon in ultra-thin (>10 μm mono-crystalline (100 silicon (detached from bulk substrate by utilizing deterministic pattern of porous network of vertical “through silicon” micro-air channels that offer remarkable heat and weight management for ultra-mobile electronics, in a cost effective way with 20× reduction in substrate weight and a 12% lower maximum temperature at sustained loads. We also show the effectiveness of this event in functional MOS field effect transistors (MOSFETs with high-κ/metal gate stacks.

  19. Performance characteristics of a prompt gamma-ray activation analysis (PGAA) system equipped with a new compact D-D neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Joon; Song, Byung Chul; Im, Hee-Jung [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Dukjin-dong 150-1, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Jong-Yun [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Dukjin-dong 150-1, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)], E-mail: kjy@kaeri.re.kr

    2009-07-21

    A new prompt gamma-ray activation analysis (PGAA) system equipped with a compact deuterium-deuterium (D-D) neutron generator has been developed for fast detection of explosives and chemical warfare agents. The PGAA system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF)-driven ion source. The ionic current of the compact neutron generator was determined as a function of the acceleration voltage at various RF powers. Monoenergetic neutrons (2.45 MeV) with a neutron yield of >1x10{sup 7} n/s were obtained at a deuterium pressure of 8.0 mTorr, an acceleration voltage of 80 kV, and an RF power of 1.1 kW. The performance of the PGAA system was examined by studying the dependence of a prompt gamma-ray count rate on crucial operating parameters.

  20. Photons-based medical imaging - Radiology, X-ray tomography, gamma and positrons tomography, optical imaging; Imagerie medicale a base de photons - Radiologie, tomographie X, tomographie gamma et positons, imagerie optique

    Energy Technology Data Exchange (ETDEWEB)

    Fanet, H.; Dinten, J.M.; Moy, J.P.; Rinkel, J. [CEA Leti, Grenoble (France); Buvat, I. [IMNC - CNRS, Orsay (France); Da Silva, A. [Institut Fresnel, Marseille (France); Douek, P.; Peyrin, F. [INSA Lyon, Lyon Univ. (France); Frija, G. [Hopital Europeen George Pompidou, Paris (France); Trebossen, R. [CEA-Service hospitalier Frederic Joliot, Orsay (France)

    2010-07-01

    This book describes the different principles used in medical imaging. The detection aspects, the processing electronics and algorithms are detailed for the different techniques. This first tome analyses the photons-based techniques (X-rays, gamma rays and visible light). Content: 1 - physical background: radiation-matter interaction, consequences on detection and medical imaging; 2 - detectors for medical imaging; 3 - processing of numerical radiography images for quantization; 4 - X-ray tomography; 5 - positrons emission tomography: principles and applications; 6 - mono-photonic imaging; 7 - optical imaging; Index. (J.S.)

  1. Generation of gamma irradiation and EMS-induced mutant lines of the H7996 tomato (Solanum lycopersicum L.)

    International Nuclear Information System (INIS)

    Canama, Alma O.; Galvez, Hayde F.; Tongson, Eden Jane U.; Quilloy, Reynaldo B.; Hautea, Desiree M.

    2010-01-01

    Tomato (L.) is one of the most important vegetable crops grown worldwide for the fresh vegetable market and food processing industry. With the completion of the genome-sequencing projects in various crops, the major challenge will be determine the gene function. One approach is to generate and to analyze mutant phenotypes. The paper reports the generation of gamma-irradiated and ethy methane sulfonate (EMS)-treated mutant populations, identification and phenotypic characterization of dominant and visible mutations in tomato mutant lines. Mutant populations of tomato H7996 were created using physical (cobalt 60 gamma ray) and chemical EMS mutagens. Generally, based on high-throughput phenotypic characterization, mutations were observed on the plant habit, size, morphology, leaf and flower color and morphology and fruit characteristics. Specifically, the most common dominant and visible mutations noted in the M 1 generation were monopodial, compact, short internodes, multi-branch plant type, light yellow and ghost leaf coloration, tiny and long pedicel leaf morphology and small or short plant size. In the M2 generation, homogeneous and segregating M 2 families were selected to constitute the core set of visible tomato mutants. Initial bacterial wilt resistance (BWR) gene knockouts were also identified. The mutant lines will be used as a rich source of genetic materials for breeding and functional genomics of tomato. (author)

  2. The n,{gamma} discrimination in recoil-proton proportional counters. Application to the measurement of fast neutron spectra; Discrimination n,{gamma} dans les compteurs proportionnels a protons de recul. Application a la mesure des spectres de neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Jeandidier, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    A description is given of a spectrometry chain working in the energy range of a few keV to 1 MeV, and designed for measurement of fast neutron spectra. It consists of detectors, recoil proton proportional counters built especially for this work by R. COMTE (DEG/SER) and which make it possible to cover the energy range and also associated electronic equipment. A brief description is first given of the physical processes involved: (n,p) collisions in the gas, influence of {gamma} radiation; the method of discrimination is then presented. It is based on the difference in the rise-times of the pulses. In the experiments described here the use of a bi-parametric system made it possible to employ the most simple discrimination device, based on the fact that the high frequency gamma pulse components are, at a given energy, weaker than those of the neutron pulses. Results are given of measurements carried out on the Van der Graaff (mono-energetic neutrons for testing the linearity of the chain and the resolving power of the counters), and of those made in a sub-critical system Hug at Cadarache. (author) [French] On decrit une chaine de spectrometrie travaillant dans le domaine d'energie de quelques keV a 1 MeV destinee a la mesure des spectres de neutrons rapides. Elle comprend les detecteurs, compteurs proportionnels a protons de recul, realises specialement pour cette etude par M. R. COMTE (DEG/SER), permettant de couvrir la gamme d'energie et l'electronique associee. Apres un rappel des processus physiques mis en jeu: chocs (n,p) dans les gaz, influence des rayonnements {gamma}, on expose la methode de discrimination utilisee. Celle-ci est basee sur la difference des temps de montee des impulsions. Au cours des experiences rapportees ici, la mise en oeuvre d'un ensemble bi-parametrique a permis d'utiliser le dispositif de discrimination le plus simple, base sur la remarque que les composantes a haute frequence des impulsions {gamma} sont, a energie egale, plus faibles

  3. The n,{gamma} discrimination in recoil-proton proportional counters. Application to the measurement of fast neutron spectra; Discrimination n,{gamma} dans les compteurs proportionnels a protons de recul. Application a la mesure des spectres de neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Jeandidier, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    A description is given of a spectrometry chain working in the energy range of a few keV to 1 MeV, and designed for measurement of fast neutron spectra. It consists of detectors, recoil proton proportional counters built especially for this work by R. COMTE (DEG/SER) and which make it possible to cover the energy range and also associated electronic equipment. A brief description is first given of the physical processes involved: (n,p) collisions in the gas, influence of {gamma} radiation; the method of discrimination is then presented. It is based on the difference in the rise-times of the pulses. In the experiments described here the use of a bi-parametric system made it possible to employ the most simple discrimination device, based on the fact that the high frequency gamma pulse components are, at a given energy, weaker than those of the neutron pulses. Results are given of measurements carried out on the Van der Graaff (mono-energetic neutrons for testing the linearity of the chain and the resolving power of the counters), and of those made in a sub-critical system Hug at Cadarache. (author) [French] On decrit une chaine de spectrometrie travaillant dans le domaine d'energie de quelques keV a 1 MeV destinee a la mesure des spectres de neutrons rapides. Elle comprend les detecteurs, compteurs proportionnels a protons de recul, realises specialement pour cette etude par M. R. COMTE (DEG/SER), permettant de couvrir la gamme d'energie et l'electronique associee. Apres un rappel des processus physiques mis en jeu: chocs (n,p) dans les gaz, influence des rayonnements {gamma}, on expose la methode de discrimination utilisee. Celle-ci est basee sur la difference des temps de montee des impulsions. Au cours des experiences rapportees ici, la mise en oeuvre d'un ensemble bi-parametrique a permis d'utiliser le dispositif de discrimination le plus simple, base sur la remarque que les composantes a haute frequence des impulsions {gamma} sont, a

  4. The 4U 0115+63: Another energetic gamma ray binary pulsar

    Science.gov (United States)

    Chadwick, P. M.; Dipper, N. A.; Dowthwaite, J. C.; Kirkman, I. W.; Mccomb, T. J. L.; Orford, K. J.; Turver, K. E.

    1985-01-01

    Following the discovery of Her X-1 as a source of pulsed 1000 Gev X-rays, a search for emission from an X-ray binary containing a pulsar with similar values of period, period derivative and luminosity was successful. The sporadic X-ray binary 4U 0115-63 has been observed, with probability 2.5 x 10 to the minus 6 power ergs/s to emit 1000 GeV gamma-rays with a time averaged energy flux of 6 to 10 to the 35th power.

  5. Gamma-Ray Bursts from Neutron Star Kicks

    Science.gov (United States)

    Huang, Y. F.; Dai, Z. G.; Lu, T.; Cheng, K. S.; Wu, X. F.

    2003-09-01

    The idea that gamma-ray bursts might be a phenomenon associated with neutron star kicks was first proposed by Dar & Plaga. Here we study this mechanism in more detail and point out that the neutron star should be a high-speed one (with proper motion larger than ~1000 km s-1). It is shown that the model agrees well with observations in many aspects, such as the energetics, the event rate, the collimation, the bimodal distribution of durations, the narrowly clustered intrinsic energy, and the association of gamma-ray bursts with supernovae and star-forming regions. We also discuss the implications of this model on the neutron star kick mechanism and suggest that the high kick speed was probably acquired as the result of the electromagnetic rocket effect of a millisecond magnetar with an off-centered magnetic dipole.

  6. Gamma induced atom displacements in LYSO and LuYAP crystals as used in medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Piñera, Ibrahin, E-mail: ipinera@ceaden.edu.cu [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, CEADEN, 30 St. 502, Playa 11300, Havana (Cuba); Cruz, Carlos M.; Abreu, Yamiel; Leyva, Antonio [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, CEADEN, 30 St. 502, Playa 11300, Havana (Cuba); Van Espen, Piet [University of Antwerp, CGB, Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Díaz, Angelina; Cabal, Ana E. [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, CEADEN, 30 St. 502, Playa 11300, Havana (Cuba); Van Remortel, Nick [University of Antwerp, CGB, Groenenborgerlaan 171, 2020 Antwerpen (Belgium)

    2015-08-01

    The radiation damage, in terms of atom displacements, induced by gamma irradiation in LYSO and LuYAP crystals is presented. {sup 44}Sc, {sup 22}Na and {sup 48}V are used as gamma sources for this study. The energy of gammas from the electron–positron annihilation processes (511 keV) is also included in the study. The atom displacements distributions inside each material are calculated following the Monte Carlo assisted Classical Method introduced by the authors. This procedure also allows to study the atom displacements in-depth distributions inside each crystal. The atom displacements damage in LYSO crystals is found to be higher than in LuYAP crystals, mainly provoked by the displacements of silicon and oxygen atoms. But the difference between atom displacements produced in LYSO and LuYAP decreases when more energetic sources are used. On the other hand, the correlation between the atom displacements and energy deposition in-depth distributions is excellent. The atom displacements to energy deposition ratio is found to increases with more energetic photon sources. LYSO crystals are then more liable to the atom displacements damage than LuYAP crystals.

  7. Los Alamos energetic particle sensor systems at geostationary orbit

    International Nuclear Information System (INIS)

    Baker, D.N.; Aiello, W.; Asbridge, J.R.; Belian, R.D.; Higbie, P.R.; Klebesadel, R.W.; Laros, J.G.; Tech, E.R.

    1985-01-01

    The Los Alamos National Laboratory has provided energetic particle sensors for a variety of spacecraft at the geostationary orbit (36,000 km altitude). The sensor system called the Charged Particle Analyzer (CPA) consists of four separate subsystems. The LoE and HiE subsystems measure electrons in the energy ranges 30 to 300 keV and 200 to 2000 keV, respectively. The LoP and HiP subsystems measure ions in the ranges 100 to 600 keV and 0.40 to 150 MeV, respectively. A separate sensor system called the spectrometer for energetic electrons (SEE) measures very high-energy electrons (2 to 15 MeV) using advanced scintillator design. In this paper we describe the relationship of operational anomalies and spacecraft upsets to the directly measured energetic particle environments at 6.6 R/sub E/. We also compare and contrast the CPA and SEE instrument design characteristics with the next generation of Los Alamos instruments to be flown at geostationary altitudes

  8. Modification of morphological traits of common beans through gamma-ray irradiation: analysis of three consecutive generations

    International Nuclear Information System (INIS)

    Vieira, Gismar S.; Goulart, Luiz R.; Viglioni Pena, Julio C.; Fernandes, Jonas J.

    1995-01-01

    The objective of this investigation were to study the effects of different levels of gamma-rays on some morphological characteristics of a nearly-white seed coat color bean (Phaseolus vulgaris L.) cultivar, and to determine the radiation level which would generate the greatest genetic variability. Breeder seeds of EMGOPA 201 - Ouro cv, a beige seed coat color cultivar, were submitted to gamma-ray irradiation ( 60 Co). Treatments consisted of eight levels of radiation: 0,10, 15, 20, 25, 30, 35 and 40 Krad. The experimental design was a randomized complete block with four replications. In the field, plots consisted of 100 seeds. The following data were collected: percent germination, plant height, final stand, plant yield and yield components, number of chlorotic and albino mutants, leaf mutants, growth habit alterations, earliness, seed coat brightness, halo color, seed size and format. Among traits greatest variations were observed seed morphology. Seed coat color varied from completely white to a dark-brownish color. Halo color was also modified from yellow (normal) to pink. Brightness of seeds varied from opaque to bright. Seed varied from squared to rounded, and from very small to large. treatments with 20 and 25 Krad generated the greatest variability for several morphological traits from the M 1 to M 3 generations, a dosage equivalent to the LD 50 observed in the M 1 generation. Traits such as percent germination, plant height and some yield components were highly and negatively affected by increasing levels of radiation. Modification of yield components as well as many unusual characteristics with late onset were observed in advanced generations, suggesting that late selection would also be useful. (author)

  9. Fermi-LAT Gamma-ray Bursts and Insight from Swift

    Science.gov (United States)

    Racusin, Judith L.

    2011-01-01

    A new revolution in GRB observation and theory has begun over the last 3 years since the launch of the Fermi gamma-ray space telescope. The new window into high energy gamma-rays opened by the Fermi-LAT is providing insight into prompt emission mechanisms and possibly also afterglow physics. The LAT detected GRBs appear to be a new unique subset of extremely energetic and bright bursts. In this talk I will discuss the context and recent discoveries from these LAT GRBs and the large database of broadband observations collected by Swift over the last 7 years and how through comparisons between the Swift, GBM, and LAT GRB samples, we can learn about the unique characteristics and relationships between each population.

  10. A comprehensive radio view of the extremely bright gamma-ray burst 130427A

    NARCIS (Netherlands)

    van der Horst, A.J.; Paragi, Z.; de Bruyn, A.G.; Granot, J.; Kouveliotou, C.; Wiersema, K.; Starling, R.L.C.; Curran, P.A.; Wijers, R.A.M.J.; Rowlinson, A.; Anderson, G.A.; Fender, R.P.; Yang, J.; Strom, R.G.

    2014-01-01

    GRB 130427A was extremely bright as a result of occurring at low redshift whilst the energetics were more typical of high-redshift gamma-ray bursts (GRBs). We collected well-sampled light curves at 1.4 and 4.8 GHz of GRB 130427A with the Westerbork Synthesis Radio Telescope (WSRT); and we obtained

  11. A comprehensive radio view of the extremely bright gamma-ray burst 130427A

    NARCIS (Netherlands)

    van der Horst, A. J.; Paragi, Z.; de Bruyn, A. G.; Granot, J.; Kouveliotou, C.; Wiersema, K.; Starling, R. L. C.; Curran, P. A.; Wijers, R. A. M. J.; Rowlinson, A.; Anderson, G. A.; Fender, R. P.; Yang, J.; Strom, R. G.

    GRB 130427A was extremely bright as a result of occurring at low redshift whilst the energetics were more typical of high-redshift gamma-ray bursts (GRBs). We collected well-sampled light curves at 1.4 and 4.8 GHz of GRB 130427A with the Westerbork Synthesis Radio Telescope (WSRT); and we obtained

  12. Study, simulation and modelling of a gamma photon detector placed on an integral-type eccentric orbit; Etude, simulation et modelisation d'un detecteur de photons gamma place sur une orbite excentrique de type integral

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, N

    1999-07-01

    Gamma-ray lines are the signature of nuclear reactions and other high-energy processes that take place in the Universe. Their measurement and study provide invaluable information on many important problems in high energy astrophysics, including particle acceleration, physics of compact objects and nucleosynthesis. However the observation of astronomical gamma-ray sources has to be performed above the atmosphere because the Earth's atmosphere is opaque to gamma-rays. Unfortunately at these altitudes, spatial high energy electromagnetic radiation (X and gamma rays) detectors are exposed to intense parasite fluxes of radiation and particles induced by primary galactic cosmic rays. These fluxes as well radiation and secondary particles they generate, constitute a considerable source of background which limits their performances. Our study has been done in the framework of the INTEGRAL mission, a gamma-ray astronomy mission of the European Space Agency. INTEGRAL is devoted to the observation of celestial gamma-ray sources. It consists of two main instruments: an imager IBIS and a high resolution germanium spectrometer SPI ({delta}E/E = 1.6 10{sup -3} at 1.3 MeV). We studied the hadronic component of the SPI background. This component is due to the radioactive decay of unstable nuclides produced by the interactions of cosmic-ray protons with the materials of SPI. It consists of a continuum with gamma ray lines superimposed. To study nuclear processes, Monte Carlo simulations have been performed with the nuclear code TIERCE developed at CEA/DAM. We used the GEANT Monte Carlo code developed at CERN to simulate the germanium detectors response. Background reduction techniques as PSD (Pulse Shape Discrimination) and energetic signatures have been applied in well chosen energy ranges to reduce the background. and improve the SPI sensitivity. With the estimated SPI narrow-line sensitivity level, SPI would be able to detect many gamma ray limes emitted in the active

  13. Simulation-based Investigation of Electric Power Generation by Using Gamma Radiation from Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Mansung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    This study investigates the feasibility of using gamma radiation energy from spent nuclear fuels to produce electricity as emergency power source. The proposed electric power system includes electricity generation and storage. Electricity generation was based on conversion of gamma energy to light energy using a scintillator and then to electric energy using a solar cell. Generated electricity was to be stored in a battery as a power source. The efficiency of energy conversion and the extent of the resulting electric power source capability were examined by computer model-based simulation. Main factors which affect to total electric power generated include thermal power of nuclear power plant, average burn-up period for fuel rod, battery charging time, and scintillator thickness. The estimated total power generation and its possible application is discussed. Although the output power increases as scintillator becomes thicker, thick scintillator can be problem because of its high price. There are two ways to solve this problem. The first one is to use thin scintillator to whole fuel assembly area. The second one is to use thick scintillator to limited region. But the current per fuel assembly for the first case for 4000MWth, 72 month burnup is about several to tens of microampere scale, which is too small to charge. Because of this the system is supposed to have thick scintillator system with limited region. Based on the results, the generated electricity is expected to be insufficient to operate the safety injection pumps even at the maximum power output. This may be important for security purposes. Based on the current design, the solar cell efficiency is estimated to be around 1.5-4%. As the efficiency is a strong function of scintillation wavelength, improving the efficiency may be possible by broadening the wavelength through the use of multiple scintillators. Future work will also include validation of the results through experiments, and material reliability

  14. Simulation-based Investigation of Electric Power Generation by Using Gamma Radiation from Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Lee, Haneol; Yim, Mansung

    2014-01-01

    This study investigates the feasibility of using gamma radiation energy from spent nuclear fuels to produce electricity as emergency power source. The proposed electric power system includes electricity generation and storage. Electricity generation was based on conversion of gamma energy to light energy using a scintillator and then to electric energy using a solar cell. Generated electricity was to be stored in a battery as a power source. The efficiency of energy conversion and the extent of the resulting electric power source capability were examined by computer model-based simulation. Main factors which affect to total electric power generated include thermal power of nuclear power plant, average burn-up period for fuel rod, battery charging time, and scintillator thickness. The estimated total power generation and its possible application is discussed. Although the output power increases as scintillator becomes thicker, thick scintillator can be problem because of its high price. There are two ways to solve this problem. The first one is to use thin scintillator to whole fuel assembly area. The second one is to use thick scintillator to limited region. But the current per fuel assembly for the first case for 4000MWth, 72 month burnup is about several to tens of microampere scale, which is too small to charge. Because of this the system is supposed to have thick scintillator system with limited region. Based on the results, the generated electricity is expected to be insufficient to operate the safety injection pumps even at the maximum power output. This may be important for security purposes. Based on the current design, the solar cell efficiency is estimated to be around 1.5-4%. As the efficiency is a strong function of scintillation wavelength, improving the efficiency may be possible by broadening the wavelength through the use of multiple scintillators. Future work will also include validation of the results through experiments, and material reliability

  15. Energetic and exergetic analysis of steam production for the extraction of coniferous essential oils

    International Nuclear Information System (INIS)

    Friso, Dario; Grigolato, Stefano; Cavalli, Raffaele

    2011-01-01

    Bioenergy production is optimal when the energy production process is both efficient and benefits from local resources. Energetic and exergetic analyses are applied to highlight efficiency differences between small-size systems that are based on the co-generation of heating and power (CHP) versus the co-generation of heating and power with steam production (CHP-S). Both systems use the Organic fluid Rankine Cycle (ORC). The recovery of heat from flue gases is considered to be a way of increasing energy efficiency. In the CHP-S case, steam (at low pressure) is used to extract essential oils from fresh twigs and needles of coniferous trees throughout a steam distillation process. When the systems work at a thermal combustion power of 1350 kW, energetic analysis shows that the energy efficiency of the CHP-S plant (89.4%) is higher than that of the CHP plant (77.9%). Exergetic analysis shows that the efficiency of the CHP-S plant is 2.2% higher than that of the CHP plant. -- Highlights: → Bioenergy production is optimal when the energy production process is efficient. → Energetic and exergetic analyses are applied to highlight efficiency differences between the co-generation of heating and power (CHP) versus the co-generation of heating and power with steam production (CHP-S). → The recovery of heat from flue gases is a way of increasing energy efficiency. → The energetic and exergetic analysis shows that the efficiency of the CHP-S plant is higher than that of the CHP plant.

  16. Early optical emission from the gamma-ray burst of 4 October 2002.

    Science.gov (United States)

    Fox, D W; Yost, S; Kulkarni, S R; Torii, K; Kato, T; Yamaoka, H; Sako, M; Harrison, F A; Sari, R; Price, P A; Berger, E; Soderberg, A M; Djorgovski, S G; Barth, A J; Pravdo, S H; Frail, D A; Gal-Yam, A; Lipkin, Y; Mauch, T; Harrison, C; Buttery, H

    2003-03-20

    Observations of the long-lived emission--or 'afterglow'--of long-duration gamma-ray bursts place them at cosmological distances, but the origin of these energetic explosions remains a mystery. Observations of optical emission contemporaneous with the burst of gamma-rays should provide insight into the details of the explosion, as well as into the structure of the surrounding environment. One bright optical flash was detected during a burst, but other efforts have produced negative results. Here we report the discovery of the optical counterpart of GRB021004 only 193 seconds after the event. The initial decline is unexpectedly slow and requires varying energy content in the gamma-ray burst blastwave over the course of the first hour. Further analysis of the X-ray and optical afterglow suggests additional energy variations over the first few days.

  17. Very Strong TeV Emission as $\\gamma$-Ray Burst Afterglows

    CERN Document Server

    Totani, T

    1998-01-01

    Gamma-ray bursts (GRBs) and following afterglows are considered to be produced by dissipation of kinetic energy of a relativistic fireball and radiation process is widely believed as synchrotron radiation or inverse Compton scattering of electrons. We argue that the transfer of kinetic energy of ejecta into electrons may be inefficient process and hence the total energy released by a GRB event is much larger than that emitted in soft gamma-rays, by a factor of \\sim (m_p/m_e). We show that, in this case, very strong emission of TeV gamma-rays is possible due to synchrotron radiation of protons accelerated up to \\sim 10^{21} eV, which are trapped in the magnetic field of afterglow shock and radiate their energy on an observational time scale of \\sim day. This suggests a possibility that GRBs are most energetic in TeV range and such TeV gamma-rays may be detectable from GRBs even at cosmological distances, i.e., z gives a quantitative explanation for the famous long-duration GeV photons detected from GRB940217. ...

  18. EFFECT OF GAMMA RADIATION OF MACRO MUTATIONS, EFFECTIVENESS AND EFFICIENCY UNDER M2 GENERATION IN PEA (Pisum sativum L.

    Directory of Open Access Journals (Sweden)

    Arvind KUMAR

    2016-06-01

    Full Text Available The present investigation was undertaken to study the spectrum of macro mutants, effectiveness and efficiency of different doses of gamma rays in pea variety (Arkel. The seeds were treated with gamma rays viz., 00kR (dry control, 05kR, 10kR, 15kR, 20kR, 25kR, 30kR, 35kR, 40kR (dry seeds and presoaked seeds of the same was exposed to 00kR (wet control, 05kR, 10kR, 15kR, 20kR (kilo Roentgen biological damage was calculated in M1 and M2 generation based on lethality (L and pollen sterility. The irradiated seeds were sown in the M1 field their respective controls and harvested in bulk to raise the M2 generation in Randomized Block Design (RBD with three replications. The spectrum of macro mutants i.e., plant stature (tall, dwarf, small dwarf, maturity (early, late, pod shape (bold, long, short, seed colour (brown, light white, light green and seed shape (small, bold, wrinkled were observed in M2 generation. The usefulness of any mutagen in plant breeding depends not only on its effectiveness but also upon if efficiency. Mutagenic effectiveness is a measure of the frequency of mutations induced by unit mutagen dose, whereas mutagenic efficiency is measure of proportion of mutations in relation of undesirable changes like lethality and sterility are used for gamma rays. A result of the indicated positive relationship in M2 generation with macro mutation, effectiveness and efficiency was found to be highest at lowest doses.

  19. Disentangling the gamma-ray emission towards Cygnus X: Sh2-104

    Science.gov (United States)

    Gotthelf, Eric

    2015-09-01

    We have just discovered distinct X-ray emission coincident with VER J2018+363, a TeV source recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. NuSTAR reveals a hard point source and a diffuse nebula adjacent to and possibly part of Sh2-104, a compact HII region containing several young massive stellar clusters. There is reasonable evidence that these X-rays probe the origin of the gamma-ray flux, however, unrelated extragalactic sources need to be excluded. We propose a short Chandra observation to localize the X-ray emission to identify a putative pulsar or stellar counterpart(s). This is an important step to fully understand the energetics of the MGRO J2019+37 complex and the production of gamma-rays in star formation regions, in general.

  20. Multiphase Combustion of Metalized Nanocomposite Energetic Materials

    Science.gov (United States)

    2014-12-19

    on thermal conductivity and absorption coefficient for consolidated aluminum nanoparticles, International Journal of Heat and Mass Transfer, (06...28. Stacy, S.C., Zhang, X., Pantoya, M.L., Weeks, B., Effect of Density on Thermal Conductivity and Absorption Coefficient for Consolidated Aluminum...energetic powder to ESD stimuli generated from a piezo electric crystal ( PZT ). Results show that a high PZT dielectric strength leads to faster

  1. Energetic electron injections and dipolarization events in Mercury's magnetotail: Substorm dynamics

    Science.gov (United States)

    Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Imber, S.; Baker, D. N.; Lawrence, D. J.

    2017-12-01

    Despite its small size, Mercury's terrestrial-like magnetosphere experiences brief, yet intense, substorm intervals characterized by features similar to at Earth: loading/unloading of the tail lobes with open magnetic flux, dipolarization of the magnetic field at the inner edge of the plasma sheet, and, the focus of this presentation, energetic electron injection. We use the Gamma-Ray Spectrometer's high-time resolution (10 ms) energetic electron measurements to determine the relationship between substorm activity and energetic electron injections coincident with dipolarization fronts in the magnetotail. These dipolarizations were detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. We estimate the typical flow channel to be 0.15 RM, planetary convection speed of 750 km/s, cross-tail potential drop of 7 kV, and flux transport of 0.08 MWb for each dipolarization event, suggesting multiple simultaneous and sequential dipolarizations are required to unload the >1 MWb of magnetic flux typically returned to the dayside magnetosphere during a substorm interval. Indeed, while we observe most dipolarization-injections to be isolated or in small chains of events (i.e., 1-3 events), intervals of sawtooth-like injections with >20 sequential events are also present. The typical separation between dipolarization-injection events is 10 s. Magnetotail dipolarization, in addition to being a powerful source of electron acceleration, also plays a significant role in the substorm process at Mercury.

  2. Energetic balance and air pollutant emissions estimates in the Aburra Valley, 1999: A preliminary approximation

    International Nuclear Information System (INIS)

    Molina Perez; Francisco; Saavedra Duque, Marcela; Obregon Cardona Mauricio

    2003-01-01

    Based on the application of Material Fluxes Analysis, this paper presents the composition of the energetic basket in Valle de Aburra during 1999 and the atmospheric emissions caused by the consumption of those energetic materials. Basically, it was found that the daily energetic consumption of the system was 43,2 Tcal that generated 716 ton. by day of atmospheric contaminants as an output. The results show that the main energetic materials that participate in the global metabolism of the system, was those consumed in the transportation sector (gasoline and diesel). Therefore transportation sector contributes with the principal load of contaminants represented by carbon monoxide that overtake the 77,6% of the whole emissions

  3. Relativistic effects in gamma-ray bursts

    International Nuclear Information System (INIS)

    Eriksen, Erik; Groen, Oeyvind

    1999-01-01

    According to recent models of the sources of gamma-ray bursts the extremely energetic emission is caused by shells expanding with ultrarelativistic velocity. With the recent identification of optical sources at the positions of some gamma-ray bursts these ''fireball'' models have acquired an actuality that invites to use them as a motivating application when teaching special relativity. We demonstrate several relativistic effects associated with these models which are very pronounced due to the great velocity of the shell. For example a burst lasting for a month in the rest frame of an element of the shell lasts for a few seconds only, in the rest frame of our detector. It is shown how the observed properties of a burst are modified by aberration and the Doppler effect. The apparent luminosity as a function of time is calculated. Modifications due to the motion of the star away from the observer are calculated. (Author)

  4. Electrical initiation of an energetic nanolaminate film

    Science.gov (United States)

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  5. Relationship between the mechanisms of gamma rhythm generation and the magnitude of the macroscopic phase response function in a population of excitatory and inhibitory modified quadratic integrate-and-fire neurons

    Science.gov (United States)

    Akao, Akihiko; Ogawa, Yutaro; Jimbo, Yasuhiko; Ermentrout, G. Bard; Kotani, Kiyoshi

    2018-01-01

    Gamma oscillations are thought to play an important role in brain function. Interneuron gamma (ING) and pyramidal interneuron gamma (PING) mechanisms have been proposed as generation mechanisms for these oscillations. However, the relation between the generation mechanisms and the dynamical properties of the gamma oscillation are still unclear. Among the dynamical properties of the gamma oscillation, the phase response function (PRF) is important because it encodes the response of the oscillation to inputs. Recently, the PRF for an inhibitory population of modified theta neurons that generate an ING rhythm was computed by the adjoint method applied to the associated Fokker-Planck equation (FPE) for the model. The modified theta model incorporates conductance-based synapses as well as the voltage and current dynamics. Here, we extended this previous work by creating an excitatory-inhibitory (E-I) network using the modified theta model and described the population dynamics with the corresponding FPE. We conducted a bifurcation analysis of the FPE to find parameter regions which generate gamma oscillations. In order to label the oscillatory parameter regions by their generation mechanisms, we defined ING- and PING-type gamma oscillation in a mathematically plausible way based on the driver of the inhibitory population. We labeled the oscillatory parameter regions by these generation mechanisms and derived PRFs via the adjoint method on the FPE in order to investigate the differences in the responses of each type of oscillation to inputs. PRFs for PING and ING mechanisms are derived and compared. We found the amplitude of the PRF for the excitatory population is larger in the PING case than in the ING case. Finally, the E-I population of the modified theta neuron enabled us to analyze the PRFs of PING-type gamma oscillation and the entrainment ability of E and I populations. We found a parameter region in which PRFs of E and I are both purely positive in the case of

  6. Inversor elevador mono - etapa

    OpenAIRE

    Herber Ramírez, Juan José De Jesús

    2006-01-01

    En este trabajo de tesis se estudia una topología Mono - Etapa de un Inversor Elevador. Esta estructura está formada por dos convertidores CD - CD Elevadores bidireccionales en corriente, los cuales son controlados por dos señales senoidales, con cierto nivel de CD, desfasadas 180º. Las principales ventajas que esta topología presenta son: 1) Este Inversor genera de manera natural, mediante el control adecuado, un voltaje CA de salida mayor que el voltaje de CD de entrada ...

  7. Reactive Energetic Plasticizers Utilizing Cu-Free Azide-Alkyne 1,3-Dipolar Cycloaddition for In-Situ Preparation of Poly(THF-co-GAP-Based Polyurethane Energetic Binders

    Directory of Open Access Journals (Sweden)

    Mingyang Ma

    2018-05-01

    Full Text Available Reactive energetic plasticizers (REPs coupled with hydroxy-telechelic poly(glycidyl azide-co-tetrahydrofuran (PGT-based energetic polyurethane (PU binders for use in solid propellants and plastic-bonded explosives (PBXs were investigated. The generation of gem-dinitro REPs along with a terminal alkyne stemmed from a series of finely designed approaches to not only satisfy common demands as conventional energetic plasticizers, but also to prevent the migration of plasticizers. The miscibility and rheological behavior of a binary mixture of PGT/REP with various REP fractions were quantitatively determined by differential scanning calorimetry (DSC and rheometer, respectively, highlighting the promising performance of REPs in the formulation process. The kinetics on the distinct reactivity of propargyl vs. 3-butynyl species of REPs towards the azide group of the PGT prepolymer in terms of Cu-free azide-alkyne 1,3-dipolar cycloaddition (1,3-DPCA was studied by monitoring 1H nuclear magnetic resonance spectroscopy and analyzing the activation energies (Ea obtained using DSC. The thermal stability of the finally cured energetic binders with the incorporation of REPs indicated that the thermal stability of the REP/PGT-based PUs was maintained independently of the REP content. The tensile strength and modulus of the PUs increased with an increase in the REP content. In addition, the energetic performance and sensitivity of REP and REP triazole species was predicted.

  8. ENERGETIC FERMI/LAT GRB 100414A: ENERGETIC AND CORRELATIONS

    International Nuclear Information System (INIS)

    Urata, Yuji; Tsai, Patrick P.; Huang, Kuiyun; Yamaoka, Kazutaka; Tashiro, Makoto S.

    2012-01-01

    This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E src peak of 1458.7 +132.6 –106.6 keV and E iso of 34.5 +2.0 –1.8 × 10 52 erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of α = –2.6 ± 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 ± 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5. 0 8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E src peak -E iso and E src peak -E γ correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.

  9. Terrestrial gamma ray flash production by active lightning leader channels

    OpenAIRE

    İnan, Umran Savaş; Carlson, B. E.; Lehtinen, N. G.

    2017-01-01

    The production of terrestrial gamma ray flashes (TGFs) requires a seed energetic electron source and a strong electric field. Lightning leaders naturally provide seed electrons by cold runaway and strong electric fields by charge accumulation on the channel. We model possible TGF production in such fields by simulating the charges and currents on the channel. The resulting electric fields then drive simulations of runaway relativistic electron avalanche and photon emission. Photon spectra and...

  10. Excited states of hypernuclei (populated by low energetic separated K- beam)

    CERN Document Server

    Bamberger, A; Haddock, R; Lynen, U; Moszkowski, S; Piekarz, H; Piekarz, J; Pniewski, J; Povh, B; Ritter, H G; Soergel, Volker; Van Oers, W T H

    1972-01-01

    The experimental investigation of hypernuclei up to now has been done using emulsions and bubble chambers and therefore, with only 2 exemptions, all existing knowledge concerns hypernuclear ground states. The investigation of excited states in general is only possible using counter techniques, but these experiments could not be performed due to the low intensity of available K/sup -/-beams. At CERN a low energetic separated K-beam has been built, at which 1000 K /sup -/-mesons per burst can be stopped in a target of 6g/cm/sup 2/ thickness. At this beam an experiment looking for gamma -transitions in excited hypernuclei has been performed. In order to eliminate background gamma -radiation arising from kappa /sup -/ annihilation and de-excitation of residual nuclei, only light targets were used, namely /sup 6/Li, /sup 7/Li, /sup 9/Be, /sup 12/C and /sup 16/O. Hypernuclear transitions were found in /sup 4//sub Lambda /H and /sup 4//sub Lambda /He and possible transitions in /sup 6/Li and /sup 7/Li. The scatterin...

  11. The gamma function

    CERN Document Server

    Artin, Emil

    2015-01-01

    This brief monograph on the gamma function was designed by the author to fill what he perceived as a gap in the literature of mathematics, which often treated the gamma function in a manner he described as both sketchy and overly complicated. Author Emil Artin, one of the twentieth century's leading mathematicians, wrote in his Preface to this book, ""I feel that this monograph will help to show that the gamma function can be thought of as one of the elementary functions, and that all of its basic properties can be established using elementary methods of the calculus."" Generations of teachers

  12. Fc gamma receptor activation induces the tyrosine phosphorylation of both phospholipase C (PLC)-gamma 1 and PLC-gamma 2 in natural killer cells

    OpenAIRE

    1992-01-01

    Crosslinking of the low affinity immunoglobulin G (IgG) Fc receptor (Fc gamma R type III) on natural killer (NK) cells initiates antibody- dependent cellular cytotoxicity. During this process, Fc gamma R stimulation results in the rapid activation of phospholipase C (PLC), which hydrolyzes membrane phosphoinositides, generating inositol-1,4,5- trisphosphate and sn-1,2-diacylglycerol as second messengers. We have recently reported that PLC activation after Fc gamma R stimulation can be inhibit...

  13. Finite Element Analysis Of Structural And Magmatic Interactions At Mono Basin (California)

    Science.gov (United States)

    La Marra, D.; Manconi, A.; Battaglia, M.

    2010-12-01

    Mono Basin is a northward trending graben situated east of the Sierra Nevada and west of Cowtrack Mountains, extending from the northern edge of Long Valley Caldera towards the Bodie Hills. From a hydrographic perspective, the Mono Basin is defined by all streams that drain into Mono Lake. The Mono-Inyo Craters forms a prominent 25-km-long volcanic complex from the NW corner of Long Valley caldera to the southern edge of Mono Lake. The late Quaternary Hartley Springs fault occurs along the Sierran range front between June Lake and the northern border of Long Valley Caldera. Recently it has been proposed that the manifestation of the volcanic and of the tectonic activity in this area is likely interrelated. According to Bursik et al (2003), stratigraphic data suggest that during the North Mono-Inyo eruption sequence of ~1350 A.D., a series of strong earthquakes occurred across the end of the North Mono explosive phase and the beginning of the Inyo explosive phase. Moreover, geological and geomorphic features of the Hartley Springs fault are consistent with rupture of the fault during the eruption sequence. We use the Finite Element Method (FEM) to simulate a three-dimensional model and investigate the feedback mechanism between dike intrusion and slip along the Hartley Springs fault. We first validate our numerical model against the Okada (1985) analytical solution for a homogeneous and elastic flat half-space. Subsequently, we evaluate the distribution of local stress changes to study the influence of the Inyo Dike intrusion in ~1350 A.D. on Hartley Springs fault, and how the fault slip may encourage the propagation of dikes towards the surface. To this end, we considered the standard Coulomb stress change as failure criterion. Finally, we analyze the effects of the topography and of vertical and lateral heterogeneities of the crust on the distribution of local and regional stress changes. In this presentation, we highlight the preliminary results of our analysis

  14. Energetic ion driven Alfven eigenmodes in Large Helical Device plasmas with three-dimensional magnetic structure and their impact on energetic ion transport

    International Nuclear Information System (INIS)

    Toi, K; Yamamoto, S; Nakajima, N; Ohdachi, S; Sakakibara, S; Osakabe, M; Murakami, S; Watanabe, K Y; Goto, M; Kawahata, K; Kolesnichenko, Ya I; Masuzaki, S; Morita, S; Narihara, K; Narushima, Y; Takeiri, Y; Tanaka, K; Tokuzawa, T; Yamada, H; Yamada, I; Yamazaki, K

    2004-01-01

    In the Large Helical Device (LHD), energetic ion driven Alfven eigenmodes (AEs) and their impact on energetic ion transport have been studied. The magnetic configuration of the LHD is three-dimensional and has negative magnetic shear over a whole plasma radius in the low beta regime. These features introduce the characteristic structures of the shear Alfven spectrum. In particular, a core-localized type of toroidicity-induced AE (TAE) is most likely because the TAE gap frequency rapidly increases towards the plasma edge. Moreover, helicity-induced AEs (HAEs) can be generated through a toroidal mode coupling as well as poloidal one in the three-dimensional configuration. The following experimental results have been obtained in LHD plasmas heated by tangential neutral beam injection: (1) observation of core-localized TAEs having odd as well as even parity, (2) eigenmode transition of the core-localized TAE to global AEs (GAEs), which phenomenon is very similar to that in a reversed shear tokamak, (3) observation of HAEs of which the frequency is about eight times higher than the TAE gap frequency, (4) enhanced radial transport/loss of energetic ions caused by bursting TAEs in a relatively high beta regime, and (5) seed formation of internal transport barriers induced by TAE-induced energetic ion transport. These results will be important and interesting information for AE physics in toroidal plasmas

  15. Substituent effects on mono-substituted and poly-substituted nitriles; Efeitos dos substituintes em nitrilas mono- e polissubstituidas

    Energy Technology Data Exchange (ETDEWEB)

    Sofia, Raquel C.R.; Carneiro, Paulo I.B.; Rittner, Roberto [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica; Fabi, Marino T [Rhodia S.A., Sao Paulo, SP (Brazil)

    1992-12-31

    This work studies various mono substituted aliphatic nitriles, Y C H{sub 2} (Y=H, F, Cl, Br, I, OMe, S Me, SEt{sub 2}, Me and Ph), and some reference nitriles (Y=Et, n-Pr, n-Bu, n-Am, n-Hex and n-Hept) 12 refs., 3 tabs.

  16. SEARCH FOR PULSED {gamma}-RAY EMISSION FROM GLOBULAR CLUSTER M28

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J. H. K.; Kong, A. K. H.; Huang, R. H. H.; Tam, P. H. T. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Hui, C. Y. [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Wu, E. M. H.; Takata, J.; Cheng, K. S., E-mail: wuhkjason@gmail.com, E-mail: cyhui@cnu.ac.kr [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong)

    2013-03-10

    Using the data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope, we have searched for {gamma}-ray pulsations from the direction of the globular cluster M28 (NGC 6626). We report the discovery of a signal with a frequency consistent with that of the energetic millisecond pulsar (MSP) PSR B1821-24 in M28. A weighted H-test test statistic of 28.8 is attained, which corresponds to a chance probability of {approx}10{sup -5} (4.3{sigma} detection). With a phase-resolved analysis, the pulsed component is found to contribute {approx}25% of the total observed {gamma}-ray emission from the cluster. However, the unpulsed level provides a constraint for the underlying MSP population and the fundamental plane relations for the scenario of inverse Compton scattering. Follow-up timing observations in radio/X-ray are encouraged to further investigate this periodic signal candidate.

  17. Humanos salvajes y monos altruistas. Reflexiones sobre Darwin

    Directory of Open Access Journals (Sweden)

    Jorge Martinez Contreras

    2009-10-01

    Full Text Available RESUMEN   Darwin propuso en 1871 que preferiría descender de un mono que de los “salvajes”. El mono es un babuino hamadryas que, en un relato de Brehm, salva a un infante de una jauría. Los “salvajes” son los fueguinos a los que visitó en los años 1830. ¿Por qué Darwin fue tan buen observador del comportamiento animal y por qué no dudo discernir en qué consistía la sociedad de cazadores-recolectores de los cuatro grupos de Tierra del Fuego?. Esto es lo que tratamos de dilucidar en este trabajo.   Palabras clave: Darwin, fueguinos, hamadryas, altruismo, egoísmo.

  18. About Russian nuclear energetic perspectives

    International Nuclear Information System (INIS)

    Laletin, N.I.

    2003-01-01

    My particular view about Russian nuclear energetics perspectives is presented. The nearest and the further perspectives are considered. The arguments are adduced that the most probable scenario of nuclear energetic development is its stabilization in the near future. Fur further development the arguments of supporters and opponents of nuclear energetics are analyzed. Three points of view are considered. The first point of view that there is not alternative for nuclear energetics. My notes are the following ones. a) I express a skeptic opinion about a statement of quick exhaustion of fossil organic fuel recourses and corresponding estimations are presented. b) It is expressed skeptic opinion about the statement that nuclear energetics can have a visual influence on ''steam effect''. c) I agree that nuclear energetics is the most ecological technology for normal work but however we can't disregard possibilities of catastrophic accidents. The second point of view that the use of nuclear energetics can't have the justification. I adduce the arguments contrary to this statement. The third point of view that nuclear energetics is a usual technology and the only criteria for discussions about what dimension and where one ought develop it is total cost of its unit. Expressed an opinion that the deceived for the choose of a way the skill of the estimate correctly and optimized so named the external parts of the unit energy costs for different energy technologies. (author)

  19. Collective Thomson scattering in tokamaks having energetic ions

    International Nuclear Information System (INIS)

    Myer, R.C.; Woskov, P.P.; Machuzak, J.S.; Sigmar, D.J.; Cohn, D.R.; Bretz, N.L.; Efthimion, P.C.; Colestock, P.L.

    1989-01-01

    The authors discuss how collective Thomson scattering (CTS), using high power gyrotrons or long wavelength lasers,m shows promise as a powerful non-intrusive diagnostic of fast-ion transport as it may be capable of measuring the fast-ion velocity distribution and density profile with good spatial and temporal resolution. In addition, CTS may be used as a diagnostic for detecting localized power deposition in the background plasma. High power CTS systems are presently being planned for TFTR, JET, and CIT. Recent theoretical analysis suggests that an energetic (200-800 keV) He 3 minority can be produced in TFTR by ion cyclotron heating (ICH). Such an energetic population would be useful for simulating the energetic alpha-particles produced in a burning plasma. Since the ICH generated distribution is non-Maxwellian, the authors generalize the theoretical analysis of CTS to allow for particle distributions which can be represented by various orthogonal polynomial expansions. They evaluate the efficacy of CTS in detecting a fast He 3 component and determine the sensitivity of the diagnostic to the details of the ion distribution. In particular, the effectiveness of a planned 56 GHz gyrotron CTS diagnostic for TFTR is evaluated

  20. Population Studies of Radio and Gamma-Ray Pulsars

    Science.gov (United States)

    Harding, Alice K; Gonthier, Peter; Coltisor, Stefan

    2004-01-01

    Rotation-powered pulsars are one of the most promising candidates for at least some of the 40-50 EGRET unidentified gamma-ray sources that lie near the Galactic plane. Since the end of the EGRO mission, the more sensitive Parkes Multibeam radio survey has detected mere than two dozen new radio pulsars in or near unidentified EGRET sources, many of which are young and energetic. These results raise an important question about the nature of radio quiescence in gamma-ray pulsars: is the non-detection of radio emission a matter of beaming or of sensitivity? The answer is very dependent on the geometry of the radio and gamma-ray beams. We present results of a population synthesis of pulsars in the Galaxy, including for the first time the full geometry of the radio and gamma-ray beams. We use a recent empirically derived model of the radio emission and luminosity, and a gamma-ray emission geometry and luminosity derived theoretically from pair cascades in the polar slot gap. The simulation includes characteristics of eight radio surveys of the Princeton catalog plus the Parkes MB survey. Our results indicate that EGRET was capable of detecting several dozen pulsars as point sources, with the ratio of radio-loud to radio-quiet gamma-ray pulsars increasing significantly to about ten to one when the Parkes Survey is included. Polar cap models thus predict that many of the unidentified EGRET sources could be radio-loud gamma- ray pulsars, previously undetected as radio pulsars due to distance, large dispersion and lack of sensitivity. If true, this would make gamma-ray telescopes a potentially more sensitive tool for detecting distant young neutron stars in the Galactic plane.

  1. Rapid decompression and desorption induced energetic failure in coal

    Directory of Open Access Journals (Sweden)

    Shugang Wang

    2015-06-01

    Full Text Available In this study, laboratory experiments are conducted to investigate the rapid decompression and desorption induced energetic failure in coal using a shock tube apparatus. Coal specimens are recovered from Colorado at a depth of 610 m. The coal specimens are saturated with the strong sorbing gas CO2 for a certain period and then the rupture disc is suddenly broken on top of the shock tube to generate a shock wave propagating upwards and a rarefaction wave propagating downwards through the specimen. This rapid decompression and desorption has the potential to cause energetic fragmentation in coal. Three types of behaviors in coal after rapid decompression are found, i.e. degassing without fragmentation, horizontal fragmentation, and vertical fragmentation. We speculate that the characteristics of fracture network (e.g. aperture, spacing, orientation and stiffness and gas desorption play a role in this dynamic event as coal can be considered as a dual porosity, dual permeability, dual stiffness sorbing medium. This study has important implications in understanding energetic failure process in underground coal mines such as coal gas outbursts.

  2. Energetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2015-01-01

    Generating energetic femtosecond mid-IR pulses is crucial for ultrafast spectroscopy, and currently relies on parametric processes that, while efficient, are also complex. Here we experimentally show a simple alternative that uses a single pump wavelength without any pump synchronization and with...... by using large-aperture crystals. The technique can readily be implemented with other crystals and laser wavelengths, and can therefore potentially replace current ultrafast frequency-conversion processes to the mid-IR....... and without critical phase-matching requirements. Pumping a bulk quadratic nonlinear crystal (unpoled LiNbO3 cut for noncritical phase-mismatched interaction) with sub-mJ near-IR 50-fs pulses, tunable and broadband (∼ 1,000 cm−1) mid-IR pulses around 3.0 μm are generated with excellent spatio-temporal pulse...... quality, having up to 10.5 μJ energy (6.3% conversion). The mid-IR pulses are dispersive waves phase-matched to near-IR self-defocusing solitons created by the induced self-defocusing cascaded nonlinearity. This process is filament-free and the input pulse energy can therefore be scaled arbitrarily...

  3. High-energy gamma-ray emission from solar flares: Constraining the accelerated proton spectrum

    Science.gov (United States)

    Alexander, David; Dunphy, Philip P.; Mackinnon, Alexander L.

    1994-01-01

    Using a multi-component model to describe the gamma-ray emission, we investigate the flares of December 16, 1988 and March 6, 1989 which exhibited unambiguous evidence of neutral pion decay. The observations are then combined with theoretical calculations of pion production to constrain the accelerated proton spectra. The detection of pi(sup 0) emission alone can indicate much about the energy distribution and spectral variation of the protons accelerated to pion producing energies. Here both the intensity and detailed spectral shape of the Doppler-broadened pi(sup 0) decay feature are used to determine the spectral form of the accelerated proton energy distribution. The Doppler width of this gamma-ray emission provides a unique diagnostic of the spectral shape at high energies, independent of any normalisation. To our knowledge, this is the first time that this diagnostic has been used to constrain the proton spectra. The form of the energetic proton distribution is found to be severely limited by the observed intensity and Doppler width of the pi(sup 0) decay emission, demonstrating effectively the diagnostic capabilities of the pi(sup 0) decay gamma-rays. The spectral index derived from the gamma-ray intensity is found to be much harder than that derived from the Doppler width. To reconcile this apparent discrepancy we investigate the effects of introducing a high-energy cut-off in the accelerated proton distribution. With cut-off energies of around 0.5-0.8 GeV and relatively hard spectra, the observed intensities and broadening can be reproduced with a single energetic proton distribution above the pion production threshold.

  4. EXPANSIÓN Y DIVERGENCIA DEL LOCUS GH ENTRE EL MONO ARAÑA Y EL CHIMPANCÉ

    OpenAIRE

    DE MENDOZA, AGNÈS; ESQUIVEL, DOLORES; MARTÍNEZ, IRMA; BARRERA, HUGO

    2005-01-01

    Para precisar la historia muy particular de la hormona del crecimiento (GH) en los primates, se describieron los loci GH del mono araña, un mono del Nuevo Mundo y del chimpancé, una especie cercana al humano. Al menos seis genes integran ambos loci GH: todos del tipo GH en el mono araña, y dos GHs y cuatro lactógenos placentarios (PLs) en el chimpancé. Las regiones intergénicas del locus del chimpancé presentan un tamaño mayor a las del mono araña. Este trabajo conf...

  5. Observation of enhanced radial transport of energetic ion due to energetic particle mode destabilized by helically-trapped energetic ion in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.

  6. Analysis of the energetic sector through the national energetic matrix

    International Nuclear Information System (INIS)

    Garzon Lozano, Enrique

    2007-01-01

    The author shows the results of the national energetic balance 1975-2005, through the energetic matrix of the country, giving an annual growth of 5.1% in this period of offer of primary energy, where the mineral coal participates with 9,6%, the hydraulic energy with 4,8%, natural gas with 4,2%, trash with 2,4% and petroleum with 2,2%, while the firewood fell in 0,5%

  7. Comparison between mono-bloc and bi-bloc mandibular advancement devices for obstructive sleep apnea.

    Science.gov (United States)

    Lee, Woo Hyun; Wee, Jee Hye; Lee, Chul Hee; Kim, Min-Su; Rhee, Chae-Seo; Yun, Pil-Young; Yoon, In-Young; Kim, Jeong-Whun

    2013-11-01

    Although mandibular advancement device (MAD) is widely used, there are a few papers comparing the efficacy and compliance at the same time according to the type of MAD. The aim of this study is to compare the efficacy and compliance between mono-bloc and bi-bloc MAD in the treatment of obstructive sleep apnea (OSA). Ninety-three patients who treated with mono-bloc MAD and 60 patients with bi-bloc MAD from January 2007 through September 2011 were retrospectively enrolled. All the patients underwent full-night polysomnography(PSG) before and 3 months after MAD was applied. The response rate was significantly higher in the patients using mono-bloc than those using bi-bloc MAD (77.4 vs. 58.3 %; P = 0.012). In contrast, the compliance rate of MAD use was significantly higher in the patients using bi-bloc than those using mono-bloc MAD (68.8 vs. 83.3 %; P = 0.044) at 1 year. According to the severity of OSA, the response rate was significantly higher in severe OSA than in mild to moderate OSA (P = 0.033 for mono-bloc MAD and P = 0.048 for bi-bloc MAD). However, there was no difference in the compliance between mild to moderate OSA and severe OSA. Our study showed that mono-bloc MAD was superior to bi-bloc MAD in efficacy while bi-bloc MAD is superior to mono-bloc MAD in compliance. We propose that both the efficacy and compliance should be considered in using MAD for treatment of OSA.

  8. Equipment for x- and gamma ray radiography

    International Nuclear Information System (INIS)

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    The following topics related to the equipment for x - and gamma ray radiography are discussed in this chapter. The topics are x-ray source for Industrial Radiography: properties of x-ray, generation of x-ray, mechanism of x-ray production, x-ray equipment, power supply, distribution of x-ray intensity along the tube: gamma ray source for Industrial Radiography: properties of gamma rays, gamma ray sources, gamma ray projectors on cameras, source changing. Care of Radiographic Equipments: Merits and Demerits of x and Gamma Rays

  9. Investigation of surge protective devices operation of a wind generator

    International Nuclear Information System (INIS)

    Dimitrov, D.; Vasileva, M.

    2008-01-01

    The interest to the investments in a wind energetics increases in the last years. The wind energetics is the fastest developing direction in the energetics in global scale. The wind energy is more attractive because its prices are lower in comparison of the other technologies for generating energy. The right choice of the surge protective devices has the important meaning on building and exploitation of the wind generators. The aim of this paper is investigation of the surge protective devices operation when they are installation to a wind generator. (authors)

  10. Disposal of energetic materials by alkaline pressure hydrolysis and combined techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bunte, G.; Krause, H.H.; Hirth, T. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal-Berghausen (Germany)

    1997-07-01

    Due to the reduction of armament and especially due to the German reunification we are met by objective of the diposal of energetic materials. Environmentally friendly disposal methods available for the different propellants, explosives and pyrotechnics are urgently needed. The main component of gun and rocket propellants is the energetic polymer nitrocellulose. One method to dispose nitrocellulose containing propellants is the combination of rapid chemical destruction by pressure hydrolysis and the biological degradation of the reaction mixture. The study describes the results of pressure hydrolysis of different gun and rocket propellants. Under alkaline conditions (propellant to NaOH ratio 2.3:1; reaction temperature 150 C; pressure below 30 bar) biological degradable reaction products were formed. The main products in the liquid phase were simple mono- and dicarboxylic acids. Dependent on the reaction conditions 30-50% of the nitrogen content of the propellants was transformed to nitrite and nitrate. The gaseous nitrogen containing products were N{sub 2} (16-46%), N{sub 2}O (2-23%), NO{sub x} (0-5%). Overall 40%-60% of the propellant nitrogen was transformed to gaseous products. In the solid residues a nitrogen content between 2% and 9% was found. The residues were mostly due to additives used in propellant manufacturing. In the case of nitrocellulose pressure hydrolysis below 30 bar and reaction temperature about 150 C are sufficient. (orig.) [Deutsch] Nicht zuletzt aufgrund der in den letzten Jahren erfolgten Abruestungsmassnahmen sowie auch der Wiedervereinigung beider deutscher Staaten ergab sich die Problematik der Entsorgung von energetischen Materialien. Alternativ zur Verbrennung besteht Bedarf an der Entwicklung von Entsorgungsverfahren, die eine umweltfreundliche Entsorgung von Treibladungspulvern, Raketenfesttreibstoffen oder pyrotechnischen Komponenten ermoeglichen. Eine interessante Methode zur Beseitigung von auf Nitrocellulose basierenden

  11. ESA's Integral detects closest cosmic gamma-ray burst

    Science.gov (United States)

    2004-08-01

    5 August 2004 A gamma-ray burst detected by ESA's Integral gamma-ray observatory on 3 December 2003 has been thoroughly studied for months by an armada of space and ground-based observatories. Astronomers have now concluded that this event, called GRB 031203, is the closest cosmic gamma-ray burst on record, but also the faintest. This also suggests that an entire population of sub-energetic gamma-ray bursts has so far gone unnoticed... Gamma ray burst model hi-res Size hi-res: 22 KB Credits: CXC/M. Weiss Artist impression of a low-energy gamma-ray burst This illustration describes a model for a gamma-ray burst, like the one detected by Integral on 3 December 2003 (GRB 031203). A jet of high-energy particles from a rapidly rotating black hole interacts with surrounding matter. Observations with Integral on 3 December 2003 and data on its afterglow, collected afterwards with XMM-Newton, Chandra and the Very Large Array telescope, show that GRB 031203 radiated only a fraction of the energy of normal gamma-ray bursts. Like supernovae, gamma-ray bursts are thought to be produced by the collapse of the core of a massive star. However, while the process leading to supernovae is relatively well understood, astronomers still do not know what happens when a core collapses to form a black hole. The discovery of 'under-energetic' gamma-ray bursts, like GRB 031203, should provide valuable clues as to links between supernovae, black holes and gamma-ray bursts. Lo-res JPG (22 Kb) Hi-res TIFF (5800 Kb) Cosmic gamma-ray bursts (GRBs) are flashes of gamma rays that can last from less than a second to a few minutes and occur at random positions in the sky. A large fraction of them is thought to result when a black hole is created from a dying star in a distant galaxy. Astronomers believe that a hot disc surrounding the black hole, made of gas and matter falling onto it, somehow emits an energetic beam parallel to the axis of rotation. According to the simplest picture, all GRBs

  12. ITER Plasma at Electron Cyclotron Frequency Domain: Stimulated Raman Scattering off Gould-Trivelpiece Modes and Generation of Suprathermal Electrons and Energetic Ions

    Science.gov (United States)

    Stefan, V. Alexander

    2011-04-01

    Stimulated Raman scattering in the electron cyclotron frequency range of the X-Mode and O-Mode driver with the ITER plasma leads to the ``tail heating'' via the generation of suprathermal electrons and energetic ions. The scattering off Trivelpiece-Gould (T-G) modes is studied for the gyrotron frequency of 170GHz; X-Mode and O-Mode power of 24 MW CW; on-axis B-field of 10T. The synergy between the two-plasmon decay and Raman scattering is analyzed in reference to the bulk plasma heating. Supported in part by Nikola TESLA Labs, La Jolla, CA

  13. Clinical Value of Dual-energy CT in Detection of Pancreatic Adenocarcinoma: Investigation of the Best Pancreatic Tumor Contrast to Noise Ratio.

    Science.gov (United States)

    He, Yong-Lan; Zhang, Da-Ming; Xue, Hua-Dan; Jin, Zheng-Yu

    2013-01-01

    Objective To quantitatively compare and determine the best pancreatic tumor contrast to noise ratio (CNR) in different dual-energy derived datasets. Methods In this retrospective, single center study, 16 patients (9 male, 7 female, average age 59.4±13.2 years) with pathologically diagnosed pancreatic cancer were enrolled. All patients received an abdominal scan using a dual source CT scanner 7 to 31 days before biopsy or surgery. After injection of iodine contrast agent, arterial and pancreatic parenchyma phase were scanned consequently, using a dual-energy scan mode (100 kVp/230 mAs and Sn 140 kVp/178 mAs) in the pancreatic parenchyma phase. A series of derived dual-energy datasets were evaluated including non-liner blending (non-linear blending width 0-500 HU; blending center -500 to 500 HU), mono-energetic (40-190 keV), 100 kVp and 140 kVp. On each datasets, mean CT values of the pancreatic parenchyma and tumor, as well as standard deviation CT values of subcutaneous fat and psoas muscle were measured. Regions of interest of cutaneous fat and major psoas muscle of 100 kVp and 140 kVp images were calculated. Best CNR of subcutaneous fat (CNRF) and CNR of the major psoas muscle (CNRM) of non-liner blending and mono-energetic datasets were calculated with the optimal mono-energetic keV setting and the optimal blending center/width setting for the best CNR. One Way ANOVA test was used for comparison of best CNR between different dual-energy derived datasets. Results The best CNRF (4.48±1.29) was obtained from the non-liner blending datasets at blending center -16.6±103.9 HU and blending width 12.3±10.6 HU. The best CNRF (3.28±0.97) was obtained from the mono-energetic datasets at 73.3±4.3 keV. CNRF in the 100 kVp and 140 kVp were 3.02±0.91 and 1.56±0.56 respectively. Using fat as the noise background, all of these images series showed significant differences (Pbest CNRF of mono-energetic image sets vs. CNRF of 100 kVp image (P=0.460). Similar results were

  14. Leaked filters for energetic and angular dependence corrections of thermoluminescent response

    International Nuclear Information System (INIS)

    Manzoli, Jose Eduardo; Shammas, Gabriel Issa Jabra; Campos, Vicente de Paulo de

    2007-01-01

    Many thermoluminescent materials has been developed and used for photon personal dosimetry but no one has all desired characteristics alone. These characteristics include robustness, high sensitivity, energy photon independence, large range of photon energy detection, good reproducibility and small fading. The phosphors advantages begin to be more required and its disadvantages have became more apparent, in a global market more and more competitive. Calcium Sulfate Dysprosium doped (CaSO 4 :Dy) and Calcium Fluoride Manganese doped (CaF 2 :Mn) phosphor Thermoluminescent Dosimeters (TLDs) have been used by many laboratories. They are used in environmental and area monitoring, once they present more sensibility than other phosphors, like LiF:Mg. Theirs main disadvantage is the strong energetic dependence response, which must be corrected for theirs application in routine, where the kind of photon radiation is unknown a priori. An interesting way to make this correction is to interject a leaked filter between the beam and the phosphor, where the beam could strike the phosphor at any angle. In order to reduce the energetic dependence on any incidence angle, this work presents experimental and simulation studies on some filter geometries. It was made TL readings and simulations on TL responses to photon irradiations with gamma rays of 60 Co and X-rays of 33; 48 and 118 keV, on many incidence angles from zero to ninety degrees. The results pointed out the best filter thicknesses and widths, in order to optimize the correction of energetic dependence for the studied geometries. (author)

  15. Gamma-Ray Astronomy Technology Needs

    Science.gov (United States)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  16. Fermi-LAT Gamma-Ray Bursts and Insights from Swift

    Science.gov (United States)

    Racusin, Judith L.

    2010-01-01

    A new revolution in Gamma-ray Burst (GRB) observations and theory has begun over the last two years since the launch of the Fermi Gamma-ray Space Telescope. The new window into high energy gamma-rays opened by the Fermi-Large Area Telescope (LAT) is providing insight into prompt emission mechanisms and possibly also afterglow physics. The LAT detected GRBs appear to be a new unique subset of extremely energetic and bright bursts compared to the large sample detected by Swift over the last 6 years. In this talk, I will discuss the context and recent discoveries from these LAT GRBs and the large database of broadband observations collected by the Swift X-ray Telescope (XRT) and UV/Optical Telescope (UVOT). Through comparisons between the GRBs detected by Swift-BAT, G8M, and LAT, we can learn about the unique characteristics, physical differences, and the relationships between each population. These population characteristics provide insight into the different physical parameters that contribute to the diversity of observational GRB properties.

  17. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

    Science.gov (United States)

    Durrant, James R

    2013-08-13

    This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

  18. Bragg Curve, Biological Bragg Curve and Biological Issues in Space Radiation Protection with Shielding

    Science.gov (United States)

    Honglu, Wu; Cucinotta, F.A.; Durante, M.; Lin, Z.; Rusek, A.

    2006-01-01

    The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X-rays, the presence of shielding does not always reduce the radiation risks for energetic charged particle exposure. Since the dose delivered by the charged particle increases sharply as the particle approaches the end of its range, a position known as the Bragg peak, the Bragg curve does not necessarily represent the biological damage along the particle traversal since biological effects are influenced by the track structure of both primary and secondary particles. Therefore, the biological Bragg curve is dependent on the energy and the type of the primary particle, and may vary for different biological endpoints. To achieve a Bragg curve distribution, we exposed cells to energetic heavy ions with the beam geometry parallel to a monolayer of fibroblasts. Qualitative analyses of gamma-H2AX fluorescence, a known marker of DSBs, indicated increased clustering of DNA damage before the Bragg peak, enhanced homogenous distribution at the peak, and provided visual evidence of high linear energy transfer (LET) particle traversal of cells beyond the Bragg peak. A quantitative biological response curve generated for micronuclei (MN) induction across the Bragg curve did not reveal an increased yield of MN at the location of the Bragg peak. However, the ratio of mono-to bi-nucleated cells, which indicates inhibition in cell progression, increased at the Bragg peak location. These results, along with other biological concerns, show that space radiation protection with shielding can be a complicated issue.

  19. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    Science.gov (United States)

    Fisch, Nathaniel J.; Rax, Jean M.

    1994-01-01

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.

  20. Specialization in energetic area. Training of post graduate

    International Nuclear Information System (INIS)

    Sanchez, F. J.; Aguero, J. J.

    2006-01-01

    This article describes the experience in the collaboration between the University and Tecnatom in the development of Master-degree programmes in the area of energy. It analysis two post graduate courses already developed: the Master in Technologies of Electrical Power Generation and the Master in Energetic Efficiency both delivered in cooperation with the Escuelas Tecnicas Superiores de Ingenieros Industriales of Madrid and Barcelona Politecnica University respectively. (Author)

  1. Local protoplanetary disk ionisation by T Tauri star energetic particles

    Science.gov (United States)

    Fraschetti, F.; Drake, J.; Cohen, O.; Garraffo, C.

    2017-10-01

    The evolution of protoplanetary disks is believed to be driven largely by viscosity. The ionization of the disk that gives rise to viscosity is caused by X-rays from the central star or by energetic particles released by shock waves travelling into the circumstellar medium. We have performed test-particle numerical simulations of GeV-scale protons traversing a realistic magnetised wind of a young solar mass star with a superposed small-scale turbulence. The large-scale field is generated via an MHD model of a T Tauri wind, whereas the isotropic (Kolmogorov power spectrum) turbulent component is synthesised along the particles' trajectories. We have combined Chandra observations of T Tauri flares with solar flare scaling for describing the energetic particle spectrum. In contrast with previous models, we find that the disk ionization is dominated by X-rays except within narrow regions where the energetic particles are channelled onto the disk by the strongly tangled and turbulent field lines; the radial thickness of such regions broadens with the distance from the central star (5 stellar radii or more). In those regions, the disk ionization due to energetic particles can locally dominate the stellar X-rays, arguably, out to large distances (10, 100 AU) from the star.

  2. Towards Extreme Field Physics: Relativistic Optics and Particle Acceleration in the Transparent-Overdense Regime

    Science.gov (United States)

    Hegelich, B. Manuel

    2011-10-01

    A steady increase of on-target laser intensity with also increasing pulse contrast is leading to light-matter interactions of extreme laser fields with matter in new physics regimes which in turn enable a host of applications. A first example is the realization of interactions in the transperent-overdense regime (TOR), which is reached by interacting a highly relativistic (a0 >10), ultra high contrast laser pulse [1] with a solid density target, turning it transparent to the laser by the relativistic mass increase of the electrons. Thus, the interactions becomes volumetric, increasing the energy coupling from laser to plasma, facilitating a range of effects, including relativistic optics and pulse shaping, mono-energetic electron acceleration [3], highly efficient ion acceleration in the break-out afterburner regime [4], and the generation of relativistic and forward directed surface harmonics. Experiments at the LANL 130TW Trident laser facility successfully reached the TOR, and show relativistic pulse shaping beyond the Fourier limit, the acceleration of mono-energetic ~40 MeV electron bunches from solid targets, forward directed coherent relativistic high harmonic generation >1 keV Break-Out Afterburner (BOA) ion acceleration of Carbon to >1 GeV and Protons to >100 MeV. Carbon ions were accelerated with a conversion efficiency of >10% for ions >20 MeV and monoenergetic carbon ions with an energy spread of ICF diagnostics over ion fast ignition to medical physics. Furthermore, TOR targets traverse a wide range of HEDP parameter space during the interaction ranging from WDM conditions (e.g. brown dwarfs) to energy densities of ~1011 J/cm3 at peak, then dropping back to the underdense but extremely hot parameter range of gamma-ray bursts. Whereas today this regime can only be accessed on very few dedicated facilities, employing special targets and pulse cleaning technology, the next generation of laser facilities will operate in this regime by default, turning its

  3. Three-Dimensional Analysis of dike/fault interaction at Mono Basin (California) using the Finite Element Method

    Science.gov (United States)

    La Marra, D.; Battaglia, M.

    2013-12-01

    Mono Basin is a north-trending graben that extends from the northern edge of Long Valley caldera towards the Bodie Hills and is bounded by the Cowtrack Mountains on the east and the Sierra Nevada on the west. The Mono-Inyo Craters volcanic chain forms a north-trending zone of volcanic vents extending from the west moat of the Long Valley caldera to Mono Lake. The Hartley Springs fault transects the southern Mono Craters-Inyo Domes area between the western part of the Long Valley caldera and June Lake. Stratigraphic data suggest that a series of strong earthquakes occurred during the North Mono-Inyo eruption sequence of ~1350 A.D. The spatial and temporal proximity between Hartley Springs Fault motion and the North Mono-Inyo eruption sequence suggests a possible relation between seismic events and eruptions. We investigate the interactions between slip along the Hartley Springs fault and dike intrusion beneath the Mono-Inyo craters using a three-dimensional finite element model of the Mono Basin. We employ a realistic representation of the Basin that includes topography, vertical and lateral heterogeneities of the crust, contact relations between fault planes, and a physical model of the pressure required to propagate the dike. We estimate (a) the distribution of Coulomb stress changes to study the influence of dike intrusion on Hartley Springs fault, and (b) the local stress and volumetric dilatation changes to understand how fault slip may influence the propagation of a dike towards the surface.

  4. Plasma Interaction and Energetic Particle Dynamics near Callisto

    Science.gov (United States)

    Liuzzo, L.; Simon, S.; Feyerabend, M.; Motschmann, U. M.

    2017-12-01

    Callisto's magnetic environment is characterized by a complex admixture of induction signals from its conducting subsurface ocean, the interaction of corotating Jovian magnetospheric plasma with the moon's ionosphere and induced dipole, and the non-linear coupling between the effects. In contrast to other Galilean moons, ion gyroradii near Callisto are comparable to its size, requiring a kinetic treatment of the interaction region near the moon. Thus, we apply the hybrid simulation code AIKEF to constrain the competing effects of plasma interaction and induction. We determine their influence on the magnetic field signatures measured by Galileo during various Callisto flybys. We use the magnetic field calculated by the model to investigate energetic particle dynamics and their effect on Callisto's environment. From this, we provide a map of global energetic particle precipitation onto Callisto's surface, which may contribute to the generation of its atmosphere.

  5. Flare energetics

    Science.gov (United States)

    Wu, S. T.; Dejager, C.; Dennis, B. R.; Hudson, H. S.; Simnett, G. M.; Strong, K. T.; Bentley, R. D.; Bornmann, P. L.; Bruner, M. E.; Cargill, P. J.

    1986-01-01

    In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested.

  6. Ultrasound-driven Megahertz Faraday Waves for Generation of Monodisperse Micro Droplets and Applications

    Science.gov (United States)

    Tsai, Chen S.; Mao, Rong W.; Lin, Shih K.; Tsai, Shirley C.; Boss, Gerry; Brenner, Matt; Smaldone, Gerry; Mahon, Sari; Shahverdi, Kaveh; Zhu, Yun

    Our theoretical findings on instability of Faraday waves at megahertz (MHz) drive frequency and realization of silicon-based MHz multiple-Fourier horn ultrasonic nozzles (MFHUNs) together have enabled generation of mono-disperse droplets of controllable diameter (2.5-6.0 μm) at very low electrical drive power (generator has imminent application to pulmonary (inhalation) drug delivery and other potential applications. Here an update of advances on analysis and design of the MHz MFHUNs and the underlying physical mechanism for generation of mono-disperse micro droplets, and the nebulizer platform for application to detoxification of cyanide poisoning are presented.

  7. Cogeneration: A solution from energetical auditoring. Cogeneracion: hipotesis de solucion en auditorias energeticas

    Energy Technology Data Exchange (ETDEWEB)

    Gomara Martinez, E; Riesco Leal, P

    1993-01-01

    An energetical auditor provides the solutions to avoid environmental problems generated from the consumption of a determined fuel and reduces fuel consumption. One of the solutions is changing the energy source or introducing cogeneration. The author introduces under the point of view of an auditor the reasons to use to generation. (Author)

  8. Energetic constraints, size gradients, and size limits in benthic marine invertebrates.

    Science.gov (United States)

    Sebens, Kenneth P

    2002-08-01

    Populations of marine benthic organisms occupy habitats with a range of physical and biological characteristics. In the intertidal zone, energetic costs increase with temperature and aerial exposure, and prey intake increases with immersion time, generating size gradients with small individuals often found at upper limits of distribution. Wave action can have similar effects, limiting feeding time or success, although certain species benefit from wave dislodgment of their prey; this also results in gradients of size and morphology. The difference between energy intake and metabolic (and/or behavioral) costs can be used to determine an energetic optimal size for individuals in such populations. Comparisons of the energetic optimal size to the maximum predicted size based on mechanical constraints, and the ensuing mortality schedule, provides a mechanism to study and explain organism size gradients in intertidal and subtidal habitats. For species where the energetic optimal size is well below the maximum size that could persist under a certain set of wave/flow conditions, it is probable that energetic constraints dominate. When the opposite is true, populations of small individuals can dominate habitats with strong dislodgment or damage probability. When the maximum size of individuals is far below either energetic optima or mechanical limits, other sources of mortality (e.g., predation) may favor energy allocation to early reproduction rather than to continued growth. Predictions based on optimal size models have been tested for a variety of intertidal and subtidal invertebrates including sea anemones, corals, and octocorals. This paper provides a review of the optimal size concept, and employs a combination of the optimal energetic size model and life history modeling approach to explore energy allocation to growth or reproduction as the optimal size is approached.

  9. Neoclassical transport of energetic minority tail ions generated by ion-cyclotron resonance heating in tokamak geometry

    International Nuclear Information System (INIS)

    Chang, C.S.; Hammett, G.W.; Goldston, R.J.

    1990-01-01

    Neoclassical transport of energetic minority tail ions, which are generated by high powered electromagnetic waves of the Ion Cyclotron Range of Frequencies (ICRF) at the fundamental harmonic resonance, is studied analytically in tokamak geometry. The effect of Coulomb collisions on the tail ion transport is investigated in the present work. The total tail ion transport will be the sum of the present collision-driven transport and the wave-driven transport, which is due to the ICRF-wave scattering of the tail particles as reported in the literature. The transport coefficients have been calculated kinetically, and it is found that the large tail ion viscosity, driven by the localized ICRF-heating and Coulomb slowing-down collisions, induces purely convective particle transport of the tail species, while the energy transport is both convective and diffusive. The rate of radial particle transport is shown to be usually small, but the rate of radial energy transport is larger and may not be negligible compared to the Coulomb slowing-down rate. 18 refs., 2 figs

  10. The Fermi Gamma Ray Space Telescope discovers the Pulsar in the Young Galactic Supernova-Remnant CTA 1

    International Nuclear Information System (INIS)

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, Elliott D.; Bogaert, G.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.

    2009-01-01

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10 -13 s s -1 . Its characteristic age of 10 4 years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma ray sources associated with star-forming regions and SNRs are such young pulsars

  11. The Fermi Gamma Ray Space Telescope discovers the Pulsar in the Young Galactic Supernova-Remnant CTA 1

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, Elliott D.; Bogaert, G.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.

    2009-05-15

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10{sup -13} s s{sup -1}. Its characteristic age of 10{sup 4} years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma ray sources associated with star-forming regions and SNRs are such young pulsars.

  12. Mono Lake sediments preserve a record of recent environmental change

    Science.gov (United States)

    Meixnerova, J.; Betts, M.; Westacott, S.; Ingalls, M.; Miller, L. G.; Sessions, A. L.; Trower, L.; Geobiology Course, A.

    2017-12-01

    Modern Mono Lake is a geochemically unique closed-basin, hypersaline soda lake. Since 1941, anthropogenic water diversions have decreased the lake's volume and water level, driving changes in water chemistry and ecology. Mono Lake sediments offer an opportunity to investigate the nature and extent of these changes. We analyzed a 70 cm sediment core from the center of Mono Lake recording the past 116 years of deposition. At the time of recovery, the entire core was dark green. 16S rRNA gene analysis indicated a sedimentary bacterial community dominated by Cyanobacteria. SEM imaging revealed abundant, well-preserved diatom frustules below 10 cm core depth, in contrast they are nearly absent above 10 cm depth. Fatty acid (FAME) biomarkers for diatoms and algal sterols were present throughout the core in varying concentrations. Phytol was exceptionally abundant in the core; ratios of phytol/C-18 FAME were commonly >200. The δ13Corg ranged between -17.5 and -20‰ in the lower 52 cm of the core while the upper part shows significant decrease of δ13Corg to -28‰. We interpret the shift in δ13Corg as an ecological transition from mainly diatoms in the lower core towards the green alga Picocystis, which is the main primary producer today and has a δ13Corg value of -32.5‰. The onset of this change dates back 23 years, which roughly coincides with the highest reported salinity, 88 g/L in 1995. We hypothesize that diatoms gradually became marginalized as a result of hypersaline conditions. We also observed a variety of trends that may be characterized as unique fingerprints of Mono Lake. The unusually high abundance of phytol was consistent with the core's pervasive green coloring and could potentially indicate a higher preservation potential of phytol under alkaline conditions. Throughout the core, δ15Norg fluctuated between +10 and +13‰. Such atypical enrichment in δ15Norg could be explained by NH4 dissociation and subsequent NH3 volatilization under high p

  13. EGRET observations of diffuse gamma-ray emission in taurus and perseus

    International Nuclear Information System (INIS)

    Digel, Seth W.; Grenier, Isabelle A.

    2001-01-01

    We present an analysis of the interstellar gamma-ray emission observed toward the extensive molecular cloud complexes in Taurus and Perseus by the Energetic Gamma-Ray Experiment Telescope (EGRET). The region's large size (more than 300 square degrees) and location below the plane in the anticenter are advantageous for straightforward interpretation of the interstellar emission. The complex of clouds in Taurus has a distance of ∼140 pc and is near the center of the Gould Belt. The complex in Perseus, adjacent to Taurus on the sky, is near the rim of the Belt at a distance of ∼300 pc. The findings for the cosmic-ray density and the molecular mass-calibrating ratio N(H 2 )/W CO in Taurus and Perseus are compared with results for other nearby cloud complexes resolved by EGRET. The local clouds that now have been studied in gamma rays can be used to trace the distribution of high-energy cosmic rays within 1 kpc of the sun

  14. Search for Trilinear Neutral Gauge Boson Couplings in $Z\\gamma$ production at $\\sqrt{s}$=189 GeV at LEP

    CERN Document Server

    Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, John; Anderson, K.J.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Boeriu, O.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Cammin, J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanti, M.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Glenzinski, D.; Goldberg, J.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hauke, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lawson, I.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rembser, C.; Rick, H.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schmitt, S.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Tarem, S.; Taylor, R.J.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2000-01-01

    The data recorded at a centre-of-mass energy of 189GeV by the OPAL detector at LEP are used to search for trilinear couplings of the neutral gauge bosons in the process e+e- --> Z-gamma. The cross-sections are measured for multihadronic events with an energetic isolated photon and for events with a high energy photon accompanied by missing energy. These cross-sections and the photon energy, polar angle and isolation angle distributions are compared to the Standard Model predictions and to the theoretical expectations of a model allowing for Z-gamma-Z and Z-gamma-gamma vertices. Since no significant deviations with respect to the Standard Model expectations are found, constraints are derived on the strength of neutral trilinear gauge couplings.

  15. PoET: Polarimeters for Energetic Transients

    Science.gov (United States)

    McConnell, Mark; Barthelmy, Scott; Hill, Joanne

    2008-01-01

    This presentation focuses on PoET (Polarimeters for Energetic Transients): a Small Explorer mission concept proposed to NASA in January 2008. The principal scientific goal of POET is to measure GRB polarization between 2 and 500 keV. The payload consists of two wide FoV instruments: a Low Energy Polarimeter (LEP) capable of polarization measurements in the energy range from 2-15 keV and a high energy polarimeter (Gamma-Ray Polarimeter Experiment - GRAPE) that will measure polarization in the 60-500 keV energy range. Spectra will be measured from 2 keV up to 1 MeV. The PoET spacecraft provides a zenith-pointed platform for maximizing the exposure to deep space. Spacecraft rotation will provide a means of effectively dealing with systematics in the polarization response. PoET will provide sufficient sensitivity and sky coverage to measure statistically significant polarization for up to 100 GRBs in a two-year mission. Polarization data will also be obtained for solar flares, pulsars and other sources of astronomical interest.

  16. Sequential Analysis of Gamma Spectra

    International Nuclear Information System (INIS)

    Fayez-Hassan, M.; Hella, Kh.M.

    2009-01-01

    This work shows how easy one can deal with a huge number of gamma spectra. The method can be used for radiation monitoring. It is based on the macro feature of the windows XP connected to QBASIC software. The routine was used usefully in generating accurate results free from human errors. One hundred measured gamma spectra were fully analyzed in 10 minutes using our fast and automated method controlling the Genie 2000 gamma acquisition analysis software.

  17. Pulser injection with subsequent removal for gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Hartwell, J.K.; Goodwin, S.G.; Johnson, L.O.; Killian, E.W.

    1990-01-01

    This patent describes a module for use with a gamma-ray spectroscopy system. The system includes a gamma-ray detector for detecting gamma-ray events and producing a signal representing the gamma-ray events, a converter responsive to the detector and capable of converting the signal to a spectrum, a storage memory responsive to the converter and capable of storing the spectrum at address locations in memory, and a pulser capable of injecting pulses into the signal produced by the detector. The module comprises: means for generating a logic pulse for controlling the pulser, the controlling means adapted for coupling to the pulser; means for generating separation of events logic to isolate the components of a combined gamma-ray---pulse spectrum, the separation of events logic means adapted for coupling to the converter and the storage memory with the capability of storing pulses at address locations in the storage memory separate from the gamma-ray events; means for receiving an imitating signal from the converter to generate a plurality of operations by the module; means for tracking variations in a gamma-ray---pulse spectrum brought on by external parameter changes; and means for interfacing with commercially developed gamma-ray spectrometry equipment

  18. Aza-Michael Mono-addition Using Acidic Alumina under Solventless Conditions

    Directory of Open Access Journals (Sweden)

    Giovanna Bosica

    2016-06-01

    Full Text Available Aza-Michael reactions between primary aliphatic and aromatic amines and various Michael acceptors have been performed under environmentally-friendly solventless conditions using acidic alumina as a heterogeneous catalyst to selectively obtain the corresponding mono-adducts in high yields. Ethyl acrylate was the main acceptor used, although others such as acrylonitrile, methyl acrylate and acrylamide were also utilized successfully. Bi-functional amines also gave the mono-adducts in good to excellent yields. Such compounds can serve as intermediates for the synthesis of anti-cancer and antibiotic drugs.

  19. {sup 99m}Tc generator preparation using (n, {gamma}){sup 99}Mo produced ex-natural molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Le, So Van [Nuclear Research Institute, Dalat (Viet Nam)

    2003-03-01

    Theoretical assessment on the chromatographic {sup 99m}Tc generator preparation using (n, {gamma}) {sup 99}Mo produced ex-natural molybdenum was carried out. The relationship between the neutron flux for MoO{sub 3} target activation, Mo-content or Mo adsorption capacity of column packing material, {sup 99m}Tc pertechnetate concentration and/or {sup 99m}Tc radioactivity of eluate was established. The reasonably lower limit of neutron flux of reactor and Molybdenum content of column packing material were found out to estimate the production of portable chromatographic generators available for nuclear medicine application. The concentration of {sup 99m}Tc pertechnetate eluate of low {sup 99m}Tc concentration using the column elution technique was also evaluate theoretically and conducted successfully in practice. Three options of {sup 99m}Tc generator using Titanium-Molybdate, Zirconium-Molybdate and Zirconium Oxide as generator column-packing materials were prepared and successfully put into use in nuclear medicine application. (author)

  20. High-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region, California

    Science.gov (United States)

    Ponce, D. A.; Mangan, M.; McPhee, D.

    2013-12-01

    A new high-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region greatly enhances previous magnetic interpretations that were based on older, low-resolution, and regional aeromagnetic data sets and provides new insights into volcano-tectonic processes. The surveyed area covers a 8,750 km2 NNW-trending swath situated between the Sierra Nevada to the west and the Basin and Range Province to the east. The surveyed area includes the volcanic centers of Mono Lake, Mono-Inyo Craters, Mammoth Mountain, Devils Postpile, and Long Valley Caldera. The NW-trending eastern Sierra frontal fault zone crosses through the study area, including the active Mono Lake, Silver Lake, Hartley Springs, Laurel Creek, and Hilton Creek faults. Over 6,000 line-kilometers of aeromagnetic data were collected at a constant terrain clearance of 150 m, a flight-line spacing of 400 m, and a tie-line spacing of 4 km. Data were collected via helicopter with an attached stinger housing a magnetic sensor using a Scintrex CS-3 cesium magnetometer. In the northern part of the survey area, data improve the magnetic resolution of the individual domes and coulees along Mono Craters and a circular shaped magnetic anomaly that coincides with a poorly defined ring fracture mapped by Kistler (1966). Here, aeromagnetic data combined with other geophysical data suggests that Mono Craters may have preferentially followed a pre-existing plutonic basement feature that may have controlled the sickle shape of the volcanic chain. In the northeastern part of the survey, aeromagnetic data reveal a linear magnetic anomaly that correlates with and extends a mapped fault. In the southern part of the survey, in the Sierra Nevada block just south of Long Valley Caldera, aeromagnetic anomalies correlate with NNW-trending Sierran frontal faults rather than to linear NNE-trends observed in recent seismicity over the last 30 years. These data provide an important framework for the further analysis of the

  1. Prevalence, Risk Factors, and Treatment Outcomes of Isoniazid- and Rifampicin-Mono-Resistant Pulmonary Tuberculosis in Lima, Peru.

    Directory of Open Access Journals (Sweden)

    Leonela Villegas

    Full Text Available Isoniazid and rifampicin are the two most efficacious first-line agents for tuberculosis (TB treatment. We assessed the prevalence of isoniazid and rifampicin mono-resistance, associated risk factors, and the association of mono-resistance on treatment outcomes.A prospective, observational cohort study enrolled adults with a first episode of smear-positive pulmonary TB from 34 health facilities in a northern district of Lima, Peru, from March 2010 through December 2011. Participants were interviewed and a sputum sample was cultured on Löwenstein-Jensen (LJ media. Drug susceptibility testing was performed using the proportion method. Medication regimens were documented for each patient. Our primary outcomes were treatment outcome at the end of treatment. The secondary outcome included recurrent episodes among cured patients within two years after completion of the treatment.Of 1292 patients enrolled, 1039 (80% were culture-positive. From this subpopulation, isoniazid mono-resistance was present in 85 (8% patients and rifampicin mono-resistance was present in 24 (2% patients. In the multivariate logistic regression model, isoniazid mono-resistance was associated with illicit drug use (adjusted odds ratio (aOR = 2.10; 95% confidence interval (CI: 1.1-4.1, and rifampicin mono-resistance was associated with HIV infection (aOR = 9.43; 95%CI: 1.9-47.8. Isoniazid mono-resistant patients had a higher risk of poor treatment outcomes including treatment failure (2/85, 2%, p-value<0.01 and death (4/85, 5%, p<0.02. Rifampicin mono-resistant patients had a higher risk of death (2/24, 8%, p<0.01.A high prevalence of isoniazid and rifampicin mono-resistance was found among TB patients in our low HIV burden setting which were similar to regions with high HIV burden. Patients with isoniazid and rifampicin mono-resistance had an increased risk of poor treatment outcomes.

  2. Endogenously generated gamma-band oscillations in early visual cortex: A neurofeedback study.

    Science.gov (United States)

    Merkel, Nina; Wibral, Michael; Bland, Gareth; Singer, Wolf

    2018-04-26

    Human subjects were trained with neurofeedback (NFB) to enhance the power of narrow-band gamma oscillations in circumscribed regions of early visual cortex. To select the region and the oscillation frequency for NFB training, gamma oscillations were induced with locally presented drifting gratings. The source and frequency of these induced oscillations were determined using beamforming methods. During NFB training the power of narrow band gamma oscillations was continuously extracted from this source with online beamforming and converted into the pitch of a tone signal. We found that seven out of ten subjects were able to selectively increase the amplitude of gamma oscillations in the absence of visual stimulation. One subject however failed completely and two subjects succeeded to manipulate the feedback signal by contraction of muscles. In all subjects the attempts to enhance visual gamma oscillations were associated with an increase of beta oscillations over precentral/frontal regions. Only successful subjects exhibited an additional marked increase of theta oscillations over precentral/prefrontal and temporal regions whereas unsuccessful subjects showed an increase of alpha band oscillations over occipital regions. We argue that spatially confined networks in early visual cortex can be entrained to engage in narrow band gamma oscillations not only by visual stimuli but also by top down signals. We interpret the concomitant increase in beta oscillations as indication for an engagement of the fronto-parietal attention network and the increase of theta oscillations as a correlate of imagery. Our finding support the application of NFB in disease conditions associated with impaired gamma synchronization. © 2018 Wiley Periodicals, Inc.

  3. Common Gamma-ray Glows above Thunderclouds

    Science.gov (United States)

    Kelley, Nicole; Smith, David; Dwyer, Joseph; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alex; Splitt, Michael; Lazarus, Steven; Rassoul, Hamid

    2013-04-01

    Gamma-ray glows are continuous, long duration gamma- and x-ray emission seen coming from thunderclouds. The Airborne for Energetic Lightning Emissions (ADELE) observed 12 gamma-ray glows during its summer 2009 flight campaign over the areas of Colorado and Florida in the United States. For these glows we shall present their spectra, relationship to lightning activity and how their duration and size changes as a function of distance. Gamma-ray glows follow the relativistic runaway electron avalanche (RREA) spectrum and have been previously measured from the ground and inside the cloud. ADELE measured most glows as it flew above the screening layer of the cloud. During the brightest glow on August 21, 2009, we can show that we are flying directly into a downward facing relativistic runaway avalanche, indicative of flying between the upper positive and negative screening layer of the cloud. In order to explain the brightness of this glow, RREA with an electric field approaching the limit for relativistic feedback must be occurring. Using all 12 glows, we show that lightning activity diminishes during the onset of the glow. Using this along with the fact that glows occur as the field approaches the level necessary for feedback, we attempt to distinguish between two possibilities: that glows are evidence that RREA with feedback, rather than lightning, is sometimes the primary channel for discharging the cloud, or else that the overall discharging is still controlled by lightning, with glows simply appearing during times when a subsidence of lightning allows the field to rise above the threshold for RREA.

  4. Energetic utilization of Solid Recovered Fuels with wood chips in a stoker-fired furnace; Energetische Nutzung von Solid Recovered Fuels mit Holzhackschnitzeln in einer Rostfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Piotr; Gehrmann, Hans-Joachim; Seifert, Helmut; Pfrang-Stotz, Gudrun; Paur, Hanns-Rudolf [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Technische Chemie (ITC); Schubert, Stefanie [TOMRA Sorting Solutions, Muelheim-Kaerlich (Germany). Test Facility Recycling TITECH; Glorius, Thomas [Remondis GmbH, Region Rheinland, Erftstadt (Germany). Stoffstrommanagement

    2013-03-01

    Very often, in Germany biofuels are utilized energetically in a pure energetic mode predominantly in EEG incinerator plants. Further clear increases of efficiencies only are possible within a cocombustion in power plant processes with enhanced vapour parameters or in cogeneration power plants, respectively. In the course of an international collaborative project, first experiments at demonstration scale at two fluidized bed boilers at the power plant Wachtberg (Frechen, Federal Republic of Germany) it could be shown, that alternative fuels with an enhanced amount of biomass can be cocombusted without disadvantageous impacts on the emissions. The addition of sulphur to the mono-combustion of biofuels and substitute fuels reduced the total amount of chlorine. But the addition of sulphur also resulted in clearly harder coverings in waste heat recovery boilers by means of the formation of anhydrite as well as to an enhanced dust loading. The substitute fuel online analysis system from TOMRA Sorting Solutions (Wedel/Hamburg, Federal Republic of Germany) was installed in front of the stoker-fired furnace for the online-monitoring of the operation parameters chlorine, water and calorific value.

  5. Aromaticity and stability going in opposite directions: An energetic, structural, magnetic and electronic study of aminopyrimidines

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Galvão, Tiago L.P.; Rocha, Inês M.; Santos, Ana Filipa L.O.M.

    2012-01-01

    Highlights: ► Δ f H m o (cr) of 2,4-diaminopyrimidine and 2,4,6-triaminopyrimidine were obtained by combustion calorimetry. ► Sublimation thermodynamics of the compounds was studied by Knudsen effusion technique. ► Ab initio computational calculations were performed for mono-, di- and triaminopyrimidine isomers. ► Molecular energetics were correlated with several criteria of aromaticity. ► The influence of intramolecular hydrogen bonds was explored. - Abstract: The relation between molecular energetics and aromaticity was investigated for the interaction between the amino functional group and the nitrogen atoms of the pyridine and pyrimidine rings, using experimental thermodynamic techniques and computational geometries, enthalpies, chemical shifts, atomic charges and the Quantum Theory of Atoms in Molecules. 2,4-diaminopyrimidine and 2,4,6-triaminopyrimidine were studied by static bomb combustion calorimetry and Knudsen effusion technique. The derived gaseous-phase enthalpies of formation together with the enthalpies of formation of the three isomers of aminopyridine reported in the literature, were compared with the calculated computationally ones and extended to other diamino- and triaminopyrimidine isomers using the MP2/6-311++G(d,p) level of theory. The results were analyzed in terms of enthalpy of interaction between substituents and, due to the absence of meaningful stereochemical hindrance, strong inductive effects, or intramolecular hydrogen bonds according to QTAIM results, the resonance electron delocalization plays an almost exclusive role in the very exothermic enthalpies obtained. Therefore, this enthalpy of interaction was used as an experimental energetic measure of resonance effects and analyzed in terms of aromaticity. It was found that more conjugation between substituents means less aromaticity according to the magnetic (NICS) and electronic (Shannon) criteria, but more aromaticity according to the geometric (HOMA) criterion.

  6. The effects of iodine attenuation on pulmonary nodule volumetry using novel dual-layer computed tomography reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Harder, A.M. den; Hamersvelt, R.W. van; Leiner, T.; Schilham, A.M.R.; Willemink, M.J.; Jong, P.A. de [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Bangert, F. [Sint Antonius Ziekenhuis, Department of Radiology, Nieuwegein (Netherlands); Milles, Julien [Philips Healthcare, Best (Netherlands)

    2017-12-15

    To assess the effect of iodine attenuation on pulmonary nodule volumetry using virtual non-contrast (VNC) and mono-energetic reconstructions. A consecutive series of patients who underwent a contrast-enhanced chest CT scan were included. Images were acquired on a novel dual-layer spectral CT system. Conventional reconstructions as well as VNC and mono-energetic images at different keV levels were used for nodule volumetry. Twenty-four patients with a total of 63 nodules were included. Conventional reconstructions showed a median (interquartile range) volume and diameter of 174 (87 - 253) mm{sup 3} and 6.9 (5.4 - 9.9) mm, respectively. VNC reconstructions resulted in a significant volume reduction of 5.5% (2.6 - 11.2%; p<0.001). Mono-energetic reconstructions showed a correlation between nodule attenuation and nodule volume (Spearman correlation 0.77, (0.49 - 0.94)). Lowering the keV resulted in increased volumes while higher keV levels resulted in decreased pulmonary nodule volumes compared to conventional CT. Novel dual-layer spectral CT offers the possibility to reconstruct VNC and mono-energetic images. Those reconstructions show that higher pulmonary nodule attenuation results in larger nodule volumes. This may explain the reported underestimation in nodule volume on non-contrast enhanced compared to contrast-enhanced acquisitions. (orig.)

  7. The effects of iodine attenuation on pulmonary nodule volumetry using novel dual-layer computed tomography reconstructions

    International Nuclear Information System (INIS)

    Harder, A.M. den; Hamersvelt, R.W. van; Leiner, T.; Schilham, A.M.R.; Willemink, M.J.; Jong, P.A. de; Bangert, F.; Milles, Julien

    2017-01-01

    To assess the effect of iodine attenuation on pulmonary nodule volumetry using virtual non-contrast (VNC) and mono-energetic reconstructions. A consecutive series of patients who underwent a contrast-enhanced chest CT scan were included. Images were acquired on a novel dual-layer spectral CT system. Conventional reconstructions as well as VNC and mono-energetic images at different keV levels were used for nodule volumetry. Twenty-four patients with a total of 63 nodules were included. Conventional reconstructions showed a median (interquartile range) volume and diameter of 174 (87 - 253) mm 3 and 6.9 (5.4 - 9.9) mm, respectively. VNC reconstructions resulted in a significant volume reduction of 5.5% (2.6 - 11.2%; p<0.001). Mono-energetic reconstructions showed a correlation between nodule attenuation and nodule volume (Spearman correlation 0.77, (0.49 - 0.94)). Lowering the keV resulted in increased volumes while higher keV levels resulted in decreased pulmonary nodule volumes compared to conventional CT. Novel dual-layer spectral CT offers the possibility to reconstruct VNC and mono-energetic images. Those reconstructions show that higher pulmonary nodule attenuation results in larger nodule volumes. This may explain the reported underestimation in nodule volume on non-contrast enhanced compared to contrast-enhanced acquisitions. (orig.)

  8. Modification and performance evaluation of a mono-valve engine

    Science.gov (United States)

    Behrens, Justin W.

    A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.

  9. Musical Tasks and Energetic Arousal.

    Science.gov (United States)

    Lim, Hayoung A; Watson, Angela L

    2018-03-08

    Music is widely recognized as a motivating stimulus. Investigators have examined the use of music to improve a variety of motivation-related outcomes; however, these studies have focused primarily on passive music listening rather than active participation in musical activities. To examine the influence of participation in musical tasks and unique participant characteristics on energetic arousal. We used a one-way Welch's ANOVA to examine the influence of musical participation (i.e., a non-musical control and four different musical task conditions) upon energetic arousal. In addition, ancillary analyses of participant characteristics including personality, age, gender, sleep, musical training, caffeine, nicotine, and alcohol revealed their possible influence upon pretest and posttest energetic arousal scores. Musical participation yielded a significant relationship with energetic arousal, F(4, 55.62) = 44.38, p = .000, estimated ω2 = 0.60. Games-Howell post hoc pairwise comparisons revealed statistically significant differences between five conditions. Descriptive statistics revealed expected differences between introverts' and extraverts' energetic arousal scores at the pretest, F(1, 115) = 6.80, p = .010, partial η2= .06; however, mean differences failed to reach significance at the posttest following musical task participation. No other measured participant characteristics yielded meaningful results. Passive tasks (i.e., listening to a story or song) were related to decreased energetic arousal, while active musical tasks (i.e., singing, rhythm tapping, and keyboard playing) were related to increased energetic arousal. Musical task participation appeared to have a differential effect for individuals with certain personality traits (i.e., extroverts and introverts).

  10. A computer code for calculation of radioactive nuclide generation and depletion, decay heat and {gamma} ray spectrum. FPGS90

    Energy Technology Data Exchange (ETDEWEB)

    Ihara, Hitoshi; Katakura, Jun-ichi; Nakagawa, Tsuneo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-11-01

    In a nuclear reactor radioactive nuclides are generated and depleted with burning up of nuclear fuel. The radioactive nuclides, emitting {gamma} ray and {beta} ray, play role of radioactive source of decay heat in a reactor and radiation exposure. In safety evaluation of nuclear reactor and nuclear fuel cycle, it is needed to estimate the number of nuclides generated in nuclear fuel under various burn-up condition of many kinds of nuclear fuel used in a nuclear reactor. FPGS90 is a code calculating the number of nuclides, decay heat and spectrum of emitted {gamma} ray from fission products produced in a nuclear fuel under the various kinds of burn-up condition. The nuclear data library used in FPGS90 code is the library `JNDC Nuclear Data Library of Fission Products - second version -`, which is compiled by working group of Japanese Nuclear Data Committee for evaluating decay heat in a reactor. The code has a function of processing a so-called evaluated nuclear data file such as ENDF/B, JENDL, ENSDF and so on. It also has a function of making figures of calculated results. Using FPGS90 code it is possible to do all works from making library, calculating nuclide generation and decay heat through making figures of the calculated results. (author).

  11. Structure in the early afterglow light curve of the gamma-ray burst of 29 March 2003.

    Science.gov (United States)

    Uemura, Makoto; Kato, Taichi; Ishioka, Ryoko; Yamaoka, Hitoshi; Monard, Berto; Nogami, Daisaku; Maehara, Hiroyuki; Sugie, Atsushi; Takahashi, Susumu

    2003-06-19

    Gamma-ray bursts (GRBs) are energetic explosions that for 0.01-100 s are the brightest gamma-ray sources in the sky. Observations of the early evolution of afterglows are expected to provide clues about the nature of the bursts, but their rapid fading has hampered such studies; some recent rapid localizations of bursts have improved the situation. Here we report an early detection of the very bright afterglow of the burst of 29 March 2003 (GRB030329). Our data show that, even early in the afterglow phase, the light curve shows unexpectedly complicated structures superimposed on the fading background.

  12. Accurate monoenergetic electron parameters of laser wakefield in a bubble model

    Science.gov (United States)

    Raheli, A.; Rahmatallahpur, S. H.

    2012-11-01

    A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived. The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal model and it explains the mono-energetic electron trajectory more accurately, especially at the relativistic region. As a result, the quasi-mono-energetic electrons output beam interacting with the laser plasma can be more appropriately described with this model.

  13. Voluminal modelling for the characterization of wastes packages by gamma emission computed tomography

    International Nuclear Information System (INIS)

    Pettier, J.L.; Thierry, R.

    2001-01-01

    The aim of this work is to model the measurement process used for multi-photon emission computed tomography on nuclear waste drum. Our model MEPHISTO (Multi-Energy PHoton Imagery through Segmented TOmography) takes into account all phenomena influencing gamma emergent flux and high resolution spectrometric measurements using an HpGe detector through a collimator aperture. These phenomena are absorption and Compton scattering of gamma photons in waste drum, geometrical blur, spatial and energetic response of the detector. The analysis of results shows better localisation and quantification performances compared with a Ray-Driven method. It proves the importance of an accurate modelization of collimated measurements to reduce noise and stabilize iterative image reconstructions. (authors)

  14. Effect of gamma rays on growth and survival of three mustard varieties in M1 generation

    International Nuclear Information System (INIS)

    Kamala, T.; Rao, R.N.B.

    1982-01-01

    Effects of gamma radiation on germination, survival percentage, seedling height, leaf length and breadth, and growth rate in three mustard varieties were studied in M 1 generation. Seeds were exposed to 15, 30, 45, 60 and 80 Kr doses for the study. Germinations and survival percentages and seedling height showed dose-dependent decrease, while growth rate, leaf length and breadth increased at 60, 45 and 30 Kr and decreased at 80 Kr, though varietal differences were observed. (M.G.B.)

  15. Method for separating mono- and di-octylphenyl phosphoric acid esters

    International Nuclear Information System (INIS)

    Arnold, W.D. Jr.

    1977-01-01

    A method for separating mono-octylphenyl phosphoric acid ester and di-octylphenyl phosphoric acid ester from a mixture thereof comprises reacting the ester mixture with a source of lithium or sodium ions to form a mixture of the phosphate salts; contacting the salt mixture with an organic solvent which causes the dioctylphenyl phosphate salt to be dissolved in the organic solvent phase and the mono-octylphenyl phosphate salt to exist in a solid phase; separating the phases; recovering the phosphate salts from their respective phases; and acidifying the recovered salts to form the original phosphoric acid esters

  16. Imaging the magmatic system of Mono Basin, California with magnetotellurics in three--dimensions

    Science.gov (United States)

    Peacock, Jared R.; Mangan, Margaret T.; McPhee, Darcy K.; Ponce, David A.

    2015-01-01

    A three–dimensional (3D) electrical resistivity model of Mono Basin in eastern California unveils a complex subsurface filled with zones of partial melt, fluid–filled fracture networks, cold plutons, and regional faults. In 2013, 62 broadband magnetotelluric (MT) stations were collected in an array around southeastern Mono Basin from which a 3D electrical resistivity model was created with a resolvable depth of 35 km. Multiple robust electrical resistivity features were found that correlate with existing geophysical observations. The most robust features are two 300 ± 50 km3 near-vertical conductive bodies (3–10 Ω·m) that underlie the southeast and north-eastern margin of Mono Craters below 10 km depth. These features are interpreted as magmatic crystal–melt mush zones of 15 ± 5% interstitial melt surrounded by hydrothermal fluids and are likely sources for Holocene eruptions. Two conductive east–dipping structures appear to connect each magma source region to the surface. A conductive arc–like structure (resistivity (200 Ω·m) suggestive of a cooled connection. A third, less constrained conductive feature (4–10 Ω·m) 15 km deep extending to 35 km is located west of Mono Craters near the eastern front of the Sierra Nevada escarpment, and is coincident with a zone of sporadic, long–period earthquakes that are characteristic of a fluid-filled (magmatic or metamorphic) fracture network. A resistive feature (103–105 Ω·m) located under Aeolian Buttes contains a deep root down to 25 km. The eastern edge of this resistor appears to structurally control the arcuate shape of Mono Craters. These observations have been combined to form a new conceptual model of the magmatic system beneath Mono Craters to a depth of 30 km.

  17. SIMULATION OF ENERGETIC NEUTRAL ATOMS FROM SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Linghua [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Li, Gang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Shih, Albert Y. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20770 (United States); Lin, Robert P. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Wimmer-Schweingruber, Robert F., E-mail: wanglhwang@gmail.com [Institut fuer Experimentelle und Angewandte Physik, University of Kiel, Leibnizstrasse 11, D-24118 Kiel (Germany)

    2014-10-01

    Energetic neutral atoms (ENAs) provide the only way to observe the acceleration site of coronal-mass-ejection-driven (CME-driven) shock-accelerated solar energetic particles (SEPs). In gradual SEP events, energetic protons can charge exchange with the ambient solar wind or interstellar neutrals to become ENAs. Assuming a CME-driven shock with a constant speed of 1800 km s{sup –1} and compression ratio of 3.5, propagating from 1.5 to 40 R{sub S} , we calculate the accelerated SEPs at 5-5000 keV and the resulting ENAs via various charge-exchange interactions. Taking into account the ENA losses in the interplanetary medium, we obtain the flux-time profiles of these solar ENAs reaching 1 AU. We find that the arriving ENAs at energies above ∼100 keV show a sharply peaked flux-time profile, mainly originating from the shock source below 5 R{sub S} , whereas the ENAs below ∼20 keV have a flat-top time profile, mostly originating from the source beyond 10 R{sub S} . Assuming the accelerated protons are effectively trapped downstream of the shock, we can reproduce the STEREO ENA fluence observations at ∼2-5 MeV/nucleon. We also estimate the flux of ENAs coming from the charge exchange of energetic storm protons, accelerated by the fast CME-driven shock near 1 AU, with interstellar hydrogen and helium. Our results suggest that appropriate instrumentation would be able to detect ENAs from SEPs and to even make ENA images of SEPs at energies above ∼10-20 keV.

  18. New Generation Agent Defeat Weapons: Energetic N,N'-Ethylene-Bridged Polyiodoazoles.

    Science.gov (United States)

    Zhao, Gang; Kumar, Dheeraj; He, Chunlin; Hooper, Joseph P; Imler, Gregory H; Parrish, Damon A; Shreeve, Jean'ne M

    2017-11-27

    Sodium salts of iodine-rich pyrazole and imidazole with 1-(2-bromoethyl)-5-aminotetrazole are useful precursors for energetic N,N'-ethylene-bridged polyiodoazoles. Compounds 1-3 were characterized with IR, and 1 H and 13 C NMR spectroscopy as well as elemental analyses. The molecular structures of 1 and 2 were confirmed by using single crystal X-ray diffraction. Heats of formation were calculated using Gaussian 03 and detonation properties and biocidal efficiency were calculated with CHEETAH 7. The decomposition products of 1-3 destroy microbes more effectively than some previously reported biocides since the thermal decomposition occurs at below 400 °C without addition of oxidizer or combustion adjuvant. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sensitivity of Gamma-Ray Detectors to Polarization

    OpenAIRE

    Yadigaroglu, I. -A.

    1996-01-01

    Previous studies have shown that the largest gamma-ray detector to date, EGRET, does not have useful polarization sensitivity. We have explored here some improved approaches to analyzing gamma-ray pair production events, leading to important gains in sensitivity to polarization. The performance of the next generation gamma-ray instrument GLAST is investigated using a detailed Monte Carlo simulation of the complete detector.

  20. [Technique of complex mammary irradiation: Mono-isocentric 3D conformational radiotherapy and helical tomotherapy].

    Science.gov (United States)

    Vandendorpe, B; Guilbert, P; Champagne, C; Antoni, T; Nguyen, T D; Gaillot-Petit, N; Servagi Vernat, S

    2017-12-01

    To evaluate the dosimetric contribution of helical tomotherapy for breast cancers compared with conformal radiotherapy in mono-isocentric technique. For 23 patients, the dosimetric results in mono-isocentric 3D conformational radiotherapy did not satisfy the constraints either of target volumes nor organs at risk. A prospective dosimetric comparison between mono-isocentric 3D conformational radiotherapy and helical tomotherapy was therefore carried out. The use of helical tomotherapy showed a benefit in these 23 patients, with either an improvement in the conformity index or homogeneity, but with an increase in low doses. Of the 23 patients, two had pectus excavatum, five had past thoracic irradiation and two required bilateral irradiation. The other 14 patients had a combination of morphology and/or indication of lymph node irradiation. For these patients, helical tomotherapy was therefore preferred to mono-isocentric 3D conformational radiotherapy. Tomotherapy appears to provide better homogeneity and tumour coverage. This technique of irradiation may be justified in the case of morphological situations such as pectus exavatum and in complex clinical situations. In other cases, conformal radiotherapy in mono-isocentric technique remains to be favoured. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  1. Cost-Effective Mass Production of Mono Bucket Foundations

    DEFF Research Database (Denmark)

    Gres, Szymon; Nielsen, Søren Andreas; Fejerskov, Morten

    2015-01-01

    for innovative and cost-effective design of Mono Bucket foundations. Established approach merges wind and wave load models, soil/structure interaction topics, structural optimization and installation/fabrication aspects, into software package with ability to perform optimal design of the individual foundations...

  2. Selective mono-radioiodination and characterization of a cell-penetrating peptide. L-Tyr-maurocalcine

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Mitra; Bacot, Sandrine; Perret, Pascale; Riou, Laurent; Ghezzi, Catherine [Universite Joseph Fourier, Grenoble (France); INSERM U1039, Grenoble (France). Radiopharmaceutiques Biocliniques; Poillot, Cathy; Cestele, Sandrine [INSERM U836, Grenoble (France). Grenoble Inst. of Neuroscience; Universite Joseph Fourier, Grenoble (France); Desruet, Marie-Dominique [INSERM U1039, Grenoble (France). Radiopharmaceutiques Biocliniques; Couvet, Morgane; Bourgoin, Sandrine; Seve, Michel [CRI-INSERM U823, Grenoble (France). Inst. of Albert Bonniot; Universite Joseph Fourier, Grenoble (France); Waard, Michel de [INSERM U836, Grenoble (France). Grenoble Inst. of Neuroscience; Universite Joseph Fourier, Grenoble (France); Smartox Biotechnologies, Grenoble (France)

    2014-07-01

    Mono-and poly-iodinated peptides form frequently during radioiodination procedures. However, the formation of a single species in its mono-iodinated form is essential for quantitative studies such as determination of tissue concentration or image quantification. Therefore, the aim of the present study was to define the optimal experimental conditions in order to exclusively obtain the mono-iodinated form of L-maurocalcine (L-MCa). L-MCa is an animal venom toxin which was shown to act as a cell-penetrating peptide. In order to apply the current direct radioiodination technique using oxidative agents including chloramine T, Iodo-Gen {sup registered} or lactoperoxidase, an analogue of this peptide containing a tyrosine residue (Tyr-L-MCa) was synthesized and was shown to fold/oxidize properly. The enzymatic approach using lactoperoxidase/H{sub 2}O{sub 2} was found to be the best method for radioiodination of Tyr-L-MCa. MALDI-TOF mass spectrometry analyses were then used for identification of the chromatographic eluting components of the reaction mixtures. We observed that the production of different radioiodinated species depended upon the reaction conditions. Our results successfully described the experimental conditions of peptide radioiodination allowing the exclusive production of the mono-iodinated form with high radiochemical purity and without the need for a purification step. Mono-radioiodination of L-Tyr-MCa will be crucial for future quantitative studies, investigating the mechanism of cell penetration and in vivo biodistribution.

  3. A new inorganic adsorbent of (n, {gamma}){sup 99}Mo for the practical {sup 99m}Tc generator

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Y; Nishino, M [Kaken Co., Asahi, Ibaraki (Japan). Functional Materials Inst.; Ishikawa, K; Tatenuma, K; Kurosawa, K; Tanase, M; Yamabayashi, H

    1998-10-01

    Technetium-99m is used most widely in diagnostic nuclear medicine. By the milking procedure, it is normally eluted as the daughter nuclide from {sup 99}Mo adsorbed in an alumina column as a generator. Molybdenum-99 with high specific activity has been produced in large quantities from the fission of irradiated {sup 235}U. However, the production process involves the troublesome handling process of various fission products in the high radiation field and generates highly radioactive and poisonous wastes. To avoid these drawbacks, some gel generators have been proposed. They are of zirconium molybdate, zirconium molybdophosphate or titanium molybdate gel, which are able to be applied to {sup 99}Mo obtained easily by (n, {gamma}) reaction of natural Mo. However, it has become apparent that the gel has been prepared only under certain strict conditions such as concentrations and reaction temperature, and eventually the elution rate of {sup 99m}Tc was unstable because of any influences of the gel preparation conditions. We have developed and reported a new inorganic adsorbent (Polyinorganic Zirconium Compound: PZC) of {sup 99}Mo with a low specific activity obtained by (n, {gamma}) reaction to overcome the problems of gel generators above mentioned. PZC was prepared from ZrCl{sub 4} and isopropyl alcohol. The adsorbed amount of {sup 99}Mo (Mo) to PZC was about 200 mg/g-PZC, and the yield of {sup 99m}Tc was about 80%. And the breakthrough of {sup 99}Mo was less than 0.5%. In this paper, the properties of the improved PZC, performance of generators with {sup 99}Mo loaded from 0.5 to 470 MBq, and a method to reduce the breakthrough of {sup 99}Mo are described. (author)

  4. Photoactive energetic materials

    Science.gov (United States)

    Chavez, David E.; Hanson, Susan Kloek; Scharff, Robert Jason; Veauthier, Jacqueline Marie; Myers, Thomas Winfield

    2018-02-27

    Energetic materials that are photoactive or believed to be photoactive may include a conventional explosive (e.g. PETN, nitroglycerine) derivatized with an energetic UV-absorbing and/or VIS-absorbing chromophore such as 1,2,4,5-tetrazine or 1,3,5-triazine. Absorption of laser light having a suitably chosen wavelength may result in photodissociation, decomposition, and explosive release of energy. These materials may be used as ligands to form complexes. Coordination compounds include such complexes with counterions. Some having the formula M(L).sub.n.sup.2+ were synthesized, wherein M is a transition metal and L is a ligand and n is 2 or 3. These may be photoactive upon exposure to a laser light beam having an appropriate wavelength of UV light, near-IR and/or visible light. Photoactive materials also include coordination compounds bearing non-energetic ligands; in this case, the counterion may be an oxidant such as perchlorate.

  5. 21 CFR 582.4505 - Mono- and diglycerides of edible fats or oils, or edible fat-forming acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Mono- and diglycerides of edible fats or oils, or... GENERALLY RECOGNIZED AS SAFE Emulsifying Agents § 582.4505 Mono- and diglycerides of edible fats or oils, or edible fat-forming acids. (a) Product. Mono- and diglycerides of edible fats or oils, or edible fat...

  6. Space Particle Hazard Measurement and Modeling

    Science.gov (United States)

    2007-11-30

    the spacecraft and perturbations of the environment generated by the spacecraft. Koons et al. (1999) compiled and studied all spacecraft anomalies...unrealistic for D12 than for Dα0p). However, unlike the stability problems associated with the original cross diffusion terms, they are quite manageable ...E), to mono-energetic beams of charged particles of known energies which enables one, in principle , to unfold the space environment spectrum, j(E

  7. Emotions in freely varying and mono-pitched vowels, acoustic and EGG analyses.

    Science.gov (United States)

    Waaramaa, Teija; Palo, Pertti; Kankare, Elina

    2015-12-01

    Vocal emotions are expressed either by speech or singing. The difference is that in singing the pitch is predetermined while in speech it may vary freely. It was of interest to study whether there were voice quality differences between freely varying and mono-pitched vowels expressed by professional actors. Given their profession, actors have to be able to express emotions both by speech and singing. Electroglottogram and acoustic analyses of emotional utterances embedded in expressions of freely varying vowels [a:], [i:], [u:] (96 samples) and mono-pitched protracted vowels (96 samples) were studied. Contact quotient (CQEGG) was calculated using 35%, 55%, and 80% threshold levels. Three different threshold levels were used in order to evaluate their effects on emotions. Genders were studied separately. The results suggested significant gender differences for CQEGG 80% threshold level. SPL, CQEGG, and F4 were used to convey emotions, but to a lesser degree, when F0 was predetermined. Moreover, females showed fewer significant variations than males. Both genders used more hypofunctional phonation type in mono-pitched utterances than in the expressions with freely varying pitch. The present material warrants further study of the interplay between CQEGG threshold levels and formant frequencies, and listening tests to investigate the perceptual value of the mono-pitched vowels in the communication of emotions.

  8. Study of SMM flares in gamma-rays and neutrons

    Science.gov (United States)

    Dunphy, Philip P.; Chupp, Edward L.

    1992-01-01

    This report summarizes the results of the research supported by NASA grant NAGW-2755 and lists the papers and publications produced through the grant. The objective of the work was to study solar flares that produced observable signals from high-energy (greater than 10 MeV) gamma-rays and neutrons in the Solar Maximum Mission (SMM) Gamma-Ray Spectrometer (GRS). In 3 of 4 flares that had been studied previously, most of the neutrons and neutral pions appear to have been produced after the 'main' impulsive phase as determined from hard x-rays and gamma-rays. We, therefore, proposed to analyze the timing of the high-energy radiation, and its implications for the acceleration, trapping, and transport of flare particles. It was equally important to characterize the spectral shapes of the interacting energetic electrons and protons - another key factor in constraining possible particle acceleration mechanisms. In section 2.0, we discuss the goals of the research. In section 3.0, we summarize the results of the research. In section 4.0, we list the papers and publications produced under the grant. Preprints or reprints of the publications are attached as appendices.

  9. VERITAS OBSERVATIONS OF GAMMA-RAY BURSTS DETECTED BY SWIFT

    International Nuclear Information System (INIS)

    Acciari, V. A.; Benbow, W.; Aliu, E.; Errando, M.; Arlen, T.; Aune, T.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Collins-Hughes, E.; Cesarini, A.; Connolly, M. P.; Christiansen, J. L.; Ciupik, L.; Cui, W.; Duke, C.; Falcone, A.

    2011-01-01

    We present the results of 16 Swift-triggered Gamma-ray burst (GRB) follow-up observations taken with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) telescope array from 2007 January to 2009 June. The median energy threshold and response time of these observations were 260 GeV and 320 s, respectively. Observations had an average duration of 90 minutes. Each burst is analyzed independently in two modes: over the whole duration of the observations and again over a shorter timescale determined by the maximum VERITAS sensitivity to a burst with a t –1.5 time profile. This temporal model is characteristic of GRB afterglows with high-energy, long-lived emission that have been detected by the Large Area Telescope on board the Fermi satellite. No significant very high energy (VHE) gamma-ray emission was detected and upper limits above the VERITAS threshold energy are calculated. The VERITAS upper limits are corrected for gamma-ray extinction by the extragalactic background light and interpreted in the context of the keV emission detected by Swift. For some bursts the VHE emission must have less power than the keV emission, placing constraints on inverse Compton models of VHE emission.

  10. Gamma-ray detection and Compton camera image reconstruction with application to hadron therapy

    International Nuclear Information System (INIS)

    Frandes, M.

    2010-09-01

    A novel technique for radiotherapy - hadron therapy - irradiates tumors using a beam of protons or carbon ions. Hadron therapy is an effective technique for cancer treatment, since it enables accurate dose deposition due to the existence of a Bragg peak at the end of particles range. Precise knowledge of the fall-off position of the dose with millimeters accuracy is critical since hadron therapy proved its efficiency in case of tumors which are deep-seated, close to vital organs, or radio-resistant. A major challenge for hadron therapy is the quality assurance of dose delivery during irradiation. Current systems applying positron emission tomography (PET) technologies exploit gamma rays from the annihilation of positrons emitted during the beta decay of radioactive isotopes. However, the generated PET images allow only post-therapy information about the deposed dose. In addition, they are not in direct coincidence with the Bragg peak. A solution is to image the complete spectrum of the emitted gamma rays, including nuclear gamma rays emitted by inelastic interactions of hadrons to generated nuclei. This emission is isotropic, and has a spectrum ranging from 100 keV up to 20 MeV. However, the measurement of these energetic gamma rays from nuclear reactions exceeds the capability of all existing medical imaging systems. An advanced Compton scattering detection method with electron tracking capability is proposed, and modeled to reconstruct the high-energy gamma-ray events. This Compton detection technique was initially developed to observe gamma rays for astrophysical purposes. A device illustrating the method was designed and adapted to Hadron Therapy Imaging (HTI). It consists of two main sub-systems: a tracker where Compton recoiled electrons are measured, and a calorimeter where the scattered gamma rays are absorbed via the photoelectric effect. Considering a hadron therapy scenario, the analysis of generated data was performed, passing trough the complete

  11. Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production

    Science.gov (United States)

    Jansen, O.; Wang, T.; Stark, D. J.; d’Humières, E.; Toncian, T.; Arefiev, A. V.

    2018-05-01

    The ability of an intense laser pulse to propagate in a classically over-critical plasma through the phenomenon of relativistic transparency is shown to facilitate the generation of strong plasma magnetic fields. Particle-in-cell simulations demonstrate that these fields significantly enhance the radiation rates of the laser-irradiated electrons, and furthermore they collimate the emission so that a directed and dense beam of multi-MeV gamma-rays is achievable. This capability can be exploited for electron–positron pair production via the linear Breit–Wheeler process by colliding two such dense beams. Presented simulations show that more than 103 pairs can be produced in such a setup, and the directionality of the positrons can be controlled by the angle of incidence between the beams.

  12. Discovery of Giant Gamma-ray Bubbles in the Milky Way

    Science.gov (United States)

    Su, Meng

    Based on data from the Fermi Gamma-ray Space Telescope, we have discovered two gigantic gamma-ray emitting bubble structures in our Milky Way (known as the Fermi bubbles), extending ˜50 degrees above and below the Galactic center with a width of ˜40 degrees in longitude. The gamma-ray emission associated with these bubbles has a significantly harder spectrum (dN/dE ˜ E-2) than the inverse Compton emission from known cosmic ray electrons in the Galactic disk, or the gamma-rays produced by decay of pions from proton-ISM collisions. There is no significant difference in the spectrum or gamma-ray luminosity between the north and south bubbles. The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAP haze; we also found features in the ROSAT soft X-ray maps at 1.5 -- 2 keV which line up with the edges of the bubbles. The Fermi bubbles are most likely created by some large episode of energy injection in the Galactic center, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last ˜ 10 Myr. Study of the origin and evolution of the bubbles also has the potential to improve our understanding of recent energetic events in the inner Galaxy and the high-latitude cosmic ray population. Furthermore, we have recently identified a gamma-ray cocoon feature within the southern bubble, with a jet-like feature along the cocoon's axis of symmetry, and another directly opposite the Galactic center in the north. If confirmed, these jets are the first resolved gamma-ray jets ever seen.

  13. Energetic particle effects on global MHD modes

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1990-01-01

    The effects of energetic particles on MHD type modes are studied by analytical theories and the nonvariational kinetic-MHD stability code (NOVA-K). In particular we address the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant ''fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral-beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n=1 internal kink mode in the hot particle beat space exists even in the absence of core ion finite Larmor radius effect (finite ω *i ). On the other hand, the trapped alpha particles are found to resonantly excite instability of the n=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 23 refs., 5 figs

  14. Gamma-ray detection and Compton camera image reconstruction with application to hadron therapy; Detection des rayons gamma et reconstruction d'images pour la camera Compton: Application a l'hadrontherapie

    Energy Technology Data Exchange (ETDEWEB)

    Frandes, M.

    2010-09-15

    A novel technique for radiotherapy - hadron therapy - irradiates tumors using a beam of protons or carbon ions. Hadron therapy is an effective technique for cancer treatment, since it enables accurate dose deposition due to the existence of a Bragg peak at the end of particles range. Precise knowledge of the fall-off position of the dose with millimeters accuracy is critical since hadron therapy proved its efficiency in case of tumors which are deep-seated, close to vital organs, or radio-resistant. A major challenge for hadron therapy is the quality assurance of dose delivery during irradiation. Current systems applying positron emission tomography (PET) technologies exploit gamma rays from the annihilation of positrons emitted during the beta decay of radioactive isotopes. However, the generated PET images allow only post-therapy information about the deposed dose. In addition, they are not in direct coincidence with the Bragg peak. A solution is to image the complete spectrum of the emitted gamma rays, including nuclear gamma rays emitted by inelastic interactions of hadrons to generated nuclei. This emission is isotropic, and has a spectrum ranging from 100 keV up to 20 MeV. However, the measurement of these energetic gamma rays from nuclear reactions exceeds the capability of all existing medical imaging systems. An advanced Compton scattering detection method with electron tracking capability is proposed, and modeled to reconstruct the high-energy gamma-ray events. This Compton detection technique was initially developed to observe gamma rays for astrophysical purposes. A device illustrating the method was designed and adapted to Hadron Therapy Imaging (HTI). It consists of two main sub-systems: a tracker where Compton recoiled electrons are measured, and a calorimeter where the scattered gamma rays are absorbed via the photoelectric effect. Considering a hadron therapy scenario, the analysis of generated data was performed, passing trough the complete

  15. Mono or 3D video production for scientific dissemination of nuclear energy applications

    International Nuclear Information System (INIS)

    Freitas, Victor Goncalves G.; Mol, Antonio Carlos A.; Biermann, Bruna; Jorge, Carlos Alexandre F.; Araujo, Tawein

    2011-01-01

    This work presents results of educational videos development, mono or stereo, for scientific dissemination of nuclear energy applications. Nuclear energy span through many important applications for the society, ranging from electrical power generation to nuclear medicine, among others. Thus, the purpose is to disseminate this information for the general public and specially for students. Educational videos consist in a good approach for this purpose, due to the involvement of the public they provide, more than simply text or oral exposition, or even static images presentation. Stereo videos result in even more involvement of the public, besides immersion, the later due to the realism 3D views provide. The video developed in this work deals with explanations of electrical power generation, including nuclear reactor operation, shows the percentage of nuclear source as power generation all over the world, and explains also nuclear energy application in medicine. It is expected all these characteristics provided by the use of video or virtual reality techniques will achieve the purpose of disseminating such important information, regarding the benefits of nuclear energy to the society. (author)

  16. Mono or 3D video production for scientific dissemination of nuclear energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Victor Goncalves G.; Mol, Antonio Carlos A.; Biermann, Bruna; Jorge, Carlos Alexandre F., E-mail: mol@ien.gov.b, E-mail: vgoncalves@ien.gov.b, E-mail: calexandre@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Araujo, Tawein [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Belas Artes; Legey, Ana Paula [Universidade Gama Filho (UGF), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    This work presents results of educational videos development, mono or stereo, for scientific dissemination of nuclear energy applications. Nuclear energy span through many important applications for the society, ranging from electrical power generation to nuclear medicine, among others. Thus, the purpose is to disseminate this information for the general public and specially for students. Educational videos consist in a good approach for this purpose, due to the involvement of the public they provide, more than simply text or oral exposition, or even static images presentation. Stereo videos result in even more involvement of the public, besides immersion, the later due to the realism 3D views provide. The video developed in this work deals with explanations of electrical power generation, including nuclear reactor operation, shows the percentage of nuclear source as power generation all over the world, and explains also nuclear energy application in medicine. It is expected all these characteristics provided by the use of video or virtual reality techniques will achieve the purpose of disseminating such important information, regarding the benefits of nuclear energy to the society. (author)

  17. Air quality in bedded mono-slope beef barns

    Science.gov (United States)

    Bedded mono-slope barns are becoming more common in the upper Midwest. Because these are new facilities, little research has been published regarding environmental quality, building management and animal performance in these facilities. A team of researchers from South Dakota State University, USDA ...

  18. Fast wave current drive on ITER in the presence of energetic alphas

    International Nuclear Information System (INIS)

    Mau, T.K.

    1989-01-01

    The impact of energetic alpha particle wave absorption on the range of frequencies for efficient fast wave current drive in an ITER-like fusion reactor core is investigated. The energetic alpha damping decrement is calculated, using an exact slowing down distribution function, and compared to electron and fuel ion damping over a wide range of frequencies. A combination of strong alpha damping and edge electron absorption in the higher ion harmonic regime limits efficient core fast wave current drive to the lower harmonics (1=2.3). However, high frequency fast waves may be employed to generate current in the outer plasma region. 11 refs., 7 figs

  19. Long-term thermophilic mono-digestion of rendering wastes and co-digestion with potato pulp

    International Nuclear Information System (INIS)

    Bayr, S.; Ojanperä, M.; Kaparaju, P.; Rintala, J.

    2014-01-01

    Highlights: • Rendering wastes’ mono-digestion and co-digestion with potato pulp were studied. • CSTR process with OLR of 1.5 kg VS/m 3 d, HRT of 50 d was unstable in mono-digestion. • Free NH 3 inhibited mono-digestion of rendering wastes. • CSTR process with OLR of 1.5 kg VS/m 3 d, HRT of 50 d was stable in co-digestion. • Co-digestion increased methane yield somewhat compared to mono-digestion. - Abstract: In this study, mono-digestion of rendering wastes and co-digestion of rendering wastes with potato pulp were studied for the first time in continuous stirred tank reactor (CSTR) experiments at 55 °C. Rendering wastes have high protein and lipid contents and are considered good substrates for methane production. However, accumulation of digestion intermediate products viz., volatile fatty acids (VFAs), long chain fatty acids (LCFAs) and ammonia nitrogen (NH 4 -N and/or free NH 3 ) can cause process imbalance during the digestion. Mono-digestion of rendering wastes at an organic loading rate (OLR) of 1.5 kg volatile solids (VS)/m 3 d and hydraulic retention time (HRT) of 50 d was unstable and resulted in methane yields of 450 dm 3 /kg VS fed . On the other hand, co-digestion of rendering wastes with potato pulp (60% wet weight, WW) at the same OLR and HRT improved the process stability and increased methane yields (500–680 dm 3 /kg VS fed ). Thus, it can be concluded that co-digestion of rendering wastes with potato pulp could improve the process stability and methane yields from these difficult to treat industrial waste materials

  20. Studies of mono-crystalline CVD diamond pixel detectors

    CERN Document Server

    Bartz, E; Atramentov, O; Yang, Z; Hall-Wilton, R; Schnetzer, S; Patel, R; Bugg, W; Hebda, P; Halyo, V; Hunt, A; Marlow, D; Steininger, H; Ryjov, V; Hits, D; Spanier, S; Pernicka, M; Johns, W; Doroshenko, J; Hollingsworth, M; Harrop, B; Farrow, C; Stone, R

    2011-01-01

    The Pixel Luminosity Telescope (PLT) is a dedicated luminosity monitor, presently under construction, for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). It measures the particle flux in several three layered pixel diamond detectors that are aligned precisely with respect to each other and the beam direction. At a lower rate it also performs particle track position measurements. The PLTs mono-crystalline CVD diamonds are bump-bonded to the same readout chip used in the silicon pixel system in CMS. Mono-crystalline diamond detectors have many attributes that make them desirable for use in charged particle tracking in radiation hostile environments such as the LHC. In order to further characterize the applicability of diamond technology to charged particle tracking we performed several tests with particle beams that included a measurement of the intrinsic spatial resolution with a high resolution beam telescope. Published by Elsevier B.V.

  1. Studies of mono-crystalline CVD diamond pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bugg, W. [University of Tennessee, Knoxville (United States); Hollingsworth, M., E-mail: mhollin3@utk.edu [University of Tennessee, Knoxville (United States); Spanier, S.; Yang, Z. [University of Tennessee, Knoxville (United States); Bartz, E.; Doroshenko, J.; Hits, D.; Schnetzer, S.; Stone, R.; Atramentov, O.; Patel, R.; Barker, A. [Rutgers University, Piscataway (United States); Hall-Wilton, R.; Ryjov, V.; Farrow, C. [CERN, Geneva (Switzerland); Pernicka, M.; Steininger, H. [HEPHY, Vienna (Austria); Johns, W. [Vanderbilt University, Nashville (United States); Halyo, V.; Harrop, B. [Princeton University, Princeton (United States); and others

    2011-09-11

    The Pixel Luminosity Telescope (PLT) is a dedicated luminosity monitor, presently under construction, for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). It measures the particle flux in several three layered pixel diamond detectors that are aligned precisely with respect to each other and the beam direction. At a lower rate it also performs particle track position measurements. The PLT's mono-crystalline CVD diamonds are bump-bonded to the same readout chip used in the silicon pixel system in CMS. Mono-crystalline diamond detectors have many attributes that make them desirable for use in charged particle tracking in radiation hostile environments such as the LHC. In order to further characterize the applicability of diamond technology to charged particle tracking we performed several tests with particle beams that included a measurement of the intrinsic spatial resolution with a high resolution beam telescope.

  2. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Flare

    Science.gov (United States)

    Barghouty, A. F.; Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Cohen, C. M. S.; Cummings, A. C.; Labrador, A. W.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We discuss observations of energetic neutral hydrogen atoms (ENAs) from a solar flare/coronal mass ejection event reported by Mewaldt et al. (2009). The observations were made during the 5 December 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV particles arriving from the Sun. The derived solar emission profile, arrival directions, and energy spectrum all show that the atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. CME-driven shock acceleration is also considered. Taking into account ENA losses, we conclude that the observed ENAs must have been produced in the high corona at heliocentric distances .2 solar radii.

  3. Experience of Minas Gerais Energetic Company (CEMIG) in feasibility studies from hydroelectric power plants: energetic-economic studies

    International Nuclear Information System (INIS)

    Ramos, O.C.; Bras, A.J.F.; Batista Neto, R.P.; Salles Filho, M.P.

    1989-01-01

    The experience of Minas Gerais Energetic Company (CEMIG) - Brazil, on the use of dimensioning methodology for hydroelectric power plant from the Coordinated Group of Planning System was described, showing the problems with its use and the solutions, mainly the reservoir and the dimension of installed potential. It was concluded that the calculation procedures of the marginal costs for dimensioning, so as to become these costs more representative in future structure of the Brazilian generator park and less dependent to the oscillation due to conjuncture problems, must be re-evaluated. (C.G.C.). 7 refs, 3 figs, 1 tab

  4. Study on penetration-induced initiation of energetic fragment

    Science.gov (United States)

    Qiao, Xiangxin; Xu, Heyang

    2017-09-01

    In order to investigate penetration-induced initiation of energetic fragment penetrating target, PTFE/Al (mass ratio 73.5/26.5) pressed and sintered into a Ф8mm × 8mm cylinder. To form energetic fragment, the cylinder was put into a closed container made by 35CrMnSiA. The container is 12mm long, 2mm thick. Energetic fragments were launched by a 14.5mm ballistic gun with a series of velocities and the penetrate process was simulated by AUTODYN-3D. The results show that the stress peak of energetic material exceed the initiation threshold, and energetic material will deflagrate, when energetic fragments impact velocity more than 800 m/s. The research results can provide reference for designs of energetic warhead.

  5. STAR-JET INTERACTIONS AND GAMMA-RAY OUTBURSTS FROM 3C454.3

    Energy Technology Data Exchange (ETDEWEB)

    Khangulyan, D. V. [Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Barkov, M. V. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Bosch-Ramon, V. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain); Aharonian, F. A. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Dorodnitsyn, A. V. [Laboratory for High Energy Astrophysics, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States)

    2013-09-10

    We propose a model to explain the ultra-bright GeV gamma-ray flares observed from the blazar 3C454.3. The model is based on the concept of a relativistic jet interacting with compact gas condensations produced when a star (a red giant) crosses the jet close to the central black hole. The study includes an analytical treatment of the evolution of the envelope lost by the star within the jet, and calculations of the related high-energy radiation. The model readily explains the day-long that varies on timescales of hours, GeV gamma-ray flare from 3C454.3, observed during 2010 November on top of a plateau lasting weeks. In the proposed scenario, the plateau state is caused by a strong wind generated by the heating of the stellar atmosphere due to nonthermal particles accelerated at the jet-star interaction region. The flare itself could be produced by a few clouds of matter lost by the red giant after the initial impact of the jet. In the framework of the proposed scenario, the observations constrain the key model parameters of the source, including the mass of the central black hole: M{sub BH} {approx_equal} 10{sup 9} M{sub Sun }, the total jet power: L{sub j} {approx_equal} 10{sup 48} erg s{sup -1}, and the Doppler factor of the gamma-ray emitting clouds: {delta} {approx_equal} 20. Whereas we do not specify the particle acceleration mechanisms, the potential gamma-ray production processes are discussed and compared in the context of the proposed model. We argue that synchrotron radiation of protons has certain advantages compared to other radiation channels of directlyaccelerated electrons. An injected proton distribution {proportional_to}E {sup -1} or harder below the relevant energies would be favored to alleviate the tight energetic constraints and to avoid the violation of the observational low-energy constraints.

  6. Dose Response for Monokaryon mycelium of Pleurotus pulmonarius After Acute Gamma Radiation

    International Nuclear Information System (INIS)

    Wan Safina Wan Abdul Razak; Azhar Mohamad; Nie, H.J.

    2016-01-01

    Pleurotus pulmonarius is locally known as Grey oyster. The species is popular and widely cultivated throughout the world mostly in Asia Europe as their simple and low cost production technology and higher biological efficiency. Mutation induction is an alternative ways for improving available commercial strain for better quality traits. Dose response is important in evaluating effects of mutagenesis via acute gamma radiation. Monokaryon mycelium of Pleurotus pulmonarius was exposed to acute gamma radiation ranged from 0 Gy, 0.1 kGy, 0.2 kGy, 0.3 kGy, 0.4 kGy, 0.5 kGy, 0.6 kGy, 0.7 kGy, 0.8 kGy, 0.9 kGy, 1.0 kGy, 1.5 Gy, 2.0 kGy, 3.0 kGy and 4.0 kGy at dose rate 0.013 kGy/ min. growth performance was measured at 2 days interval to get the LD_5_0. Increasing of the irradiation dose found to decrease the growth performance of the monokaryon mycelium. LD_5_0 was revealed at 1.56 kGy for mono karyon mycelium. Discoveries of the works are important for the improvement of Pleurotus species via acute gamma radiation and benefiting to growers and mushroom industries. (author)

  7. Modeling Whistler Wave Generation Regimes In Magnetospheric Cyclotron Maser

    Science.gov (United States)

    Pasmanik, D. L.; Demekhov, A. G.; Trakhtengerts, V. Y.; Parrot, M.

    Numerical analysis of the model for cyclotron instability development in the Earth magnetosphere is made.This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. Two different mechanisms of energetic electron loss from the interaction region are discussed. The first one is precipitation of energetic particles via the loss cone. The other mechanism is drift of particles away from the interaction region across the mag- netic field line. In the case of interaction in plasmasphere or rather large areas of cold plasma density enhancement the loss cone precipitation are dominant. For interaction in a subauroral duct losses due to drift are most effective. A parametric study of the model for both mechanisms of particle losses is made. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch-angle distributions and elec- tron density. We show that in addition to the well-known stationary generation and periodic regime with successive spikes of similar shape, more complex forms of wave spectrum exist. In particular, we found a periodic regime, in which a single period in- cludes two separate spikes with different spectral shapes. In another regime, periodic generation of spikes at higher frequencies together with quasi-stationary generation at lower frequencies occurs. Quasi-periodic regime with spike overlapping, i.e. when generation of a new spike begins before the previous one is over is also found. Results obtained are compared with experimental data on quasi-periodic regimes of whistler wave generation.

  8. Resonant scattering of energetic electrons in the plasmasphere by monotonic whistler-mode waves artificially generated by ionospheric modification

    Directory of Open Access Journals (Sweden)

    S. S. Chang

    2014-05-01

    Full Text Available Modulated high-frequency (HF heating of the ionosphere provides a feasible means of artificially generating extremely low-frequency (ELF/very low-frequency (VLF whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high-energy electrons in the plasmasphere. By ray tracing the magnetospheric propagation of ELF/VLF emissions artificially generated at low-invariant latitudes, we evaluate the relativistic electron resonant energies along the ray paths and show that propagating artificial ELF/VLF waves can resonate with electrons from ~ 100 keV to ~ 10 MeV. We further implement test particle simulations to investigate the effects of resonant scattering of energetic electrons due to triggered monotonic/single-frequency ELF/VLF waves. The results indicate that within the period of a resonance timescale, changes in electron pitch angle and kinetic energy are stochastic, and the overall effect is cumulative, that is, the changes averaged over all test electrons increase monotonically with time. The localized rates of wave-induced pitch-angle scattering and momentum diffusion in the plasmasphere are analyzed in detail for artificially generated ELF/VLF whistlers with an observable in situ amplitude of ~ 10 pT. While the local momentum diffusion of relativistic electrons is small, with a rate of −7 s−1, the local pitch-angle scattering can be intense near the loss cone with a rate of ~ 10−4 s−1. Our investigation further supports the feasibility of artificial triggering of ELF/VLF whistler waves for removal of high-energy electrons at lower L shells within the plasmasphere. Moreover, our test particle simulation results show quantitatively good agreement with quasi-linear diffusion coefficients, confirming the applicability of both methods to evaluate the resonant diffusion effect of artificial generated ELF/VLF whistlers.

  9. Mammalian energetics. Flexible energetics of cheetah hunting strategies provide resistance against kleptoparasitism.

    Science.gov (United States)

    Scantlebury, David M; Mills, Michael G L; Wilson, Rory P; Wilson, John W; Mills, Margaret E J; Durant, Sarah M; Bennett, Nigel C; Bradford, Peter; Marks, Nikki J; Speakman, John R

    2014-10-03

    Population viability is driven by individual survival, which in turn depends on individuals balancing energy budgets. As carnivores may function close to maximum sustained power outputs, decreased food availability or increased activity may render some populations energetically vulnerable. Prey theft may compromise energetic budgets of mesopredators, such as cheetahs and wild dogs, which are susceptible to competition from larger carnivores. We show that daily energy expenditure (DEE) of cheetahs was similar to size-based predictions and positively related to distance traveled. Theft at 25% only requires cheetahs to hunt for an extra 1.1 hour per day, increasing DEE by just 12%. Therefore, not all mesopredators are energetically constrained by direct competition. Other factors that increase DEE, such as those that increase travel, may be more important for population viability. Copyright © 2014, American Association for the Advancement of Science.

  10. Electrical characterization of commercial NPN bipolar junction transistors under neutron and gamma irradiation

    Directory of Open Access Journals (Sweden)

    OO Myo Min

    2014-01-01

    Full Text Available Electronics components such as bipolar junction transistors, diodes, etc. which are used in deep space mission are required to be tolerant to extensive exposure to energetic neutrons and ionizing radiation. This paper examines neutron radiation with pneumatic transfer system of TRIGA Mark-II reactor at the Malaysian Nuclear Agency. The effects of the gamma radiation from Co-60 on silicon NPN bipolar junction transistors is also be examined. Analyses on irradiated transistors were performed in terms of the electrical characteristics such as current gain, collector current and base current. Experimental results showed that the current gain on the devices degraded significantly after neutron and gamma radiations. Neutron radiation can cause displacement damage in the bulk layer of the transistor structure and gamma radiation can induce ionizing damage in the oxide layer of emitter-base depletion layer. The current gain degradation is believed to be governed by the increasing recombination current in the base-emitter depletion region.

  11. Ground-Based Observations of Terrestrial Gamma Ray Flashes Associated with Downward-Directed Lightning Leaders

    Science.gov (United States)

    Belz, J.; Abbasi, R.; Krehbiel, P. R.; LeVon, R.; Remington, J.; Rison, W.; Thomas, R. J.

    2017-12-01

    Terrestrial Gamma Flashes (TGFs) have been observed in satellite-borne gamma ray detectors for several decades, starting with the BATSE instrument on the Compton Gamma-Ray observatory in 1994. TGFs consist of bursts of upwards of 1018 primary gamma rays, with a duration of up to a few milliseconds, originating in the Earth's atmosphere. More recent observations have shown that satellite-observed TGFs are generated in upward-propagating negative leaders of intracloud lightning, suggesting that they may be sensitive to the processes responsible for the initial lightning breakdown. Here, we present the first evidence that TGFs are also produced at the beginning of negative cloud-to-ground flashes, and that they may provide a new window through which ground-based observatories may contribute to understanding the breakdown process. The Telescope Array Surface Detector (TASD) is a 700 square kilometer cosmic ray observatory, an array of 507 3m2 scintillators on a 1.2 km grid. The array is triggered and read out when at least three adjacent detectors observe activity within an 8 μs window. Following the observation of bursts of anomalous TASD triggers, lasting a few hundred microseconds and correlated with local lightning activity, a Lightning Mapping Array (LMA) and slow electric field antenna were installed at the TASD site in order to study the effect. From data obtained between 2014 and 2016, correlated observations were obtained for ten -CG flashes. In 9 out of 10 cases, bursts of up to five anomalous triggers were detected during the first ms of the flash, as negative breakdown was descending into lower positive storm charge. The triggers occurred when the LMA-detected VHF radiation sources were at altitudes between 1.5 to 4.5 km AGL. The tenth flash was initiated by an unusually energetic leader that reached the ground in 2.5 ms and produced increasingly powerful triggers down to about 500 m AGL. While the TASD is not optimized for individual gamma ray detection

  12. 'TeV Gamma-ray Crisis' and an Anisotropic Space Model

    OpenAIRE

    Cho, Gi-Chol; Kamoshita, Jun-ichi; Matsunaga, Mariko; Sugamoto, Akio; Watanabe, Isamu

    2004-01-01

    To solve the `TeV gamma crisis', we examine a model whose one spatial direction is discretized at a high energy scale. Assuming the standard extra-galactic IR photon distribution, we evaluate the mean free-path of a energetic photon which acquires an effective mass in the model. For a wide range of the value of the lattice energy scale between a few TeV and around $10^{10}$ GeV, the mean free-path of a TeV energy photon can be enlarged enough to solve the `crisis'. Taking into account the eff...

  13. Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of Eosin-Y

    Science.gov (United States)

    Santhanalakshmi, J.; Venkatesan, P.

    2011-02-01

    Mono metallic (Au, Ag, Pd) and bimetallic (Au-Ag, Ag-Pd, Au-Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au-Ag = 9.2, Ag-Pd = 9.6, Au-Pd = 9.4 nm) are characterized by UV-Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.

  14. Lunar occultations for gamma-ray source measurements

    Science.gov (United States)

    Koch, David G.; Hughes, E. B.; Nolan, Patrick L.

    1990-01-01

    The unambiguous association of discrete gamma-ray sources with objects radiating at other wavelengths, the separation of discrete sources from the extended emission within the Galaxy, the mapping of gamma-ray emission from nearby galaxies and the measurement of structure within a discrete source cannot presently be accomplished at gamma-ray energies. In the past, the detection processes used in high-energy gamma-ray astronomy have not allowed for good angular resolution. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For purposes of discussion, this concept is examined for gamma rays above 100 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  15. Development and basic photovoltaic characteristics of a solar generator with double-sided silicon cells

    International Nuclear Information System (INIS)

    Aliev, R.; Mansurov, Kh.

    2015-01-01

    A new solar generator consisting of double-sided silicon sensing elements is described. The basic photovoltaic parameters of solar generators are made of mono- and polycrystalline silicon solar cells. (author)

  16. The topological filtration of gamma-structures

    DEFF Research Database (Denmark)

    Li, Thomas; Reidys, Christian

    2013-01-01

    In this paper we study gamma-structures filtered by topological genus. gamma-structures are a class of RNA pseudoknot structures that plays a key role in the context of polynomial time folding of RNA pseudoknot structures. A gamma-structure is composed by specific building blocks, that have...... topological genus less than or equal to gamma, where composition means concatenation and nesting of such blocks. Our main results are the derivation of a new bivariate generating function for gamma-structures via symbolic methods, the singularity analysis of the solutions and a central limit theorem...... for the distribution of topological genus in gamma-structures of given length. In our derivation specific bivariate polynomials play a central role. Their coefficients count particular motifs of fixed topological genus and they are of relevance in the context of genus recursion and novel folding algorithms....

  17. Gamma-Ray Burst Prompt Correlations

    Directory of Open Access Journals (Sweden)

    M. G. Dainotti

    2018-01-01

    Full Text Available The mechanism responsible for the prompt emission of gamma-ray bursts (GRBs is still a debated issue. The prompt phase-related GRB correlations can allow discriminating among the most plausible theoretical models explaining this emission. We present an overview of the observational two-parameter correlations, their physical interpretations, and their use as redshift estimators and possibly as cosmological tools. The nowadays challenge is to make GRBs, the farthest stellar-scaled objects observed (up to redshift z=9.4, standard candles through well established and robust correlations. However, GRBs spanning several orders of magnitude in their energetics are far from being standard candles. We describe the advances in the prompt correlation research in the past decades, with particular focus paid to the discoveries in the last 20 years.

  18. Gamma Ray Tomographic Scan Method for Large Scale Industrial Plants

    International Nuclear Information System (INIS)

    Moon, Jin Ho; Jung, Sung Hee; Kim, Jong Bum; Park, Jang Geun

    2011-01-01

    The gamma ray tomography systems have been used to investigate a chemical process for last decade. There have been many cases of gamma ray tomography for laboratory scale work but not many cases for industrial scale work. Non-tomographic equipment with gamma-ray sources is often used in process diagnosis. Gamma radiography, gamma column scanning and the radioisotope tracer technique are examples of gamma ray application in industries. In spite of many outdoor non-gamma ray tomographic equipment, the most of gamma ray tomographic systems still remained as indoor equipment. But, as the gamma tomography has developed, the demand on gamma tomography for real scale plants also increased. To develop the industrial scale system, we introduced the gamma-ray tomographic system with fixed detectors and rotating source. The general system configuration is similar to 4 th generation geometry. But the main effort has been made to actualize the instant installation of the system for real scale industrial plant. This work would be a first attempt to apply the 4th generation industrial gamma tomographic scanning by experimental method. The individual 0.5-inch NaI detector was used for gamma ray detection by configuring circular shape around industrial plant. This tomographic scan method can reduce mechanical complexity and require a much smaller space than a conventional CT. Those properties make it easy to get measurement data for a real scale plant

  19. On the incomparability of Gamma and Linda

    NARCIS (Netherlands)

    G. Zavattaro (Gianluigi)

    1998-01-01

    htmlabstractWe compare Gamma and Linda, two of the most prominent coordination languages based on generative communication via a shared data space. In Gamma computation is obtained by applying multiset rewriting rules, reminiscent of the way chemical reactions happen in a solution. On the other

  20. Exploring the Extreme Universe with the Fermi Gamma-Ray Space Telescope

    Science.gov (United States)

    Thompson, David J.; Digel, Seth W.; Racusin, Judith L.

    2012-01-01

    In ways similar to experiments in nuclear and particle physics, high-energy astrophysics usesgamma rays and energetic charged particles toprobe processes that involve large energy transfers.Since its launch in 2008, the international Fermi Gamma-Ray Space Telescope has been exploringnatural particle accelerators and the interactionsof high-energy particles in the universe. Withsources ranging from thunderstorms on Earth to galaxies and exploding stars in distant parts of the cosmos, the telescopes subjects of study are almostas diverse as were those of the scientist whose name it bears.

  1. Laser shock ignition of porous silicon based nano-energetic films

    International Nuclear Information System (INIS)

    Plummer, A.; Gascooke, J.; Shapter, J.; Kuznetsov, V. A.; Voelcker, N. H.

    2014-01-01

    Nanoporous silicon films on a silicon wafer were loaded with sodium perchlorate and initiated using illumination with infrared laser pulses to cause laser thermal ignition and laser-generated shock waves. Using Photon Doppler Velocimetry, it was determined that these waves are weak stress waves with a threshold intensity of 131 MPa in the silicon substrate. Shock generation was achieved through confinement of a plasma, generated upon irradiation of an absorptive paint layer held against the substrate side of the wafer. These stress waves were below the threshold required for sample fracturing. Exploiting either the laser thermal or laser-generated shock mechanisms of ignition may permit use of pSi energetic materials in applications otherwise precluded due to their environmental sensitivity

  2. Laser shock ignition of porous silicon based nano-energetic films

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, A.; Gascooke, J.; Shapter, J. [School of Chemical and Physical Sciences, Flinders University, 5042, Bedford Park (Australia); Centre of Expertise in Energetic Materials (CEEM), Bedford Park (Australia); Kuznetsov, V. A., E-mail: nico.voelcker@unisa.edu.au, E-mail: Valerian.Kuznetsov@dsto.defence.gov.au [School of Chemical and Physical Sciences, Flinders University, 5042, Bedford Park (Australia); Centre of Expertise in Energetic Materials (CEEM), Bedford Park (Australia); Weapons and Combat Systems Division, Defence Science and Technology Organisation, Edinburgh 5111 (Australia); Voelcker, N. H., E-mail: nico.voelcker@unisa.edu.au, E-mail: Valerian.Kuznetsov@dsto.defence.gov.au [Mawson Institute, University of South Australia, 5095, Mawson Lakes (Australia)

    2014-08-07

    Nanoporous silicon films on a silicon wafer were loaded with sodium perchlorate and initiated using illumination with infrared laser pulses to cause laser thermal ignition and laser-generated shock waves. Using Photon Doppler Velocimetry, it was determined that these waves are weak stress waves with a threshold intensity of 131 MPa in the silicon substrate. Shock generation was achieved through confinement of a plasma, generated upon irradiation of an absorptive paint layer held against the substrate side of the wafer. These stress waves were below the threshold required for sample fracturing. Exploiting either the laser thermal or laser-generated shock mechanisms of ignition may permit use of pSi energetic materials in applications otherwise precluded due to their environmental sensitivity.

  3. Long-term thermophilic mono-digestion of rendering wastes and co-digestion with potato pulp

    Energy Technology Data Exchange (ETDEWEB)

    Bayr, S., E-mail: suvi.bayr@jyu.fi; Ojanperä, M.; Kaparaju, P.; Rintala, J.

    2014-10-15

    Highlights: • Rendering wastes’ mono-digestion and co-digestion with potato pulp were studied. • CSTR process with OLR of 1.5 kg VS/m{sup 3} d, HRT of 50 d was unstable in mono-digestion. • Free NH{sub 3} inhibited mono-digestion of rendering wastes. • CSTR process with OLR of 1.5 kg VS/m{sup 3} d, HRT of 50 d was stable in co-digestion. • Co-digestion increased methane yield somewhat compared to mono-digestion. - Abstract: In this study, mono-digestion of rendering wastes and co-digestion of rendering wastes with potato pulp were studied for the first time in continuous stirred tank reactor (CSTR) experiments at 55 °C. Rendering wastes have high protein and lipid contents and are considered good substrates for methane production. However, accumulation of digestion intermediate products viz., volatile fatty acids (VFAs), long chain fatty acids (LCFAs) and ammonia nitrogen (NH{sub 4}-N and/or free NH{sub 3}) can cause process imbalance during the digestion. Mono-digestion of rendering wastes at an organic loading rate (OLR) of 1.5 kg volatile solids (VS)/m{sup 3} d and hydraulic retention time (HRT) of 50 d was unstable and resulted in methane yields of 450 dm{sup 3}/kg VS{sub fed}. On the other hand, co-digestion of rendering wastes with potato pulp (60% wet weight, WW) at the same OLR and HRT improved the process stability and increased methane yields (500–680 dm{sup 3}/kg VS{sub fed}). Thus, it can be concluded that co-digestion of rendering wastes with potato pulp could improve the process stability and methane yields from these difficult to treat industrial waste materials.

  4. Effect of {gamma}-irradiation on commercial polypropylene based mono and multi-layered retortable food packaging materials

    Energy Technology Data Exchange (ETDEWEB)

    George, Johnsy [Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka 570011 (India)]. E-mail: g.johnsy@gmail.com; Kumar, R. [Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka 570011 (India); Sajeevkumar, V.A. [Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka 570011 (India); Sabapathy, S.N. [Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka 570011 (India); Vaijapurkar, S.G. [Defence Laboratory, Ratanada Palace, Jodhpur, Rajastan 342011 (India); Kumar, D. [Defence Laboratory, Ratanada Palace, Jodhpur, Rajastan 342011 (India); Kchawahha, A. [Defence Laboratory, Ratanada Palace, Jodhpur, Rajastan 342011 (India); Bawa, A.S. [Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka 570011 (India)

    2007-07-15

    Irradiation processing of food in the prepackaged form may affect chemical and physical properties of the plastic packaging materials. The effect of {gamma}-irradiation doses (2.5-10.0 kGy) on polypropylene (PP)-based retortable food packaging materials, were investigated using Fourier transform infrared (FTIR) spectroscopic analysis, which revealed the changes happening to these materials after irradiation. The mechanical properties decreased with irradiation while oxygen transmission rate (OTR) was not affected significantly. Colour measurement indicated that Nylon 6 containing multilayer films became yellowish after irradiation. Thermal characterization revealed the changes in percentage crystallinity.

  5. Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of Eosin-Y

    International Nuclear Information System (INIS)

    Santhanalakshmi, J.; Venkatesan, P.

    2011-01-01

    Mono metallic (Au, Ag, Pd) and bimetallic (Au–Ag, Ag–Pd, Au–Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au–Ag = 9.2, Ag–Pd = 9.6, Au–Pd = 9.4 nm) are characterized by UV–Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.Graphical Abstract

  6. Evaluation of yield in Gamma Radiated Lines Selected from Mutated Generations of Mungbean (Vigna radiata)

    International Nuclear Information System (INIS)

    Aye Thandar; Phyu Hnin Htike; Myo Myint

    2010-12-01

    The induced mutation through different gamma radiation frequencies 50, 100, 150, 200, 250, 300, 350, 400, 450 and 500Gy in mungbean was studied for yield components in M3 generation. A Randomized Complete Block Design (RCBD) was employed with three replications in this experiment. The data collected from M3 generation were subjected to statistical analysis with the help of Excel (Microsoft office 2007) and for pairs wise comparison of groups was by SPSS program.In primary yield components, there were no significant difference in M3 generation of pods per plant, pod length and seeds per pod except 100 seeds weight. The plant treated with 250 Gy and 400Gy exploited the maximum value of one hundred seeds weight and yield per plant , respectively. Although there was no significant difference in secondary yield components; 50% flowering days, 50% maturity days and plant height in this generation, highest plant height at 200Gy and early flowering and maturity at 300Gy were obserded. The selection of individual plants in the M3 generation was carried out for high yield. In mutant selection, 250Gy and 400Gy revealed relatively more number of plants having good characters such as more number of pods per plant and longer pod length but not in other treatments and control.

  7. Biological significance of lysine mono-, di- and trimethylation on histone and non-histone proteins

    International Nuclear Information System (INIS)

    Perez-Burgos, L.

    2006-01-01

    Histones are the proteins that compact DNA into the repeating unit of chromatin known as the nucleosome. The N-termini of histones are subject to a series of post-translational modifications, one of which is methylation. This modification is termed 'epigenetic' because it extends the information encoded in the genome. Lysines can be mono-, di- or tri-methylated at different positions on histones H1, H3 and H4. In order to study the biological role of histone lysine methylation, antibodies were generated against mono-, di- and trimethylated H3-K9 and H3-27. Indeed, different chromatin domains in the mouse nucleus are enriched in distinct forms of histone lysine methylation, such as pericentric heterochromatin and the inactive X chromosome. Interestingly, heterochromatin in Arabidopsis thaliana is enriched in the mono- and di-, but not the trimethylated form of H3-K9. Furthermore, there exists a hierarchy of epigenetic modifications in which H3-K9 trimethylation is found to be upstream of DNA methylation on mouse major satellites. Histone lysine methylation is also involved in gene regulation upon development. One example is the chicken 61538;-globin locus, a region of facultative chromatin that undergoes a loss of di- and trimethylated H3-K27 in mature red blood cells, concomitant with expression of the 61538;-globin genes. SET-domain proteins are enzymes that methylate histones, but some of them are also able to methylate non-histone substrates. In particular, p53 is methylated by Set9 on lysine 372, G9a and Glp-1 on lysine 373 and by Smyd2 on lysine 370. Smyd2 transcript levels are greatly increased upon irradiation and dimethylated p53-370 specifically binds to 53BP1, a protein involved in recognizing DNA double-stranded breaks upon ionizing radiation. These results argue for a novel role of p53-K370 methylation in the biology of DNA damage. In summary, lysine methylation is a post-translational modification that can occur both on histone and non-histone proteins

  8. DISCOVERY OF TeV GAMMA-RAY EMISSION FROM CTA 1 BY VERITAS

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E.; Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T.; Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Dumm, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Dwarkadas, V. V. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Falcone, A., E-mail: muk@astro.columbia.edu, E-mail: smcarthur@ulysses.uchicago.edu [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); and others

    2013-02-10

    We report the discovery of TeV gamma-ray emission coincident with the shell-type radio supernova remnant (SNR) CTA 1 using the VERITAS gamma-ray observatory. The source, VER J0006+729, was detected as a 6.5 standard deviation excess over background and shows an extended morphology, approximated by a two-dimensional Gaussian of semimajor (semiminor) axis 0. Degree-Sign 30 (0. Degree-Sign 24) and a centroid 5' from the Fermi gamma-ray pulsar PSR J0007+7303 and its X-ray pulsar wind nebula (PWN). The photon spectrum is well described by a power-law dN/dE = N {sub 0}(E/3 TeV){sup -{Gamma}}, with a differential spectral index of {Gamma} = 2.2 {+-} 0.2{sub stat} {+-} 0.3{sub sys}, and normalization N {sub 0} = (9.1 {+-} 1.3{sub stat} {+-} 1.7{sub sys}) Multiplication-Sign 10{sup -14} cm{sup -2} s{sup -1} TeV{sup -1}. The integral flux, F {sub {gamma}} = 4.0 Multiplication-Sign 10{sup -12} erg cm{sup -2} s{sup -1} above 1 TeV, corresponds to 0.2% of the pulsar spin-down power at 1.4 kpc. The energetics, colocation with the SNR, and the relatively small extent of the TeV emission strongly argue for the PWN origin of the TeV photons. We consider the origin of the TeV emission in CTA 1.

  9. Gamma-ray Output Spectra from 239 Pu Fission

    International Nuclear Information System (INIS)

    Ullmann, John

    2015-01-01

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239 Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution

  10. Leptonic mono-top from single stop production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Guang Hua [CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); Hikasa, Ken-ichi [Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Wu, Lei [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University,Nanjing, Jiangsu 210023 (China); ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics, The University of Sydney,NSW 2006 (Australia); Yang, Jin Min [CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Zhang, Mengchao [Center for Theoretical Physics and Universe, Institute for Basic Science (IBS),Daejeon 34051 (Korea, Republic of)

    2017-03-16

    Top squark (stop) can be produced via QCD interaction but also the electroweak interaction at the LHC. In this paper, we investigate the observability of the associated production of stop and chargino, pp→t̃{sub 1}χ̃{sub 1}{sup −}, in compressed electroweakino scenarios at 14 TeV LHC. Due to small mass splitting between the lightest neutralino (χ̃{sub 1}{sup 0}) and chargino (χ̃{sub 1}{sup −}), the single stop production can give the mono-top signature through the stop decay t̃{sub 1}→tχ̃{sub 1}{sup 0}. We analyze the leptonic mono-top channel of the single stop production and propose a lab-frame observable cos θ{sub bℓ} to reduce the SM backgrounds. We find that such leptonic mono-top events from the single stop production can be probed at 2σ level at the HL-LHC if m{sub t̃{sub 1}}<760 GeV and m{sub χ̃{sub 1{sup 0}}}<150 GeV. Given a discovery of the stop and a measurement of the single stop production cross section, the stop mixing angle can also be determined from the single stop production at the HL-LHC.

  11. Seasonality of cavitation and frost fatigue in Acer mono Maxim.

    Science.gov (United States)

    Zhang, Wen; Feng, Feng; Tyree, Melvin T

    2017-12-08

    Although cavitation is common in plants, it is unknown whether the cavitation resistance of xylem is seasonally constant or variable. We tested the changes in cavitation resistance of Acer mono before and after a controlled cavitation-refilling and freeze-thaw cycles for a whole year. Cavitation resistance was determined from 'vulnerability curves' showing the percent loss of conductivity versus xylem tension. Cavitation fatigue was defined as a reduction of cavitation resistance following a cavitation-refilling cycle, whereas frost fatigue was caused by a freeze-thaw cycle. A. mono developed seasonal changes in native embolisms; values were relatively high during winter but relatively low and constant throughout the growing season. Cavitation fatigue occurred and changed seasonally during the 12-month cycle; the greatest fatigue response occurred during summer and the weakest during winter, and the transitions occurred during spring and autumn. A. mono was highly resistant to frost damage during the relatively mild winter months; however, a quite different situation occurred during the growing season, as the seasonal trend of frost fatigue was strikingly similar to that of cavitation fatigue. Seasonality changes in cavitation resistance may be caused by seasonal changes in the mechanical properties of the pit membranes. © 2017 John Wiley & Sons Ltd.

  12. Fermi Bubble: Giant Gamma-Ray Bubbles in the Milky Way

    Science.gov (United States)

    Su, Meng

    Data from the Fermi-LAT reveal two gigantic gamma-ray emitting bubble structures (known as the Fermibubbles), extending˜50° above and below the Galactic center symmetric about the Galactic plane, with a width of˜40∘ in longitude. The gamma-ray emission associated with these bubbles has a significantly harder spectrum ({dN}/{dE} ˜ {E}^{-2}) than the inverse Compton emission from known cosmic ray electrons in the Galactic disk, or the gamma-rays produced by decay of pions from proton-ISM collisions. The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAPhaze; the edges of the bubbles also line up with features in the ROSATsoft X-ray maps at 1.5-2keV. The Fermibubble is most likely created by some large episode of energy injection in the Galactic center, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last˜10Myr. Study of the origin and evolution of the bubbles also has the potential to improve our understanding of recent energetic events in the inner Galaxy and the high-latitude cosmic ray population.

  13. Mono- and binuclear complexes of low-valent zirconium

    NARCIS (Netherlands)

    Wielstra, IJtsen

    1990-01-01

    This thesis is a study on the synthesis and reactivity of low-valent zirconium. The investigation can be divided in two parts: the first describes the chemistry of mono-cyclopentadienyl Zr (II) complexes (Chapter II, III and IV), and the second describes some synthetic pathways successfully used for

  14. Rural energetic development: cuban experience

    International Nuclear Information System (INIS)

    Aguilera Barciela, M.

    1994-01-01

    The development of electro energetic national system in Cuba has been directed to the following objectives: to brake the rural population's exodus toward the cities, electrification of dairy farm, interconnection to the system electro energetic of all the sugar central production, these improves the rural population's conditions life

  15. EVIDENCE FOR ENHANCED {sup 3}HE IN FLARE-ACCELERATED PARTICLES BASED ON NEW CALCULATIONS OF THE GAMMA-RAY LINE SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, R. J. [Code 7650, Naval Research Laboratory, Washington, DC 20375 (United States); Kozlovsky, B. [Tel Aviv University, Tel Aviv (Israel); Share, G. H., E-mail: murphy@ssd5.nrl.navy.mil, E-mail: benz@wise.tau.ac.il, E-mail: share@astro.umd.edu [University of Maryland, College Park, MD 20742 (United States)

    2016-12-20

    The {sup 3}He abundance in impulsive solar energetic particle (SEP) events is enhanced up to several orders of magnitude compared to its photospheric value of [{sup 3}He]/[{sup 4}He] = 1–3 × 10{sup −4}. Interplanetary magnetic field and timing observations suggest that these events are related to solar flares. Observations of {sup 3}He in flare-accelerated ions would clarify the relationship between these two phenomena. Energetic {sup 3}He interactions in the solar atmosphere produce gamma-ray nuclear-deexcitation lines, both lines that are also produced by protons and α particles and lines that are essentially unique to {sup 3}He. Gamma-ray spectroscopy can, therefore, reveal enhanced levels of accelerated {sup 3}He. In this paper, we identify all significant deexcitation lines produced by {sup 3}He interactions in the solar atmosphere. We evaluate their production cross sections and incorporate them into our nuclear deexcitation-line code. We find that enhanced {sup 3}He can affect the entire gamma-ray spectrum. We identify gamma-ray line features for which the yield ratios depend dramatically on the {sup 3}He abundance. We determine the accelerated {sup 3}He/ α ratio by comparing these ratios with flux ratios measured previously from the gamma-ray spectrum obtained by summing the 19 strongest flares observed with the Solar Maximum Mission Gamma-Ray Spectrometer. All six flux ratios investigated show enhanced {sup 3}He, confirming earlier suggestions. The {sup 3}He/ α weighted mean of these new measurements ranges from 0.05 to 0.3 (depending on the assumed accelerated α /proton ratio) and has a <1 × 10{sup −3} probability of being consistent with the photospheric value. With the improved code, we can now exploit the full potential of gamma-ray spectroscopy to establish the relationship between flare-accelerated ions and {sup 3}He-rich SEPs.

  16. Somatic embryogenesis and embryo culture coupled with gamma irradiation for generating avocado (Persea americana Miller) mutants in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Avenido, R. A. [Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños (Philippines); Crop Science Cluster, College of Agriculture, University of the Philippines Los Baños (Philippines); Galvez, H. F.; Dimaculangan, J. G.; Welgas, J. N.; Frankie, R. B.; Damasco, O. P. [Crop Science Cluster, College of Agriculture, University of the Philippines Los Baños (Philippines)

    2009-05-15

    Plant regeneration through somatic embryogenesis from immature zygotic embryos and embryo cultures from mature fruits were achieved in select avocado accession ‘Semil’ and other seedling trees in the Philippines. Embryogenic cultures were induced from immature zygotic embryos of eight (8) avocado genotypes using either SE1 medium (MS + 30 g/l sucrose + 5 mg/l 2, 4-D + 0.5 mg/l BAP) or SE2 medium (MS + 30 g/l sucrose + 0.1 mg/l picloram). Embryogenic cultures of 2 genotypes namely ‘Semil’ and ‘Mainit’ developed into somatic embryos after repeated subcultures in SE2, SE3 (MS + 30 g/l sucrose + 0.1 mg/l TDZ + 0.5 mg/l GA{sub 3}) and SE4 (MS + 30 g/l sucrose + 2 mg/l BAP + 1 mg/l IBA) media. Plant/shoot regeneration from ‘Semil’ somatic embryos was recorded in 3 trials at 16.3, 23.0 and 20.7%, and was affected by culture age, light treatment and media used. R4 regeneration medium (B5 macro salts + MS minor salts and vitamins + 60 g/l sucrose + 400 g/l glu + 2 mg/l BAP + 4.5 g/l Phytagel was found to be the best. Gamma irradiation (10 to 30 Gy) of embryogenic cultures of ‘Semil’ resulted in reduced proliferation and formation of cotyledonary stage somatic embryos. However, shoot regeneration from somatic embryos from gamma-irradiated cultures was comparable or even higher (17.8 to 26.9%) as compared to the control (18.3%). Over 200 somatic embryo-derived putative variant/mutant lines from tissue culture and gamma irradiation experiments are being maintained as shoot cultures. Due to slow growth and other related problems, micrografting and in vitro rooting were used to rescue and ensure the greenhouse establishment of putative mutant shoots, and fast-track mutant confirmation by genetic analysis. Preliminary genetic analyses by SSR revealed that (a) the 3 asexually propagated ‘Semil’ mother trees are genetically similar, and (b) mutations marked by the generation of a new allele (band) at the SSR locus was evident among the somatic embryo

  17. Gamma rays and neutrinos from the Crab Nebula produced by pulsar accelerated nuclei

    OpenAIRE

    Bednarek, W.; Protheroe, R. J.

    1997-01-01

    We investigate the consequences of the acceleration of heavy nuclei (e.g. iron nuclei) by the Crab pulsar. Accelerated nuclei can photodisintegrate in collisions with soft photons produced in the pulsar's outer gap, injecting energetic neutrons which decay either inside or outside the Crab Nebula. The protons from neutron decay inside the nebula are trapped by the Crab Nebula magnetic field, and accumulate inside the nebula producing gamma-rays and neutrinos in collisions with the matter in t...

  18. Simulation study of energetic ion distribution during combined NBI and ICRF heating in LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Fukuyama, A.; Kasilov, V.

    2006-01-01

    In the LHD, significant performances of ICRF heating (fundamental, minority heating regime) have been demonstrated and up to 500keV of energetic tail ions have been observed by fast neutral particle analysis (NPA). These measured results indicate a good property of energetic ion confinement in helical systems. From the 9th campaign of LHD experiment (FY2005) a new perpendicular NBI heating system (P<3MW) has been installed and an effective heating of perpendicularly injected beam ions by the higher harmonics ICRF heating is expected. ICRF heating generates highly energetic tail ions, which drift around the torus for a long time (typically on a collisional time scale). Thus, the behavior of these energetic ions is strongly affected by the characteristics of the drift motions, which depend on the magnetic field configuration. In particular, in a three-dimensional (3D) magnetic configuration, complicated drift motions of trapped particles would play an important role in the confinement of the energetic ions and the ICRF heating process. Therefore a global simulation of ICRF heating is necessary for the accurate modeling of the plasma heating process in a 3D magnetic configuration. In this paper we study the energetic ion distribution during combined NBI and 2nd harmonics ICRF heating in LHD using two global simulation codes: a full wave field solver TASK/WK and a drift kinetic equation solver GNET. GNET solves a linearized drift kinetic equation for energetic ions including complicated behavior of trapped particles in 5-D phase space. TASK/WM solves Maxwell's equation for RF wave electric field with complex frequency as a boundary value problem in the 3D magnetic configuration. (author)

  19. Starlight beneath the waves : in search of TeV photon emission from Gamma-Ray Bursts with the ANTARES Neutrino Telescope

    NARCIS (Netherlands)

    Astraatmadja, Tri Laksmana

    2013-01-01

    At any given time, cosmic rays constantly shower the Earth from all direction. The origin of cosmic rays is still a mystery as their paths are deflected by magnetic fields to random directions. The most likely sources of cosmic rays are Gamma-Ray Bursts (GRB). As the most energetic events known in

  20. Alkylsilyl Peroxides as Alkylating Agents in the Copper-Catalyzed Selective Mono-N-Alkylation of Primary Amides and Arylamines.

    Science.gov (United States)

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-07-06

    The copper-catalyzed selective mono-N-alkylation of primary amides or arylamines using alkylsilyl peroxides as alkylating agents is reported. The reaction proceeds under mild reaction conditions and exhibits a broad substrate scope with respect to the alkylsilyl peroxides, as well as to the primary amides and arylamines. Mechanistic studies suggest that the present reaction should proceed through a free-radical process that includes alkyl radicals generated from the alkylsilyl peroxides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. MonoSLAM: real-time single camera SLAM.

    Science.gov (United States)

    Davison, Andrew J; Reid, Ian D; Molton, Nicholas D; Stasse, Olivier

    2007-06-01

    We present a real-time algorithm which can recover the 3D trajectory of a monocular camera, moving rapidly through a previously unknown scene. Our system, which we dub MonoSLAM, is the first successful application of the SLAM methodology from mobile robotics to the "pure vision" domain of a single uncontrolled camera, achieving real time but drift-free performance inaccessible to Structure from Motion approaches. The core of the approach is the online creation of a sparse but persistent map of natural landmarks within a probabilistic framework. Our key novel contributions include an active approach to mapping and measurement, the use of a general motion model for smooth camera movement, and solutions for monocular feature initialization and feature orientation estimation. Together, these add up to an extremely efficient and robust algorithm which runs at 30 Hz with standard PC and camera hardware. This work extends the range of robotic systems in which SLAM can be usefully applied, but also opens up new areas. We present applications of MonoSLAM to real-time 3D localization and mapping for a high-performance full-size humanoid robot and live augmented reality with a hand-held camera.

  2. Spirogyra varians mutant generated by high dose gamma-irradiation shows increased antioxidant properties

    International Nuclear Information System (INIS)

    Lee, Hak-Jyung; Yoon, Minchul; Sung, Nak-Yun; Choi, Jong-il

    2012-01-01

    The aim of this study was to evaluate the antioxidant properties of a Spirogyra varians mutant (Mut) produced by gamma irradiation. Methanol extracts were prepared from Spirogyra varians wild-type and Mut plants, and their antioxidant activities and total phenolic content (TPC) were determined. Antioxidant parameters, including the 2-diphenyl-1-picrylhydrazyl radical-scavenging activity and ferric-reducing/antioxidant power, were higher in the Mut extract. Moreover, the TPC level was higher (P<0.05) in the Mut methanol extract. Therefore, these results suggest that gamma irradiation-induced S. varians Mut has superior antioxidant properties. - Highlights: ► The antioxidative properties of a Spirogyra varians mutant produced by gamma-irradiation was investiated. ► The antioxidant activities and total phenolic content levels were higher in mutant strain. ► These results suggest that gamma-irradiation induced algae mutant with superior antioxidant properties.

  3. The location of energetic compartments affects energetic communication in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Rikke eBirkedal

    2014-09-01

    Full Text Available The heart relies on accurate regulation of mitochondrial energy supply to match energy demand. The main regulators are Ca2+ and feedback of ADP and Pi. Regulation via feedback has intrigued for decades. First, the heart exhibits a remarkable metabolic stability. Second, diffusion of ADP and other molecules is restricted specifically in heart and red muscle, where a fast feedback is needed the most. To explain the regulation by feedback, compartmentalization must be taken into account. Experiments and theoretical approaches suggest that cardiomyocyte energetic compartmentalization is elaborate with barriers obstructing diffusion in the cytosol and at the level of the mitochondrial outer membrane (MOM. A recent study suggests the barriers are organized in a lattice with dimensions in agreement with those of intracellular structures. Here, we discuss the possible location of these barriers. The more plausible scenario includes a barrier at the level of MOM. Much research has focused on how the permeability of MOM itself is regulated, and the importance of the creatine kinase system to facilitate energetic communication. We hypothesize that at least part of the diffusion restriction at the MOM level is not by MOM itself, but due to the close physical association between the sarcoplasmic reticulum (SR and mitochondria. This will explain why animals with a disabled creatine kinase system exhibit rather mild phenotype modifications. Mitochondria are hubs of energetics, but also ROS production and signaling. The close association between SR and mitochondria may form a diffusion barrier to ADP added outside a permeabilised cardiomyocyte. But in vivo, it is the structural basis for the mitochondrial-SR coupling that is crucial for the regulation of mitochondrial Ca2+-transients to regulate energetics, and for avoiding Ca2+-overload and irreversible opening of the mitochondrial permeability transition pore.

  4. Effect of 60Co gamma radiation on the performance of two soybean varieties in M1 and M2 generations

    International Nuclear Information System (INIS)

    Miah, M.A.; Rahman, L.

    1982-01-01

    Seed of two soybean varieties Bragg and Improved Pelican were treated with gamma-rays at 0, 11, 29, 47 and 65 Kr doses. Percentage of seedling emergence in both varieties in M 1 generation was not so seriously affected as in M 1 generation. The plant height of Bragg after one month of sowing was less influenced than Improved Pelican. Plant height of both the varieties decreased with increase in radiation doses; except 11 Kr in Bragg in both generations. Similar results were also obtained in plant height at harvest except that Improved Pelican in M 1 generation produced taller plants at 29 Kr than at 11 Kr level. Days required to harvest increased at higher doses in comparison to control, except 11 Kr for Improved Pelican and 29 Kr for Bragg in M 1 generation. (author)

  5. Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006.

    Science.gov (United States)

    De Rienzo, Mayri A Díaz; Martin, Peter J

    2016-08-01

    Different microbial inhibition strategies based on the planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilms communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms. In this work, we explore the aspects of Bacillus subtilis BBK006 biofilms and examine the contribution of biologically derived surface-active agents (rhamnolipids) to the disruption or inhibition of microbial biofilms produced by Bacillus subtilis BBK006. The ability of mono-rhamnolipids (Rha-C10-C10) produced by Pseudomonas aeruginosa ATCC 9027 and the di-rhamnolipids (Rha-Rha-C14-C14) produced by Burkholderia thailandensis E264, and phosphate-buffered saline to disrupt biofilm of Bacillus subtilis BBK006 was evaluated. The biofilm produced by Bacillus subtilis BBK006 was more sensitive to the di-rhamnolipids (0.4 g/L) produced by Burkholderia thailandensis than the mono-rhamnolipids (0.4 g/L) produced by Pseudomonas aeruginosa ATCC 9027. Rhamnolipids are biologically produced compounds safe for human use. This makes them ideal candidates for use in new generations of bacterial dispersal agents and useful for use as adjuvants for existing microbial suppression or eradication strategies.

  6. Development of a new deuterium-deuterium (D-D) neutron generator for prompt gamma-ray neutron activation analysis.

    Science.gov (United States)

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    A new deuterium-deuterium (D-D) neutron generator has been developed by Adelphi Technology for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA), and fast neutron radiography. The generator makes an excellent fast, intermediate, and thermal neutron source for laboratories and industrial applications that require the safe production of neutrons, a small footprint, low cost, and small regulatory burden. The generator has three major components: a Radio Frequency Induction Ion Source, a Secondary Electron Shroud, and a Diode Accelerator Structure and Target. Monoenergetic neutrons (2.5MeV) are produced with a yield of 10(10)n/s using 25-50mA of deuterium ion beam current and 125kV of acceleration voltage. The present study characterizes the performance of the neutron generator with respect to neutron yield, neutron production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. In addition the Monte Carlo N-Particle Transport (MCNP) simulation code was used to optimize the setup with respect to thermal flux and radiation protection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Gamma-ray spectroscopy on irradiated fuel rods

    International Nuclear Information System (INIS)

    Terremoto, Luis Antonio Albiac

    2009-01-01

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  8. Multiple Gamma-Ray Detection Capability of a CeBr3 Detector for Gamma Spectroscopy

    Directory of Open Access Journals (Sweden)

    A. A. Naqvi

    2017-01-01

    Full Text Available The newly developed cerium tribromide (CeBr3 detector has reduced intrinsic gamma-ray activity with gamma energy restricted to 1400–2200 keV energy range. This narrower region of background gamma rays allows the CeBr3 detector to detect more than one gamma ray to analyze the gamma-ray spectrum. Use of multiple gamma-ray intensities in elemental analysis instead of a single one improves the accuracy of the estimated results. Multigamma-ray detection capability of a cylindrical 75 mm × 75 mm (diameter × height CeBr3 detector has been tested by analyzing the chlorine concentration in water samples using eight chlorine prompt gamma rays over 517 to 8578 keV energies utilizing a D-D portable neutron generator-based PGNAA setup and measuring the corresponding minimum detection limit (MDC of chlorine. The measured MDC of chlorine for gamma rays with 517–8578 keV energies varies from 0.07 ± 0.02 wt% to 0.80 ± 0.24. The best value of MDC was measured to be 0.07 ± 0.02 wt% for 788 keV gamma rays. The experimental results are in good agreement with Monte Carlo calculations. The study has shown excellent detection capabilities of the CeBr3 detector for eight prompt gamma rays over 517–8578 keV energy range without significant background interference.

  9. Theory of resistive magnetohydrodynamic instabilities excited by energetic trapped particles in large-size tokamaks

    International Nuclear Information System (INIS)

    Biglari, H.

    1987-01-01

    A theory describing excitation of resistive magnetohydrodynamic instabilities due to a population of energetic particles, trapped in region of adverse curvature on energetic particles, trapped in region of adverse curvature in tokamaks, is presented. Theory's principal motivation is observation that high magnetic-field strengths and large geometric dimensions characteristic of present-generation thermonuclear fusion devices, places them in a frequency regime whereby processional drift frequency of auxiliary hot-ion species, in order of magnitude, falls below a typical inverse resistive interchange time scale, so that inclusion of resistive dissipation effects becomes important. Destabilization of the resistive internal kink mode by these suprathermal particles is first investigated. Using variational techniques, a generalized dispersion relation governing such modes, which recovers ideal theory in its appropriate limit, is derived and analyzed using Nyquist-diagrammatic techniques. An important implication of theory for present-generation fusion devices is that they will be stable to fishbone activity. Interaction of energetic particles with resistive interchange-ballooning modes is taken up. A population of hot particles, deeply trapped on adverse curvature side in tokamaks, can resonantly destabilize resistive interchange mode, which is stable in their absence because of favorable average curvature. Both modes are different from their usual resistive magnetohydrodynamic counterparts in their destabilization mechanism

  10. Single-step brazing process for mono-block joints and mechanical testing

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, V.; Ferraris, M.; Salvo, M.; Rizzo, S. [Politecnico di Torino, Materials Science and Chemical Engineering Dept., Torino (Italy); Merola, M. [ITER International Team, llER Joint Work Site, Cadarache, 13 - St Paul Lez Durance (France)

    2007-07-01

    Full text of publication follows: Plasma facing components act as actively cooled thermal shields to sustain thermal and particle loads during normal and transient operations in ITER (International Thermonuclear Experimental Reactor). The plasma-facing layer is referred to as 'armour', which is made of either carbon fibre reinforced carbon composite (CFC) or tungsten (W). CFC is the reference design solution for the lower part of the vertical target of the ITER divertor. The armour is joined onto an actively cooled substrate, the heat sink, made of precipitation hardened copper alloy CuCrZr through a thin pure copper interlayer to decrease, by plastic deformation, the joint interface stresses; in fact, the CFC to Cu joint is affected by the CTE mismatch between the ceramic and metallic material. A new method of joining CFC to copper and CFC/Cu to CuCrZr alloy was effectively developed for the flat-type configuration; the feasibility of this process also for mono-block geometry and the development of a procedure for testing mono-block-type mock-ups is described in this work. The mono-block configuration consists of copper alloy pipe shielded by CFC blocks. It is worth noting that in mono-block configuration, the large thermal expansion mismatch between CFC and copper alloy is more significant than for flat-tile configuration, due to curved interfaces. The joining technique foresees a single-step brazing process: the brazing of the three materials (CFC-Cu-CuCrZr) can be performed in a single heat treatment using the same Cu/Ge based braze. The composite surface was modified by solid state reaction with chromium with the purpose of increasing the wettability of CFC by the brazing alloy. The CFC substrate reacts with Cr which, forming a carbide layer, allows a large reduction of the contact angle; then, the brazing of CFC to pure copper and pure copper to CuCrZr by the same treatment is feasible. This process allows to obtain good joints using a non

  11. Single-step brazing process for mono-block joints and mechanical testing

    International Nuclear Information System (INIS)

    Casalegno, V.; Ferraris, M.; Salvo, M.; Rizzo, S.; Merola, M.

    2007-01-01

    Full text of publication follows: Plasma facing components act as actively cooled thermal shields to sustain thermal and particle loads during normal and transient operations in ITER (International Thermonuclear Experimental Reactor). The plasma-facing layer is referred to as 'armour', which is made of either carbon fibre reinforced carbon composite (CFC) or tungsten (W). CFC is the reference design solution for the lower part of the vertical target of the ITER divertor. The armour is joined onto an actively cooled substrate, the heat sink, made of precipitation hardened copper alloy CuCrZr through a thin pure copper interlayer to decrease, by plastic deformation, the joint interface stresses; in fact, the CFC to Cu joint is affected by the CTE mismatch between the ceramic and metallic material. A new method of joining CFC to copper and CFC/Cu to CuCrZr alloy was effectively developed for the flat-type configuration; the feasibility of this process also for mono-block geometry and the development of a procedure for testing mono-block-type mock-ups is described in this work. The mono-block configuration consists of copper alloy pipe shielded by CFC blocks. It is worth noting that in mono-block configuration, the large thermal expansion mismatch between CFC and copper alloy is more significant than for flat-tile configuration, due to curved interfaces. The joining technique foresees a single-step brazing process: the brazing of the three materials (CFC-Cu-CuCrZr) can be performed in a single heat treatment using the same Cu/Ge based braze. The composite surface was modified by solid state reaction with chromium with the purpose of increasing the wettability of CFC by the brazing alloy. The CFC substrate reacts with Cr which, forming a carbide layer, allows a large reduction of the contact angle; then, the brazing of CFC to pure copper and pure copper to CuCrZr by the same treatment is feasible. This process allows to obtain good joints using a non-active brazing

  12. Next Generation Gamma/Neutron Detectors for Planetary Science., Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Gamma ray and neutron spectroscopy are well established techniques for determining the chemical composition of planetary surfaces, and small cosmic bodies such as...

  13. The Principle of Energetic Consistency

    Science.gov (United States)

    Cohn, Stephen E.

    2009-01-01

    A basic result in estimation theory is that the minimum variance estimate of the dynamical state, given the observations, is the conditional mean estimate. This result holds independently of the specifics of any dynamical or observation nonlinearity or stochasticity, requiring only that the probability density function of the state, conditioned on the observations, has two moments. For nonlinear dynamics that conserve a total energy, this general result implies the principle of energetic consistency: if the dynamical variables are taken to be the natural energy variables, then the sum of the total energy of the conditional mean and the trace of the conditional covariance matrix (the total variance) is constant between observations. Ensemble Kalman filtering methods are designed to approximate the evolution of the conditional mean and covariance matrix. For them the principle of energetic consistency holds independently of ensemble size, even with covariance localization. However, full Kalman filter experiments with advection dynamics have shown that a small amount of numerical dissipation can cause a large, state-dependent loss of total variance, to the detriment of filter performance. The principle of energetic consistency offers a simple way to test whether this spurious loss of variance limits ensemble filter performance in full-blown applications. The classical second-moment closure (third-moment discard) equations also satisfy the principle of energetic consistency, independently of the rank of the conditional covariance matrix. Low-rank approximation of these equations offers an energetically consistent, computationally viable alternative to ensemble filtering. Current formulations of long-window, weak-constraint, four-dimensional variational methods are designed to approximate the conditional mode rather than the conditional mean. Thus they neglect the nonlinear bias term in the second-moment closure equation for the conditional mean. The principle of

  14. Energetic M1 transitions as a probe of nuclear collectivity at high temperatures

    International Nuclear Information System (INIS)

    Baktash, C.

    1987-01-01

    At ORNL, we have recently utilized the Spin Spectrometer setup to investigate the differential effects of increasing spin and excitation energy on nuclear shape and collectivity in 158 Yb. Along the yrast line of this and other N = 88 nuclei, weakly prolate shapes gradually give way to triaxial, and then finally to non-collective oblate shapes as the spin approaches 40 h-bar. However, above the yrast line, large deformation and collectivity once again sets in. This is evidenced by the emergence of a broad quadrupole structure (E/sub γ/ ≅ 1.2 MeV) in the continuum gamma-ray spectra that grows with increasing temperature. The short (sub ps) lifetimes of these transitions attest to the collective nature of these structures. The emergence and growth of the quadrupole structure at high excitation energies is closely correlated with the appearance of energetic (E/sub γ/ ≅ 2.5 MeV), fast M1 transitions which form another broad structure in the continuum spectra. From the centroid of the M1 bump, a quadrupole deformation parameter of 0.35 is inferred. Because of this sensitivity, these energetic M1 transitions provide a unique probe of nuclear shape in the excitation energy range of ≅ 3 to 10 MeV. 6 refs., 2 figs

  15. Tritium enrichment from aqueous solutions using cryosublimation of mono- and polysaccharides

    International Nuclear Information System (INIS)

    Wierczinski, B.; Muellen, G.; Rosenhauer, S.

    2008-01-01

    Cryosublimation is one technique, which allows the accumulation of tritium from aqueous solutions using certain chemical compounds. After studying several inorganic compounds such as zeolites and metal salts, as well as some humic substances, we have now investigated several mono- and polysaccharides, such as glucose, maltose, galactose, starch, agar, and gelatine. Except for starch all of the above mentioned compounds showed a clear enrichment of tritium. The highest value was reached for Agartine, which gave an enrichment factor of 6.2. Since mono- and polysaccharides form weak hydrogen bonds, these results prove again our theory that tritium is preferably accumulated in exchangeable hydrogen bonds. (author)

  16. The acceleration and propagation of energetic particles in turbulent cosmic plasmas

    International Nuclear Information System (INIS)

    Achterberg, A.

    1981-01-01

    This thesis concentrates on the acceleration and propagation of energetic particles in turbulent cosmic plasmas. The stochastic acceleration of relativistic electrons by long-wavelength weak magnetohydrodynamic turbulence is considered and a model is discussed that allows the determination of both the electron energy spectrum and the wavenumber spectrum of the magnetohydrodynamic turbulence in a consistent way. The question of second phase acceleration in large solar flares and the precise form of the force exerted on the background plasma when Alfven waves are generated by fast particles are considered. The energy balance in the shock wave acceleration, the propagation of energetic particles in a high β plasma (β>10 2 ) and sheared flow as a possible source of plasma turbulence for a magnetized plasma with field-aligned flow, are discussed. (Auth./C.F.)

  17. Separation of type and grade in cervical tumours using non-mono-exponential models of diffusion-weighted MRI

    International Nuclear Information System (INIS)

    Winfield, Jessica M.; Collins, David J.; Morgan, Veronica A.; DeSouza, Nandita M.; Orton, Matthew R.; Ind, Thomas E.J.; Attygalle, Ayoma; Hazell, Steve

    2017-01-01

    Assessment of empirical diffusion-weighted MRI (DW-MRI) models in cervical tumours to investigate whether fitted parameters distinguish between types and grades of tumours. Forty-two patients (24 squamous cell carcinomas, 14 well/moderately differentiated, 10 poorly differentiated; 15 adenocarcinomas, 13 well/moderately differentiated, two poorly differentiated; three rare types) were imaged at 3 T using nine b-values (0 to 800 s mm -2 ). Mono-exponential, stretched exponential, kurtosis, statistical, and bi-exponential models were fitted. Model preference was assessed using Bayesian Information Criterion analysis. Differences in fitted parameters between tumour types/grades and correlation between fitted parameters were assessed using two-way analysis of variance and Pearson's linear correlation coefficient, respectively. Non-mono-exponential models were preferred by 83 % of tumours with bi-exponential and stretched exponential models preferred by the largest numbers of tumours. Apparent diffusion coefficient (ADC) and diffusion coefficients from non-mono-exponential models were significantly lower in poorly differentiated tumours than well/moderately differentiated tumours. α (stretched exponential), K (kurtosis), f and D* (bi-exponential) were significantly different between tumour types. Strong correlation was observed between ADC and diffusion coefficients from other models. Non-mono-exponential models were preferred to the mono-exponential model in DW-MRI data from cervical tumours. Parameters of non-mono-exponential models showed significant differences between types and grades of tumours. (orig.)

  18. Separation of type and grade in cervical tumours using non-mono-exponential models of diffusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Winfield, Jessica M.; Collins, David J.; Morgan, Veronica A.; DeSouza, Nandita M. [The Royal Marsden NHS Foundation Trust, MRI Unit, Sutton, Surrey (United Kingdom); The Institute of Cancer Research, Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, London (United Kingdom); Orton, Matthew R. [The Institute of Cancer Research, Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, London (United Kingdom); Ind, Thomas E.J. [The Royal Marsden NHS Foundation Trust, Gynaecology Unit, London (United Kingdom); Attygalle, Ayoma; Hazell, Steve [The Royal Marsden NHS Foundation Trust, Department of Histopathology, London (United Kingdom)

    2017-02-15

    Assessment of empirical diffusion-weighted MRI (DW-MRI) models in cervical tumours to investigate whether fitted parameters distinguish between types and grades of tumours. Forty-two patients (24 squamous cell carcinomas, 14 well/moderately differentiated, 10 poorly differentiated; 15 adenocarcinomas, 13 well/moderately differentiated, two poorly differentiated; three rare types) were imaged at 3 T using nine b-values (0 to 800 s mm{sup -2}). Mono-exponential, stretched exponential, kurtosis, statistical, and bi-exponential models were fitted. Model preference was assessed using Bayesian Information Criterion analysis. Differences in fitted parameters between tumour types/grades and correlation between fitted parameters were assessed using two-way analysis of variance and Pearson's linear correlation coefficient, respectively. Non-mono-exponential models were preferred by 83 % of tumours with bi-exponential and stretched exponential models preferred by the largest numbers of tumours. Apparent diffusion coefficient (ADC) and diffusion coefficients from non-mono-exponential models were significantly lower in poorly differentiated tumours than well/moderately differentiated tumours. α (stretched exponential), K (kurtosis), f and D* (bi-exponential) were significantly different between tumour types. Strong correlation was observed between ADC and diffusion coefficients from other models. Non-mono-exponential models were preferred to the mono-exponential model in DW-MRI data from cervical tumours. Parameters of non-mono-exponential models showed significant differences between types and grades of tumours. (orig.)

  19. Development and applications of k0 based NAA and prompt gamma-ray NAA methods at BARC

    International Nuclear Information System (INIS)

    Acharya, R.; Nair, A.G.C.; Sudarshan, K.; Goswami, A.; Reddy, A.V.R.

    2008-01-01

    A summary of k 0 -based R and D work on neutron activation analysis (NAA), internal mono standard NAA (IM-NAA) and prompt gamma-ray NAA (PGNAA) is presented. The k 0 -based NAA was standardized by characterizing irradiation sites of research reactors, validated using reference materials and applied to samples of different origin. Recently IM-NAA method was developed, validated for small and large size samples and applied for the analysis of large size as well as non-standard geometry samples. Studies on PGNAA included characterization of neutron beam, determinations of detection efficiency and prompt k 0 -factors, and analytical applications. (author)

  20. Second School of Nuclear Energetics

    International Nuclear Information System (INIS)

    2009-01-01

    At 3-5 Nov 2009 Institute of Nuclear Energy POLATOM, Association of Polish Electrical Engineers (SEP) and Polish Nuclear Society have organized Second School of Nuclear Energetics. 165 participants have arrived from all Poland and represented both different central institutions (e.g. ministries) and local institutions (e.g. Office of Technical Inspection, The Voivodship Presidential Offices, several societies, consulting firms or energetic enterprises). Students from the Warsaw Technical University and Gdansk Technical University, as well as the PhD students from the Institute of Nuclear Chemistry and Technology (Warsaw) attended the School. 20 invited lectures presented by eminent Polish specialists concerned basic problems of nuclear energetics, nuclear fuel cycle and different problems of the NPP construction in Poland. [pl

  1. Behavioral ecology of American Pikas (Ochotona princeps) at Mono Craters, California: living on the edge

    Science.gov (United States)

    Andrew T. Smith; John D. Nagy; Connie Millar

    2016-01-01

    The behavioral ecology of the American pika (Ochotona princeps) was investigated at a relatively hot south-facing, low-elevation site in the Mono Craters, California, a habitat quite different from the upper montane regions more typically inhabited by this species and where most prior investigations have been conducted. Mono Craters pikas exhibited...

  2. Transient optical emission from the error box of the gamma-ray burst of 28 February 1997

    DEFF Research Database (Denmark)

    van Paradijs, J.; Groot, P.J.; Galama, T.

    1997-01-01

    For almost a quarter of a century(1), the origin of gamma-ray bursts-brief, energetic bursts of high-energy photons-has remained unknown. The detection of a counterpart at another wavelength has long been thought to be a key to understanding the nature of these bursts (see, for example, ref. 2...... in that galaxy and thus that gamma-ray bursts in general lie at cosmological distance.......), but intensive searches have not revealed such a counterpart. The distribution and properties of the bursts(3) are explained naturally if they lie at cosmological distances (a few Gpc)(4), but there is a countervailing view that they are relatively local objects(5), perhaps distributed in a very large halo...

  3. Effect of gamma rays on M1 generation in basmati rice

    International Nuclear Information System (INIS)

    Ashraf, M.; Cheema, A.A.; Rashid, M.; Zia-ul-Qamar

    2003-01-01

    To estimate the sensitivity to gamma rays in Basmati rice, five varieties namely Basmati 370, Basmati Pak, Basmati 385, Super Basmati and Basmati 2000were exposed to different doses of gamma rays ranging 150- 350 Gy with an increment of 50 Gy among the doses. Plant growth parameters such as seedling shoot and root lengths were measured in the laboratory. Highly significant differences were observed among the varieties for seedling shoot and root lengths. Radiations showed highly significant negative correlations with seedling shoot length (-0.998), seedling root length (-0.941) showing dose dependent responses. Highly significant negative correlations with panicle fertility (-0.941) and grain yield (-0.971), and significant negative correlation for seedling emergence (-0.941) showed detrimental dose dependent responses.Seedling emergence, panicle fertility and grain yield declined with increasing dose level in all the varieties. The dose at which panicle fertility halved was 260.37 Gy. Basmati 2000 was observed to be the most sensitive followed by Basmati 370, Super Basmati and Basmati Pak, but Basmati 385 was found to be the least sensitive variety to gamma rays

  4. Study of the prompt gamma ray signal from fissions in special nuclear materials induced using an associated particle neutron generator

    International Nuclear Information System (INIS)

    Koltick, D. S.; Kane, S. Z.

    2009-01-01

    More than 42 million cargo containers entered the United States in 2005. To search for a few kilograms of special nuclear material (SNM) within this vast stream of cargo, an inspection system based on neutron-induced fission followed by the coincident detection of multiple prompt fission gamma rays is investigated using MCNP-Polimi code. The system utilizes two deuterium-tritium (DT) associated particle neutron generators, each capable of 10 9 neutrons/s at 14.1 MeV, with sub-nanosecond timing resolution ZnO:Ga alpha detectors internal to the generator. Because prompt fission signals are approximately 100 times stronger than the delayed signals, the neutron flux is greatly reduced compared to 10 11-12 neutrons/s required for systems based on delayed signals such as the 'nuclear car wash' [4]. In addition the system utilizes 30 cm deep liquid krypton (LKr) noble gas detectors having 94% detection efficiency for 1 MeV gamma rays, high solid angle coverage (∼ 50% of the total solid angle), and sub-nanosecond timing resolution (∼ 600 ps). An algorithm for distinguishing U-235 from U-238 is presented. (authors)

  5. The structure, logic of operation and distinctive features of the system of triggers and counting signals formation for gamma-telescope GAMMA-400

    Science.gov (United States)

    Topchiev, N. P.; Galper, A. M.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Kheymits, M. D.; Suchkov, S. I.; Yurkin, Y. T.

    2017-01-01

    Scientific project GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) relates to the new generation of space observatories intended to perform an indirect search for signatures of dark matter in the cosmic-ray fluxes, measurements of characteristics of diffuse gamma-ray emission and gamma-rays from the Sun during periods of solar activity, gamma-ray bursts, extended and point gamma-ray sources, electron/positron and cosmic-ray nuclei fluxes up to TeV energy region by means of the GAMMA-400 gamma-ray telescope represents the core of the scientific complex. The system of triggers and counting signals formation of the GAMMA-400 gamma-ray telescope constitutes the pipelined processor structure which collects data from the gamma-ray telescope subsystems and produces summary information used in forming the trigger decision for each event. The system design is based on the use of state-of-the-art reconfigurable logic devices and fast data links. The basic structure, logic of operation and distinctive features of the system are presented.

  6. On the positron-trapping states of metal mono-vacancies

    International Nuclear Information System (INIS)

    Sankar, S.; Iyakutti, K.

    1987-07-01

    A model calculation based on the static dielectric screening theory has been performed to estimate the probable number of positron-trapping levels in metal mono-vacancies and it is shown that there cannot be more than one. (author). 8 refs, 1 tab

  7. Applications of Monte Carlo simulations of gamma-ray spectra

    International Nuclear Information System (INIS)

    Clark, D.D.

    1995-01-01

    A short, convenient computer program based on the Monte Carlo method that was developed to generate simulated gamma-ray spectra has been found to have useful applications in research and teaching. In research, we use it to predict spectra in neutron activation analysis (NAA), particularly in prompt gamma-ray NAA (PGNAA). In teaching, it is used to illustrate the dependence of detector response functions on the nature of gamma-ray interactions, the incident gamma-ray energy, and detector geometry

  8. New thiol-responsive mono-cleavable block copolymer micelles labeled with single disulfides.

    Science.gov (United States)

    Sourkohi, Behnoush Khorsand; Schmidt, Rolf; Oh, Jung Kwon

    2011-10-18

    Thiol-responsive symmetric triblock copolymers having single disulfide linkages in the middle blocks (called mono-cleavable block copolymers, ss-ABP(2)) were synthesized by atom transfer radical polymerization in the presence of a disulfide-labeled difunctional Br-initiator. These brush-like triblock copolymers consist of a hydrophobic polyacrylate block having pendent oligo(propylene oxide) and a hydrophilic polymethacrylate block having pendent oligo(ethylene oxide). Gel permeation chromatography and (1)H NMR results confirmed the synthesis of well-defined mono-cleavable block copolymers and revealed that polymerizations were well controlled. Because of amphiphilic nature, these copolymers self-assembled to form colloidally stable micelles above critical micellar concentration of 0.032 mg · mL(-1). In response to reductive reactions, disulfides in thiol-responsive micelles were cleaved. Atomic force microscopy and dynamic light scattering analysis suggested that the cleavage of disulfides caused dissociation of micelles to smaller-sized assembled structures in water. Moreover, in a biomedical perspective, the mono-cleavable block copolymer micelles are not cytotoxic and thus biocompatible. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Development and utilization of the inorganic polymer materials for {sup 99}Mo-{sup 99m}Tc and {sup 188}W-{sup 188}Re generator based on (n, gamma) method

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kosuke; Ishikawa, Koji; Terunuma, Hitoshi; Hasegawa, Yoshio; Tatenuma, Katsuyoshi [KAKEN Co., Mito, Ibaraki (Japan)

    2003-03-01

    A molybdenum (Mo) adsorbent called PZC (Poly Zirconium Compound) with high efficiency of Mo adsorption has been developed in order to generate {sup 99m}Tc from {sup 99}Mo produced from natural Mo by (n, gamma) method. The {sup 99m}Tc generator using PZC has cleared mostly the technical subjects. By the results of many experiments, cold and hot test with {sup 99}Mo activity from low level (10{sup 5} Bq) to high level (10{sup 10} Bq), it has been confirmed that the PZC method can be practically applied for the (n, gamma) {sup 99}Mo-{sup 99m}Tc generator. From the reasons that PZC has the ability and many merits such as high adsorption capacity (>250 mg-Mo/g-PZC) of Mo, high elution yield (av. 80%) of {sup 99m}Tc, the low breakthrough (<0.05 kBq-{sup 99m}Mo/MBq-{sup 99m}Tc) of {sup 99}Mo and others, the current (n, fission) {sup 99m}Tc generator utilizing {sup 99}Mo produced from enriched uranium will be taken the place by PZC method. In this paper, the practicability of PZC and a newly developed functional material PTC(Poly Titanium Compound) as the (n, gamma) {sup 99}Mo-{sup 99m}Tc generator, and an ability of PZC as the {sup 188}W-{sup 188}Re generator will be shown. (author)

  10. Energetic map

    International Nuclear Information System (INIS)

    2012-01-01

    This report explains the energetic map of Uruguay as well as the different systems that delimits political frontiers in the region. The electrical system importance is due to the electricity, oil and derived , natural gas, potential study, biofuels, wind and solar energy

  11. Production of Single W Bosons at LEP and Measurement of $WW\\gamma$ Gauge Coupling Parameters

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R P; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2002-01-01

    \\documentclass[12pt,a4paper,dvips]{article} \\begin{document} \\begin{center} {Production of Single W Bosons at LEP and \\\\ Measurement of \\boldmath$\\rm W W \\gamma$ Gauge Coupling Parameters} \\end{center} \\begin{abstract} Single W boson production in electron-positron collisions is studied with the L3 detector at centre-of-mass energies between $192\\mathrm{\\ Ge\\kern -0.1em V}$ and $209\\mathrm{\\ Ge\\kern -0.1em V}$. Events with two acoplanar hadronic jets or a single energetic lepton are selected, and the single W cross section is measured. Combining the results with measurements at lower centre-of-mass energies, the ratio of the measured cross section to the Standard Model expectation is found to be $1.12^{+0.11}_{-0.10}\\pm0.03$. From all single W data, the WW$\\gamma$ gauge coupling parameter $\\kappa_\\gamma$ is measured to be $1.116^{+0.082}_{-0.086}\\pm0.068$. \\end{abstract} \\end{document}

  12. Stability, energetic particles, waves, and current drive summary

    International Nuclear Information System (INIS)

    Stambaugh, R.D.

    2005-01-01

    This is the summary paper for the subjects of plasma stability, energetic particles, waves, and current drive for the 20th IAEA Fusion Energy Conference, 1-6 November 2004, Vilamoura, Portugal. Material summarized herein was drawn from 65 contributed papers and 21 overview papers. The distribution of contributed papers by subjects is shown. Significant advances were reported on the principal instabilities in magnetically confined plasmas, even looking forward to the burning plasma state. Wave-plasma physics is maturing and novel methods of current drive and noninductive current generation are being developed. (author)

  13. Dynamic fracture and hot-spot modeling in energetic composites

    Science.gov (United States)

    Grilli, Nicolò; Duarte, Camilo A.; Koslowski, Marisol

    2018-02-01

    Defects such as cracks, pores, and particle-matrix interface debonding affect the sensitivity of energetic materials by reducing the time-to-ignition and the threshold pressure to initiate an explosion. Frictional sliding of preexisting cracks is considered to be one of the most important causes of localized heating. Therefore, understanding the dynamic fracture of crystalline energetic materials is of extreme importance to assess the reliability and safety of polymer-bonded explosives. Phase field damage model simulations, based on the regularization of the crack surface as a diffuse delta function, are used to describe crack propagation in cyclotetramethylene-tetranitramine crystals embedded in a Sylgard matrix. A thermal transport model that includes heat generation by friction at crack interfaces is coupled to the solution of crack propagation. 2D and 3D dynamic compression simulations are performed with different boundary velocities and initial distributions of cracks and interface defects to understand their effect on crack propagation and heat generation. It is found that, at an impact velocity of 400 m/s, localized damage at the particle-binder interface is of key importance and that the sample reaches temperatures high enough to create a hot-spot that will lead to ignition. At an impact velocity of 10 m/s, preexisting cracks advanced inside the particle, but the increase of temperature will not cause ignition.

  14. Short gamma ray bursts triggered by neutrino-antineutrino annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Yasin, Hannah; Perego, Albino [Institut fuer Kernphysik, TU Darmstadt (Germany); Arcones, Almudena [Institut fuer Kernphysik, TU Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2016-07-01

    Gamma ray bursts (GRB) are one of the most energetic events in the universe. Neutron star mergers are the most favourable candidate for the subclass of GRBs that last less than two seconds. It has been suggested that the annihilation of neutrino-antineutrino pairs emitted by the hot and dense merger remnant could be enough to launch a relativistic jet, producing such a burst. We calculate the energy deposition by neutrino-antineutrino annihilation based on the results of a Newtonian simulation of the aftermath of a binary neutron star merger. In addition, we investigate the necessary requirements for launching a GRB and compare with our numerical results.

  15. Two coarse pyroclastic flow deposits, northern Mono-Inyo Craters, CA

    Science.gov (United States)

    Dennen, R. L.; Bursik, M. I.; Stokes, P. J.; Lagamba, M.; Fontanella, N.; Hintz, A. R.; Jayko, A. S.

    2010-12-01

    The ~1350 A.D., rhyolitic North Mono eruption, Mono-Inyo Craters, CA, included the extrusion and destruction of Panum Dome and associated clastic deposits. Overlying the tephras of the North Mono sequence, the Panum deposits include a block-and-ash flow (BAF) deposit, covering ~3.5 km2. Blocks within the deposit are typically lithic rhyolite and banded gray micro-vesicular glass, showing white, almost powdery marks ranging from circular to linear in shape. These marks are interpreted as friction marks resulting from collisions between clasts. The deposit also contains bread-crusted obsidians with pressed-in clasts as well as reticulite with a bread-crusted surface texture. Near the centerline of the deposit is a ridge-topping train of jigsaw fractured blocks, often with reddish-orange alteration. One house sized jigsaw block sits upstream of a long, thinning pile of reddish orange debris; this “flow shadow” indicates that the block remained relatively stationary while the block and ash flow continued to propagate around it. The bread-crusted reticulite is most common at proximal localities. It is proposed that the dome destruction included a debris avalanche emplacing the train of jigsaw fractured blocks and creating a topographic high, the block-and-ash flow (the farthest reaching deposit from this event) which flowed around the debris avalanche deposits, and a final “lateral expansion” of a magma foam, creating the reticulite seen concentrated at proximal locations. Another coarse pyroclastic flow (here termed the “lower blast deposit”) underlies the North Mono tephra. It is more obsidian rich and finer grained than the Panum BAF. The lower blast deposit may have originated from Pumice Pit vent, which is now capped with an older dome ~0.5 km southeast of Panum. The lower blast deposit extends farther from the Panum vent than does the Panum BAF deposit, and apparently was mistaken for the Panum BAF deposit by previous workers. Hence the run

  16. Energetic Sustainability and the Environment: A Transdisciplinary, Economic–Ecological Approach

    Directory of Open Access Journals (Sweden)

    Ioan G. Pop

    2017-05-01

    Full Text Available The paper combines original concepts about eco-energetic systems, in a transdisciplinary sustainable context. Firstly, it introduces the concept of M.E.N. (Mega-Eco-Nega-Watt, the eco-energetic paradigm based on three different but complementary ecological economic spaces: the Megawatt as needed energy, the Ecowatt as ecological energy, and the Negawatt as preserved energy. The paper also deals with the renewable energies and technologies in the context of electrical energy production. Secondly, in the context of the M.E.N. eco-energetic paradigm, comprehensive definitions are given about eco-energetic systems and for pollution. Thirdly, the paper introduces a new formula for the eco-energetic efficiency which correlates the energetic efficiency of the system and the necessary newly defined ecological coefficient. The proposed formula for eco-energetic efficiency enables an interesting form of relating to different situations in which the input energy, output energy, lost energy, and externalities involved in an energetic process, interact to produce energy in a specific energetic system, in connection with the circular resilient economy model. Finally, the paper presents an original energetic diagram to explain different channels to produce electricity in a resilience regime, with high eco-energetic efficiency from primary external energetic sources (gravitation and solar sources, fuels (classical and radioactive, internal energetic sources (geothermal, volcanoes and other kind of sources. Regardless the kind of energetic sources used to obtain electricity, the entire process should be sustainable in what concerns the transdisciplinary integration of the different representative spheres as energy, socio-economy, and ecology (environment.

  17. Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

    1985-01-01

    The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

  18. Comparison of full width at half maximum and penumbra of different Gamma Knife models.

    Science.gov (United States)

    Asgari, Sepideh; Banaee, Nooshin; Nedaie, Hassan Ali

    2018-01-01

    As a radiosurgical tool, Gamma Knife has the best and widespread name recognition. Gamma Knife is a noninvasive intracranial technique invented and developed by Swedish neurosurgeon Lars Leksell. The first commercial Leksell Gamma Knife entered the therapeutic armamentarium at the University of Pittsburgh in the United States on August 1987. Since that time, different generation of Gamma Knife developed. In this study, the technical points and dosimetric parameters including full width at half maximum and penumbra on different generation of Gamma Knife will be reviewed and compared. The results of this review study show that the rotating gamma system provides a better dose conformity.

  19. The McDonald exponentiated gamma distribution and its statistical properties

    OpenAIRE

    Al-Babtain, Abdulhakim A; Merovci, Faton; Elbatal, Ibrahim

    2015-01-01

    Abstract In this paper, we propose a five-parameter lifetime model called the McDonald exponentiated gamma distribution to extend beta exponentiated gamma, Kumaraswamy exponentiated gamma and exponentiated gamma, among several other models. We provide a comprehensive mathematical treatment of this distribution. We derive the moment generating function and the rth moment. We discuss estimation of the parameters by maximum likelihood and provide the information matrix. AMS Subject Classificatio...

  20. Study of {gamma} radiation from uranium rods during deactivation; Etude du rayonnement {gamma} des barres d'uranium en court de desactivation

    Energy Technology Data Exchange (ETDEWEB)

    Balestic, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The classical formulae giving the {gamma} activities of the fission products contained in a uranium rod after unloading from the pile are reviewed without being proved. The knowledge of these activities makes it possible, by means of the method proposed here, to determine the intensities of ionisation at a point outside the rod, and thus to establish {gamma} radiation diagrams. The different parameters introduced in the calculation are geometric (dimensions of the bars and coordinates of the point considered), energetic (power at which the bar has been irradiated) and temporal (duration of the irradiation and deactivation). A numerical example follows the demonstration of the general formulae, {gamma} flux measurements carried out in the deactivation well of P2 (Saclay pile) define the accuracy of the method. In conclusion, it is suggested that radiation diagrams be used in (planning the use of) industrial irradiators for radiochemical polymerisation or the preservation of food products. (author) [French] On rappelle sans demonstration les formules classiques donnant les activites {gamma} des produits de fission contenus dans une barre d'uranium apres defournement. La connaissance de ces activites permet par la methode proposee de passer aux intensites d'ionisation en un point exterieur a la barre et d'etablir ainsi des diagrammes de rayonnement {gamma}. Les differents parametres introduits dans le calcul sont d'ordre geometrique (dimensions des barres et coordonnees du point considere), d'ordre energetique (puissance a laquelle la barre a ete irradiee) et fonction du temps (duree d'irradiation et de desactivation). Un exemple numerique fait suite a la demonstration des formules generales. Des mesures de flux {gamma} effectuees au puits de desactivation de P2 (pile de Saclay) fixent le degre d'approximation de la methode. En conclusion, on suggere l'utilisation des diagrammes de rayonnement dans l'etablissement de projets d'irradiateurs industriels pour les

  1. Safer energetic materials by a nanotechnological approach

    Science.gov (United States)

    Siegert, Benny; Comet, Marc; Spitzer, Denis

    2011-09-01

    Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity.Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity. Electronic supplementary information (ESI) available: Experimental details for the preparation of the V2O5@CNF/Al nanothermite; X-ray diffractogram of the V2O5@CNF/Al combustion residue; installation instructions and source code for the nt-timeline program. See DOI: 10.1039/c1nr10292c

  2. High energy radiation from black holes gamma rays, cosmic rays, and neutrinos

    CERN Document Server

    Dermer, Charles D

    2009-01-01

    Bright gamma-ray flares observed from sources far beyond our Milky Way Galaxy are best explained if enormous amounts of energy are liberated by black holes. The highest- energy particles in nature--the ultra-high-energy cosmic rays--cannot be confined by the Milky Way's magnetic field, and must originate from sources outside our Galaxy. Understanding these energetic radiations requires an extensive theoretical framework involving the radiation physics and strong-field gravity of black holes. In High Energy Radiation from Black Holes, Charles Dermer and Govind Menon present a systemat

  3. ZZ AIRFEWG, Gamma, Neutron Transport Calculation in Air Using FEWG1 Cross-Section

    International Nuclear Information System (INIS)

    1985-01-01

    1 - Description of program or function: Format: ANISN; Number of groups: 37 neutron / 21 gamma-ray; Nuclides: air (79% N and 21% O); Origin: DLC-0031/FEWG1 cross sections (ENDF/B-IV). Weighting spectrum: 1/E. The AIRFEWG library has been generated by an ANISN multigroup calculation of gamma-ray, neutron, and secondary gamma-ray transport in infinite homogeneous air using DLC-0031/FEWG1 cross sections. 2 - Method of solution: The results were generated with a P3, ANISN run with a source in a single energy group. Thus, 58 such runs were required. For sources in the 37 neutron groups, both neutron and secondary gamma-ray fluence results were calculated. For gamma-ray sources only gamma-ray fluences were calculated

  4. Optimization of some eco-energetic systems

    International Nuclear Information System (INIS)

    Purica, I.; Pavelescu, M.; Stoica, M.

    1976-01-01

    An optimization problem of two eco-energetic systems is described. The first one is close to the actual eco-energetic system in Romania, while the second is a new one, based on nuclear energy as primary source and hydrogen energy as secondary source. The optimization problem solved is to find the optimal structure of the systems so that the objective functions adopted, namely unitary energy cost C and total pollution P, to be minimum at the same time. The problem can be modelated with a bimatrix cooperative mathematical game without side payments. We demonstrate the superiority of the new eco-energetic system. (author)

  5. Impact of temperature on performance of series and parallel connected mono-crystalline silicon solar cells

    Directory of Open Access Journals (Sweden)

    Subhash Chander

    2015-11-01

    Full Text Available This paper presents a study on impact of temperature on the performance of series and parallel connected mono-crystalline silicon (mono-Si solar cell employing solar simulator. The experiment was carried out at constant light intensity 550 W/m2with cell temperature in the range 25–60 oC for single, series and parallel connected mono-Si solar cells. The performance parameters like open circuit voltage, maximum power, fill factor and efficiency are found to decrease with cell temperature while the short circuit current is observed to increase. The experimental results reveal that silicon solar cells connected in series and parallel combinations follow the Kirchhoff’s laws and the temperature has a significant effect on the performance parameters of solar cell.

  6. Shock-induced microstructural response of mono- and nanocrystalline SiC ceramics

    Science.gov (United States)

    Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2018-04-01

    The dynamic behavior of mono- and nanocrystalline SiC ceramics under plane shock loading is revealed using molecular-dynamics simulations. The generation of shock-induced elastic compression, plastic deformation, and structural phase transformation is characterized at different crystallographic directions as well as on a 5-nm grain size nanostructure at 10 K and 300 K. Shock profiles are calculated in a wide range of particle velocities 0.1-6.0 km/s. The predicted Hugoniot agree well with experimental data. Results indicate the generation of elastic waves for particle velocities below 0.8-1.9 km/s, depending on the crystallographic direction. In the intermediate range of particle velocities between 2 and 5 km/s, the shock wave splits into an elastic precursor and a zinc blende-to-rock salt structural transformation wave, which is triggered by shock pressure over the ˜90 GPa threshold value. A plastic wave, with a strong deformation twinning component, is generated ahead of the transformation wave for shocks in the velocity range between 1.5 and 3 km/s. For particle velocities greater than 5-6 km/s, a single overdriven transformation wave is generated. Surprisingly, shocks on the nanocrystalline sample reveal the absence of wave splitting, and elastic, plastic, and transformation wave components are seamlessly connected as the shock strength is continuously increased. The calculated strengths 15.2, 31.4, and 30.9 GPa for ⟨001⟩, ⟨111⟩, and ⟨110⟩ directions and 12.3 GPa for the nanocrystalline sample at the Hugoniot elastic limit are in excellent agreement with experimental data.

  7. Modeling whistler wave generation regimes in magnetospheric cyclotron maser

    Directory of Open Access Journals (Sweden)

    D. L. Pasmanik

    2004-11-01

    Full Text Available Numerical analysis of the model for cyclotron instability in the Earth's magnetosphere is performed. This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. A parametric study of the model is performed. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch angle distributions and its intensity. Two mechanisms of removal of energetic electrons from a generation region are considered, one is due to the particle precipitation through the loss cone and another one is related to the magnetic drift of energetic particles.

    It was confirmed that two main regimes occur in this system in the presence of a constant particle source, in the case of precipitation losses. At small source intensity relaxation oscillations were found, whose parameters are in good agreement with simplified analytical theory developed earlier. At a larger source intensity, transition to a periodic generation occurs. In the case of drift losses the regime of self-sustained periodic generation regime is realized for source intensity higher than some threshold. The dependencies of repetition period and dynamic spectrum shape on the source parameters were studied in detail. In addition to simple periodic regimes, those with more complex spectral forms were found. In particular, alteration of spikes with different spectral shape can take place. It was also shown that quasi-stationary generation at the low-frequency band can coexist with periodic modulation at higher frequencies.

    On the basis of the results obtained, the model for explanation of

  8. The gamma oscillation: master or slave?

    Science.gov (United States)

    Schroeder, Charles E; Lakatos, Peter

    2009-06-01

    The idea that gamma enhancement reflects a state of high neuronal excitability and synchrony, critical for active brain operations, sets gamma up as a "master" or executor process that determines whether an input is effectively integrated and an effective output is generated. However, gamma amplitude is often coupled to the phase of lower frequency delta or theta oscillations, which would make gamma a "slave" to lower frequency activity. Gamma enslavement is productive and typical during rhythmic mode brain operations; when a predictable rhythm is in play, low and mid-frequency oscillations can be entrained and their excitability fluctuations of put to work in sensory and motor functions. When there is no task relevant rhythm that the system can entrain to, low frequency oscillations become detrimental to processing. Then, a continuous (vigilance) mode of operation is implemented; the system's sensitivity is maximized by suppressing lower frequency oscillations and exploiting continuous gamma band oscillations. Each mode has costs and benefits, and the brain shifts dynamically between them in accord with task demands.

  9. Energetics Laboratory Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — These energetic materials laboratories are equipped with explosion proof hoods with blow out walls for added safety, that are certified for safe handling of primary...

  10. Physics and astrophysics with gamma-ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, J. [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2012-08-15

    In the past few years gamma-ray astronomy has entered a golden age. A modern suite of telescopes is now scanning the sky over both hemispheres and over six orders of magnitude in energy. At {approx}TeV energies, only a handful of sources were known a decade ago, but the current generation of ground-based imaging atmospheric Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS) has increased this number to nearly one hundred. With a large field of view and duty cycle, the Tibet and Milagro air shower detectors have demonstrated the promise of the direct particle detection technique for TeV gamma rays. At {approx}GeV energies, the Fermi Gamma-ray Space Telescope has increased the number of known sources by nearly an order of magnitude in its first year of operation. New classes of sources that were previously theorized to be gamma-ray emitters have now been confirmed observationally. Moreover, there have been surprise discoveries of GeV gamma-ray emission from source classes for which no theory predicted it was possible. In addition to elucidating the processes of high-energy astrophysics, gamma-ray telescopes are making essential contributions to fundamental physics topics including quantum gravity, gravitational waves, and dark matter. I summarize the current census of astrophysical gamma-ray sources, highlight some recent discoveries relevant to fundamental physics, and describe the synergetic connections between gamma-ray and neutrino astronomy. This is a brief overview intended in particular for particle physicists and neutrino astronomers, based on a presentation at the Neutrino 2010 conference in Athens, Greece. I focus in particular on results from Fermi (which was launched soon after Neutrino 2008), and conclude with a description of the next generation of instruments, namely HAWC and the Cherenkov Telescope Array.

  11. POET: a SMEX mission for gamma ray burst polarimetry

    Science.gov (United States)

    McConnell, Mark L.; Baring, Matthew; Bloser, Peter; Dwyer, Joseph F.; Emslie, A. Gordon; Ertley, Camden D.; Greiner, Jochen; Harding, Alice K.; Hartmann, Dieter H.; Hill, Joanne E.; Kaaret, Philip; Kippen, R. M.; Mattingly, David; McBreen, Sheila; Pearce, Mark; Produit, Nicolas; Ryan, James M.; Ryde, Felix; Sakamoto, Takanori; Toma, Kenji; Vestrand, W. Thomas; Zhang, Bing

    2014-07-01

    Polarimeters for Energetic Transients (POET) is a mission concept designed to t within the envelope of a NASA Small Explorer (SMEX) mission. POET will use X-ray and gamma-ray polarimetry to uncover the energy release mechanism associated with the formation of stellar-mass black holes and investigate the physics of extreme magnetic ields in the vicinity of compact objects. Two wide-FoV, non-imaging polarimeters will provide polarization measurements over the broad energy range from about 2 keV up to about 500 keV. A Compton scatter polarimeter, using an array of independent scintillation detector elements, will be used to collect data from 50 keV up to 500 keV. At low energies (2{15 keV), data will be provided by a photoelectric polarimeter based on the use of a Time Projection Chamber for photoelectron tracking. During a two-year baseline mission, POET will be able to collect data that will allow us to distinguish between three basic models for the inner jet of gamma-ray bursts.

  12. Measurements of fission product yield in the neutron-induced fission of 238U with average energies of 9.35 MeV and 12.52 MeV

    Science.gov (United States)

    Mukerji, Sadhana; Krishnani, Pritam Das; Shivashankar, Byrapura Siddaramaiah; Mulik, Vikas Kaluram; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok

    2014-07-01

    The yields of various fission products in the neutron-induced fission of 238U with the flux-weightedaveraged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gammaray spectroscopic technique. The neutrons were generated using the 7Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.

  13. EINSTEIN@HOME DISCOVERY OF FOUR YOUNG GAMMA-RAY PULSARS IN FERMI LAT DATA

    Energy Technology Data Exchange (ETDEWEB)

    Pletsch, H. J.; Allen, B.; Aulbert, C.; Bock, O.; Eggenstein, H. B.; Fehrmann, H.; Machenschalk, B.; Papa, M. A. [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), D-30167 Hannover (Germany); Guillemot, L.; Champion, D. J.; Karuppusamy, R.; Kramer, M.; Ng, C. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Anderson, D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Hammer, D.; Siemens, X. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 (United States); Keith, M. [CSIRO Astronomy and Space Science, Australia Telescope National Facility (Australia); Ray, P. S., E-mail: holger.pletsch@aei.mpg.de, E-mail: lucas.guillemot@cnrs-orleans.fr [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States)

    2013-12-10

    We report the discovery of four gamma-ray pulsars, detected in computing-intensive blind searches of data from the Fermi Large Area Telescope (LAT). The pulsars were found using a novel search approach, combining volunteer distributed computing via Einstein@Home and methods originally developed in gravitational-wave astronomy. The pulsars PSRs J0554+3107, J1422–6138, J1522–5735, and J1932+1916 are young and energetic, with characteristic ages between 35 and 56 kyr and spin-down powers in the range 6 × 10{sup 34}—10{sup 36} erg s{sup –1}. They are located in the Galactic plane and have rotation rates of less than 10 Hz, among which the 2.1 Hz spin frequency of PSR J0554+3107 is the slowest of any known gamma-ray pulsar. For two of the new pulsars, we find supernova remnants coincident on the sky and discuss the plausibility of such associations. Deep radio follow-up observations found no pulsations, suggesting that all four pulsars are radio-quiet as viewed from Earth. These discoveries, the first gamma-ray pulsars found by volunteer computing, motivate continued blind pulsar searches of the many other unidentified LAT gamma-ray sources.

  14. Cosmic-ray acceleration and gamma-ray signals from radio supernovæ

    Energy Technology Data Exchange (ETDEWEB)

    Marcowith, A.; Renaud, M. [Laboratoire Univers et particules de Montpellier, Université Montpellier II/CNRS, place E. Bataillon, cc072, 34095 Montpellier (France); Dwarkadas, V. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL, 60637 (United States); Tatischeff, V. [Centre de Sciences Nucléaires et de Sciences de la Matière, IN2P3/CNRS and Univ Paris-Sud, 91405 Orsay (France)

    2014-11-15

    Core collapse supernovae (SNe) are among the most extreme events in the universe. The are known to harbor among the fastest (but non- or midly-relativistic) shock waves. Once it has crossed the stellar atmosphere, the SN blast wave expands in the wind of the massive star progenitor. In type IIb SNe, the progenitor is likely a Red SuperGiant (RSG) star which has a large mass loss rate and a slow stellar wind producing a very dense circumstellar medium. A high velocity shock and a high density medium are both key ingredients to initiate fast particle acceleration, and fast growing instabilities driven by the acceleration process itself. We have reanalyzed the efficiency of particle acceleration at the forward shock right after the SN outburst for the particular case of the well-known SN 1993J. We find that plasma instabilities driven by the energetic particles accelerated at the shock front grow over intraday timescales. This growth, and the interplay of non-linear process, permit a fast amplification of the magnetic field at the shock, that can explain the magnetic field strengths deduced from the radio monitoring of the source. The maximum particle energy is found to reach 1–10 PeV depending on the instability dominating the amplification process. We derive the time dependent particle spectra and the associated hadronic signatures of secondary particles (gamma-ray, leptons and neutrinos) arising from proton proton interactions. We find that the Cherenkov Telescope Array (CTA) should easily detect objects like SN 1993J in particular above 1 TeV, while current generation of Cherenkov telescopes such as H.E.S.S. could only marginaly detect such events. The gamma-ray signal is found to be heavily absorbed by pair production process during the first week after the outburst. We predict a low neutrino flux above 10 TeV, implying a detectability horizon with a KM3NeT-type telescope of 1 Mpc only. We finally discuss the essential parameters that control the particle

  15. Measurement of changes in viscosity in polymers with gamma-ray dose using a differential viscometer

    International Nuclear Information System (INIS)

    Santra, L.; Bhaumik, D.; Roy, S.C.

    1988-01-01

    Although some works on changes in viscosity of liquids with gamma-ray dose have been made near the ''gel point'', very little works have been done bellow this point. Changes in viscosities of different-grade silicone fluids below gel point have been measured using a differential viscometer developed in our laboratory, capable of measuring change in viscosities of two liquids directly. Preliminary results on viscosity changes when irradiated with energetic alpha particles will also be reported [pt

  16. Measurement of changes in viscosity in polymers with gamma-ray dose using a differential viscometer

    International Nuclear Information System (INIS)

    Santra, L.; Bhaumik, D.; Roy, S.C.

    1989-01-01

    Although some works on changes in viscosity of liquids with gamma-ray dose have been made near the 'gel point', very little works have been done below this point. Changes in viscosities of different-grade silicone fluids below gel point have been measured using a differential viscometer developed in our laboratory, capable of measuring change in viscosities of two liquids directly. Preliminary results on viscosity changes when irradiated with energetic alpha particles will also be reported. (orig.)

  17. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  18. The Effects of Operational Parameters on a Mono-wire Cutting System: Efficiency in Marble Processing

    Science.gov (United States)

    Yilmazkaya, Emre; Ozcelik, Yilmaz

    2016-02-01

    Mono-wire block cutting machines that cut with a diamond wire can be used for squaring natural stone blocks and the slab-cutting process. The efficient use of these machines reduces operating costs by ensuring less diamond wire wear and longer wire life at high speeds. The high investment costs of these machines will lead to their efficient use and reduce production costs by increasing plant efficiency. Therefore, there is a need to investigate the cutting performance parameters of mono-wire cutting machines in terms of rock properties and operating parameters. This study aims to investigate the effects of the wire rotational speed (peripheral speed) and wire descending speed (cutting speed), which are the operating parameters of a mono-wire cutting machine, on unit wear and unit energy, which are the performance parameters in mono-wire cutting. By using the obtained results, cuttability charts for each natural stone were created on the basis of unit wear and unit energy values, cutting optimizations were performed, and the relationships between some physical and mechanical properties of rocks and the optimum cutting parameters obtained as a result of the optimization were investigated.

  19. Transitions from mono- to co- to tri-culture uniquely affect gene expression in breast cancer, stromal, and immune compartments.

    Science.gov (United States)

    Regier, Mary C; Maccoux, Lindsey J; Weinberger, Emma M; Regehr, Keil J; Berry, Scott M; Beebe, David J; Alarid, Elaine T

    2016-08-01

    Heterotypic interactions in cancer microenvironments play important roles in disease initiation, progression, and spread. Co-culture is the predominant approach used in dissecting paracrine interactions between tumor and stromal cells, but functional results from simple co-cultures frequently fail to correlate to in vivo conditions. Though complex heterotypic in vitro models have improved functional relevance, there is little systematic knowledge of how multi-culture parameters influence this recapitulation. We therefore have employed a more iterative approach to investigate the influence of increasing model complexity; increased heterotypic complexity specifically. Here we describe how the compartmentalized and microscale elements of our multi-culture device allowed us to obtain gene expression data from one cell type at a time in a heterotypic culture where cells communicated through paracrine interactions. With our device we generated a large dataset comprised of cell type specific gene-expression patterns for cultures of increasing complexity (three cell types in mono-, co-, or tri-culture) not readily accessible in other systems. Principal component analysis indicated that gene expression was changed in co-culture but was often more strongly altered in tri-culture as compared to mono-culture. Our analysis revealed that cell type identity and the complexity around it (mono-, co-, or tri-culture) influence gene regulation. We also observed evidence of complementary regulation between cell types in the same heterotypic culture. Here we demonstrate the utility of our platform in providing insight into how tumor and stromal cells respond to microenvironments of varying complexities highlighting the expanding importance of heterotypic cultures that go beyond conventional co-culture.

  20. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Nievaart, V. A.; Legrady, D.; Moss, R. L.; Kloosterman, J. L.; Hagen, T. H. J. J. van der; Dam, H. van

    2007-01-01

    This paper deals with the application of the adjoint transport theory in order to optimize Monte Carlo based radiotherapy treatment planning. The technique is applied to Boron Neutron Capture Therapy where most often mixed beams of neutrons and gammas are involved. In normal forward Monte Carlo simulations the particles start at a source and lose energy as they travel towards the region of interest, i.e., the designated point of detection. Conversely, with adjoint Monte Carlo simulations, the so-called adjoint particles start at the region of interest and gain energy as they travel towards the source where they are detected. In this respect, the particles travel backwards and the real source and real detector become the adjoint detector and adjoint source, respectively. At the adjoint detector, an adjoint function is obtained with which numerically the same result, e.g., dose or flux in the tumor, can be derived as with forward Monte Carlo. In many cases, the adjoint method is more efficient and by that is much quicker when, for example, the response in the tumor or organ at risk for many locations and orientations of the treatment beam around the patient is required. However, a problem occurs when the treatment beam is mono-directional as the probability of detecting adjoint Monte Carlo particles traversing the beam exit (detector plane in adjoint mode) in the negative direction of the incident beam is zero. This problem is addressed here and solved first with the use of next event estimators and second with the application of a Legendre expansion technique of the angular adjoint function. In the first approach, adjoint particles are tracked deterministically through a tube to a (adjoint) point detector far away from the geometric model. The adjoint particles will traverse the disk shaped entrance of this tube (the beam exit in the actual geometry) perpendicularly. This method is slow whenever many events are involved that are not contributing to the point

  1. Quark-Nova Explosion inside a Collapsar: Application to Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Rachid Ouyed

    2009-01-01

    Full Text Available If a quark-nova occurs inside a collapsar, the interaction between the quark-nova ejecta (relativistic iron-rich chunks and the collapsar envelope leads to features indicative of those observed in Gamma Ray Bursts. The quark-nova ejecta collides with the stellar envelope creating an outward moving cap (Γ∼ 1–10 above the polar funnel. Prompt gamma-ray burst emission from internal shocks in relativistic jets (following accretion onto the quark star becomes visible after the cap becomes optically thin. Model features include (i precursor activity (optical, X-ray, γ-ray, (ii prompt γ-ray emission, and (iii afterglow emission. We discuss SN-less long duration GRBs, short hard GRBs (including association and nonassociation with star forming regions, dark GRBs, the energetic X-ray flares detected in Swift GRBs, and the near-simultaneous optical and γ-ray prompt emission observed in GRBs in the context of our model.

  2. On sensitivity of gamma families to the model of nuclear interaction

    International Nuclear Information System (INIS)

    Krys, A.; Tomaszewski, A.; Wrotniak, J.A.

    1980-01-01

    A variety of 5 different models of nuclear interaction has been used in a Monte Carlo simulation of nuclear and electromagnetic showers in the atmosphere. The gamma families obtained from this simulation were processed in a way, analogous to one employed in analysis of Pamir experimental results. The sensitivity of observed pattern to the nuclear interaction model assumptions was investigated. Such sensitivity, though not a strong one, was found. In case of longitudinal (or energetical) family characteristics, the changes in nuclear interaction should be really large, if they were to be reflected in the experimental data -with all methodical error possibilities. The transverse characteristics of gamma families are more sensitive to the assumed transverse momentum distribution, but they feel the longitudinal features of nuclear interaction as well. Additionally, there was tested the dependence of observed family pattern on some methodical effects (resolving power of X-ray film, radial cut-off and energy underestimation.) (author)

  3. Prompt Gamma Activation Analysis (PGAA): Technique of choice for nondestructive bulk analysis of returned comet samples

    International Nuclear Information System (INIS)

    Lindstrom, D.J.; Lindstrom, R.M.

    1989-01-01

    Prompt gamma activation analysis (PGAA) is a well-developed analytical technique. The technique involves irradiation of samples in an external neutron beam from a nuclear reactor, with simultaneous counting of gamma rays produced in the sample by neutron capture. Capture of neutrons leads to excited nuclei which decay immediately with the emission of energetic gamma rays to the ground state. PGAA has several advantages over other techniques for the analysis of cometary materials: (1) It is nondestructive; (2) It can be used to determine abundances of a wide variety of elements, including most major and minor elements (Na, Mg, Al, Si, P, K, Ca, Ti, Cr, Mn, Fe, Co, Ni), volatiles (H, C, N, F, Cl, S), and some trace elements (those with high neutron capture cross sections, including B, Cd, Nd, Sm, and Gd); and (3) It is a true bulk analysis technique. Recent developments should improve the technique's sensitivity and accuracy considerably

  4. Ferrocyanide Safety Program: Analysis of postulated energetic reactions and resultant aerosol generation in Hanford Site Waste Tanks

    International Nuclear Information System (INIS)

    Postma, A.K.; Dickinson, D.R.

    1995-09-01

    This report reviews work done to estimate the possible consequences of postulated energetic reactions in ferrocyanide waste stored in underground tanks at the Hanford Site. The issue of explosive reactions was raised in the 1987 Environmental Impact Statement (EIS), where a detonation-like explosion was postulated for the purpose of defining an upper bound on dose consequences for various disposal options. A review of the explosion scenario by the General Accounting Office (GAO) indicated that the aerosol generation and consequent radioactive doses projected for the explosion postulated in the EIS were understated by one to two orders of magnitude. The US DOE has sponsored an extensive study of the hazard posed by uncontrolled exothermic reactions in ferrocyanide waste, and results obtained during the past three years have allowed this hazard to be more realistically assessed. The objective of this report is to summarize the improved knowledge base that now indicates that explosive or vigorous chemical reactions are not credible in the ferrocyanide waste stored in underground tanks. This improved understanding supports the decision not to proceed with further analyses or predictions of the consequences of such an event or with aerosol tests in support of such predictions. 53 refs., 2 tabs

  5. A link between prompt optical and prompt gamma-ray emission in gamma-ray bursts.

    Science.gov (United States)

    Vestrand, W T; Wozniak, P R; Wren, J A; Fenimore, E E; Sakamoto, T; White, R R; Casperson, D; Davis, H; Evans, S; Galassi, M; McGowan, K E; Schier, J A; Asa, J W; Barthelmy, S D; Cummings, J R; Gehrels, N; Hullinger, D; Krimm, H A; Markwardt, C B; McLean, K; Palmer, D; Parsons, A; Tueller, J

    2005-05-12

    The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.

  6. Octave-Spanning Mid-IR Supercontinuum Generation with Ultrafast Cascaded Nonlinearities

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Liu, Xing

    2014-01-01

    An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation.......An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation....

  7. Calibration of nuclear medicine gamma counters

    International Nuclear Information System (INIS)

    Orlic, M.; Spasic-Jokic, V.; Jovanovic, M.; Vranjes, S. . E-mail address of corresponding author: morlic@vin.bg.ac.yu; Orlic, M.)

    2005-01-01

    In this paper the practical problem of nuclear medicine gamma counters calibration has been solved by using dose calibrators CRC-15R with standard error ±5%. The samples from technetium generators have been measured both by dose calibrators CRC-15R and gamma counter ICN Gamma 3.33 taking into account decay correction. Only the linear part of the curve has practical meaning. The advantage of this procedure satisfies the requirements from international standards: the calibration of sources used for medical exposure be traceable to a standard dosimetry laboratory and radiopharmaceuticals for nuclear medicine procedures be calibrated in terms of activity of the radiopharmaceutical to be administered. (author)

  8. Borehole instrument for scintillation gamma spectrometer

    International Nuclear Information System (INIS)

    Sinitsyn, A.Ya.; Gabitov, R.M.

    1979-01-01

    Described are a schematic diagram and main specifications of a borehole instrument with autostabilization of energy scale measure by gamma bench-mark of 137 Cs, intended for the application in a logging gamma spectrometer to determine separately the concentrations of nature radioactive elements. The instrument may be connected to the KOBDFM-2 cable of 600 m length. It contains a scintillation counter for gamma quanta consisting of 30x70 mm NaI(Tl) crystal and a FEU-85 photoamplifier, an input conforming stage, a diagram of threshold pulse formation and regulating high-voltage generator. The borehole instrument has been proved under laboratory and field conditions at 10-40 deg C

  9. Comparison Based on Exergetic Analyses of Two Hot Air Engines: A Gamma Type Stirling Engine and an Open Joule Cycle Ericsson Engine

    Directory of Open Access Journals (Sweden)

    Houda Hachem

    2015-10-01

    Full Text Available In this paper, a comparison of exergetic models between two hot air engines (a Gamma type Stirling prototype having a maximum output mechanical power of 500 W and an Ericsson hot air engine with a maximum power of 300 W is made. Referring to previous energetic analyses, exergetic models are set up in order to quantify the exergy destruction and efficiencies in each type of engine. The repartition of the exergy fluxes in each part of the two engines are determined and represented in Sankey diagrams, using dimensionless exergy fluxes. The results show a similar proportion in both engines of destroyed exergy compared to the exergy flux from the hot source. The compression cylinders generate the highest exergy destruction, whereas the expansion cylinders generate the lowest one. The regenerator of the Stirling engine increases the exergy resource at the inlet of the expansion cylinder, which might be also set up in the Ericsson engine, using a preheater between the exhaust air and the compressed air transferred to the hot heat exchanger.

  10. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    Science.gov (United States)

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5). 2010 Elsevier Ltd. All rights reserved.

  11. Biofilm formation and disinfectant resistance of Salmonella sp. in mono- and dual-species with Pseudomonas aeruginosa.

    Science.gov (United States)

    Pang, X Y; Yang, Y S; Yuk, H G

    2017-09-01

    This study aimed to evaluate the biofilm formation and disinfectant resistance of Salmonella cells in mono- and dual-species biofilms with Pseudomonas aeruginosa, and to investigate the role of extracellular polymeric substances (EPS) in the protection of biofilms against disinfection treatment. The populations of Salmonella in mono- or dual-species biofilms with P. aeruginosa on stainless steel (SS) coupons were determined before and after exposure to commercial disinfectant, 50 μg ml -1 chlorine or 200 μg ml -1 Ecolab ® Whisper™ V (a blend of four effective quaternary ammonium compounds (QAC)). In addition, EPS amount from biofilms was quantified and biofilm structures were observed using scanning electron microscopy (SEM). Antagonistic interactions between Salmonella and P. aeruginosa resulted in lower planktonic population level of Salmonella, and lower density in dual-species biofilms compared to mono-species biofilms. The presence of P. aeruginosa significantly enhanced disinfectant resistance of S. Typhimurium and S. Enteritidis biofilm cells for 2 days, and led to an average of 50% increase in polysaccharides amount in dual-species biofilms than mono-species biofilms of Salmonella. Microscopy observation showed the presence of large microcolonies covered by EPS in dual-species biofilms but not in mono-species ones. The presence of P. aeruginosa in dual-species culture inhibited the growth of Salmonella cells in planktonic phase and in biofilms, but protected Salmonella cells in biofilms from disinfection treatment, by providing more production of EPS in dual-species biofilms than mono-species ones. This study provides insights into inter-species interaction, with regard to biofilm population dynamics and disinfectant resistance. Thus, a sanitation protocol should be designed considering the protective role of secondary species to pathogens in biofilms on SS surface which has been widely used at food surfaces and manufacturers. © 2017 The Society

  12. Preliminary Breakdown: Physical Mechanisms and Potential for Energetic Emissions

    Science.gov (United States)

    Petersen, D.; Beasley, W. H.

    2014-12-01

    Observations and analysis of the preliminary breakdown phase of virgin negative cloud-to-ground (-CG) lightning strokes will be presented. Of primary interest are the physical processes responsible for the fast electric field "characteristic" pulses that are often observed during this phase. The pulse widths of characteristic pulses are shown to occur as a superposed bimodal distribution, with the short and long modes having characteristic timescales on the order of 1 microsecond and 10 microseconds, respectively. Analysis of these pulses is based on comparison with laboratory observations of long spark discharge processes and with recently acquired high-speed video observations of a single -CG event. It will be argued that the fast electric field bimodal distribution is the result of conventional discharge processes operating in an extensive strong ambient electric field environment. An important related topic will also be discussed, where it will be argued that preliminary breakdown discharges are capable of generating energetic electrons and may therefore seed relativistic electron avalanches that go on to produce pulsed energetic photon emissions.

  13. Rocket measurements of energetic particles in the midlatitude precipitation zone

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.; Braswell, F. M.

    1980-01-01

    Measurements of energetic ion and electron properties as a function of altitude in the midlatitude zone of nighttime energetic particle precipitation are reported. The measurements of particle fluxes, energy spectra and pitch angle distributions were obtained by a Langmuir probe, six energetic particle spectrometers and an electrostatic analyzer on board a Nike Apache rocket launched near the center of the midlatitude zone during disturbed conditions. It is found that the incident flux was primarily absorbed rather than backscattered, and consists of mainly energetic hydrogen together with some helium and a small energetic electron component. Observed differential energy spectra of protons having an exponential energy spectrum, and pitch angle distributions at various altitudes indicate that the energetic particle flux decreases rapidly for pitch angles less than 70 deg. An energetic particle energy flux of 0.002 ergs/sq cm per sec is calculated which indicates the significance of energetic particles as a primary nighttime ionization source for altitudes between 120 and 200 km in the midlatitude precipitation zone.

  14. Gamma-ray burst observations with new generation imaging atmospheric Cerenkov Telescopes in the FERMI era

    International Nuclear Information System (INIS)

    Covino, S.; Campana, S.; Garczarczyk, M.; Galante, N.; Gaug, M.; Antonelli, A.; Bastieri, D.; Longo, F.; Scapin, V.

    2009-01-01

    After the launch and successful beginning of operations of the FERMI satellite, the topics related to high-energy observations of gamma-ray bursts have obtained a considerable attention by the scientific community. Undoubtedly, the diagnostic power of high-energy observations in constraining the emission processes and the physical conditions of gamma-ray burst is relevant. We briefly discuss how gamma-ray burst observations with ground-based imaging array Cerenkov telescopes, in the GeV-TeV range, can compete and cooperate with FERMI observations, in the MeV-GeV range, to allow researchers to obtain a more detailed and complete picture of the prompt and afterglow phases of gamma-ray bursts.

  15. Relativistically Induced Transparency Acceleration (RITA) - laser-plasma accelerated quasi-monoenergetic GeV ion-beams with existing lasers?

    Science.gov (United States)

    Sahai, Aakash A.

    2013-10-01

    Laser-plasma ion accelerators have the potential to produce beams with unprecedented characteristics of ultra-short bunch lengths (100s of fs) and high bunch-charge (1010 particles) over acceleration length of about 100 microns. However, creating and controlling mono-energetic bunches while accelerating to high-energies has been a challenge. If high-energy mono-energetic beams can be demonstrated with minimal post-processing, laser (ω0)-plasma (ωpe) ion accelerators may be used in a wide-range of applications such as cancer hadron-therapy, medical isotope production, neutron generation, radiography and high-energy density science. Here we demonstrate using analysis and simulations that using relativistic intensity laser-pulses and heavy-ion (Mi ×me) targets doped with a proton (or light-ion) species (mp ×me) of trace density (at least an order of magnitude below the cold critical density) we can scale up the energy of quasi-mono-energetically accelerated proton (or light-ion) beams while controlling their energy, charge and energy spectrum. This is achieved by controlling the laser propagation into an overdense (ω0 RITA). Desired proton or light-ion energies can be achieved by controlling the velocity of the snowplow, which is shown to scale inversely with the rise-time of the laser (higher energies for shorter pulses) and directly with the scale-length of the plasma density gradient. Similar acceleration can be produced by controlling the increase of the laser frequency (Chirp Induced Transparency Acceleration, ChITA). Work supported by the National Science Foundation under NSF- PHY-0936278. Also, NSF-PHY-0936266 and NSF-PHY-0903039; the US Department of Energy under DEFC02-07ER41500, DE- FG02-92ER40727 and DE-FG52-09NA29552.

  16. Dynamics of biogeochemical sulfur cycling in Mono Lake

    Science.gov (United States)

    Phillips, A. A.; Fairbanks, D.; Wells, M.; Fullerton, K. M.; Bao, R.; Johnson, H.; Speth, D. R.; Stamps, B. W.; Miller, L.; Sessions, A. L.

    2017-12-01

    Mono Lake, California is a closed-basin soda lake (pH 9.8) with high sulfate (120mM), and is an ideal natural laboratory for studying microbial sulfur cycling. Mono Lake is typically thermally stratified in summer while mixing completely in winter. However, large snowmelt inputs may induce salinity stratification that persists for up to five years, causing meromixis. During the California drought of 2014-16, the lake has mixed thoroughly each winter, but the abundant 2017 snowmelt may usher in a multi-year stratification. This natural experiment provides an opportunity to investigate the temporal relationship between microbial sulfur cycling and lake biogeochemistry. We analyzed water samples from five depths at two stations in May of 2017, before the onset of meromixis. Water column sulfate isotope values were generally constant with depth, centering at a δ34SVCDT of 17.39 ± 0.06‰. Organic sulfur isotopes were consistently lighter than lake sulfate, with a δ34SVCDT of 15.59 ± 0.56‰. This significant offset between organic and inorganic sulfur contradicts the minimal isotope effect associated with sulfate assimilation. Sediment push core organic values were further depleted, ranging between δ34SVCDT of -8.94‰ and +0.23‰, implying rapid turnover of Mono Lake sulfur pools. Both lipid biomarkers and 16S rRNA gene amplicons identify Picocystis salinarum, a unicellular green alga, as the dominant member of the microbial community. However, bacterial biomarkers and 16S rRNA genes point to microbes capable of sulfur cycling. We found that dsrA increased with depth (R2 = 0.9008, p reducers and sulfide oxidizers after >1 year of stratification. We saw no evidence in May of 2017 of sulfate reducing bacteria across the oxycline. Additionally, no sulfide was detectable in lake bottom waters despite oxygen below 6.25 µM. Preliminary results suggest a dynamic interplay between sulfide oxidation, sulfate reduction, and the onset of lake stratification. Additional

  17. Production of mono sugar from acid hydrolysis of seaweed | Jang ...

    African Journals Online (AJOL)

    ... the process conditions for the saccharification of macroalgae (seaweed) into mono sugar using the following parameters such as: Amount of biomass, catalyst concentration, temperature and reaction time. The major component of Ulva pertusa (green seaweed), Laminaria japonica (brown seaweed) and Gelidium amansii ...

  18. Secondary gamma-ray data for shielding calculation

    International Nuclear Information System (INIS)

    Miyasaka, Sunichi

    1979-01-01

    In deep penetration transport calculations, the integral design parameters is determined mainly by secondary particles which are produced by interactions of the primary radiation with materials. The shield thickness and the biological dose rate at a given point of a bulk shield are determined from the contribution from secondary gamma rays. The heat generation and the radiation damage in the structural and shield materials depend strongly on the secondary gamma rays. In this paper, the status of the secondary gamma ray data and its further problems are described from the viewpoint of shield design. The secondary gamma-ray data in ENDF/B-IV and POPOP4 are also discussed based on the test calculations made for several shield assemblies. (author)

  19. Next Generation TRD for CREAM Using Gas Straw Tubes and Foam Radiators

    Science.gov (United States)

    Malinin, A.; Ahn, H.S.; Fedin, O.; Ganel, O.; Han, J.H.; Kim, C.H.; Kim, K.C.; Lee, M.H.; Lutz, L.; Seo, E.S.; Walpole, P.; Wu, J.; Yoo, J.H.; Yoon, Y.S.; Zinn, S.Y.

    The Cosmic Ray Energetics And Mass (CREAM) experiment is designed to investigate the source, propagation and acceleration mechanism of high energy cosmic-ray nuclei, by directly measuring their energy and charge. Incorporating a transition radiation detector (TRD) provides an energy measurement complementary to the calorimeter, as well as additional track reconstruction capability. The next generation CREAM TRD is designed with 4 mm straw tubes to greatly improve tracking over the previous 20 mm tube design, thereby enhancing charge identification in the silicon charge detector (SCD). Plastic foam provides a weight-efficient radiator that doubles as a mechanical support for the straw layers. This design provides a compact, robust, reliable, low density detector to measure incident nucleus energy for 3 < Z < 30 nuclei in the Lorentz gamma factor range of 102-105. This paper discusses the new TRD design and the low power front end electronics used to achieve the large dynamic range required. Beam test results of a prototype TRD are also reported.

  20. Decontamination and disposal of Sb-124 at Palo Verde Nuclear Generating Station

    International Nuclear Information System (INIS)

    Miller, A.D.; Hillmer, T.P.; Kester, J.W.; Hensch, J.R.

    1988-01-01

    Palo Verde Nuclear Generating Station (PVNGS) is a three unit Combustion Engineering pressurized water reactor site. Each unit consists of an identical, self contained 1270 MWe reactor. This standardized design allows sharing of design improvements and equipment leading to optimum operation of the individual units. One design improvement, identified early into the operation of Unit 1, involved the elemental antimony content of the seals and bearings within the reactor coolant pumps. Normal wear of these components releases small amounts of elemental antimony. This antimony in turn deposits on in-core surfaces and activates to produce the isotopes Sb-122 and Sb-124. These isotopes emit highly energetic gamma rays which contribute significantly to the exposure and radwaste disposal charges at PVNGS. For these reasons, the Antimony Removal Program was undertaken to remove the radioactive and elemental antimony from the nuclear steam supply system at all three units. The work presented here describes the antimony decontamination and disposal

  1. The measurement of gamma ray induced heating in a mixed neutron and gamma ray environment

    International Nuclear Information System (INIS)

    Chiu, H.K.

    1991-10-01

    The problem of measuring the gamma heating in a mixed DT neutron and gamma ray environment was explored. A new detector technique was developed to make this measurement. Gamma heating measurements were made in a low-Z assembly irradiated with 14-Mev neutrons and (n, n') gammas produced by a Texas Nuclear Model 9400 neutron generator. Heating measurements were made in the mid-line of the lattice using a proportional counter operating in the Continuously-varied Bias-voltage Acquisition mode. The neutron-induced signal was separated from the gamma-induced signal by exploiting the signal rise-time differences inherent to radiations of different linear energy transfer coefficient, which are observable in a proportional counter. The operating limits of this measurement technique were explored by varying the counter position in the low-Z lattice, hence changing the irradiation spectrum observed. The experiment was modelled numerically to help interpret the measured results. The transport of neutrons and gamma rays in the assembly was modelled using the one- dimensional radiation transport code ANISN/PC. The cross-section set used for these calculations was derived from the ENDF/B-V library using the code MC 2 -2 for the case of DT neutrons slowing down in a low-Z material. The calculated neutron and gamma spectra in the slab and the relevant mass-stopping powers were used to construct weighting factors which relate the energy deposition in the counter fill-gas to that in the counter wall and in the surrounding material. The gamma energy deposition at various positions in the lattice is estimated by applying these weighting factors to the measured gamma energy deposition in the counter at those locations

  2. Comparison of dimensionality reduction techniques for the fault diagnosis of mono block centrifugal pump using vibration signals

    Directory of Open Access Journals (Sweden)

    N.R. Sakthivel

    2014-03-01

    Full Text Available Bearing fault, Impeller fault, seal fault and cavitation are the main causes of breakdown in a mono block centrifugal pump and hence, the detection and diagnosis of these mechanical faults in a mono block centrifugal pump is very crucial for its reliable operation. Based on a continuous acquisition of signals with a data acquisition system, it is possible to classify the faults. This is achieved by the extraction of features from the measured data and employing data mining approaches to explore the structural information hidden in the signals acquired. In the present study, statistical features derived from the vibration data are used as the features. In order to increase the robustness of the classifier and to reduce the data processing load, dimensionality reduction is necessary. In this paper dimensionality reduction is performed using traditional dimensionality reduction techniques and nonlinear dimensionality reduction techniques. The effectiveness of each dimensionality reduction technique is also verified using visual analysis. The reduced feature set is then classified using a decision tree. The results obtained are compared with those generated by classifiers such as Naïve Bayes, Bayes Net and kNN. The effort is to bring out the better dimensionality reduction technique–classifier combination.

  3. Pregnenolone co-treatment partially restores steroidogenesis, but does not prevent growth inhibition and increased atresia in mouse ovarian antral follicles treated with mono-hydroxy methoxychlor

    International Nuclear Information System (INIS)

    Craig, Zelieann R.; Hannon, Patrick R.; Flaws, Jodi A.

    2013-01-01

    Mono-hydroxy methoxychlor (mono-OH MXC) is a metabolite of the pesticide, methoxychlor (MXC). Although MXC is known to decrease antral follicle numbers, and increase follicle death in rodents, not much is known about the ovarian effects of mono-OH MXC. Previous studies indicate that mono-OH MXC inhibits mouse antral follicle growth, increases follicle death, and inhibits steroidogenesis in vitro. Further, previous studies indicate that CYP11A1 expression and production of progesterone (P 4 ) may be the early targets of mono-OH MXC in the steroidogenic pathway. Thus, this study tested whether supplementing pregnenolone, the precursor of progesterone and the substrate for HSD3B, would prevent decreased steroidogenesis, inhibited follicle growth, and increased follicle atresia in mono-OH MXC-treated follicles. Mouse antral follicles were exposed to vehicle (dimethylsulfoxide), mono-OH MXC (10 μg/mL), pregnenolone (1 μg/mL), or mono-OH MXC and pregnenolone together for 96 h. Levels of P 4 , androstenedione (A), testosterone (T), estrone (E 1 ), and 17β-estradiol (E 2 ) in media were determined, and follicles were processed for histological evaluation of atresia. Pregnenolone treatment alone stimulated production of all steroid hormones except E 2 . Mono-OH MXC-treated follicles had decreased sex steroids, but when given pregnenolone, produced levels of P 4 , A, T, and E 1 that were comparable to those in vehicle-treated follicles. Pregnenolone treatment did not prevent growth inhibition and increased atresia in mono-OH MXC-treated follicles. Collectively, these data support the idea that the most upstream effect of mono-OH MXC on steroidogenesis is by reducing the availability of pregnenolone, and that adding pregnenolone may not be sufficient to prevent inhibited follicle growth and survival. - Highlights: • Mono-OH MXC inhibited antral follicle steroidogenesis, growth, and survival. • Pregnenolone partially restored steroidogenesis in mono-OH MXC

  4. Pregnenolone co-treatment partially restores steroidogenesis, but does not prevent growth inhibition and increased atresia in mouse ovarian antral follicles treated with mono-hydroxy methoxychlor

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Zelieann R., E-mail: zelieann@illinois.edu; Hannon, Patrick R., E-mail: phannon2@illinois.edu; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2013-11-01

    Mono-hydroxy methoxychlor (mono-OH MXC) is a metabolite of the pesticide, methoxychlor (MXC). Although MXC is known to decrease antral follicle numbers, and increase follicle death in rodents, not much is known about the ovarian effects of mono-OH MXC. Previous studies indicate that mono-OH MXC inhibits mouse antral follicle growth, increases follicle death, and inhibits steroidogenesis in vitro. Further, previous studies indicate that CYP11A1 expression and production of progesterone (P{sub 4}) may be the early targets of mono-OH MXC in the steroidogenic pathway. Thus, this study tested whether supplementing pregnenolone, the precursor of progesterone and the substrate for HSD3B, would prevent decreased steroidogenesis, inhibited follicle growth, and increased follicle atresia in mono-OH MXC-treated follicles. Mouse antral follicles were exposed to vehicle (dimethylsulfoxide), mono-OH MXC (10 μg/mL), pregnenolone (1 μg/mL), or mono-OH MXC and pregnenolone together for 96 h. Levels of P{sub 4}, androstenedione (A), testosterone (T), estrone (E{sub 1}), and 17β-estradiol (E{sub 2}) in media were determined, and follicles were processed for histological evaluation of atresia. Pregnenolone treatment alone stimulated production of all steroid hormones except E{sub 2}. Mono-OH MXC-treated follicles had decreased sex steroids, but when given pregnenolone, produced levels of P{sub 4}, A, T, and E{sub 1} that were comparable to those in vehicle-treated follicles. Pregnenolone treatment did not prevent growth inhibition and increased atresia in mono-OH MXC-treated follicles. Collectively, these data support the idea that the most upstream effect of mono-OH MXC on steroidogenesis is by reducing the availability of pregnenolone, and that adding pregnenolone may not be sufficient to prevent inhibited follicle growth and survival. - Highlights: • Mono-OH MXC inhibited antral follicle steroidogenesis, growth, and survival. • Pregnenolone partially restored steroidogenesis

  5. Random pulsing of neutron source for inelastic neutron scattering gamma ray spectroscopy

    International Nuclear Information System (INIS)

    Hertzog, R.C.

    1981-01-01

    Method and apparatus are described for use in the detection of inelastic neutron scattering gamma ray spectroscopy. Data acquisition efficiency is enhanced by operating a neutron generator such that a resulting output burst of fast neutrons is maintained for as long as practicably possible until a gamma ray is detected. Upon the detection of a gamma ray the generator burst output is terminated. Pulsing of the generator may be accomplished either by controlling the burst period relative to the burst interval to achieve a constant duty cycle for the operation of the generator or by maintaining the burst period constant and controlling the burst interval such that the resulting mean burst interval corresponds to a burst time interval which reduces contributions to the detected radiation of radiation occasioned by other than the fast neutrons

  6. The FA Core Complex Contains a Homo-dimeric Catalytic Module for the Symmetric Mono-ubiquitination of FANCI-FANCD2

    Directory of Open Access Journals (Sweden)

    Paolo Swuec

    2017-01-01

    Full Text Available Activation of the main DNA interstrand crosslink repair pathway in higher eukaryotes requires mono-ubiquitination of FANCI and FANCD2 by FANCL, the E3 ligase subunit of the Fanconi anemia core complex. FANCI and FANCD2 form a stable complex; however, the molecular basis of their ubiquitination is ill defined. FANCD2 mono-ubiquitination by FANCL is stimulated by the presence of the FANCB and FAAP100 core complex components, through an unknown mechanism. How FANCI mono-ubiquitination is achieved remains unclear. Here, we use structural electron microscopy, combined with crosslink-coupled mass spectrometry, to find that FANCB, FANCL, and FAAP100 form a dimer of trimers, containing two FANCL molecules that are ideally poised to target both FANCI and FANCD2 for mono-ubiquitination. The FANCC-FANCE-FANCF subunits bridge between FANCB-FANCL-FAAP100 and the FANCI-FANCD2 substrate. A transient interaction with FANCC-FANCE-FANCF alters the FANCI-FANCD2 configuration, stabilizing the dimerization interface. Our data provide a model to explain how equivalent mono-ubiquitination of FANCI and FANCD2 occurs.

  7. Displacement damage analysis and modified electrical equivalent circuit for electron and photon-irradiated silicon solar cells

    Science.gov (United States)

    Arjhangmehr, Afshin; Feghhi, Seyed Amir Hossein

    2014-10-01

    Solar modules and arrays are the conventional energy resources of space satellites. Outside the earth's atmosphere, solar panels experience abnormal radiation environments and because of incident particles, photovoltaic (PV) parameters degrade. This article tries to analyze the electrical performance of electron and photon-irradiated mono-crystalline silicon (mono-Si) solar cells. PV cells are irradiated by mono-energetic electrons and poly-energetic photons and immediately characterized after the irradiation. The mean degradation of the maximum power (Pmax) of silicon solar cells is presented and correlated using the displacement damage dose (Dd) methodology. This method simplifies evaluation of cell performance in space radiation environments and produces a single characteristic curve for Pmax degradation. Furthermore, complete analysis of the results revealed that the open-circuit voltage (Voc) and the filling factor of mono-Si cells did not significantly change during the irradiation and were independent of the radiation type and fluence. Moreover, a new technique is developed that adapts the irradiation-induced effects in a single-cell equivalent electrical circuit and adjusts its elements. The "modified circuit" is capable of modeling the "radiation damage" in the electrical behavior of mono-Si solar cells and simplifies the designing of the compensation circuits.

  8. Analytical applications of neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Lindstrom, R.M.; Paul, R.L.; Anderson, D.L.; Paul, R.L.

    1997-01-01

    Field and industrial applications of neutron capture gamma-ray spectrometry with isotopic sources or neutron generators are economically important. Geochemical exploration in boreholes is done routinely with neutron probes. Coal and ores are assayed with analyzers adjacent to a conveyor belt in dozens of industrial facilities. The use of capture gamma rays for explosives detection has been described in the literature, both for scanning airline baggage and for characterizing obsolete munitions; a packaged system for the latter is available commercially. Generalizations are drawn from the history of the field, and predictions are made about the future usefulness of capture gamma rays. (author)

  9. Study and optimisation of the high energy detector in Cd(Zn)Te of the Simbol-X space mission for X and gamma astronomy; Etude et optimisation du plan de detection de haute energie en Cd(Zn)Te pour la mission spatiale d'observation astronomie X et gamma SIMBOL-X

    Energy Technology Data Exchange (ETDEWEB)

    Meuris, A.

    2009-09-15

    Stars in final phases of evolution are sites of highest energetic phenomena of the Universe. The understanding of their mechanisms is based on the observation of the X and gamma rays from the sources. The Simbol-X French-Italian project is a novel concept of telescope with two satellites flying in formation. This space mission combines upgraded optics from X-ray telescopes with detection Systems from gamma-ray telescopes. CEA Saclay involved in major space missions for gamma astronomy is in charge of the definition and the design of the High Energy Detector (HED) of Simbol-X to cover the spectral range from 8 to 80 keV. Two generations of micro-cameras called Caliste have been designed, fabricated and tested. They integrate cadmium telluride (CdTe) crystals and optimised front-end electronics named Idef-X. The hybridization technique enables to put them side by side as a mosaic to achieve for the first time a CdTe detection plane with fine spatial resolution (600 {mu}m) and arbitrarily large surface. By setting up test benches and leading test campaigns, I was involved in the fabrication of Caliste prototypes and I assessed temporal, spatial and spectral resolutions. At the conclusion of experiments and simulations, I propose a detector type, operating conditions and digital processing on board the spacecraft to optimise HED performance. The best detector candidate is CdTe Schottky, well suited to high resolution spectroscopy; however, it suffers from lost in stability during biasing. Beyond Simbol-X mission, I studied theoretically and experimentally this kind of detector to build an updated model that can apply to other projects of gamma spectroscopy and imaging. (author)

  10. Structure of Energetic Particle Mediated Shocks Revisited

    International Nuclear Information System (INIS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-01-01

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  11. Structure of Energetic Particle Mediated Shocks Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mostafavi, P.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  12. Orexin receptor activation generates gamma band input to cholinergic and serotonergic arousal system neurons and drives an intrinsic Ca2+-dependent resonance in LDT and PPT cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Masaru eIshibashi

    2015-06-01

    Full Text Available A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT and pedunculopontine (PPT tegmental neurons and serotonergic dorsal raphe (DR neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4 - 14 Hz and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep and intracortical

  13. Energetic consumption levels and human development indexes

    International Nuclear Information System (INIS)

    Boa Nova, Antonio Carlos

    1999-01-01

    The article overviews the energetic consumption levels and human development indexes. The human development indexes are described based on the United Nations Development Programme. A comparison between the energetic consumption levels and human development indexes is also presented

  14. Energetically Unfavorable Amide Conformations for N6-Acetyllysine Side Chains in Refined Protein Structures

    Science.gov (United States)

    Genshaft, Alexander; Moser, Joe-Ann S.; D'Antonio, Edward L.; Bowman, Christine M.; Christianson, David W.

    2013-01-01

    The reversible acetylation of lysine to form N6-acetyllysine in the regulation of protein function is a hallmark of epigenetics. Acetylation of the positively charged amino group of the lysine side chain generates a neutral N-alkylacetamide moiety that serves as a molecular “switch” for the modulation of protein function and protein-protein interactions. We now report the analysis of 381 N6-acetyllysine side chain amide conformations as found in 79 protein crystal structures and 11 protein NMR structures deposited in the Protein Data Bank (PDB) of the Research Collaboratory for Structural Bioinformatics. We find that only 74.3% of N6-acetyllysine residues in protein crystal structures and 46.5% in protein NMR structures contain amide groups with energetically preferred trans or generously trans conformations. Surprisingly, 17.6% of N6-acetyllysine residues in protein crystal structures and 5.3% in protein NMR structures contain amide groups with energetically unfavorable cis or generously cis conformations. Even more surprisingly, 8.1% of N6-acetyllysine residues in protein crystal structures and 48.2% in NMR structures contain amide groups with energetically prohibitive twisted conformations that approach the transition state structure for cis-trans isomerization. In contrast, 109 unique N-alkylacetamide groups contained in 84 highly-accurate small molecule crystal structures retrieved from the Cambridge Structural Database exclusively adopt energetically preferred trans conformations. Therefore, we conclude that cis and twisted N6-acetyllysine amides in protein structures deposited in the PDB are erroneously modeled due to their energetically unfavorable or prohibitive conformations. PMID:23401043

  15. Heavy metals behaviour during mono-combustion and co-combustion of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Helena; Abelha, Pedro; Olieveira, J.F. Santos; Gulyurtlu, Ibrahim; Cabrita, Isabel [INETI-DEECA, Lisboa (Portugal)

    2005-03-01

    This paper presents the study of the combustion of granular dry sewage sludge performed on a pilot fluidized bed system. The results of mono-combustion of sludge and co-combustion with coal were compared with those of coal combustion for ash partitioning, the formation of gaseous pollutants and heavy metals behaviour. It was found that the mineral matter of sludge was essentially retained as bottom ashes. The production of fines ashes was small during the mono-combustion due to the tendency of coal to produce fine ashes which also contained unburned char. The degree of heavy metal volatilization was found to be slightly higher during co-combustion than in mono-combustion; however, most of them were retained in ashes and their emissions were found to be below the regulated levels. Hg was completely volatilized; however, during combustion trials involving coal it was captured by cyclone ashes at temperatures below 300 deg C. During sludge mono-combustion the retention of Hg in cyclone ashes containing low LOI was not enough to decrease emissions below the regulated levels; hence, it is necessary to install dedicated flue gas treatment for Hg removal. The leachability and ecotoxicity of sludge and ashes was compared with the new regulatory limits for landfill disposal in the EU. It was found that the release of organic matter and heavy metals found in the sludge was low from granular bed ashes; hence, except for sulphate release, bed ashes were converted into inert and non-ecotoxic materials. Ashes from test with limestone and cyclone ashes seemed to be more problematic because of pH effects and contamination with steel corrosion products. The recovery and reutilization of sludge bed ashes could, therefore, be possible, as long as the release of sulphate do not interfere with the process.

  16. Synthesis and evaluation of energetic materials

    Science.gov (United States)

    Santhosh, G.

    Over the years new generations of propellants and explosives are being developed. High performance and pollution prevention issues have become the subject of interest in recent years. Desired properties of these materials are a halogen-free, nitrogen and oxygen rich molecular composition with high density and a positive heat of formation. The dinitramide anion is a new oxy anion of nitrogen and forms salts with variety of metal, organic and inorganic cations. Particular interest is in ammonium dinitramide (ADN, NH4N(NO 2)2) which is a potentially useful energetic oxidizer. ADN is considered as one of the most promising substitutes for ammonium perchlorate (AP, NH4ClO4) in currently used composite propellants. It is unique among energetic materials in that it has no carbon or chlorine; its combustion products are not detrimental to the atmosphere. Unquestionable advantage of ADN over AP is the significant improvement in the performance of solid rocket motors by 5-15%. The present thesis is centered on the experimental results along with discussion of some of the most pertinent aspects related to the synthesis and characterization of few dinitramide salts. The chemistry, mechanism and kinetics of the formation of dinitramide salts by nitration of deactivated amines are investigated. The evaluation of the thermal and spectral properties along with the adsorption and thermal decomposition characteristics of the dinitramide salts are also explored in this thesis.

  17. A relativistic type Ibc supernova without a detected gamma-ray burst.

    Science.gov (United States)

    Soderberg, A M; Chakraborti, S; Pignata, G; Chevalier, R A; Chandra, P; Ray, A; Wieringa, M H; Copete, A; Chaplin, V; Connaughton, V; Barthelmy, S D; Bietenholz, M F; Chugai, N; Stritzinger, M D; Hamuy, M; Fransson, C; Fox, O; Levesque, E M; Grindlay, J E; Challis, P; Foley, R J; Kirshner, R P; Milne, P A; Torres, M A P

    2010-01-28

    Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.

  18. A SEARCH FOR VERY HIGH ENERGY GAMMA RAYS FROM THE MISSING LINK BINARY PULSAR J1023+0038 WITH VERITAS

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Archer, A.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Biteau, J. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Buchovecky, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cardenzana, J. V; Dickinson, H. J.; Eisch, J. D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W.; Feng, Q. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Falcone, A., E-mail: ester.aliu.fuste@gmail.com, E-mail: gtrichards@gatech.edu, E-mail: masha.chernyakova@dcu.ie, E-mail: malloryr@gmail.com [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); and others

    2016-11-10

    The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259–63/LS 2883, making it an ideal candidate for the study of high-energy nonthermal emission. It has been the subject of multiwavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high energy (VHE) gamma-ray observations carried out by the Very Energetic Radiation Imaging Telescope Array System before and after this change of state. Searches for steady and pulsed emission of both data sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that VHE gamma rays are produced via an inverse Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than ∼2 G before the disappearance of the radio pulsar and greater than ∼10 G afterward.

  19. Rotavirus infection in children: mono-and combines forms, especially clinics and course

    Directory of Open Access Journals (Sweden)

    N. B. Denisyuk

    2012-01-01

    Full Text Available Analyzed 74 case histories of children under one year with rotavirus infection. The most commonly detected rotavirus gastroenteritis in the form of mono-and combined forms. Mono-infection in 78.3% of cases occurred in the moderate form with a leading syndrome in the form of gastroenteritis, severe dehydration proceeded with symptoms of varying severity. Mixed variants in 98.7% of cases are in the unfavorable premorbid background, in 42.8% of children were registered in the severe forms, and children younger than 6 months were erased within. The diagnosis of intestinal infection was confirmed by PCR, bacteriological and immunological methods.

  20. Study and optimisation of the high energy detector in Cd(Zn)Te of the Simbol-X space mission for X and gamma astronomy

    International Nuclear Information System (INIS)

    Meuris, A.

    2009-09-01

    Stars in final phases of evolution are sites of highest energetic phenomena of the Universe. The understanding of their mechanisms is based on the observation of the X and gamma rays from the sources. The Simbol-X French-Italian project is a novel concept of telescope with two satellites flying in formation. This space mission combines upgraded optics from X-ray telescopes with detection Systems from gamma-ray telescopes. CEA Saclay involved in major space missions for gamma astronomy is in charge of the definition and the design of the High Energy Detector (HED) of Simbol-X to cover the spectral range from 8 to 80 keV. Two generations of micro-cameras called Caliste have been designed, fabricated and tested. They integrate cadmium telluride (CdTe) crystals and optimised front-end electronics named Idef-X. The hybridization technique enables to put them side by side as a mosaic to achieve for the first time a CdTe detection plane with fine spatial resolution (600 μm) and arbitrarily large surface. By setting up test benches and leading test campaigns, I was involved in the fabrication of Caliste prototypes and I assessed temporal, spatial and spectral resolutions. At the conclusion of experiments and simulations, I propose a detector type, operating conditions and digital processing on board the spacecraft to optimise HED performance. The best detector candidate is CdTe Schottky, well suited to high resolution spectroscopy; however, it suffers from lost in stability during biasing. Beyond Simbol-X mission, I studied theoretically and experimentally this kind of detector to build an updated model that can apply to other projects of gamma spectroscopy and imaging. (author)