WorldWideScience

Sample records for monitoring water status

  1. Biological Status Monitoring of European Fresh Water with Sentinel-2

    Science.gov (United States)

    Serra, Romain; Mangin, Antoine; Fanton d'Andon, Odile Hembise; Lauters, Francois; Thomasset, Franck; Martin-Lauzer, Francois-Regis

    2016-08-01

    Thanks to a widening range of sensors available, the observation of continental water quality for lakes and reservoirs is gaining more and more consistency and accuracy.Consistency because back in 2012, the only free sensor with a sufficient resolution (30m) was Landsat-7 which has truncated data since 2003 and a 16-day revisit time. But today, Landsat-8 and Sentinel-2A are now operating so depending on the latitude of interest, the combined revisit time dropped to 2 to 4 days which is more appropriate for such a monitoring (especially considering the cloud cover).Accuracy because Landsat-7 has a poor contrast over water whereas Landsat-8 and Sentinel-2A have a better radiometric sensitivity (more bit) and moreover Sentinel-2 offers additional spectral bands in the visible which are helpful for Chlorophyll-A concentration assessment. To sum up, with Sentinel-2, continental water quality monitoring capabilities are making a giant leap and it is important to exploit this potential the sooner. ACRI-HE has already built a strong basis to prepare Sentinel-2 by using Landsat data.Indeed, more than 600 lakes are already constantly monitored using Landsat data and their biological statuses are available on EyeOnWater (see eyeonwater.eu). Chlorophyll-A retrieval from (fresh) water leaving reflectances is the result of research activities conducted by ACRI-HE in parallel with EDF (Electricité de France) to respond to an emerging very demanding environmental monitoring through European regulations (typically the Water Framework Directive). Two parallel and complementary algorithms have thus been derived for Chlorophyll-a retrieval.Upstream of Eyeonwater, there is a complex and complete system automatically collecting images, extracting areas of interest around lakes, applying atmospheric correction (very sensitive part as atmosphere can contribute to 90% of the signal at sensor level) and then algorithms to retrieve water transparency (Secchi disk), turbidity and Chlorophyll

  2. Monitoring of metabolic profiling and water status of Hayward kiwifruits by nuclear magnetic resonance.

    Science.gov (United States)

    Capitani, D; Mannina, L; Proietti, N; Sobolev, A P; Tomassini, A; Miccheli, A; Di Cocco, M E; Capuani, G; De Salvador, R; Delfini, M

    2010-10-15

    The metabolic profiling of kiwifruit (Actinidia deliciosa, Hayward cultivar) aqueous extracts and the water status of entire kiwifruits were monitored over the season (June-December) using nuclear magnetic resonance (NMR) methodologies. The metabolic profiling of aqueous kiwifruit extracts was investigated by means of high field NMR spectroscopy. A large number of water-soluble metabolites were assigned by means of 1D and 2D NMR experiments. The change in the metabolic profiles monitored over the season allowed the kiwifruit development to be investigated. Specific temporal trends of aminoacids, sugars, organic acids and other metabolites were observed. The water status of kiwifruits was monitored directly on the intact fruit measuring the T(2) spin-spin relaxation time by means of a portable unilateral NMR instrument, fully non-invasive. Again, clear trends of the relaxation time were observed during the monitoring period. The results show that the monitoring of the metabolic profiling and the monitoring of the water status are two complementary means suitable to have a complete view of the investigated fruit.

  3. Terahertz time domain spectroscopy allows contactless monitoring of grapevine water status

    Directory of Open Access Journals (Sweden)

    Luis Gonzaga Santesteban

    2015-06-01

    Full Text Available Agriculture is the sector with the greatest water consumption, since food production is frequently based on crop irrigation. Proper irrigation management requires reliable information on plant water status, but all the plant-based methods to determine it suffer from several inconveniences, mainly caused by the necessity of destructive sampling or of alteration of the plant organ due to contact installation. The aim of this work is to test if THz time domain reflectance measurements made on the grapevine trunk allows contactless monitoring of plant status. The experiments were performed on a potted 14-years old plant, using a general purpose THz emitter receiver head.Trunk THz time-domain reflection signal proved to be very sensitive to changes in plant water availability, as its pattern follows the trend of soil water content and trunk growth variations. Therefore, it could be used to contactless monitor plant water status. Apart from that, THz reflection signal was observed to respond to light conditions which, according to a specifically designed girdling experiment, was caused by changes in the phloem. This latter results opens a promising field of research for contactless monitoring of phloem activity.

  4. Soil Water Balance and Recharge Monitoring at the Hanford Site - FY09 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Saunders, Danielle L.; Strickland, Christopher E.; Waichler, Scott R.; Clayton, Ray E.

    2009-09-28

    Recharge provides the primary driving force for transporting contaminants from the vadose zone to underlying aquifer systems. Quantification of recharge rates is important for assessing contaminant transport and fate and for evaluating remediation alternatives. This report describes the status of soil water balance and recharge monitoring performed by Pacific Northwest National Laboratory at the Hanford Site for Fiscal Year 2009. Previously reported data for Fiscal Years 2004 - 2008 are updated with data collected in Fiscal Year 2009 and summarized.

  5. Risk and monitoring based indicators of receiving water status: alternative or complementary elements in IWRM?

    Science.gov (United States)

    Völker, J; Richter, S; Borchardt, D; Mohaupt, V

    2013-01-01

    The European Water Framework Directive (WFD) was enacted in the year 2000 with a stepwise approach. After legal implementation in the various member states large efforts were undertaken for the initial characterization of water bodies, risk assessment, to implement extensive monitoring schemes and to develop management plans at different aggregation levels by the year 2010. The initial characterization process and risk assessment had to be finalized by 2004 and delineated water bodies including a typological classification and identified the significant pressures and impacts in a screening procedure. In parallel, monitoring programmes and new biological indicator systems were developed in order to proof and refine the results of the risk assessment with an ecological indicator based assessment in a subsequent step which was finalized in 2009. Although the risk assessment for Germany was based on existing data that were originally collected for other purposes and came from a large variety of environmental or economical sectors, the results differ only slightly from the monitoring and indicator based information with respect to classifications of the 'ecological status' and 'chemical status'. From this result we conclude that a risk assessment based on a careful application and intelligent combination of existing data sources with proven quality allows the recognition of trends and the identification of priorities for action of measures already at an early stage of a management process. However, monitoring schemes and advanced sets of ecological indicators are essential in later management steps both for narrowing uncertainties remaining from the risk assessment and to allow for effect controls of implemented measures. Moreover, these monitoring indicators should differentiate the effects of multiple stressors more factor specific and with respect to ecosystem states and functions. In conclusion, we see risk and indicator based assessments as complementary elements

  6. Monitoring plant water status and rooting depth for precision irrigation in the vineyards of Classic Karst

    Science.gov (United States)

    Savi, Tadeja; Moretti, Elisa; Dal Borgo, Anna; Petruzzellis, Francesco; Stenni, Barbara; Bertoncin, Paolo; Dreossi, Giuliano; Zini, Luca; Martellos, Stefano; Nardini, Andrea

    2017-04-01

    The extreme summer drought and heat waves that occurred in South-Europe in 2003 and 2012 have led to the loss of more than 50% of winery production in the Classic Karst (NE Italy). The irrigation of vineyards in this area is not appropriately developed and, when used, it does not consider the actual water status and needs of plants, posing risks of inappropriate or useless usage of large water volumes. The predicted future increase in frequency and severity of extreme climate events poses at serious risk the local agriculture based on wine business. We monitored seasonal trends of pre-dawn (Ψpd) and minimum (Ψmin) leaf water potential, and stomatal conductance (gL) of 'Malvasia' grapevine in one mature (MV, both in 2015 and 2016) and one young vineyard (YV, in 2016). Moreover, we extracted xylem sap form plant stems and soil water from samples collected in nearby caves, by cryo-vacuum distillation. We also collected precipitation and irrigation water in different months. Oxygen isotope composition (δ18O) of atmospheric, plant, soil and irrigation water was analyzed to get information about rooting depth. In 2015, at the peak of summer aridity, two irrigation treatments were applied according to traditional management practices. The treatments were performed in a sub-area of the MV, followed by physiological analysis and yield measurements at grape harvest. In 2016, the soil water potential (Ψsoil) at 50 cm depth was also monitored throughout the season. Under harsh environmental conditions the apparently deep root system ensured relatively favorable plant water status in both MV and YV and during both growing seasons. The Ψsoil at 50 cm depth gradually decreased as drought progressed, reaching a minimum value of about -1.7 MPa, far more negative than Ψpd recorded in plants (about -0.5 MPa). In July, significant stomatal closure was observed, but Ψmin never surpassed the critical threshold of -1.3 MPa, indicating that irrigation was not needed. The xylem sap

  7. Safety system status monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J.R.; Morgenstern, M.H.; Rideout, T.H.; Cowley, P.J.

    1984-03-01

    The Pacific Northwest Laboratory has studied the safety aspects of monitoring the preoperational status of safety systems in nuclear power plants. The goals of the study were to assess for the NRC the effectiveness of current monitoring systems and procedures, to develop near-term guidelines for reducing human errors associated with monitoring safety system status, and to recommend a regulatory position on this issue. A review of safety system status monitoring practices indicated that current systems and procedures do not adequately aid control room operators in monitoring safety system status. This is true even of some systems and procedures installed to meet existing regulatory guidelines (Regulatory Guide 1.47). In consequence, this report suggests acceptance criteria for meeting the functional requirements of an adequate system for monitoring safety system status. Also suggested are near-term guidelines that could reduce the likelihood of human errors in specific, high-priority status monitoring tasks. It is recommended that (1) Regulatory Guide 1.47 be revised to address these acceptance criteria, and (2) the revised Regulatory Guide 1.47 be applied to all plants, including those built since the issuance of the original Regulatory Guide.

  8. Monitoring and modeling water temperature and trophic status of a shallow Mediterranean lake

    Science.gov (United States)

    Giadrossich, Filippo; Bueche, Thomas; Pulina, Silvia; Marrosu, Roberto; Padedda, Bachisio Mario; Mariani, Maria Antonietta; Vetter, Mark; Cohen, Denis; Pirastru, Mario; Niedda, Marcello; Lugliè, Antonella

    2017-04-01

    Lakes are sensitive to changes in climate and human activities. Over the last few decades, Mediterranean lakes have experienced various problems due to the current climate change (drought, flood, warming, salt accumulation, water quality changes, etc.), often amplified by water use, intensification of land use activities, and pollution. The overall impact of these changes on water resources is still an open question. In this study we monitor the trophic status and the dynamics of water temperature of Lake Baratz, the only natural lake in Sardinia, Italy, characterized by high salinity and shallow depth. We extend the research carried out in the past 8 years by integrating new physical, chemical and biological data using a multidisciplinary approach that combines hydrological and biological dynamics. In particular, the lake water balance and the thermal and hydrochemical regime are studied with a lake dynamic model (the General Lake Model or GLM) which combine the energy budget method for estimating lake evaporation, and a physically-based rainfall-runoff simulator for estimating lake inflow, calibrated with measurements at the cross section of the main inlet stream. The trophic state of the lake was evaluated applying the OCDE Probability Distribution Diagrams method, which requires nutrient concentrations in the lake (total phosphorus), phytoplankton chlorophyll a and Secchi disk transparency data. We collected field data from a raft station and a land station, measuring net solar radiation, air temperature and relative humidity, precipitation, wind velocity, atmospheric pressure, and temperature from thermistors submerged in the uppermost three centimeters of water and beneath the lake surface at depths of 1, 2, 3, 4, 5, 6, and 8 m. Samples for nutrients and chlorophyll a analyses were collected at the same above mentioned depths close to the raft station using a Niskin bottle. Temperature, salinity, pH, and dissolved oxygen were measured using a multi

  9. 40 CFR 265 interim status indicator-evaluation ground-water monitoring plan for the 216-B-63 trench

    Energy Technology Data Exchange (ETDEWEB)

    Bjornstad, B.N.; Dudziak, S.

    1989-03-01

    This document outlines a ground-water monitoring plan for the 216-B-63 trench located in the northeast corner of the 200-East Area on the Hanford Site in southeastern Washington State. It has been determined that hazardous materials (corrosives) were disposed of to the trench during past operations. Installation of an interim-status ground-water monitoring system is required to determine whether hazardous chemicals are leaching to the ground water from beneath the trench. This document summarizes the existing data that are available from near the 216-B-63 trench and presents a plan to determine the extent of ground-water contamination, if any, derived from the trench. The plan calls for the installation of four new monitoring wells located near the west end of the trench. These wells will be used to monitor ground-water levels and water quality immediately adjacent to the trench. Two existing RCRA monitoring wells, which are located near the trench and hydraulically upgradient of it, will be used as background wells. 46 refs., 15 figs., 12 tabs.

  10. Improved Marine Waters Monitoring

    Science.gov (United States)

    Palazov, Atanas; Yakushev, Evgeniy; Milkova, Tanya; Slabakova, Violeta; Hristova, Ognyana

    2017-04-01

    IMAMO - Improved Marine Waters Monitoring is a project under the Programme BG02: Improved monitoring of marine waters, managed by Bulgarian Ministry of environment and waters and co-financed by the Financial Mechanism of the European Economic Area (EEA FM) 2009 - 2014. Project Beneficiary is the Institute of oceanology - Bulgarian Academy of Sciences with two partners: Norwegian Institute for Water Research and Bulgarian Black Sea Basin Directorate. The Project aims to improve the monitoring capacity and expertise of the organizations responsible for marine waters monitoring in Bulgaria to meet the requirements of EU and national legislation. The main outcomes are to fill the gaps in information from the Initial assessment of the marine environment and to collect data to assess the current ecological status of marine waters including information as a base for revision of ecological targets established by the monitoring programme prepared in 2014 under Art. 11 of MSFD. Project activities are targeted to ensure data for Descriptors 5, 8 and 9. IMAMO aims to increase the institutional capacity of the Bulgarian partners related to the monitoring and assessment of the Black Sea environment. The main outputs are: establishment of real time monitoring and set up of accredited laboratory facilities for marine waters and sediments chemical analysis to ensure the ability of Bulgarian partners to monitor progress of subsequent measures undertaken.

  11. Soil Water Balance and Recharge Monitoring at the Hanford Site – FY 2010 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, Michael J.; Saunders, Danielle L.; Herrington, Ricky S.; Felmy, Diana

    2010-10-27

    This report summarizes the recharge data collected in FY 2010 at five locations on the Hanford Site in southeastern Washington State. Average monthly precipitation and temperature conditions in FY 2010 were near normal and did not present an opportunity for increased recharge. The recharge monitoring data confirmed those conditions, showing normal behavior in water content, matric head, and recharge rates. Also provided in this report is a strategy for recharge estimation for the next 5 years.

  12. A low-cost microcontroller-based system to monitor crop temperature and water status

    Science.gov (United States)

    A prototype microcontroller-based system was developed to automate the measurement and recording of soil-moisture status and canopy-, air-, and soil-temperature levels in cropped fields. Measurements of these conditions within the cropping system are often used to assess plant stress, and can assis...

  13. Advanced Subsystems Status Monitor.

    Science.gov (United States)

    1980-04-01

    algorithms in a fashion analogous to human learning , by monitoring the consistency and effec- tiveness of the human operator’s responses. In view of...ou ill t wX Converer O~t~t133 Itectite.-Ot TABLE 16. CONTINUED. PAIM4(IN PSIONIIS MISSION PHASE ENVIROMENT OISPLAV FOWtAl ram AC toad Meter ff DC toad...annoying, or distracting during NOE flight? Eng./X4SN instnuments in new A/C. f, , tic marks difficult and time consuming to Interpret. Electrical

  14. Water Quality Monitoring Sites

    Data.gov (United States)

    Vermont Center for Geographic Information — Water Quality Monitoring Site identifies locations across the state of Vermont where water quality data has been collected, including habitat, chemistry, fish and/or...

  15. Water Quality Monitoring Manual.

    Science.gov (United States)

    Mason, Fred J.; Houdart, Joseph F.

    This manual is designed for students involved in environmental education programs dealing with water pollution problems. By establishing a network of Environmental Monitoring Stations within the educational system, four steps toward the prevention, control, and abatement of water pollution are proposed. (1) Train students to recognize, monitor,…

  16. Integrated satellite data fusion and mining for monitoring lake water quality status of the Albufera de Valencia in Spain.

    Science.gov (United States)

    Doña, Carolina; Chang, Ni-Bin; Caselles, Vicente; Sánchez, Juan M; Camacho, Antonio; Delegido, Jesús; Vannah, Benjamin W

    2015-03-15

    Lake eutrophication is a critical issue in the interplay of water supply, environmental management, and ecosystem conservation. Integrated sensing, monitoring, and modeling for a holistic lake water quality assessment with respect to multiple constituents is in acute need. The aim of this paper is to develop an integrated algorithm for data fusion and mining of satellite remote sensing images to generate daily estimates of some water quality parameters of interest, such as chlorophyll a concentrations and water transparency, to be applied for the assessment of the hypertrophic Albufera de Valencia. The Albufera de Valencia is the largest freshwater lake in Spain, which can often present values of chlorophyll a concentration over 200 mg m(-3) and values of transparency (Secchi Disk, SD) as low as 20 cm. Remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper (TM) and Enhance Thematic Mapper (ETM+) images were fused to carry out an integrative near-real time water quality assessment on a daily basis. Landsat images are useful to study the spatial variability of the water quality parameters, due to its spatial resolution of 30 m, in comparison to the low spatial resolution (250/500 m) of MODIS. While Landsat offers a high spatial resolution, the low temporal resolution of 16 days is a significant drawback to achieve a near real-time monitoring system. This gap may be bridged by using MODIS images that have a high temporal resolution of 1 day, in spite of its low spatial resolution. Synthetic Landsat images were fused for dates with no Landsat overpass over the study area. Finally, with a suite of ground truth data, a few genetic programming (GP) models were derived to estimate the water quality using the fused surface reflectance data as inputs. The GP model for chlorophyll a estimation yielded a R(2) of 0.94, with a Root Mean Square Error (RMSE) = 8 mg m(-3), and the GP model for water transparency estimation using

  17. Water quality monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Conio, O. [Azienda Mediterranea Gas e Acqua spa, Genua (Italy)

    1998-12-31

    By involving institutions and rules, and technology as well, water resources management presents remarkable complexity. In institutions such a complexity is due to division of competence into monitoring activities, quality control, water utility supply and water treatment. As far as technology goes, complexity results from a wide range of physical, chemical and biological requisites, which define water quality according to specific water uses (for populations, farms, factories). Thus it`s necessary to have reliable and in-time environmental data, so to fulfil two complementary functions: 1) the control of any state of emergency, such as floods and accidental pollution, in order to take immediate measures by means of timely available information; 2) the mid- and long-term planning of water resources, so to achieve their reclamation, conservation and exploitation. An efficient and reliable way to attain these goals is to develop integrated continuous monitoring systems, which allow to control the quality of surface and underground water, the flow of bodies of water and those weather conditions that directly affect it. Such systems compose an environmental information network, which enables to collect and process data relative to the state of the body of water, its aquifer, and the weather conditions.

  18. Structural Changes in Senescing Oilseed Rape Leaves at Tissue and Subcellular Levels Monitored by Nuclear Magnetic Resonance Relaxometry through Water Status

    National Research Council Canada - National Science Library

    Maja Musse; Loriane De Franceschi; Mireille Cambert; Clément Sorin; Françoise Le Caherec; Agnès Burel; Alain Bouchereau; François Mariette; Laurent Leport

    2013-01-01

    ... and the associated senescence processes. In this study, nuclear magnetic resonance (NMR) relaxometry was used to describe water distribution and status at the cellular level in different leaf ranks of well-watered plants...

  19. Assessing the feasibility of integrating remote sensing and in-situ measurements in monitoring water quality status of Lake Chivero, Zimbabwe

    Science.gov (United States)

    Dlamini, S.; Nhapi, I.; Gumindoga, W.; Nhiwatiwa, T.; Dube, T.

    2016-06-01

    This work investigates the likelihood of integrating the cheap and readily-available broadband multispectral MODIS data and in-situ measurements in quantifying and monitoring water quality status of an inland lake within Upper Manyame Catchment in Zimbabwe. Specifically we used MODIS images to quantify inland lake chlorophyll_a concentrations, as a proxy for predicting lake pollution levels. The findings of this study show a high chlorophyll_a concentration of 0.101 ± 0.128 μg/L within the Lake. The results further demonstrated that the chlorophyll_a concentration levels did not significantly vary (p = 0.788) between sites, except among depths (p = 0.05). Further, prediction results based on the relationship between observed and predicted chlorophyll_a produced a high R2 value of 0.89 and a root mean square error (RMSE) value of 0.003 μg/L. Moreover, the derived landuse maps of Upper Manyame Catchment indicated a significant variation in the percentage settlement in 1985, 1994 and 2010 change from 1985 to 2010. For instance, 8% increase in settlement in the period between 1994 and 2010 and over 12% increase from 1985 to 2010 and a decline in percent forest coverage (i.e. 9.8% in 1985 to 2.0% in the year 2010) in the catchment was observed. Overall, the findings of this study highlights the importance of free and readily-available satellite datasets (such as the multispectral MODIS and Landsat) in quantifying and monitoring water quality across inland lakes especially in data-scarce areas like Sub-Saharan Africa.

  20. Environmental monitoring of Norwegian water resources

    Energy Technology Data Exchange (ETDEWEB)

    Tollan, A.

    1980-01-01

    A national environmental monitoring program was started in Norway in 1980, under the auspices of the Norwegian State Pollution Control Authority. Within this program The Norwegian Institute for Water Research is responsible for: (1) Chemical and biological monitoring of selected rivers and fjord areas. Typically, the monitoring of a particular river or fjord starts with a basic investigation of 1-3 years, comprising physiography, human impacts on the water quality and a broad description of the present water quality status. This stage is followed by a permanent monitoring of carefully selected variables at a limited number of stations. Special water quality problems may be studied separately. (2) Participation in a coordinated monitoring of long-range transported atmospheric pollution, and its effects on water chemistry, aquatic life and soil properties. (3) Methodological development, standardization of analytical procedures and evaluation techniques for water quality assessment, and assistance as a national reference laboratory for water analyses. (4) Depository for environmental data collected within the national monitoring program.

  1. Water Quality Monitoring

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Our water quality sampling program is to determine the quality of Moosehorn's lakes and a limited number of streams. Water quality is a measure of the body of water,...

  2. Status on contamination monitoring in China

    Energy Technology Data Exchange (ETDEWEB)

    Gou Quanlu [China Institute for Radiation Protection, Taiyuan (China)

    1997-06-01

    The air contaminated by radioactive materials in nuclear enterprises and radioactive workplaces and forming radioactive aerosol and the leakage of radioactive materials in operation cause internal exposure damage in workers. It is necessary and important to monitor air and surface contaminations for the health of public and workers, and for protecting environment. At present, many institutes engage in the studies on surface contamination monitoring in China, and the government has formulated the control limits of surface contamination in the Regulations of Radiation Protection. The monitors for surface contamination monitoring are almost home-made. The methods being used often are smear test and placing surface sample test. Scintillation counters, semiconductor detectors and G-M counters have been used for detecting alpha surface contamination. Plastic scintillator meters and thin wall/window G-M counters are used for beta surface contamination. Special detectors have been designed for monitoring low energy nuclides. The status of airborne contamination monitoring in China is reported. As the studies for future, the development of the surface contamination monitor for low energy beta nuclides, especially H-3, the monitoring methods for the special shapes of surfaces, the technology of decontamination and the calibration method and device for on-line radioactive aerosol continuous monitors are taken up. (K.I.)

  3. Ion Mobility Spectrometry for Water Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current water quality monitors aboard the International Space Station (ISS) are specialized and provide limited data. The Colorimetric Water Quality Monitor Kit...

  4. Physiologic Status Monitoring via the Gastrointestinal Tract.

    Science.gov (United States)

    Traverso, G; Ciccarelli, G; Schwartz, S; Hughes, T; Boettcher, T; Barman, R; Langer, R; Swiston, A

    2015-01-01

    Reliable, real-time heart and respiratory rates are key vital signs used in evaluating the physiological status in many clinical and non-clinical settings. Measuring these vital signs generally requires superficial attachment of physically or logistically obtrusive sensors to subjects that may result in skin irritation or adversely influence subject performance. Given the broad acceptance of ingestible electronics, we developed an approach that enables vital sign monitoring internally from the gastrointestinal tract. Here we report initial proof-of-concept large animal (porcine) experiments and a robust processing algorithm that demonstrates the feasibility of this approach. Implementing vital sign monitoring as a stand-alone technology or in conjunction with other ingestible devices has the capacity to significantly aid telemedicine, optimize performance monitoring of athletes, military service members, and first-responders, as well as provide a facile method for rapid clinical evaluation and triage.

  5. Ballast Water Self Monitoring

    Science.gov (United States)

    2011-11-01

    water treatment systems for disinfection including:  Chlorination  Electrochlorination  Ozonation  Chlorine dioxide  Peracetic acid ...presents a challenge since the reagents used are themselves chemically hazardous. Peracetic acid and hydrogen peroxide (provided as a blend of the two...dosage and usage -Hydrogen peroxide readings from both on-line sensor and sample analysis -Hydrogen peroxide dosage and usage Peracetic acid On

  6. The need for monitoring metabolic status

    Science.gov (United States)

    Vanderveen, John E.

    2005-05-01

    Modern military operations utilize complex technologies that require high levels of readiness and sustained cognitive and physical performance of combat military combat personnel. These military operations often depend on weapon systems that use advanced computer technology coupled with an array of sensors that provide continuous information on the battlefield environment and on equipment function. However there is a lack of real-time information on status of the personnel who control these systems and who are vital to mission success. Failure of the human element renders the weapon system useless so it is important to know if an individual is physically and cognitively fit to perform his or her task. Based on the premise that status of metabolic processes provide an early indication of a change in an individuals physiological status, monitoring of selective biomarkers of metabolism and organ function can provide insight on the individual"s ability to perform mission tasks. During combat individuals may not be aware that they have reached a compromised physiological condition due to dehydration, physical exertion, stress, fatigue, sleep deprivation, exposure to toxins or other condition that may affect physical and cognitive performance and health. Systems that can provide the individual or his or her commander with information about significant changes in one or more metabolic functions could permit timely intervention to correct the condition. In the event that serious injury has already occurred to an individual, metabolic monitoring can provide valuable intelligence needed for decisions on achieving mission objectives.

  7. Comparative study of ¹³C composition in ethanol and bulk dry wine using isotope ratio monitoring by mass spectrometry and by nuclear magnetic resonance as an indicator of vine water status.

    Science.gov (United States)

    Guyon, Francois; van Leeuwen, Cornelis; Gaillard, Laetitia; Grand, Mathilde; Akoka, Serge; Remaud, Gérald S; Sabathié, Nathalie; Salagoïty, Marie-Hélène

    2015-12-01

    The potential of wine (13)C isotope composition (δ(13)C) is presented to assess vine water status during grape ripening. Measurements of δ(13)C have been performed on a set of 32 authentic wines and their ethanol recovered after distillation. The data, obtained by isotope ratio monitoring by mass spectrometry coupled to an elemental analyser (irm-EA/MS), show a high correlation between δ(13)C of the bulk wine and its ethanol, indicating that the distillation step is not necessary when the wine has not been submitted to any oenological treatment. Therefore, the ethanol/wine δ(13)C correlation can be used as an indicator of possible enrichment of the grape must or the wine with exogenous organic compounds. Wine ethanol δ(13)C is correlated to predawn leaf water potential (R(2) = 0.69), indicating that this parameter can be used as an indicator of vine water status. Position-specific (13)C analysis (PSIA) of ethanol extracted from wine, performed by isotope ratio monitoring by nuclear magnetic resonance (irm-(13)C NMR), confirmed the non-homogenous repartition of (13)C on ethanol skeleton. It is the δ(13)C of the methylene group of ethanol, compared to the methyl moiety, which is the most correlated to predawn leaf water potential, indicating that a phase of photorespiration of the vine during water stress period is most probably occurring due to stomata closure. However, position-specific (13)C analysis by irm-(13)C NMR does not offer a greater precision in the assessment of vine water status compared to direct measurement of δ(13)C on bulk wine by irm-EA/MS.

  8. Current status on marine litter indicators in Nordic waters

    DEFF Research Database (Denmark)

    Strand, Jakob; Tairova, Zhanna; Magnusson, Kerstin

    Status for project on Marine litter in the Nordic waters. This includes a review of Nordic studies on marine litter indicators. Various studies as part of either research or existing monitoring have provided information on occurrence of marine litter in Nordic waters from Baltic Sea to the Arctic....

  9. The Status of Heavy Metals Monitoring Technology in Surface Water%地表水中重金属的监测技术现状

    Institute of Scientific and Technical Information of China (English)

    冯玉立; 贾雪菲

    2015-01-01

    Water resources play a vital role in social development,which directly affect peoples daily life and social production. In the current rapid industrialization process,environmental pollution is becoming more and more serious. Perform a good monitoring work on the water,analyze the heavy mental elements in water,and protect and control heavy metal pollution in water are important components of water resources protection work. Heavy metal elements in the natural environment are very difficult to be bio-degraded,will be accumulated in the water,soil,and get into the human body through the food chain,causing serious damage. This paper analyzes the current situation and harm of heavy metal pollution,and discusses and studies the development of heavy metal detection technology in surface water.%水资源在社会发展中发挥着至关重要的作用,直接影响着人们的日常生活和社会生产.在当前工业化进程不断加快,环境污染问题日趋严重的背景下,做好水体监测工作,对水体中的重金属元素进行分析,预防和控制水体重金属污染,是水资源保护工作的重要组成部分.重金属元素在自然环境中很难被生物降解,会在水体、土壤中不断富集,并通过食物链进入人体,造成严重的危害.本文对重金属污染的现状和危害进行了分析,并对地表水中重金属检测技术的发展进行了讨论和研究.

  10. Acoustical method of whole-body hydration status monitoring

    Science.gov (United States)

    Sarvazyan, A. P.; Tsyuryupa, S. N.; Calhoun, M.; Utter, A.

    2016-07-01

    An acoustical handheld hydration monitor (HM) for assessing the water balance of the human body was developed. Dehydration is a critical public health problem. Many elderly over age of 65 are particularly vulnerable as are infants and young children. Given that dehydration is both preventable and reversible, the need for an easy-to-perform method for the detection of water imbalance is of the utmost clinical importance. The HM is based on an experimental fact that ultrasound velocity in muscle is a linear function of water content and can be referenced to the hydration status of the body. Studies on the validity of HM for the assessment of whole-body hydration status were conducted in the Appalachian State University, USA, on healthy young adults and on elderly subjects residing at an assisted living facility. The HM was able to track changes in total body water during periods of acute dehydration and rehydration in athletes and day-to-day and diurnal variability of hydration in elderly. Results of human studies indicate that HM has a potential to become an efficient tool for detecting abnormal changes in the body hydration status.

  11. Research status and developmental trends of optical fiber sensors for water quality monitoring%光纤水质传感器的研究现状和发展趋势

    Institute of Scientific and Technical Information of China (English)

    吴刚; 刘月明; 楼俊

    2012-01-01

    论述光纤传感技术在国内外水质监测中的应用与技术现状,介绍光纤传感技术监测水质的原理和技术方法,并按照非功能型和功能型分类分析典型光纤水质传感器的原理和技术,包括水质的pH值、溶解氧浓度、浊度、重金属离子污染等水质监测指标,涵盖了光吸收散射方法、荧光标示方法、SPR效应技术以及倏逝波技术方法等典型方法.最后指出光纤水质传感的技术发展趋势.%Applications and the technical status of optical fiber sensing technologies for water quality monitoring are reviewed. The principles and techniques of typical optical fiber sensors for water quality according to functional and non-functional classification, and water quality monitoring index including pH , dissolved oxygen concentration, turbidity, heavy metal ion contamination are analyzed, covering the absorption and scattering method, fluorescence labeling method, the SPR effect technology and the evanescent wave techniques method. Finally, the developmental trends of optical fiber water quality sensing technology are pointed out.

  12. Status of ISS Water Management and Recovery

    Science.gov (United States)

    Carter, Layne; Wilson, Laura Labuda; Orozco, Nicole

    2012-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2011, and describes the technical challenges encountered and lessons learned over the past year.

  13. Status of ISS Water Management and Recovery

    Science.gov (United States)

    Carter, Layne; Pruitt, Jennifer; Brown, Christopher A.; Bazley, Jesse; Gazda, Daniel; Schaezler, Ryan; Bankers, Lyndsey

    2016-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2016 and describes the technical challenges encountered and lessons learned over the past year.

  14. Status of ISS Water Management and Recovery

    Science.gov (United States)

    Carter, Layne; Takada, Kevin; Gazda, Daniel; Brown, Christopher; Bazley, Jesse; Schaezler, Ryan; Bankers, Lyndsey

    2017-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2017 and describes the technical challenges encountered and lessons learned over the past year.

  15. Continuous monitoring of plant water potential.

    Science.gov (United States)

    Schaefer, N L; Trickett, E S; Ceresa, A; Barrs, H D

    1986-05-01

    Plant water potential was monitored continuously with a Wescor HR-33T dewpoint hygrometer in conjunction with a L51 chamber. This commercial instrument was modified by replacing the AC-DC mains power converter with one stabilized by zener diode controlled transistors. The thermocouple sensor and electrical lead needed to be thermally insulated to prevent spurious signals. For rapid response and faithful tracking a low resistance for water vapor movement between leaf and sensor had to be provided. This could be effected by removing the epidermis either by peeling or abrasion with fine carborundum cloth. A variety of rapid plant water potential responses to external stimuli could be followed in a range of crop plants (sunflower (Helianthus annuus L., var. Hysun 30); safflower (Carthamus tinctorious L., var. Gila); soybean (Glycine max L., var. Clark); wheat (Triticum aestivum L., var. Egret). These included light dark changes, leaf excision, applied pressure to or anaerobiosis of the root system. Water uptake by the plant (safflower, soybean) mirrored that for water potential changes including times when plant water status (soybean) was undergoing cyclical changes.

  16. Investigation on water status and distribution in broccoli and the effects of drying on water status using NMR and MRI methods

    NARCIS (Netherlands)

    Xu, Fangfang; Jin, Xin; Zhang, Lu; Chen, Xiao Dong

    2017-01-01

    Many quality attributes of food products are influenced by the water status and the microstructure. Low-field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) methods are applied to non-destructively monitor the water status and structure of food. The aim of this study is to

  17. The status on contamination monitoring in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sinakhom, Fookiat [Office of Atomic Energy for Peace, Bangkok (Thailand)

    1997-06-01

    Thailand has embarked upon the development of nuclear energy for peaceful utilizations since 1961 when the Atomic Energy for Peace Act was enacted. The Atomic Energy Commission (Thai AEC) was established under section 5 of this Act having power and duty of carrying out matters concerning atomic energy for peace. The applications of nuclear energy in Thailand, at present are exclusively in medicine, education, research and industry. In this paper, the following items are described on contamination monitoring: controllable monitoring, uncontrollable monitoring, standardization of monitoring instruments, and decontamination and waste management. (G.K.)

  18. Polymer microcantilevers for water quality monitoring

    CSIR Research Space (South Africa)

    Ojijo, Vincent O

    2012-10-01

    Full Text Available The microcantilever project aims to develop novel polymer based microcantilevers able to detect E.coli in water samples for use as a rapid diagnostic for on-site water quality monitoring....

  19. Environmental Monitoring, Water Quality - MO 2009 Stream Team Volunteer Water Quality Monitoring Sites (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This data set shows the monitoring locations of trained Volunteer Water Quality Monitors. A monitoring site is considered to be a 300 foot section of stream channel....

  20. Environmental Monitoring, Water Quality - MO 2009 Stream Team Volunteer Water Quality Monitoring Sites (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This data set shows the monitoring locations of trained Volunteer Water Quality Monitors. A monitoring site is considered to be a 300 foot section of stream channel....

  1. Iowater Water Quality Monitoring Sites

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This coverage contains points representing monitoring locations on streams, lakes and ponds that have been registered by IOWATER monitors. IOWATER, Iowa's volunteer...

  2. Status of contamination monitoring in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Aleya [Institute of Nuclear Science and Technology, Savar, Dacca (Bangladesh)

    1997-06-01

    The applications of radioisotopes and radiation sources to the research and development in medicine, food agriculture, industries and others are rapidly increasing in Bangladesh. The existing major nuclear facilites and allied laboratories of the country include 3 MW TRIGA Mark-2 research reactor for training, research and radioisotope production, 14 MeV neutron generator for nuclear data measurement and elemental analysis via neutron activation, 3 MeV Van de Graaff accelerator for the research and application of nuclear physics, and 50,000 Ci and 5,000 Ci Co-60 irradiators. About 10 Co-60 and Cs-137 teletherapy units are in operation in hospitals. The radioactive contamination of working areas, equipment, protective clothing and skin may result from normal operation and accidents, and contamination monitoring and decontamination are the essential part of radiation protection program. Surface contamination is monitored with Berthold survey meters. Hand and foot monitors have been used. Routine systematic search, continuous air monitoring, the examination of silt movement in Chittagong harbor using Sc-46 tracer and the measurement of tritium contamination for the neutron generator are reported. (K.I.)

  3. Water Quality Monitoring of Texas Offshore Artificial Reefs

    Science.gov (United States)

    Bodkin, L.; Lee, M.

    2016-02-01

    Artificial reefs provide a habitat for marine organisms and abundant ecosystem services. In reef ecosystems, several organisms tolerate a small range of physical water properties and any change in water quality could affect their survival. Therefore, monitoring how these artificial reefs respond to environmental changes due to natural and anthropogenic causes is essential for management. The U.S. Geological Survey (USGS) and the Texas Parks and Wildlife Department (TPWD-ARP) are collaboratively monitoring artificial reefs located in the Gulf of Mexico in order to understand the productivity of these ecosystems, and their response to environmental changes. To accomplish this, TPWD use established protocols for biological monitoring, and the USGS collects physical and chemical water quality data. The selected artificial reef sites are located nearby national marine sanctuaries to facilitate comparison to natural reefs, but also provide enough spatial variability for comparison purposes. Additionally, the sites differ in artificial reef foundation providing an opportunity to evaluate variability in reefing structure. Physical water quality parameter profiles are collected to: (1)document variability of water quality between sites, (2)characterize the environmental conditions at the artificial reefs, and (3)monitor the reefs for potential impacts from anthropogenic stresses. Monitors have also been deployed at selected locations between trips to obtain a continuous record of physical water quality parameters. Water quality samples for nutrients, chlorophyll a, Pheophytin a, and an assortment of metal analytes are collected by USGS divers at the top of each artificial reef structure. Collecting long-term monitoring data with targeted sampling for constituents of concern at artificial reefs may provide a foundation to determine their current status and establish trends that can be used for future management. A record of hydrographic variables could be used to explain and

  4. Physiologic Status Monitoring via the Gastrointestinal Tract

    Science.gov (United States)

    2015-11-18

    and lungs , we suspect these sites were too distant from the heart and lungs for the sensitivity of the particular microphone chosen (-45dB ±4dB...Monitoring System with Scintigraphy for Measuring Whole Gut Transit. Digestive Diseases and Sciences 54: 2167-2174. 19. Rabiner LR, Schafer RW (2011...chest just above the heart, are also sending data to the A/D converter. The final result is perfectly time-registered data streams for heart and lung

  5. Water-Level Monitoring Plan for the Hanford Groundwater Monitoring Project

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Newcomer; J.P. McDonald; M.A. Chamness

    1999-09-30

    This document presents the water-level monitoring plan for the Hanford Groundwater Monitoring Project, conducted by the Pacific Northwest National Laboratory (PNNL). Water-level monitoring of the groundwater system beneath the Hanford Site is performed to fulfill the requirements of various state and federal regulations, orders, and agreements. The primary objective of this monitoring is to determine groundwater flow rates and directions. To meet this and other objectives, water-levels are measured annually in monitoring wells completed within the unconfined aquifer system, the upper basalt-confined aquifer system, and in the lower basalt-confined aquifers for surveillance monitoring. At regulated waste units, water levels are taken monthly, quarterly, semi-annually, or annually, depending on the hydrogeologic conditions and regulatory status of a given site. The techniques used to collect water-level data are described in this document along with the factors that affect the quality of the data and the strategies employed by the project to minimize error in the measurement and interpretation of water levels. Well networks are presented for monitoring the unconfined aquifer system, the upper basalt-confined aquifer system, and the lower basalt-confined aquifers, all at a regional scale (surveillance monitoring), as well as the local-scale well networks for each of the regulated waste units studied by this project (regulated-unit monitoring). The criteria used to select wells for water-table monitoring are discussed. It is observed that poor well coverage for surveillance water-table monitoring exists south and west of the 200-West Area, south of the 100-F Area, and east of B Pond and the Treated Effluent Disposal Facility (TEDF). This poor coverage results from a lack of wells suitable for water-table monitoring, and causes uncertainty in representation of the regional water-table in these areas. These deficiencies are regional in scale and apply to regions outside

  6. Measuring in-stream productivity: the potential of continuous chlorophyll and dissolved oxygen monitoring for assessing the ecological status of surface waters.

    Science.gov (United States)

    Jarvie, H P; Love, A J; Williams, R J; Neal, C

    2003-01-01

    Continuous (hourly) measurements of dissolved oxygen and chlorophyll (determined by fluorimetry) were made for an inter-linked lowland river and canal system. The dissolved oxygen data were used to estimate daily rates of re-aeration, photosynthesis and respiration, using a process-based analytical technique (the Delta method). In-situ fluorimeter measurements of chlorophyll were ground-truthed on a fortnightly basis using laboratory methanol extraction of chlorophyll and spectrophotometric analysis. Water samples were also analysed for algal species on a fortnightly basis. The river and canal exhibited very similar rates of photosynthesis and respiration during the summer of 2001, despite much higher chlorophyll concentrations and total algal counts, indicating that benthic algae and/or aquatic macrophytes may be making an important contribution to photosynthesis rates in the river. Suspended algal populations in the canal are dominated by planktonic species, whereas the river has a higher proportion of species which are predominantly benthic in habitat. The river exhibited higher rates of respiration, reflecting a higher organic loading from external (e.g. sewage effluent) sources.

  7. Global Public Water Education: The World Water Monitoring Day Experience

    Science.gov (United States)

    Araya, Yoseph Negusse; Moyer, Edward H.

    2006-01-01

    Public awareness of the impending world water crisis is an important prerequisite to create a responsible citizenship capable of participating to improve world water management. In this context, the case of a unique global water education outreach exercise, World Water Monitoring Day of October 18, is presented. Started in 2002 in the United…

  8. Water Quality Monitoring by Satellite

    Science.gov (United States)

    Journal of Chemical Education, 2004

    2004-01-01

    The availability of abundant water resources in the Upper Midwest of the United States is nullified by their contamination through heavy commercial and industrial activities. Scientists have taken the responsibility of detecting the water quality of these resources through remote-sensing satellites to develop a wide-ranging water purification plan…

  9. Wide Area Wind Field Monitoring Status & Results

    Energy Technology Data Exchange (ETDEWEB)

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  10. Ground-Water Protection and Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  11. R2 Water Quality Portal Monitoring Stations

    Science.gov (United States)

    The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on the form including location, site, sampling, and date parameters to filter and customize the returned results. The The Water Quality Portal (WQP) is a cooperative service sponsored by the United States Geological Survey (USGS), the Environmental Protection Agency (EPA) and the National Water Quality Monitoring Council (NWQMC) that integrates publicly available water quality data from the USGS National Water Information System (NWIS) the EPA STOrage and RETrieval (STORET) Data Warehouse, and the USDA ARS Sustaining The Earth??s Watersheds - Agricultural Research Database System (STEWARDS).

  12. Water Pollution: Monitoring the Source.

    Science.gov (United States)

    Wilkes, James W.

    1980-01-01

    Described is an advanced biology class project involving study of the effects of organic pollution on an aquatic ecosystem from an sewage treatment plant overflow to evaluate the chemical quality and biological activity of the river water. (DS)

  13. Surface Water Quality Monitoring Sites

    Data.gov (United States)

    Minnesota Department of Natural Resources — The MN Department of Agriculture (MDA) is charged with periodically collecting and analyzing water samples from selected locations throughout the state to determine...

  14. 40 CFR 141.701 - Source water monitoring.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Source water monitoring. 141.701... Monitoring Requirements § 141.701 Source water monitoring. (a) Initial round of source water monitoring... sampling frequency is evenly spaced throughout the monitoring period. (b) Second round of source water...

  15. Forest health monitoring: national status, trends, and analysis 2016

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2017-01-01

    The annual national report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introducesnew techniques for analyzing forest health data, and summarizes results of recently completed...

  16. Client-Server Connection Status Monitoring Using Ajax Push Technology

    Science.gov (United States)

    Lamongie, Julien R.

    2008-01-01

    This paper describes how simple client-server connection status monitoring can be implemented using Ajax (Asynchronous JavaScript and XML), JSF (Java Server Faces) and ICEfaces technologies. This functionality is required for NASA LCS (Launch Control System) displays used in the firing room for the Constellation project. Two separate implementations based on two distinct approaches are detailed and analyzed.

  17. High Impedance Comparator for Monitoring Water Resistivity.

    Science.gov (United States)

    Holewinski, Paul K.

    1984-01-01

    A high-impedance comparator suitable for monitoring the resistivity of a deionized or distilled water line supplying water in the 50 Kohm/cm-2 Mohm/cm range is described. Includes information on required circuits (with diagrams), sensor probe assembly, and calibration techniques. (JN)

  18. 40 CFR 265.91 - Ground-water monitoring system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  19. Monitoring Telluric Water Absorption with CAMAL

    Science.gov (United States)

    Baker, Ashley; Blake, Cullen; Sliski, David

    2017-01-01

    Ground-based observations are severely limited by telluric water vapor absorption features, which are highly variable in time and significantly complicate both spectroscopy and photometry in the near-infrared (NIR). To achieve the stability required to study Earth-sized exoplanets, monitoring the precipitable water vapor (PWV) becomes necessary to mitigate the impact of telluric lines on radial velocity measurements and transit light curves. To address this issue, we present the Camera for the Automatic Monitoring of Atmospheric Lines (CAMAL), a stand-alone, inexpensive 6-inch aperture telescope dedicated to measuring PWV at the Whipple Observatory. CAMAL utilizes three NIR narrowband filters to trace the amount of atmospheric water vapor affecting simultaneous observations with the MINiature Exoplanet Radial Velocity Array (MINERVA) and MINERVA-Red telescopes. We present the current design of CAMAL, discuss our calibration methods, and show PWV measurements taken with CAMAL compared to those of a nearby GPS water vapor monitor.

  20. Real-time water quality monitoring and providing water quality ...

    Science.gov (United States)

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  1. Human Factors Evaluation of the Hidalgo Equivital EQ-02 Physiological Status Monitoring System

    Science.gov (United States)

    2013-10-11

    Equivital™ EQ-02 physiological status monitoring ( PSM ) system. The usability and acceptability of this system has been tested previously and generally...under CBRNE- PPE provided utility and was comfortable to wear. Thermal strain; CBRNE; PPE; physiological status monitoring; PSM ; human factors; chem...real-time physiological monitoring. The Hidalgo, Ltd. (Cambridge, UK) Equivital™ EQ-02 physiological status monitoring ( PSM ) system is a typical

  2. Monitoring the waste water of LEP

    CERN Document Server

    Rühl, I

    1999-01-01

    Along the LEP sites CERN is discharging water of differing quality and varying amounts into the local rivers. This wastewater is not only process water from different cooling circuits but also water that infiltrates into the LEP tunnel. The quality of the discharged wastewater has to conform to the local environmental legislation of our Host States and therefore has to be monitored constantly. The most difficult aspect regarding the wastewater concerns LEP Point 8 owing to an infiltration of crude oil (petroleum), which is naturally contained in the soil along octant 7-8 of the LEP tunnel. This paper will give a short summary of the modifications made to the oil/water separation unit at LEP Point 8. The aim was to obtain a satisfactory oil/water separation and to install a monitoring system for a permanent measurement of the amount of hydrocarbons in the wastewater.

  3. 21 CFR 868.2450 - Lung water monitor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung...

  4. 40 CFR 141.706 - Reporting source water monitoring results.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Reporting source water monitoring... Cryptosporidium Source Water Monitoring Requirements § 141.706 Reporting source water monitoring results. (a) Systems must report results from the source water monitoring required under § 141.701 no later than 10...

  5. Use of models to support the monitoring requirements in the water framework directive

    NARCIS (Netherlands)

    Højberg, A.L.; Refsgaard, J.C.; Geer, F. van; Jørgensen, L.F.; Zsuffa, I.

    2007-01-01

    Implementation of the EU Water Framework Directive (WFD) poses many new challenges to European water managers. Monitoring programmes play a key role to assess the status and identify possible trends in the environmental conditions of river basins; to gain new knowledge on water processes and to

  6. Use of models to support the monitoring requirements in the water framework directive

    NARCIS (Netherlands)

    Højberg, A.L.; Refsgaard, J.C.; Geer, F. van; Jørgensen, L.F.; Zsuffa, I.

    2007-01-01

    Implementation of the EU Water Framework Directive (WFD) poses many new challenges to European water managers. Monitoring programmes play a key role to assess the status and identify possible trends in the environmental conditions of river basins; to gain new knowledge on water processes and to asse

  7. Using DNA damage to monitor water environment

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    DNA damage of aquatic organisms living in polluted environments can be used as a biomarker of the genotoxicity of toxic agents to organisms. This technique has been playing an important role in ecotoxicological study and environmental risk assessment. In this article, main types of DNA damage caused by pollutants in water environments were reviewed; methods of detecting DNA damage were also documented for water environmental monitoring.

  8. HEART RATE DURING SLEEP: IMPLICATIONS FOR MONITORING TRAINING STATUS

    Directory of Open Access Journals (Sweden)

    Miriam R. Waldeck

    2003-12-01

    Full Text Available Resting heart rate has sometimes been used as a marker of training status. It is reasonable to assume that the relationship between heart rate and training status should be more evident during sleep when extraneous factors that may influence heart rate are reduced. Therefore the aim of the study was to assess the repeatability of monitoring heart rate during sleep when training status remained unchanged, to determine if this measurement had sufficient precision to be used as a marker of training status. The heart rate of ten female subjects was monitored for 24 hours on three occasions over three weeks whilst training status remained unchanged. Average, minimum and maximum heart rate during sleep was calculated. The average heart rate of the group during sleep was similar on each of the three tests (65 ± 9, 63 ± 6 and 67 ± 7 beats·min-1 respectively. The range in minimum heart rate variation during sleep for all subjects over the three testing sessions was from 0 to 10 beats·min-1 (mean = 5 ± 3 beats·min-1 and for maximum heart rate variation was 2 to 31 beats·min-1 (mean = 13 ± 9 beats·min-1. In summary it was found that on an individual basis the minimum heart rate during sleep varied by about 8 beats·min-1. This amount of intrinsic day-to-day variation needs to be considered when changes in heart rate that may occur with changes in training status are interpreted

  9. Data processing for water monitoring system

    Science.gov (United States)

    Monford, L.; Linton, A. T.

    1978-01-01

    Water monitoring data acquisition system is structured about central computer that controls sampling and sensor operation, and analyzes and displays data in real time. Unit is essentially separated into two systems: computer system, and hard wire backup system which may function separately or with computer.

  10. Water quality monitoring in the Paul do Boquilobo Biosphere Reserve

    Science.gov (United States)

    Baptista, C.; Santos, L.

    2016-08-01

    The Paul do Boquilobo is an important wetland ecosystem classified by Unesco as a MAB Biosphere reserve also awarded Ramsar site status, representing one of the most important habitats for the resident nesting colony of Cattle Egret (Bulbucus ibis). Yet owing to its location, it suffers from human induced impacts which include industrial and domestic effluent discharges as well as agricultural land use which have negatively impacted water quality. The current study reports the results obtained from the introductory monitoring programme of surface water quality in the Nature Reserve to emphasize the detrimental impact of the anthropogenic activities in the water quality of such an important ecosystem. The study involved physicochemical and biotic variables, microbial parameters and biological indicators. Results after 3 years of monitoring bring to evidence a poor water quality further impaired by seasonal patterns. Statistical analysis of data attributed water quality variation to 3 main parameters - pH, dissolved oxygen and nitrates, indicating heavy contamination loads from both organic and agricultural sources. Seasonality plays a role in water flow and climatic conditions, where sampling sites presented variable water quality data, suggesting a depurative function of the wetland.

  11. Status of radiation detector and neutron monitor technology

    CERN Document Server

    Kim, Y K; Ha, J H; Han, S H; Hong, S B; Hwang, I K; Lee, W G; Moon, B S; Park, S H; Song, M H

    2002-01-01

    In this report, we describe the current states of the radiation detection technology, detectors for industrial application, and neutron monitors. We also survey the new technologies being applied to this field. The method to detect radiation is the measurement of the observable secondary effect from the interaction between incident radiation and detector material, such as ionization, excitation, fluorescence, and chemical reaction. The radiation detectors can be categorized into gas detectors, scintillation detectors, and semiconductor detectors according to major effects and main applications. This report contains the current status and operational principles of these detectors. The application fields of radiation detectors are industrial measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement, security system, fundamental science experiment, and radiation measurement standardization. The st...

  12. Application of fuzzy logic in automated cow status monitoring.

    Science.gov (United States)

    de Mol, R M; Woldt, W E

    2001-02-01

    Sensors that measure yield, temperature, electrical conductivity of milk, and animal activity can be used for automated cow status monitoring. The occurrence of false-positive alerts, generated by a detection model, creates problems in practice. We used fuzzy logic to classify mastitis and estrus alerts; our objective was to reduce the number of false-positive alerts and not to change the level of detected cases of mastitis and estrus. Inputs for the fuzzy logic model were alerts from the detection model and additional information, such as the reproductive status. The output was a classification, true or false, of each alert. Only alerts that were classified true should be presented to the herd manager. Additional information was used to check whether deviating sensor measurements were caused by mastitis or estrus, or by other influences. A fuzzy logic model for the classification of mastitis alerts was tested on a data set from cows milked in an automatic milking system. All clinical cases without measurement errors were classified correctly. The number of false-positive alerts over time from a subset of 25 cows was reduced from 1266 to 64 by applying the fuzzy logic model. A fuzzy logic model for the classification of estrus alerts was tested on two data sets. The number of detected cases decreased slightly after classification, and the number of false-positive alerts decreased considerably. Classification by a fuzzy logic model proved to be very useful in increasing the applicability of automated cow status monitoring.

  13. 40 CFR 257.22 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... operator. When physical obstacles preclude installation of ground-water monitoring wells at the relevant... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water......

  14. Monitoring water quality by remote sensing

    Science.gov (United States)

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  15. Monitor for displaying the status of Real-Time simulation.

    OpenAIRE

    2014-01-01

    This paper presents a design and implementation of a monitor to display the status of real-time simulation and modelling for discrete event dynamic systems, DEDS. The modelling and simulation of DEDS in this thesis are implemented using two kinds tools called Petri net and GpenSIM. Petri Nets are tools that are widely used now a day to model and simulate discrete events of concurrent and dynamic systems. [1] Petri net has a graphical formalism that is getting popularity in recent years as a t...

  16. Radionuclide Sensors for Subsurface Water Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Timothy DeVol

    2006-06-30

    Contamination of the subsurface by radionuclides is a persistent and vexing problem for the Department of Energy. These radionuclides must be measured in field studies and monitoed in the long term when they cannot be removed. However, no radionuclide sensors existed for groundwater monitoring prior to this team's research under the EMSP program Detection of a and b decays from radionuclides in water is difficult due to their short ranges in condensed media.

  17. Field Monitoring Protocol: Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  18. Field Monitoring Protocol. Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, C. E. [Mountain Energy Partnership, Longmont, CO (United States)

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  19. Initial Survey Instructions for Spring Water Monitoring : Quality

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Initial survey instructions for 1.04 spring water monitoring (quality) and 1.06 management unit water monitoring (quality) at Fish Springs National Wildlife Refuge....

  20. Macrophytes: Limitations of Using Them to Assess Reservoir Status According to the Water Framework Directive

    OpenAIRE

    Alaoui, Khadija Sossey; Galoux, Daniel; Rosillon, Francis

    2014-01-01

    Macrophytes are among the major groups of organisms that the Water Framework Directive (WFD) recommends should be used in assessing the status of natural lakes. The use of macrophytes in reservoir monitoring is still limited and further studies are needed on their inter-calibration and sources of variation. Many status assessment methods based on macrophyte communities have been defined for lakes. Nevertheless, few of them have been tested for reservoirs. The purpose of the study is to hig...

  1. Estimating Leaf Water Status from Vis-Nir Reflectance and Transmittance

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2017-01-01

    Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Established approaches involve measurements in the thermal infrared and the 900-2000nm reflective infrared. Less popular UV-visible-NIR techniques presumably deserve research attention, because photochemical changes linked to plant water status manifest spectral light scattering and absorption changes. Here we monitored the visible and NIR light reflected from the leaf interior as well as the leaf transmittance as the relative water content of corn (Zeamays L.) leaves decreased. Our results highlight the importance of both scattering effects and effects due to absorption by leaf pigments.

  2. 40 CFR 130.4 - Water quality monitoring.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality monitoring. 130.4... QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section 106(e)(1.../quality control guidance. (b) The State's water monitoring program shall include collection and analysis...

  3. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... preclude installation of ground-water monitoring wells at the relevant point of compliance at existing... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51...

  4. 安陆市学校饮水卫生安全状况监测分析%Monitoring analysis on hygiene and safety status of drinking water in schools of Anlu City

    Institute of Scientific and Technical Information of China (English)

    张雪峰; 张守德; 许大庆; 魏迎庆; 疏义林; 万琴

    2016-01-01

    目的:了解安陆市学校生活饮用水的卫生安全状况,为改善学校生活饮用水的质量提供依据。方法采集2015年安陆市所有学校生活饮用水水样138份,包括井水、自来水、桶装饮水机冷出水口水和热出水口水。按照相关标准检测其水质卫生状况,并进行分析评价。结果138份水样中不合格水样72份,总不合格率为52.2%,其中自来水不合格率为60.7%(12/28),井水不合格率为66.7%(32/48),桶装饮水机冷出水口水不合格率为48.4%(15/31),桶装饮水机热出水口水不合格率为25.8%(8/31)。城区学校自来水不合格率为0,低于乡镇学校的77.3%(17/22),差异有统计学意义(χ2=11.802,P<0.05)。项目不合格指标主要是微生物和感官指标,小部分是一般化学和毒理学指标。乡镇自来水项目游离性余氯不合格率为54.5%(12/22),表明乡镇自来水未充分消毒。结论安陆市学校各类生活饮用水水质情况较差,尤其是乡镇学校,应加强学校生活饮用水卫生设施投入、维护和监督管理,保障师生饮用水的卫生安全。%Objective To understand the hygiene and safety status of living and drinking water in the schools of Anlu City to provide a basis for improving the living and drinking water quality in schools. Methods A total of 138 samples of living and drinking water in whole schools of Anlu City during 2015 were collected,including well water,tap water,water from cold out-let and hot outlet of bottled water. The hygienic status of water quality was detected according to the related standard. Results Among 138 water samples,72 samples were unqualified with the disqualification rate of 52.2%,among them,which of tap water was 60.7%(12/28),which of well water was 66.7%(32/48),which of cold outlet water in bottled water was 48.4%(15/31) and which of hot outlet water was 25.8%(8/31). The disqualification rate of tap water in urban

  5. EVALUATION OF WATER POLLUTION STATUS IN SIRET HYDROGRAPHICAL BASIN (SUCEAVA REGION DUE TO AGRICULTURAL ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Carmen Zaharia

    2014-06-01

    Full Text Available The study presents data concerning the water pollution status of Siret hydrographical basin (i.e. surface and ground waters, lakes in Suceava County area (different controlling/monitoring sections due to agricultural productive activities, especially regarding some quality indicators (nitrogen-based nutrient concentrations evaluated for 2008. These data are recommending the necessity of continuous monitoring of water quality in the Siret River hydrographical basin, in all existing control sections, for identification of any pollution episodes, non-reported by polluters to the local environmental regulators.

  6. Directed manipulation of crop water status through canopy temperature-based irrigation management

    Science.gov (United States)

    While the relationship between canopy temperature and plant water status is well established, canopy temperature as a means of controlling crop irrigation has been limited in production applications due to the cost and complexity of temperature monitoring. A new low-cost infrared thermometry system...

  7. GNSS-Reflectometry based water level monitoring

    Science.gov (United States)

    Beckheinrich, Jamila; Schön, Steffen; Beyerle, Georg; Apel, Heiko; Semmling, Maximilian; Wickert, Jens

    2013-04-01

    Due to climate changing conditions severe changes in the Mekong delta in Vietnam have been recorded in the last years. The goal of the German Vietnamese WISDOM (Water-related Information system for the Sustainable Development Of the Mekong Delta) project is to build an information system to support and assist the decision makers, planners and authorities for an optimized water and land management. One of WISDOM's tasks is the flood monitoring of the Mekong delta. Earth reflected L-band signals from the Global Navigation Satellite System show a high reflectivity on water and ice surfaces or on wet soil so that GNSS-Reflectometry (GNSS-R) could contribute to monitor the water level in the main streams of the Mekong delta complementary to already existing monitoring networks. In principle, two different GNSS-R methods exist: the code- and the phase-based one. As the latter being more accurate, a new generation of GORS (GNSS Occultation, Reflectometry and Scatterometry) JAVAD DELTA GNSS receiver has been developed with the aim to extract precise phase observations. In a two week lasting measurement campaign, the receiver has been tested and several reflection events at the 150-200 m wide Can Tho river in Vietnam have been recorded. To analyze the geometrical impact on the quantity and quality of the reflection traces two different antennas height were tested. To track separately the direct and the reflected signal, two antennas were used. To derive an average height of the water level, for a 15 min observation interval, a phase model has been developed. Combined with the coherent observations, the minimum slope has been calculated based on the Least- Squares method. As cycle slips and outliers will impair the results, a preprocessing of the data has been performed. A cycle slip detection strategy that allows for automatic detection, identification and correction is proposed. To identify outliers, the data snooping method developed by Baarda 1968 is used. In this

  8. Monitoring Continental Water Mass Variations by GRACE

    Science.gov (United States)

    Mercan, H.; Akyılmaz, O.

    2015-12-01

    The low-low satellite-to-satellite tracking mission GRACE (Gravity Recovery And Climate Experiment), launched in March 2002, aims to determine Earth's static gravity field and its temporal variations. Geophysical mass changes at regional and global scale, which are related with terrestrial water bodies, ocean and atmosphere masses, melting and displacements of ice sheets and tectonic movements can be determined from time-dependent changes of the Earth's gravity field. In this study, it is aimed to determine total water storage (TWS) (soil moisture, groundwater, snow and glaciers, lake and river waters, herbal waters) variations at different temporal and spatial resolution, monitoring the hydrologic effect causing time-dependent changes in the Earth's gravity field by two different methods. The region between 30°-40° northern latitudes and 36°-48° eastern longitudes has been selected as a study area covering the Euphrates - Tigris basin. TWS maps were produced with (i) monthly temporal and 400 km spatial resolution, based on monthly mean global spherical harmonic gravity field models of GRACE satellite mission (L2), and with (ii) monthly and semi-monthly temporal and spatial resolution as fine as 200 km based on GRACE in-situ observations (L1B). Decreasing trend of water mass anomalies from the year 2003 to 2013 is proved by aforesaid approaches. Monthly TWS variations are calculated using two different methods for the same region and time period. Time series of both solutions are generated and compared.

  9. Hydrogeophysical monitoring of water infiltration processes

    Science.gov (United States)

    Bevilacqua, Ivan; Cassiani, Giorgio; Deiana, Rita; Canone, Davide; Previati, Maurizio

    2010-05-01

    Non-invasive subsurface monitoring is growing in the last years. Techniques like ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) can be useful in soil water content monitoring (e.g., Vereecken et al., 2006). Some problems remain (e.g. spatial resolution), but the scale is consistent with many applications and hydrological models. The research has to to provide even more quantitative tools, without remaining in the qualitative realm. This is a very crucial step in the way to provide data useful for hydrological modeling. In this work a controlled field infiltration experiment has been done in August 2009 in the experimental site of Grugliasco, close to the Agricultural Faculty of the University of Torino, Italy. The infiltration has been monitored in time lapse by ERT, GPR, and TDR (Time Domain Reflectometry). The sandy soil characteristics of the site has been already described in another experiment [Cassiani et al. 2009a].The ERT was èperformed in dipole-dipole configuration, while the GPR had 100 MHz and 500 MHz antennas in WARR configuration. The TDR gages had different lengths. The amount of water which was sprinkled was also monitored in time.Irrigation intensity has been always smaller than infiltration capacity, in order not toh ave any surface ponding. Spectral induced polarization has been used to infer constitutive parameters from soil samples [Cassiani et al. 2009b]. 2D Richards equation model (Manzini and Ferraris, 2004) has been then calibrated with the measurements. References. Cassiani, G., S. Ferraris, M. Giustiniani, R. Deiana and C.Strobbia, 2009a, Time-lapse surface-to-surface GPR measurements to monitor a controlled infiltration experiment, in press, Bollettino di Geofisica Teorica ed Applicata, Vol. 50, 2 Marzo 2009, pp. 209-226. Cassiani, G., A. Kemna, A.Villa, and E. Zimmermann, 2009b, Spectral induced polarization for the characterization of free-phase hydrocarbon contamination in sediments with low clay content

  10. A tentative discussion on the monitoring of water resources in China

    Science.gov (United States)

    Yang, Jianqing; Dai, Ning; Wu, Mengying; Wang, Guangsheng

    2016-10-01

    With the rapid economy development and social civilization progress, the Chinese Government also is improving ecological environmental conditions. More efforts have been made to solve water problems through the implementation of stringent water resources management, as a key government policy on water. Thus, monitoring of water resources has been strengthened, being a main component of the hydrological work in recent years. Compared with routine hydrological monitoring, water resources monitoring pays more attention to the quantity and quality variations of regional waters, to reflect the status of water in river basins and administrative regions. In this paper, the overall layout of the hydrometric network in China is presented, monitoring efforts of the natural water cycle and water consumptions are analyzed, methodologies of water resources monitoring, which are commonly applied in the country, are summed up. Taking the hydrometric network planning on interprovincial boundary waterbodies as example, a summary of the planning at interprovincial boundary river sections is presented. The planning can meet the need of water resources management of administrative divisions. It can also improve the overall water resources monitoring for the country.

  11. CURRENT STATUS OF INDIVIDUAL DOSIMETRIC MONITORING IN UKRAINE.

    Science.gov (United States)

    Chumak, V; Deniachenko, N; Makarovska, O; Mihailescu, L-C; Prykhodko, A; Voloskyi, V; Vanhavere, F

    2016-09-01

    About 50 000 workers are being occupationally exposed to radiation in Ukraine. Individual dosimetric monitoring (IDM) is provided by 77 dosimetry services and laboratories of very different scale with a number of monitored workers ranging from several persons to ∼9000. In the present work, the current status of personal dosimetry in Ukraine was studied. The First National Intercomparison (FNI) of the IDM labs was accompanied by a survey of the laboratory operation in terms of coverage, types of dosimetry provided, instrumentation and methodologies used, metrological support, data recording, etc. Totally, 34 laboratories responded to the FNI call, and 18 services with 19 different personal dosimetry systems took part in the intercomparison exercise providing 24 dosimeters each for blind irradiation to photons of 6 different qualities (ISO N-series X-rays, S-Cs and S-Co sources) in a dose range of 5-60 mSv. Performance of the dosimetry labs was evaluated according to ISO 14146 criteria of matching trumpet curves with H0 = 0.2 mSv. The test revealed that 8 of the 19 systems meet ISO 14146 criteria in full, 5 other labs show marginal performance and 6 laboratories demonstrated catastrophic quality of dosimetric results. Altogether, 18 participating labs provide dosimetric monitoring to 37 477 workers (about three-fourths of all occupationally exposed workers), usually on monthly (nuclear industry) or quarterly (rest of applications) basis. Of this number, 20 664 persons (55 %) receive completely adequate individual monitoring, and the number of personnel receiving IDM of inadequate quality counts 3054 persons.

  12. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring.

    Science.gov (United States)

    Peletz, Rachel; Kumpel, Emily; Bonham, Mateyo; Rahman, Zarah; Khush, Ranjiv

    2016-03-02

    Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.

  13. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Rachel Peletz

    2016-03-01

    Full Text Available Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies, served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05. Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.

  14. Monitoring and modeling of microbial and biological water quality

    Science.gov (United States)

    Microbial and biological water quality informs on the health of water systems and their suitability for uses in irrigation, recreation, aquaculture, and other activities. Indicators of microbial and biological water quality demonstrate high spatial and temporal variability. Therefore, monitoring str...

  15. Service Water and Impoundment Monitoring Database (SWIM1)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Service Water and Impoundment Monitoring (SWIM1) database was developed for the purpose of managing water level and water quality (salinity) data for areas...

  16. Service Water and Impoundment Monitoring Database (SWIM2)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Service Water and Impoundment Monitoring (SWIM2) database was developed for the purpose of managing water level and water quality (salinity) data for areas...

  17. Guidelines for use of water-quality monitors

    Science.gov (United States)

    Gordon, A. Brice; Katzenbach, Max S.

    1983-01-01

    This manual contains methods and procedures used by the U.S. Geological Survey (USGS) for collecting specific conductance, dissolved oxygen, water temperature, and pH data for ground water, streams, lakes, reservoirs, and estuaries by means of permanently installed, continuously recording, water quality monitors. The topics discussed include the selection of monitoring sites, selection and installation of shelters and equipment, and standard methods of calibration, operation and maintenance of water-quality monitors.

  18. Assessment of the environmental status in Hellenic coastal waters (Eastern Mediterranean: from the Water Framework Directive to the Marine Strategy Water Framework Directive.

    Directory of Open Access Journals (Sweden)

    N. SIMBOURA

    2014-11-01

    Full Text Available A  methodology is presented to assess the environmental status sensu the Marine Strategy Water Framework Directive (MSFD based on data obtained from the monitoring of water quality in the Hellenic coastal waters within the Water Framework Directive (WFD.   An adapted decision tree used for integrating the results of the WFD in the Basque country was applied. Modifications lie to the evaluation of the physicochemical status based on a eutrophication index developed for Eastern Mediterranean waters. Results on hydromorphological, physicochemical and biological elements are presented. The chemical status was evaluated based on measurements of heavy metals in water. The evaluation of the biological quality was based on the use of metrics developed for phytoplankton biomass, benthic macroinvertebrates and macroalgae updated to accommodate MSFD needs. Results on the integrative status of the water bodies were validated by correlating classification results with a pressure index and environmental indicators in water column and sediment. Following this decision tree the majority of stations expected to be at risk of achieving the good status were found in moderate status. Benthos was found to be the element with the closest agreement with the integrated final status having an increased weighting in the decision tree. The quality of benthos and in some  limited cases  the eutrophication index determined largely the final status. The highest disagreement with the integrative classification was produced by macroalgae. All indicators used correlated with water and sediment parameters but benthos correlated better with sediment factors while phytoplankton and eutrophication index with water column parameters.

  19. Assessment of the environmental status in Hellenic coastal waters (Eastern Mediterranean: from the Water Framework Directive to the Marine Strategy Water Framework Directive.

    Directory of Open Access Journals (Sweden)

    N. SIMBOURA

    2015-01-01

    Full Text Available A  methodology is presented to assess the environmental status sensu the Marine Strategy Water Framework Directive (MSFD based on data obtained from the monitoring of water quality in the Hellenic coastal waters within the Water Framework Directive (WFD.   An adapted decision tree used for integrating the results of the WFD in the Basque country was applied. Modifications lie to the evaluation of the physicochemical status based on a eutrophication index developed for Eastern Mediterranean waters. Results on hydromorphological, physicochemical and biological elements are presented. The chemical status was evaluated based on measurements of heavy metals in water. The evaluation of the biological quality was based on the use of metrics developed for phytoplankton biomass, benthic macroinvertebrates and macroalgae updated to accommodate MSFD needs. Results on the integrative status of the water bodies were validated by correlating classification results with a pressure index and environmental indicators in water column and sediment. Following this decision tree the majority of stations expected to be at risk of achieving the good status were found in moderate status. Benthos was found to be the element with the closest agreement with the integrated final status having an increased weighting in the decision tree. The quality of benthos and in some  limited cases  the eutrophication index determined largely the final status. The highest disagreement with the integrative classification was produced by macroalgae. All indicators used correlated with water and sediment parameters but benthos correlated better with sediment factors while phytoplankton and eutrophication index with water column parameters.

  20. Spatio-temporal effects of soil and bedrock variability on grapevine water status in hillslope vineyards.

    Science.gov (United States)

    Brillante, Luca; Bois, Benjamin; Mathieu, Olivier; Leveque, Jean

    2014-05-01

    Hillslope vineyards show various and complex water dynamics between soil and plants, and in order to gain further insight into this phenomenon, 8 grapevine plots were monitored during three vintages, from 2010 to 2013, on Corton Hill, Burgundy, France. Plots were distributed along a topolithosequence from 330 to 270 metres a.s.l. Grapevine water status was monitored weekly by surveying water potential, and, at the end of the season, by the use of the δ13C analysis of grape juice. Soil profile of each plot was described and analysed (soil texture, gravel content, organic carbon, total nitrogen, pH, CEC). Soil volumetric humidity was measured weekly, using TDR probes. A pedotransfer function was developed to transform Electrical Resistivity Imaging (ERI) into soil volume wetness and therefore to spatialise and observe variation in the Fraction of Transpirable Soil Water (FTSW). During the three years of monitoring, grapevines experienced great variation in water status, which ranged from low to considerable water deficit (as expressed by pre-dawn leaf water potential and δ13C analysis of grape juice). With ERI imaging, it was possible to observe differences in water absorption pattern by roots, in different soils, and at different depth. In addition, significant differences were observed in grapevine water status in relation to variations in the physical characteristics of the terroir along the hillslope (i.e. the geo-pedological context, the elevation etc.). Grapevine water behaviour and plant-soil water relationships on the hillslope of Corton Hill have been extensively characterised in this study by ultimate technologies, allowing to present this terroir as a very interesting example for future generalisation and modelling of the hillslope vineyard water dynamics.

  1. The use of soil electrical resistivity to monitor plant and soil water relationships in vineyards

    Science.gov (United States)

    Brillante, L.; Mathieu, O.; Bois, B.; van Leeuwen, C.; Lévêque, J.

    2015-03-01

    Soil water availability deeply affects plant physiology. In viticulture it is considered a major contributor to the "terroir" effect. The assessment of soil water in field conditions is a difficult task, especially over large surfaces. New techniques are therefore required in order to better explore variations of soil water content in space and time with low disturbance and with great precision. Electrical resistivity tomography (ERT) meets these requirements for applications in plant sciences, agriculture and ecology. In this paper, possible techniques to develop models that allow the use of ERT to spatialise soil water available to plants are reviewed. An application of soil water monitoring using ERT in a grapevine plot in Burgundy (north-east France) during the vintage 2013 is presented. We observed the lateral heterogeneity of ERT-derived fraction of transpirable soil water (FTSW) variations, and differences in water uptake depend on grapevine water status (leaf water potentials measured both at predawn and at solar noon and contemporary to ERT monitoring). Active zones in soils for water movements were identified. The use of ERT in ecophysiological studies, with parallel monitoring of plant water status, is still rare. These methods are promising because they have the potential to reveal a hidden part of a major function of plant development: the capacity to extract water from the soil.

  2. Residual water bactericide monitor development program

    Science.gov (United States)

    1973-01-01

    A silver-ion bactericidal monitor is considered for the Space Shuttle Potable Water System. Potentiometric measurement using an ion-selective electrode is concluded to be the most feasible of available techniques. Four commercially available electrodes and a specially designed, solid-state, silver-sulfide electrode were evaluated for their response characteristics and suitability for space use. The configuration of the solid-state electrode with its Nernstian response of 10 to 10,000 ppb silver shows promise for use in space. A pressurized double-junction reference electrode with a quartz-fiber junction and a replaceable bellows electrolyte reservoir was designed verification-tested, and paired with a solid-state silver-sulfide electrode in a test fixture.

  3. An Expert System Applied in Construction Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Leila Ooshaksaraie

    2011-01-01

    Full Text Available Problem statement: An untoward environmental impact of urban growth in Malaysia has been deterioration in a number of watercourses due to severe siltation and other pollutants from the construction site. Water quality monitoring is a plan for decision makers to take into account the adverse impacts of construction activities on the receiving water bodies. It is also a process for collecting the construction water quality monitoring, baseline data and standard level. Approach: In recent years, expert systems have been used extensively in different applications areas including environmental studies. In this study, expert system software -CWQM- developed by using Microsoft Visual Basic was introduced. CWQM to be used for water quality monitoring during construction activities was designed based on the legal process in Malaysia. Results: According to the water quality monitoring regulation enacted in Malaysia, construction activities require mandatory water quality monitoring plans duly approved by Department of Environment before staring activities. CWQM primarily aims to provide educational and support system for water quality monitoring engineers and decision-makers during construction activities. It displays water quality monitoring plan in report form, water sampling location in GIS format and water quality monitoring data in graph. Conclusion: When the use of CWQM in construction water quality monitoring becomes widespread, it is highly possible that it will be benefited in terms of having more accurate and objective decisions on construction projects which are mainly focused on reducing the stormwater pollution.

  4. Real time water chemistry monitoring and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Gaudreau, T.M.; Choi, S.S. [EPRIsolutions, Palo Alto, CA (United States)

    2002-07-01

    EPRI has produced a real time water chemistry monitoring and diagnostic system. This system is called SMART ChemWorks and is based on the EPRI ChemWorks codes. System models, chemistry parameter relationships and diagnostic approaches from these codes are integrated with real time data collection, an intelligence engine and Internet technologies to allow for automated analysis of system chemistry. Significant data management capabilities are also included which allow the user to evaluate data and create automated reporting. Additional features have been added to the system in recent years including tracking and evaluation of primary chemistry as well as the calculation and tracking of primary to secondary leakage in PWRs. This system performs virtual sensing, identifies normal and upset conditions, and evaluates the consistency of on-line monitor and grab sample readings. The system also makes use of virtual fingerprinting to identify the cause of any chemistry upsets. This technology employs plant-specific data and models to determine the chemical state of the steam cycle. (authors)

  5. A Water Quality Monitoring Programme for Schools and Communities

    Science.gov (United States)

    Spellerberg, Ian; Ward, Jonet; Smith, Fiona

    2004-01-01

    A water quality monitoring programme for schools is described. The purpose of the programme is to introduce school children to the concept of reporting on the "state of the environment" by raising the awareness of water quality issues and providing skills to monitor water quality. The programme is assessed and its relevance in the…

  6. A Water Quality Monitoring Programme for Schools and Communities

    Science.gov (United States)

    Spellerberg, Ian; Ward, Jonet; Smith, Fiona

    2004-01-01

    A water quality monitoring programme for schools is described. The purpose of the programme is to introduce school children to the concept of reporting on the "state of the environment" by raising the awareness of water quality issues and providing skills to monitor water quality. The programme is assessed and its relevance in the…

  7. Monitoring drinking water quality in South Africa: Designing ...

    African Journals Online (AJOL)

    In South Africa, the management and monitoring of drinking water quality is governed by policies and regulations based .... The measures for improvement of monitoring were: .... purposes, the effectiveness and desirability of a government.

  8. Radio Frequency Based Water Level Monitor and Controller for ...

    African Journals Online (AJOL)

    Radio Frequency Based Water Level Monitor and Controller for Residential Applications. ... Nigerian Journal of Technology ... This paper elucidates a radio frequency (RF) based transmission and reception system used to remotely monitor ...

  9. Initial Survey Instructions for Spring Water Monitoring : Flow

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Initial survey instructions for the Spring Water Monitoring - Flow 1.02 survey at Fish Springs National Wildlife Refuge. This coop baseline monitoring survey has...

  10. Characterization of Electrospray Ionization for Spaceflight Water Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current methods for monitoring the water used on the ISS rely heavily on ground analysis of archival samples. Air monitors presently on board the ISS could be used...

  11. Dual-wavelength photoacoustic technique for monitoring tissue status during thermal treatments

    Science.gov (United States)

    Hsiao, Yi-Sing; Wang, Xueding; Deng, Cheri X.

    2013-06-01

    Photoacoustic (PA) techniques have been exploited for monitoring thermal treatments. However, PA signals depend not only on tissue temperature but also on tissue optical properties which indicate tissue status (e.g., native or coagulated). The changes in temperature and tissue status often occur simultaneously during thermal treatments, so both effects cause changes to PA signals. A new dual-wavelength PA technique to monitor tissue status independent of temperature is performed. By dividing the PA signal intensities obtained at two wavelengths at the same temperature, a ratio, which only depends on tissue optical properties, is obtained. Experiments were performed with two experimental groups, one with untreated tissue samples and the other with high-intensity focused ultrasound treated tissue samples including thermal coagulated lesion, using ex vivo porcine myocardium specimens to test the technique. The ratio of PA signal intensities obtained at 700 and 800 nm was constant for both groups from 25 to 43°C, but with distinct values for the two groups. Tissue alteration during thermal treatment was then studied using water bath heating of tissue samples from 35 to 60°C. We found that the ratio stayed constant before it exhibited a marked increase at around 55°C, indicating tissue changes at this temperature.

  12. SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA

    Science.gov (United States)

    Mohanty, A. K.

    2009-12-01

    SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA A.K. Mohanty, K. Mahesh Kumar, B. A. Prakash and V.V.S. Gurunadha Rao Ecology and Environment Group National Geophysical Research Institute, (CSIR) Hyderabad - 500 606, India E-mail:atulyakumarmohanty@yahoo.com Abstract: Hyderabad Metropolitan Development Authority has taken up restoration of urban lakes around Hyderabad city under Green Hyderabad Environment Program. Restoration of Mir Alam Tank, Durgamcheruvu, Patel cheruvu, Pedda Cheruvu and Nallacheruvu lakes have been taken up under the second phase. There are of six lakes viz., RKPuramcheruvu, Nadimicheruvu (Safilguda), Bandacheruvu Patelcheruvu, Peddacheruvu, Nallacheruvu, in North East Musi Basin covering 38 sq km. Bimonthly monitoring of lake water quality for BOD, COD, Total Nitrogen, Total phosphorous has been carried out for two hydrological cycles during October 2002- October 2004 in all the five lakes at inlet channels and outlets. The sediments in the lake have been also assessed for nutrient status. The nutrient parameters have been used to assess eutrophic condition through computation of Trophic Status Index, which has indicated that all the above lakes under study are under hyper-eutrophic condition. The hydrogeological, geophysical, water quality and groundwater data base collected in two watersheds covering 4 lakes has been used to construct groundwater flow and mass transport models. The interaction of lake-water with groundwater has been computed for assessing the lake water budget combining with inflow and outflow measurements on streams entering and leaving the lakes. Individual lake water budget has been used for design of appropriate capacity of Sewage Treatment Plants (STPs) on the inlet channels of the lakes for maintaining Full Tank Level (FTL) in each lake. STPs are designed for tertiary treatment i.e. removal of nutrient load viz., Phosphates and Nitrates. Phosphates are

  13. Monitoring of recharge water quality under woodland

    Science.gov (United States)

    Krajenbrink, G. J. W.; Ronen, D.; Van Duijvenbooden, W.; Magaritz, M.; Wever, D.

    1988-03-01

    The study compares the quality of groundwater in the water table zone and soil moisture below the root zone, under woodland, with the quality of the regional precipitation. The water quality under forest shows evidence of the effect of atmospheric deposition of acidic components (e.g. SO 2) and ammonia volatilized from land and feed lots. Detailed chemical profiles of the upper meter of groundwater under different plots of forest, at varying distances from cultivated land, were obtained with a multilayer sampler, using the dialysis-cell method. Porous ceramic cups and a vacuum method were used to obtain soil moisture samples at 1.20 m depth under various types of trees, an open spot and arable land, for the period of a year. The investigation took place in the recharge area of a pumping station with mainly mixed forest, downwind of a vast agricultural area with high ammonia volatilization and underlain by an ice-deformed aquifer. Very high NO -3 concentrations were observed in soil moisture and groundwater (up to 21 mg Nl -1) under coniferous forest, especially in the border zone. This raises the question of the dilution capacity of recharge water under woodland in relation to the polluted groundwater under farming land. The buffering capacity of the unsaturated zone varies substantially and locally a low pH (4.5) was observed in groundwater. The large variability of leachate composition on different scales under a forest and the lesser but still significant concentration differences in the groundwater prove the importance of a monitoring system for the actual solute flux into the groundwater.

  14. DNA Sequencing as a Tool to Monitor Marine Ecological Status

    Directory of Open Access Journals (Sweden)

    Kelly D. Goodwin

    2017-05-01

    Full Text Available Many ocean policies mandate integrated, ecosystem-based approaches to marine monitoring, driving a global need for efficient, low-cost bioindicators of marine ecological quality. Most traditional methods to assess biological quality rely on specialized expertise to provide visual identification of a limited set of specific taxonomic groups, a time-consuming process that can provide a narrow view of ecological status. In addition, microbial assemblages drive food webs but are not amenable to visual inspection and thus are largely excluded from detailed inventory. Molecular-based assessments of biodiversity and ecosystem function offer advantages over traditional methods and are increasingly being generated for a suite of taxa using a “microbes to mammals” or “barcodes to biomes” approach. Progress in these efforts coupled with continued improvements in high-throughput sequencing and bioinformatics pave the way for sequence data to be employed in formal integrated ecosystem evaluation, including food web assessments, as called for in the European Union Marine Strategy Framework Directive. DNA sequencing of bioindicators, both traditional (e.g., benthic macroinvertebrates, ichthyoplankton and emerging (e.g., microbial assemblages, fish via eDNA, promises to improve assessment of marine biological quality by increasing the breadth, depth, and throughput of information and by reducing costs and reliance on specialized taxonomic expertise.

  15. Real time monitoring of coating status for microsphere target with digital image difference method

    Institute of Scientific and Technical Information of China (English)

    Baixuan Shi(施柏煊); Xiao Huang(黄晓); Caifeng Li(李彩凤)

    2003-01-01

    Digital image difference method monitorring coating status of microsphere targets automatically is sug-gested. A CCD micro-imaging system is developed for monitoring the status of bouncing and adherencebetween microspheres and the bouncing pan. A new bouncing pan with multiple holes is adopted formicrosphere coating to enhance the microsphere coating efficiency.

  16. Ground-water monitoring sites for Carson Valley, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set contains the monitoring sites where water levels were collected and used to develop a spatial ground-water data base in Carson Valley, west-central...

  17. Individual Monitoring and Occupational Dose Record Management in China: History, Current Status and Perspectives.

    Science.gov (United States)

    Wang, Hong-Bo; Yu, Hai-Tao; Sun, Quan-Fu

    2016-06-03

    This review paper presents an overview of individual monitoring, as well as the national dose register and dose record management of radiation workers in China. Progress has recently been made on the individual monitoring of radiation workers. A critical analysis of current status and problems in individual monitoring is also presented and necessary future research on individual monitoring, such as the monitoring technology in the form of the ring dosimeters and eye lens dosimeters, is suggested.

  18. Water quality of Danube Delta systems: ecological status and prediction using machine-learning algorithms.

    Science.gov (United States)

    Stoica, C; Camejo, J; Banciu, A; Nita-Lazar, M; Paun, I; Cristofor, S; Pacheco, O R; Guevara, M

    2016-01-01

    Environmental issues have a worldwide impact on water bodies, including the Danube Delta, the largest European wetland. The Water Framework Directive (2000/60/EC) implementation operates toward solving environmental issues from European and national level. As a consequence, the water quality and the biocenosis structure was altered, especially the composition of the macro invertebrate community which is closely related to habitat and substrate heterogeneity. This study aims to assess the ecological status of Southern Branch of the Danube Delta, Saint Gheorghe, using benthic fauna and a computational method as an alternative for monitoring the water quality in real time. The analysis of spatial and temporal variability of unicriterial and multicriterial indices were used to assess the current status of aquatic systems. In addition, chemical status was characterized. Coliform bacteria and several chemical parameters were used to feed machine-learning (ML) algorithms to simulate a real-time classification method. Overall, the assessment of the water bodies indicated a moderate ecological status based on the biological quality elements or a good ecological status based on chemical and ML algorithms criteria.

  19. Pre-operational monitor system of large inland lake water quality with MODIS imagery

    Science.gov (United States)

    Xiaoyu, Zhang; Dingtian, Yang; Xiaofeng, Zhang; Difeng, Wang; Shujing, Li; Delu, Pan

    2005-10-01

    EOS\\MODIS data have been proved a suitable and relative low-cost complementary tool to monitor large inland lake water quality for its re-visit frequency, moderate spatial and spectral resolution and appropriate channels designed for inversing water quality parameters. In this study, by the support of hi-tech research and development program of China, Lake water quality remote monitoring pre-operational system (LWQRMPS) was constructed aimed for practical monitoring of Taihu Lake water quality. The main water quality parameters including Chl-a and SPM, TN and TP inversion algorithm were developed. These parameters were obtained every month from time series fusion satellite data. With the routine trophic state evaluation system, the water quality was assessed every month based on the above retrieved MODIS water quality parameters, varied level of eutrophic area was computed. The obvious high reflectance in near-infrared spectrum caused by blue-green algal bloom support the application of 250m MODIS data in the algal bloom emergency monitor. Therefore, MODIS data were utilized successfully for inversing water quality parameters, evaluating eutrophication status, and detecting algal bloom in near real time. Standard thematic maps were produced and distributed to corresponding management departments. The accuracy of products and retrieve algorithm for operational use were tested with separate data sets. The result suggested that system is good enough for practical monitoring water quality of large size lakes and acquired identification.

  20. MOBILLAB-NIVA - a complete station for monitoring water quality

    OpenAIRE

    A. Henriksen; Røgeberg, E.; Andersen, S.; Veidel, A.

    1986-01-01

    MOBILLAB-NIVA is a complete mobile station for monitoring water quality with telemetric transmission of recorded data to a central receiving station. It is intended for use in studies of rapid changes in water quality and its effects on aquatic life and short term studies to decide on water quality monitoring strategy. The present version of Mobillab-niva is specially designed to study effects of acid inputs on water chemistry, fish and invertebrates. The station is equipped with physical and...

  1. Modelling stable water isotopes: Status and perspectives

    Directory of Open Access Journals (Sweden)

    Werner M.

    2010-12-01

    Full Text Available Modelling of stable water isotopes H2 18O and HDO within various parts of the Earth’s hydrological cycle has clearly improved our understanding of the interplay between climatic variations and related isotope fractionation processes. In this article key principles and major research results of stable water isotope modelling studies are described. Emphasis is put on research work using explicit isotope diagnostics within general circulation models as this highly complex model setup bears many resemblances with studies using simpler isotope modelling approaches.

  2. Effect of Water Regime and Nitrogen Fertilisation on Growth Dynamics, Water Status and Yield of Burley Tobacco (Nicotianatabacum L.

    Directory of Open Access Journals (Sweden)

    Ruggiero C

    2014-12-01

    Full Text Available The results of a two-year research project into burley tobacco are reported and discussed. Three irrigation levels (40, 80 and 120% restitution of evapotranspiration (ET were factorially combined with four levels of nitrogen fertilisation (0, 80, 160 and 240 kg ha. Leaf area, leaf and stem dry matter and root development were measured. We monitored the water status of the 0-90 cm soil layer, the plants and stomatal resistance. Relations were also studied between leaf turgor pressure and plant growth, between the irrigation regime and plant water status, and between root and shoot development. Finally, water use efficiency (WUE and quality and quantity of cured leaves yields were evaluated. Nitrogen fertilisation did not affect plant water status, although it promoted plant growth, both in terms of leaf area and leaf and stem dry matter, and induced a yield increase in quantity and quality. Our trial showed little interaction between nitrogen fertilization level and water regime. Under such agronomic condition, the margins for increasing plant growth with nitrogen fertilization are limited, which is why application of nitrogen rates in excess of 160 kg haappear inadvisable. The difference in irrigation volumes led to a different soil water content which affected plant water status, stomatal functioning, plant growth, both in the roots and shoots, yield and quality of the cured leaves. The latter did not vary with the increase in water volume, while yield increased. Water use efficiency increased as the irrigation volume decreased and varied during the cropping cycle, increasing until early bloom, then decreasing. Relations between leaf turgor pressure and plant growth highlighted the different response of plants subjected to water stress compared with non-stressed plants.

  3. 9 CFR 147.14 - Procedures to determine status and effectiveness of sanitation monitored program.

    Science.gov (United States)

    2010-01-01

    ... effectiveness of sanitation monitored program. 147.14 Section 147.14 Animals and Animal Products ANIMAL AND... status and effectiveness of sanitation monitored program. The following monitoring procedures 10 may be... sanitation program. (1) Culture the surface of cased eggs periodically for fecal contaminating organisms...

  4. Characterizing Vineyard Water Status Variability in a Premium Winegrape Vineyard

    Science.gov (United States)

    Smart, David; Carvahlo, Angela

    2017-04-01

    One of the biggest challenges in viticulture and winemaking is managing and optimizing yield and quality across vineyard blocks that show high spatial variability. Studies have shown that zonal management of vine water status can contribute significantly to improving overall fruit quality and improving uniformity. Vine water status is a major parameter for vine management because it affects both wine quality and yield. In order to optimize vineyard management and harvesting practices, it is necessary to characterize vineyard variability in terms of water status. Establishing a targeted irrigation program first requires spatially characterizing the variability in vine water status of a vineyard. In California, due to the low or no rainfall during the active growing season, the majority of vineyards implement some type of irrigation management program. As water supplies continue to decrease as a consequence of persistent drought, establishing efficient and targeted water use programs is of growing importance in California. The aim of this work was to characterize the spatial variability of plant-water relations across a non-uniform 4 ha block in Napa Valley with the primary objective of establishing vineyard irrigation management zones. The study plot was divided into three sections, designated the North, Middle and South sections, each at about 1.3 hectares. Stem (Ψstem) and midday (Ψl) leaf water potential and predawn (ΨPD) water potential were measured at 36 locations within the block at 14 (Ψl), 10 (ΨPD) and 2 (Ψstem) points in time throughout the growing season. Of the three techniques utilized to evaluate water status, ΨPD and Ψstem were the most sensitive indicators of water stress conditions. An integrated overview of water use efficiency over the growing season was assessed by measuring the leaf carbon isotope ratio of δ13C. Fully mature leaves were sampled from 280 vines and results show, similarly to ΨPD and Ψstem, that the North section (-28

  5. Healthy Water Healthy People Field Monitoring Guide

    Science.gov (United States)

    Project WET Foundation, 2003

    2003-01-01

    This 100-page manual serves as a technical reference for the "Healthy Water, Healthy People Water Quality Educators Guide" and the "Healthy Water Healthy People Testing Kits". Yielding in-depth information about ten water quality parameters, it answers questions about water quality testing using technical overviews, data interpretation guidelines,…

  6. Investigative monitoring within the European Water Framework Directive: a coastal blast furnace slag disposal, as an example.

    Science.gov (United States)

    Borja, Angel; Tueros, Itziar; Belzunce, Ma Jesús; Galparsoro, Ibon; Garmendia, Joxe Mikel; Revilla, Marta; Solaun, Oihana; Valencia, Victoriano

    2008-04-01

    The European Water Framework Directive (WFD) establishes a framework for the protection of estuarine and coastal waters, with the most important objective being to achieve 'good ecological status' for all waters, by 2015. Hence, Member States are establishing programmes for the monitoring of water quality status, through the assessment of ecological and chemical elements. These monitoring programmes can be of three types: surveillance monitoring; operational monitoring (both undertaken on a routine basis); and investigative monitoring (carried out where the reason of any exceedance for ecological and chemical status is unknown). Until now, nothing has been developed in relation to investigative monitoring and no clear guidance exists for this type of monitoring, as it must be tackled on a 'case-by-case' basis. Consequently, the present study uses slag disposal from a blast furnace, into a coastal area, as a case-study in the implementation of investigative monitoring, according to the WFD. In order to investigate the potential threat of such slags, this contribution includes: a geophysical study, to determine the extent of the disposal area; sediment analysis; a chemical metal analysis; and an ecotoxicological study (including a Microtox test and an amphipod bioassay). The results show that metal concentrations are several times above the background concentration. However, only one of the stations showed toxicity after acute toxicological tests, with the benthic communities being in a good status. The approaches used here show that contaminants are not bioavailable and that no management actions are required with the slags.

  7. 76 FR 60527 - Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Science.gov (United States)

    2011-09-29

    ... Bureau of Reclamation Status Report of Water Service, Repayment, and Other Water- Related Contract... region in the SUPPLEMENTARY INFORMATION section. FOR FURTHER INFORMATION CONTACT: Michelle Kelly, Water... for the delivery of project water for authorized uses in newspapers of general circulation in...

  8. 76 FR 73674 - Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Science.gov (United States)

    2011-11-29

    ... Bureau of Reclamation Status Report of Water Service, Repayment, and Other Water- Related Contract... region in the SUPPLEMENTARY INFORMATION section. FOR FURTHER INFORMATION CONTACT: Michelle Kelly, Water... for the delivery of project water for authorized uses in newspapers of general circulation in...

  9. Mobile Phone-Based Field Monitoring for Satsuma Mandarin and Its Application to Watering Advice System

    Science.gov (United States)

    Kamiya, Toshiyuki; Numano, Nagisa; Yagyu, Hiroyuki; Shimazu, Hideo

    This paper describes a mobile phone-based data logging system for monitoring the growing status of Satsuma mandarin, a type of citrus fruit, in the field. The system can provide various feedback to the farm producers with collected data, such as visualization of related data as a timeline chart or advice on the necessity of watering crops. It is important to collect information on environment conditions, plant status and product quality, to analyze it and to provide it as feedback to the farm producers to aid their operations. This paper proposes a novel framework of field monitoring and feedback for open-field farming. For field monitoring, it combines a low-cost plant status monitoring method using a simple apparatus and a Field Server for environment condition monitoring. Each field worker has a simple apparatus to measure fruit firmness and records data with a mobile phone. The logged data are stored in the database of the system on the server. The system analyzes stored data for each field and is able to show the necessity of watering to the user in five levels. The system is also able to show various stored data in timeline chart form. The user and coach can compare or analyze these data via a web interface. A test site was built at a Satsuma mandarin field at Kumano in Mie Prefecture, Japan using the framework, and farm workers monitor in the area used and evaluated the system.

  10. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  11. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  12. Stability monitoring for boiling water reactors

    Science.gov (United States)

    Cecenas-Falcon, Miguel

    1999-11-01

    A methodology is presented to evaluate the stability properties of Boiling Water Reactors based on a reduced order model, power measurements, and a non-linear estimation technique. For a Boiling Water Reactor, the feedback reactivity imposed by the thermal-hydraulics has an important effect in the system stability, where the dominant contribution to this feedback reactivity is provided by the void reactivity. The feedback reactivity is a function of the operating conditions of the system, and cannot be directly measured. However, power measurements are relatively easy to obtain from the nuclear instrumentation and process computer, and are used in conjunction with a reduced order model to estimate the gain of the thermal-hydraulics feedback using an Extended Kalman Filter. The reduced order model is obtained by estimating the thermal-hydraulic transfer function from the frequency-domain BWR code LAPUR, and the stability properties are evaluated based on the pair of complex conjugate eigenvalues. Because of the recursive nature of the Kalman Filter, an estimate of the decay ratio is generated every sampling time, allowing continuous estimation of the stability parameters. A test platform based on a nuclear-coupled boiling channel is developed to validate the capability of the BWR stability monitoring methodology. The thermal-hydraulics for the boiling channel is modeled and coupled with neutron kinetics to analyze the non-linear dynamics of the closed-loop system. The model uses point kinetics to study core-wide oscillations, and normalized modal kinetics are introduced to study out-of-phase oscillations. The coolant flow dynamics is dominant in the power fluctuations observed by in-core nuclear instrumentation, and additive white noise is added to the solution for the channel flow in the thermal-hydraulic model to generate noisy power time series. The operating conditions of the channel can be modified to accommodate a wide range of stability conditions

  13. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  14. Seismic monitoring at Cascade Volcanic Centers, 2004?status and recommendations

    Science.gov (United States)

    Moran, Seth C.

    2004-01-01

    The purpose of this report is to assess the current (May, 2004) status of seismic monitoring networks at the 13 major Cascade volcanic centers. Included in this assessment are descriptions of each network, analyses of the ability of each network to detect and to locate seismic activity, identification of specific weaknesses in each network, and a prioritized list of those networks that are most in need of additional seismic stations. At the outset it should be recognized that no Cascade volcanic center currently has an adequate seismic network relative to modern-day networks at Usu Volcano (Japan) or Etna and Stromboli volcanoes (Italy). For a system the size of Three Sisters, for example, a modern-day, cutting-edge seismic network would ideally consist of a minimum of 10 to 12 short-period three-component seismometers (for determining particle motions, reliable S-wave picks, moment tensor inversions, fault-plane solutions, and other important seismic parameters) and 7 to 10 broadband sensors (which, amongst other considerations, enable detection and location of very long period (VLP) and other low-frequency events, moment tensor inversions, and, because of their wide dynamic range, on-scale recording of large-amplitude events). Such a dense, multi component seismic network would give the ability to, for example, detect in near-real-time earthquake migrations over a distance of ~0.5km or less, locate tremor sources, determine the nature of a seismic source (that is, pure shear, implosive, explosive), provide on-scale recordings of very small and very large-amplitude seismic signals, and detect localized changes in seismic stress tensor orientations caused by movement of magma bodies. However, given that programmatic resources are currently limited, installation of such networks at this time is unrealistic. Instead, this report focuses on identifying what additional stations are needed to guarantee that anomalous seismicity associated with volcanic unrest will be

  15. Water quality status and trends in the United States

    Science.gov (United States)

    Larsen, Matthew C.; Hamilton, Pixie A.; Werkheiser, William H.; Ahuja, Satinder

    2013-01-01

    Information about water quality is vital to ensure long-term availability and sustainability of water that is safe for drinking and recreation and suitable for industry, irrigation, fish, and wildlife. Protecting and enhancing water quality is a national priority, requiring information on water-quality status and trends, progress toward clean water standards, continuing problems, and emerging challenges. In this brief review, we discuss U.S. Geological Survey assessments of nutrient pollution, pesticides, mixtures of organic wastewater compounds (known as emerging contaminants), sediment-bound contaminants (like lead and DDT), and mercury, among other contaminants. Additionally, aspects of land use and current and emerging challenges associated with climate change are presented. Climate change must be considered, as water managers continue their efforts to maintain sufficient water of good quality for humans and for the ecosystem.

  16. R2 Water Quality Portal Monitoring Stations

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on...

  17. Preliminary monitoring of faecal indicator organisms of surface water ...

    African Journals Online (AJOL)

    Preliminary monitoring of faecal indicator organisms of surface water: A case study ... in Mvudi River used as a source of domestic water for people who live around it. ... of Water Affairs and Forestry of South Africa (DWAF) and the World Health ...

  18. Environmental Monitoring, Water Quality - Water Pollution Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Water Pollution Control Facility is a DEP primary facility type related to the Water Pollution Control Program. The sub-facility types related to Water Pollution...

  19. 76 FR 44948 - Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Science.gov (United States)

    2011-07-27

    ...] [FR Doc No: 2011-18980] DEPARTMENT OF THE INTERIOR Bureau of Reclamation Status Report of Water Service, Repayment, and Other Water- Related Contract Actions AGENCY: Bureau of Reclamation, Interior... Kelly, Water and Environmental Services Division, Bureau of Reclamation, P.O. Box 25007,...

  20. Job monitoring on the WLCG scope: Current status and new strategy

    CERN Document Server

    Andreeva, J; Belov, S; Casey, J; Dvorak, F; Gaidioz, B; Karavakis, E; Kodolova, O; Kokoszkiewicz, L; Krenek, A; Lanciotti, E; Maier, J; Mulac, M; Rocha Da Cunha Rodrigues, D F; Rocha, R; Saiz, P; Sidorova, I; Sitera, J; Tikhonenko, E; Vaibhav, K; Vocu, M

    2010-01-01

    Job processing and data transfer are the main computing activities on the WLCG infrastructure. Reliable monitoring of the job processing on the WLCG scope is a complicated task due to the complexity of the infrastructure itself and the diversity of the currently used job submission methods. The paper will describe current status and the new strategy for the job monitoring on the WLCG scope, covering primary information sources, job status changes publishing, transport mechanism and visualization.

  1. Water quality monitoring for high-priority water bodies in the Sonoran Desert network

    Science.gov (United States)

    Terry W. Sprouse; Robert M. Emanuel; Sara A. Strorrer

    2005-01-01

    This paper describes a network monitoring program for “high priority” water bodies in the Sonoran Desert Network of the National Park Service. Protocols were developed for monitoring selected waters for ten of the eleven parks in the Network. Park and network staff assisted in identifying potential locations of testing sites, local priorities, and how water quality...

  2. Future water quality monitoring - Adapting tools to deal with mixtures of pollutants in water resource management

    NARCIS (Netherlands)

    Altenburger, R.; Ait-Aissa, S.; Antczak, P.; Backhaus, T.; Barcelo, D.; Seiler, T.; Brion, F.; Focks, A.

    2015-01-01

    Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a

  3. Drinking water quality monitoring using trend analysis.

    Science.gov (United States)

    Tomperi, Jani; Juuso, Esko; Eteläniemi, Mira; Leiviskä, Kauko

    2014-06-01

    One of the common quality parameters for drinking water is residual aluminium. High doses of residual aluminium in drinking water or water used in the food industry have been proved to be at least a minor health risk or even to increase the risk of more serious health effects, and cause economic losses to the water treatment plant. In this study, the trend index is developed from scaled measurement data to detect a warning of changes in residual aluminium level in drinking water. The scaling is based on monotonously increasing, non-linear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. The severity of the situations is evaluated by deviation indices. The trend episodes and the deviation indices provide good tools for detecting changes in water quality and for process control.

  4. Learner's Guide: Water Quality Monitoring. An Instructional Guide for the Two-Year Water Quality Monitoring Curriculum.

    Science.gov (United States)

    Glazer, Richard B.; And Others

    This learner's guide is designed to meet the training needs for technicians involved in monitoring activities related to the Federal Water Pollution Act and the Safe Drinking Water Act. In addition it will assist technicians in learning how to perform process control laboratory procedures for drinking water and wastewater treatment plant…

  5. Monitoring of ground water aquifer by electrical prospecting; Denki tansaho ni yoru chikasui monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ushijima, K. [Kyushu University, Fukuoka (Japan)] [Faculty of Engineering (Japan)

    1997-12-01

    This paper describes three case studies for monitoring ground water aquifers by electrical prospecting. An example in the Hofu plain, Yamaguchi Prefecture is presented, where the ground water environment has been monitored for more than 30 years from the viewpoint of hydrology. Then, transition from the fresh ground water to sea water is evaluated by a sharp boundary as salt-water wedges through the field survey in a coastal area of a large city for a short term using vertical electrical prospecting. Moreover, streaming potential measurements are described to grasp the real-time behavior of ground water flow. From the long-term monitoring of ground water aquifer, it was found that the variation of ground water streaming can be evaluated by monitoring the long-term successive change in the resistivity of ground water aquifer. From the vertical electrical prospecting, water quality can be immediately judged through data analysis. From the results of streaming potential measurements and vertical electrical prospecting using Schlumberger method, streaming behavior of ground water in the area of spring water source can be estimated by determining three-dimensional resistivity structure. 17 refs., 15 figs.

  6. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  7. Drinking Water Quality Status and Contamination in Pakistan

    Science.gov (United States)

    Nafees, Muhammad; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan. PMID:28884130

  8. La Parguera, Puerto Rico Water Quality Monitoring Data 2003 - Present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These water quality data are one of many studies being done to assess and monitor coral reef ecosystems. The intent of this work is three fold: (1) to spatially...

  9. St. John, USVI Water Quality Monitoring Data 2003 - Present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These water quality data are one of many studies being done to assess and monitor coral reef ecosystems. The intent of this work is three fold: (1) to spatially...

  10. Initial Survey Instructions for management unit water monitoring : level

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Initial survey instructions for 1.08 management unit water monitoring (level) survey on Fish Springs National Wildlife Refuge. This survey is conducted weekly and is...

  11. Recent Advances in Point-of-Access Water Quality Monitoring

    Science.gov (United States)

    Korostynska, O.; Arshak, K.; Velusamy, V.; Arshak, A.; Vaseashta, Ashok

    Clean water is one of our most valuable natural resources. In addition to providing safe drinking water it assures functional ecosystems that support fisheries and recreation. Human population growth and its associated increased demands on water pose risks to maintaining acceptable water quality. It is vital to assess source waters and the aquatic systems that receive inputs from industrial waste and sewage treatment plants, storm water systems, and runoff from urban and agricultural lands. Rapid and confident assessments of aquatic resources form the basis for sound environmental management. Current methods engaged in tracing the presence of various bacteria in water employ bulky laboratory equipment and are time consuming. Thus, real-time water quality monitoring is essential for National and International Health and Safety. Environmental water monitoring includes measurements of physical characteristics (e.g. pH, temperature, conductivity), chemical parameters (e.g. oxygen, alkalinity, nitrogen and phosphorus compounds), and abundance of certain biological taxa. Monitoring could also include assays of biological activity such as alkaline phosphatase, tests for toxins such as microcystins and direct measurements of pollutants such as heavy metals or hydrocarbons. Real time detection can significantly reduce the level of damage and also the cost to remedy the problem. This paper presents overview of state-of-the-art methods and devices used for point-of-access water quality monitoring and suggest further developments in this area.

  12. Principles and Practices of Water Quality Monitoring

    Science.gov (United States)

    J.L. Michael

    2001-01-01

    There are many activities in forest management that may affect water quality, i.e., timber harvestine, road building,mechanical and chemical site preparation, release operations, fuel reduction,wildlife opening maintenance, etc. How severely they affect water quality depends on how well the person in charge of the operation understands the activity itself, the...

  13. Interim-status groundwater monitoring plan for the 216-B-63 trench

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, M.D.

    1995-02-09

    This document outlines the groundwater monitoring plan, under RCRA regulations in 40 CFR 265 Subpart F and WAC173-300-400, for the 216-B-63 Trench. This interim status facility is being sampled under detection monitoring criteria and this plan provides current program conditions and requirements.

  14. The Role of Monitoring in Controlling Water Pollution

    Science.gov (United States)

    Hirsch, Allan

    1971-01-01

    The purpose of this paper is to provide an overview of trends in the national water pollution control effort and to describe the role of monitoring in that effort, particularly in relation to the responsibilities of the Environmental Protection Agency (EPA). I hope the paper will serve as a useful framework for the more specific discussions of monitoring technology to follow.

  15. Current status of radon and radium monitoring at the Federal University of Technology (UTFPR), PR, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Paschuk, Sergei A.; Correa, Janine N.; Kappke, Jaqueline; Schelin, Hugo R.; Denyak, Valeriy; Barbosa, Laercio; Perna, Allan F.N. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2011-07-01

    Numerous and systematic studies performed in different countries for many decades resulted in the explicit conclusion that radon exposure, as well as its progeny, is the main cause of lung cancer among non-smokers. All three natural radon isotopes ({sup 222}Rn, {sup 220}Rn and {sup 219}Rn) are produced in the three principal natural radioactive decay chains. Specifically, the {sup 222}Rn is produced by the decay series of {sup 238}U and proceeded from {alpha}-decay of {sup 226}Ra. Current work describes the present status and obtained results concerning indoor radon survey in dwellings, radon in water supply and soil gas tests performed by the Laboratory of Applied Nuclear Physics of the Federal University of Technology (UTFPR) within Curitiba urban area. For radon in air activity measurements, it was used polycarbonate etched track detectors such as LEXAN (GE) and CR-39, mounted in diffusion chambers. For soil gas measurements, the experimental setup was based on the Professional Radon Monitor (AlphaGUARD, Genitron/SAPHYMO) connected to the air pump with filter vessels and to specially developed in our Laboratory the Soil Gas Probe. In the case of radon tests in drinking water, the experimental setup was based on the AlphaGUARD Radon monitor and Electronic radon detector RAD7 (Durridge Company, Inc.) connected to special kit of glass vessels through the air pump. Obtained results permitted to identify few dwellings where radon concentration in air was found bigger than 600 Bq/m{sup 3} which is considered as the action level by most of the European Community and the World Health Organization (WHO). In the case of studied artesian wells, collected samples of water presented the average {sup 222}Rn activity about 60 Bq/L which is 6 times bigger than maximum level recommended by USEPA. Some artesian wells presented the radon activity of almost 200 Bq/L. More over, it was identified the radioactivity of radium ({sup 226}Ra) salts which are soluble in water and almost

  16. Instrumentation for Environmental Monitoring: Water, Volume 2.

    Science.gov (United States)

    California Univ., Berkeley. Lawrence Berkeley Lab.

    This volume is one of a series discussing instrumentation for environmental monitoring. Each volume contains an overview of the basic problems, comparisons among the basic methods of sensing and detection, and notes that summarize the characteristics of presently available instruments and techniques. The text of this survey discusses the…

  17. FBG-Based Monitoring of Geohazards: Current Status and Trends.

    Science.gov (United States)

    Zhu, Hong-Hu; Shi, Bin; Zhang, Cheng-Cheng

    2017-02-24

    In recent years, natural and anthropogenic geohazards have occured frequently all over the world, and field monitoring is becoming an increasingly important task to mitigate these risks. However, conventional geotechnical instrumentations for monitoring geohazards have a number of weaknesses, such as low accuracy, poor durability, and high sensitivity to environmental interferences. In this aspect, fiber Bragg grating (FBG), as a popular fiber optic sensing technology, has gained an explosive amount of attention. Based on this technology, quasi-distributed sensing systems have been established to perform real-time monitoring and early warning of landslides, debris flows, land subsidence, earth fissures and so on. In this paper, the recent research and development activities of applying FBG systems to monitor different types of geohazards, especially those triggered by human activities, are critically reviewed. The working principles of newly developed FBG sensors are briefly introduced, and their features are summarized. This is followed by a discussion of recent case studies and lessons learned, and some critical problems associated with field implementation of FBG-based monitoring systems. Finally the challenges and future trends in this research area are presented.

  18. Status and perspectives of the “Specially Monitored Track”

    Science.gov (United States)

    Asmussen, B.; Onnich, H.; Strube, R.; Greven, L. M.; Schröder, S.; Jäger, K.; Degen, K. G.

    2006-06-01

    Deutsche Bahn AG has developed and continuously improved over the last decade a system called "Specially Monitored Track". It is based on the fact that the noise emission from railways can be reduced by rail grinding and has been confirmed officially in 1998 by the German Federal Railway Office (EBA) as a noise reduction system with an effectiveness of -3 dB(A). Meanwhile almost 1000 km of DB's network are specially monitored. In order to comply with this legislation, intensive grinding and monitoring is required. The latter is done by a dedicated monitoring car and supplemented by roughness measurements using a modified roughness-measuring device in connection with a newly developed algorithm for data analysis, enabling a prediction of the noise emission on the basis of roughness measurements. Future developments will aim at increasing the performance of the system "Specially Monitored Track". This will particularly include grinding at high working speeds ("High Speed Grinding") with two targets: (1) reducing costs for rail grinding and (2) merging rail grinding for acoustic reasons with grinding for regular track maintenance.

  19. FBG-Based Monitoring of Geohazards: Current Status and Trends

    Directory of Open Access Journals (Sweden)

    Hong-Hu Zhu

    2017-02-01

    Full Text Available In recent years, natural and anthropogenic geohazards have occured frequently all over the world, and field monitoring is becoming an increasingly important task to mitigate these risks. However, conventional geotechnical instrumentations for monitoring geohazards have a number of weaknesses, such as low accuracy, poor durability, and high sensitivity to environmental interferences. In this aspect, fiber Bragg grating (FBG, as a popular fiber optic sensing technology, has gained an explosive amount of attention. Based on this technology, quasi-distributed sensing systems have been established to perform real-time monitoring and early warning of landslides, debris flows, land subsidence, earth fissures and so on. In this paper, the recent research and development activities of applying FBG systems to monitor different types of geohazards, especially those triggered by human activities, are critically reviewed. The working principles of newly developed FBG sensors are briefly introduced, and their features are summarized. This is followed by a discussion of recent case studies and lessons learned, and some critical problems associated with field implementation of FBG-based monitoring systems. Finally the challenges and future trends in this research area are presented.

  20. Operational Surface Water Detection and Monitoring Using Radarsat 2

    Directory of Open Access Journals (Sweden)

    Sandra Bolanos

    2016-03-01

    Full Text Available Traditional on-site methods for mapping and monitoring surface water extent are prohibitively expensive at a national scale within Canada. Despite successful cost-sharing programs between the provinces and the federal government, an extensive number of water features within the country remain unmonitored. Particularly difficult to monitor are the potholes in the Canadian Prairie region, most of which are ephemeral in nature and represent a discontinuous flow that influences water pathways, runoff response, flooding and local weather. Radarsat-2 and the Radarsat Constellation Mission (RCM offer unique capabilities to map the extent of water bodies at a national scale, including unmonitored sites, and leverage the current infrastructure of the Meteorological Service of Canada to monitor water information in remote regions. An analysis of the technical requirements of the Radarsat-2 beam mode, polarization and resolution is presented. A threshold-based procedure to map locations of non-vegetated water bodies after the ice break-up is used and complemented with a texture-based indicator to capture the most homogeneous water areas and automatically delineate their extents. Some strategies to cope with the radiometric artifacts of noise inherent to Synthetic Aperture Radar (SAR images are also discussed. Our results show that Radarsat-2 Fine mode can capture 88% of the total water area in a fully automated way. This will greatly improve current operational procedures for surface water monitoring information and impact a number of applications including weather forecasting, hydrological modeling, and drought/flood predictions.

  1. NASA/RAE cooperation on a knowlede based flight status monitor

    Science.gov (United States)

    Butler, G. F.; Duke, E. L.

    1989-01-01

    As part of a US/UK cooperative aeronautical research pragram, a joint activity between the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) and the Royal Aerospace Establishment (RAE) on Knowledge Based Systems was established. Under the agreement, a Flight Status Monitor Knowledge base developed at Ames-Dryden was implemented using the real-time IKBS toolkit, MUSE, which was developed in the UK under RAE sponsorship. The Flight Status Monitor is designed to provide on-line aid to the flight test engineer in the interpretation of system health and status by storing expert knowledge of system behavior in an easily accessible form. The background to the cooperation is described and the details of the Flight Status Monitor, the MUSE implementation are presented.

  2. Environmental Monitoring, Water Quality - TMDL Lakes

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — The Clean Water Act Section 303(d) establishes the Total Maximum Daily Load (TMDL) program. The purpose of the TMDL program is to identify sources of pollution and...

  3. Environmental Monitoring, Water Quality - TMDL Lakes

    Data.gov (United States)

    NSGIC Education | GIS Inventory — The Clean Water Act Section 303(d) establishes the Total Maximum Daily Load (TMDL) program. The purpose of the TMDL program is to identify sources of pollution and...

  4. Environmental Monitoring, Water Quality - Lakes Assessments - Attaining

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This layer shows only attaining lakes of the Integrated List. The Lakes Integrated List represents lake assessments in an integrated format for the Clean Water Act...

  5. Analytical chemistry in water quality monitoring during manned space missions

    Science.gov (United States)

    Artemyeva, Anastasia A.

    2016-09-01

    Water quality monitoring during human spaceflights is essential. However, most of the traditional methods require sample collection with a subsequent ground analysis because of the limitations in volume, power, safety and gravity. The space missions are becoming longer-lasting; hence methods suitable for in-flight monitoring are demanded. Since 2009, water quality has been monitored in-flight with colorimetric methods allowing for detection of iodine and ionic silver. Organic compounds in water have been monitored with a second generation total organic carbon analyzer, which provides information on the amount of carbon in water at both the U.S. and Russian segments of the International Space Station since 2008. The disadvantage of this approach is the lack of compound-specific information. The recently developed methods and tools may potentially allow one to obtain in-flight a more detailed information on water quality. Namely, the microanalyzers based on potentiometric measurements were designed for online detection of chloride, potassium, nitrate ions and ammonia. The recent application of the current highly developed air quality monitoring system for water analysis was a logical step because most of the target analytes are the same in air and water. An electro-thermal vaporizer was designed, manufactured and coupled with the air quality control system. This development allowed for liberating the analytes from the aqueous matrix and further compound-specific analysis in the gas phase.

  6. Silicon Carbide Temperature Monitor Processing Improvements. Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Troy Casey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daw, Joshua Earl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Al Rashdan, Ahamad [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-29

    Silicon carbide (SiC) temperature monitors are used as temperature sensors in Advanced Test Reactor (ATR) irradiations at the Idaho National Laboratory (INL). Although thermocouples are typically used to provide real-time temperature indication in instrumented lead tests, other indicators, such as melt wires, are also often included in such tests as an independent technique of detecting peak temperatures incurred during irradiation. In addition, less expensive static capsule tests, which have no leads attached for real-time data transmission, often rely on melt wires as a post-irradiation technique for peak temperature indication. Melt wires are limited in that they can only detect whether a single temperature is or is not exceeded. SiC monitors are advantageous because a single monitor can be used to detect for a range of temperatures that occurred during irradiation. As part of the process initiated to make SiC temperature monitors available at the ATR, post-irradiation evaluations of these monitors have been previously completed at the High Temperature Test Laboratory (HTTL). INL selected the resistance measurement approach for determining irradiation temperature from SiC temperature monitors because it is considered to be the most accurate measurement. The current process involves the repeated annealing of the SiC monitors at incrementally increasing temperature, with resistivity measurements made between annealing steps. The process is time consuming and requires the nearly constant attention of a trained staff member. In addition to the expensive and lengthy post analysis required, the current process adds many potential sources of error in the measurement, as the sensor must be repeatedly moved from furnace to test fixture. This time-consuming post irradiation analysis is a significant portion of the total cost of using these otherwise inexpensive sensors. An additional consideration of this research is that, if the SiC post processing can be automated, it

  7. Monitoring and assessment of conservation status of the Eurasian Otter (Lutra lutra) in Denmark

    DEFF Research Database (Denmark)

    Søgaard, Bjarne; Madsen, Aksel Bo; Elmeros, Morten

    Monitoring and assessment of conservation status of the Eurasian Otter Lutra lutra in Denmark Søgaard B. ¹, Madsen A.B.¹, Elmeros M.¹ ¹Institute of Bioscience - Kaloe, Aarhus University. Keywords: Eurasian Otter; Monitoring; Conservation status According to the EU Habitats Directive Denmark has...... initiated systematic monitoring of species in the Annex II and IV of the Directive – including the Eurasian Otter (Lutra lutra). The program focuses on monitoring distribution and range of the otter population in order to provide an assessment of its conservation status. The otter Lutra lutra suffered...... serious declines in Denmark during the 1960s and 1970s. A series of conservation and management projects were initiated to protect the remnant population, including national surveys and the development of a management plan for the otter in Denmark in 1996. The recovery of the otter in Denmark...

  8. EPA Office of Water (OW): STORET Water Quality Monitoring Stations Source Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storage and Retrieval for Water Quality Data (STORET and the Water Quality Exchange, WQX) defines the methods and the data systems by which EPA compiles monitoring...

  9. EPA Office of Water (OW): STORET Water Quality Monitoring Stations NHDPlus Indexed Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storage and Retrieval for Water Quality Data (STORET and the Water Quality Exchange, WQX) defines the methods and the data systems by which EPA compiles monitoring...

  10. EPA Office of Water (OW): STORET Water Quality Monitoring Stations Source Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storage and Retrieval for Water Quality Data (STORET and the Water Quality Exchange, WQX) defines the methods and the data systems by which EPA compiles monitoring...

  11. Cow status monitoring (health and oestrus) using detection sensors

    NARCIS (Netherlands)

    Maatje, K.; Mol, de R.M.; Rossing, W.

    1997-01-01

    In-line sensors were used to measure quarter milk conductivity and milk temperature in the milking claw for monitoring mastitis in dairy cows. In a preliminary experiment, sensor data were used to develop algorithms and threshold values for the detection of mastitis. In a later experiment, these thr

  12. Cow status monitoring (health and oestrus) using detection sensors

    NARCIS (Netherlands)

    Maatje, K.; Mol, de R.M.; Rossing, W.

    1997-01-01

    In-line sensors were used to measure quarter milk conductivity and milk temperature in the milking claw for monitoring mastitis in dairy cows. In a preliminary experiment, sensor data were used to develop algorithms and threshold values for the detection of mastitis. In a later experiment, these

  13. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring.

    Science.gov (United States)

    Van Nevel, S; Koetzsch, S; Proctor, C R; Besmer, M D; Prest, E I; Vrouwenvelder, J S; Knezev, A; Boon, N; Hammes, F

    2017-04-15

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water.

  14. The development of android - based children's nutritional status monitoring system

    Science.gov (United States)

    Suryanto, Agus; Paramita, Octavianti; Pribadi, Feddy Setio

    2017-03-01

    The calculation of BMI (Body Mass Index) is one of the methods to calculate the nutritional status of a person. The BMI calculation has not yet widely understood and known by the public. In addition, people should know the importance of progress in the development of child nutrition each month. Therefore, an application to determine the nutritional status of children based on Android was developed in this study. This study restricted the calculation for children with the age of 0-60 months. The application can run on a smartphone or tablet PC with android operating system due to the rapid development of a smartphone or tablet PC with android operating system and many people own and use it. The aim of this study was to produce a android app to calculate of nutritional status of children. This study was Research and Development (R & D), with a design approach using experimental studies. The steps in this study included analyzing the formula of the Body Mass Index (BMI) and developing the initial application with the help of a computer that includes the design and manufacture of display using Eclipse software. This study resulted in android application that can be used to calculate the nutritional status of children with the age 0-60 months. The results of MES or the error calculation analysis using body mass index formula was 0. In addition, the results of MAPE percentage was 0%. It shows that there is no error in the calculation of the application based on the BMI formula. The smaller value of MSE and MAPE leads to higher level of accuracy.

  15. Monitoring fluid status at the outpatient level: the need for more precision.

    LENUS (Irish Health Repository)

    McDonald, Ken

    2012-02-01

    Accurate determination of fluid status in patients with heart failure is a critical aspect of care of this population. Early detection of emerging fluid overload would allow for prompt intervention, potentially aborting clinical deterioration and avoiding hospitalization. While many strategies are available to determine fluid status of patients, all areas are compromised by less-than-optimal sensitivity and specificity. Recent work on the role of bioimpedance as a means of assessing a patient\\'s fluid status indicates that this parameter may have a role in monitoring patients with heart failure. This article reviews present techniques available for assessment of fluid status and focuses on the additional information provided by bioimpedance assessment.

  16. Monitoring fluid status at the outpatient level: the need for more precision.

    LENUS (Irish Health Repository)

    McDonald, Ken

    2010-07-01

    Accurate determination of fluid status in patients with heart failure is a critical aspect of care of this population. Early detection of emerging fluid overload would allow for prompt intervention, potentially aborting clinical deterioration and avoiding hospitalization. While many strategies are available to determine fluid status of patients, all areas are compromised by less-than-optimal sensitivity and specificity. Recent work on the role of bioimpedance as a means of assessing a patient\\'s fluid status indicates that this parameter may have a role in monitoring patients with heart failure. This article reviews present techniques available for assessment of fluid status and focuses on the additional information provided by bioimpedance assessment.

  17. DEVELOPMENT ELECTRONIC MAPS OF ECOLOGICAL STATUS OF WATER OBJECTS OF THE VOLGA RIVER DELTA

    Directory of Open Access Journals (Sweden)

    Z. N. Isenalieva

    2016-01-01

    Full Text Available Abstract. Aim. The aim of this work was the comprehensive study of the ecological state of water objects of the Volga River delta. Methods. The following methods were used: field (collection, observation, organoleptic, uniform chemical analysis techniques are based on colorimetric, settlement, photometric, spectrometric measurement methods. Results. On the basis of results of researches for 2010-2014 performed a comparative analysis of the dynamics of the content of hydro-chemical indicators of environmental quality in waters of the Volga River delta and the residential areas of the background. Applying an integrated approach to the study of biological indicators of water quality. Created digitized map of the quality of aquatic ecosystems of the Volga River delta. Displaying modern ecological condition of watercourses investigated, determined the degree of contamination, the overall trophic and saprobic. Main conclusions. The work has identified adverse environmental situation in water objects of the Astrakhan and the surrounding areas. Average annual concentrations of toxicological substances water objects in the background zone 10 times less than in the water objects of settlements. As a result of work on the basis of ArcGis 10.2.2 created information environment "Eco-monitor", which is a systematic set of information, and quantitatively characterizing the ecological status of water objects. Created on the basis of ArcGis 10.2.2 information environment monitoring system of waterways allows for a temporary and spatial analysis, to assess the quality of different streams in the control sections.

  18. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  19. Revised ground-water monitoring compliance plan for the 300 area process trenches

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, R.; Aaberg, R.L.; Bates, D.J.; Carlile, J.V.M.; Freshley, M.D.; Liikala, T.L.; Mitchell, P.J.; Olsen, K.B.; Rieger, J.T.

    1988-09-01

    This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.

  20. Statistical Framework for Recreational Water Quality Criteria and Monitoring

    DEFF Research Database (Denmark)

    Halekoh, Ulrich

    2008-01-01

    Administrators of recreational waters face the basic tasks of surveillance of water quality and decisions on beach closure in case of unacceptable quality. Monitoring and subsequent decisions are based on sampled water probes and fundamental questions are which type of data to extract from......-term actions, such as the closing of beaches and long-term monitoring tasks. Chapter 4 compares sampling plans as control charts and acceptance sampling and relates them to decision rules for closing beach waters. Chapter 5 contrasts modeling approaches using design-based sampling strategies either...... recreational governmental authorities controlling water quality. The book opens with a historical account of water quality criteria in the USA between 1922 and 2003. Five chapters are related to sampling strategies and decision rules. Chapter 2 discusses the dependence of decision-making rules on short...

  1. US national breastfeeding monitoring and surveillance: current status and recommendations.

    Science.gov (United States)

    Chapman, Donna J; Pérez-Escamilla, Rafael

    2009-05-01

    Eleven federally funded datasets assessing breastfeeding behaviors in the United States (Early Childhood Longitudinal Survey, Infant Feeding Practices Survey II, National Health and Nutrition Examination Survey, National Immunization Survey, National Survey of Children's Health, National Survey of Early Childhood Health, National Survey of Family Growth, Pediatric Nutrition Surveillance System, Pregnancy Nutrition Surveillance System, Pregnancy Risk Assessment Monitoring Survey, and WIC Participant and Program Characteristics) were reviewed to evaluate breastfeeding variables (initiation, duration and exclusivity) and determine whether relevant breastfeeding determinants were collected to evaluate breastfeeding practices from a health disparities perspective. The datasets used inconsistent breastfeeding definitions, limited ethnic descriptors, and varied regarding availability of relevant determinants. Multiple datasets collect breastfeeding data, but a coordinated US breastfeeding monitoring and surveillance system does not exist. Suggestions to improve this system include: standardizing breastfeeding definitions, expanding ethnic/racial descriptors, collecting additional relevant variables, and reducing recall periods.

  2. Status of the delta synchrotron light-monitoring-system

    CERN Document Server

    Berges, U

    2000-01-01

    A synchrotron radiation source like DELTA needs an optical monitoring system to measure the beam size at different points of the ring with high resolution and accuracy. The measurements with the present synchrotron light monitors show that beam sizes larger than 250 μm can be measured. The measured emittance is of the order of the theoretical values of the optics and goes down to 8 nm rad. The magnification of the system can simply be increased by adding another lens to measure smaller emittances and beamsizes down to 100 μm. In this case you still have an optical image of the beam available, but sometimes the position of the camera has to be adapted due to the great magnification of the optical system. The image processing system which is based on a VME Framegrabber makes a two dimensional gaussian fit to the images from different synchrotron light-monitors. First tests with monochromatic components of the synchrotron radiation (500 nm and 550 nm) and with short time cameras (shutter time...

  3. Monitoring eastern Oklahoma lake water quality using Landsat

    Science.gov (United States)

    Barrett, Clay

    The monitoring of public waters for recreational, industrial, agricultural, and drinking purposes is a difficult task assigned to many state water agencies. The Oklahoma Water Resources Board (OWRB) is only physically monitoring a quarter of the lakes it is charged with monitoring in any given year. The minimal sample scheme adopted by the OWRB is utilized to determine long-term trends and basic impairment but is insufficient to monitor the water quality shifts that occur following influx from rains or to detect algal blooms, which may be highly localized and temporally brief. Recent work in remote sensing calibrates reflectance coefficients between extant water quality data and Landsat imagery reflectance to estimate water quality parameters on a regional basis. Remotely-sensed water quality monitoring benefits include reduced cost, more frequent sampling, inclusion of all lakes visible each satellite pass, and better spatial resolution results. The study area for this research is the Ozark foothills region in eastern Oklahoma including the many lakes impacted by phosphorus flowing in from the Arkansas border region. The result of this research was a moderate r2 regression value for turbidity during winter (0.52) and summer (0.65), which indicates that there is a seasonal bias to turbidity estimation using this methodology and the potential to further develop an estimation equation for this water quality parameter. Refinements that improve this methodology could provide state-wide estimations of turbidity allowing more frequent observation of water quality and allow better response times by the OWRB to developing water impairments.

  4. Changes in water quality and trophic status associated with cage aquaculture in Lake Maninjau, Indonesia

    Science.gov (United States)

    Henny, C.; Nomosatryo, S.

    2016-01-01

    The cage aquaculture unquestionably has been degrading lake water quality by increasing nutrients and organic carbon in lake water and sediments. The question is to what extend this condition affects other key indictors such as the temporal changes in trophic status and the thickness of anoxic hypolimnion layer where the anoxic water column is moving upward pushing up the oxic epilimnion layer. The condition in Lake Maninjau could be worse since the lake is steadily producing sulfide which can cause not only oxygen depletion in the water column but also the phosphate release from the sediments. The study is based on the long term monitoring data from on going research for about 8 years observation. The results indeed show the anoxic water column is moving upward increasing the thickness of anoxic hypolimnion layer and decreasing epilimnion layer from 30 m to 10 m depth. The trophic status of the lake also has changed from mesotrophic to eutrophic decreasing the water transparency to even a critical level < 1m. The months of July to September with prolonged hot season could be the critical time for trophic condition for the lake. The results suggest that determination of these conditions further could help identify and predict the critical time for possibility of fish kill.

  5. A proposed ground-water quality monitoring network for Idaho

    Science.gov (United States)

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  6. Monitoring of radon in water of Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yu-Ming; Chen, Chin-Chiang (Taiwan Radiation Monitoring Station, Atomic Energy Council of Executive Yuan, Kaohsiung Hsien (Republic of China))

    1983-03-01

    The toluene extraction-liquid scintillation counting method was used to measure the radon concentration in water samples of Taiwan, R.O.C. The experimental results showed that the counting efficiency for both ..cap alpha.. and ..beta.. emitted from radon and its daughters could reach 100%. The separation of activity of /sup 222/Rn from /sup 220/Rn was performed according to Bunny method. Thirty sampling stations including water samples from wells and hot springs throughout Taiwan were analyzed. The measured data show that /sup 220/Rn has much higher concentration than /sup 222/Rn. The concentration for the former is in the order of 10/sup -7/ Ci/l while that for the later is about 10/sup -10/ Ci/l.

  7. Assessing temporal representativeness of water quality monitoring data.

    Science.gov (United States)

    Anttila, Saku; Ketola, Mirva; Vakkilainen, Kirsi; Kairesalo, Timo

    2012-02-01

    The effectiveness of different monitoring methods in detecting temporal changes in water quality depends on the achievable sampling intervals, and how these relate to the extent of temporal variation. However, water quality sampling frequencies are rarely adjusted to the actual variation of the monitoring area. Manual sampling, for example, is often limited by the level of funding and not by the optimal timing to take samples. Restrictions in monitoring methods therefore often determine their ability to estimate the true mean and variance values for a certain time period or season. Consequently, we estimated how different sampling intervals determine the mean and standard deviation in a specific monitoring area by using high frequency data from in situ automated monitoring stations. Raw fluorescence measurements of chlorophyll a for three automated monitoring stations were calibrated by using phycocyanin fluorescence measurements and chlorophyll a analyzed from manual water samples in a laboratory. A moving block bootstrap simulation was then used to estimate the standard errors of the mean and standard deviations for different sample sizes. Our results showed that in a temperate, meso-eutrophic lake, relatively high errors in seasonal statistics can be expected from monthly sampling. Moreover, weekly sampling yielded relatively small accuracy benefits compared to a fortnightly sampling. The presented method for temporal representation analysis can be used as a tool in sampling design by adjusting the sampling interval to suit the actual temporal variation in the monitoring area, in addition to being used for estimating the usefulness of previously collected data.

  8. A Seamless Framework for Global Water Cycle Monitoring and Prediction

    Science.gov (United States)

    Sheffield, J.; Wood, E. F.; Chaney, N.; Fisher, C. K.; Caylor, K. K.

    2013-12-01

    The Global Earth Observation System of Systems (GEOSS) Water Strategy ('From Observations to Decisions') recognizes that 'water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity', and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the development of a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions

  9. [Review of monitoring soil water content using hyperspectral remote sensing].

    Science.gov (United States)

    Wu, Dai-hui; Fan, Wen-jie; Cui, Yao-kui; Yan, Bin-yan; Xu, Xi-ru

    2010-11-01

    Soil water content is a key parameter in monitoring drought. In recent years, a lot of work has been done on monitoring soil water content based on hyperspectral remotely sensed data both at home and abroad. In the present review, theories, advantages and disadvantages of the monitoring methods using different bands are introduced first. Then the unique advantages, as well as the problems, of the monitoring method with the aid of hyperspectral remote sensing are analyzed. In addition, the impact of soil water content on soil reflectance spectrum and the difference between values at different wavelengths are summarized. This review lists and summarizes the quantitative relationships between soil water content and soil reflectance obtained through analyzing the physical mechanism as well as through statistical way. The key points, advantages and disadvantages of each model are also analyzed and evaluated. Then, the problems in experimental study are pointed out, and the corresponding solutions are proposed. At the same time, the feasibility of removing vegetation effect is discussed, when monitoring soil water content using hyperspectral remote sensing. Finally, the future research trend is prospected.

  10. The Physics and Nuclear Nonproliferation Goals of WATCHMAN: A WAter CHerenkov Monitor for ANtineutrinos

    CERN Document Server

    Askins, M; Bernstein, A; Dazeley, S; Dye, S T; Handler, T; Hatzikoutelis, A; Hellfeld, D; Jaffke, P; Kamyshkov, Y; Land, B J; Learned, J G; Marleau, P; Mauger, C; Gann, G D Orebi; Roecker, C; Rountree, S D; Shokair, T M; Smy, M B; Svoboda, R; Sweany, M; Vagins, M R; van Bibber, K A; Vogelaar, R B; Wetstein, M J; Yeh, M

    2015-01-01

    This article describes the physics and nonproliferation goals of WATCHMAN, the WAter Cherenkov Monitor for ANtineutrinos. The baseline WATCHMAN design is a kiloton scale gadolinium-doped (Gd) light water Cherenkov detector, placed 13 kilometers from a civil nuclear reactor in the United States. In its first deployment phase, WATCHMAN will be used to remotely detect a change in the operational status of the reactor, providing a first- ever demonstration of the potential of large Gd-doped water detectors for remote reactor monitoring for future international nuclear nonproliferation applications. During its first phase, the detector will provide a critical large-scale test of the ability to tag neutrons and thus distinguish low energy electron neutrinos and antineutrinos. This would make WATCHMAN the only detector capable of providing both direction and flavor identification of supernova neutrinos. It would also be the third largest supernova detector, and the largest underground in the western hemisphere. In a...

  11. Monitoring water quality in Lake Atitlan, Guatemala using Earth Observations

    Science.gov (United States)

    Flores Cordova, A. I.; Christopher, S. A.; Griffin, R.; Limaye, A. S.; Irwin, D.

    2014-12-01

    Frequent and spatially continuous water quality monitoring is either unattainable or challenging for developing nations if only standard methods are used. Such standard methods rely on in situ water sampling, which is expensive, time-consuming and point specific. Through the Regional Visualization and Monitoring System (SERVIR), Lake Atitlan's water quality was first monitored in 2009 using Earth observation satellites. Lake Atitlan is a source of drinking water for the towns located nearby and a major touristic attraction for the country. Several multispectral sensors were used to monitor the largest algal bloom known to date for the lake, which covered 40% of the lake's 137 square kilometer surface. Red and Near-Infrared bands were used to isolate superficial algae from clean water. Local authorities, media, universities and local communities, broadly used the information provided by SERVIR for this event. It allowed estimating the real extent of the algal bloom and prompted immediate response for the government to address the event. However, algal blooms have been very rare in this lake. The lake is considered oligotrophic given its relatively high transparency levels that can reach 15 m in the dry season. To continue the support provided by SERVIR in the algal bloom event, an algorithm to monitor chlorophyll a (Chl a) concentration under normal conditions was developed with the support of local institutions. Hyperspectral data from Hyperion on board EO-1 and in situ water quality observations were used to develop a semi-empirical algorithm for the lake. A blue to green band ratio successfully modeled Chl a concentration in Lake Atitlan with a relative error of 33%. This presentation will explain the process involved from providing an emergency response to developing a tailored tool for monitoring water quality in Lake Atitlan, Guatemala.

  12. Approaches and challenges of soil water monitoring in an irrigated vineyard

    Science.gov (United States)

    Nolz, Reinhard; Loiskandl, Willibald

    2016-04-01

    Monitoring of water content is an approved method to quantify certain components of the soil water balance, for example as basis for hydrological studies and soil water management. Temporal soil water data also allow controlling water status by means of demand-oriented irrigation. Regarding spatial variability of water content due to soil characteristics, plant water uptake and other non-uniformities, it is a great challenge to select a location that is most likely representing soil water status of a larger area (e.g. an irrigated field). Although such an approach might not satisfy the requirements of precision farming - which becomes more and more related to industrial agriculture - it can help improving water use efficiency of small-scale farming. In this regard, specific conditions can be found in typical vineyards in the eastern part of Austria, where grapes are grown for high quality wine production. Generally, the local dry-subhumid climate supports grape development. However, irrigation is temporarily essential in order to guarantee stable yields and high quality. As the local winegrowers traditionally control irrigation based on their experience, there is a potential to improve irrigation management by means of soil water data. In order to gain experience with regard to irrigation management, soil water status was determined in a small vineyard in Austria (47°48'16'' N, 17°01'57'' E, 118 m elevation). The vineyard was equipped with a subsurface drip irrigation system and access tubes for measuring water content in soil profiles. The latter was measured using a portable device as well as permanently installed multi-sensor capacitance probes. Soil samples were taken at chosen dates and gravimetrically analyzed in the laboratory. Water content data were analyzed using simple statistical procedures and the temporal stability concept. Soil water content was interpreted considering different environmental conditions, including rainfall and irrigation periods

  13. Alternative techniques for deep-water monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Matveev, Viktor A. [Institute for Nuclear Research, Russian Academy of Sciences, 60th October Anniversary Prospect 7a, Moscow 117312 (Russian Federation); Zheleznykh, Igor M., E-mail: zhelezny@minus.inr.ac.r [Institute for Nuclear Research, Russian Academy of Sciences, 60th October Anniversary Prospect 7a, Moscow 117312 (Russian Federation); Korotin, Pavel I. [Institute of Applied Physics, Russian Academy of Sciences, Ul' yanov Str., 46, Nizhnii Novgorod 603950 (Russian Federation); Paka, Vadim T. [P.P. Shirshov Institute of Oceanology - Atlantic Branch, Russian Academy of Sciences, Mir Prospect 1, Kaliningrad 236022 (Russian Federation); Surin, Nikolai M. [N.S. Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Profsojuznaya Str. 70, Moscow 117393 (Russian Federation)

    2011-01-21

    A cruise of the Soviet R/V 'Dmitry Mendeleyev' in the Mediterranean Sea in 1989 is mentioned as the first step towards an international cooperation for high energy neutrino astrophysics in the Mediterranean. New proposals are considered related to carrying out common investigations connected with the construction of a large-scale neutrino telescope in the Mediterranean. In these investigations new techniques, which were developed in the last years or are being developed now by the Russian institutes, could be used, and in particular: (1) a system of multi-parameter non-tethered probes for deep-water hydrographic measurements, (2) a bottom-mounted acoustical antenna consisting of smart digital hydrophones, and (3) a deep-water scintillation spectrometer for the determination of the composition and for measuring the concentration of dissolved radionuclides. Given the necessity of making a best choice for the KM3 Neutrino Telescope construction, the idea of using light-weight flexible elements for making a 'flexible tower' presented at the Taormina Workshop in 1997 is reviewed.

  14. Agricultural Applications for Remotely Sensed Evapotranspiration Data in Monitoring Water Use, Water Quality, and Water Security

    Science.gov (United States)

    Anderson, M. C.; Hain, C.; Gao, F.; Yang, Y.; Sun, L.; Dulaney, W.; Sharifi, A.; Holmes, T. R.; Kustas, W. P.

    2016-12-01

    Across the U.S. and globally there are ever increasing and competing demands for freshwater resources in support of food production, ecosystems services and human/industrial consumption. Recent studies using the GRACE satellite have identified severely stressed aquifers globally, which are being unsustainably depleted due to over-extraction primarily in support of irrigated agriculture. In addition, historic droughts and ongoing political conflicts threaten food and water security in many parts of the world. To facilitate wise water management, and to develop sustainable agricultural systems that will feed the Earth's growing population into the future, there is a critical need for robust assessments of daily water use, or evapotranspiration (ET), over a wide range in spatial scales - from field to globe. While Earth Observing (EO) satellites can play a significant role in this endeavor, no single satellite provides the combined spatial, spectral and temporal characteristics required for actionable ET monitoring world-wide. In this presentation we discuss new methods for combining information from the current suite of EO satellites to address issues of water use, water quality and water security, particularly as they pertain to agricultural production. These methods fuse multi-scale diagnostic ET retrievals generated using shortwave, thermal infrared and microwave datasets from multiple EO platforms to generate ET datacubes with both high spatial and temporal resolution. We highlight several case studies where such ET datacubes are being mined to investigate changes in water use patterns over agricultural landscapes in response to changing land use, land management, and climate forcings.

  15. Applications for remotely sensed evapotranspiration data in monitoring water quality, water use, and water security

    Science.gov (United States)

    Anderson, Martha; Hain, Christopher; Feng, Gao; Yang, Yun; Sun, Liang; Yang, Yang; Dulaney, Wayne; Sharifi, Amir; Kustas, William; Holmes, Thomas

    2017-04-01

    Across the globe there are ever-increasing and competing demands for freshwater resources in support of food production, ecosystems services and human/industrial consumption. Recent studies using the GRACE satellite have identified severely stressed aquifers that are being unsustainably depleted due to over-extraction, primarily in support of irrigated agriculture. In addition, historic droughts and ongoing political conflicts threaten food and water security in many parts of the world. To facilitate wise water management, and to develop sustainable agricultural systems that will feed the Earth's growing population into the future, there is a critical need for robust assessments of daily water use, or evapotranspiration (ET), over a wide range in spatial scales - from field to globe. While Earth Observing (EO) satellites can play a significant role in this endeavor, no single satellite provides the combined spatial, spectral and temporal characteristics required for actionable ET monitoring world-wide. In this presentation we discuss new methods for combining information from the current suite of EO satellites to address issues of water quality, water use and water security, particularly as they pertain to agricultural production. These methods fuse multi-scale diagnostic ET retrievals generated using shortwave, thermal infrared and microwave datasets from multiple EO platforms to generate ET datacubes with both high spatial and temporal resolution. We highlight several case studies where such ET datacubes are being mined to investigate changes in water use patterns over agricultural landscapes in response to changing land use, land management, and climate forcings.

  16. A stochastic dynamic model to assess land use change scenarios on the ecological status of fluvial water bodies under the Water Framework Directive

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Samantha Jane, E-mail: shughes@utad.pt [Fluvial Ecology Laboratory, CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real (Portugal); Cabral, João Alexandre, E-mail: jcabral@utad.pt [Laboratory of Applied Ecology, CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real (Portugal); Bastos, Rita, E-mail: ritabastos@utad.pt [Laboratory of Applied Ecology, CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real (Portugal); Cortes, Rui, E-mail: rcortes@utad.pt [Fluvial Ecology Laboratory, CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real (Portugal); Vicente, Joana, E-mail: jsvicente@fc.up.pt [Centro de Investigacão em Biodiversidade e Recursos Genéticos (CIBIO), Faculdade de Ciências, Universidade do Porto, Porto (Portugal); Eitelberg, David, E-mail: d.a.eitelberg@vu.nl [Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands); Yu, Huirong, E-mail: h.yu@vu.nl [Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands); College of Resources and Environmental Sciences, China Agricultural University, 2 Yuanmingyuan W. Road, Haidian District, Beijing 100193 (China); and others

    2016-09-15

    This method development paper outlines an integrative stochastic dynamic methodology (StDM) framework to anticipate land use (LU) change effects on the ecological status of monitored and non-monitored lotic surface waters under the Water Framework Directive (WFD). Tested in the Alto Minho River Basin District in North West Portugal, the model is an innovative step towards developing a decision-making and planning tool to assess the influence impacts such as LU change and climate change on these complex systems. Comprising a series of sequential steps, a Generalized Linear Model based, competing model Multi Model Inference (MMI) approach was used for parameter estimation to identify principal land use types (distal factors) driving change in biological and physicochemical support elements (proximal factors) in monitored water bodies. The framework integrated MMI constants and coefficients of selected LU categories in the StDM simulations and spatial projections to simulate the ecological status of monitored and non-monitored lotic waterbodies in the test area under 2 scenarios of (1) LU intensification and (2) LU extensification. A total of 100 simulations were run for a 50 year period for each scenario. Spatially dynamic projections of WFD metrics were obtained, taking into account the occurrence of stochastic wildfire events which typically occur in the study region and are exacerbated by LU change. A marked projected decline to “Moderate” ecological status for most waterbodies was detected under intensification but little change under extensification; only a few waterbodies fell to “moderate” status. The latter scenario describes the actual regional socio-economic situation of agricultural abandonment due to rural poverty, partly explaining the projected lack of change in ecological status. Based on the WFD “one out all out” criterion, projected downward shifts in ecological status were due to physicochemical support elements, namely increased

  17. Pesticides in Drinking Water – The Brazilian Monitoring Program

    Science.gov (United States)

    Barbosa, Auria M. C.; Solano, Marize de L. M.; Umbuzeiro, Gisela de A.

    2015-01-01

    Brazil is the world largest pesticide consumer; therefore, it is important to monitor the levels of these chemicals in the water used by population. The Ministry of Health coordinates the National Drinking Water Quality Surveillance Program (Vigiagua) with the objective to monitor water quality. Water quality data are introduced in the program by state and municipal health secretariats using a database called Sisagua (Information System of Water Quality Monitoring). Brazilian drinking water norm (Ordinance 2914/2011 from Ministry of Health) includes 27 pesticide active ingredients that need to be monitored every 6 months. This number represents <10% of current active ingredients approved for use in the country. In this work, we analyzed data compiled in Sisagua database in a qualitative and quantitative way. From 2007 to 2010, approximately 169,000 pesticide analytical results were prepared and evaluated, although approximately 980,000 would be expected if all municipalities registered their analyses. This shows that only 9–17% of municipalities registered their data in Sisagua. In this dataset, we observed non-compliance with the minimum sampling number required by the norm, lack of information about detection and quantification limits, insufficient standardization in expression of results, and several inconsistencies, leading to low credibility of pesticide data provided by the system. Therefore, it is not possible to evaluate exposure of total Brazilian population to pesticides via drinking water using the current national database system Sisagua. Lessons learned from this study could provide insights into the monitoring and reporting of pesticide residues in drinking water worldwide. PMID:26581345

  18. PESTICIDES IN DRINKING WATER - THE BRAZILIAN MONITORING PROGRAM

    Directory of Open Access Journals (Sweden)

    Auria Maria Cavalvante Barbosa

    2015-11-01

    Full Text Available Brazil is the world largest pesticide consumer, therefore it is important to monitor the levels of these chemicals in the water used by population. The Ministry of Health coordinates the National Drinking Water Quality Surveillance Program (Vigiagua with the objective to monitor water quality. Water quality data are introduced in the program by state and municipal health secretariats using a database called Sisagua (Information System of Water Quality Monitoring. Brazilian drinking water norm (Ordinance 2914/2011 from Ministry of Health includes 27 pesticide active ingredients that need to be monitored every six months. This number represents less than 10% of current active ingredients approved for use in the country. In this work we analyzed data compiled in Sisagua database in a qualitative and quantitative way. From 2007 to 2010, approximately 169,000 pesticide analytical results were prepared and evaluated, although approximately 980,000 would be expected if all municipalities registered their analyses. This shows that only 9 to 17% of municipalities registered their data in Sisagua. In this dataset we observed noncompliance with the minimum sampling number required by the norm, lack of information about detection and quantification limits, insufficient standardization in expression of results, and several inconsistencies, leading to low credibility of pesticide data provided by the system. Therefore, it is not possible to evaluate exposure of total Brazilian population to pesticides via drinking water using the current national database system Sisagua. Lessons learned from this study could provide insights into the monitoring and reporting of pesticide residues in drinking water worldwide.

  19. Status of Wakefield Monitor Experiments at the CLIC Test Facility

    CERN Document Server

    Lillestøl, Reidar; Aftab, Namra; Corsini, Roberto; Döbert, Steffen; Farabolini, Wilfrid; Grudiev, Alexej; Javeed, Sumera; Pfingstner, Juergen; Wuensch, Walter

    2016-01-01

    For the very low emittance beams in CLIC, it is vital to mitigate emittance growth which leads to reduced luminosity in the detectors. One factor that leads to emittance growth is transverse wakefields in the accelerating structures. In order to combat this the structures must be aligned with a precision of a few um. For achieving this tolerance, accelerating structures are equipped with wakefield monitors that measure higher-order dipole modes excited by the beam when offset from the structure axis. We report on such measurements, performed using prototype CLIC accelerating structures which are part of the module installed in the CLIC Test Facility 3 (CTF3) at CERN. Measurements with and without the drive beam that feeds rf power to the structures are compared. Improvements to the experimental setup are discussed, and finally remaining measurements that should be performed before the completion of the program are summarized.

  20. Therapeutic drug monitoring for imatinib: Current status and Indian experience.

    Science.gov (United States)

    Arora, Brijesh; Gota, Vikram; Menon, Hari; Sengar, Manju; Nair, Reena; Patial, Pankaj; Banavali, S D

    2013-07-01

    Imatinib is the current gold standard for treatment of chronic myeloid leukemia (CML). Recent pharmacokinetic studies have shown considerable variability in trough concentrations of imatinib due to variations in its metabolism, poor compliance, or drug-drug interactions and highlighted its impact on clinical response. A trough level close to 1000 ng/mL, appears to be correlated with better cytogenetic and molecular responses. Therapeutic Drug Monitoring (TDM) for imatinib may provide useful added information on efficacy, safety and compliance than clinical assessment alone and help in clinical decision making. It may be particularly helpful in patients with suboptimal response to treatment or treatment failure, severe or rare adverse events, possible drug interactions, or suspected nonadherence. Further prospective studies are needed to confirm relationship between imatinib plasma concentrations with response, and to define effective plasma concentrations in different patient populations.

  1. METHOD OF ESTIMATION FREQUENCY PROPERTIES OF THE PREINSULATED PIPES FOR MONITORING THE STATUS OF HEATING NETWORKS

    Directory of Open Access Journals (Sweden)

    E. N. Taletskiy

    2014-01-01

    Full Text Available Proposed approximate method for the preliminary assessment of the frequency properties unadapted guiding system for monitoring the status of the organization of preinsulated pipes. Guide system elements  formed  tubes  placed  in  a  lossy  medium  (soil.  A  theoretical  analysis  shows  the  frequency dependence of the propagation constant components: the damping coefficient and the phase coefficient, take advantage of these characteristics of the system for monitoring the status heating networks.

  2. Monitoring, assessment and modelling using water quality data in the Saale River Basin, Germany.

    Science.gov (United States)

    Bongartz, Klaus; Steele, Timothy D; Baborowski, Martina; Lindenschmidt, Karl-Erich

    2007-12-01

    The European Water Framework Directive (WFD) is the overall driver for this environmental study and currently requires the identification of patterns and sources of pollution (monitoring) to support objective ecological sound decision making and specific measures to enhance river water quality (modelling). The purpose of this paper is to demonstrate in a case study the interrelationship between (1) hydrologic and water quality monitoring data for river basin characterization and (2) modelling applications to assess resources management alternatives. The study deals with monitoring assessment and modelling of river water quality data of the main stem Saale River and its principal tributaries. For a period of 6 years the data, which was sampled by Environmental Agencies of the German states of Thuringia, Saxony and Saxony-Anhalt, was investigated to assess sources and indicators of pollution. In addition to the assessment a modelling exercise of the routing of different pollutants was carried out in the lower part of the test basin. The modelling is a tool to facilitate the evaluation of alternative measures to reduce contaminant loadings and improve ecological status of a water body as required by WFD. The transport of suspended solids, salts and heavy metals was modelled along a selected Saale reach under strong anthropogenic influence in terms of contaminants and river morphology between the city of Halle and the confluence with the Elbe River. The simulations were carried out with the model WASP5 which is a dynamic flood-routing and water quality model package developed by the US Environmental Protection Agency.

  3. Status of Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    Science.gov (United States)

    Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.

    2016-12-01

    TEMPO is now in the Assembly, Integration and Test (AI&T) phase, having passed its Key Decision Point C, Critical Design Reviews (CDRs) for the instrument and the ground systems, and the Test Readiness Review (TRR). The TEMPO instrument is scheduled for delivery in August 2017. The request for proposals to host TEMPO on a commercial geostationary satellite is scheduled for release by May 2017, with host selection hopefully completed by the end of calendar 2017. TEMPO is thus on schedule to measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City and Cuba to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. It provides a measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the high variability in the diurnal cycle of emissions and chemistry. The small spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies.TEMPO takes advantage of a GEO host spacecraft to provide a mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available.TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National Research Council Decadal Survey, Earth Science and Applications from Space

  4. Current Status of Neuromuscular Reversal and Monitoring: Challenges and Opportunities.

    Science.gov (United States)

    Brull, Sorin J; Kopman, Aaron F

    2017-01-01

    Postoperative residual neuromuscular block has been recognized as a potential problem for decades, and it remains so today. Traditional pharmacologic antagonists (anticholinesterases) are ineffective in reversing profound and deep levels of neuromuscular block; at the opposite end of the recovery curve close to full recovery, anticholinesterases may induce paradoxical muscle weakness. The new selective relaxant-binding agent sugammadex can reverse any depth of block from aminosteroid (but not benzylisoquinolinium) relaxants; however, the effective dose to be administered should be chosen based on objective monitoring of the depth of neuromuscular block.To guide appropriate perioperative management, neuromuscular function assessment with a peripheral nerve stimulator is mandatory. Although in many settings, subjective (visual and tactile) evaluation of muscle responses is used, such evaluation has had limited success in preventing the occurrence of residual paralysis. Clinical evaluations of return of muscle strength (head lift and grip strength) or respiratory parameters (tidal volume and vital capacity) are equally insensitive at detecting neuromuscular weakness. Objective measurement (a train-of-four ratio greater than 0.90) is the only method to determine appropriate timing of tracheal extubation and ensure normal muscle function and patient safety.

  5. Monitoring water quality from LANDSAT. [satellite observation of Virginia

    Science.gov (United States)

    Barker, J. L.

    1975-01-01

    Water quality monitoring possibilities from LANDSAT were demonstrated both for direct readings of reflectances from the water and indirect monitoring of changes in use of land surrounding Swift Creek Reservoir in a joint project with the Virginia State Water Control Board and NASA. Film products were shown to have insufficient resolution and all work was done by digitally processing computer compatible tapes. Land cover maps of the 18,000 hectare Swift Creek Reservoir watershed, prepared for two dates in 1974, are shown. A significant decrease in the pine cover was observed in a 740 hectare construction site within the watershed. A measure of the accuracy of classification was obtained by comparing the LANDSAT results with visual classification at five sites on a U-2 photograph. Such changes in land cover can alert personnel to watch for potential changes in water quality.

  6. A comparison between remote sensing approaches to water extent monitoring

    Science.gov (United States)

    elmi, omid; javad tourian, mohammad; sneeuw, nico

    2013-04-01

    Monitoring the variation of water storage in a long period is a primary issue for understanding the impact of climate change and human activities on earth water resources. In order to obtain the change in water volume in a lake and reservoir, in addition to water level, water extent must be repeatedly determined in an appropriate time interval. Optical satellite imagery as a passive system is the main source of determination of coast line change as it is easy to interpret. Optical sensors acquire the reflected energy from the sunlight in various bands from visible to near infrared. Also, panchromatic mode provides more geometric details. Establishing a ratio between visible bands is the most common way of extract coastlines because with this ratio, water and land can be separated directly. Also, since the reflectance value of water is distinctly less than soil in infrared bands, applying a histogram threshold on this band is a effective way of coastline extraction. However, optical imagery is highly vulnerable to occurrence of dense clouds and fog. Moreover, the coastline is hard to detect where it is covered by dense vegetation. Synthetic aperture radar (SAR) as an active system provides an alternative source for monitoring the spatial change in coastlines. Two methods for monitoring the shoreline with SAR data have been published. First, the backscatter difference is calculated between two images acquired at different times. Second, the change in coastline is detected by computing the coherence of two SAR images acquired at different times. A SAR system can operate in all weather, so clouds and fog don't impact its efficiency. Also, it can penetrate into the plant canopy. However, in comparison with optical imagery, interpretation of SAR image in this case is relatively hard because of limitation in the number of band and polarization modes, also due to effects caused by speckle noises, slant-range imaging and shadows. The primary aim of this study is a

  7. Understanding controls on biotic assemblages and ecological status in Zambian rivers for the development of sustainable monitoring protocols

    Science.gov (United States)

    Kennedy, Michael; Gibbins, Chris; Lowe, Steven; Dallas, Helen; Taylor, Jonathan; Lang, Pauline; Saili, Kothelani; Sichingabula, Henry; Murphy, Kevin

    2014-05-01

    The water resources of Zambia are likely to experience increasing multiple pressures in the future as a result of very high predicted population growth, industrial development, land use change, and potentially, altered regional rainfall patterns. It is well known that rivers in tropical regions typically have a rich biodiversity, controlled in part by inter-annual variability in climate and discharge, and in part by local catchment conditions. However, till recently little country-wide work had had been carried out on the biota of Zambian rivers, and little was therefore known about the ecological status, or degree of catchment alteration of many of the rivers. To underpin sustainable water management, protocols have been developed to assess the ecological status of Zambian rivers. This paper describes the development of the protocols and their application to provide the first extensive assessment of the ecological status of rivers in the country. The protocols were designed to be simple, and hence rapid, easy and relatively inexpensive to apply. Status scores were derived for individual sites using sensitivity weightings from 3 major groups (macrophytes, diatoms and macroinvertebrates). The general approach was based on schemes used successfully elsewhere, with species and family sensitivity weightings modified so as be appropriate to Zambia. Modifications were based on a survey of 140 Zambian rivers, incorporating data on species distributions, physical habitat conditions and water quality. Analysis of historical data suggests that established Freshwater Ecoregions reflect hydro-climatic variability across Zambia. Survey data indicate that most of the spatial variation in biological assemblages across the country reflects these same hydro-climatic gradients, in addition to hydrochemical differences linked to geology. Site status scores suggest that rivers are generally in good health, although exceptions occur in some large urban areas and a small number of

  8. Northern Great Plains Network water quality monitoring design for tributaries to the Missouri National Recreational River

    Science.gov (United States)

    Rowe, Barbara L.; Wilson, Stephen K.; Yager, Lisa; Wilson, Marcia H.

    2013-01-01

    The National Park Service (NPS) organized more than 270 parks with important natural resources into 32 ecoregional networks to conduct Inventory and Monitoring (I&M) activities for assessment of natural resources within park units. The Missouri National Recreational River (NRR) is among the 13 parks in the NPS Northern Great Plain Network (NGPN). Park managers and NGPN staff identified surface water resources as a high priority vital sign to monitor in park units. The objectives for the Missouri NRR water quality sampling design are to (1) assess the current status and long-term trends of select water quality parameters; and (2) document trends in streamflow at high-priority stream systems. Due to the large size of the Missouri River main stem, the NGPN water quality design for the Missouri NRR focuses on wadeable tributaries within the park unit. To correlate with the NGPN water quality protocols, monitoring of the Missouri NRR consists of measurement of field core parameters including dissolved oxygen, pH, specific conductance, and temperature; and streamflow. The purpose of this document is to discuss factors examined for selection of water quality monitoring on segments of the Missouri River tributaries within the Missouri NRR.Awareness of the complex history of the Missouri NRR aids in the current understanding and direction for designing a monitoring plan. Historical and current monitoring data from agencies and entities were examined to assess potential NGPN monitoring sites. In addition, the U.S. Environmental Protection Agency 303(d) list was examined for the impaired segments on tributaries to the Missouri River main stem. Because major tributaries integrate water quality effects from complex combinations of land use and environmental settings within contributing areas, a 20-mile buffer of the Missouri NRR was used to establish environmental settings that may impact the water quality of tributaries that feed the Missouri River main stem. For selection of

  9. Monitoring and remediation technologies of organochlorine pesticides in drainage water

    Directory of Open Access Journals (Sweden)

    Ismail Ahmed

    2015-03-01

    Full Text Available This study was carried out to monitor the presence of organochlorine in drainage water in Kafr-El-Sheikh Governorate, Egypt. Furthermore, to evaluate the efficiencies of different remediation techniques (advanced oxidation processes [AOPs] and bioremediation for removing the most frequently detected compound (lindane in drainage water. The results showed the presence of several organochlorine pesticides in all sampling sites. Lindane was detected with high frequency relative to other detected organochlorine in drainage water. Nano photo-Fenton like reagent was the most effective treatment for lindane removal in drainage water. Bioremediation of lindane by effective microorganisms (EMs removed 100% of the lindane initial concentration. There is no remaining toxicity in lindane contaminated-water after remediation on treated rats relative to control with respect to histopathological changes in liver and kidney. Advanced oxidation processes especially with nanomaterials and bioremediation using effective microorganisms can be regarded as safe and effective remediation technologies of lindane in water.

  10. 40 CFR 141.29 - Monitoring of consecutive public water systems.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Monitoring of consecutive public water... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements § 141.29 Monitoring of consecutive public water systems. When a public water system supplies water to...

  11. Implementation of a System for Physiological Status Monitoring by using Tactical Military Networks

    Directory of Open Access Journals (Sweden)

    Goce Stevanoski

    2016-09-01

    Full Text Available E-health sensors are continuing to become more advanced and more reliable in monitoring the human physiological status. There is a continuous scope for improvement in their implementation in different emergency situations. Military organisations can take an advantage of this technology for applying physiological status monitoring on personnel engaged in military operations. This implementation is driven by continuous enhancements of existing communication equipment that produces more data capable radio networks in military environment. Based on these technologies we are proposing system communication architecture for applying real-time physiological status monitoring for personnel engaged in military operations. To examine the proposed architecture, a laboratory testing was performed. The laboratory work included a definition of military communication equipment, testing the received data with custom developed algorithm based on Markov decision process for automating the medical emergency protocol (MDP-AMEP and implementation of adequate data protocols for data transmitting. Obtained results showed that physiological status of the military personnel can be successfully monitored by using tactical military network.

  12. NUTRITIONAL STATUS AND BODY COMPOSITION IN PERITONEAL DIALYSIS PATIENTS: RELEVANCE OF BIOIMPEDANCEMETRY (BCM® FOR LONGITUDINAL MONITORING

    Directory of Open Access Journals (Sweden)

    Céline Nodimar

    2012-06-01

    We confirm that PD is associated with changes in BC, whether for incident or prevalent patients. The BCM®, a simple, reproducible and inexpensive technique, could be proposed in the systematic nutritional monitoring of PD patients, in order to detect early modification of nutritional status in those patients and then to adapt clinical management.

  13. Perceived Socio-Economic Status and Social Inclusion in School: Parental Monitoring and Support as Mediators

    Science.gov (United States)

    Veland, Jarmund; Bru, Edvin; Idsøe, Thormod

    2015-01-01

    The roles of parental monitoring and support (parenting styles) as mediators of the relationship between socio-economic status (SES) and perceived inclusion in school were studied in a sample of 7137 Norwegian primary and secondary school pupils aged between 10 and 16 years. To study whether additional social disadvantages moderated the…

  14. Perceived Socio-Economic Status and Social Inclusion in School: Parental Monitoring and Support as Mediators

    Science.gov (United States)

    Veland, Jarmund; Bru, Edvin; Idsøe, Thormod

    2015-01-01

    The roles of parental monitoring and support (parenting styles) as mediators of the relationship between socio-economic status (SES) and perceived inclusion in school were studied in a sample of 7137 Norwegian primary and secondary school pupils aged between 10 and 16 years. To study whether additional social disadvantages moderated the…

  15. Gender Sensitive Planning, Monitoring and Evaluation in Agricultural Water Management

    OpenAIRE

    Gautam, Suman Rimal; Kuriakose, Anne

    2016-01-01

    Agricultural water management projects that take an inclusive, participatory gendersensitive approach at all levels of the project cycle help increase project effectiveness and improve account of livelihood concerns of women and the rural poor. Participatory planning methods; creation of genderspecific indicators; continuous monitoring; and beneficiary-led impact assessment are key features of this approach.

  16. Understanding Local Ecology: Syllabus for Monitoring Water Quality.

    Science.gov (United States)

    Iowa Univ., Iowa City.

    This syllabus gives detailed information on monitoring water quality for teachers and students. It tells how to select a sample site; how to measure physical characteristics such as temperature, turbidity, and stream velocity; how to measure chemical parameters such as alkalinity, dissolved oxygen levels, phosphate levels, and ammonia nitrogen…

  17. Single-dish monitoring of circumstellar water masers

    CERN Document Server

    Brand, J; Engels, D

    2002-01-01

    We present an overview of the long-term water maser monitoring program of a sample of late-type stars, carried out with the Medicina 32-m and Effelsberg 100-m telescopes, and describe the results in some detail. The role the SRT (Sardinia Radio Telescope) could play in this program is outlined.

  18. A controlled experiment for water front monitoring using GPR technology

    NARCIS (Netherlands)

    Miorali, M.; Slob, E.C.; Arts, R.J.

    2010-01-01

    We use a stepped frequency continuous wave (SFCW) radar and an impulse radar to monitor a water flood experiment in a sand box. The SFCW system operates in the bandwidth from 800 MHz to 2.8 GHz. The impulse radar system is bi-static and works with a central frequency of 1 GHz. The sand box is a mete

  19. A controlled experiment for water front monitoring using GPR technology

    NARCIS (Netherlands)

    Miorali, M.; Slob, E.C.; Arts, R.J.

    2010-01-01

    We use a stepped frequency continuous wave (SFCW) radar and an impulse radar to monitor a water flood experiment in a sand box. The SFCW system operates in the bandwidth from 800 MHz to 2.8 GHz. The impulse radar system is bi-static and works with a central frequency of 1 GHz. The sand box is a

  20. Monitoring Water Targets in the Post-2015 Development Goals

    Science.gov (United States)

    Lawford, R. G.

    2015-12-01

    The Water Sustainable Development Goal (SDG) provides a comprehensive approach to developing water services in a way that ensures social equity, health, well-being and sustainability for all. In particular, the water goal includes targets related to sanitation, wastewater, water quality, water efficiency, integrated water management and ecosystems (details to be finalized in September 2015). As part of its implementation, methods to monitor target indicators must be developed. National governments will be responsible for reporting on progress toward these targets using national data sets and possibly information from global data sets that applies to their countries. Oversight of this process through the use of global data sets is desirable for encouraging the use of standardized information for comparison purposes. Disparities in monitoring due to very sparse data networks in some countries can be addressed by using geospatially consistent data products from space-based remote sensing. However, to fully exploit these data, capabilities will be needed to downscale information, to interpolate and assimilate data both in time and space, and to integrate these data with socio-economic data sets, model outputs and survey data in a geographical information system framework. Citizen data and other non-standard data types may also supplement national data systems. A comprehensive and integrated analysis and dissemination system is needed to enable the important contributions that satellites could make to achieving Water SDG targets. This presentation will outline the progress made in assessing the needs for information to track progress on the Water SDG, options for meeting these needs using existing data infrastructure, and pathways for expanding the role of Earth observations in SDG monitoring. It will also discuss the potential roles of Future Earth's Sustainable Water Futures Programme (SWFP) and the Group on Earth Observations (GEO) in coordinating these efforts.

  1. Antineutrino monitoring for the Iranian heavy water reactor

    CERN Document Server

    Christensen, Eric; Jaffke, Patrick; Shea, Thomas

    2014-01-01

    In this note we discuss the potential application of antineutrino monitoring to the Iranian heavy water reactor at Arak, the IR-40, as a non-proliferation measure. We demonstrate that an above ground detector positioned right outside the IR-40 reactor building could meet and in some cases significantly exceed the verification goals identified by IAEA for plutonium production or diversion from declared inventories. In addition to monitoring the reactor during operation, observing antineutrino emissions from long-lived fission products could also allow monitoring the reactor when it is shutdown. Antineutrino monitoring could also be used to distinguish different levels of fuel enrichment. Most importantly, these capabilities would not require a complete reactor operational history and could provide a means to re-establish continuity of knowledge in safeguards conclusions should this become necessary.

  2. Effect of nutritive status on Mytilus galloprovincialis pollution biomarkers: Implications for large-scale monitoring programs.

    Science.gov (United States)

    González-Fernández, Carmen; Albentosa, Marina; Campillo, Juan A; Viñas, Lucía; Romero, Diego; Franco, Angeles; Bellas, Juan

    2015-10-01

    Biomarkers have been extensively used in monitoring programs with the aim of assessing the biological effects of pollutants on marine organisms and determining environmental status. Data obtained from these programs are sometimes difficult to interpret due to the large amount of natural variables affecting biological processes, which could act as confounding factors on biomarker responses. The main aim of this work was to identify the effect of one of these variables, the food availability, and consequently, the mussel nutritive status, on biomarker responses. For that purpose, mussels (Mytilus galloprovincialis) were conditioned to three different food rations for 2 months in order to create three mussel nutritive statuses and afterwards, each status was exposed to three nominal concentrations of fluoranthene (FLU) for 3 weeks. A battery of biomarkers was considered in this study to cover a wide range of organism responses, both physiological (scope for growth - SFG) and biochemical (superoxide dismutase - SOD, catalase - CAT, glutathione reductase - GR, glutathione peroxidase - GPx, glutathione-S-transferase - GST and phenoloxidase - PO activities, and lipid membrane peroxidation - LPO). The results obtained, evidenced that most of the studied biomarkers (SFG, SOD, CAT, GPx, and PO) were strongly affected by mussel nutritive status, showing higher values at lower status, whereas the effect of toxicant was not always evident, masked by the nutritive status effect. This paper demonstrates that toxicants are not the only source of variability modulating pollution biomarkers, and confirms nutritive status as a major factor altering biochemical and physiological biomarkers.

  3. The dependence of water potential in shoots of Picea abies on air and soil water status

    Directory of Open Access Journals (Sweden)

    A. Sellin

    Full Text Available Where there is sufficient water storage in the soil the water potential (Ψx in shoots of Norway spruce [Picea abies (L. Karst.] is strongly governed by the vapour pressure deficit of the atmosphere, while the mean minimum values of Ψx usually do not drop below –1.5 MPa under meteorological conditions in Estonia. If the base water potential (Ψb is above –0.62 MPa, the principal factor causing water deficiency in shoots of P. abies may be either limited soil water reserves or atmospheric evaporative demand depending on the current level of the vapour pressure deficit. As the soil dries the stomatal control becomes more efficient in preventing water losses from the foliage, and the leaf water status, in turn, less sensitive to atmospheric demand. Under drought conditions, if Ψb falls below –0.62 MPa, the trees' water stress is mainly caused by low soil water availability. Further declines in the shoot water potential (below –1.5 MPa can be attributed primarily to further decreases in the soil water, i.e. to the static water stress.Key words. Hydrology (evapotranspiration · plant ecology · soil moisture.

  4. Energy Efficient Networks for Monitoring Water Quality in Subterranean Rivers

    Directory of Open Access Journals (Sweden)

    Fei Ge

    2016-05-01

    Full Text Available The fresh water in rivers beneath the Earth’s surface is as significant to humans as that on the surface. However, the water quality is difficult to monitor due to its unapproachable nature. In this work, we consider building networks to monitor water quality in subterranean rivers. The network node is designed to have limited functions of floating and staying in these rivers when necessary. We provide the necessary conditions to set up such networks and a topology building method, as well as the communication process between nodes. Furthermore, we provide every an node’s energy consumption model in the network building stage, the data acquiring and transmission stage. The numerical results show that the energy consumption in every node is different, and the node number should be moderate to ensure energy efficiency.

  5. Implementing and Innovating Marine Monitoring Approaches for Assessing Marine Environmental Status

    KAUST Repository

    Danovaro, Roberto

    2016-11-23

    Marine environmental monitoring has tended to focus on site-specific methods of investigation. These traditional methods have low spatial and temporal resolution and are relatively labor intensive per unit area/time that they cover. To implement the Marine Strategy Framework Directive (MSFD), European Member States are required to improve marine monitoring and design monitoring networks. This can be achieved by developing and testing innovative and cost-effective monitoring systems, as well as indicators of environmental status. Here, we present several recently developed methodologies and technologies to improve marine biodiversity indicators and monitoring methods. The innovative tools are discussed concerning the technologies presently utilized as well as the advantages and disadvantages of their use in routine monitoring. In particular, the present analysis focuses on: (i) molecular approaches, including microarray, Real Time quantitative PCR (qPCR), and metagenetic (metabarcoding) tools; (ii) optical (remote) sensing and acoustic methods; and (iii) in situ monitoring instruments. We also discuss their applications in marine monitoring within the MSFD through the analysis of case studies in order to evaluate their potential utilization in future routine marine monitoring. We show that these recently-developed technologies can present clear advantages in accuracy, efficiency and cost.

  6. Implementing and innovating marine monitoring approaches for assessing marine environmental status

    Directory of Open Access Journals (Sweden)

    Roberto Danovaro

    2016-11-01

    Full Text Available Marine environmental monitoring has tended to focus on site-specific methods of investigation. These traditional methods have low spatial and temporal resolution and are relatively labour intensive per unit area/time that they cover. To implement the Marine Strategy Framework Directive (MSFD, European Member States are required to improve marine monitoring and design monitoring networks. This can be achieved by developing and testing innovative and cost-effective monitoring systems, as well as indicators of environmental status. Here, we present several recently developed methodologies and technologies to improve marine biodiversity indicators and monitoring methods. The innovative tools are discussed concerning the technologies presently utilized as well as the advantages and disadvantages of their use in routine monitoring. In particular, the present analysis focuses on: (i molecular approaches, including microarray, Real Time quantitative PCR (qPCR, and metagenetic (metabarcoding tools; (ii optical (remote sensing and acoustic methods; and (iii in situ monitoring instruments. We also discuss their applications in marine monitoring within the MSFD through the analysis of case studies in order to evaluate their potential utilization in future routine marine monitoring. We show that these recently-developed technologies can present clear advantages in accuracy, efficiency and cost.

  7. Status of ground water in the 1100 Area

    Energy Technology Data Exchange (ETDEWEB)

    Law, A.G.

    1990-12-01

    This document contains the results of monthly sampling of 1100 Area Wells and ground water monitoring. Included is a table that presents all of the results of monthly sampling and analyses between April 1989 and May 1990, for four constituents selected to be most indicative of the potential for contamination from US Department of Energy facilities. The samples were collected from the three wells near the city of Richland well field. Also included is a table that presents a listing of the analytical results from sampling and analyses of five wells between April 1989, and May 1990 in the 1100 Area. The detection limit and drinking water standards or maximum contaminant level are also listed in the tables for each constituent.

  8. A greenhouse experiment for the identification of spectral indices for crop water and nitrogen status assessment

    Science.gov (United States)

    Marino Gallina, Pietro; Bechini, Luca; Cabassi, Giovanni; Cavalli, Daniele; Chiaradia, Enrico Antonio; Corti, Martina; Ferrante, Antonio; Martinetti, Livia; Masseroni, Daniele; Morgutti, Silvia; Nocito, Fabio Francesco; Facchi, Arianna

    2015-04-01

    Improvements in crop production depend on the correct adoption of agronomic and irrigation management strategies. The use of high spatial and temporal resolution monitoring methods may be used in precision agriculture to improve the efficiency in water and nutrient input management, guaranteeing the environmental sustainability of agricultural productions. In the last decades, many indices for the monitoring of water or nitrogen status of crops were developed by using multispectral images and, more recently, hyperspectral and thermal images acquired by satellite of airborne platforms. To date, however, comprehensive studies aimed at identifying indices as independent as possible for the management of the two types of stress are still scarce in the literature. Moreover, the chemometric approach for the statistical analysis of the acquired images is not yet widely experienced in this research area. In this context, this work presents the set-up of a greenhouse experiment that will start in February 2015 in Milan (Northern Italy), which aims to the objectives described above. The experiment will be carried out on two crops with a different canopy geometry (rice and spinach) subjected to four nitrogen treatments, for a total of 96 pots. Hyperspectral scanner and thermal images will be acquired at four phenological stages. At each phenological phase, acquisitions will be conducted on one-fourth of the pots, in the first instance in good water conditions and, subsequently, at different time steps after the cessation of irrigation. During the acquisitions, measurements of leaf area index and biomass, chlorophyll and nitrogen content in the plants, soil water content, stomatal conductance and leaf water potential will be performed. Moreover, on leaf samples, destructive biochemical analysis will be conducted to evaluate the physiological stress status of crops in the light of different irrigation and nutrient levels. Multivariate regression analysis between the acquired

  9. South Asia transboundary water quality monitoring workshop summary report.

    Energy Technology Data Exchange (ETDEWEB)

    Betsill, Jeffrey David; Littlefield, Adriane C.; Luetters, Frederick O.; Rajen, Gaurav

    2003-04-01

    The Cooperative Monitoring Center (CMC) promotes collaborations among scientists and researchers in several regions as a means of achieving common regional security objectives. To promote cooperation in South Asia on environmental research, an international working group made up of participants from Bangladesh, India, Nepal, Pakistan, and the United States convened in Kathmandu, Nepal, from February 17-23,2002. The workshop was held to further develop the South Asia Transboundary Water Quality Monitoring (SATWQM) project. The project is sponsored in part by the CMC located at Sandia National Laboratories in Albuquerque, New Mexico through funding provided by the US. Department of State, Regional Environmental Affairs Office, American Embassy, Kathmandu, Nepal, and the National Nuclear Security Administration's (NNSA) Office of Nonproliferation and National Security. This report summarizes the SATWQM project, the workshop objectives, process and results. The long-term interests of the participants are to develop systems for sharing regional environmental information as a means of building confidence and improving relations among South Asian countries. The more immediate interests of the group are focused on activities that foster regional sharing of water quality data in the Ganges and Indus River basins. Issues of concern to the SATWQM network participants include studying the impacts from untreated sewage and industrial effluents, agricultural run-off, salinity increases in fresh waters, the siltation and shifting of river channels, and the environmental degradation of critical habitats such as wetlands, protected forests, and endangered aquatic species conservation areas. The workshop focused on five objectives: (1) a deepened understanding of the partner organizations involved; (2) garnering the support of additional regional and national government and non-government organizations in South Asia involved in river water quality monitoring; (3) identification

  10. ADCP application for long-term monitoring of coastal water

    Institute of Scientific and Technical Information of China (English)

    YOSHIOKA Hiroshi; TAKAYAMA Tomotsuka; SERIZAWA Shigeatsu

    2005-01-01

    Three kind of application of ADCP is reported for long-term monitoring in coastal sea.(1)The rourine monitoring of water qualities.The water quality and ADCP echo data (600 kHz) observed in the long-term are analgzed at MT (Marine Tower) Station of Kansai International Airport in the Osaka Bay, Japan. The correlation between the turbidity and echo intensity in the surface layer is not good because air bubbles generated by breaking wave are not detected by the turbidity meter, but detected well by ADCP. When estimating the turbidity consists of plankton population from echo intensity, the effect ofbubbles have to be eliminated. (2) Monitoring stirring up of bottom sediment. The special observation was carded out by using following two ADCP in the Osaka Bay, One ADCP was installed upward on the sea. The other ADCP was hanged downward at the gate type stand about 3 m above from the bottom. At the spring tide, high echo intensities indicating the stirring up of bottom sediment were observed. (3) The monitoring for the boundary condition of water mixing at an estuary. In summer season, the ADCP was set at the mouth of Tanabe Bay in Wakayama Prefecture, Japan.During the observation, water temperature near the bottom showed remarkable falls with interval of about 5~7 d. When the bottom temperature fell, the inflow current with low echo intensity water appears at the bottom layer in the ADCP record. It is concluded that when occasional weak northeast wind makes weak coastal upwelling at the mouth of the bay, the combination of upwelling with internal tidal flow causes remarkable water exchange and dispels the red tide.

  11. Monitoring And Modeling Environmental Water Quality To Support Environmental Water Purchase Decision-making

    Science.gov (United States)

    Null, S. E.; Elmore, L.; Mouzon, N. R.; Wood, J. R.

    2016-12-01

    More than 25 million cubic meters (20,000 acre feet) of water has been purchased from willing agricultural sellers for environmental flows in Nevada's Walker River to improve riverine habitat and connectivity with downstream Walker Lake. Reduced instream flows limit native fish populations, like Lahontan cutthroat trout, through warm daily stream temperatures and low dissolved oxygen concentrations. Environmental water purchases maintain instream flows, although effects on water quality are more varied. We use multi-year water quality monitoring and physically-based hydrodynamic and water quality modeling to estimate streamflow, water temperature, and dissolved oxygen concentrations with alternative environmental water purchases. We simulate water temperature and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that environmental water purchases most enhance trout habitat as a function of water quality. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach acts as a water quality barrier for fish passage. Model results indicate that low streamflows generally coincide with critically warm stream temperatures, water quality refugia exist on a tributary of the Walker River, and environmental water purchases may improve stream temperature and dissolved oxygen conditions for some reaches and seasons, especially in dry years and prolonged droughts. This research supports environmental water purchase decision-making and allows water purchase decisions to be prioritized with other river restoration alternatives.

  12. Topological clustering as a tool for planning water quality monitoring in water distribution networks

    DEFF Research Database (Denmark)

    Kirstein, Jonas Kjeld; Albrechtsen, Hans-Jørgen; Rygaard, Martin

    2015-01-01

    Topological clustering was explored as a tool for water supply utilities in preparation of monitoring and contamination contingency plans. A complex water distribution network model of Copenhagen, Denmark, was simplified by topological clustering into recognizable water movement patterns to: (1......) identify steady clusters for a part of the network where an actual contamination has occurred; (2) analyze this event by the use of mesh diagrams; and (3) analyze the use of mesh diagrams as a decision support tool for planning water quality monitoring. Initially, the network model was divided...... into strongly and weakly connected clusters for selected time periods and mesh diagrams were used for analysing cluster connections in the Nørrebro district. Here, areas of particular interest for water quality monitoring were identified by including user-information about consumption rates and consumers...

  13. Sensors and OBIA synergy for operational monitoring of surface water

    Science.gov (United States)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation

  14. Coral skeletal geochemistry as a monitor of inshore water quality

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Narottam, E-mail: n.saha@uq.edu.au; Webb, Gregory E.; Zhao, Jian-Xin

    2016-10-01

    Coral reefs maintain extraordinary biodiversity and provide protection from tsunamis and storm surge, but inshore coral reef health is degrading in many regions due to deteriorating water quality. Deconvolving natural and anthropogenic changes to water quality is hampered by the lack of long term, dated water quality data but such records are required for forward modelling of reef health to aid their management. Reef corals provide an excellent archive of high resolution geochemical (trace element) proxies that can span hundreds of years and potentially provide records used through the Holocene. Hence, geochemical proxies in corals hold great promise for understanding changes in ancient water quality that can inform broader oceanographic and climatic changes in a given region. This article reviews and highlights the use of coral-based trace metal archives, including metal transported from rivers to the ocean, incorporation of trace metals into coral skeletons and the current ‘state of the art’ in utilizing coral trace metal proxies as tools for monitoring various types of local and regional source-specific pollution (river discharge, land use changes, dredging and dumping, mining, oil spills, antifouling paints, atmospheric sources, sewage). The three most commonly used coral trace element proxies (i.e., Ba/Ca, Mn/Ca, and Y/Ca) are closely associated with river runoff in the Great Barrier Reef, but considerable uncertainty remains regarding their complex biogeochemical cycling and controlling mechanisms. However, coral-based water quality reconstructions have suffered from a lack of understanding of so-called vital effects and early marine diagenesis. The main challenge is to identify and eliminate the influence of extraneous local factors in order to allow accurate water quality reconstructions and to develop alternate proxies to monitor water pollution. Rare earth elements have great potential as they are self-referencing and reflect basic terrestrial input

  15. Monitoring water stock variations by gravimetry in Benin

    Science.gov (United States)

    Seguis, L.; Galle, S.; Descloitres, M.; Laurent, J.-P.; Grippa, M.; Pfeffer, J.; Luck, B.; Genthon, P.; Hinderer, J.

    2009-04-01

    In Central Benin (wet Soudanian climate), in the frame of the AMMA (African Monsoon Multidisciplinary Analysis) program, an hydrological observatory has been set up since 2000. It is based on embedded catchments from a few to twelve thousand squared kilometers. At the local scale, 3 hillslopes with contrasted vegetation covers were selected in 2005 to study the water redistribution processes. With the aim to close the water budget at this scale, the instrumentation device was composed of instruments which monitored the 1st meter of the vadoze zone (succion, humidetric and temperature probes), the groundwater (piezometers screened at different depths) and a flux station to control evapotranspiration. Seasonal water storage changes can be monitored at this local scale but determination of the water budget at catchment scale is still difficult and needs modelling. A promising method seems to be the monitoring of the gravimetric variations. The GHYRAF French project (Gravity and Hydrology in Africa) started in 2008. It is devoted to the water storage variation assessment in sub-saharian Africa. In this aim it carries detailed comparison between models and multidisciplinary observations (ground and satellite gravity, geodesy, hydrology, meteorology). To perform this intercomparison, the main surface gravity experiment consists in periodic absolute gravity measurements at specific points along a north-south monsoonal gradient of rainfall in West Africa (Tamanrasset (20 mm annual rainfall depth) in southern Algeria, Niamey (500 mm) and a Soudanian site in Central Benin (1200 mm). In Benin, three gravity measurements have been already done on the key periods of the water cycle (July 2008 : on-set of the groundwater recharge, September 2008 : highest water table and wettest state in the vadoze zone, January 2009, low water table and dry state in the vadoze zone). We present here the preliminary comparisons of the water storage variation estimations deduced from the

  16. Performance Monitoring of Residential Hot Water Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  17. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring

    KAUST Repository

    Van Nevel, S.

    2017-02-08

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically < 1% of all bacteria). FCM measurements are reproducible with relative standard deviations below 3% and can be available within 15 min of samples arriving in the laboratory. High throughput sample processing and complete automation are feasible and FCM analysis is arguably less expensive than HPC when measuring more than 15 water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water.

  18. [History and present status of butterfly monitoring in Europe and related development strategies for China].

    Science.gov (United States)

    Fang, Li-Jun; Xu, Hai-Gen; Guan, Jian-Ling

    2013-09-01

    Butterfly is an important bio-indicator for biodiversity monitoring and ecological environment assessment. In Europe, the species composition, population dynamics, and distribution pattern of butterfly have been monitored for decades, and many long-term monitoring schemes with international effects have been implemented. These schemes are aimed to assess the regional and national variation trends of butterfly species abundance, and to analyze the relationships of this species abundance with habitat, climate change, and other environmental factors, providing basic data for researching, protecting, and utilizing butterfly resources and predicting environmental changes, and playing important roles in the division of butterfly' s threatened level, the formulation of related protection measures, and the protection and management of ecological environment. This paper reviewed the history and present status of butterfly monitoring in Europe, with the focus on the well-known long-term monitoring programs, e. g. , the UK Butterfly Monitoring Scheme and the Germany and European Union Butterfly Monitoring Scheme. Some specific proposals for conducting butterflies monitoring in China were suggested.

  19. Continuous EEG monitoring in the evaluation of non-convulsive seizures and status epilepticus

    Directory of Open Access Journals (Sweden)

    Murthy J

    2004-10-01

    Full Text Available Non-convulsive seizures (NCSzs and non-convulsive status epilepticus (NCSE occur in a substantial proportion of patients with acute brain injury. These acute seizure disorders are often unrecognized and under-diagnosed. Seizure semiology of NCSz is too subtle clinically to be noticed. Most often, mental status impairment is the presenting feature. Changes in the functions of the thalamo-cortical system in patients with impaired consciousness can be detected by continuous EEG (cEEG monitoring. cEEG monitoring allows detection of the changes at a reversible stage, often when there are no clinical indications of such phenomena. In addition EEG provides reasonable spatial resolution and excellent temporal resolution. This makes cEEG an excellent method for supplementing single or serial recordings in the detection of NCSzs and NCSE. Recent advances in digital EEG have made cEEG monitoring in the neurological intensive care unit (NICU technically feasible. Current evidence suggests that the common clinical denominator associated with electrographic seizures or NCSzs is mental status impairment. In NCSE, the duration of ictal activity and the time of delay to diagnosis are independent predictors of poor outcome. It will be prudent to do cEEG monitoring in any patient with impaired consciousness either in the setting of acute brain injury or with no clear explanation to detect NCSzs/NCSE. Early recognition and timely intervention is likely to be associated with good outcomes.

  20. Monitoring training status with HR measures: do all roads lead to Rome?

    Directory of Open Access Journals (Sweden)

    Martin eBuchheit

    2014-02-01

    Full Text Available Monitoring an athlete's physiological status in response to various types and volumes of (aerobic-oriented training can provide useful information for optimizing training programs. Measures of resting, exercise and recovery heart rate (HR are receiving increasing interest for monitoring fatigue, fitness and endurance performance responses, which has direct implications for adjusting training load 1 daily during specific training blocks and 2 throughout the competitive season. These measures are still not widely implemented to monitor athletes’ responses to training load, probably because of apparent contradictory findings in the literature. In this review I contend that most of the contradictory findings are related to methodological inconsistencies and/or misinterpretation of the data rather than to limitations of heart rate measures to accurately inform on training status. I also provide evidence that measures derived from 5-min (almost daily recordings of resting (indices capturing beat-to-beat changes in HR, reflecting parasympathetic activity and submaximal exercise (30- to 60-s average HR are likely the most useful monitoring tools. For appropriate interpretation at the individual level, changes in a given measure should be interpreted by taking into account the error of measurement and the smallest important change of the measure, as well as the training context (training phase, load and intensity distribution. The decision to use a given measure should be based upon the level of information that is required by the athlete, the marker’s sensitivity to changes in training status and the practical constrains required for the measurements. However, measures of HR cannot inform on all aspects of wellness, fatigue and performance, so their use in combination with daily training logs, psychometric questionnaires and non-invasive, cost-effective performance tests such as a countermovement jump may offer a complete solution to monitor

  1. Real-time water quality monitoring and providing water quality information to the Baltimore Community

    Science.gov (United States)

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Ba...

  2. 40 CFR 141.87 - Monitoring requirements for water quality parameters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Monitoring requirements for water... § 141.87 Monitoring requirements for water quality parameters. All large water systems, and all small... representative of water quality and treatment conditions throughout the system. (d) Monitoring after State...

  3. 40 CFR Appendix Ix to Part 264 - Ground-Water Monitoring List

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-Water Monitoring List IX... Pt. 264, App. IX Appendix IX to Part 264—Ground-Water Monitoring List Ground-Water Monitoring List... species in the ground water that contain this element are included. 3 CAS index names are those used in...

  4. Microbial monitoring of crewed habitats in space-current status and future perspectives.

    Science.gov (United States)

    Yamaguchi, Nobuyasu; Roberts, Michael; Castro, Sarah; Oubre, Cherie; Makimura, Koichi; Leys, Natalie; Grohmann, Elisabeth; Sugita, Takashi; Ichijo, Tomoaki; Nasu, Masao

    2014-09-17

    Previous space research conducted during short-term flight experiments and long-term environmental monitoring on board orbiting space stations suggests that the relationship between humans and microbes is altered in the crewed habitat in space. Both human physiology and microbial communities adapt to spaceflight. Microbial monitoring is critical to crew safety in long-duration space habitation and the sustained operation of life support systems on space transit vehicles, space stations, and surface habitats. To address this critical need, space agencies including NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and JAXA (Japan Aerospace Exploration Agency) are working together to develop and implement specific measures to monitor, control, and counteract biological contamination in closed-environment systems. In this review, the current status of microbial monitoring conducted in the International Space Station (ISS) as well as the results of recent microbial spaceflight experiments have been summarized and future perspectives are discussed.

  5. Monitoring of soil water content and quality inside and outside the water curtain cultivation facility

    Science.gov (United States)

    Ha, K.; Kim, Y.

    2014-12-01

    Water curtain cultivation system is an energy saving technique for winter season by splashing groundwater on the inner roof of green house. Artificial groundwater recharge application to the water curtain cultivation facilities was adopted and tested to use groundwater sustainably in a rural region of Korea. The groundwater level in the test site shows natural trend corresponding rainfall pattern except during mid-November to early April when groundwater levels decline sharply due to groundwater abstraction for water curtain cultivation. Groundwater levels are also affected by surface water such as stream, small dams in the stream and agricultural ditches. Infiltration data were collected from lysimeter installation and monitoring inside and outside water cultivation facility and compared with each other. The infiltration data were well correlated with rainfall outside the facility, but the data in the facility showed very different from the other. The missing infiltration data were attributed to groundwater level rise and level sensor location below water table. Soil water contents in the unsaturated zone indicated rainfall infiltration propagation at depth and with time outside the facility. According to rainfall amount and water condition at the initial stage of a rainfall event, the variation of soil water content was shown differently. Soil water contents and electrical conductivities were closely correlated with each other, and they reflected rainfall infiltration through the soil and water quality changes. The monitoring results are useful to reveal the hydrological processes from the infiltration to groundwater recharge, and water management planning in the water cultivation areas.

  6. Smart sensors for real-time water quality monitoring

    CERN Document Server

    Mason, Alex

    2013-01-01

    Sensors are being utilised to increasing degrees in all forms of industry.  Researchers and industrial practitioners in all fields seek to obtain a better understanding of appropriate processes so as to improve quality of service and efficiency.  The quality of water is no exception, and the water industry is faced with a wide array of water quality issues being present world-wide.  Thus, the need for sensors to tackle this diverse subject is paramount.  The aim of this book is to combine, for the first time, international expertise in the area of water quality monitoring using smart sensors and systems in order that a better understanding of the challenges faced and solutions posed may be available to all in a single text.

  7. Assessing crop N status of fertigated vegetable crops using plant and soil monitoring techniques.

    Science.gov (United States)

    Peña-Fleitas, M T; Gallardo, M; Thompson, R B; Farneselli, M; Padilla, F M

    2015-11-01

    Evaluation of crop N status will assist optimal N management of intensive vegetable production. Simple procedures for monitoring crop N status such as petiole sap [NO 3(-)-N], leaf N content and soil solution [NO 3(-)] were evaluated with indeterminate tomato and muskmelon. Their sensitivity to assess crop N status throughout each crop was evaluated using linear regression analysis against nitrogen nutrition index (NNI) and crop N content. NNI is the ratio between the actual and the critical crop N contents (critical N content is the minimum N content necessary to achieve maximum growth), and is an established indicator of crop N status. Nutrient solutions with four different N concentrations (treatments N1-N4) were applied throughout each crop. Average applied N concentrations were 1, 5, 13 and 22 mmol L(-1) in tomato, and 2, 7, 13 and 21 mmol L(-1) in muskmelon. Respective rates of N were 23, 147, 421 and 672 kg N ha(-1) in tomato, and 28, 124, 245 and 380 kg N ha(-1) in muskmelon. For each N treatment in each crop, petiole sap [NO 3(-)-N] was relatively constant throughout the crop. During both crops, there were very significant (P 1. Relationships between petiole sap [NO 3(-)-N] with crop N content, and leaf N content with both NNI and crop N content had variable slopes and intercept values during the indeterminate tomato and the muskmelon crops. Soil solution [NO 3(-)] in the root zone was not a sensitive indicator of crop N status. Of the three systems examined for monitoring crop/soil N status, petiole sap [NO 3(-)-N] is suggested to be the most useful because of its sensitivity to crop N status and because it can be rapidly analysed on the farm.

  8. Monitoring drinking water, sanitation, and hygiene in non-household settings: Priorities for policy and practice.

    Science.gov (United States)

    Cronk, Ryan; Slaymaker, Tom; Bartram, Jamie

    2015-11-01

    Inadequate drinking water, sanitation, and hygiene (WaSH) in non-household settings, such as schools, health care facilities, and workplaces impacts the health, education, welfare, and productivity of populations, particularly in low and middle-income countries. There is limited knowledge on the status of WaSH in such settings. To address this gap, we reviewed international standards, international and national actors, and monitoring initiatives; developed the first typology of non-household settings; and assessed the viability of monitoring. Based on setting characteristics, non-household settings include six types: schools, health care facilities, workplaces, temporary use settings, mass gatherings, and dislocated populations. To-date national governments and international actors have focused monitoring of non-household settings on schools and health care facilities with comparatively little attention given to other settings such as workplaces and markets. Nationally representative facility surveys and national management information systems are the primary monitoring mechanisms. Data suggest that WaSH coverage is generally poor and often lower than in corresponding household settings. Definitions, indicators, and data sources are underdeveloped and not always comparable between countries. While not all countries monitor non-household settings, examples are available from countries on most continents suggesting that systematic monitoring is achievable. Monitoring WaSH in schools and health care facilities is most viable. Monitoring WaSH in other non-household settings would be viable with: technical support from local and national actors in addition to international organizations such as WHO and UNICEF; national prioritization through policy and financing; and including WaSH indicators into monitoring initiatives to improve cost-effectiveness. International consultations on targets and indicators for global monitoring of WaSH post-2015 identified non

  9. Hampton roads regional Water-Quality Monitoring Program

    Science.gov (United States)

    Porter, Aaron J.; Jastram, John D.

    2016-12-02

    IntroductionHow much nitrogen, phosphorus, and suspended solids are contributed by the highly urbanized areas of the Hampton Roads region in Virginia to Chesapeake Bay? The answer to this complex question has major implications for policy decisions, resource allocations, and efforts aimed at restoring clean waters to Chesapeake Bay and its tributaries. To quantify the amount of nitrogen, phosphorus, and suspended solids delivered to the bay from this region, the U.S. Geological Survey has partnered with the Hampton Roads Sanitation District (HRSD), in cooperation with the Hampton Roads Planning District Commission (HRPDC), to conduct a water-quality monitoring program throughout the Hampton Roads region.

  10. Biological water quality monitoring using chemiluminescent and bioluminescent techniques

    Science.gov (United States)

    Thomas, R. R.

    1978-01-01

    Automated chemiluminescence and bioluminescence sensors were developed for the continuous monitoring of microbial levels in water supplies. The optimal chemical procedures were determined for the chemiluminescence system to achieve maximum sensitivity. By using hydrogen peroxide, reaction rate differentiation, ethylene diamine tetraacetic acid (EDTA), and carbon monoxide pretreatments, factors which cause interference were eliminated and specificity of the reaction for living and dead bacteria was greatly increased. By employing existing technology with some modifications, a sensitive and specific bioluminescent system was developed.

  11. Autonomous analyser platforms for remote monitoring of water quality

    OpenAIRE

    Diamond, Dermot; Cleary, John; Maher, Damien; Kim, Jung Ho; Lau, King-Tong

    2011-01-01

    This paper describes progress in the realization of reliable, relatively low-cost autonomous microfluidic analysers that are capable of monitoring the chemistry of water bodies for significant periods of time (weeks, months) without human intervention. The data generated is transmitted wireless to a remote web server and transferred to a web-database that renders data access location independent. Preliminary results obtained from a ‘matchbox’ scale analyzer are also presented and routes to...

  12. Multiple criteria analysis of remotely piloted aircraft systems for monitoring the crops vegetation status

    Science.gov (United States)

    Cristea, L.; Luculescu, M. C.; Zamfira, S. C.; Boer, A. L.; Pop, S.

    2016-08-01

    The paper presents an analysis of Remotely Piloted Aircraft Systems (RPAS) used for monitoring the crops vegetation status. The study focuses on two types of RPAS, namely the flying wing and the multi-copter. The following criteria were taken into account: technical characteristics, power consumption, flight autonomy, flight conditions, costs, data acquisition systems used for monitoring, crops area and so on. Based on this analysis, advantages and disadvantages are emphasized offering a useful tool for choosing the proper solution according to the specific application conditions.

  13. Stem Water Potential Monitoring in Pear Orchards through WorldView-2 Multispectral Imagery

    Directory of Open Access Journals (Sweden)

    Jonathan Van Beek

    2013-12-01

    Full Text Available Remote sensing can provide good alternatives for traditional in situ water status measurements in orchard crops, such as stem water potential (Ψstem. However, the heterogeneity of these cropping systems causes significant differences with regards to remote sensing products within one orchard and between orchards. In this study, robust spectral indicators of Ψstem were sought after, independent of sensor viewing geometry, orchard architecture and management. To this end, Ψstem was monitored throughout three consecutive growing seasons in (deficit irrigated and rainfed pear orchards and related to spectral observations of leaves, canopies and WorldView-2 imagery. On a leaf and canopy level, high correlations were observed between the shortwave infrared reflectance and in situ measured Ψstem. Additionally, for canopy measurements, visible and near-infrared wavelengths (R530/R600, R530/R700 and R720/R800 showed significant correlations. Therefore, the Red-edge Normalized Difference Vegetation Index (ReNDVI was applied on fully sunlit satellite imagery and found strongly related with Ψstem (R2 = 0.47; RMSE = 0.36 MPa, undoubtedly showing the potential of WorldView-2 to monitor water stress in pear orchards. The relationship between ReNDVI and Ψstem was independent of management, irrigation setup, phenology and environmental conditions. In addition, results showed that this relation was also independent of off-nadir viewing angle and almost independent of viewing geometry, as the correlation decreased after the inclusion of fully shaded scenes. With further research focusing on issues related to viewing geometry and shadows, high spatial water status monitoring with space borne remote sensing is achievable.

  14. Integrated approach to monitor water dynamics with drones

    Science.gov (United States)

    Raymaekers, Dries; De Keukelaere, Liesbeth; Knaeps, Els; Strackx, Gert; Decrop, Boudewijn; Bollen, Mark

    2017-04-01

    Remote sensing has been used for more than 20 years to estimate water quality in the open ocean and study the evolution of vegetation on land. More recently big improvements have been made to extend these practices to coastal and inland waters, opening new monitoring opportunities, eg. monitoring the impact of dredging activities on the aquatic environment. While satellite sensors can provide complete coverage and historical information of the study area, they are limited in their temporal revisit time and spatial resolution. Therefore, deployment of drones can create an added value and in combination with satellite information increase insights in the dynamics and actors of coastal and aquatic systems. Drones have the advantages of monitoring at high spatial detail (cm scale), with high frequency and are flexible. One of the important water quality parameters is the suspended sediment concentration. However, retrieving sediment concentrations from unmanned systems is a challenging task. The sediment dynamics in the port of Breskens, the Netherlands, were investigated by combining information retrieved from different data sources: satellite, drone and in-situ data were collected, analysed and inserted in sediment models. As such, historical (satellite), near-real time (drone) and predictive (sediment models) information, integrated in a spatial data infrastructure, allow to perform data analysis and can support decision makers.

  15. Soil-plant water status and wine quality: the case study of Aglianico wine (the ZOViSA project)

    Science.gov (United States)

    Bonfante, Antonello; Manna, Piero; Albrizio, Rossella; Basile, Angelo; Agrillo, Antonietta; De Mascellis, Roberto; Caputo, Pellegrina; Delle Cave, Aniello; Gambuti, Angelita; Giorio, Pasquale; Guida, Gianpiero; Minieri, Luciana; Moio, Luigi; Orefice, Nadia; Terribile, Fabio

    2014-05-01

    The terroir analysis, aiming to achieve a better use of environmental features with respect to plant requirement and wine production, needs to be strongly rooted on hydropedology. In fact, the relations between wine quality and soil moisture regime during the cropping season is well established. The ZOViSA Project (Viticultural zoning at farm scale) tests a new physically oriented approach to terroir analysis based on the relations between the soil-plant water status and wine quality. The project is conducted in southern Italy in the farm Quintodecimo of Mirabella Eclano (AV) located in the Campania region, devoted to quality Aglianico red wine production (DOC). The soil spatial distribution of study area (about 3 ha) was recognized by classical soil survey and geophysics scan by EM38DD; then the soil-plant water status was monitored for three years in two experimental plots from two different soils (Cambisol and Calcisol). Daily climate variables (temperature, solar radiation, rainfall, wind), daily soil water variables (through TDR probes and tensiometers), crop development (biometric and physiological parameters), and grape must and wine quality were monitored. The agro-hydrological model SWAP was calibrated and applied in the two experimental plots to estimate soil-plant water status in different crop phenological stages. The effects of crop water status on crop response and wine quality was evaluated in two different pedo-systems, comparing the crop water stress index with both: crop physiological measurements (leaf gas exchange, leaf water potential, chlorophyll content, LAI measurement), grape bunches measurements (berry weight, sugar content, titratable acidity, etc.) and wine quality (aromatic response). Finally a "spatial application" of the model was carried out and different terroirs defined.

  16. A versatile and interoperable network sensors for water resources monitoring

    Science.gov (United States)

    Ortolani, Alberto; Brandini, Carlo; Costantini, Roberto; Costanza, Letizia; Innocenti, Lucia; Sabatini, Francesco; Gozzini, Bernardo

    2010-05-01

    Monitoring systems to assess water resources quantity and quality require extensive use of in-situ measurements, that have great limitations like difficulties to access and share data, and to customise and easy reconfigure sensors network to fulfil end-users needs during monitoring or crisis phases. In order to address such limitations Sensor Web Enablement technologies for sensors management have been developed and applied to different environmental context under the EU-funded OSIRIS project (Open architecture for Smart and Interoperable networks in Risk management based on In-situ Sensors, www.osiris-fp6.eu). The main objective of OSIRIS was to create a monitoring system to manage different environmental crisis situations, through an efficient data processing chain where in-situ sensors are connected via an intelligent and versatile network infrastructure (based on web technologies) that enables end-users to remotely access multi-domain sensors information. Among the project application, one was focused on underground fresh-water monitoring and management. With this aim a monitoring system to continuously and automatically check water quality and quantity has been designed and built in a pilot test, identified as a portion of the Amiata aquifer feeding the Santa Fiora springs (Grosseto, Italy). This aquifer present some characteristics that make it greatly vulnerable under some conditions. It is a volcanic aquifer with a fractured structure. The volcanic nature in Santa Fiora causes levels of arsenic concentrations that normally are very close to the threshold stated by law, but that sometimes overpass such threshold for reasons still not fully understood. The presence of fractures makes the infiltration rate very inhomogeneous from place to place and very high in correspondence of big fractures. In case of liquid-pollutant spills (typically hydrocarbons spills from tanker accidents or leakage from house tanks containing fuel for heating), these fractures can act

  17. Coalbed methane produced water in China: status and environmental issues.

    Science.gov (United States)

    Meng, Yanjun; Tang, Dazhen; Xu, Hao; Li, Yong; Gao, Lijun

    2014-01-01

    As one of the unconventional natural gas family members, coalbed methane (CBM) receives great attention throughout the world. The major associated problem of CBM production is the management of produced water. In the USA, Canada, and Australia, much research has been done on the effects and management of coalbed methane produced water (CMPW). However, in China, the environmental effects of CMPW were overlooked. The quantity and the quality of CMPW both vary enormously between coal basins or stratigraphic units in China. The unit produced water volume of CBM wells in China ranges from 10 to 271,280 L/well/day, and the concentration of total dissolved solids (TDS) ranges from 691 to 93,898 mg/L. Most pH values of CMPW are more than 7.0, showing the alkaline feature, and the Na-HCO3 and Na-HCO3-Cl are typical types of CMPW in China. Treatment and utilization of CMPW in China lag far behind the USA and Australia, and CMPW is mainly managed by surface impoundments and evaporation. Currently, the core environmental issues associated with CMPW in China are that the potential environmental problems of CMPW have not been given enough attention, and relevant regulations as well as environmental impact assessment (EIA) guidelines for CMPW are still lacking. Other potential issues in China includes (1) water quality monitoring issues for CMPW with special components in special areas, (2) groundwater level decline issues associated with the dewatering process, and (3) potential environmental issues of groundwater pollution associated with hydraulic fracturing.

  18. A stochastic dynamic model to assess land use change scenarios on the ecological status of fluvial water bodies under the Water Framework Directive.

    Science.gov (United States)

    Hughes, Samantha Jane; Cabral, João Alexandre; Bastos, Rita; Cortes, Rui; Vicente, Joana; Eitelberg, David; Yu, Huirong; Honrado, João; Santos, Mário

    2016-09-15

    This method development paper outlines an integrative stochastic dynamic methodology (StDM) framework to anticipate land use (LU) change effects on the ecological status of monitored and non-monitored lotic surface waters under the Water Framework Directive (WFD). Tested in the Alto Minho River Basin District in North West Portugal, the model is an innovative step towards developing a decision-making and planning tool to assess the influence impacts such as LU change and climate change on these complex systems. Comprising a series of sequential steps, a Generalized Linear Model based, competing model Multi Model Inference (MMI) approach was used for parameter estimation to identify principal land use types (distal factors) driving change in biological and physicochemical support elements (proximal factors) in monitored water bodies. The framework integrated MMI constants and coefficients of selected LU categories in the StDM simulations and spatial projections to simulate the ecological status of monitored and non-monitored lotic waterbodies in the test area under 2 scenarios of (1) LU intensification and (2) LU extensification. A total of 100 simulations were run for a 50year period for each scenario. Spatially dynamic projections of WFD metrics were obtained, taking into account the occurrence of stochastic wildfire events which typically occur in the study region and are exacerbated by LU change. A marked projected decline to "Moderate" ecological status for most waterbodies was detected under intensification but little change under extensification; only a few waterbodies fell to "moderate" status. The latter scenario describes the actual regional socio-economic situation of agricultural abandonment due to rural poverty, partly explaining the projected lack of change in ecological status. Based on the WFD "one out all out" criterion, projected downward shifts in ecological status were due to physicochemical support elements, namely increased phosphorus levels

  19. Environmental monitoring of the Zhujiang Estuary and its coastal waters

    Institute of Scientific and Technical Information of China (English)

    J. C. Chen(陈介中); L. Dong; L. A. Wong; G. W. Heinke

    2002-01-01

    The Zhujiang (Pearl River ) Estuary is a complex water system whose catchments basin coveers a very large part of southern China. The large quantity of fresh water carried by the river system flows into the northern coast of the South China Sea through its eight inlets. The Zhujiang River Delta has experienced the fastest economic growth in China during the past two decades. Rapid population expansion and increased industrial development coupled with insufficient waste management turned the Zhujiang Estuary into waste disposal channels just before entering the coastal waters. The water quality of the estuaries and the coastal oceans has become polluted. Dttfing the past two years, an intensive study and monitoring efforts of the pollutions of these waters have been made. A systematic and integrated monitoring task including shore-based measurements, shipboard in-situ measurements, and satellite and radar remote sensing surveys has been completed. Conprehensive collection of physical,chemical and biological parameters has been accomplished and a database has been established. Unlike the previous large scale-monitoring task in which the various pollutant concentrations were the objective,the present study aims to understand the process of the pollution from their initial disposal to their final states. The understanding of the processes makes it possible to evaluate the severity of the pollution with respect to the sustainability. Also the objective is to incorporate these processes into the mathematical models from which a predictive capability of the pollution situation can be realized. The present presentation will describe the planning, methodology and the results of this effort.

  20. Monitoring and remediation of organochlorine residues in water.

    Science.gov (United States)

    Derbalah, Aly; Ismail, Ahmed; Hamza, Amany; Shaheen, Sabry

    2014-07-01

    This study monitored the presence of organochlorines in drinking water in Kafr-El-Sheikh, Ebshan, Elhamoul, Mehalt Aboali, Fowa, Balteem, and Metobess in the Kafr-El-Sheikh Governorate, Egypt, to evaluate the efficiencies of different remediation techniques (advanced oxidation processes [AOPs] and bioremediation) for removing the most frequently detected compound (i.e., lindane) in drinking water. The results showed the presence of several organochlorine residues at all water sampling sites. Lindane was detected with high frequency relative to other detected organochlorines in water. Nano photo-Fenton-like reagent was the most effective treatment for lindane removal in drinking water. Bioremediation of lindane by effective microorganisms removed 100% of the initial concentration of lindane after 23 days of treatment. The study found that there is no remaining toxicity of lindane-contaminated water after remediation on treated rats relative to the control with respect to histopathological changes in the liver and kidneys. Therefore, AOPs, particularly those with nanomaterials and bioremediation, can be regarded as safe and effective remediation technologies for lindane in water.

  1. Status of the OPAL microvertex detector and new radiation monitoring and beam dump system

    Science.gov (United States)

    Jong, Sijbrand de

    1998-11-01

    The status of the OPAL Phase III microvertex detector is discussed briefly. This is followed by a more detailed description of the OPAL microvertex detector radiation monitoring and beam dump system. This system measures AC currents induced by radiation on each passing of the beams in silicon diodes mounted close to the microvertex detector front-end electronics. Examples are shown for incidents leading to a beam dump trigger. The integrated radiation dose is also discussed.

  2. Forest health monitoring: national status, trends, and analysis 2015

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2016-01-01

    The annual national report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi- State regional perspective using a variety of sources, introduces new techniques for analyzing forest health data, and summarizes results of recently completed Evaluation...

  3. Cyber security Considerations for Real Time Physiological Status Monitoring: Threats, Goals, and Use Cases

    Science.gov (United States)

    2016-11-01

    Cyber - security Considerations for Real-Time Physiological Status Monitoring: Threats, Goals, and Use Cases John Holliman, Michael Zhivich, Roger...Spins: Security protocols for sensor networks,” Secaucus, NJ, USA, pp. 521– 534, Sep. 2002. [8] DoD, Resilient Military Systems and the Advanced Cyber ...2012. [10] W. Trappe, R. Howard, and R. S. Moore, “Low-energy security : Limits and opportunities in the internet of things,” IEEE Security Privacy, vol

  4. Continuous monitoring of water flow and solute transport using vadose zone monitoring technology

    Science.gov (United States)

    Dahan, O.

    2009-04-01

    Groundwater contamination is usually attributed to pollution events that initiate on land surface. These may be related to various sources such as industrial, urban or agricultural, and may appear as point or non point sources, through a single accidental event or a continuous pollution process. In all cases, groundwater pollution is a consequence of pollutant transport processes that take place in the vadose zone above the water table. Attempts to control pollution events and prevent groundwater contamination usually involve groundwater monitoring programs. This, however, can not provide any protection against contamination since pollution identification in groundwater is clear evidence that the groundwater is already polluted and contaminants have already traversed the entire vadose zone. Accordingly, an efficient monitoring program that aims at providing information that may prevent groundwater pollution has to include vadose-zone monitoring systems. Such system should provide real-time information on the hydrological and chemical properties of the percolating water and serve as an early warning system capable of detecting pollution events in their early stages before arrival of contaminants to groundwater. Recently, a vadose-zone monitoring system (VMS) was developed to allow continuous monitoring of the hydrological and chemical properties of percolating water in the deep vadose zone. The VMS includes flexible time-domain reflectometry (FTDR) probes for continuous tracking of water content profiles, and vadose-zone sampling ports (VSPs) for frequent sampling of the deep vadose pore water at multiple depths. The monitoring probes and sampling ports are installed through uncased slanted boreholes using a flexible sleeve that allows attachment of the monitoring devices to the borehole walls while achieving good contact between the sensors and the undisturbed sediment column. The system has been successfully implemented in several studies on water flow and

  5. Pesticide monitoring in surface water and groundwater using passive samplers

    Science.gov (United States)

    Kodes, V.; Grabic, R.

    2009-04-01

    Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.

  6. Multiplexed FBG Monitoring System for Forecasting Coalmine Water Inrush Disaster

    Directory of Open Access Journals (Sweden)

    B. Liu

    2012-01-01

    Full Text Available This paper presents a novel fiber-Bragg-grating- (FBG- based system which can monitor and analyze multiple parameters such as temperature, strain, displacement, and seepage pressure simultaneously for forecasting coalmine water inrush disaster. The sensors have minimum perturbation on the strain field. And the seepage pressure sensors adopt a drawbar structure and employ a corrugated diaphragm to transmit seepage pressure to the axial strain of FBG. The pressure sensitivity is 20.20 pm/KPa, which is 6E3 times higher than that of ordinary bare FBG. The FBG sensors are all preembedded on the roof of mining area in coalmine water inrush model test. Then FBG sensing network is set up applying wavelength-division multiplexing (WDM technology. The experiment is carried out by twelve steps, while the system acquires temperature, strain, displacement, and seepage pressure signals in real time. The results show that strain, displacement, and seepage pressure monitored by the system change significantly before water inrush occurs, and the strain changes firstly. Through signal fusion analyzed it can be concluded that the system provides a novel way to forecast water inrush disaster successfully.

  7. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

    NARCIS (Netherlands)

    Wood, E.F.; Roundy, J.K.; Troy, T.J.; Beek, L.P.H. van; Bierkens, M.F.P.; Blyth, E.; Roo, A.A. de; Doll, P.; Ek, M.; Famiglietti, J.; Gochis, D.; Giesen, N. van de; Houser, P.; Jaffe, P.R.; Kollet, S.; Lehner, B.; Lettenmaier, D.P.; Peters-Liedard, C.; Sivapalan, M.; Sheffield, J.; Wade, A.; Whitehead, P.

    2011-01-01

    Monitoring Earth’s terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and

  8. 40 CFR 141.402 - Ground water source microbial monitoring and analytical methods.

    Science.gov (United States)

    2010-07-01

    ... Rule § 141.402 Ground water source microbial monitoring and analytical methods. (a) Triggered source water monitoring—(1) General requirements. A ground water system must conduct triggered source water... State, systems must submit for State approval a triggered source water monitoring plan that identifies...

  9. [Study on the optimization of monitoring indicators of drinking water quality during health supervision].

    Science.gov (United States)

    Ye, Bixiong; E, Xueli; Zhang, Lan

    2015-01-01

    To optimize non-regular drinking water quality indices (except Giardia and Cryptosporidium) of urban drinking water. Several methods including drinking water quality exceed the standard, the risk of exceeding standard, the frequency of detecting concentrations below the detection limit, water quality comprehensive index evaluation method, and attribute reduction algorithm of rough set theory were applied, redundancy factor of water quality indicators were eliminated, control factors that play a leading role in drinking water safety were found. Optimization results showed in 62 unconventional water quality monitoring indicators of urban drinking water, 42 water quality indicators could be optimized reduction by comprehensively evaluation combined with attribute reduction of rough set. Optimization of the water quality monitoring indicators and reduction of monitoring indicators and monitoring frequency could ensure the safety of drinking water quality while lowering monitoring costs and reducing monitoring pressure of the sanitation supervision departments.

  10. Interim-status groundwater monitoring plan for the 216-B-63 trench. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, M.D.

    1995-06-13

    This document outlines the groundwater monitoring plan for interim-status detection-level monitoring of the 216-B-63 Trench. This is a revision of the initial groundwater monitoring plan prepared for Westinghouse Hanford Company (WHC) by Bjornstad and Dudziak (1989). The 216-B-63 Trench, located at the Hanford Site in south-central Washington State, is an open, unlined, earthern trench approximately 1.2 m (4 ft) wide at the bottom, 427 m (1400 ft) long, and 3 m (10 ft) deep that received wastewater containing hazardous waste and radioactive materials from B Plant, located in the 200 East Area. Liquid effluent discharge to the 216-B-63 Trench began in March 1970 and ceased in February 1992. The trench is now managed by Waste Tank Operations.

  11. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Amirat, Y. [University of Brest, EA 4325 LBMS, 29238 Brest (France); University of Annaba, Electrical Engineering Department, 23000 Annaba (Algeria); Benbouzid, M.E.H.; Turri, S. [University of Brest, EA 4325 LBMS, 29238 Brest (France); Al-Ahmar, E. [University of Brest, EA 4325 LBMS, 29238 Brest (France); Holy Spirit University of Kaslik, Faculty of Sciences and Computer Engineering, BP 446 Jounieh (Lebanon); Bensaker, B. [University of Annaba, Electrical Engineering Department, 23000 Annaba (Algeria)

    2009-12-15

    There is a constant need for the reduction of operational and maintenance costs of Wind Energy Conversion Systems (WECSs). The most efficient way of reducing these costs would be to continuously monitor the condition of these systems. This allows for early detection of the degeneration of the generator health, facilitating a proactive response, minimizing downtime, and maximizing productivity. Wind generators are also inaccessible since they are situated on extremely high towers, which are normally 20 m or more in height. There are also plans to increase the number of offshore sites increasing the need for a remote means of WECS monitoring that eliminates some of the difficulties faced due to accessibility problems. Therefore and due to the importance of condition monitoring and fault diagnosis in WECS (blades, drive trains, and generators), and keeping in mind the need for future research, this paper is intended as a brief status describing different types of faults, their generated signatures, and their diagnostic schemes. (author)

  12. The achievement of good chemical status: an impossible mission for local water managers?

    Science.gov (United States)

    La Jeunesse, Isabelle; Jadas-Hécart, Alain; Landry, David

    2017-04-01

    stability and decreases erosion sensitivity, it is not sufficient to stop all transfer of pesticides. Following the results of this study, neither the objectives of national policies to reduce by half the pesticide use nor the local objectives to decrease partially the un-weeded surface of vineyards would permit to achieve good chemical status, as confirmed by the current state of the water quality of the Layon river monitored by local water managers. Thus, in the continuation of all its efforts, it is up to local water managers to find new local solutions to comply with the Water Framework Directive.

  13. The status of community water fluoridation in the United States.

    Science.gov (United States)

    Easley, M W

    1990-01-01

    Community water fluoridation has served the American public extremely well as the cornerstone of dental caries prevention activities for 45 years. The dental and general health benefits associated with the ingestion of water-borne fluorides have been well known by researchers for an even longer period. Continued research has repeatedly confirmed the safety, effectiveness, and efficiency of community water fluoridation in preventing dental caries for Americans regardless of age, race, ethnicity, religion, educational status, or socioeconomic level. Despite the obvious benefits associated with this proven public health measure, slow progress has been made toward achieving the 1990 national fluoridation objectives as listed in "Promoting Health/Preventing Disease: Objectives for the Nation." This paper documents the lagging pace of community fluoridation by reviewing and analyzing data reported in "Fluoridation Census, 1985," a document published in late 1988 by the Public Health Service's Centers for Disease Control. Failure to attain the 1990 objectives is attributable to a combination of circumstances, including their low priority within many local, State, and Federal health agencies, inadequate funding at all levels of government, lack of a coordinated and focused national fluoridation effort, failure of most States to require fluoridation, lack of Federal legislation mandating fluoridation, general apathy of most health professional organizations toward fluoridation, misconceptions by the public about effectiveness and safety and, finally, unrelenting opposition by a highly vocal minority of the lay public. In addition, fluoridation successes have not been consistent among States, with wide variation in accomplishments documented in the reported data.While fluoridation still is one of the most cost effective public health measures available to local,State, and Federal public health agencies, it remains significantly underused nearly a half century after its

  14. Interim Status Groundwater Monitoring Plan for Low-Level Waste Management Areas 1 to 4, RCRA Facilities, Hanford,Washington

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P Evan

    2004-10-25

    This document describes the monitoring plan to meet the requirements for interim status groundwater monitoring at Hanford Site low-level waste burial grounds as specified by 40 CFR 265, incorporated by reference in WAC 173-303-400. The monitoring will take place at four separate low-level waste management areas in the 200-West and 200-East Areas, in the central part of the site. This plan replaces the previous monitoring plan.

  15. 40 CFR 141.26 - Monitoring frequency and compliance requirements for radionuclides in community water systems.

    Science.gov (United States)

    2010-07-01

    ... for radionuclides in community water systems. (a) Monitoring and compliance requirements for gross... source of water must begin to conduct initial monitoring for the new source within the first quarter... initial monitoring requirements, a community water system having only one entry point to the distribution...

  16. Monitoring of Free Water and Particulate Contamination of F-24 Fuel

    Science.gov (United States)

    2016-04-20

    UNCLASSIFIED TABLE OF CONTENTS MONITORING OF FREE WATER AND PARTICULATE CONTAMINATION OF F-24 FUEL INTERIM REPORT TFLRF No. 480...Destroy this report when no longer needed. Do not return it to the originator. UNCLASSIFIED MONITORING OF FREE WATER AND...2. REPORT TYPE Final Report 3. DATES COVERED (From - To) August 2014 - June 2016 4. TITLE AND SUBTITLE Monitoring of Free Water and

  17. Detection of crop water status in mature olive orchards using vegetation spectral measurements

    Science.gov (United States)

    Rallo, Giovanni; Ciraolo, Giuseppe; Farina, Giuseppe; Minacapilli, Mario; Provenzano, Giuseppe

    2013-04-01

    Leaf/stem water potentials are generally considered the most accurate indicators of crop water status (CWS) and they are quite often used for irrigation scheduling, even if costly and time-consuming. For this reason, in the last decade vegetation spectral measurements have been proposed, not only for environmental monitoring, but also in precision agriculture, to evaluate crop parameters and consequently for irrigation scheduling. Objective of the study was to assess the potential of hyperspectral reflectance (450-2400 nm) data to predict the crop water status (CWS) of a Mediterranean olive orchard. Different approaches were tested and particularly, (i) several standard broad- and narrow-band vegetation indices (VIs), (ii) specific VIs computed on the basis of some key wavelengths, predetermined by simple correlations and finally, (iii) using partial least squares (PLS) regression technique. To this aim, an intensive experimental campaign was carried out in 2010 and a total of 201 reflectance spectra, at leaf and canopy level, were collected with an ASD FieldSpec Pro (Analytical Spectral Devices, Inc.) handheld field spectroradiometer. CWS was contemporarily determined by measuring leaf and stem water potentials with the Scholander chamber. The results indicated that the considered standard vegetation indices were weakly correlated with CWS. On the other side, the prediction of CWS can be improved using VIs pointed to key-specific wavelengths, predetermined with a correlation analysis. The best prediction accuracy, however, can be achieved with models based on PLS regressions. The results confirmed the dependence of leaf/canopy optical features from CWS so that, for the examined crop, the proposed methodology can be considered a promising tool that could also be extended for operational applications using multispectral aerial sensors.

  18. Monitoring water distribution systems: understanding and managing sensor networks

    Directory of Open Access Journals (Sweden)

    D. D. Ediriweera

    2010-09-01

    Full Text Available Sensor networks are currently being trialed by the water distribution industry for monitoring complex distribution infrastructure. The paper presents an investigation in to the architecture and performance of a sensor system deployed for monitoring such a distribution network. The study reveals lapses in systems design and management, resulting in a fifth of the data being either missing or erroneous. Findings identify the importance of undertaking in-depth consideration of all aspects of a large sensor system with access to either expertise on every detail, or to reference manuals capable of transferring the knowledge to non-specialists. First steps towards defining a set of such guidelines are presented here, with supporting evidence.

  19. Monitoring dental-unit-water-line output water by current in-office test kits.

    Science.gov (United States)

    Lal, Sham; Singhrao, Sim K; Bricknell, Matt; Pearce, Mark; Morton, L H Glyn; Ahmed, Waqar; Crean, St John

    2014-08-01

    The importance of monitoring contamination levels in the output water of dental-unit-water-lines (DUWLs) is essential as they are prone to developing biofilms that may contaminate water that is used to treat patients, with opportunistic pathogens such as species of Legionella, Pseudomonas and others. Dentists and practice staff are also at risk of being infected by means of cross-infection due to aerosols generated from DUWL water. The unit of measurement for the microbial contamination of water by aerobic mesophilic heterotrophic bacteria is the colony-forming unit per millilitre (cfu/ml) of water. The UK has its own guidelines set by the Department of Health for water discharged from DUWL to be between 100 and 200 cfu/ml of water. The benchmark or accepted standard laboratory test is by microbiological culture on R2A agar plates. However, this is costly and not convenient for routine testing in dental practices. A number of commercial indicator tests are used in dental surgeries, but they were not developed for the dental market and serve only to indicate gross levels of contamination when used outside of the manufacturer's recommended incubation period. The aim of this article is to briefly review the universal problem of DUWL contamination with microbial biofilms and to update dental professionals on the availability of currently available commercial in-office monitoring systems for aerobic mesophilic heterotrophic bacteria and to discuss their limitations for testing water samples in assuring compliance with recommended guidelines.

  20. [Research and implementation of a real-time monitoring system for running status of medical monitors based on the internet of things].

    Science.gov (United States)

    Li, Yiming; Qian, Mingli; Li, Long; Li, Bin

    2014-07-01

    This paper proposed a real-time monitoring system for running status of medical monitors based on the internet of things. In the aspect of hardware, a solution of ZigBee networks plus 470 MHz networks is proposed. In the aspect of software, graphical display of monitoring interface and real-time equipment failure alarm is implemented. The system has the function of remote equipment failure detection and wireless localization, which provides a practical and effective method for medical equipment management.

  1. WATER-LEVEL MONITOR FOR BOREWELL AND WATER TANK BASED ON GSM

    Directory of Open Access Journals (Sweden)

    R.Ramani

    2012-10-01

    Full Text Available Now a days, home automation & remote control and monitoring systems have seen a rapid growth in terms of technology. Apparently there is no early warning system to monitor the tank water level and bore well water level when it has reached the critical level. In this paper we have provided water level monitoring in the tank as well as in the bore well. If the water level in a bore well drops below the threshold level for pumping its pump motor may get air locked or more burn out due to dry running. It is awkward for farmers to walk all the way to their fields at night just to switch the pump motor off. Besides, he may never get to identify the problem. This problem can be solved by using this GSM based system that will automatically make a call to the user mobile phone, when the water Level in the bore well drops threshold below or rises to the threshold level for pumping. The user can also remotely switch on or off the pump motor by sending a SMS from his mobile phone. The system is simple, reliable, portable and affordable. We proposed the work in which, Whenever water level in the tankdrops below the required level the system try to fill the tank by switching on the bore well motor to pump the water into the tank It is must to have enough water in the bore well to avoid the formation of air gap or empty running of bore well motor. High precision water level sensor is used to identify the reference water level to activate and deactivate the motor and system properly by interfacing the sensor devices into the well definedembedded system.

  2. An integrated sensing technique for smart monitoring of water pipelines

    Science.gov (United States)

    Bernini, Romeo; Catapano, Ilaria; Soldovieri, Francesco; Crocco, Lorenzo

    2014-05-01

    Lowering the rate of water leakage from the network of underground pipes is one of the requirements that "smart" cities have to comply with. In fact, losses in the water supply infrastructure have a remarkable social, environmental and economic impact, which obviously conflicts with the expected efficiency and sustainability of a smart city. As a consequence, there is a huge interest in developing prevention policies based on state-of-art sensing techniques and possibly their integration, as well as in envisaging ad hoc technical solutions designed for the application at hand. As a contribution to this framework, in this communication we present an approach aimed to pursue a thorough non-invasive monitoring of water pipelines, with both high spatial and temporal resolution. This goal is necessary to guarantee that maintenance operations are performed timely, so to reduce the extent of the leakage and its possible side effects, and precisely, so to minimize the cost and the discomfort resulting from operating on the water supply network. The proposed approach integrates two sensing techniques that work at different spatial and temporal scales. The first one is meant to provide a continuous (in both space and time) monitoring of the pipeline and exploits a distributed optic fiber sensor based on the Brillouin scattering phenomenon. This technique provides the "low" spatial resolution information (at meter scale) needed to reveal the presence of a leak and call for interventions [1]. The second technique is based on the use of Ground Penetrating Radar (GPR) and is meant to provide detailed images of area where the damage has been detected. GPR systems equipped with suitable data processing strategies [2,3] are indeed capable of providing images of the shallow underground, where the pipes would be buried, characterized by a spatial resolution in the order of a few centimeters. This capability is crucial to address in the most proper way maintenance operations, by for

  3. Monitoring and data analysis for the Vadose Zone Monitoring System (VZMS), McClellan AFB. Quarterly status report

    Energy Technology Data Exchange (ETDEWEB)

    Zawislanski, P.T.; Salve, R.; Freifeld, B. [and others

    1997-05-28

    This report contains information on field and laboratory work performed between January and May 15th 1997 at site S-7 in IC 34, at McClellan AFB. At this location, a Vadose Zone Monitoring System (VZMS) is currently being used to collect subsurface data including hydraulic potential, soil gas pressure, moisture content, water chemistry, gas chemistry, and temperature. Due to delays in the completion of the above-ground installations, data collection did not commence until mid-February. As a result, the data presented in this report is preliminary.

  4. Monitoring Fatigue Status in Elite Team Sport Athletes: Implications for Practice.

    Science.gov (United States)

    Thorpe, Robin T; Atkinson, Greg; Drust, Barry; Gregson, Warren

    2017-01-17

    The increase in competition demands in elite team sports over recent years has prompted much attention from researchers and practitioners into the monitoring of adaptation and fatigue in athletes. Monitoring of fatigue and gaining an understanding of athlete status may also provide insights and beneficial information pertaining to player availability, injury and illness risk. Traditional methods used to quantify recovery and fatigue in team sports such as maximal physical performance assessments may not be feasible in order to detect variations in fatigue status throughout competitive periods. The implementation of more quick, simple and non-exhaustive tests such as athlete self-report measures (ASRM), autonomic nervous system (ANS) response via heart rate derived indices and to a lesser extent jump protocols may serve as promising tools to quantify and establish fatigue status in elite team sport athletes. The robust rationalization and precise detection of a meaningful fluctuation in these measures are of paramount importance for practitioners working alongside athletes and coaches on a daily basis. There are various methods for arriving at a minimal clinically important difference (MCID), but these have been rarely adopted by sports scientists and practitioners. The implementation of appropriate, reliable and sensitive measures of fatigue can provide important information to key stakeholders within team sport environments. Future research is required to investigate the sensitivity of these tools to fundamental indicators such as performance, injury and illness.

  5. ATP measurements for monitoring microbial drinking water quality

    DEFF Research Database (Denmark)

    Vang, Óluva Karin

    methods are vital for an improved surveillance and distribution of clean and safe drinking water. One of these rapid methods is the ATP assay. This thesis encompasses various methodological aspects of the ATP assay describing the principal and theory of the ATP assay measurement. ATP is the main energy...... carrying molecule in living cells, thus ATP can be used as a parameter for microbial activity. ATP is extracted from cells through cell lysis and subsequently assayed with the luciferase enzyme and its substrate luciferin, resulting in bioluminescence, i.e. light emission which can be quantified....... The overall aim of this PhD study was to investigate various methodological features of the ATP assay for a potential implementation on a sensor platform as a real-time parameter for continuous on-line monitoring of microbial drinking water quality. Commercial reagents are commonly used to determine ATP...

  6. Threshold Monitoring Maps for Under-Water Explosions

    Science.gov (United States)

    Arora, N. S.

    2014-12-01

    Hydro-acoustic energy in the 1-100 Hz range from under-water explosions can easily spread for thousands of miles due to the unique properties of the deep sound channel. This channel, aka SOFAR channel, exists almost everywhere in the earth's oceans where the water has at least 1500m depth. Once the energy is trapped in this channel it spreads out cylindrically, and hence experiences very little loss, as long as there is an unblocked path from source to receiver. Other losses such as absorption due to chemicals in the ocean (mainly boric acid and magnesium sulphate) are also quite minimal at these low frequencies. It is not surprising then that the International Monitoring System (IMS) maintains a global network of hydrophone stations listening on this particular frequency range. The overall objective of our work is to build a probabilistic model to detect and locate under-water explosions using the IMS network. A number of critical pieces for this model, such as travel time predictions, are already well known. We are extending the existing knowledge-base by building the remaining pieces, most crucially the models for transmission losses and detection probabilities. With a complete model for detecting under-water explosions we are able to combine it with our existing model for seismic events, NET-VISA. In the conference we will present threshold monitoring maps for explosions in the earth's oceans. Our premise is that explosive sources release an unknown fraction of their total energy into the SOFAR channel, and this trapped energy determines their detection probability at each of the IMS hydrophone stations. Our threshold monitoring maps compute the minimum amount of energy at each location that must be released into the deep sound channel such that there is a ninety percent probability that at least two of the IMS stations detect the event. We will also present results of our effort to detect and locate hydro-acoustic events. In particular, we will show results

  7. Water quality monitoring and data collection in the Mississippi sound

    Science.gov (United States)

    Runner, Michael S.; Creswell, R.

    2002-01-01

    The United States Geological Survey and the Mississippi Department of Marine Resources are collecting data on the quality of the water in the Mississippi Sound of the Gulf of Mexico, and streamflow data for its tributaries. The U.S. Geological Survey is collecting continuous water-level data, continuous and discrete water-temperature data, continuous and discrete specific-conductance data, as well as chloride and salinity samples at two locations in the Mississippi Sound and three Corps of Engineers tidal gages. Continuous-discharge data are also being collected at two additional stations on tributaries. The Mississippi Department of Marine Resources collects water samples at 169 locations in the Gulf of Mexico. Between 1800 and 2000 samples are collected annually which are analyzed for turbidity and fecal coliform bacteria. The continuous data are made available real-time through the internet and are being used in conjunction with streamflow data, weather data, and sampling data for the monitoring and management of the oyster reefs, the shrimp fishery and other marine species and their habitats.

  8. Monitoring of water quality of selected wells in Brno district

    Directory of Open Access Journals (Sweden)

    Marková Jana

    2016-06-01

    Full Text Available The article deals with two wells in the country of Brno-district (Brčálka well and Well Olšová. The aim of work was monitoring of elementary parameters of water at regular monthly intervals to measure: water temperature, pH values, solubility oxygen and spring yield. According to the client's requirements (Lesy města Brno laboratory analyzes of selected parameters were done twice a year and their results were compared with Ministry of Health Decree no. 252/2004 Coll.. These parameters: nitrate, chemical oxygen demand (COD, calcium and magnesium and its values are presented in graphs, for ammonium ions and nitrite in the table. Graphical interpretation of spring yields dependence on the monthly total rainfall and dependence of water temperature on ambient temperature was utilized. The most important features of wells include a water source, a landmark in the landscape, aesthetic element or resting and relaxing place. Maintaining wells is important in terms of future generations.

  9. The strategy for improving water-quality monitoring in the United States; final report of the Intergovernmental Task Force on Monitoring Water Quality; technical appendices

    Science.gov (United States)

    ,

    1995-01-01

    The Intergovernmental Task Force on Monitoring Water Quality (ITFM) prepared this report in collaboration with representatives of all levels of government and the private sector. The report recommends a strategy for nationwide water-quality monitoring and technical monitoring improvements to support sound water-quality decisionmaking. The strategy is intended to achieve a better return on public and private investments in monitoring, environmental protection, and natural resources management. It is also designed to expand the base of information useful to a variety of users at multiple geographic scales. Institutional and technical changes are needed to improve water-quality monitoring and to meet the full range of monitoring requirements. Monitoring must be incorporated as a critical element of program planning, implementation, and evaluation. The strategy includes recommendations in many key elements, such as the development of goal-oriented monitoring and indicators, institutional collaboration, and methods comparability. Initial actions have been taken to implement the strategy. Several Federal agencies have jointly purchased and shared remotely sensed land-cover information needed for water assessment. Major agency data systems are using common data-element names and reference tables that will ensure easy sharing of data. A number of States have held meetings with collectors of water information to initiate statewide monitoring strategies. New monitoring guidance has been developed for Federal water-quality grants to States. Many State offices have changed monitoring programs to place emphasis on priority watersheds and to improve assessment of water quality. As the competition increases for adequate supplies of clean water, concerns about public health and the environment escalate, and more demands are placed on the water information infrastructure. To meet these demands, the collaborative approach has already produced benefits, which will continue to grow as

  10. Water monitoring as a safety feature for nuclear desalination

    Energy Technology Data Exchange (ETDEWEB)

    Masriera, N.A. [Nuclear Engineering Department, INVAP, Bariloche, Rio Negro (Argentina)]. E-mail: masriera@invap.com.ar; Doval, A.S.; Di Tada, M.L. [Nuclear Engineering Department, INVAP, Bariloche, Rio Negro (Argentina)

    2006-07-01

    It is widely accepted that the general safety approach for nuclear facilities is valid for a Nuclear Desalination Plant (NDP), thus IAEA standards and guides are applicable. The coupling of a NDP should be designed with the safety objective of ensuring that it results in no adverse effect on the Nuclear Power Plant (NPP) safety. The first objective (provisions of barriers) is complied with by the known NDP design, so the relevant issue becomes the design features preventing the transfer of radioactive material to the product water, even in the event of system failures. This presentation drafts a coupling-system safety assessment, from fundamentals and general requirements down to specific design requirements. The state of the art of monitoring systems imposes constraints on the coupling design, in terms of hold-up capability and piping interconnection. This conceptual design shows the system's complexity implied in having monitoring of product water as a safety feature, and conclusions are extremely relevant when drafting general user requirements for a NDP project. (author)

  11. [Non-invasive assessment used to evaluate the nasal and oral mucosal cytological status in sociohygienic monitoring].

    Science.gov (United States)

    Beliaeva, N N; Ponomareva, O Iu; Aleksandrova, V P; Olesinov, A A; Budarina, O V; Gasimova, Z M

    2009-01-01

    By analyzing their own studies and the results of other studies by other investigators, the authors provide evidence that the noninvasive evaluation of the nasal and oral cytological status is one of techniques for assessing the health status and reflects the organism's state varying with environmental pollution, which enables it to be recommended for sociohygienic monitoring.

  12. Moisture Monitoring at Area G, Technical Area 54, Los Alamos National Laboratory, 2016 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, Daniel Glenn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jennings, Terry L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-17

    Hydrological characterization and moisture monitoring activities provide data required for evaluating the transport of subsurface contaminants in the unsaturated and saturated zones beneath Area G, and for the Area G Performance Assessment and Composite Analysis. These activities have been ongoing at Area G, Technical Area 54 of the Los Alamos National Laboratory since waste disposal operations began in 1957. This report summarizes the hydrological characterization and moisture monitoring activities conducted at Area G. It includes moisture monitoring data collected from 1986 through 2016 from numerous boreholes and access tubes with neutron moisture meters, as well as data collected by automated dataloggers for water content measurement sensors installed in a waste disposal pit cover, and buried beneath the floor of a waste disposal pit. This report is an update of a nearly identical report by Levitt et al., (2015) that summarized data collected through early 2015; this report includes additional moisture monitoring data collected at Pit 31 and the Pit 38 extension through December, 2016. It also includes information from the Jennings and French (2009) moisture monitoring report and includes all data from Jennings and French (2009) and the Draft 2010 Addendum moisture monitoring report (Jennings and French, 2010). For the 2015 version of this report, all neutron logging data, including neutron probe calibrations, were investigated for quality and pedigree. Some data were recalculated using more defensible calibration data. Therefore, some water content profiles are different from those in the Jennings and French (2009) report. All of that information is repeated in this report for completeness. Monitoring and characterization data generally indicate that some areas of the Area G vadose zone are consistent with undisturbed conditions, with water contents of less than five percent by volume in the top two layers of the Bandelier tuff at Area G. These data also

  13. Monitoring source water for microbial contamination: evaluation of water quality measures.

    Science.gov (United States)

    Plummer, Jeanine D; Long, Sharon C

    2007-08-01

    Watershed management programs often rely on monitoring for a large number of water quality parameters to define contaminant issues. While coliforms have traditionally been used to identify microbial contamination, these indicators cannot discriminate among potential contaminant sources. Microbial source tracking (MST) can provide the missing link that implicates the sources of contamination. The objective of this study was to use a weight-of-evidence approach (land use analysis using GIS, sanitary surveys, traditional water quality monitoring, and MST targets) to identify sources of pollution within a watershed that contains a raw drinking water source. For the study watersheds, statistical analyses demonstrated that one measure each of particulate matter (turbidity, particle counts), organic matter (total organic carbon, dissolved organic carbon, UV(254) absorbance), and indicator organisms (fecal coliforms, enterococci) were adequate for characterizing water quality. While these traditional parameters were useful for assessing overall water quality, they were not intended to differentiate between microbial sources at different locations. In contrast, the MST targets utilized (Rhodococcus coprophilus, sorbitol-fermenting Bifidobacteria, and male-specific coliphages) pinpointed specific sources of microbial pollution. However, these targets could not be used for routine monitoring due to a high percentage of non-detects.

  14. Comparison of nitrate levels in raw water and finished water from historical monitoring data on Iowa municipal drinking water supplies.

    Science.gov (United States)

    Weyer, Peter J; Smith, Brian J; Feng, Zhen-Fang; Kantamneni, Jiji R; Riley, David G

    2006-05-01

    Nitrate contamination of water sources is a concern where large amounts of nitrogen fertilizers are regularly applied to soils. Ingested nitrate from dietary sources and drinking water can be converted to nitrite and ultimately to N-nitroso compounds, many of which are known carcinogens. Epidemiologic studies of drinking water nitrate and cancer report mixed findings; a criticism is the use of nitrate concentrations from retrospective drinking water data to assign exposure levels. Residential point-of-use nitrate data are scarce; gaps in historical data for municipal supply finished water hamper exposure classification efforts. We used generalized linear regression models to estimate and compare historical raw water and finished water nitrate levels (1960s-1990s) in single source Iowa municipal supplies to determine whether raw water monitoring data could supplement finished water data to improve exposure assessment. Comparison of raw water and finished water samples (same sampling date) showed a significant difference in nitrate levels in municipalities using rivers; municipalities using other surface water or alluvial groundwater had no difference in nitrate levels. A regional aggregation of alluvial groundwater municipalities was constructed based on results from a previous study showing regional differences in nitrate contamination of private wells; results from this analysis were mixed, dependent upon region and decade. These analyses demonstrate using historical raw water nitrate monitoring data to supplement finished water data for exposure assessment is appropriate for individual Iowa municipal supplies using alluvial groundwater, lakes or reservoirs. Using alluvial raw water data on a regional basis is dependent on region and decade.

  15. Estimating cultural benefits from surface water status improvements in freshwater wetland ecosystems.

    Science.gov (United States)

    Roebeling, Peter; Abrantes, Nelson; Ribeiro, Sofia; Almeida, Pedro

    2016-03-01

    Freshwater wetlands provide crucial ecosystem services, though are subject to anthropogenic/natural stressors that provoke negative impacts on these ecosystems, services and values. The European Union Water Framework Directive aims to achieve good status of surface waters by 2015, through implementation of Catchment Management Plans. Implementation of Catchment Management Plans is costly, though associated benefits from improvements in surface water status are less well known. This paper establishes a functional relationship between surface water status and cultural ecosystem service values of freshwater systems. Hence, we develop a bio-economic valuation approach in which we relate ecological status and chemical status of surface waters (based on local physio-chemical and benthic macro-invertebrates survey data) to willingness-to-pay (using benefit-function transfer). Results for the Pateira de Fermentelos freshwater wetland (Portugal) show that the current status of surface waters is good from a chemical though only moderate from an ecological perspective. The current cultural ecosystem service value of the wetland is estimated at 1.54 m€/yr- increasing to 2.02 m€/yr in case good status of surface waters is obtained. Taking into account ecosystem services and values in decision making is essential to avoid costs from externalities and capture benefits from spill-overs--leading to more equitable, effective and efficient water resources management. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Spacecraft Water Monitoring: Adapting to an Era of Emerging Scientific Challenges

    Science.gov (United States)

    McCoy, J. Torin

    2009-01-01

    This viewgraph presentation reviews spacecraft water monitoring, and the scientific challenges associated with spacecraft water quality. The contents include: 1) Spacecraft Water 101; 2) Paradigm Shift; and 3) Technology Needs.

  17. Annual Report of the Integrated Status and Effectiveness Monitoring Program: Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Terraqua, Inc. (Wauconda, WA)

    2009-07-20

    This document was created as an annual report detailing the accomplishments of the Integrated Status and Effectiveness Monitoring Program (ISEMP) in the Upper Columbia Basin in fiscal year 2008. The report consists of sub-chapters that reflect the various components of the program. Chapter 1 presents a report on programmatic coordination and accomplishments, and Chapters 2 through 4 provide a review of how ISEMP has progressed during the 2008 fiscal year in each of the pilot project subbasins: the John Day (Chapter 2), Wenatchee/Entiat (Chapter 3) and Salmon River (Chapter 4). Chapter 5 presents a report on the data management accomplishments in 2008.

  18. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  19. Drinking water quality monitoring and surveillance for safe water supply in Gangtok, India.

    Science.gov (United States)

    Khadse, Gajanan K; Kalita, Morami; Pimpalkar, Sarika N; Labhsetwar, Pawan K

    2011-07-01

    To ascertain the quality of drinking water being supplied, water quality monitoring and surveillance was conducted in Gangtok city at various treatment stages, service reservoirs, distribution network, public standposts, and households. No significant change in raw water quality was observed on day-to-day basis. Residual chlorine was found in the range of nil to 0.2 mg/l in the sump water/finished water. Throughout the year (i.e., during summer, winter, and monsoon seasons), the total coliform and fecal coliform counts were ranged from nil to 7 CFU/100 ml and nil to 3 CFU/100 ml, respectively, in sump water of Selep and VIP complex water treatment plant; however, at consumer end, those were observed as nil to 210 CFU/100 ml and nil to 90 CFU/100 ml, respectively. These variations in bacterial counts among the different service reservoirs and consumer ends may be attributed to the general management practices for maintenance of service reservoirs and the possibility of enroute contamination. Evaluation of the raw water quality indicates that the water is suitable for drinking after conventional treatment followed by disinfection. The finished water quality meets the level of standards described as per Bureau of Indian Standard specifications (BIS:10500 1991) for potability in terms of its physicochemical characteristics.

  20. Integrated Status and Effectiveness Monitoring Program - Entiat River Snorkel Surveys and Rotary Screw Trap, 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Nelle, R.D.

    2008-01-01

    The USFWS Mid-Columbia River Fishery Resource Office conducted snorkel surveys at 24 sites during the summer and fall periods of 2006 survey periods as part of the Integrated Status and Effectiveness Monitoring Program in the Entiat River. A total of 37,938 fish from 15 species/genera and an unknown category were enumerated. Chinook salmon were the overall most common fish observed and comprised 15% of fish enumerated followed by rainbow trout (10%) and mountain whitefish (7%). Day surveys were conducted during the summer period 2007 (August), while night surveys were conducted during the fall 2007 (October) surveys. The USFWS Mid-Columbia River Fishery Resource Office (MCFRO) operated two rotary screw traps on the Entiat River as part of the Integrated Status and Effectiveness Monitoring Program (ISEMP) program from August through November of 2007. Along with the smolt traps, juvenile emigrants were also captured at remote locations throughout the Entiat watershed and its major tributary, the Mad River. A total of 999 wild Oncorhynchus mykiss and 5,107 wild run O. tshawytscha were PIT tagged during the study period. Rotary screw trap efficiencies averaged 22.3% for juvenile O. tshawytscha and 9.0% for juvenile O. mykiss. Rotary screw traps operated 7 days a week and remote capture operations were conducted when flow and temperature regimes permitted. This is third annual progress report to Bonneville Power Administration for the snorkel surveys conducted in the Entiat River as related to long-term effectiveness monitoring of restoration programs in this watershed. The objective of this study is to monitor the fish habitat utilization of planned in-stream restoration efforts in the Entiat River by conducting pre- and post-construction snorkel surveys at selected treatment and control sites.

  1. Can we properly assess water quality status in streams with low-frequency data?

    Science.gov (United States)

    Minaudo, Camille; Moatar, Florentina; Abbott, Benjamin W.; Meybeck, Michel; Carré, Catherine; Lestel, Laurence

    2017-04-01

    The European Water Framework Directive uses the 90th percentile of concentration (C90) as a key metric to assess the water quality status in streams. The fact that most pollutant concentrations vary widely with changes in discharge on seasonal and event-scales throws doubt on the reliability of C90 estimates derived from low-frequency monitoring. To address this problem, we tested the effect of sampling frequency on C90 with a multi-decadal daily water quality dataset from 11 tributaries of Lake Erie in the United States. The dataset included common water-quality parameters including suspended solids, total and reactive phosphorus, inorganic nitrogen, silica, chloride, sulfate, and conductivity. We estimated C90 with subsets of these daily time series resampled at various frequencies from 1 sample every two days to a monthly sampling. Additionally, we generated a semi-synthetic time series based on concentration-discharge (C-Q) relationships and various statistical descriptors. These simulated time series allowed us to investigate the theoretical link between the C-Q slope and the error in C90 estimations for different sampling frequencies. The largest errors in estimating C90 were in highly chemodynamic parameters such as suspended solids and phosphorus. For these parameters, even relatively high-frequency sampling (i.e. 1 sample every 2 days) substantially underestimated C90 by 20 to 40%. Surprisingly and for all parameters, errors in C90 estimates did not increase as sampling frequency decreased. However, the variability in C90 estimates increased with steeper C-Q slopes and lower sampling frequencies. This type of sensitivity analysis could be used to calculate confidence intervals for C90 estimates and readjust water quality standards accordingly.

  2. GPS inland water buoys for precise and high temporal resolution water level and movement monitoring

    Science.gov (United States)

    Apel, Heiko; Nghia Hung, Nguyen; Thoss, Heiko; Güntner, Andreas

    2010-05-01

    Monitoring of river and lake stages is one of the basic issues in understanding catchment hydrology and hydraulic systems. There are numerous techniques available for this, but in case of large water bodies technical as well as financial problems may restrict the use of traditional techniques. Therefore we explored the potential of GPS based altimetry for stage monitoring by developing small and easy to handle buoys with mounted high precision GPS devices. The advantages of the buoys are the freedom of positioning over the whole water body and their quick and easy deployment. The developed devices were tested in the Mekong Delta, Vietnam in two different locations: On the Mekong river where high currents over the flood season occur and in a small lake with hydraulic connections to a major channel with hardly any currents present. The collected GPS data were processed differentially and tested against standard pressure gauge data. The recorded stages proved to be of high quality and a valuable resource for flood monitoring and modeling. In addition to the stage data, the high-precision GPS positioning data could also be used for monitoring the movement of the buoys, from which alternating currents caused by ocean tides and flood waves could be detected, thus providing an additional information on the hydraulic system. We conclude that the developed buoys add well to the existing hydrological monitoring pool and are a goof option for the monitoring in large water bodies where a) traditional methods are technically difficult to deploy or are too costly, and b) where additional information about flow direction is needed.

  3. GISMOWA: Geospatial Risk-Based Analysis Identifying Water Quality Monitoring Sites in Distribution Systems

    DEFF Research Database (Denmark)

    Larsen, Sille Lyster; Christensen, Sarah Christine Boesgaard; Albrechtsen, Hans-Jørgen

    2017-01-01

    Monitoring water quality in drinking water distribution systems is the basis for proactive approaches to prevent or manage emerging water quality issues, and such a monitoring requires a strategic selection of relevant and representative monitoring sites. GISMOWA is a new GIS and risk......-based analysis tool to identify and prioritize pipe segments for water quality monitoring and to comply with existing monitoring and sampling guidelines. The tool was designed to integrate multiple parameters categorized as (1) hydraulic and structural weaknesses in the system, e.g., residence time; (2) external...... threats, e.g., contaminated sites; and (3) sensitive consumers, e.g., hospitals, in a GIS environment. The tool used a multicriteria decision analysis to evaluate multiple monitoring site parameters and map zones particularly suitable for water quality monitoring. GISMOWA was applied to Danish water...

  4. In Situ Investigation of Leaf Water Status by Portable Unilateral Nuclear Magnetic Resonance12[C][W][OA

    Science.gov (United States)

    Capitani, Donatella; Brilli, Federico; Mannina, Luisa; Proietti, Noemi; Loreto, Francesco

    2009-01-01

    may be usefully employed in field conditions to monitor nondestructively the water status of plants and to assist agricultural practices, such as irrigation scheduling, to minimize stomatal closure and the consequent limitation to plant production. PMID:19193862

  5. Comparison and Cost Analysis of Drinking Water Quality Monitoring Requirements versus Practice in Seven Developing Countries

    Directory of Open Access Journals (Sweden)

    Jonny Crocker

    2014-07-01

    Full Text Available Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country’s ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states, Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, monitoring approaches, and marginal cost. The seven study countries were selected to represent a range of low resource settings. The focus was on monitoring of microbiological parameters, such as E. coli, coliforms, and H2S-producing microorganisms. Data collection involved qualitative and quantitative methods. Across seven study countries, few distinct approaches to monitoring were observed, and in all but one country all monitoring relied on fixed laboratories for sample analysis. Compliance with monitoring requirements was highest for operational monitoring of large water supplies in urban areas. Sample transport and labor for sample collection and analysis together constitute approximately 75% of marginal costs, which exclude capital costs. There is potential for substantive optimization of monitoring programs by considering field-based testing and by fundamentally reconsidering monitoring approaches for non-piped supplies. This is the first study to look quantitatively at water quality monitoring practices in multiple developing countries.

  6. Comparison and cost analysis of drinking water quality monitoring requirements versus practice in seven developing countries.

    Science.gov (United States)

    Crocker, Jonny; Bartram, Jamie

    2014-07-18

    Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country's ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states), Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, monitoring approaches, and marginal cost. The seven study countries were selected to represent a range of low resource settings. The focus was on monitoring of microbiological parameters, such as E. coli, coliforms, and H2S-producing microorganisms. Data collection involved qualitative and quantitative methods. Across seven study countries, few distinct approaches to monitoring were observed, and in all but one country all monitoring relied on fixed laboratories for sample analysis. Compliance with monitoring requirements was highest for operational monitoring of large water supplies in urban areas. Sample transport and labor for sample collection and analysis together constitute approximately 75% of marginal costs, which exclude capital costs. There is potential for substantive optimization of monitoring programs by considering field-based testing and by fundamentally reconsidering monitoring approaches for non-piped supplies. This is the first study to look quantitatively at water quality monitoring practices in multiple developing countries.

  7. Characterization of the Water Quality Status on a Stretch of River Lérez around a Small Hydroelectric Power Station

    Directory of Open Access Journals (Sweden)

    Enrique Valero

    2012-10-01

    Full Text Available The renewable energy emerged as a solution to the environmental problems caused by the conventional sources of energy. Small hydropower (SHP is claimed to cause negligible effects on the ecosystem, although some environmental values are threatened and maintenance of an adequate water quality should be ensured. This work provides a characterization of the water quality status in a river stretch around a SHP plant on river Lérez, northwest Spain, for four years after its construction. The ecological and chemical status of the water as well as the ecological quality of the riparian habitat, were used as measures of quality. Data were compared with the water quality requirements. The variations in the quality parameters were analyzed over time and over the river sections with respect to the SHP plant elements. Two years after construction, the temperature and dissolved oxygen values achieved conditions for salmonid water and close to the reference condition, while pH values were low. The Iberian Biological Monitoring Working Party (IBMWP index showed a positive trend from two years after the construction and stabilized at “unpolluted or not considerably altered water”. Quality parameters did not present significant differences between sampling points. The SHP plant construction momentarily altered the quality characteristics of the water.

  8. Use of a Digital Camera to Monitor the Growth and Nitrogen Status of Cotton

    Directory of Open Access Journals (Sweden)

    Biao Jia

    2014-01-01

    Full Text Available The main objective of this study was to develop a nondestructive method for monitoring cotton growth and N status using a digital camera. Digital images were taken of the cotton canopies between emergence and full bloom. The green and red values were extracted from the digital images and then used to calculate canopy cover. The values of canopy cover were closely correlated with the normalized difference vegetation index and the ratio vegetation index and were measured using a GreenSeeker handheld sensor. Models were calibrated to describe the relationship between canopy cover and three growth properties of the cotton crop (i.e., aboveground total N content, LAI, and aboveground biomass. There were close, exponential relationships between canopy cover and three growth properties. And the relationships for estimating cotton aboveground total N content were most precise, the coefficients of determination (R2 value was 0.978, and the root mean square error (RMSE value was 1.479 g m−2. Moreover, the models were validated in three fields of high-yield cotton. The result indicated that the best relationship between canopy cover and aboveground total N content had an R2 value of 0.926 and an RMSE value of 1.631 g m−2. In conclusion, as a near-ground remote assessment tool, digital cameras have good potential for monitoring cotton growth and N status.

  9. Nutritional status and food security: winter nutrition monitoring in Sarajevo 1993-1994.

    Science.gov (United States)

    Watson, F; Kulenovic, I; Vespa, J

    1995-10-01

    To monitor nutritional status and food security throughout the winter of 1993-1994 in order to provide early warning of any deterioration, identify the nutritionally vulnerable and so enable humanitarian agencies to respond appropriately. Four different household groups were prospectively followed: residents, refugees in collective centres, refugees in private accommodation and elderly living alone (either residents or refugees). Four local communities were purposively selected and two collective centres were randomly selected. Households were randomly selected within each community and collective centre. An additional sample of all elderly inhabitants of the old people's home were nutritionally assessed only. Monitoring was implemented in the besieged city of Sarajevo. 143 households with 90 children (children (six months to 12 years) and body mass index (BMI) in adults and the elderly were calculated. While the nutritional status of adults and children consistently remained normal, high levels of undernutrition were detected among the elderly ranging from 16% to 21% (BMI disaster in Sarajevo over the winter 1993-1994, there were signs that capacity to cope was weakening in some groups. The elderly were identified as the most nutritionally vulnerable due to sickness, cold, stress and problems related to food preparation. The most food insecure group were refugees in collective centres who were highly dependent on food aid, were less likely to have relatives outside Sarajevo to support them, had fewer possessions to sell and were least likely to have gardens.

  10. Forest ecosystem monitoring in Tuscany (Italy: past activities, present status and future perspectives

    Directory of Open Access Journals (Sweden)

    Claudio LEONZIO

    2002-09-01

    Full Text Available Since 1987 the Region of Tuscany has been actively monitoring crown status in its forests, in order to protect them from atmospheric pollution, biotic factors and environmental change. Over this period the Region has performed periodical inventories on crown condition in publicly-owned forests (Level I network and established a network of permanent plots (MON.I.TO., Level II – III to study long-term changes occurring in forest ecosystems. Some of these permanent plots were later included in the national programme CONECOFOR, managed by the Ministry for Policy in Agriculture and Forest. Currently a further development of MON.I.TO. is being implemented, called MONITO III – TOpModel, the aim of which is to broaden the information potential of the monitoring system to include carbon stocks and biodiversity evaluation. This paper provides an up-to-date report on the status of the various surveys and recommends a closer connection between MON.I.TO. and the other regional information systems, especially the Regional Forest Inventory, in order to produce information that may be useful in forest planning and in Sustainable Forest Management.

  11. Platform for monitoring water and solid fluxes in mountainous rivers

    Science.gov (United States)

    Nord, Guillaume; Esteves, Michel; Aubert, Coralie; Belleudy, Philippe; Coulaud, Catherine; Bois, Jérôme; Geay, Thomas; Gratiot, Nicolas; Legout, Cédric; Mercier, Bernard; Némery, Julien; Michielin, Yoann

    2016-04-01

    The project aims to develop a platform that electronically integrates a set of existing sensors for the continuous measurement at high temporal frequency of water and solid fluxes (bed load and suspension), characteristics of suspended solids (distribution in particle size, settling velocity of the particles) and other variables on water quality (color, nutrient concentration). The project is preferentially intended for rivers in mountainous catchments draining areas from 10 to 1000 km², with high suspended sediment concentrations (maxima between 10 and 300 g/l) and highly dynamic behavior, water discharge varying of several orders of magnitude in a short period of time (a few hours). The measurement of water and solid fluxes in this type of river remains a challenge and, to date, there is no built-in device on the market to continuously monitor all these variables. The development of this platform is based on a long experience of measurement of sediment fluxes in rivers within the French Critical Zone Observatories (http://portailrbv.sedoo.fr/), especially in the Draix-Bléone (http://oredraixbleone.irstea.fr/) and OHMCV (http://www.ohmcv.fr/) observatories. The choice was made to integrate in the platform instruments already available on the market and currently used by the scientific community (water level radar, surface velocity radar, turbidity sensor, automatic water sampler, video camera) and to include also newly developed instruments (System for the Characterization of Aggregates and Flocs - see EGU2016-8542 - and hydrophone) or commercial instruments (spectrophotometer and radiometer) to be tested in surface water with high suspended sediment concentration. Priority is given to non-intrusive instruments due to their robustness in this type of environment with high destructive potential. Development work includes the construction of a platform prototype "smart" and remotely configurable for implantation in an isolated environment (absence of electric

  12. Basic biochemical, hematological and hormonal parameters for monitoring the health and nutritional status in athletes

    Directory of Open Access Journals (Sweden)

    Aritz Urdampilleta

    2014-09-01

    Full Text Available Sporting competitions are becoming more demanding in terms of intensity of effort, and this means controlling all aspects that affect athletic performance. Food, hydration and supplementation, before, during and after training or competition directly affect health, body composition, performance and recovery of the athlete. The assessment of nutritional status is required for proper advising of the athlete, through blood tests to control the process of adaptation to training. The aim of this paper is to provide practical tools for dietitiansnutritionists to control the health and nutritional status of athletes, as well as monitoring their adaptation to workloads and competition periods. Performing analytical tests to control of protein metabolism, lipid profile, ions, blood tests and iron metabolism, in addition to review some hormonal parameters, may be of interest in order to observe the potential existence of overtraining states. The correct understanding and interpretation of laboratory tests (under sports doctor’s supervision will be most important and useful for dietitiansnutritionists, performing dietary and nutritional advice to athletes, because it will determine the status of the athlete and propose different individual feeding strategies depending on the training phase and response.

  13. Land Cover Monitoring for Water Resources Management in Angola

    Science.gov (United States)

    Miguel, Irina; Navarro, Ana; Rolim, Joao; Catalao, Joao; Silva, Joel; Painho, Marco; Vekerdy, Zoltan

    2016-08-01

    The aim of this paper is to assess the impact of improved temporal resolution and multi-source satellite data (SAR and optical) on land cover mapping and monitoring for efficient water resources management. For that purpose, we developed an integrated approach based on image classification and on NDVI and SAR backscattering (VV and VH) time series for land cover mapping and crop's irrigation requirements computation. We analysed 28 SPOT-5 Take-5 images with high temporal revisiting time (5 days), 9 Sentinel-1 dual polarization GRD images and in-situ data acquired during the crop growing season. Results show that the combination of images from different sources provides the best information to map agricultural areas. The increase of the images temporal resolution allows the improvement of the estimation of the crop parameters, and then, to calculate of the crop's irrigation requirements. However, this aspect was not fully exploited due to the lack of EO data for the complete growing season.

  14. Malaysia's Experience in the Monitoring of Investment and Results of Water Resources Management

    Science.gov (United States)

    Zakaria, Salmah Binti; Lee, Jin

    2010-05-01

    The current status of IWRM implementation in Malaysia, overview of development planning process and financial allocations together with monitoring of IWRM in Malaysia are first presented. This is followed by a case study review of Malaysia's 9th 5-year Development Plan (2005-2010) so as to provide a deeper understanding and appreciation of the current approach adopted by the Malaysian government in the formulation of development policies, project planning, budget allocation and o monitoring of projects. Arising from the review it was highlighted that the water-related, sectoral developmental objectives are found in all the 5 developmental thrusts in the 9th Malaysia Plan. This is because water is an essential natural resource and is also an economic good. Thus, it was concluded that in order for the monitoring of investments in IWRM and results to be effective and useful to support policy formulation to achieve the goal of IWRM there is a need for a collation of all information reported under the different, water-related, sectoral developmental objectives in the 9th Malaysia Plan to be organised within an IWRM framework. It was also concluded that a major IWRM challenge for Malaysia is how to make the transition from the current, narrow, sector-specific, financial and budgeting paradigm of the sectorial agencies to the “total cost” paradigm that involves taking into consideration and integrating the costs in other sectors affected by any projects proposed within a sector. The current, sectorial-focus approach, adopted in the 9th Malaysia Plan, logically measures the effectiveness of sectorial agencies by their ability to achieve their immediate sectorial goals and targets, most often with emphasis on infrastructure projects since the impacts of such projects are usually immediate and visible. However, the use of such approach alone, without taking into account the costs that are borne by other interfacing sectors, and also within the sector over the long term

  15. Monitoring pharmaceuticals and personal care products in reservoir water used for drinking water supply.

    Science.gov (United States)

    Aristizabal-Ciro, Carolina; Botero-Coy, Ana María; López, Francisco J; Peñuela, Gustavo A

    2017-03-01

    In this work, the presence of selected emerging contaminants has been investigated in two reservoirs, La Fe (LF) and Rio Grande (RG), which supply water to two drinking water treatment plants (DWTPs) of Medellin, one of the most populated cities of Colombia. An analytical method based on solid-phase extraction (SPE) of the sample followed by measurement by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was developed and validated for this purpose. Five monitoring campaigns were performed in each reservoir, collecting samples from 7 sites (LF) and 10 sites (RG) at 3 different depths of the water column. In addition, water samples entering in the DWTPs and treated water samples from these plans were also analysed for the selected compounds. Data from this work showed that parabens, UV filters and the pharmaceutical ibuprofen were commonly present in most of the reservoir samples. Thus, methyl paraben was detected in around 90% of the samples collected, while ibuprofen was found in around 60% of the samples. Water samples feeding the DWTPs also contained these two compounds, as well as benzophenone at low concentrations, which was in general agreement with the results from the reservoir samples. After treatment in the DWTPs, these three compounds were still present in the samples although at low concentrations (water are still unknown. Further research is needed to evaluate the effect of chronic exposure to these compounds via consumption of drinking water.

  16. CDC's Prevention Status Reports: Monitoring the Status of Public Health Policies and Practices for Improved Performance and Accountability.

    Science.gov (United States)

    Young, Andrea C; Lowry, Garry; Mumford, Karen; Graaf, Christine

    2017-02-03

    Increasing the adoption and implementation of evidence-based policies and practices is a key strategy for improving public health. Although there is widespread agreement about the importance of implementing evidence-based public health policies and practices, there are gaps between what has been shown to be effective and what is implemented at the state level. The Centers for Disease Control and Prevention (CDC) developed the Prevention Status Reports (PSRs), a performance measurement system, to highlight evidence-based public health policies and practices and catalyze state performance and quality improvement efforts across the nation. CDC selected a set of 10 topics representing some of the most important public health challenges in the nation. Stakeholders, including state health departments and other partners, helped conceptualize the PSRs and informed the development of the PSR framework, which provides an organizational structure for the system. CDC subject matter experts developed criteria for selecting policies and practices, indicators for each policy and practice, and a criteria-based rating system for each indicator. The PSRs were developed for all 50 states and the District of Columbia. The PSRs were developed and serve as a performance measurement system for monitoring the adoption, reach, and implementation fidelity of evidence-based public health policies and practices nationwide. The PSRs include 33 policy and practice indicators across the 10 health topics. They use a simple 3-level rating system-green, yellow, and red-to report the extent to which each state (and the District of Columbia) has implemented the policy or practice in accordance with supporting evidence or expert recommendations. Results from aggregate analyses show positive change or improvement. The PSRs are a unique part of CDC's work to improve the performance and accountability of the public health system, serving as both a monitoring tool and a call to action to improve health

  17. 40 CFR 141.86 - Monitoring requirements for lead and copper in tap water.

    Science.gov (United States)

    2010-07-01

    ... § 141.86 Monitoring requirements for lead and copper in tap water. (a) Sample site location. (1) By the... requirements of § 141.87(e)(2), that it has re-qualified for triennial monitoring. (vii) Any water system... requirements for lead (i.e., a “lead waiver”), the water system must provide certification and...

  18. 40 CFR 264.97 - General ground-water monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... FACILITIES Releases From Solid Waste Management Units § 264.97 General ground-water monitoring requirements. The owner or operator must comply with the following requirements for any ground-water monitoring... 40 Protection of Environment 25 2010-07-01 2010-07-01 false General ground-water...

  19. Geoelectrical monitoring of water movement in the unsaturated zone

    Science.gov (United States)

    Berthold, Susann; Geib, Tobias

    2013-04-01

    To continually track the water movement in the unsaturated zone and monitor groundwater recharge, two geoelectrical profiles were permanently installed in the catchment area of a waterworks. The geoelectrical profiles were set up in areas with different groundwater recharge. One profile was installed on a forest clearing, where the unsaturated zone is eight meters thick and dominated by sand. The second profile was installed in heathland, where the unsaturated zone is eleven meters thick and dominated by fine sand. The profile length for the geoelectrical measurements and the number of electrodes per profile were chosen depending on the depth of the groundwater table. The geoelectrical measurements were carried out autonomously twice a day. Remote data transmission made the data instantaneously available for analysis and evaluation. During the entire period of investigation, that is August 2011 to December 2012, the geoelectrical profiles worked independently with low maintenance. During this period, approximately 800 data sets were recorded at each location. Each individual data set contained several thousand measuring points in the geoelectrical cross section. To handle the large amounts of data and efficiently interpret them, a largely automatic algorithm, the so-called ELMON algorithm, was developed. The algorithm reads in the raw measurement values and allows fast acquisition of incorrect measurements and, where appropriate, initiation of maintenance (for example, to troubleshoot browsing by game). The detected erroneous measurements are automatically removed. Then, the change in soil electrical conductivity is determined via a physically founded calculation method developed in the framework of the project. The change in soil electrical conductivity is represented compared to a reference state, e.g. the day prior to a rain event. Using the ELMON algorithm, the water movement through the unsaturated zone could be monitored over a period of more than a year

  20. Monitoring van Vis in Overgangswateren conform de eisen van de Kaderrichtlijn Water

    NARCIS (Netherlands)

    Leeuw, de J.J.

    2006-01-01

    In het kader van de monitoringsverplichtingen vanuit de Europese Kaderrichtlijn Water (KRW) is onderzocht welke vormen van visbemonsteringen geschikt zijn voor toestand en trend monitoring en operationele monitoring en worden monitoringsstrategieen voor overgangswateren en zoute meren besproken.

  1. Integrated Status and Effectiveness Monitoring Program - Entiat River Snorkel Surveys, 2006-2007.

    Energy Technology Data Exchange (ETDEWEB)

    Nelle, R.D.

    2007-10-01

    The USFWS Mid-Columbia River Fishery Resource Office conducted snorkel surveys at 11 sites during the summer 2006 survey period and at 15 sites during fall 2006 and winter 2007 survey periods as part of the Integrated Status and Effectiveness Monitoring Program in the Entiat River. A total of 39,898 fish from 14 species/genera and an unknown category were enumerated. Chinook salmon were the overall most common fish observed and comprised 19% of fish enumerated followed by mountain whitefish (18%) and rainbow trout (14%). Day and night surveys were conducted during the summer 2006 period (August), while night surveys were conducted during the fall 2006 (October) and winter 2007 (February/March) surveys. This is second annual progress report to Bonneville Power Administration for the snorkel surveys conducted in the Entiat River as related to long-term effectiveness monitoring of restoration programs in this watershed. The objective of this study is to monitor the fish habitat utilization of planned in-stream restoration efforts in the Entiat River by conducting pre- and post-construction snorkel surveys at selected treatment and control sites.

  2. Detecting Canopy Water Status Using Shortwave Infrared Reflectance Data From Polar Orbiting and Geostationary Platforms

    DEFF Research Database (Denmark)

    Fensholt, Rasmus; Huber Gharib, Silvia; Proud, Simon Richard;

    2010-01-01

    Various canopy water status estimates have been developed from recent advances in Earth Observation (EO) technology. A promising methodology is based on the sensitivity of shortwave infrared (SWIR) reflectance to variations in leaf water content. This study explores the potential of SWIR-based ca......Various canopy water status estimates have been developed from recent advances in Earth Observation (EO) technology. A promising methodology is based on the sensitivity of shortwave infrared (SWIR) reflectance to variations in leaf water content. This study explores the potential of SWIR......-based canopy water status detection from geostationary Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) data as compared to polar orbiting environmental satellite (POES)-based moderate resolution imaging spectroradiometer (MODIS) data. The EO-based SWIR water stress index...

  3. Use of satellite images for the monitoring of water systems

    Science.gov (United States)

    Hillebrand, Gudrun; Winterscheid, Axel; Baschek, Björn; Wolf, Thomas

    2015-04-01

    Satellite images are a proven source of information for monitoring ecological indicators in coastal waters and inland river systems. This potential of remote sensing products was demonstrated by recent research projects (e.g. EU-funded project Freshmon - www.freshmon.eu) and other activities by national institutions. Among indicators for water quality, a particular focus was set on the temporal and spatial dynamics of suspended particulate matter (SPM) and Chlorophyll-a (Chl-a). The German Federal Institute of Hydrology (BfG) was using the Weser and Elbe estuaries as test cases to compare in-situ measurements with results obtained from a temporal series of automatically generated maps of SPM distributions based on remote sensing data. Maps of SPM and Chl-a distributions in European inland rivers and alpine lakes were generated by the Freshmon Project. Earth observation based products are a valuable source for additional data that can well supplement in-situ monitoring. For 2015, the BfG and the Institute for Lake Research of the State Institute for the Environment, Measurements and Nature Conservation of Baden-Wuerttemberg, Germany (LUBW) are in the process to start implementing an operational service for monitoring SPM and Chl-a based on satellite images (Landsat 7 & 8, Sentinel 2, and if required other systems with higher spatial resolution, e.g. Rapid Eye). In this 2-years project, which is part of the European Copernicus Programme, the operational service will be set up for - the inland rivers of Rhine and Elbe - the North Sea estuaries of Elbe, Weser and Ems. Furthermore - Lake Constance and other lakes located within the Federal State of Baden-Wuerttemberg. In future, the service can be implemented for other rivers and lakes as well. Key feature of the project is a data base that holds the stock of geo-referenced maps of SPM and Chl-a distributions. Via web-based portals (e.g. GGInA - geo-portal of the BfG; UIS - environmental information system of the

  4. Water monitoring and its information management system in China; Chugoku ni okeru suishitsu monitoring to joho kanri system

    Energy Technology Data Exchange (ETDEWEB)

    Quan, H.

    1996-01-10

    This paper summarizes the water monitoring system (WMS) in China applied mainly to surface water and operated within the competence of the Environmental Protection Agency. The WMS consists of a national water monitoring network and a water information system that monitors surface water periodically. The WMS comprises water monitoring stations classified from class 1 to class 4, which are located in 2,222 locations. Stations from class 1 to class 3 are operated by using computers, but class 4 stations are still incapable to use floppy disks to perform information transmission. When an information management system is completed at the China-Japan Friendship Environmental Protection Center being constructed by gratis assistance from the Japanese Government, transmission of water quality data will become possible by means of the cable line system in addition to the table system and the floppy system. The water quality data are published to general people in the forms of Chinese gazette for the environmental conditions, the environment yearbook, and the reports on environmental quality. However, the more important is to publish more publications to make people aware of the actual state of water pollution and have them cooperate in environment preservation. 4 refs., 1 fig.

  5. Infauna monitoring Horns Rev offshore wind farm. Annual status report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Bech, M.; Leonhars, S.B.; Pedersen, John

    2004-05-15

    ELSAM and ELTRA have established an offshore wind farm with an output of 160 MW in the waters of Horns Rev 1420 km off Blaevands Huk, which is the most westerly point of Denmark. The first phase of construction of the wind farm started in spring 2002. Before the construction activities took place, a baseline description of the benthos was conducted as a part of an environmental monitoring programme for the establishment of the Horns Rev Offshore Wind Farm. The baseline surveys for the present monitoring programme were conducted in the wind farm area on three occasions: spring 1999, spring 2001 and September 2001. In designated reference areas, surveys were conducted in spring 1999 and September 2001. The reference areas in 1999 and September 2001 were placed at two different geographical locations because the survey in September 2001 was planned to be a part of a fish monitoring programme. A comparison between the baseline study in spring 2001 and the baseline study in autumn 2001 clearly revealed that the biomass of most species increased considerably from spring to September. Despite the increase in biomass, the overall distribution of the species and their relative abundance did not change. In order to use the baseline data to investigate a possible impact after the construction of the wind farm, it was essential to arrange the monitoring programme either in spring or in September 2003, because the baseline studies were conducted in these periods. The monitoring programme was conducted in September 2003 after the wind farm had become operational, parallel with the survey on hard bottom substrates. The impacts of the wind farm on the benthic fauna (infauna) in the area were mainly expected to be due to the alteration of the local currents. As the changes in the currents are only minor, impacts on the water chemistry and on the benthic fauna resulting from hydrodynamic causes were expected to be limited or non-existent. The main objective of the present monitoring

  6. Use of seaweeds for monitoring trace elements in coastal waters.

    Science.gov (United States)

    Jayasekera, R; Rossbach, M

    1996-06-01

    Concentrations of a wide range of trace elements: arsenic, cadmium, cobalt, chromium, hafnium, nickel, thorium, uranium, zinc and the rare earth elements, cerium, europium, samarium, terbium and ytterbium were determined by instrumental neutron activation analysis in the brown alga,Fucus vesiculosus from Eckwarder Hörne, North Sea and from Rügen, Baltic Sea. Another brown alga,Sargassum filipendula from Sri Lanka, Indian ocean (representing an unpolluted control station) was similarly investigated. Cobalt, chromium and nickel concentrations were highest inF. vesiculosus from the North Sea while zinc was highest in samples from the Baltic Sea, reflecting high levels of these elements in coastal waters of the North and the Baltic sea. Cadmium, cobalt, nickel and zinc levels were lowest inS. filipendula from Sri Lanka, probably demonstrating lower levels of those elements in coastal waters. Concentration levels of hafnium, thorium, uranium, and the rare earth elements were highest inS. filipendula. Two years later in 1994,S. filipendula along withUlva sp. (green alga) was resampled from the same sampling site, and in addition to the above elements, six other trace elements (Ag, Ba, Br, Rb, Se and Sr) were determined.Sargassium filipendula showed a particular affinity for Ag, As, Br and Sr. For the other elements, marginal concentration differences were observed betweenS. filipendula andUlva sp., probably reflecting the regional background levels. Substantially higher concentrations of Hf, Th, U, and the rare earths were found again in the 1994Sargassum andUlva samples, reflecting the effect of a substrate rich in rare earth elements. The brown algae used in this study may be used to monitor trace elements in coastal waters.

  7. A real time status monitor for transistor bank driver power limit resistor in boost injection kicker power supply

    Energy Technology Data Exchange (ETDEWEB)

    Mi, J.; Tan, Y.; Zhang, W.

    2011-03-28

    For years suffering of Booster Injection Kicker transistor bank driver regulator troubleshooting, a new real time monitor system has been developed. A simple and floating circuit has been designed and tested. This circuit monitor system can monitor the driver regulator power limit resistor status in real time and warn machine operator if the power limit resistor changes values. This paper will mainly introduce the power supply and the new designed monitoring system. This real time resistor monitor circuit shows a useful method to monitor some critical parts in the booster pulse power supply. After two years accelerator operation, it shows that this monitor works well. Previously, we spent a lot of time in booster machine trouble shooting. We will reinstall all 4 PCB into Euro Card Standard Chassis when the power supply system will be updated.

  8. Water quality indices across Europe--a comparison of the good ecological status of five river basins.

    Science.gov (United States)

    von der Ohe, Peter Carsten; Prüss, Andrea; Schäfer, Ralf Bernhard; Liess, Matthias; de Deckere, Eric; Brack, Werner

    2007-09-01

    The European Water Framework Directive (WFD) requires the definition of near-natural reference conditions to determine the extent of water bodies' deviation from "good ecological status" caused by stress gradients. However, the classification of ecological quality depends on the assessment method applied and the stressor concerned. While assessment methods that are generally applicable would be favourable, many European countries employ the locally developed water quality metrics that assess the impact of organic pollution (including eutrophication) and the associated decrease in dissolved oxygen. These indices do not specifically address stress from organic toxicants, such as pesticides. The aim of this study was to examine the performance of presently used assessment methods to identify reference conditions of non-contaminated streams in five selected European river basins, covering the geographical region from Spain to Finland, as a crucial prerequisite to indicate toxic gradients. The analysis comprised the Belgium biotic index (BBI), the biological monitoring working party (BMWP) scoring system and the revised German saprobic index. For comparison, we included an adaptation of the recently developed SPEAR index. In two previous field studies, this metric highly correlated with measured pesticide gradients. In this study, SPEAR was the only indicator that was generally applicable to all monitoring data and capable of determining "high ecological status" of reference conditions in all basins. Thus, based upon previous and own results, the authors suggest the species at risk (SPEAR) index to be potentially useful as a European-wide index to address deviations from "good ecological status" due to organic toxicants and recommend it for consideration in integrated water-resource evaluations under the WFD.

  9. The status of water and sanitation among Pacific Rim nations.

    Science.gov (United States)

    Arnold, Robert G; Heyworthz, Jane; Sáez, A Eduardo; Rodriguez, Clemencia; Weinstein, Phil; Ling, Bo; Memon, Saima

    2011-01-01

    Analysis of relationships among national wealth, access to improved water supply and sanitation facilities, and population health indices suggests that the adequacy of water resources at the national level is a poor predictor of economic development--namely, that low water stress is neither necessary nor sufficient for economic development at the present state of water stress among Pacific Rim nations. Although nations differ dramatically in terms of priority provided to improved water and sanitation, there is some level of wealth (per capita GNP) at which all nations promote the development of essential environmental services. Among the Pacific Rim countries for which there are data, no nation with a per capita GNP > US$18,000 per year has failed to provide near universal access to improved water supply and sanitation. Below US$18,000/person-year, however, there are decided differences in the provision of sanitary services (improved water supply and sanitation) among nations with similar economic success. There is a fairly strong relationship between child mortality/life expectancy and access to improved sanitation, as expected from the experiences of developed nations. Here no attempt is made to produce causal relationships among these data. Failure to meet Millennium Development Goals for the extension of improved sanitation is frequently evident in nations with large rural populations. Under those circumstances, capital intensive water and sanitation facilities are infeasible, and process selection for water/wastewater treatment requires an adaptation to local conditions, the use of appropriate materials, etc., constraints that are mostly absent in the developed world. Exceptions to these general ideas exist in water-stressed parts of developed countries, where water supplies are frequently augmented by water harvesting, water reclamation/reuse, and the desalination of brackish water resources. Each of these processes involves public acceptance of water

  10. The Water Demand Management by Monitoring the Technology Performance and the Water Use Efficiency

    Directory of Open Access Journals (Sweden)

    Fraj Chemak

    2012-01-01

    Full Text Available Problem statement: Given the climate constraints and the limited resources, Tunisia has developed the irrigated sector in order to diversify the agricultural production and to meet the food needs of the population. Today the policy of water supply reaches its limits and the efforts should be turned to the management of the water demand. Within this context, this research aims to analyze the farming system, the technology performance and the water use efficiency of the irrigated farms in the Sidi Bouzid region. Approach: By monitoring the sample of 47 farms during the harvesting years 2007, 2008 and 2009 we have gathered database which involved technical and economical details. By analyzing the farming system we have identified the technology process in order to estimate the production frontier using the Data Envelopment Analysis (DEA approach. The sub-vector approach of the DEA model was used to compute the water use efficiency. Results: The empirical findings showed that farmers grow olive trees, cereal crops, forage crops and horticulture crops. During the surveyed period the share of the different crops did not change significantly. The water consumption reaches only an average of 2700 m3/ha. However, the charge of irrigation represents more than 40% out of the total expenditures. The results of the DEA model showed that 50% of farms are inefficient and the technical efficiency reaches an average of 81%. The average of the scale efficiency reached 88%. However, the water use efficiency did not exceed an average of 68%. Hence, 32% of the water currently used should be saved. Conclusion: There is a wide gap to improve skills and the ability of the farmers to achieve the best of the water use efficiency. Thus, we suggest that the state intervention is necessary not only to reduce the wasting of water but also to set up an accompanying device that reconciles water conservation and the production targets.

  11. EPA Enforcement and Compliance History Online: Water Discharge Monitoring Report Data Sets for FY2011

    Data.gov (United States)

    U.S. Environmental Protection Agency — Integrated Compliance Information System (ICIS) National Pollutant Discharge Elimination System (NPDES) Discharge Monitoring Report (DMR) data sets for Clean Water...

  12. EPA Enforcement and Compliance History Online: Water Discharge Monitoring Report Data Sets for FY2015

    Data.gov (United States)

    U.S. Environmental Protection Agency — Integrated Compliance Information System (ICIS) National Pollutant Discharge Elimination System (NPDES) Discharge Monitoring Report (DMR) data sets for Clean Water...

  13. EPA Enforcement and Compliance History Online: Water Discharge Monitoring Report Data Sets for FY2014

    Data.gov (United States)

    U.S. Environmental Protection Agency — Integrated Compliance Information System (ICIS) National Pollutant Discharge Elimination System (NPDES) Discharge Monitoring Report (DMR) data sets for Clean Water...

  14. EPA Enforcement and Compliance History Online: Water Discharge Monitoring Report Data Sets for FY2016

    Data.gov (United States)

    U.S. Environmental Protection Agency — Integrated Compliance Information System (ICIS) National Pollutant Discharge Elimination System (NPDES) Discharge Monitoring Report (DMR) data sets for Clean Water...

  15. EPA Enforcement and Compliance History Online: Water Discharge Monitoring Report Data Sets for FY2013

    Data.gov (United States)

    U.S. Environmental Protection Agency — Integrated Compliance Information System (ICIS) National Pollutant Discharge Elimination System (NPDES) Discharge Monitoring Report (DMR) data sets for Clean Water...

  16. EPA Enforcement and Compliance History Online: Water Discharge Monitoring Report Data Sets for FY2009

    Data.gov (United States)

    U.S. Environmental Protection Agency — Integrated Compliance Information System (ICIS) National Pollutant Discharge Elimination System (NPDES) Discharge Monitoring Report (DMR) data sets for Clean Water...

  17. EPA Enforcement and Compliance History Online: Water Discharge Monitoring Report Data Sets for FY2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — Integrated Compliance Information System (ICIS) National Pollutant Discharge Elimination System (NPDES) Discharge Monitoring Report (DMR) data sets for Clean Water...

  18. EPA Enforcement and Compliance History Online: Water Discharge Monitoring Report Data Sets for FY2012

    Data.gov (United States)

    U.S. Environmental Protection Agency — Integrated Compliance Information System (ICIS) National Pollutant Discharge Elimination System (NPDES) Discharge Monitoring Report (DMR) data sets for Clean Water...

  19. Variation of Plant Electrophysiology in Cucumber under Different Water Status

    Institute of Scientific and Technical Information of China (English)

    LI Guo-chen; YU Hai-ye; MA Cheng-lin; WANG Rui

    2005-01-01

    AP and VP were measured in cucumbers under water sufficiency and water stress. The results indicated that, the AP would be evoked by electrical impulse, for water-stressed cucumber, its amplitude could reached more than 40 mV which was obviously greater than that (about 10-20 mV) of plant under well-watered,and no VP came out. Along with the intensity of light increased, the VP appeared going-up trend, and accompanied by evidently spiking electrical signal, for plant under water stress, the VP increased more clearly, but the change of spiking amplitude of AP (about 3 mY) was rather smaller than that (8-10 mY) of plant under well-watered.

  20. Integrated landslide monitoring: rainfalls, pore water pressures and surface movements

    Science.gov (United States)

    Berti, M.; Casula, G.; Elmi, C.; Fabris, M.; Ghirotti, M.; Loddo, F.; Mora, P.; Pesci, A.; Simoni, A.

    2003-04-01

    Rainfall-induced landslides involving clay-rich soils are widely represented in the Apennines. They cover up to 30% of the slopes forming the relief constituted by chaotic clayey units and are typically subject to repeated reactivations of the movement which are often triggered by a series of discrete failures located in the upper part (headscarp). Failures and movement can then propagate downslope and reactivate the whole landslide deposit which displays a typical elongated body, limited depth and a fan-shaped toe as a result of successive slow earth-flow like movements. An experimental monitoring programme was designed and is currently operating on the Rocca Pitigliana landslide whose characteristics well represent the above described type of movements. Its last parossistic movement date back to 1999 and, since then, remedial works were realized on behalf of local authorities. They basically consist of surficial and deep drainage works located on the landslide body. Experimental activities focus on the main headscarp whose morphology and sub-surface water circulation scheme were unaffected by the interventions. The monitoring approach includes measuring rainfalls and pore-pressure responses in both saturated and unsaturated soils. Surficial movements are continuously measured by means of GPS permanent stations and by wire extensometers which allow real time control of headscarp activity. Main aim of the monitoring activities is to provide experimental data, which can be used to test various existing hydrologic models and to identify triggering conditions. Since the ‘70s, many hydrologic models have been proposed to describe the pore water pressure distribution within the soil and its response to precipitation. The topic has recently drawn growing attention because of the recognized importance in landslide triggering but still experimental data are very much needed in order to obtain and validate capable predicting tools. This is mostly due to the multiple and

  1. Water balance of rice plots under three different water treatments: monitoring activity and experimental results

    Science.gov (United States)

    Chiaradia, Enrico Antonio; Romani, Marco; Facchi, Arianna; Gharsallah, Olfa; Cesari de Maria, Sandra; Ferrari, Daniele; Masseroni, Daniele; Rienzner, Michele; Battista Bischetti, Gian; Gandolfi, Claudio

    2014-05-01

    In the agricultural seasons 2012 and 2013, a broad monitoring activity was carried out at the Rice Research Centre of Ente Nazionale Risi (CRR-ENR) located in Castello d'Agogna (PV, Italy) with the purpose of comparing the water balance components of paddy rice (Gladio cv.) under different water regimes and assessing the possibility of reducing the high water inputs related to the conventional practice of continuous submergence. The experiments were laid out in six plots of about 20 m x 80 m each, with two replicates for each of the following water regimes: i) continuous flooding with wet-seeded rice (FLD), ii) continuous flooding from around the 3-leaf stage with dry-seeded rice (3L-FLD), and iii) surface irrigation every 7-10 days with dry-seeded rice (IRR). One out of the two replicates of each treatment was instrumented with: water inflow and outflow meters, set of piezometers, set of tensiometers and multi-sensor moisture probes. Moreover, an eddy covariance station was installed on the bund between the treatments FLD and IRR. Data were automatically recorded and sent by a wireless connection to a PC, so as to be remotely controlled thanks to the development of a Java interface. Furthermore, periodic measurements of crop biometric parameters (LAI, crop height and rooting depth) were performed in both 2012 and 2013 (11 and 14 campaigns respectively). Cumulative water balance components from dry-seeding (3L-FLD and IRR), or flooding (FLD), to harvest were calculated for each plot by either measurements (i.e. rainfall, irrigation and surface drainage) or estimations (i.e. difference in the field water storage, evaporation from both the soil and the water surface and transpiration), whereas the sum of percolation and capillary rise (i.e. the 'net percolation') was obtained as the residual term of the water balance. Incidentally, indices of water application efficiency (evapotranspiration over net water input) and water productivity (grain production over net water

  2. Groundwater and surface water monitoring program for karst river basin: example of the Jadro and Žrnovnica Rivers

    Science.gov (United States)

    Jukić, D.; Denić-Jukić, V.

    2009-04-01

    have not been recorded at any of these stations. Since 1970s, Croatian waters carry out water quality monitoring on surface waters and springs in accordance with the National water quality monitoring program. In the Jadro and Žrnovnica Rivers catchment area, the National water quality monitoring program is performed at the following stations: Jadro-Izvorište, Jadro-Ribogojilište, Jadro-Ušće, Žrnovnica-Izvorište and Žrnovnica-Ušće. In line with the Croatian legislation that has been in force, the monitoring of water status at these stations has been performed 12 times a year by testing: mandatory indices (physico - chemical, oxygen regime, nutrients, microbiological, biological) and specific indices (metals, organic compounds). The group of mandatory indices serves for determining of the general ecological function of water, whereas the group of specific indices serves for a wider assessment of the general ecological function of water and for determination of the terms of water use for particular purposes. The proposed meteorological, surface water and groundwater monitoring programs for the basin of the Jadro and Žrnovnica Rivers have three main objectives: (1) harmonization of monitoring with requirements of the EU Water Directives, (2) collection of data essential for further investigation of hydrologic and hydrogeologic characteristics of the karst aquifer, (3) continuous collection of data required for water management at operational level. Following these objectives, the proposed monitoring programs detail the design of surveillance, operational and investigative monitoring for surface waters and the monitoring of quantitative and chemical status for groundwaters. The proposed monitoring programs cover all essential meteorological, hydrological and water quality parameters to the extent relevant for the water management at operational level and the further investigation of hydrologic and hydrogeologic characteristics of the karst aquifer. Groundwater

  3. Status and challenges of residential and industrial non-intrusive load monitoring

    DEFF Research Database (Denmark)

    Adabi, Ali; Mantey, Patrick; Holmegaard, Emil

    2015-01-01

    Non-Intrusive Load Monitoring (NILM) is the process of identification of loads from an aggregate power interface using disaggregation algorithms. This paper identifies the current status, methodologies and challenges of NILM in residential and industrial settings. NILM has advanced substantially...... in recent years due to improvement in algorithms and methodologies. Currently, the important challenges facing residential NILM are inaccessibility of electricity meter high sampling data, and lack of reliable high resolution datasets. For industrial NILM the identification is more challenging due...... to increased number of loads and the variability of equipment type, temporal patterns and industrial secrecy. From our examination of data and its use in NILM, we observe that the number of devices that can be recognized and the training period required to achiever recognition is not only a function...

  4. Radioactivity monitoring in environmental water and air around QNPP

    Institute of Scientific and Technical Information of China (English)

    XIANG Yuanyi; WANG Kan; ZHANG Yu; CAO Zhonggang; YE Jida; WANG Hongfeng

    2007-01-01

    Results of environmental radioactivity monitoring around Qinshan Nuclear Power Plant (QNPP) are reported in this paper. From 1992 to 2005, concentrations of 90Sr, 137Cs and 3H in terrestrial freshwater are (4.4±1.7) mBq·L-1, (0.3±0.1) mBq·L-1 and (1.6±0.5) Bq·L-1, respectively, and (2.8±2.4) Bq·L-1 of 3H in rainwater. Concentrations of 90Sr, 137Cs and 3H in the seawater samples collected from sea area nearby QNPP are (5.4±4.1) mBq·L-1,(0.7±0.2) mBq·L-1 and (1.0±0.5) Bq·L-1, respectively. Concentrations of 90Sr, 137Cs and 3H in the total waste water discharged from NPP-I are (4.0±1.8) m Bq·L-1, (1.0±0.5) mBq·L-1 and (2.8±2.2) Bq·L-1, respectively, and (1.4±0.4)Bq·L-1 of 3H in seawater sampled from No.1 outlet. Atomspheric 3H concentration in 1993 ~ 2005 at two monitoring sites is (78.9±96.3) and (64.2±40.2) mBq·m-3, respectively, with an increasing trend after 2003. Atmospheric 14C concentrations at the two sites are in the same levels as the background and data of the reference site.

  5. Water quality monitoring records for estimating tap water arsenic and nitrate: a validation study

    Directory of Open Access Journals (Sweden)

    Kuehn Carrie M

    2010-01-01

    Full Text Available Abstract Background Tap water may be an important source of exposure to arsenic and nitrate. Obtaining and analyzing samples in the context of large studies of health effects can be expensive. As an alternative, studies might estimate contaminant levels in individual homes by using publicly available water quality monitoring records, either alone or in combination with geographic information systems (GIS. Methods We examined the validity of records-based methods in Washington State, where arsenic and nitrate contamination is prevalent but generally observed at modest levels. Laboratory analysis of samples from 107 homes (median 0.6 μg/L arsenic, median 0.4 mg/L nitrate as nitrogen served as our "gold standard." Using Spearman's rho we compared these measures to estimates obtained using only the homes' street addresses and recent and/or historical measures from publicly monitored water sources within specified distances (radii ranging from one half mile to 10 miles. Results Agreement improved as distance decreased, but the proportion of homes for which we could estimate summary measures also decreased. When including all homes, agreement was 0.05-0.24 for arsenic (8 miles, and 0.31-0.33 for nitrate (6 miles. Focusing on the closest source yielded little improvement. Agreement was greatest among homes with private wells. For homes on a water system, agreement improved considerably if we included only sources serving the relevant system (ρ = 0.29 for arsenic, ρ = 0.60 for nitrate. Conclusions Historical water quality databases show some promise for categorizing epidemiologic study participants in terms of relative tap water nitrate levels. Nonetheless, such records-based methods must be used with caution, and their use for arsenic may be limited.

  6. Monitoring drip water isotope and element variability: A new device for automatic drip water collection

    Science.gov (United States)

    Breitenbach, S. F. M.; Gilbert, M.-J.; Kwiecien, O.; Seifert, R.; Fleitmann, D.

    2012-04-01

    Understanding cave drip water elemental and stable isotope composition (δD and δ18O) are vital for interpreting climate proxy records derived from stalagmites as palaeoclimate archives. Delineating the temporal changes in drip water chemistry to climatic and environmental fluctuations (such as rainfall amount, degassing, bioactivity etc.) is even more important if calibration is attempted between climatic parameters and stalagmite proxy records. Monitoring of remote study sites has often been limited by the ability to regularly and manually collect drip water samples over an extended period of time. One important complication to be considered for stable isotope analysis is that sampling vials must be closed air-tight, in order to avoid post-sampling evaporation of the sampled water. To overcome these limitations we developed an automated and programmable sampling device that can collect 12 ml of drip water at pre-defined time intervals. A total of 49 samples can be collected in a turret over a period of up to one year. The device is powered by widely available C-cell batteries and works in cave environments with positive air temperature. The autosampler has been installed and tested in Waldheim Cave, Switzerland, where we collected water at 24h intervals. We present preliminary data for the winter period December 2011 to March 2012.

  7. Semiconductor photocatalysts for water oxidation: current status and challenges.

    Science.gov (United States)

    Yang, Lingling; Zhou, Han; Fan, Tongxiang; Zhang, Di

    2014-04-21

    Artificial photosynthesis is a highly-promising strategy to convert solar energy into hydrogen energy for the relief of the global energy crisis. Water oxidation is the bottleneck for its kinetic and energetic complexity in the further enhancement of the overall efficiency of the artificial photosystem. Developing efficient and cost-effective photocatalysts for water oxidation is a growing desire, and semiconductor photocatalysts have recently attracted more attention due to their stability and simplicity. This article reviews the recent advancement of semiconductor photocatalysts with a focus on the relationship between material optimization and water oxidation efficiency. A brief introduction to artificial photosynthesis and water oxidation is given first, followed by an explanation of the basic rules and mechanisms of semiconductor particulate photocatalysts for water oxidation as theoretical references for discussions of componential, surface structure, and crystal structure modification. O2-evolving photocatalysts in Z-scheme systems are also introduced to demonstrate practical applications of water oxidation photocatalysts in artificial photosystems. The final part proposes some challenges based on the dynamics and energetics of photoholes which are fundamental to the enhancement of water oxidation efficiency, as well as on the simulation of natural water oxidation that will be a trend in future research.

  8. The National Water-Quality Assessment (NAWQA) Program planned monitoring and modeling activities for Texas, 2013–23

    Science.gov (United States)

    Ging, Patricia

    2013-01-01

    The U.S. Geological Survey’s (USGS) National Water-Quality Assessment (NAWQA) Program was established by Congress in 1992 to answer the following question: What is the status of the Nation’s water quality and is it getting better or worse? Since 1992, NAWQA has been a primary source of nationally consistent data and information on the quality of the Nation’s streams and groundwater. Data and information obtained from objective and nationally consistent water-quality monitoring and modeling activities provide answers to where, when, and why the Nation’s water quality is degraded and what can be done to improve and protect it for human and ecosystem needs. For NAWQA’s third decade (2013–23), a new strategic Science Plan has been developed that describes a strategy for building upon and enhancing the USGS’s ongoing assessment of the Nation’s freshwater quality and aquatic ecosystems.

  9. EPA Team Helps Water Systems Comply with New Bacteria Monitoring Rule

    Science.gov (United States)

    An EPA team issued nearly 200 Administrative Orders in support of Pennsylvania and Virginia to ensure that small public water systems followed new requirements for more frequent bacteria monitoring of their water supplies.

  10. Annual monitoring report for Dorris Reservoir Modoc National Wildlife Refuge water year 1996

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is an annual water use report based on the Monitoring Plan for Dorris Reservoir. Table 1 provides monthly summaries of the information for the 1997 water year....

  11. Annual monitoring report for Dorris Reservoir Modoc National Wildlife Refuge water year 1997

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is an annual water use report based on the Monitoring Plan for Dorris Reservoir. Table 1 provides monthly summaries of the information for the 1997 water year....

  12. Recommendations for Optimizing Tuberculosis Treatment: Therapeutic Drug Monitoring, Pharmacogenetics, and Nutritional Status Considerations.

    Science.gov (United States)

    Choi, Rihwa; Jeong, Byeong Ho; Koh, Won Jung; Lee, Soo Youn

    2017-03-01

    Although tuberculosis is largely a curable disease, it remains a major cause of morbidity and mortality worldwide. Although the standard 6-month treatment regimen is highly effective for drug-susceptible tuberculosis, the use of multiple drugs over long periods of time can cause frequent adverse drug reactions. In addition, some patients with drug-susceptible tuberculosis do not respond adequately to treatment and develop treatment failure and drug resistance. Response to tuberculosis treatment could be affected by multiple factors associated with the host-pathogen interaction including genetic factors and the nutritional status of the host. These factors should be considered for effective tuberculosis control. Therefore, therapeutic drug monitoring (TDM), which is individualized drug dosing guided by serum drug concentrations during treatment, and pharmacogenetics-based personalized dosing guidelines of anti-tuberculosis drugs could reduce the incidence of adverse drug reactions and increase the likelihood of successful treatment outcomes. Moreover, assessment and management of comorbid conditions including nutritional status could improve anti-tuberculosis treatment response.

  13. Ground Water Monitoring Using Laser Fluorescence And Fiber Optics

    Science.gov (United States)

    Chudyk, Wayne; Pohlig, Kenneth; Rico, Nicola; Johnson, Gregory

    1989-01-01

    In-situ measurement of aromatic ground water contaminants, including the benzene, ethylbenzene, toluene, and xylenes (BTEX) fraction of gasoline, has been demonstrated using fiber optic systems. A prototype field instrument has shown that this method has advantages over traditional sampling and analysis. Problems encountered and solved include coupling of the laser energy into to fiber, sensor design, and detector configuration to optimize instrument sensitivity. The effects of sensor length, corresponding to well depth, on limits of detection are presented. Effects of potential interferences, including external fluorescence quenchers, are discuss-ed. The resolution of complex mixtures is addressed, with modifications to the detector shown to be effective in separation of groups of contaminants. Instrument design considerations include the need for portability, ruggedness at field sites, and ease of operation. The modular instrument design used is shown to help solve these potential problems, while maintaining analytical sensitivity and reproducibility. Modular optical system design has also shown to be useful when modifications are made. Changes in the detector as well as provisions for multiple laser sources have allowed a flexible system to be configured to meet analytical demands as they arise. Sensor design considerations included high ultraviolet transmission, physical flexibility, resistance to breakage, and resistance to chemical and/or biological fouling. The approach to these problem areas is presented, as well as discussion of the methods used to minimize effects of fiber solarization. Results of testing the field portable prototype are presented for a variety of typical ground water analysis sites, illustrating the usefulness of this new technology in environmental monitoring.

  14. Data mining spacecraft telemetry: towards generic solutions to automatic health monitoring and status characterisation

    Science.gov (United States)

    Royer, P.; De Ridder, J.; Vandenbussche, B.; Regibo, S.; Huygen, R.; De Meester, W.; Evans, D. J.; Martinez, J.; Korte-Stapff, M.

    2016-07-01

    We present the first results of a study aimed at finding new and efficient ways to automatically process spacecraft telemetry for automatic health monitoring. The goal is to reduce the load on the flight control team while extending the "checkability" to the entire telemetry database, and provide efficient, robust and more accurate detection of anomalies in near real time. We present a set of effective methods to (a) detect outliers in the telemetry or in its statistical properties, (b) uncover and visualise special properties of the telemetry and (c) detect new behavior. Our results are structured around two main families of solutions. For parameters visiting a restricted set of signal values, i.e. all status parameters and about one third of all the others, we focus on a transition analysis, exploiting properties of Poincare plots. For parameters with an arbitrarily high number of possible signal values, we describe the statistical properties of the signal via its Kernel Density Estimate. We demonstrate that this allows for a generic and dynamic approach of the soft-limit definition. Thanks to a much more accurate description of the signal and of its time evolution, we are more sensitive and more responsive to outliers than the traditional checks against hard limits. Our methods were validated on two years of Venus Express telemetry. They are generic for assisting in health monitoring of any complex system with large amounts of diagnostic sensor data. Not only spacecraft systems but also present-day astronomical observatories can benefit from them.

  15. The status of water reuse in European textile sector.

    Science.gov (United States)

    Vajnhandl, Simona; Valh, Julija Volmajer

    2014-08-01

    The textile finishing industry is known as a very fragmented and heterogeneous industrial sector dominated mainly by small and medium enterprises (SMEs). As with many other industrial sectors in Europe, it is obliged to act more sustainably in regard to increasingly limited natural resources such as water. This paper presents in-depth survey of wastewater reuse programmes over the last ten years covering the European textile finishing industry. Different wastewater treatment solutions developed are presented and discussed. Special attention is given to the project AquaFit4Use (7th Framework Programme), where almost five years of project work has resulted in valuable know-how practices in water reuse for the most water consuming sectors in Europe i.e. paper, food, chemical and textile. Only the latter is discussed in this paper. The main negative impacts by the textile finishing sector on the environment are still related to intensive water consumption and wastewater discharge, characterised by greater amounts of organic chemicals and colouring agents, low biodegradability, and high salinity. End of pipe treatment of such complex effluents in order to produce reusable water is not feasible. Therefore, separation of waste effluents regarding their pollution level and their separate treatment was the basic approach used in the project. As a result waste effluents with a big reuse potential could be effectively treated by combination of conventional treatment technologies. Proposed water treatment scenarios enable more than 40% reduction in fresh water consumption. Since different guidelines of minimum water quality to be safely reuse in textile processes exist at this stage this issue is discussed as well.

  16. Assessment of Water-Quality Monitoring and a Proposed Water-Quality Monitoring Network for the Mosquito Lagoon Basin, East-Central Florida

    Science.gov (United States)

    Kroening, Sharon E.

    2008-01-01

    Surface- and ground-water quality data from the Mosquito Lagoon Basin were compiled and analyzed to: (1) describe historical and current monitoring in the basin, (2) summarize surface- and ground-water quality conditions with an emphasis on identifying areas that require additional monitoring, and (3) develop a water-quality monitoring network to meet the goals of Canaveral National Seashore (a National Park) and to fill gaps in current monitoring. Water-quality data were compiled from the U.S. Environmental Protection Agency's STORET system, the U.S. Geological Survey's National Water Information System, or from the agency which collected the data. Most water-quality monitoring focused on assessing conditions in Mosquito Lagoon. Significant spatial and/or seasonal variations in water-quality constituents in the lagoon were quantified for pH values, fecal coliform bacteria counts, and concentrations of dissolved oxygen, total nitrogen, total phosphorus, chlorophyll-a, and total suspended solids. Trace element, pesticide, and ground-water-quality data were more limited. Organochlorine insecticides were the major class of pesticides analyzed. A surface- and ground-water-quality monitoring network was designed for the Mosquito Lagoon Basin which emphasizes: (1) analysis of compounds indicative of human activities, including pesticides and other trace organic compounds present in domestic and industrial waste; (2) greater data collection in the southern part of Mosquito Lagoon where spatial variations in water-quality constituents were quantified; and (3) additional ground-water-quality data collection in the surficial aquifer system and Upper Floridan aquifer. Surface-water-quality data collected as part of this network would include a fixed-station monitoring network of eight sites in the southern part of the basin, including a canal draining Oak Hill. Ground-water quality monitoring should be done routinely at about 20 wells in the surficial aquifer system and Upper

  17. Index for Assessing Water Trophic Status in Semi-Enclosed Cuban Bays. Case Study: Cienfuegos Bay

    CERN Document Server

    Seisdedo, Mabel; Arencibia, Gustavo

    2013-01-01

    This paper aims at contributing to the coastal environmental management by developing a new trophic status index of the water (TSIW). The index is tailored to semi-enclosed bays with estuarine characteristic like the Cienfuegos bay in Cuba. We also propose pressure indicators related to exporting and assimilation capacities as a tool to assess the vulnerability of the system to eutrophication. The TSIW is based on response indicators to eutrophication processes showing correspondence with the predefined pressure indicators and previous reports on water quality. Thus, the proposed trophic status index is a reliable scientific tool to measure the current stage of the water quality and to establish a baseline for further studies.

  18. Availability of Irrigation Water for Domestic Use in Pakistan: Its Impact on Prevalence of Diarrhoea and Nutritional Status of Children

    National Research Council Canada - National Science Library

    Wim van der Hoek; Sabiena G. Feenstra; Flemming Konradsen

    2002-01-01

    This study assessed whether availability of water for domestic use had any impact on nutritional status of children in an area where people depend on irrigation water for all their domestic water needs...

  19. Leaf water potential, nutritional status and must composition in grapes 'Pinot Nero' with and without irrigation

    Directory of Open Access Journals (Sweden)

    Marlise Nara Ciotta

    2015-08-01

    Full Text Available Irrigating vineyard soils can affect grapevine water potential, nutritional status, and must composition. This study aimed to evaluate leaf water potential, nutritional status, and must composition in cv. 'Pinot Nero' grapevines grown with and without irrigation. The experiment was conducted at a commercial vineyard of 'Pinot Nero' 828 grafted on SO4 rootstock, established in 2002 in Trento, Northern Italy. The treatments were irrigated (I and non-irrigated (NI throughout the 2013 crop season. The criteria evaluated were the water potential of the leaves, total nutrient content in the leaves and berries, and weight of 100 berries, as well as the total soluble solids content, pH, and total titratable acidity of the must. Despite providing a less negative water potential for the grapevine leaves, irrigation did not affect the nutritional status or must composition, and it only slightly interfered with berry nutrient content.

  20. 40 CFR 141.88 - Monitoring requirements for lead and copper in source water.

    Science.gov (United States)

    2010-07-01

    ... § 141.88 Monitoring requirements for lead and copper in source water. (a) Sample location, collection... water samples in accordance with the following requirements regarding sample location, number of samples... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Monitoring requirements for lead...

  1. Technology transfer potential of an automated water monitoring system. [market research

    Science.gov (United States)

    Jamieson, W. M.; Hillman, M. E. D.; Eischen, M. A.; Stilwell, J. M.

    1976-01-01

    The nature and characteristics of the potential economic need (markets) for a highly integrated water quality monitoring system were investigated. The technological, institutional and marketing factors that would influence the transfer and adoption of an automated system were studied for application to public and private water supply, public and private wastewater treatment and environmental monitoring of rivers and lakes.

  2. Data analytics methodology for monitoring quality sensors and events in the Barcelona drinking water network

    OpenAIRE

    García Valverde, Diego; Creus Rodriguez, Ramon; Minoves Ruiz, Meritxell; Pardo, Xavier; Quevedo Casín, Joseba Jokin; Puig Cayuela, Vicenç

    2017-01-01

    Water quality management is a key area to guarantee drinking water safety to users. This task is based on disinfection techniques, such as chlorination, applied to the drinking water network to prevent the growth of microorganisms present in the water. The continuous monitoring of water quality parameters is fundamental to assess the sanitary conditions of the drinking water and to detect unexpected events. The whole process is based on the assumption that the information retrieved from quali...

  3. Using FAO-56 model to estimate soil and crop water status: Application to a citrus orchard under regulated deficit irrigation

    Science.gov (United States)

    Provenzano, Giuseppe; Gonzàles-Altozano, Pablo; Manzano-Juàrez, Juan; Rallo, Giovanni

    2015-04-01

    treatments were considered: in the first (control, T0-100%), irrigation doses (Id) were determined according to evapotranspiration and precipitation data obtained from a meteorological station installed nearby the plot, whereas in the other two, water application was reduced to 40%Id (T1-40%) and 60%Id (T2-60%) only during the initial fruit enlargement phase (July-August), being the plots irrigated at 100%Id for the remaining periods of the year. In each plot, soil water status was monitored along a soil profile with an Enviroscan probe (Sentek Sensor Technologies), whereas MSWPs with a Sholander chamber (Solfranc SF-Pres-35), on leaves wrapped in bags at least 2 hours before the measurements. At the end of each season, crop yield was determined on each treatment, by weighting the total production of at least 8 trees. It was observed that FAO-56 model simulates with a reasonable accuracy, acceptable for practical applications, the average soil water content in the root zone, with estimation errors lower than about 2.0%. On the other hand, relative transpiration simulated by the model follows the general seasonal trend of midday stem water potential, allowing therefore to identify the actual crop water status as recognized in the field.

  4. Phytoplankton pigments and epifluorescence microscopy as tools for ecological status assessment in coastal and estuarine waters, within the Water Framework Directive.

    Science.gov (United States)

    Seoane, Sergio; Garmendia, Maialen; Revilla, Marta; Borja, Angel; Franco, Javier; Orive, Emma; Valencia, Victoriano

    2011-07-01

    Inverted microscopy is widespread employed for the analysis of phytoplankton composition within water quality monitoring networks. However, the analysis at the lowest taxonomical level is not always required for ecological status assessment. In addition, inverted microscopy can underestimate the small phytoplankton, and not always distinguish photoautotrophic from heterotrophic cells. In this study, as alternative tools, epifluorescence microscopy and High Performance Liquid Chromatography (HPLC) were employed to characterize phytoplankton communities within waters of different trophic condition. Epifluorescence microscopy confirmed its effectiveness to count the small phytoplankton. Furthermore, significant correlations between nutrients of anthropogenic origin and nanoplankton abundances were found. However, this technique resulted very time-consuming. HPLC together with the CHEMTAX program was more appropriate than inverted microscopy, in terms of cost-effectiveness. Also, the main variability patterns observed in the phytoplankton community structure by HPLC coincided with previous findings in the study area. Nevertheless, a rapid screening at the inverted microscope is recommended.

  5. Ground-water status report, Pearl Harbor area, Hawaii, 1978

    Science.gov (United States)

    Soroos, Ronald L.; Ewart, Charles J.

    1979-01-01

    Increasing demand for freshwater in Hawaii has placed heavy stress on many of the State 's basal aquifer systems. The most heavily stressed of these systems is the Pearl Harbor on Oahu. The Pearl Harbor basal aquifer supplies as much as 277 million gallons per day. Since early in this century, spring discharge has been declining while pumpage has been increasing. Total ground-water discharge has remained steady despite short-term fluctuations. Some wells show general increases in chloride concentration while others remain steady. Chloride concentrations throughout the area show no apparent increase since 1970. Basal water head maps of the Pearl Harbor area clearly reflect the natural discharge points, which are the springs located along the shore near the center of Pearl Harbor. Basal-water hydrographs show a general decline of about 0.09 foot per year. This implies depletion of storage at a rate of about 25 million gallons per day. (USGS).

  6. Status of water pollution in relation to industrialization in Rajasthan.

    Science.gov (United States)

    Rajput, Ritu Singh; Pandey, Sonali; Bhadauria, Seema

    2017-04-06

    India is a large and densely populated country; its economy is largely agricultural. Making the best use of the country's manpower has always posed a challenge. Industrialization could become a dominant component of the economy and displace agriculture. Traditional livelihoods of occupational groups are threatened by the practice of disposing untreated industrial waste into rivers and bodies of water. These uncontrolled disposals impact local natural resources with negative long-term effects. Industrialization is the development of intellectual and financial trade that changes a predominantly rustic culture into a modern one. Many industrial units discharge wastewater locally without treatment. Many industries directly discharged their waste into lakes, rivers and ocean. Water contamination impacts the environment. Pesticides, chemical, waste oil and heavy metals are regularly transported into their waters. Humans and other living organisms can accumulate heavy metals from industrial discharges in their tissues. Industrial waste may be reactive, corrosive, flammable, or toxic. When untreated sewage is emptied into rivers, it causes diseases like typhoid, dysentery and cholera. Natural elements and plant supplements like nitrate and phosphates stimulate growth of algae on the water surface. The algae reduce the oxygen in the water and cause eutrophication. It is harmful to the water ecosystem. In Rajasthan proper, there are a number of sites bordering rivers and lakes where the pace of industrialization has proceeded far beyond the ability of regulators to establish and enforce meaningful limits on the amount of point source pollution permitted to the various industrial complexes, which include cement, chemical, fertilizer, textile, mining, quarrying, dyeing and printing facilities. The scale of the problem is obvious to the casual observer, but actual documentation of the total impact remains to be done.

  7. Monitoring intakes of Pu/Am by external counting. Current status in India

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R.C.; Surendran, T.; Haridasan, T.K. [Internal Dosimetry Division, Bhabha Atomic Reserch Centre, Mumbai (India)

    2000-05-01

    This paper describes the current status of the direct methods of monitoring intakes of actinides, Pu/Am, by external counting techniques in India. It begins with the brief descriptions of the in vivo monitoring facilities established and a variety of optimised radiation detectors being operated inside the graded lined steel room chamber. Two types of phoswich detectors (200 mm dia) differing in the thicknesses of their primary detectors, are operated with pulse shape discrimination electronics based on pulse shape analyser (ORTEC model 458). The other detection systems are : 51 mm dia coaxial HPGe low energy photon spectrometer, a miniature CdTe and a twin thin NaI(Tl). Over the past several years, these facilities have been rationally utilized for conducting various types of internal monitoring programmes for workers handing Pu/Am. Due emphasis has been given to the Quality Assurance (QA) programmes and thus the accuracy of internal exposure evaluations has been ensured by participating in the international intercomparison studies. These included: a) In vivo calibration experiments based on inhalation of mock Pu i.e. polystyrene particles labelled with {sup 103}Pd - {sup 51}Cr, by human volunteers; b) Calibration measurements on Lawrence Livermore National Laboratory's (LLNL) realistic thorax phantom representing a Caucasian man, under an IAEA-CRP and c) By participating in yet another IAEA-CRP on the calibration of in vivo counting systems for actinides (Pu, Am, U, Th) using a Reference Asian phantom whose physique represented an Asian man of Japanese origin. As both, ICRP and BSS of IAEA recommend the use of latest dose coefficients, the current methodology of evaluating internal exposures to actinides (Pu/Am) is based on the new (ICRP-66) model of the human respiratory tract. For this purpose, the software package LUDEP 2.05 (Lung Dose Evaluation Program) has been standardised for routine use. The use of LUDEP 2.05 for calculating intakes and committed

  8. Africa-Wide Monitoring of Small Surface Water Bodies Using Multisource Satellite Data: A Monitoring System for FEWS NET

    Science.gov (United States)

    Velpuri, N. M.; Senay, G. B.; Rowland, J.; Budde, M. E.; Verdin, J. P.

    2015-12-01

    Continental Africa has the largest volume of water stored in wetlands, large lakes, reservoirs and rivers, yet it suffers with problems such as water availability and access. Furthermore, African countries are amongst the most vulnerable to the impact of natural hazards such as droughts and floods. With climate change intensifying the hydrologic cycle and altering the distribution and frequency of rainfall, the problem of water availability and access is bound to increase. The U.S Geological Survey Famine Early Warning Systems Network (FEWS NET), funded by the U.S. Agency for International Development, has initiated a large-scale project to monitor small to medium surface water bodies in Africa. Under this project, multi-source satellite data and hydrologic modeling techniques are integrated to monitor these water bodies in Africa. First, small water bodies are mapped using satellite data such as Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Landsat, and high resolution Google Earth imagery. Stream networks and watersheds for each water body are identified using Shuttle Radar Topography Mission (SRTM) digital elevation data. Finally, a hydrologic modeling approach that uses satellite-derived precipitation estimates and evapotranspiration data calculated from global data assimilation system climate parameters is applied to model water levels. This approach has been implemented to monitor nearly 300 small water bodies located in 10 countries in sub-Saharan Africa. Validation of modeled scaled depths with field-installed gauge data in East Africa demonstrated the ability of the model to capture both the spatial patterns and seasonal variations. Modeled scaled estimates captured up to 60% of the observed gauge variability with an average RMSE of 22%. Current and historic data (since 2001) on relative water level, precipitation, and evapotranspiration for each water body is made available in near real time. The water point monitoring network

  9. Water security: continuous monitoring of water distribution systems for chemical agents by SERS

    Science.gov (United States)

    Inscore, Frank; Shende, Chetan; Sengupta, Atanu; Farquharson, Stuart

    2007-04-01

    Ensuring safe water supplies requires continuous monitoring for potential poisons and portable analyzers to map distribution in the event of an attack. In the case of chemical warfare agents (CWAs) analyzers are needed that have sufficient sensitivity (part-per-billion), selectivity (differentiate the CWA from its hydrolysis products), and speed (less than 10 minutes) to be of value. We have been investigating the ability of surface-enhanced Raman spectroscopy (SERS) to meet these requirements by detecting CWAs and their hydrolysis products in water. The expected success of SERS is based on reported detection of single molecules, the one-to-one relationship between a chemical and its Raman spectrum, and the minimal sample preparation requirements. Recently, we have developed a simple sampling device designed to optimize the interaction of the target molecules with the SERS-active material with the goal of increasing sensitivity and decreasing sampling times. This sampling device employs a syringe to draw the water sample containing the analyte into a capillary filled with the SERS-active material. Recently we used such SERS-active capillaries to measure 1 ppb cyanide in water. Here we extend these measurements to nerve agent hydrolysis products using a portable Raman analyzer.

  10. Monitoring crop health status at greenhouse scale on the basis of volatiles emitted from the plants: a review

    NARCIS (Netherlands)

    Jansen, R.M.C.; Takayama, K.; Wildt, J.; Hofstee, J.W.; Bouwmeester, H.J.; Henten, van E.J.

    2009-01-01

    This review focuses on the monitoring of crop health status at greenhouse scale, based on the measurement of volatile organic compounds (VOCs) emitted from the plants. The review includes the most important factors that affect the emission of these VOCs from greenhouse crops. Since both, stress

  11. Green roofs for a drier world: effects of hydrogel amendment on substrate and plant water status.

    Science.gov (United States)

    Savi, Tadeja; Marin, Maria; Boldrin, David; Incerti, Guido; Andri, Sergio; Nardini, Andrea

    2014-08-15

    Climate features of the Mediterranean area make plant survival over green roofs challenging, thus calling for research work to improve water holding capacities of green roof systems. We assessed the effects of polymer hydrogel amendment on the water holding capacity of a green roof substrate, as well as on water status and growth of Salvia officinalis. Plants were grown in green roof experimental modules containing 8 cm or 12 cm deep substrate (control) or substrate mixed with hydrogel at two different concentrations: 0.3 or 0.6%. Hydrogel significantly increased the substrate's water content at saturation, as well as water available to vegetation. Plants grown in 8 cm deep substrate mixed with 0.6% of hydrogel showed the best performance in terms of water status and membrane integrity under drought stress, associated to the lowest above-ground biomass. Our results provide experimental evidence that polymer hydrogel amendments enhance water supply to vegetation at the establishment phase of a green roof. In particular, the water status of plants is most effectively improved when reduced substrate depths are used to limit the biomass accumulation during early growth stages. A significant loss of water holding capacity of substrate-hydrogel blends was observed after 5 months from establishment of the experimental modules. We suggest that cross-optimization of physical-chemical characteristics of hydrogels and green roof substrates is needed to improve long term effectiveness of polymer-hydrogel blends.

  12. Development of a new risk-based framework to guide investment in water quality monitoring.

    Science.gov (United States)

    Barrington, Dani J; Ghadouani, Anas; Sinang, Som Cit; Ivey, Gregory N

    2014-04-01

    An innovative framework for optimising investments in water quality monitoring has been developed for use by water and environmental agencies. By utilising historical data, investigating the accuracy of monitoring methods and considering the risk tolerance of the management agency, this new methodology calculates optimum water quality monitoring frequencies for individual water bodies. Such information can be applied to water quality constituents of concern in both engineered and natural water bodies and will guide the investment of monitoring resources. Here we present both the development of the framework itself and a proof of concept by applying it to the occurrence of hazardous cyanobacterial blooms in freshwater lakes. This application to existing data demonstrates the robustness of the approach and the capacity of the framework to optimise the allocation of both monitoring and mitigation resources. When applied to cyanobacterial blooms in the Swan Coastal Plain of Western Australia, we determined that optimising the monitoring regime at individual lakes could greatly alter the overall monitoring schedule for the region, rendering it more risk averse without increasing the amount of monitoring resources required. For water resources with high-density temporal data related to constituents of concern, a similar reduction in risk may be observed by applying the framework.

  13. How to monitor and adjust in real time the total water consumption and water use efficiency: Earned value method

    Science.gov (United States)

    Du, Zhong; Dong, Zengchuan; Wu, Huixiu; Yang, Lin

    2017-03-01

    The evaluation indexes of total water consumption and water use efficiency have the characteristics of post feedback. In this paper we introduce the basic concept and specific theory of Earned value method (EVM) from project management, and reconstruct parameters in the method to adapt to water resources monitoring. The case of Dandong was studied, by analyzing the industry and irrigation water utilization. Although the total water consumption of two aspects reaches standards, the industrial added value and water use efficiency of irrigation are not up to standard. The results show that PV can be used as a baseline for real-time monitoring and adjustment, and the advantage of the EVM is that it can be an organic unity of water consumption and efficiency, so we can analyze comprehensively water utilization process.

  14. PC and monitor night status: Power management enabling and manual turn-off

    Energy Technology Data Exchange (ETDEWEB)

    Nordman, Bruce; Meier, Alan; Piette, Mary Ann

    1998-07-30

    While office equipment accounts for about 7 percent of commercial building energy use, this reflects considerable energy savings from the use of automatic power management. Most of these savings were gained through the use of low-power modes that meet the criteria of the U.S. EPA's Energy Star program. Despite this success, there are large amounts of additional savings that could be gained if all equipment capable of power management use were enabled and functioning. A considerable portion of equipment is not enabled for power management at all, enabled only partially, or is enabled but prevented from functioning. Additional savings could be gained if more equipment were turned off at night manually. We compiled results from 17 studies from the office equipment literature addressing PCs and monitors. Some factors important for annual energy use, such as power levels, have been documented elsewhere and are not covered. We review methods for estimating office equipment use patterns and energy use, and present findings on night status--power management and manual turn-off rates. In early studies, PC power management was often found to function in 25 percent or less of the Energy Star compliant units (10 percent of all PCs). However, recent assessments have found higher rates, and we estimate that for Energy Star models, 35 percent of PC CPUs and 65 percent of PC monitors are enabled for power management. While the data lack statistical rigor, they can be used to estimate the magnitude of current and potential power management savings, which we did for major types of office equipment. The data also make clear that the topic of enabling rates, and the factors which influence them, deserve greater scrutiny.

  15. Power analysis and trend detection for water quality monitoring data. An application for the Greater Yellowstone Inventory and Monitoring Network

    Science.gov (United States)

    Irvine, Kathryn M.; Manlove, Kezia; Hollimon, Cynthia

    2012-01-01

    An important consideration for long term monitoring programs is determining the required sampling effort to detect trends in specific ecological indicators of interest. To enhance the Greater Yellowstone Inventory and Monitoring Network’s water resources protocol(s) (O’Ney 2006 and O’Ney et al. 2009 [under review]), we developed a set of tools to: (1) determine the statistical power for detecting trends of varying magnitude in a specified water quality parameter over different lengths of sampling (years) and different within-year collection frequencies (monthly or seasonal sampling) at particular locations using historical data, and (2) perform periodic trend analyses for water quality parameters while addressing seasonality and flow weighting. A power analysis for trend detection is a statistical procedure used to estimate the probability of rejecting the hypothesis of no trend when in fact there is a trend, within a specific modeling framework. In this report, we base our power estimates on using the seasonal Kendall test (Helsel and Hirsch 2002) for detecting trend in water quality parameters measured at fixed locations over multiple years. We also present procedures (R-scripts) for conducting a periodic trend analysis using the seasonal Kendall test with and without flow adjustment. This report provides the R-scripts developed for power and trend analysis, tutorials, and the associated tables and graphs. The purpose of this report is to provide practical information for monitoring network staff on how to use these statistical tools for water quality monitoring data sets.

  16. Spatial and temporal relationships among watershed mining, water quality, and freshwater mussel status in an eastern USA river.

    Science.gov (United States)

    Zipper, Carl E; Donovan, Patricia F; Jones, Jess W; Li, Jing; Price, Jennifer E; Stewart, Roger E

    2016-01-15

    The Powell River of southwestern Virginia and northeastern Tennessee, USA, drains a watershed with extensive coal surface mining, and it hosts exceptional biological richness, including at-risk species of freshwater mussels, downstream of mining-disturbed watershed areas. We investigated spatial and temporal patterns of watershed mining disturbance; their relationship to water quality change in the section of the river that connects mining areas to mussel habitat; and relationships of mining-related water constituents to measures of recent and past mussel status. Freshwater mussels in the Powell River have experienced significant declines over the past 3.5 decades. Over that same period, surface coal mining has influenced the watershed. Water-monitoring data collected by state and federal agencies demonstrate that dissolved solids and associated constituents that are commonly influenced by Appalachian mining (specific conductance, pH, hardness and sulfates) have experienced increasing temporal trends from the 1960s through ~2008; but, of those constituents, only dissolved solids concentrations are available widely within the Powell River since ~2008. Dissolved solids concentrations have stabilized in recent years. Dissolved solids, specific conductance, pH, and sulfates also exhibited spatial patterns that are consistent with dilution of mining influence with increasing distance from mined areas. Freshwater mussel status indicators are correlated negatively with dissolved solids concentrations, spatially and temporally, but the direct causal mechanisms responsible for mussel declines remain unknown.

  17. Environmental, political, and economic determinants of water quality monitoring in Europe

    Science.gov (United States)

    Beck, Lucas; Bernauer, Thomas; Kalbhenn, Anna

    2010-11-01

    Effective monitoring is essential for effective pollution control in national and international water systems. To what extent are countries' monitoring choices driven by environmental criteria, as they should be? And to what extent are they also influenced by other factors, such as political and economic conditions? To address these questions, we describe and explain the evolution of one of the most important international environmental monitoring networks in Europe, the one for water quality, in the time period 1965-2004. We develop a geographic information system that contains information on the location of several thousand active monitoring stations in Europe. Using multivariate statistics, we then examine whether and to what extent the spatial and temporal clustering of monitoring intensity is driven by environmental, political, and economic factors. The results show that monitoring intensity is higher in river basins exposed to greater environmental pressure. However, political and economic factors also play a strong role in monitoring decisions: democracy, income, and peer pressure are conducive to monitoring intensity, and monitoring intensity generally increases over time. Moreover, even though monitoring is more intense in international upstream-downstream settings, we observe only a weak bias toward more monitoring downstream of international borders. In contrast, negative effects of European Union (EU) membership and runup to the EU's Water Framework Directive are potential reasons for concern. Our results strongly suggest that international coordination and standardization of water quality monitoring should be intensified. It will be interesting to apply our analytical approach also to other national and international monitoring networks, for instance, the U.S. National Water-Quality Assessment Program or the European Monitoring and Evaluation Program for air pollution.

  18. Selenium status in soil, water and essential crops of Iran

    Directory of Open Access Journals (Sweden)

    Nazemi Lyly

    2012-11-01

    Full Text Available Abstracts As a contributing factor to health, the trace element selenium (Se is an essential nutrient of special interest for humans and all animals. It is estimated that 0.5 to 1 billion people worldwide suffer from Se deficiency. In spite of the important role of Se, its concentrations in soil, water and essential crops have not been studied in Iran. Therefore, the main aim of the current study was to determine the Se content of soil, water, and essential crops (rice in North, wheat in Center, date, and pistachio in South of different regions of Iran. Sampling was performed in the North, South, and Central regions of Iran. In each selected area in the three regions, 17 samples of surface soil were collected; samples of water and essential crops were also collected at the same sampling points. Upon preliminary preparation of all samples, the Se concentrations were measured by ICP-OES Model Varian Vista-MPX. The amount of soil-Se was found to be in the range between 0.04 and 0.45 ppm in the studied areas; the Se content of soil in the central region of Iran was the highest compared to other regions (p

  19. Status Report on Ex-Vessel Coolability and Water Management

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Robb, K. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-15

    Specific to BWR plants, current accident management guidance calls for flooding the drywell to a level of approximately 1.2 m (4 feet) above the drywell floor once vessel breach has been determined. While this action can help to submerge ex-vessel core debris, it can also result in flooding the wetwell and thereby rendering the wetwell vent path unavailable. An alternate strategy is being developed in the industry guidance for responding to the severe accident capable vent Order, EA-13-109. The alternate strategy being proposed would throttle the flooding rate to achieve a stable wetwell water level while preserving the wetwell vent path. The overall objective of this work is to upgrade existing analytical tools (i.e. MELTSPREAD and CORQUENCH - which have been used as part of the DOE-sponsored Fukushima accident analyses) in order to provide flexible, analytically capable, and validated models to support the development of water throttling strategies for BWRs that are aimed at keeping ex-vessel core debris covered with water while preserving the wetwell vent path.

  20. Design and implementation of the National Water-Quality Assessment Program: a United States example: understanding the limitations of using compliance-monitoring data to assess the water quality of a large river basin

    Science.gov (United States)

    Wangsness, David J.

    1997-01-01

    In the 1980s it was determined that existing ambient and compliance-monitoring data could not satisfactorily evaluate the results of hundreds of billions of dollars spent for water-pollution abatement in the United States. At the request of the US Congress, a new programme, the National Water-Quality Assessment, was designed and implemented by government agency, the US Geological Survey (USGS). The Assessment has reported status and trends in surface- and ground-water quality at national, regional, and local scales since 1991. The legislative basis for US monitoring and data-sharing policies are identified as well as the successive phases of the design and implementation of the USGS Assessment. Application to the Danube Basin is suggested. Much of the water-quality monitoring conducted in the United States is designed to comply with Federal and State laws mandated primarily by the Clean Water Act of 1987 and the Safe Drinking Water Act of 1986. Monitoring programs generally focus on rivers upstream and downstream of point-source discharges and at water-supply intakes. Few data are available for aquifer systems, and chemical analyses are often limited to those constituents required by law. In most cases, the majority of the available chemical and streamflow data have provided the information necessary to meet the objectives of the compliance-monitoring programs, but do not necessarily provide the information requires for basin-wide assessments of the water quality at the local, regional, or national scale.

  1. Detection of microbial contaminations in drinking water using ATP measurements – evaluating potential for online monitoring

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    2011-01-01

    There is an increasing call for fast and reliable methods for continuous monitoring of microbial drinking water quality in order to protect public health. The potential for Adenosine triphosphate (ATP) measurements as a real-time analysis for continuous monitoring of microbial drinking water...... quality was investigated through simulation of two contamination scenarios, i.e. drinking water contaminated with waste water and surface water at various concentrations. With ATP measurements it was possible to detect waste water diluted 1000-10,000 times in drinking water depending on sensitivity...... of reagent kit. Surface water diluted 100-1000 times was detected in drinking water with ATP measurements. ATP has the potential as an early warning tool, especially in the period when the contamination concentration is high. 2011 © American Water Works Association AWWA WQTC Conference Proceedings All Rights...

  2. Detection of microbial contaminations in drinking water using ATP measurements – evaluating potential for online monitoring

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    2011-01-01

    There is an increasing call for fast and reliable methods for continuous monitoring of microbial drinking water quality in order to protect public health. The potential for Adenosine triphosphate (ATP) measurements as a real-time analysis for continuous monitoring of microbial drinking water...... quality was investigated through simulation of two contamination scenarios, i.e. drinking water contaminated with waste water and surface water at various concentrations. With ATP measurements it was possible to detect waste water diluted 1000-10,000 times in drinking water depending on sensitivity...... of reagent kit. Surface water diluted 100-1000 times was detected in drinking water with ATP measurements. ATP has the potential as an early warning tool, especially in the period when the contamination concentration is high. 2011 © American Water Works Association AWWA WQTC Conference Proceedings All Rights...

  3. Hydrochemical monitoring of water production in wells at the Orenburg formation

    Energy Technology Data Exchange (ETDEWEB)

    Sevastyanov, O.M.

    1979-01-01

    This paper discusses advantages of a method monitoring water production in gas condensate wells by evaluation of calcium ion concentrate in the water samples. Service water and condensate water contains 30-40 times less of calcium ions than connate water of the principal deposit at the Orenburg site, and 400 times less than connate water of the Kungurian deposit. Use of methanol as an inhibitor (of hydrate formation) results in removal of well water in the form of a water-methanol mixture. Much time is required to determine composition of this mixture. Thus, the article suggests use of a simplified monitoring technique on composition of connate water in the well. On the basis of a large number of tests on the water-methanol mixtures, the author has designed a chart that allows monitoring formation water in the exploratory well on the basis of the potassium ion concentration in the water-methanol mixture. Production of formation water is fixed with an accuracy to 10%. Potassium content of less than 100 mg/1 signifies absence of formation water; excess of this figure indicates appearance of formation water. Use of this technique is now applied at the Orenburg gas condensate site to measure level of water production. The author believes the technique could be applied at other large deposits of natural gas.

  4. A water quality monitoring network design using fuzzy theory and multiple criteria analysis.

    Science.gov (United States)

    Chang, Chia-Ling; Lin, You-Tze

    2014-10-01

    A proper water quality monitoring design is required in a watershed, particularly in a water resource protected area. As numerous factors can influence the water quality monitoring design, this study applies multiple criteria analysis to evaluate the suitability of the water quality monitoring design in the Taipei Water Resource Domain (TWRD) in northern Taiwan. Seven criteria, which comprise percentage of farmland area, percentage of built-up area, amount of non-point source pollution, green cover ratio, landslide area ratio, ratio of over-utilization on hillsides, and density of water quality monitoring stations, are selected in the multiple criteria analysis. The criteria are normalized and weighted. The weighted method is applied to score the subbasins. The density of water quality stations needs to be increased in priority in the subbasins with a higher score. The fuzzy theory is utilized to prioritize the need for a higher density of water quality monitoring stations. The results show that the need for more water quality stations in subbasin 2 in the Bei-Shih Creek Basin is much higher than those in the other subbasins. Furthermore, the existing water quality station in subbasin 2 requires maintenance. It is recommended that new water quality stations be built in subbasin 2.

  5. Evaluating the value of ENVISAT ASAR Data for the mapping and monitoring of peatland water table depths

    Science.gov (United States)

    Bechtold, Michel; Schlaffer, Stefan

    2015-04-01

    The Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT collected C-Band microwave backscatter data from 2005 to 2012. Backscatter in the C-Band depends to a large degree on the roughness and the moisture status of vegetation and soil surface with a penetration depth of ca. 3 cm. In wetlands with stable high water levels, the annual soil surface moisture dynamics are very distinct compared to the surrounding areas, which allows the monitoring of such environments with ASAR data (Reschke et al. 2012). Also in drained peatlands, moisture status of vegetation and soil surface strongly depends on water table depth due to high hydraulic conductivities of many peat soils in the low suction range (Dettmann et al. 2014). We hypothesize that this allows the characterization of water table depths with ASAR data. Here we analyze whether ASAR data can be used for the spatial and temporal estimation of water table depths in different peatlands (natural, near-natural, agriculturally-used and rewetted). Mapping and monitoring of water table depths is of crucial importance, e.g. for upscaling greenhouse gas emissions and evaluating the success of peatland rewetting projects. Here, ASAR data is analyzed with a new map of water table depths for the organic soils in Germany (Bechtold et al. 2014) as well as with a comprehensive data set of monitored peatland water levels from 1100 dip wells and 54 peatlands. ASAR time series from the years 2005-2012 with irregular temporal sampling intervals of 3-14 days were processed. Areas covered by snow were masked. Primary results about the accuracy of spatial estimates show significant correlations between long-term backscatter statistics and spatially-averaged water table depths extracted from the map at the resolution of the ASAR data. Backscatter also correlates with long-term averages of point-scale water table depth data of the monitoring wells. For the latter, correlation is highest between the dry reference backscatter values and

  6. Lumped Parameter Modeling as a Predictive Tool for a Battery Status Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Jon P. Christophersen; Chester G. Motloch; Chinh D. Ho; John L. Morrison; Ronald C. Fenton; Vincent S. Battaglia; Tien Q. Duong

    2003-10-01

    The Advanced Technology Development Program is currently evaluating the performance of the second generation of lithium-ion cells (i.e., Gen 2 cells). Both the Gen 2 Baseline and Variant C cells are tested in accordance with the cell-specific test plan, and are removed at roughly equal power fade increments and sent for destructive diagnostic analysis. The diagnostic laboratories did not need all test cells for analysis, and returned five spare cells to the Idaho National Engineering and Environmental Laboratory (INEEL). INEEL used these cells for special pulse testing at various duty cycles, amplitudes, and durations to investigate the usefulness of the lumped parameter model (LPM) as a predictive tool in a battery status monitor (BSM). The LPM is a simplified linear model that accurately predicts the voltage response during certain pulse conditions. A database of parameter trends should enable dynamic predictions of state-of-charge and state-of-health conditions during in-vehicle pulsing. This information could be used by the BSM to provide accurate information to the vehicle control system.

  7. Results of ground-water, surface-water, and water-chemistry monitoring, Black Mesa area, northeastern Arizona, 1994

    Science.gov (United States)

    Littin, G.R.; Monroe, S.A.

    1995-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined areas of the aquifer, (2) ground-water levels in the confined and unconfined areas of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1994, ground-water withdrawals for industrial and municipal use totaled about 7,000 acre-feet, which is an 8-percent increase from the previous year. Pumpage from the confined part of the aquifer increased by about 9 percent to 5,400 acre-feet, and pumpage from the unconfined part of the aquifer increased by about 2 percent to 1,600 acre-feet. Water-level declines in the confined area during 1994 were recorded in 10 of 16 wells, and the median change was a decline of about 2.3 feet as opposed to a decline of 3.3 feet for the previous year. The median change in water levels in the unconfined area was a rise of 0.1 foot in 1994 as opposed to a decline of 0.5 foot in 1993. Measured low-flow discharge along Moenkopi Wash decreased from 3.0 cubic feet per second in 1993 to 2.9 cubic feet per second in 1994. Eleven low-flow measurements were made along Laguna Creek between Tsegi, Arizona, and Chinle Wash to determine the amount of discharge that would occur as seepage from the N aquifer under optimal base-flow conditions. Discharge was 5.6 cubic feet per second near Tsegi and 1.5 cubic feet per second above the confluence with Chinle Wash. Maximum discharge was 5.9 cubic feet per second about 4 miles upstream from Dennehotso. Discharge was measured at three springs. The changes in discharge at Burro and Whisky Springs were small and within the uncertainty of

  8. Dose monitoring in radiology departments. Status quo and future perspectives; Dosismonitoring in der Radiologie. Status quo und Zukunftsperspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Boos, J. [Harvard Medical School, Boston, MA (United States). Dept. of Radiology; Duesseldorf Univ. (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie; Meineke, A. [Cerner Healthcare Services, Idstein (Germany); Bethge, O.T.; Antoch, G.; Kroepil, P. [Duesseldorf Univ. (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie

    2016-05-15

    The number of computed tomography examinations has continuously increased over the last decades and accounts for a major part of the collective radiation dose from medical investigations. For purposes of quality assurance in modern radiology a systematic monitoring and analysis of dose related data from radiological examinations is mandatory. Various ways of collecting dose data are available today, for example the Digital Imaging and Communication in Medicine - Structured Report (DICOM-SR), optical character recognition and DICOM-modality performed procedure steps (MPPS). The DICOM-SR is part of the DICOM-standard and provides the DICOM-Radiation Dose Structured Report, which is an easily applicable and comprehensive solution to collect radiation dose parameters. This standard simplifies the process of data collection and enables comprehensive dose monitoring. Various commercial dose monitoring software devices with varying characteristics are available today. In this article, we discuss legal obligations, various ways to monitor dose data, current dose monitoring software solutions and future perspectives in regard to the EU Council Directive 2013/59/EURATOM.

  9. Water levels in continuously monitored wells in the Yucca Mountain area, Nevada, 1985--88

    Energy Technology Data Exchange (ETDEWEB)

    Luckey, R.R.; Lobmeyer, D.H.; Burkhardt, D.J.

    1993-07-01

    Water levels have been monitored hourly in 15 wells completed in 23 depth intervals in the Yucca Mountain area, Nevada. Water levels were monitored using pressure transducers and were recorded by data loggers. The pressure transducers were periodically calibrated by raising and lowering them in the wells. The water levels were normally measured at approximately the same time that the transducers were calibrated. Where the transducer output appeared reasonable, it was converted to water levels using the calibrations and manual water- level measurements. The amount of transducer output that was converted to water levels ranged from zero for several intervals to about 98 percent for one interval. Fourteen of the wells were completed in Tertiary volcanic rocks and one well was completed in Paleozoic carbonate rocks. Each well monitored from one to four depth intervals. Water-level fluctuation caused by barometric pressure changes and earth tides were observed.

  10. Assessing the Chemical Status of Water from Wells Which Supply Farms Located on Romania's territory. Part I

    Directory of Open Access Journals (Sweden)

    Cristina Iuliana El Mahdy

    2016-11-01

    Full Text Available Aim of this study was to assess the chemical status of water by point of view of the indicators parameters coming from the decentralized system of water supply (wells and which supply the water of dairy farms performed in 63 wells from the same number of  farms from 5 located in: S-E, N-W and central of Romania at the request of farmers. It has been studied the parameters that indicate the status of water acidification: pH (SRISO 10523/97; indicator parameters having as landmark the minimum list of parameters monitored by the laboratories of profile from county public health department: hardness (STAS 3326/76, iron (STAS 3086/68, CCOMn (STAS:3002/85, ammonia (spectrometry, parameters indicative of saline inclusions: chlorides (STAS 3049/88, sulfates (SRISO 10523/97. Characterization of the chemical state of water: good or poor was done after the values that define the worst condition. The limit values for each parameter are compared to those required by the L.107/1996, L.458/2002, 311/2004, O.621/2012. Were recorded values which attesting good quality status for 21 wells:[ 1 Buzău (BZ,12 Cluj (CJ,2 Mureş (MS,6 Sălaj (SJ] and 42 wells whose water quality status it is poor (6 AB, 5 BZ,17 CJ, 7 MS. Exceeding the limits values were found at the parameters: CCOMn (CJ: 05.29±3.87mgO2/dm3, 10.59±2.04 mgO2/dm3 AB; ammonia: (AB: 0.56±0.08 mg/dm3, MS: 0.51±0.1 mg/dm3, iron (BZ: 0.85±1.05 mg/dm3, CJ: 0.37±0.47 mg/dm3, MS: 0.62±0.57mg/dm3, chlorides (AB: 330.42±208.8 mg/dm3, MS: 243.18±164.8 mg/dm3. Contamination risk score of wells in the studied areas is medium (3 point.

  11. Monitoring of radioactivity in drinking water; Control de la radiactividad en las aguas de consumo humano

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F.; Herranz, M.; Letessier, P.

    2008-07-01

    Radioactivity is a physical phenomenon whose presence in water is monitored due to its potential capability to induce deleterious effects on human health. In this article the effects that can be caused by radioactivity as well as the way in which regulations establish how to perform a monitorization of water that enables us to ascertain that the radiological quality of water is in agreement with the accepted standard of quality of life are analyzed. Finally the means available to know the content of radioactivity in water together with some clues on how to remove it from water are described. (Author) 5 refs.

  12. Chesapeake Bay Water Quality Monitoring Using Satellite Imagery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Work done at Water Resources Center, University of Minnesota has demonstrated the feasibility of performing regional assessment of lake water quality using Landsat...

  13. Monitoring corrosion rates and localised corrosion in low conductivity water

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2006-01-01

    Monitoring of low corrosion rates and localised corrosion in a media with low conductivity is a challenge. In municipal district heating, quality control may be improved by implementing on-line corrosion monitoring if a suitable technique can be identified to measure both uniform and localised...... corrosion. Electrochemical techniques (LPR, EIS, crevice corrosion current) as well as direct measurement techniques (high-sensitive electrical resistance, weight loss) have been applied in operating plants. Changes in the corrosion processes are best monitored in non-aggressive, low conductivity media...... with sensitive electrical resistance technique and crevice corrosion current measurements....

  14. Biospeckle laser portable equipment monitoring water behavior at coffee tree leaves

    Science.gov (United States)

    Botega, J. V. L.; Braga, R. A.; Machado, M. P. P.; Lima, L. A.; Rabelo, G. F.; Cardoso, R. R.

    2010-09-01

    Water is a noble natural resource and its monitoring and control are key to an efficient and responsible use concerning with the impacts in the ambient. Particularly in irrigation processes there are many approaches to monitor the water consumption, nevertheless the access of water demand in an irrigated crop presents some challenges to the routine methods. The effort to develop a non-destructive methodology associated with the ability to be handle, unfolds the way to the adoption of optical techniques. The biospeckle laser phenomenon can be elected as one of the potential instruments to access the water content in a leaf and to associate this information to the water demand. The sensitiveness of the biospeckle patterns related to biological activities is the basis of the hypothesis which concerns the monitoring of water activity in a leaf. This work evaluated the feasibility to implement the biospeckle laser as a tool to measure the water content in a leaf and to relate it with the demand of water in a perennial crop, such as coffee trees. Complementary it was tested the ability and the robustness of the proposed protocol in a portable assembly. Plants of coffee crop, coffee arabica trees, were prepared to be monitored during water stress. The proposed monitoring were carried out in leaves without detach them from the plant, within 5 consecutive days. The results presented a significant relation between the water content reduction and the biospeckle values.

  15. Hydration status moderates the effects of drinking water on children's cognitive performance.

    Science.gov (United States)

    Perry, Clinton S; Rapinett, Gertrude; Glaser, Nicole S; Ghetti, Simona

    2015-12-01

    Changes in hydration status throughout the day may affect cognitive performance with implications for learning success in the classroom. Our study tested the hypothesis that the benefit of drinking water on working memory and attention depends upon children's hydration status and renal response to water intake. Fifty-two children aged 9-12 years old were tested under two experimental conditions. The treatment session (Water session) consisted of a standard breakfast with 200 ml water, a baseline test, consumption of 750 ml of water over a period of two hours and subsequently retested. No water was provided after breakfast during the control session. Changes in hydration were assessed via urine samples. Cognitive testing consisted of digit span, pair cancellation, and delayed match to sample tasks. Children who exhibited smaller decreases in urine osmolality following water intake performed significantly better on the water day compared to the control day on a digit-span task and pair-cancellation task. Children who exhibited larger decreases in urine osmolality following water intake performed better on the control day compared to the water day on the digit-span task and pair-cancellation task. These results suggest that focusing on adequate hydration over time may be key for cognitive enhancement.

  16. Discussion of Water Resources Monitoring and Management System Construction in Qinghai%青海水资源监控管理系统建设的探讨

    Institute of Scientific and Technical Information of China (English)

    马金蹄

    2014-01-01

    水资源监控管理系统为实行最严格的水资源管理制度提供数据支撑,通过对青海水资源管理特点、水资源监控体系的现状分析,结合水资源监控能力建设项目的实施,提出从监测体系、网络环境、资源整合、运维体系等方面建设完善监控管理系统,保障监控目标的实现。%Water resources monitoring and management system provides data support for implementing the most stringent water management system. Through the analysis of the water resources management characteristics and water monitoring system status in Qinghai, combining with the implementation of water resources monitoring capacity-building projects, it proposes building a sound monitoring and management system from monitoring system, network environment, resource integration, operation and maintenance system to ensure the realization of monitoring objectives.

  17. The combined effect of water status and crop level on Tempranillo wine volatiles.

    Science.gov (United States)

    Talaverano, Inmaculada; Valdés, Esperanza; Moreno, Daniel; Gamero, Esther; Mancha, Luis; Vilanova, Mar

    2017-03-01

    The effect of water status and crop level on the volatile composition of Tempranillo wine was investigated over two growing seasons (2010-2011) in Extremadura (Spain). Three water status treatments (T0, Rainfed control; T1, Early regulated deficit irrigation; T2, Late regulated deficit irrigation) were combined with two crop levels treatments (TH, cluster thinning; C, control). Crop level treatment had a higher effect on individual volatiles analyzed in Tempranillo wine than water status. The combinations of water status and crop level treatments showed effects on all families of compounds with the exception of acetates and volatile fatty acids. Alcohols, C6 compounds and phenol volatiles produced the highest concentrations at the lower level of available water and when cluster thinning was applied (T0-TH). However, ethyl ester and lactones showed higher concentrations in regulated deficit irrigation (T1 and T2) and when cluster thinning was not applied. The combined effect of rainfed and cluster-thinning treatments (T0-TH) increased the majority of individual aromatic compounds quantified in Tempranillo wines and also showed the highest total odor activity value. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. 75 FR 82066 - Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Science.gov (United States)

    2010-12-29

    ... Company (Superstition System), CAP, Arizona: Proposed Amendment No. 1 to Arizona Water Company's... Superstition System. 26. Valley Utilities Water Company, CAP, Arizona: Proposed transfer of Valley Utilities...

  19. Walnut Creek Watershed Restoration and Water Quality Monitoring Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The primary objective of this project is to establish a nonpoint source monitoring program in relation to the watershed habitat restoration and agricultural...

  20. Water chemistry - Thornton Creek Restoration Project Effectiveness Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA has designed and is currently implementing a hyporheic monitoring plan for the Thornton Creek watershed in North Seattle. This work is being conducted for...

  1. Long-Term Monitoring of Rainfed Wheat Yield and Soil Water at the Loess Plateau Reveals Low Water Use Efficiency

    NARCIS (Netherlands)

    Qin, W.; Chi, B.L.; Oenema, O.

    2013-01-01

    Increasing crop yield and water use efficiency (WUE) in dryland farming requires a quantitative understanding of relationships between crop yield and the water balance over many years. Here, we report on a long-term dryland monitoring site at the Loess Plateau, Shanxi, China, where winter wheat was

  2. Long-Term Monitoring of Rainfed Wheat Yield and Soil Water at the Loess Plateau Reveals Low Water Use Efficiency

    NARCIS (Netherlands)

    Qin, W.; Chi, B.L.; Oenema, O.

    2013-01-01

    Increasing crop yield and water use efficiency (WUE) in dryland farming requires a quantitative understanding of relationships between crop yield and the water balance over many years. Here, we report on a long-term dryland monitoring site at the Loess Plateau, Shanxi, China, where winter wheat was

  3. Approaches for integrated assessment of ecological and eutrophication status of surface waters in Nordic Countries

    DEFF Research Database (Denmark)

    Andersen, Jesper H.; Aroviita, Jukka; Carstensen, Jacob

    2016-01-01

    used, comparisons across both BQEs and water categories (river, lakes and coastal waters) can be difficult. Based on our analyses, we conclude that some principles and methods for integration can be critical and that a harmonised approach should be developed. Further, we conclude that the integration...... principles applied within BQEs are critical and in need of harmonisation if we want a better understanding of potential transition in ecological status between surface water types, e.g. when riverine water enters a downstream lake or coastal water body.......We review approaches and tools currently used in Nordic countries (Denmark, Finland, Norway and Sweden) for integrated assessment of ‘ecological status’ sensu the EU Water Framework Directive as well as assessment of ‘eutrophication status’ in coastal and marine waters. Integration principles...

  4. Treatment of alternated water-electrolyte balance and endocrine status after removal of craniopharyngioma in adults

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; ZHAO Shang-feng; ZHANG Wei; ZHANG Mao-zhi

    2006-01-01

    Background Water-electrolyte disturbance and endocrine alterations are common complications of adult patients with craniopharygioma in the postoperative period and may affect their recovery and prognosis. Some of these complications even lead to death. Appropriate remedy based upon the status of water-electrolyte balance and the endocrine system is essential to good therapeutic results of adult patients with craniopharyngioma.Methods The alterations in water-electrolyte balance (117 patients) and endocrine status (42) of adult patients with craniopharyngioma after surgery were analyzed retrospectively.Results Most patients with craniopharyngioma experienced postoperative water-electrolyte disturbances and hypotonic dehydration. Moreover, the incidences of hypothyroidism and hypoadrenocorticism were relatively high.Conclusion It is critical to deal with dehydration and endocrine disorders for a sound outcome of craniopharyngioma surgery.

  5. Monitoring vegetation water uptake in a semiarid riparian corridor

    Science.gov (United States)

    Robinson, J.; Ochoa, C. G.; Leonard, J.

    2015-12-01

    With a changing global climate and growing demand for water throughout the world, responsible and sustainable land and water resource management practices are becoming increasingly important. Accounting for the amount of water used by riparian vegetation is a critical element for better managing water resources in arid and semiarid environments. The objective of this study was to determine water uptake by selected riparian vegetative species in a semiarid riparian corridor in North-Central Oregon. Exo-skin sap flow sensors (Dynamax, Houston, TX, U.S.A.) were used to measure sap flux in red alder (Alnus rubra) trees, the dominant overstory vegetation at the field site. Xylem sap flow data was collected from selected trees at the field site and in a greenhouse setting. Transpiration rates were determined based on an energy balance method, which makes it possible to estimate the mass flow of sap by measuring the velocity of electrical heat pulses through the plant stem. Preliminary field results indicate that red alder tree branches of about 1 inch diameter transpire between 2 and 6 kg of water/day. Higher transpiration rates of up to 7.3 kg of water/day were observed under greenhouse conditions. Streamflow and stream water temperature, vegetation characteristics, and meteorological data were analyzed in conjunction with transpiration data. Results of this study provide insight on riparian vegetation water consumption in water scarce ecosystems. This study is part of an overarching project focused on climate-vegetation interactions and ecohydrologic processes in arid and semiarid landscapes.

  6. Thermochemical processes for water splitting - status and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Weirich, W.; Behr, F. (Technische Hochschule Aachen (Germany, F.R.). Lehrstuhl fuer Reaktortechnik); Knoche, K.F. (Technische Hochschule Aachen (Germany, F.R.). Lehrstuhl fuer Technische Thermodynamik und Inst. fuer Thermodynamik); Barnert, H. (Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Reaktorentwicklung)

    1984-04-01

    In this paper we discuss the proposals for processes which have already been realised in form of bench scale units or which have been planned, as well as those which have a high degree of development potential. A part of these cycles have in common the splitting of sulfuric acids which causes corrosion problems unsolved up to now. The essential part of the metal/metal hydride-processes is a hydrogen permeable membrane which separates the hydrogen acceptor from the water containing electrolyte melt. Actually we are intending to build up a lab cycle using a TiNi-basis membrane. The metal membranes offer a number of further interesting applications, such as (1) hydrogen production from gas mixtures at high temperatures, and (2) tritium separation from the helium of the HTR primary cooling circuit. A further promising process is the hydrocarbon hybrid cycle, in which the reduction of methanol to methane and oxygen is the key reaction. Till now we can detect a methane yield of up to 50%. An interesting combined procedure for the production of hydrogen and electricity is proposed, where sulphuric acid is decomposed by means of coal. The detailed mass and energy balance shows an efficiency of up to 57%. Thermodynamic analysis for the watersplitting cycles indicates efficiencies up to 50%. Further research and development work is necessary in order to solve material problems and to demonstrate the suitability and availability of the techniques using larger scale laboratory and prototype units.

  7. Integrated Status and Effectiveness Monitoring Program, Entiat River Status and Trend Snorkel Surveys and Rotary Smolt Trap Operations in Nason Creek, March 2007 through March 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Matthew; Jorgensen, John; Murdock, Keely

    2008-03-10

    The Integrated Status and Effectiveness Monitoring Program (ISEMP-BPA project No.2003-0017) has been created as a cost effective means of developing protocols and new technologies, novel indicators, sample designs, analytical, data management and communication tools and skills, and restoration experiments that support the development of a region-wide Research, Monitoring and Evaluation (RME) program to assess the status of anadromous salmonid populations, their tributary habitat and restoration and management actions. The most straightforward approach to developing a regional-scale monitoring and evaluation program would be to increase standardization among status and trend monitoring programs. However, the diversity of species and their habitat, as well as the overwhelming uncertainty surrounding indicators, metrics, and data interpretation methods, requires the testing of multiple approaches. Thus, the approach ISEMP has adopted is to develop a broad template that may differ in the details among subbasins, but one that will ultimately lead to the formation of a unified RME process for the management of anadromous salmonid populations and habitat across the Columbia River Basin. ISEMP has been initiated in three pilot subbasins, the Wenatchee/Entiat, John Day, and Salmon. To balance replicating experimental approaches with the goal of developing monitoring and evaluation tools that apply as broadly as possible across the Pacific Northwest, these subbasins were chosen as representative of a wide range of potential challenges and conditions, e.g., differing fish species composition and life histories, ecoregions, institutional settings, and existing data. ISEMP has constructed a framework that builds on current status and trend monitoring infrastructures in these pilot subbasins, but challenges current programs by testing alternative monitoring approaches. In addition, the ISEMP is: (1) Collecting information over a hierarchy of spatial scales, allowing for a

  8. Soil compaction effects on water status of ponderosa pine assessed through 13C/12C composition.

    Science.gov (United States)

    Gomez, G Armando; Singer, Michael J; Powers, Robert F; Horwath, William R

    2002-05-01

    Soil compaction is a side effect of forest reestablishment practices resulting from use of heavy equipment and site preparation. Soil compaction often alters soil properties resulting in changes in plant-available water. The use of pressure chamber methods to assess plant water stress has two drawbacks: (1) the measurements are not integrative; and (2) the method is difficult to apply extensively to establish seasonal soil water status. We evaluated leaf carbon isotopic composition (delta13C) as a means of assessing effects of soil compaction on water status and growth of young ponderosa pine (Pinus ponderosa var. ponderosa Dougl. ex Laws) stands across a range of soil textures. Leaf delta13C in cellulose and whole foliar tissue were highly correlated. Leaf delta13C in both whole tissue and cellulose (holocellulose) was up to 1.0 per thousand lower in trees growing in non-compacted (NC) loam or clay soils than in compacted (SC) loam or clay soils. Soil compaction had the opposite effect on leaf delta13C in trees growing on sandy loam soil, indicating that compaction increased water availability in this soil type. Tree growth response to compaction also varied with soil texture, with no effect, a negative effect and a positive effect as a result of compaction of loam, clay and sandy loam soils, respectively. There was a significant correlation between 13C signature and tree growth along the range of soil textures. Leaf delta13C trends were correlated with midday stem water potentials. We conclude that leaf delta13C can be used to measure retrospective water status and to assess the impact of site preparation on tree growth. The advantage of the leaf delta13C approach is that it provides an integrative assessment of past water status in different aged leaves.

  9. Status of the Space Station water reclamation and management subsystem design concept

    Science.gov (United States)

    Bagdigian, R. M.; Mortazavi, P. L.

    1987-01-01

    A development status report is presented for the NASA Space Station's water reclamation and management (WRM) system, for which the candidate phase change-employing processing technologies are an air evaporation subsystem, a thermoelectric integrated membrane evaporation subsystem, and the vapor compression distillation subsystem. These WRM candidates employ evaporation to effect water removal from contaminants, but differ in their control of the vapor/liquid interface in zero-gravity and in the recovery of the latent heat of vaporization.

  10. Monitoring surface water quality using social media in the context of citizen science

    Science.gov (United States)

    Zheng, Hang; Hong, Yang; Long, Di; Jing, Hua

    2017-02-01

    Surface water quality monitoring (SWQM) provides essential information for water environmental protection. However, SWQM is costly and limited in terms of equipment and sites. The global popularity of social media and intelligent mobile devices with GPS and photography functions allows citizens to monitor surface water quality. This study aims to propose a method for SWQM using social media platforms. Specifically, a WeChat-based application platform is built to collect water quality reports from volunteers, which have been proven valuable for water quality monitoring. The methods for data screening and volunteer recruitment are discussed based on the collected reports. The proposed methods provide a framework for collecting water quality data from citizens and offer a primary foundation for big data analysis in future research.

  11. Status of the first NASA EV-I Project, Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    Science.gov (United States)

    Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.

    2013-12-01

    TEMPO is the first NASA Earth Venture Instrument. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian tar sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (2 km N/S × 4.5 km E/W at the center of its field of regard). The status of TEMPO including progress in instrument definition and implementation of the ground system will be presented. TEMPO provides a minimally-redundant measurement suite that includes all key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO will be delivered in 2017 for integration onto a NASA-selected GEO host spacecraft for launch as early as 2018. It will provide the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. Additional gases not central to air quality, including BrO, OClO, and IO will also be measured. TEMPO and its Asian (GEMS) and European (Sentinel-4) constellation partners make the first tropospheric trace gas measurements from GEO, building on the heritage of six spectrometers flown in low-earth-orbit (LEO). These LEO instruments measure the needed

  12. Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2008

    Science.gov (United States)

    ,

    2008-01-01

    Surface water provides 5 billion gallons per day, or 78 percent, of the total freshwater used (including thermoelectric) in Georgia (Fanning, 2003). Climate, geology, and landforms control the natural distribution of Georgia's water resources. Georgia is a 'headwaters' State, with most of the rivers beginning in northern Georgia and increasing in size downstream (see map at right for major watersheds). Surface water is the primary source of water in the northern one-half of the State, including the Atlanta metropolitan area, where limited ground-water resources are difficult to obtain. In Georgia, periodic droughts exacerbate competition for surface-water supplies. Many areas of Georgia also face a threat of flooding because of spring frontal thunderstorms and the potential for hurricanes from both the Atlantic Ocean and Gulf of Mexico. As the population of Georgia increases, these flood risks will increase with development in flood-risk zones, particularly in the coastal region.

  13. Electrical resistance tomography to monitor vadose water movement

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A.; Daily, W. (Lawrence Livermore National Lab., CA (United States)); LaBrecque, D. (Arizona Univ., Tucson, AZ (United States))

    1991-09-01

    We report results of one test in which Electrical Resistance Tomography (ERT) was used to map the changes in electrical resistivity in the vadose zone as a function of time while water infiltration occurred. The ERT images were used to infer shape and movement of the infiltration plume in the unsaturated soil. We supplied a continuous water source at a point about 10 feet below the surface (at the end of a shallow screened hole) for only a short time -- 2.5 hours. This pulsed source introduced a slug'' of water whose infiltration was followed to about 60 foot depth during a 23 hour period. The ERT images show resistivity decreases as the water content of the vadose zone increased while water was added to the soil; the resistivity of the soil later increased after the supply of water was cut-off and the induced soil moisture began to subside.

  14. Monitoring and data analysis for the Vadose Zone Monitoring System (VZMS), McClellan AFB. Quarterly status report, August 15, 1997--November 15, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Zawislanski, P.T.; Mountford, H.S.; Dahlquist, R.; Rodriguez, S.J.; Salve, R.

    1997-12-05

    This report contains information on field and laboratory work performed between August 15th and November 15th at site S-7 in IC 34, at McClellan AFB. At this location, a Vadose Zone Monitoring System (VZMS) (LBNL, 1996) is currently being used to collect subsurface data including hydraulic potential, soil gas pressure, moisture content, water chemistry, gas chemistry, and temperature.

  15. Influence of vineyard location and vine water status on fruit maturation of nonirrigated cv. Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic and aroma components.

    Science.gov (United States)

    Koundouras, Stefanos; Marinos, Vassilios; Gkoulioti, Anna; Kotseridis, Yorgos; van Leeuwen, Cornelis

    2006-07-12

    The influence of site on grape and wine composition was investigated for Vitis vinifera L. cv. Agiorgitiko in the Nemea appellation area in southern Greece. Three nonirrigated plots were studied during the 1997 and 1998 vintages, which were typically very hot and without summer rainfall. Vines were subjected to different water regimens as a result of the variation of soil water-holding capacity and evaporative demand. Vine water status was determined by means of predawn leaf water potential. Differences in vine water status between sites were highly correlated with the earliness of shoot growth cessation and veraison. Grape composition was monitored during fruit ripening. Water deficit accelerated sugar accumulation and malic acid breakdown in the juice. Early water deficit during the growth period was demonstrated to have beneficial effects on the concentration of anthocyanins and total phenolics in berry skins. A similar pattern was observed for the phenolic content of wines elaborated after vinification of grapes harvested on each plot, in both seasons. Limited water availability seemed to increase glycoconjugates of the main aromatic components of grapes as a quantitative increase in levels of bound volatile compounds of the experimental wines was observed under water deficit in both years. Wines produced from grapes of stressed vineyards were also preferred in tasting trials.

  16. State-of-the-art lab chip sensors for environmental water monitoring

    Science.gov (United States)

    Jang, Am; Zou, Zhiwei; Kug Lee, Kang; Ahn, Chong H.; Bishop, Paul L.

    2011-03-01

    As a result of increased water demand and water pollution, both surface water and groundwater quantity and quality are of major concern worldwide. In particular, the presence of nutrients and heavy metals in water is a serious threat to human health. The initial step for the effective management of surface waters and groundwater requires regular, continuous monitoring of water quality in terms of contaminant distribution and source identification. Because of this, there is a need for screening and monitoring measurements of these compounds at contaminated areas. However, traditional monitoring techniques are typically still based on laboratory analyses of representative field-collected samples; this necessitates considerable effort and expense, and the sample may change before analysis. Furthermore, currently available equipment is so large that it cannot usually be made portable. Alternatively, lab chip and electrochemical sensing-based portable monitoring systems appear well suited to complement standard analytical methods for a number of environmental monitoring applications. In addition, this type of portable system could save tremendous amounts of time, reagent, and sample if it is installed at contaminated sites such as Superfund sites (the USA's worst toxic waste sites) and Resource Conservation and Recovery Act (RCRA) facilities or in rivers and lakes. Accordingly, state-of-the-art monitoring equipment is necessary for accurate assessments of water quality. This article reviews details on our development of these lab-on-a-chip (LOC) sensors.

  17. Ecotoxicological endpoints, are they useful tools to support ecological status assessment in strongly modified water bodies?

    Science.gov (United States)

    Palma, P; Ledo, L; Alvarenga, P

    2016-01-15

    Although man-made reservoirs represent an important water supply source in countries where water scarcity has become a problem, little work has been done on the evaluation of their ecological status. Taking this in account, the general aim of this study was to assess the usefulness of ecotoxicological endpoints in the potential ecological status characterization of water reservoirs, with the purpose of their possible integration in evaluation programs developed under the Water Framework Directive (WFD). To achieve this purpose, a group of bioassays were selected to evaluate both water and sediment compartments at the Alqueva reservoir (the biggest from the Iberian Peninsula), with representative species from different taxonomic and functional groups: Vibrio fischeri, Thamnocephalus platyurus, Daphnia magna and Heterocypris incongruens. The ecotoxicological assessment showed that sublethal endpoints (e.g., luminescence, growth or reproduction), would be more useful and sensitive to identify toxicity patterns in this type of water body. In general, the results from this ecotoxicological toolbox agreed with the potential ecological status established according to the WFD, which indicates that the bioassays complement the ecological assessment. Furthermore, the use of an ecotoxicological approach can be extremely useful, especially in cases where the biotic indices are difficult to establish, such as in man-made reservoirs. However, when pollutant concentrations are very low, and/or when nutrients and organic matter concentrations are high, the two approaches do not fit, requiring further research to determine which organisms are more sensitive and the best biotic indices to use under those conditions.

  18. Successful water quality monitoring: The right combination of intent, measurement, interpretation, and a cooperating ecosystem

    Science.gov (United States)

    Soballe, D.M.

    1998-01-01

    Water quality monitoring is invaluable to ensure compliance with regulations, detect trends or patterns, and advance ecological understanding. However, monitoring typically measures only a few characteristics in a small fraction of a large and complex system, and thus the information contained in monitoring data depends upon which features of the ecosystem are actually captured by the measurements. Difficulties arise when these data contain something other than intended, but this can be minimized if the purpose of the sampling is clear, and the sampling design, measurements, and data interpretations are all compatible with this purpose. The monitoring program and data interpretation must also be properly matched to the structure and functioning of the system. Obtaining this match is sometimes an iterative process that demands a close link between research and monitoring. This paper focuses on water quality monitoring that is intended to track trends in aquatic resources and advance ecological understanding. It includes examples from three monitoring programs and a simulation exercise that illustrate problems that arise when the information content of monitoring data differs from expectation. The examples show (1) how inconsistencies among, or lack of information about, the basic elements of a monitoring program (intent, design, measurement, interpretation, and the monitored system) can produce a systematic difference (bias) between monitoring measurements and sampling intent or interpretation, and (2) that bias is not just a statistical consideration, but an insidious problem that can undermine the scientific integrity of a monitoring program. Some general suggestions are provided and hopefully these examples will help those engaged in water quality monitoring to enhance and protect the value of their monitoring investment.

  19. Intelligent system for pilot and astronaut Psychophysiological status monitoring and recuperating.

    Science.gov (United States)

    Janicki, Andrzej; -Bogumila Pecyna, S. Maria

    called intelligent computations, and their methodology is called “computational intelligence”. The absence of gravity which causes significant physiological stress with broad biomedical changes generated key problems for researchers and practitioners of aviations and space flight. Following previous experiences we had on the matter, some current results achieved on the bases of FlexComp Infinity/Biograph Infiniti, V6.1™ of Thought Technology ltd. [Janicki, Pecyna, 2014] are underlined. A particular emphasis has been placed on the ability of the distributed parallel computations connected with the sophisticated application of the NASA Autogenic Feedback Training AFTE [PS Cowings, 2011] method combined biofeedback and Autogenic Therapy exercises [WIML-NASA, 2011]. The present paper reports on the results of a serious preliminary experiments addressed especially to space disorientation and/or awareness of reality problem. Keywords: pilot’s decision making process; intelligent a agent; coherency; psychophysiological pilot status; remote monitoring; remote training; synthetic indicators; scientific information system; three-factor utility function; space disorientation;Near-Infrared Hemoencephalography; References: A.Janicki “three-factor utility function” in LabTSI™ Modeling and Simulation Platform, KUL Univ. publication 2011 - in polish, page 95-103 M.B. Pecyna and M. Pokorski "Near-Infrared Hemoencephalography for Monitoring Blood Oxygenation in Prefrontal Cortical Areas in diagnosis and Therapy of Developmental Dyslexia" in "Neurobiology of Respiration" Springer Science+Business Media Dordrecht 2013 page 175 - 180. NASA-WIML Workshop on 2011, Psychophysiological Aspects of Flight Safety In Aerospace Operations, WIML 2011

  20. 40 CFR 141.211 - Special notice for repeated failure to conduct monitoring of the source water for Cryptosporidium...

    Science.gov (United States)

    2010-07-01

    ... conduct monitoring of the source water for Cryptosporidium and for failure to determine bin classification... Notification of Drinking Water Violations § 141.211 Special notice for repeated failure to conduct monitoring....701 must notify persons served by the water system that monitoring has not been completed as specified...

  1. Disulfide-Linked Dinitroxides for Monitoring Cellular Thiol Redox Status through Electron Paramagnetic Resonance Spectroscopy.

    Science.gov (United States)

    Legenzov, Eric A; Sims, Stephen J; Dirda, Nathaniel D A; Rosen, Gerald M; Kao, Joseph P Y

    2015-12-01

    Intracellular thiol-disulfide redox balance is crucial to cell health, and may be a key determinant of a cancer's response to chemotherapy and radiation therapy. The ability to assess intracellular thiol-disulfide balance may thus be useful not only in predicting responsiveness of cancers to therapy, but in assessing predisposition to disease. Assays of thiols in biology have relied on colorimetry or fluorimetry, both of which require UV-visible photons, which do not penetrate the body. Low-frequency electron paramagnetic resonance imaging (EPRI) is an emerging magnetic imaging technique that uses radio waves, which penetrate the body well. Therefore, in combination with tailored imaging agents, EPRI affords the opportunity to image physiology within the body. In this study, we have prepared water-soluble and membrane-permeant disulfide-linked dinitroxides, at natural isotopic abundance, and with D,(15)N-substitution. Thiols such as glutathione cleave the disulfides, with simple bimolecular kinetics, to yield the monomeric nitroxide species, with distinctive changes in the EPR spectrum. Using the D,(15)N-substituted disulfide-dinitroxide and EPR spectroscopy, we have obtained quantitative estimates of accessible intracellular thiol in cultured human lymphocytes. Our estimates are in good agreement with published measurements. This suggests that in vivo EPRI of thiol-disulfide balance is feasible. Finally, we discuss the constraints on the design of probe molecules that would be useful for in vivo EPRI of thiol redox status.

  2. The Status of Honey Bee Health in Italy: Results from the Nationwide Bee Monitoring Network.

    Science.gov (United States)

    Porrini, Claudio; Mutinelli, Franco; Bortolotti, Laura; Granato, Anna; Laurenson, Lynn; Roberts, Katherine; Gallina, Albino; Silvester, Nicholas; Medrzycki, Piotr; Renzi, Teresa; Sgolastra, Fabio; Lodesani, Marco

    2016-01-01

    In Italy a nation-wide monitoring network was established in 2009 in response to significant honey bee colony mortality reported during 2008. The network comprised of approximately 100 apiaries located across Italy. Colonies were sampled four times per year, in order to assess the health status and to collect samples for pathogen, chemical and pollen analyses. The prevalence of Nosema ceranae ranged, on average, from 47-69% in 2009 and from 30-60% in 2010, with strong seasonal variation. Virus prevalence was higher in 2010 than in 2009. The most widespread viruses were BQCV, DWV and SBV. The most frequent pesticides in all hive contents were organophosphates and pyrethroids such as coumaphos and tau-fluvalinate. Beeswax was the most frequently contaminated hive product, with 40% of samples positive and 13% having multiple residues, while 27% of bee-bread and 12% of honey bee samples were contaminated. Colony losses in 2009/10 were on average 19%, with no major differences between regions of Italy. In 2009, the presence of DWV in autumn was positively correlated with colony losses. Similarly, hive mortality was higher in BQCV infected colonies in the first and second visits of the year. In 2010, colony losses were significantly related to the presence of pesticides in honey bees during the second sampling period. Honey bee exposure to poisons in spring could have a negative impact at the colony level, contributing to increase colony mortality during the beekeeping season. In both 2009 and 2010, colony mortality rates were positively related to the percentage of agricultural land surrounding apiaries, supporting the importance of land use for honey bee health.

  3. Circulating tumor cell status monitors the treatment responses in breast cancer patients: a meta-analysis

    Science.gov (United States)

    Yan, Wen-Ting; Cui, Xiang; Chen, Qing; Li, Ya-Fei; Cui, You-Hong; Wang, Yan; Jiang, Jun

    2017-01-01

    Whether circulating tumor cells (CTCs) can be used as an indicator of treatment response in breast cancer (BC) needs to be clarified. We addressed this issue by a meta-analysis. PubMed, EMBase and Cochrane library databases were searched in June 2016. Effect measures were estimated as pooled risk ratio (RR), odds ratio (OR) or mean difference by fixed- or random-effect models, according to heterogeneity of included studies. In total, 50 studies with 6712 patients were recruited. Overall analysis showed that there was a significant reduction of CTC-positive rate (RR = 0.68, 95% CI: 0.61–0.76, P < 0.00001) after treatment. Subgroup analyses revealed that neoadjuvant treatment, adjuvant treatment, metastatic treatment or combination therapy could reduce the CTC-positive rate, but surgery could not; moreover, the reduction was only found in HER2+ or HER2- patients but not in the triple-negative ones. Reduction of CTC-positive rate was associated with lower probability of disease progression (OR = 0.54, 95% CI: 0.33–0.89, P = 0.01) and longer overall survival period (mean difference = 11.61 months, 95% CI: 8.63–14.59, P < 0.00001) as well as longer progression-free survival period (mean difference = 5.07 months, 95% CI: 2.70–7.44, P < 0.0001). These results demonstrate that CTC status can serve as an indicator to monitor the effectiveness of treatments and guide subsequent therapies in BC. PMID:28337998

  4. The Status of Honey Bee Health in Italy: Results from the Nationwide Bee Monitoring Network.

    Directory of Open Access Journals (Sweden)

    Claudio Porrini

    Full Text Available In Italy a nation-wide monitoring network was established in 2009 in response to significant honey bee colony mortality reported during 2008. The network comprised of approximately 100 apiaries located across Italy. Colonies were sampled four times per year, in order to assess the health status and to collect samples for pathogen, chemical and pollen analyses. The prevalence of Nosema ceranae ranged, on average, from 47-69% in 2009 and from 30-60% in 2010, with strong seasonal variation. Virus prevalence was higher in 2010 than in 2009. The most widespread viruses were BQCV, DWV and SBV. The most frequent pesticides in all hive contents were organophosphates and pyrethroids such as coumaphos and tau-fluvalinate. Beeswax was the most frequently contaminated hive product, with 40% of samples positive and 13% having multiple residues, while 27% of bee-bread and 12% of honey bee samples were contaminated. Colony losses in 2009/10 were on average 19%, with no major differences between regions of Italy. In 2009, the presence of DWV in autumn was positively correlated with colony losses. Similarly, hive mortality was higher in BQCV infected colonies in the first and second visits of the year. In 2010, colony losses were significantly related to the presence of pesticides in honey bees during the second sampling period. Honey bee exposure to poisons in spring could have a negative impact at the colony level, contributing to increase colony mortality during the beekeeping season. In both 2009 and 2010, colony mortality rates were positively related to the percentage of agricultural land surrounding apiaries, supporting the importance of land use for honey bee health.

  5. The Status of Honey Bee Health in Italy: Results from the Nationwide Bee Monitoring Network

    Science.gov (United States)

    Bortolotti, Laura; Granato, Anna; Laurenson, Lynn; Roberts, Katherine; Gallina, Albino; Silvester, Nicholas; Medrzycki, Piotr; Renzi, Teresa; Sgolastra, Fabio; Lodesani, Marco

    2016-01-01

    In Italy a nation-wide monitoring network was established in 2009 in response to significant honey bee colony mortality reported during 2008. The network comprised of approximately 100 apiaries located across Italy. Colonies were sampled four times per year, in order to assess the health status and to collect samples for pathogen, chemical and pollen analyses. The prevalence of Nosema ceranae ranged, on average, from 47–69% in 2009 and from 30–60% in 2010, with strong seasonal variation. Virus prevalence was higher in 2010 than in 2009. The most widespread viruses were BQCV, DWV and SBV. The most frequent pesticides in all hive contents were organophosphates and pyrethroids such as coumaphos and tau-fluvalinate. Beeswax was the most frequently contaminated hive product, with 40% of samples positive and 13% having multiple residues, while 27% of bee-bread and 12% of honey bee samples were contaminated. Colony losses in 2009/10 were on average 19%, with no major differences between regions of Italy. In 2009, the presence of DWV in autumn was positively correlated with colony losses. Similarly, hive mortality was higher in BQCV infected colonies in the first and second visits of the year. In 2010, colony losses were significantly related to the presence of pesticides in honey bees during the second sampling period. Honey bee exposure to poisons in spring could have a negative impact at the colony level, contributing to increase colony mortality during the beekeeping season. In both 2009 and 2010, colony mortality rates were positively related to the percentage of agricultural land surrounding apiaries, supporting the importance of land use for honey bee health. PMID:27182604

  6. Interactive effects of water supply and defoliation on photosynthesis, plant water status and growth of Eucalyptus globulus Labill.

    Science.gov (United States)

    Quentin, A G; O'Grady, A P; Beadle, C L; Mohammed, C; Pinkard, E A

    2012-08-01

    Increased climatic variability, including extended periods of drought stress, may compromise on the health of forest ecosystems. The effects of defoliating pests on plantations may also impact on forest productivity. Interactions between climate signals and pest activity are poorly understood. In this study, we examined the combined effects of reduced water availability and defoliation on maximum photosynthetic rate (A(sat)), stomatal conductance (g(s)), plant water status and growth of Eucalyptus globulus Labill. Field-grown plants were subjected to two water-availability regimes, rain-fed (W-) and irrigated (W+). In the summer of the second year of growth, leaves from 75% of crown length removed from trees in both watering treatments and physiological responses within the canopies were examined. We hypothesized that defoliation would result in improved plant water status providing a mechanistic insight into leaf- and canopy-scale gas-exchange responses. Defoliated trees in the W+ treatment exhibited higher A(sat) and g(s) compared with non-defoliated trees, but these responses were not observed in the W- treatment. In contrast, at the whole-plant scale, maximum rates of transpiration (E(max)) and canopy conductance (G(Cmax)) and soil-to-leaf hydraulic conductance (K(P)) increased in both treatments following defoliation. As a result, plant water status was unaffected by defoliation and trees in the defoliated treatments exhibited homeostasis in this respect. Whole-plant soil-to-leaf hydraulic conductance was strongly correlated with leaf scale g(s) and A(sat) following the defoliation, providing a mechanistic insight into compensatory up-regulation of photosynthesis. Above-ground height and diameter growth were unaffected by defoliation in both water availability treatments, suggesting that plants use a range of responses to compensate for the impacts of defoliation.

  7. Macroalgae and phytoplankton as indicators of ecological status of Danish coastal waters

    DEFF Research Database (Denmark)

    Carstensen, Jacob; Krause-Jensen, Dorte; Dahl, Karsten;

    This report contributes to the development of tools that can be applied to assess the five classes of ecological status of the Water Framework Directive based on the biological quality elements phytoplankton and macroalgae. Nitrogen inputs and concentrations representing reference conditions...

  8. Macroalgae and phytoplankton as indicators of ecological status of Danish coastal waters

    DEFF Research Database (Denmark)

    Carstensen, Jacob; Krause-Jensen, Dorte; Dahl, Karsten

    and boundaries between the five ecological status classes were calculated from estimates of nitrogen inputs from Denmark to the Danish straits since 1900 combined with expert judgement of the general environmental conditions of Danish waters during different time periods. From these calculated nitrogen...... uncertain than the mean or median indicators, particularly for small sample sizes but also for large sample sizes....

  9. Determinants of epidemiologic transition in rural Africa: the role of socioeconomic status and drinking water source.

    Science.gov (United States)

    Engelaer, Frouke M; Koopman, Jacob J E; van Bodegom, David; Eriksson, Ulrika K; Westendorp, Rudi G J

    2014-06-01

    Many African countries experience a protracted epidemiologic transition, different from the classical transition in western societies. The factors driving this protracted transition are largely unknown. In northeast Ghana, we studied an ongoing epidemiologic transition and investigated the effects of socioeconomic status and drinking water source on the transition. During a 9-year period, we followed a cohort of almost 30 000 individuals and collected information on mortality and fertility rates. In addition, using the standards set out by the WHO, we obtained the causes of death by verbal autopsy. Individuals were stratified according to their socioeconomic status and the households' use of an improved or unimproved drinking water source. Mortality rates decreased by -5.0% annually (pfertility rates and child-women ratios decreased annually by -12.7% (pfertility depending on socioeconomic status or drinking water source. Factors other than socioeconomic status and drinking water source are responsible for the observed declines in mortality and fertility observed during the protracted epidemiologic transition. Identifying the specific determinants of the ongoing transition is of importance, as they could be targeted in order to further improve public health in rural African countries. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. River Water Pollution Status and Water Policy Scenario in Ethiopia: Raising Awareness for Better Implementation in Developing Countries

    Science.gov (United States)

    Awoke, Aymere; Beyene, Abebe; Kloos, Helmut; Goethals, Peter L. M.; Triest, Ludwig

    2016-10-01

    Despite the increasing levels of pollution in many tropical African countries, not much is known about the strength and weaknesses of policy and institutional frameworks to tackle pollution and ecological status of rivers and their impacts on the biota. We investigated the ecological status of four large river basins using physicochemical water quality parameters and bioindicators by collecting samples from forest, agriculture, and urban landscapes of the Nile, Omo-Gibe, Tekeze, and Awash River basins in Ethiopia. We also assessed the water policy scenario to evaluate its appropriateness to prevent and control pollution. To investigate the level of understanding and implementation of regulatory frameworks and policies related to water resources, we reviewed the policy documents and conducted in-depth interviews of the stakeholders. Physicochemical and biological data revealed that there is significant water quality deterioration at the impacted sites (agriculture, coffee processing, and urban landscapes) compared to reference sites (forested landscapes) in all four basins. The analysis of legal, policy, and institutional framework showed a lack of cooperation between stakeholders, lack of knowledge of the policy documents, absence of enforcement strategies, unavailability of appropriate working guidelines, and disconnected institutional setup at the grass root level to implement the set strategies as the major problems. In conclusion, river water pollution is a growing challenge and needs urgent action to implement intersectoral collaboration for water resource management that will eventually lead toward integrated watershed management. Revision of policy and increasing the awareness and participation of implementers are vital to improve ecological quality of rivers.

  11. River Water Pollution Status and Water Policy Scenario in Ethiopia: Raising Awareness for Better Implementation in Developing Countries.

    Science.gov (United States)

    Awoke, Aymere; Beyene, Abebe; Kloos, Helmut; Goethals, Peter L M; Triest, Ludwig

    2016-10-01

    Despite the increasing levels of pollution in many tropical African countries, not much is known about the strength and weaknesses of policy and institutional frameworks to tackle pollution and ecological status of rivers and their impacts on the biota. We investigated the ecological status of four large river basins using physicochemical water quality parameters and bioindicators by collecting samples from forest, agriculture, and urban landscapes of the Nile, Omo-Gibe, Tekeze, and Awash River basins in Ethiopia. We also assessed the water policy scenario to evaluate its appropriateness to prevent and control pollution. To investigate the level of understanding and implementation of regulatory frameworks and policies related to water resources, we reviewed the policy documents and conducted in-depth interviews of the stakeholders. Physicochemical and biological data revealed that there is significant water quality deterioration at the impacted sites (agriculture, coffee processing, and urban landscapes) compared to reference sites (forested landscapes) in all four basins. The analysis of legal, policy, and institutional framework showed a lack of cooperation between stakeholders, lack of knowledge of the policy documents, absence of enforcement strategies, unavailability of appropriate working guidelines, and disconnected institutional setup at the grass root level to implement the set strategies as the major problems. In conclusion, river water pollution is a growing challenge and needs urgent action to implement intersectoral collaboration for water resource management that will eventually lead toward integrated watershed management. Revision of policy and increasing the awareness and participation of implementers are vital to improve ecological quality of rivers.

  12. City and County of Denver Off Post Water Quality Monitoring Station : 1991

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This memorandum encloses a letter and drawings from the City and County of Denver showing the design and location of the Off Post Water Quality Monitoring Station on...

  13. A Miniaturized Sensor for Microbial Monitoring of Spacecraft Water Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Accurate real-time microbial monitoring of water environment is of paramount importance to crew health as well as to ensure proper functioning and control of the...

  14. A Miniaturized Sensor for Microbial Monitoring of Spacecraft Water Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Accurate real-time microbial monitoring of water environment is of paramount importance to crew health as well as to ensure proper functioning and control of the...

  15. Monitored Natural Attenuation For Inorganic Contaminants In Ground Water - Technical Issues

    Science.gov (United States)

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...

  16. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    Science.gov (United States)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Minton, John M.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    Real-time environmental monitoring on ISS is necessary to provide data in a timely fashion and to help ensure astronaut health. Current real-time water TOC monitoring provides high-quality trending information, but compound-specific data is needed. The combination of ETV with the AQM showed that compounds of interest could be liberated from water and analyzed in the same manner as air sampling. Calibration of the AQM using water samples allowed for the quantitative analysis of ISS archival samples. Some calibration issues remain, but the excellent accuracy of DMSD indicates that ETV holds promise for as a sample introduction method for water analysis in spaceflight.

  17. How Much Will It Cost To Monitor Microbial Drinking Water Quality in Sub-Saharan Africa?

    Science.gov (United States)

    2017-01-01

    Microbial water quality monitoring is crucial for managing water resources and protecting public health. However, institutional testing activities in sub-Saharan Africa are currently limited. Because the economics of water quality testing are poorly understood, the extent to which cost may be a barrier to monitoring in different settings is unclear. This study used cost data from 18 African monitoring institutions (piped water suppliers and health surveillance agencies in six countries) and estimates of water supply type coverage from 15 countries to assess the annual financial requirements for microbial water testing at both national and regional levels, using World Health Organization recommendations for sampling frequency. We found that a microbial water quality test costs 21.0 ± 11.3 USD, on average, including consumables, equipment, labor, and logistics, which is higher than previously calculated. Our annual cost estimates for microbial monitoring of piped supplies and improved point sources ranged between 8 000 USD for Equatorial Guinea and 1.9 million USD for Ethiopia, depending primarily on the population served but also on the distribution of piped water system sizes. A comparison with current national water and sanitation budgets showed that the cost of implementing prescribed testing levels represents a relatively modest proportion of existing budgets (cost 16.0 million USD per year, which is minimal in comparison to the projected annual capital costs of achieving Sustainable Development Goal 6.1 of safe water for all (14.8 billion USD). PMID:28459563

  18. Hanford Site ground-water monitoring for July through December 1987

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Dennison, D.I.; Bryce, R.W.; Mitchell, P.J.; Sherwood, D.R.; Krupka, K.M.; Hinman, N.W.; Jacobson, E.A.; Freshley, M.D.

    1988-12-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between July and December 1987 included monitoring ground-water elevations across the Site, monitoring hazardous chemicals and radionuclides in ground water, geochemical evaluations of unconfined ground-water data, and calibration of ground-water flow and transport models. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Central Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. The MINTEQ geochemical code was used to identify chemical reactions that may be affecting the concentrations of dissolved hazardous chemicals in the unconfined ground water. Results indicate that many cations are present mainly as dissolved carbonate complexes and that a majority of the ground-water samples are in near equilibrium with carbonate minerals (e.g., calcite, dolomite, otavite).

  19. Assessing Drinking Water Quality and Water Safety Management in Sub-Saharan Africa Using Regulated Monitoring Data.

    Science.gov (United States)

    Kumpel, Emily; Peletz, Rachel; Bonham, Mateyo; Khush, Ranjiv

    2016-10-18

    Universal access to safe drinking water is prioritized in the post-2015 Sustainable Development Goals. Collecting reliable and actionable water quality information in low-resource settings, however, is challenging, and little is known about the correspondence between water quality data collected by local monitoring agencies and global frameworks for water safety. Using 42 926 microbial water quality test results from 32 surveillance agencies and water suppliers in seven sub-Saharan African countries, we determined the degree to which water sources were monitored, how water quality varied by source type, and institutional responses to results. Sixty-four percent of the water samples were collected from piped supplies, although the majority of Africans rely on nonpiped sources. Piped supplies had the lowest levels of fecal indicator bacteria (FIB) compared to any other source type: only 4% of samples of water piped to plots and 2% of samples from water piped to public taps/standpipes were positive for FIB (n = 14 948 and n = 12 278, respectively). Among other types of improved sources, samples from harvested rainwater and boreholes were less often positive for FIB (22%, n = 167 and 31%, n = 3329, respectively) than protected springs or protected dug wells (39%, n = 472 and 65%, n = 505). When data from different settings were aggregated, the FIB levels in different source types broadly reflected the source-type water safety framework used by the Joint Monitoring Programme. However, the insufficient testing of nonpiped sources relative to their use indicates important gaps in current assessments. Our results emphasize the importance of local data collection for water safety management and measurement of progress toward universal safe drinking water access.

  20. Occurrence, Monitoring and Treatment of Cyanobacterial Toxins in Drinking Water

    Science.gov (United States)

    In the summer of 2014 a number of drinking water treatment plants (DWTPs) on Lake Erie supplied water samples on a monthly basis for analysis. Chlorophyll-a measurements, LC/MS/MS and ELISA techniques specific to microcystins were employed to measure potential harmful algal bloom...

  1. Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring

    Science.gov (United States)

    2016-03-31

    Govender, K. Chetty, H. Bulcock, “A Review of Hyperspectral Remote Sensing and Its Application in Vegetation and Water Resource Studies,” Water SA...Spectroscopy and Chemometrics for the Detection of Undesirable Substances in Food and Feed,” Chemometrics and Intelligent Laboratory Systems, Vol. 117, No. 1

  2. Acoustic monitoring of terrorist intrusion in a drinking water network

    NARCIS (Netherlands)

    Quesson, B.A.J.; Sheldon-Robert, M.K.; Vloerbergh, I.N.; Vreeburg, J.H.G.

    2009-01-01

    In collaboration with Kiwa Water Research, TNO (Netherlands Organisation for Applied Scientific Research) has investigated the possibilities to detect and classify aberrant sounds in water networks, using acoustic sensors. Amongst the sources of such sounds are pumps, drills, mechanical impacts, whi

  3. LANDSAT-BASED WATER QUALITY MONITORING OF PYRAMID LAKE

    Science.gov (United States)

    Pyramid Lake Paiute Tribe (PLPT) in cooperation with federal, state and local entities has been able to increase stream flow, establish water quality standards and improve fish habitat in the Truckee River, a primary source of water for pyramid Lake. In the past, pyramid Lake wat...

  4. WATER QUALITY MONITORING FOR PUBLIC HEALTH AND ENVIRONMENTAL PROTECTION

    Science.gov (United States)

    The applicability of using microbial population measures as indicators of aquatic condition has a rich history based primarily to study factors that affect the sanitary and ecological condition of fresh water streams. These studies are generally conducted by collecting water site...

  5. The DPSIR Framework and a Pressure-Oriented Water Quality Monitoring Approach to Ecological River Restoration

    Directory of Open Access Journals (Sweden)

    Björn Frostell

    2012-09-01

    Full Text Available Without monitoring anthropogenic pressures on the water environment, it is difficult to set realistic river restoration targets in relation to water quality. Therefore a more holistic approach is needed to systematically explore the links between socio-economic drivers and observed water quality-related impacts on river ecosystems. Using the DPSIR (Drivers-Pressures-State of the Environment-Impacts-Responses framework, this study linked ecological river restoration with the socio-economic sector, with the focus on promoting a pressure-oriented water quality monitoring system. Based on the European Water Framework Directive (WFD and relevant literature, it was found that most water quality-related indicators employed today are state/impacts-oriented, while very few are pressure-oriented. As a response, we call for more attention to a DPR (Drivers-Pressures-Responses framework in developing an industrial ecology-based pressure-oriented water quality monitoring system for aiding ecological river restoration planning. This approach is characterized in general by accounting for material-related flows throughout the socio-economic sector in relation to river ecosystem degradation. Then the obtained information would help decision makers take appropriate measures to alleviate various significant human-induced wastes and emissions at their sources. We believe that such a pressure-oriented monitoring system will substantially complement traditional state/impacts-oriented environmental and ecological monitoring and help develop more proactive planning and decision-making processes for specific river restoration projects and general water quality management.

  6. Monitoring the anaerobic treatment of waste waters; Control en la depuracion anaerobia de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Leon de Mora, C.; Molina Cantero, F.J.; Romero Galey, F.J.; Gomez Banderas, J.M. [Dpto. Tecnologia Electronica. Esc. Univ. Politec. Sevilla, Sevilla, (Spain)

    1997-04-01

    This article describes the results obtained in developing a system for monitoring sewage treatment. The system, supported by a PC, includes a fuzzy logic control algorithm for monitoring the anaerobic treatment of waste waters on the basis of data from sensors attached to an industrial robot (PLC). Its most outstanding features is that it is also capable of evaluating new monitoring strategies using parameters not originally included. (Author) 6 refs.

  7. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress.

    Science.gov (United States)

    Sheng, Min; Tang, Ming; Chen, Hui; Yang, Baowei; Zhang, Fengfeng; Huang, Yanhui

    2008-09-01

    The influence of arbuscular mycorrhizal (AM) fungus Glomus mosseae on characteristics of the growth, water status, chlorophyll concentration, gas exchange, and chlorophyll fluorescence of maize plants under salt stress was studied in the greenhouse. Maize plants were grown in sand and soil mixture with five NaCl levels (0, 0.5, 1.0, 1.5, and 2.0 g/kg dry substrate) for 55 days, following 15 days of non-saline pretreatment. Under salt stress, mycorrhizal maize plants had higher dry weight of shoot and root, higher relative chlorophyll content, better water status (decreased water saturation deficit, increased water use efficiency, and relative water content), higher gas exchange capacity (increased photosynthetic rate, stomatal conductance and transpiration rate, and decreased intercellular CO(2) concentration), higher non-photochemistry efficiency [increased non-photochemical quenching values (NPQ)], and higher photochemistry efficiency [increased the maximum quantum yield in the dark-adapted state (Fv/Fm), the maximum quantum yield in the light-adapted sate (Fv'/Fm'), the actual quantum yield in the light-adapted steady state (phiPSII) and the photochemical quenching values (qP)], compared with non-mycorrhizal maize plants. In addition, AM symbiosis could trigger the regulation of the energy biturcation between photochemical and non-photochemical events reflected in the deexcitation rate constants (kN, kN', kP, and kP'). All the results show that G. mosseae alleviates the deleterious effect of salt stress on plant growth, through improving plant water status, chlorophyll concentration, and photosynthetic capacity, while the influence of AM symbiosis on photosynthetic capacity of maize plants can be indirectly affected by soil salinity and mycorrhizae-mediated enhancement of water status, but not by the mycorrhizae-mediated enhancement of chlorophyll concentration and plant biomass.

  8. PENERAPAN SISTEM ERP DALAM MEMBUAT PROJECT FEASIBILITY, PROJECT STATUS DAN PROJECT MONITORING PADA PERUSAHAAN DI BIDANG KONTRAKTOR

    Directory of Open Access Journals (Sweden)

    Hendra Alianto

    2013-11-01

    cost reduction, and improvement of business processes, which will result in an increase in the work (productivity to become more efficient and effective. However, practically some organizations have problems on running ERP system, some even fail. Therefore, a strategy is needed to help the information systems project. Making project feasibility, project status and project monitoring ERP system can be used as a guide in the design of the ERP program applications to become more user-friendly and suitable for the organization needs. The ERP system applied to a contracting company will increase productivity and achieve the level of effectiveness and efficiency of the company's operations. Through strategies in making project feasibility, and status monitoring with ERP system will provide a positive contribution to the development and objectives of the company, so as to improve the effectiveness and efficiency in the processing operations.

  9. Water Quality & Pollutant Source Monitoring: Field and Laboratory Procedures. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on techniques and instrumentation used to develop data in field monitoring programs and related laboratory operations concerned with water quality and pollution monitoring. Topics include: collection and handling of samples; bacteriological, biological, and chemical field and laboratory methods; field…

  10. Monitoring hemlock crown health in Delaware Water Gap National Recreation Area

    Science.gov (United States)

    Michael E. Montgomery; Bradley Onken; Richard A. Evans; Richard A. Evans

    2005-01-01

    Decline of the health of hemlocks in Delaware Water Gap National Recreation Area was noticeable in the southern areas of the park by 1992. The following year, a series of plots were established to monitor hemlock health and the abundance of hemlock woolly adelgid. This poster examines only the health rating of the hemlocks in the monitoring plots.

  11. Hydrologic and water quality monitoring on Turkey Creek watershed, Francis Marion National Forest, SC

    Science.gov (United States)

    D.M. Amatya; T.J. Callahan; A. Radecki-Pawlik; P. Drewes; C. Trettin; W.F. Hansen

    2008-01-01

    The re-initiation of a 7,260 ha forested watershed study on Turkey Creek, a 3rd order stream, within the Francis Marion National forest in South Carolina, completes the development of a multi-scale hydrology and ecosystem monitoring framework in the Atlantic Coastal Plain. Hydrology and water quality monitoring began on the Santee Experimental...

  12. Sampling design for compliance monitoring of surface water quality: A case study in a Polder area

    NARCIS (Netherlands)

    Brus, D.J.; Knotters, M.

    2008-01-01

    International agreements such as the EU Water Framework Directive (WFD) ask for efficient sampling methods for monitoring natural resources. In this paper a general methodology for designing efficient, statistically sound monitoring schemes is described. An important decision is the choice between a

  13. Procedures for extracting organic micro-pollutants from water samples to monitor toxicological stress

    NARCIS (Netherlands)

    Collombon M; Kamp R van de; Struijs J

    1997-01-01

    Methods that are elemental in toxicity monitoring of the aqueous compartment have been validated. One method has recently been implemented in a joint pilot monitoring of an RIVM/RIZA project to map the toxic potency of Dutch surface waters in terms of the Potentially Affected Fraction of species (PA

  14. Albemarle Sound demonstration study of the national monitoring network for US coastal waters and their tributaries

    Science.gov (United States)

    Michelle Moorman; Sharon Fitzgerald; Keith Loftin; Elizabeth Fensin

    2016-01-01

    The U.S. Geological Survey’s (USGS) is implementing a demonstration project in the Albemarle Sound for the National Monitoring Network for U.S. coastal waters and their tributaries. The goal of the National Monitoring Network is to provide information about the health of our oceans and coastal ecosystems and inland influences on coastal waters for improved resource...

  15. Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill

    Energy Technology Data Exchange (ETDEWEB)

    Fruland, R.M.

    1986-10-01

    Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

  16. Bioassay battery interlaboratory investigation of emerging contaminants in spiked water extracts - Towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring.

    Science.gov (United States)

    Di Paolo, Carolina; Ottermanns, Richard; Keiter, Steffen; Ait-Aissa, Selim; Bluhm, Kerstin; Brack, Werner; Breitholtz, Magnus; Buchinger, Sebastian; Carere, Mario; Chalon, Carole; Cousin, Xavier; Dulio, Valeria; Escher, Beate I; Hamers, Timo; Hilscherová, Klára; Jarque, Sergio; Jonas, Adam; Maillot-Marechal, Emmanuelle; Marneffe, Yves; Nguyen, Mai Thao; Pandard, Pascal; Schifferli, Andrea; Schulze, Tobias; Seidensticker, Sven; Seiler, Thomas-Benjamin; Tang, Janet; van der Oost, Ron; Vermeirssen, Etienne; Zounková, Radka; Zwart, Nick; Hollert, Henner

    2016-11-01

    Bioassays are particularly useful tools to link the chemical and ecological assessments in water quality monitoring. Different methods cover a broad range of toxicity mechanisms in diverse organisms, and account for risks posed by non-target compounds and mixtures. Many tests are already applied in chemical and waste assessments, and stakeholders from the science-police interface have recommended their integration in regulatory water quality monitoring. Still, there is a need to address bioassay suitability to evaluate water samples containing emerging pollutants, which are a current priority in water quality monitoring. The presented interlaboratory study (ILS) verified whether a battery of miniaturized bioassays, conducted in 11 different laboratories following their own protocols, would produce comparable results when applied to evaluate blinded samples consisting of a pristine water extract spiked with four emerging pollutants as single chemicals or mixtures, i.e. triclosan, acridine, 17α-ethinylestradiol (EE2) and 3-nitrobenzanthrone (3-NBA). Assays evaluated effects on aquatic organisms from three different trophic levels (algae, daphnids, zebrafish embryos) and mechanism-specific effects using in vitro estrogenicity (ER-Luc, YES) and mutagenicity (Ames fluctuation) assays. The test battery presented complementary sensitivity and specificity to evaluate the different blinded water extract spikes. Aquatic organisms differed in terms of sensitivity to triclosan (algae > daphnids > fish) and acridine (fish > daphnids > algae) spikes, confirming the complementary role of the three taxa for water quality assessment. Estrogenicity and mutagenicity assays identified with high precision the respective mechanism-specific effects of spikes even when non-specific toxicity occurred in mixture. For estrogenicity, although differences were observed between assays and models, EE2 spike relative induction EC50 values were comparable to the literature, and E2/EE2

  17. Two prototype tools for assessing good environmental/ecological status (GES) in aquatic ecosystems – DEVOTES and WATERS

    DEFF Research Database (Denmark)

    Murray, Ciarán; Carstensen, Jacob; Andersen, Jesper

    2015-01-01

    We present two prototype tools for assessment of GES (good ecological status and good environmental status) in aquatic ecosystems: the DEVOTES biodiversity assessment tool (for the MSFD) and the WATERS ecological status assessment tool (for the WFD). Both tools are multi-metric indicator-based to...

  18. Water balances in intensively monitored forest ecosystems in Europe

    NARCIS (Netherlands)

    Salm, van der C.; Reinds, G.J.; Vries, de W.

    2007-01-01

    A soil hydrological model based on Darcy's law was used to calculate hydrological fluxes for 245 intensively monitored forest plots in Europe. Local measured input data for the model were rather limited and input was partly based on generic data. To obtain the best results, the model was calibrated

  19. On the detection and monitoring of reduced water content in plants using spectral responses in the visible domain

    Science.gov (United States)

    Baranoski, Gladimir V. G.; Van Leeuwen, Spencer; Chen, Tenn F.

    2016-05-01

    The water status of cultivated plants can have a significant impact not only on food production, but also on the appropriate usage of increasingly scarce freshwater supplies. Accordingly, the cost-effective detection and monitoring of changes in their water content are longstanding remote sensing goals. Existing procedures employed to achieve these goals are largely based on the spectral responses of plant leaves in the infrared domain where the light absorption within the foliar tissues is dominated by water. Recently, it has been suggested that such procedures could be implemented using spectral responses, more specifically spectral subsurface reflectance to transmittance ratios, obtained in the visible domain. The basis for this proposition resides on the premise that a reduced water content (RWC) can result in histological changes whose effects on the foliar optical properties may not be limited to the infrared domain. However, the experiments leading to this proposition were performed on detached leaves, which were not influenced by the whole plant's adaptation mechanisms to water stress. In this work, we investigate whether the spectral responses of living plant leaves in the visible domain can lead to reliable RWC estimations. We employ measured biophysical data and predictive light transport simulations in order to extend qualitatively and quantitatively the scope of previous studies in this area. Our findings indicate that the living specimens' physiological responses to water stress should be taken into account in the design of new procedures for the cost-effective RWC estimation using visible subsurface reflectance to transmittance ratios.

  20. Cyanobacteria-/cyanotoxin-contaminations and eutrophication status before Wuxi Drinking Water Crisis in Lake Taihu, China

    Institute of Scientific and Technical Information of China (English)

    Yongmei Liu; Wei Chen; Dunhai Li; Zebo Huang; Yinwu Shen; Yongding Liu

    2011-01-01

    After the appalling “Wuxi Drinking Water Crisis”, increasing investigations concerning the contaminations of cyanobacterial blooms and their toxins in Lake Taihu have been performed and reported in the last two years.However, information regarding these issues before the crisis in 2007 remained insufficient.To provide some background data for further comparisons, the present study reported our investigations conducted in 2004, associated with the cyanotoxin contaminations as well as the eutrophication status in Lake Taihu.Results from the one-year-study near a drinking water resource for Wuxi City indicated that, unlike the status in recent two years, cyanobacteria and chlorophyta are the co-dominance species throughout the year.The highest toxin concentration (34.2 ng/mL)in water columns occurred in August.In bloom biomass, the peak value of intracellular toxin (0.59 μg/mg DW) was determined in October, which was lag behind that in water column.In addition, MC-RR was the major toxin variant throughout the year.During the study period, nutrients levels of total nitrogen and phosphorus were also recorded monthly.Results from the present study will lead to a better understanding of the eutrophication status and the potential risks before “Wuxi Drinking Water Crisis”.

  1. RCRA (Resource Conservation and Recovery Act of 1976) ground-water monitoring projects for Hanford facilities: Progress report, October 1--December 31, 1988: Volume 1, Text

    Energy Technology Data Exchange (ETDEWEB)

    Fruland, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-04-01

    This report describes the progress of 13 Hanford ground-water monitoring projects for the period October 1 to December 31, 1988. There are 16 individual hazardous waste facilities covered by the 13 ground-water monitoring projects. The Grout Treatment Facility is included in this series of quarterly reports for the first time. The 13 projects discussed in this report were designed according to applicable interim-status ground-water monitoring requirements specified in the Resource Conservation and Recovery Act of 1976 (RCRA). During this quarter, field activities primarily consisted of sampling and analyses, and water-level monitoring. The 200 Areas Low-Level Burial Grounds section includes sediment analyses in addition to ground-water monitoring results. Twelve new wells were installed during the previous quarter: two at the 216-A-29 Ditch, six at the 216-A-10 Crib, and four at the 216-B-3 Pond. Preliminary characterization data for these new wells include drillers' logs and other drilling and site characterization data, and are provided in Volume 2 or on microfiche in the back of Volume 1. 26 refs., 28 figs., 74 tabs.

  2. Multimode near-field microwave monitoring of free water content of skin and imaging of tissue

    Energy Technology Data Exchange (ETDEWEB)

    Lofland, S E [Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028 (United States); Mazzatenta, J D [Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028 (United States); Croman, J [Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028 (United States); Tyagi, S D [Department of Physics, Drexel University, 34th and Chestnut Sts., Philadelphia, PA 19104 (United States)

    2007-03-07

    We have used the near-field scanning microwave microscopy (NSMM) technique in the 1-10 GHz range to monitor the free water content of skin. The water content is interpreted from the measured dielectric properties of the epidermis. The finger skin was first hydrated by soaking in water at 37 {sup 0}C for 30 min followed by monitoring of water content as the free water evaporated under ambient conditions. The same technique has also been employed to image a 1 cm x 1 cm sample of chicken skin. It has been shown that variations exist in the resonant frequencies and quality factors of tissue under varying physical parameters. The samples analysed were as-received and thermally dehydrated or damaged chicken tissue samples. We contrast between the dielectric properties with the optical images. We also discuss possible application of our imaging technique in clinical monitoring of the wound healing process.

  3. Environmental toxicology data collected by the NOAA, National Ocean Service, National Centers For Coastal Ocean Science, National Status and Trends Program for monitoring contaminants in coastal United States marine water bodies from 01 Jan 1960 to 05 May 2010 (NODC Accession 0074376)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Status and Trends Program is comprised of three nationwide programs: Benthic Surveillance, Mussel Watch, and Bioeffects. These programs are in place to...

  4. A feasibility study on diagnosing wheat water status using spectral reflectance

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A total of 110 wheat leaf samples were collected in the field andtheir spectral reflectances were measured with a spectroradiometer in laboratory. After a spectral normalizing technique, the spectral absorption feature parameters such as the absorption depth and area, were extracted from each leaf spectrum. The relative water content (RWC) was measured for samples. The experimental results indicated that the spectral absorption depth and area of wheat leaves at 1 450 nm were correlated with their RWC. So we can diagnose wheat water status by using their spectral reflectances. Furthermore, we discuss the possibility of developing new instruments based on the analysis of the spectroradiometer data for non-destructive and instantaneous measurement of the wheat water status in the field.

  5. Can tintinnids be used for discriminating water quality status in marine ecosystems?

    Science.gov (United States)

    Feng, Meiping; Zhang, Wuchang; Wang, Weiding; Zhang, Guangtao; Xiao, Tian; Xu, Henglong

    2015-12-30

    Ciliated protozoa have many advantages in bioassessment of water quality. The ability of tintinnids for assessing water quality status was studied during a 7-yearcycle in Jiaozhou Bay of the Yellow Sea, northern China. The samples were collected monthly at four sites with a spatial gradient of environmental pollution. Environmental variables, e.g., temperature, salinity, chlorophyll a (Chl a), dissolved inorganic nitrogen, soluble reactive phosphate (SRP), and soluble active silicate (SRSi), were measured synchronously for comparison with biotic parameters. Results showed that: (1) tintinnid community structures represented significant differences among the four sampling sites; (2) spatial patterns of the tintinnid communities were significantly correlated with environmental variables, especially SRSi and nutrients; and (3) the community structural parameters and the five dominant species were significantly correlated with SRSi and nutrients. We suggested that tintinnids may be used as a potential bioindicator for discriminating water quality status in marine ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Environmental Monitoring, Water Quality - Total Maximum Daily Load (TMDL)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — The Clean Water Act Section 303(d) establishes the Total Maximum Daily Load (TMDL) program. The purpose of the TMDL program is to identify sources of pollution and...

  7. Environmental Monitoring, Water Quality - Lakes Assessments - Non Attaining

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This layer shows only non attaining lakes of the Integrated List. The Lakes Integrated List represents lake assessments in an integrated format for the Clean Water...

  8. Environmental Monitoring, Water Quality - Total Maximum Daily Load (TMDL)

    Data.gov (United States)

    NSGIC Education | GIS Inventory — The Clean Water Act Section 303(d) establishes the Total Maximum Daily Load (TMDL) program. The purpose of the TMDL program is to identify sources of pollution and...

  9. Design of water quality monitoring networks with two information scenarios in tropical Andean basins.

    Science.gov (United States)

    Bastidas, Juan Carlos; Vélez, Jorge Julián; Zambrano, Jeannette; Londoño, Adela

    2017-04-21

    Design and redesign of water quality monitoring networks were evaluated for two similarly sized watersheds in the tropical Andes via optimization techniques using geographic information system technology (GIS) and a matter-element analysis of 5-day biological oxygen demand (BOD5) and total suspended solids (TSS). This resulted in a flexible, objectively based design for a 1128-km(2) watershed without prior water quality data (La Miel River), and a network redesign of a 1052-km(2) watershed with historical water quality monitoring (Chinchiná River). Monitoring design for the undocumented basin incorporated mathematical expressions for physical, anthropological, and historical factors-and was based on clear objectives for diagnosis and intervention of water pollution. Network redesign identified network redundancy, which resulted in a 64% reduction in the number of water quality monitoring stations along the channel, and a 78% reduction of stations throughout the basin. Most tropical drainage basins throughout the world have little to no prior water quality data. But even in well-studied drainage basins like the Chinchiná River, which is among the most thoroughly studied basins in Colombia, redesign of historical and existing monitoring networks will become a standard tool to advance the restoration of polluted surface waters, not only in Colombia, but also throughout the world.

  10. Plan for Demonstration of Online Monitoring for the Light Water Reactor Sustainability Online Monitoring Project

    Energy Technology Data Exchange (ETDEWEB)

    Magdy S. Tawfik; Vivek Agarwal; Nancy J. Lybeck

    2011-09-01

    Condition based online monitoring technologies and development of diagnostic and prognostic methodologies have drawn tremendous interest in the nuclear industry. It has become important to identify and resolve problems with structures, systems, and components (SSCs) to ensure plant safety, efficiency, and immunity to accidents in the aging fleet of reactors. The Machine Condition Monitoring (MCM) test bed at INL will be used to demonstrate the effectiveness to advancement in online monitoring, sensors, diagnostic and prognostic technologies on a pilot-scale plant that mimics the hydraulics of a nuclear plant. As part of this research project, INL will research available prognostics architectures and their suitability for deployment in a nuclear power plant. In addition, INL will provide recommendation to improve the existing diagnostic and prognostic architectures based on the experimental analysis performed on the MCM test bed.

  11. Socioeconomic status and exposure to disinfection by-products in drinking water in Spain

    Directory of Open Access Journals (Sweden)

    Serra Consol

    2011-03-01

    Full Text Available Abstract Background Disinfection by-products in drinking water are chemical contaminants that have been associated with cancer and other adverse effects. Exposure occurs from consumption of tap water, inhalation and dermal absorption. Methods We determined the relationship between socioeconomic status and exposure to disinfection by-products in 1271 controls from a multicentric bladder cancer case-control study in Spain. Information on lifetime drinking water sources, swimming pool attendance, showering-bathing practices, and socioeconomic status (education, income was collected through personal interviews. Results The most highly educated subjects consumed less tap water (57% and more bottled water (33% than illiterate subjects (69% and 17% respectively, p-value = 0.003. These differences became wider in recent time periods. The time spent bathing or showering was positively correlated with attained educational level (p Conclusions The most highly educated subjects were less exposed to chlorination by-products through ingestion but more exposed through dermal contact and inhalation in pools and showers/baths. Health risk perceptions and economic capacity may affect patterns of water consumption that can result in differences in exposure to water contaminants.

  12. Coastal waters monitoring data: frequency distributions of the principal water quality variables

    Directory of Open Access Journals (Sweden)

    Bianca DI LORENZO

    2006-08-01

    Full Text Available Examining the results of the Italian national programme of marine coastal monitoring, the old problem has arisen about the choice of the most appropriate procedures and methods to validate data and screen preliminary data. Therefore, statistical distributions of water quality parameters have been taken into consideration, in order to assign appropriate frequency distributions to all the routinely measured variables. Each sample distribution has been analysed and defined by a probability density function (p.d.f., by means of a powerful method of data analysis (Johnson 1949 that allows for the computation of statistical parameters of a wide variety of non-normal distributions. The resulting Johnson distributions are then classified depending on four fundamental categories of frequency distributions: normal, log-normal, bounded and unbounded. Theoretical aspects of the method are explained and discussed in an adequate way, so as to allow for practical applications. The shape and nature of these curves require further consideration, in order to understand the behaviour of water quality variables and to make comparison among different coastal zones. To this end, two coastal systems were considered in this work: the Emilia-Romagna coastal area of the NW Adriatic Sea and the Tuscany littoral of the Northern Tyrrhenian Sea. There are notable advantages to the adopted approach. First it offers the possibility to overcome severe constraints requested by the normality assumption, and avoids the troublesome search for the most appropriate transformation function (i.e. for ensuring normality. Second, it avoids searching for other kinds of theoretical distributions that are appropriate for the data. In our approach, the density functions are opportunely integrated, in such a way that, for whatever value assumed by a given variable, the corresponding expected percentage point value under the respective frequency curve, can be calculated, and vice versa. We

  13. Remote real-time monitoring soil water potential system based on GSM

    Institute of Scientific and Technical Information of China (English)

    Yongming Zhao; Xin Lu; Haijiang Wang

    2008-01-01

    Aiming at the limitation of traditional measuring soil water potential, the paper presents an information system based GSM to real-time monitor data coming from multiple data sources. The monitoring system, which consisted of monitoring center, GSM transmission channel and data detection terminal, was given. The detection terminal included the measuring station and TS-2 negative pressure meter, which was applied to measure soil water potential. Nowadays the system has been successfully applied to drip irrigation in the cotton field on farm in Xinjiang region. The system provides a feasible technology frame-work for collecting and processing wide geographical distribution data in farmland.

  14. Long Term Resource Monitoring Program Water Quality Component Review

    Science.gov (United States)

    2006-06-01

    rapid, and plankton ) that are ignored under the existing cost- effective manner. design of the monitoring program, but which A major purpose of the... mussels on dissolved oxygen and planktonic specifically focus on local areas where projects chlorophyll levels at selected locations, but are...term goals of the Program are to understand the system, determine resource trends and effects , develop management alternatives, manage information, and

  15. Monitoring water masers in star-forming regions

    CERN Document Server

    Brand, J; Comoretto, G; Felli, M; Palagi, F; Palla, F; Valdettaro, R

    2004-01-01

    An overview is given of the analysis of more than a decade of H2O maser data from our monitoring program. We find the maser emission to generally depend on the luminosity of the YSO as well as on the geometry of the SFR. There appears to be a threshold luminosity of a few times 10**4 Lsol above and below which we find different maser characteristics.

  16. Remote monitoring technical review for light water reactors (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Sik; Yoon, Wan Ki; Na, Won Woo; Kwack, Eun Ho [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    The IAEA has been conducting a field trial of a Remote Monitoring System (RMS) at the spent fuel storage, Younggwang 3 nuclear power plant. The system installation plan was initiated after the agreement in the 7th ROK-IAEA safeguards Implementation Review Meeting that was held in Soul, 1998. It describes that IAEA and Korea proceed RM tasks Implementation of RMS at LWRs in the ROK for field trials. The project of RMS is conducting through 3 stages with timing. RMS has been installed for the Phase I of field trial, one of two stages at Younggwang Unit 3 in October 1998. The RMS consists of video systems and a seal at the spent fuel pond area. This report provides a description of the monitoring system and its functions focusing on several technical points of the installation and its 6 month operation at Younggwang Unit 3. Subjects are selected and analyzed in the three chapters, IAEA safeguards policy on Remote Monitoring, the technology, and field test experiences. 8 refs., 12 figs., 12 tabs. (Author)

  17. The aquatic real-time monitoring network; in-situ optical sensors for monitoring the nation's water quality

    Science.gov (United States)

    Pellerin, Brian A.; Bergamaschi, Brian A.; Murdoch, Peter S.; Downing, Bryan D.; Saraceno, John Franco; Aiken, George R.; Striegl, Robert G.

    2011-01-01

    Floods, hurricanes, and longer-term changes in climate and land use can have profound effects on water quality due to shifts in hydrologic flow paths, water residence time, precipitation patterns, connectivity between rivers and uplands, and many other factors. In order to understand and respond to changes in hydrology and water quality, resource managers and policy makers have a need for accurate and early indicators, as well as the ability to assess possible mechanisms and likely outcomes. In-situ optical sensors-those making continuous measurements of constituents by absorbance or fluorescence properties in the environment at timescales of minutes to years-have a long history in oceanography for developing highly resolved concentrations and fluxes, but are not commonly used in freshwater systems. The United States Geological Survey (USGS) has developed the Aquatic Real-Time Monitoring Network, with high-resolution optical data collection for organic carbon, nutrients, and sediment in large coastal rivers, along with continuous measurements of discharge, water temperature, and dissolved inorganic carbon. The collecting of continuous water-quality data in the Nation?s waterways has revealed temporal trends and spatial patterns in constituents that traditional sampling approaches fail to capture, and will serve a critical role in monitoring, assessment and decision-making in a rapidly changing landscape.

  18. Classifying and monitoring water quality by use of satellite imagery

    Science.gov (United States)

    Scherz, J. P.; Crane, D. R.; Rogers, R. H.

    1976-01-01

    A technique is developed to eliminate the atmosphere and surface noise effects on Landsat signals of water bodies by manipulating the total signal from Landsat in such a way that only the volume reflectance is left as a residual. With the Landsat signal from a lake and the known volume reflectance for its clear water it is possible to eliminate the surface and atmospheric effects and have residual signals that are indicative only of the type and concentration of the material in other lakes. Laboratory values are more precise than field values because in the field one must contend with indirect skylight and wave action which can be removed in the laboratory. The volume reflectance of distilled water or a very clear lake approaching distilled water was determined in the laboratory by the use of the Bendix radiant power measuring instrument. The Bendix multispectral data analysis system provided a color categorized image of several hundred lakes in a Wisconsin area. These lakes were categorized for tannin and nontannin waters and for the degrees of algae, silt, weeds, and bottom effects present.

  19. Point-of-care urine tests for smoking status and isoniazid treatment monitoring in adult patients.

    Directory of Open Access Journals (Sweden)

    Ioana Nicolau

    Full Text Available BACKGROUND: Poor adherence to isoniazid (INH preventive therapy (IPT is an impediment to effective control of latent tuberculosis (TB infection. TB patients who smoke are at higher risk of latent TB infection, active disease, and TB mortality, and may have lower adherence to their TB medications. The objective of our study was to validate IsoScreen and SmokeScreen (GFC Diagnostics, UK, two point-of-care tests for monitoring INH intake and determining smoking status. The tests could be used together in the same individual to help identify patients with a high-risk profile and provide a tailored treatment plan that includes medication management, adherence interventions, and smoking cessation programs. METHODOLOGY/PRINCIPAL FINDINGS: 200 adult outpatients attending the TB and/or the smoking cessation clinic were recruited at the Montreal Chest Institute. Sensitivity and specificity were measured for each test against the corresponding composite reference standard. Test reliability was measured using kappa statistic for intra-rater and inter-rater agreement. Univariate and multivariate logistic regression models were used to explore possible covariates that might be related to false-positive and false-negative test results. IsoScreen had a sensitivity of 93.2% (95% confidence interval [CI] 80.3, 98.2 and specificity of 98.7% (94.8, 99.8. IsoScreen had intra-rater agreement (kappa of 0.75 (0.48, 0.94 and inter-rater agreement of 0.61 (0.27, 0.90. SmokeScreen had a sensitivity of 69.2% (56.4, 79.8, specificity of 81.6% (73.0, 88.0, intra-rater agreement of 0.77 (0.56, 0.94, and inter-rater agreement of 0.66 (0.42, 0.88. False-positive SmokeScreen tests were strongly associated with INH treatment. CONCLUSIONS: IsoScreen had high validity and reliability, whereas SmokeScreen had modest validity and reliability. SmokeScreen tests did not perform well in a population receiving INH due to the association between INH treatment and false-positive Smoke

  20. Global optimal design of ground water monitoring network using embedded kriging.

    Science.gov (United States)

    Dhar, Anirban; Datta, Bithin

    2009-01-01

    We present a methodology for global optimal design of ground water quality monitoring networks using a linear mixed-integer formulation. The proposed methodology incorporates ordinary kriging (OK) within the decision model formulation for spatial estimation of contaminant concentration values. Different monitoring network design models incorporating concentration estimation error, variance estimation error, mass estimation error, error in locating plume centroid, and spatial coverage of the designed network are developed. A big-M technique is used for reformulating the monitoring network design model to a linear decision model while incorporating different objectives and OK equations. Global optimality of the solutions obtained for the monitoring network design can be ensured due to the linear mixed-integer programming formulations proposed. Performances of the proposed models are evaluated for both field and hypothetical illustrative systems. Evaluation results indicate that the proposed methodology performs satisfactorily. These performance evaluation results demonstrate the potential applicability of the proposed methodology for optimal ground water contaminant monitoring network design.

  1. Advanced monitoring of water systems using in situ measurement stations: data validation and fault detection.

    Science.gov (United States)

    Alferes, Janelcy; Tik, Sovanna; Copp, John; Vanrolleghem, Peter A

    2013-01-01

    In situ continuous monitoring at high frequency is used to collect water quality information about water bodies. However, it is crucial that the collected data be evaluated and validated for the appropriate interpretation of the data so as to ensure that the monitoring programme is effective. Software tools for data quality assessment with a practical orientation are proposed. As water quality data often contain redundant information, multivariate methods can be used to detect correlations, pertinent information among variables and to identify multiple sensor faults. While principal component analysis can be used to reduce the dimensionality of the original variable data set, monitoring of some statistical metrics and their violation of confidence limits can be used to detect faulty or abnormal data and can help the user apply corrective action(s). The developed algorithms are illustrated with automated monitoring systems installed in an urban river and at the inlet of a wastewater treatment plant.

  2. Status Quo, Problems and Countermeasures of Bird Monitoring in China%我国鸟类监测的现状、问题与对策

    Institute of Scientific and Technical Information of China (English)

    崔鹏; 徐海根; 丁晖; 吴军; 曹铭昌; 陈炼

    2013-01-01

    strategies and survey methods.What is more,China mainly focuses on rare and endangered species,which are not representative of the overall status of wild birds,and pays less attention to common wild birds.In most of the surveys,China used the fixed distance line transect method and seldom the variable distance line transect method,which is more precise compared with the former.Based on analysis of the status quo and problems of wild bird monitoring in China,it is suggested that China to build a government-led,multi-stakeholder wild bird monitoring network.The multi-stakeholders should include research institutes,universities,nature reserves,bird-watching associations and volunteers,etc..Standard technical rules for wild bird monitoring should be worked out and published as soon as possible,so that,data collection and analysis can be conducted in a unified way.In terms of sampling strategies and survey methods,it is suggested that stratified random sampling is more proper,because experienced field workers are very limited and not enough for even distribution overall the country.Variable distance line transect method should be used in common landbird monitoring,for example,in habitats like farmland,shrub-steppe and moorland.The method can also be used in monitoring of offshore seabirds and water fowls.The total number counting method can be used in counting colonial water fowls.Under the framework of the national bird monitoring network,some special monitoring programs can be established,such as the bird ringing program and the wild bird avian influenza epidemics monitoring program.China's bird monitoring should combine with cutting-edge scientific issues,such as impacts of global climate change on bird distribution and breeding.New technologies and equipment should be used to improve accuracy of the field survey.The public awareness should be improved and volunteer training should be provided to encourage more and more people to join in the bird monitoring network.

  3. A novel, optical, on-line bacteria sensor for monitoring drinking water quality

    DEFF Research Database (Denmark)

    Højris, Bo; Christensen, Sarah Christine Boesgaard; Albrechtsen, Hans-Jørgen;

    2016-01-01

    Today, microbial drinking water quality is monitored through either time-consuming laboratory methods or indirect on-line measurements. Results are thus either delayed or insufficient to support proactive action. A novel, optical, on-line bacteria sensor with a 10-minute time resolution has been...... conditions such as pollution events in drinking water....

  4. 77 FR 43523 - Revisions to the Unregulated Contaminant Monitoring Regulation (UCMR 3) for Public Water Systems

    Science.gov (United States)

    2012-07-25

    ... AGENCY 40 CFR Parts 141 and 142 RIN 2040-AF10 Revisions to the Unregulated Contaminant Monitoring Regulation (UCMR 3) for Public Water Systems Correction In rule document 2012-9978 appearing on pages 26072... table entitled ``EXHIBIT 1--APPLICABILITY OF UCMR 3 TO WATER UTILITIES BY SYSTEM TYPE AND SIZE'' should...

  5. Continuous water-quality monitoring to improve lake management at Lake Mattamuskeet National Wildlife Refuge

    Science.gov (United States)

    Michelle Moorman; Tom Augspurger

    2016-01-01

    The U.S. Fish and Wildlife Service has partnered with U.S. Geological Survey to establish 2 continuous water-quality monitoring stations at Lake Mattamuskeet. Stations on the east and west side of the lake measure water level, clarity, dissolved oxygen, pH, temperature, salinity, and conductivity.

  6. 77 FR 39182 - Revisions to the Unregulated Contaminant Monitoring Regulation (UCMR 3) for Public Water Systems

    Science.gov (United States)

    2012-07-02

    ... AGENCY 40 CFR Parts 141 and 142 RIN 2040-AF10 Revisions to the Unregulated Contaminant Monitoring Regulation (UCMR 3) for Public Water Systems Correction In rule document 2012-9978 appearing on pages 26072... table entitled ``EXHIBIT 1--APPLICABILITY OF UCMR 3 TO WATER UTILITIES BY SYSTEM TYPE AND SIZE'' should...

  7. Pathogen Treatment Guidance and Monitoring Approaches fro On-Site Non-Potable Water Reuse

    Science.gov (United States)

    On-site non-potable water reuse is increasingly used to augment water supplies, but traditional fecal indicator approaches for defining and monitoring exposure risks are limited when applied to these decentralized options. This session emphasizes risk-based modeling to define pat...

  8. Evaluation of a remotely sensed evaporative stress index for monitoring patterns of anomalous water-use

    Science.gov (United States)

    Drought assessment is a complex endeavor, requiring monitoring of deficiencies in multiple components of the hydrologic budget. Precipitation anomalies reflect variability in water supply to the land surface, while soil moisture (SM), ground and surface water anomalies reflect deficiencies in moist...

  9. Asia-Pacific mussel watch: monitoring of butyltin contamination in coastal waters of Asian developing countries.

    Science.gov (United States)

    Sudaryanto, Agus; Takahashi, Shin; Monirith, In; Ismail, Ahmad; Muchtar, Muswerry; Zheng, Jinshu; Richardson, Bruce J; Subramanian, Annamalai; Prudente, Maricar; Hue, Nguyen Duc; Tanabe, Shinsuke

    2002-10-01

    Butyltin compounds (BTs) including mono-, di-, and tributyltin and total tin (sigmaSn), were determined in green mussels (Perna viridis) from various Asian developing countries, such as Cambodia, China (Hong Kong and southern China), Malaysia, India, Indonesia, the Philippines, and Vietnam, to elucidate the contamination status, distribution, and possible sources and to assess the risks on aquatic organisms and humans. Butyltin compounds were detected in green mussels collected from all the sampling location investigated, suggesting widespread contamination of BTs along the coastal waters of Asian developing countries. Among butyltin derivatives, tributyltin (TBT) was the predominant compound, indicating its ongoing usage and recent exposures in Asian coastal waters. Higher concentrations of BTs were found in mussels collected at locations with intensive maritime activities, implying that the usage of TBT as a biocide in antifouling paints was a major source of BTs. In addition, relatively high concentrations of BTs were observed in mussels from aquaculture areas in Hong Kong and Malaysia, as it has been reported in Thailand. With the recent improvement in economic status in Asia, it is probable that an increase in TBT usage will occur in aquaculture. Although contamination levels were generally low in mussel samples from most of the Asian developing countries, some of those from polluted areas in Hong Kong, India, Malaysia, the Philippines, and Thailand revealed levels comparable to those in developed nations. Furthermore, the concentrations of TBT in some mussels from polluted areas exceeded the threshold for toxic effects on organisms and estimated tolerable average residue levels as seafoods for human consumption. A significant correlation was observed between the concentrations of sigmaBTs and sigmaSn in mussels, and sigmaBTs were made up mostly 100% of sigmaSn in mussels taken from locations having intensive maritime/human activities. This suggests that

  10. Surface Water Quality Monitoring Site Optimization for Poyang Lake, the Largest Freshwater Lake in China

    Directory of Open Access Journals (Sweden)

    Hua Wang

    2014-11-01

    Full Text Available In this paper, we propose a coupled method to optimize the surface water quality monitoring sites for a huge freshwater lake based on field investigations, mathematical analysis, and numerical simulation tests. Poyang Lake, the largest freshwater lake in China, was selected as the research area. Based on the field investigated water quality data in the 5 years from 2008 to 2012, the water quality inter-annual variation coefficients at all the present sites and the water quality correlation coefficients between adjacent sites were calculated and analyzed to present an optimization scheme. A 2-D unsteady water quality model was established to get the corresponding water quality data at the optimized monitoring sites, which were needed for the rationality test on the optimized monitoring network. We found that: (1 the water quality of Piaoshan (No. 10 fluctuated most distinguishably and the inter-annual variation coefficient of NH3-N and TP could reach 99.77% and 73.92%, respectively. The four studied indexes were all closely related at Piaoshan (No. 10 and Tangyin (No. 11, and the correlation coefficients of COD and NH3-N could reach 0.91 and 0.94 separately. (2 It was suggested that the present site No. 10 be removed to avoid repeatability, and it was suggested that the three sites of Changling, Huzhong, and Nanjiang be added to improve the representativeness of the monitoring sites. (3 According to the rationality analysis, the 21 optimized water quality monitoring sites could scientifically replace the primary network, and the new monitoring network could better reflect the water quality of the whole lake.

  11. Water management in capillary gas chromatographic air monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Tipler, A. [Perkin Elmer Corp., Norwalk, CT (United States). Fresh Aire Lab.

    1994-12-31

    Capillary gas chromatography is an excellent technique for the speciated quantitation of low-level volatile organic compounds (VOCs) in ambient air. Although GC detectors have excellent sensitivity, some sample pre-concentration will be necessary to enable detection of VOCs at sub-ppb levels. This process normally employs a cooled and/or adsorbent trap to retain the analytes from a large volume of sample air. For very volatile VOCs, a very retentive trap is used and this may also retain water present as vapor in the sample. This trapped water causes significant problems with the chromatography and detector operation and methods must be sought to remove it or eliminate its effects. This paper investigates the magnitude of the problem and examines the various alternatives for managing the trapped water. The application of some of these techniques is demonstrated in a method for the determination of volatile polar and non-polar toxic organic compounds in ambient air.

  12. Science center capabilities to monitor and investigate Michigan’s water resources, 2016

    Science.gov (United States)

    Giesen, Julia A.; Givens, Carrie E.

    2016-09-06

    Michigan faces many challenges related to water resources, including flooding, drought, water-quality degradation and impairment, varying water availability, watershed-management issues, stormwater management, aquatic-ecosystem impairment, and invasive species. Michigan’s water resources include approximately 36,000 miles of streams, over 11,000 inland lakes, 3,000 miles of shoreline along the Great Lakes (MDEQ, 2016), and groundwater aquifers throughout the State.The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as tribes and universities, to provide scientific information used to manage the water resources of Michigan. To effectively assess water resources, the USGS uses standardized methods to operate streamgages, water-quality stations, and groundwater stations. The USGS also monitors water quality in lakes and reservoirs, makes periodic measurements along rivers and streams, and maintains all monitoring data in a national, quality-assured, hydrologic database.The USGS in Michigan investigates the occurrence, distribution, quantity, movement, and chemical and biological quality of surface water and groundwater statewide. Water-resource monitoring and scientific investigations are conducted statewide by USGS hydrologists, hydrologic technicians, biologists, and microbiologists who have expertise in data collection as well as various scientific specialties. A support staff consisting of computer-operations and administrative personnel provides the USGS the functionality to move science forward. Funding for USGS activities in Michigan comes from local and State agencies, other Federal agencies, direct Federal appropriations, and through the USGS Cooperative Matching Funds, which allows the USGS to partially match funding provided by local and State partners.This fact sheet provides an overview of the USGS current (2016) capabilities to monitor and study Michigan’s vast water resources. More

  13. Survey of instrumentation used for monitoring metals in water

    Energy Technology Data Exchange (ETDEWEB)

    Quinby-Hunt, M.S.

    1978-06-01

    A study was conducted of instrumentation used to determine metals in water. Several of the techniques most commonly used for analysis and routine determinations of metals in water are shown in Table 1. They are atomic absorption spectroscopy, both flame and flameless, atomic emission spectroscopy using conventional flame sources and inductively-coupled plasma sources, and ultraviolet-visible absorption techniques. Other less frequently employed methods are x-ray fluorescence analysis using both photon and charged particle excitation with energy-dispersive and wavelength-dispersive spectral analysis. Also electrochemical techniques and activation analysis are studied.

  14. Water management in capillary gas chromatographic air monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J.F.; Tippler, A.; Seeley, I. [Perkin-Elmer Corp., Wilton, CT (United States)

    1995-12-31

    Determining the identity and quantities of volatile organic compounds in air samples at trace levels often requires large sample sizes to achieve part-per-billion (ppb) detection levels. Given the volatile nature of many of low molecular weight chemical species, some form of cooling or adsorbent trapping of the organics is required. Unfortunately, cooling air samples below ambient temperature causes large amounts of water to be removed along with the organics. This paper investigates the magnitude of the problem and examines various alternatives for managing trapped water. The application of some of these techniques is demonstrated in a method for determining volatile polar and non-polar compounds in ambient air.

  15. Whole-cell biochips for online water monitoring

    OpenAIRE

    Elad, Tal; Belkin, Shimshon

    2012-01-01

    Chip-integrated luminescent recombinant reporter bacteria were combined with fluidics and light detection systems to form a real-time water biomonitor. The biomonitor was exposed to a continuous water flow for up to ten days, in the course of which it was challenged with spikes of both model toxic compounds and toxic environmental samples. All simulated contamination events were reported within 0.5–2.5 h. Furthermore, the response pattern of the reporter bacteria was indicative of the nature ...

  16. Pathogen Treatment Guidance and Monitoring Approaches for On-Site Non-Potable Water (2016 Southwest Onsite Wastewater Conference)

    Science.gov (United States)

    As the reuse of alternative water sources continues to gain popularity, public utilities and other stakeholders are seeking guidance on pathogen treatment requirements and monitoring approaches for nonpotable use of onsite collected waters.  Given that alternative water...

  17. Global Monitoring of Water Supply and Sanitation: History, Methods and Future Challenges

    Directory of Open Access Journals (Sweden)

    Jamie Bartram

    2014-08-01

    Full Text Available International monitoring of drinking water and sanitation shapes awareness of countries’ needs and informs policy, implementation and research efforts to extend and improve services. The Millennium Development Goals established global targets for drinking water and sanitation access; progress towards these targets, facilitated by international monitoring, has contributed to reducing the global disease burden and increasing quality of life. The experiences of the MDG period generated important lessons about the strengths and limitations of current approaches to defining and monitoring access to drinking water and sanitation. The methods by which the Joint Monitoring Programme (JMP of WHO and UNICEF tracks access and progress are based on analysis of data from household surveys and linear regression modelling of these results over time. These methods provide nationally representative and internationally comparable insights into the drinking water and sanitation facilities used by populations worldwide, but also have substantial limitations: current methods do not address water quality, equity of access, or extra-household services. Improved statistical methods are needed to better model temporal trends. This article describes and critically reviews JMP methods in detail for the first time. It also explores the impact of, and future directions for, international monitoring of drinking water and sanitation.

  18. Global Monitoring of Water Supply and Sanitation: History, Methods and Future Challenges

    Science.gov (United States)

    Bartram, Jamie; Brocklehurst, Clarissa; Fisher, Michael B.; Luyendijk, Rolf; Hossain, Rifat; Wardlaw, Tessa; Gordon, Bruce

    2014-01-01

    International monitoring of drinking water and sanitation shapes awareness of countries’ needs and informs policy, implementation and research efforts to extend and improve services. The Millennium Development Goals established global targets for drinking water and sanitation access; progress towards these targets, facilitated by international monitoring, has contributed to reducing the global disease burden and increasing quality of life. The experiences of the MDG period generated important lessons about the strengths and limitations of current approaches to defining and monitoring access to drinking water and sanitation. The methods by which the Joint Monitoring Programme (JMP) of WHO and UNICEF tracks access and progress are based on analysis of data from household surveys and linear regression modelling of these results over time. These methods provide nationally-representative and internationally-comparable insights into the drinking water and sanitation facilities used by populations worldwide, but also have substantial limitations: current methods do not address water quality, equity of access, or extra-household services. Improved statistical methods are needed to better model temporal trends. This article describes and critically reviews JMP methods in detail for the first time. It also explores the impact of, and future directions for, international monitoring of drinking water and sanitation. PMID:25116635

  19. Ecological monitoring for assessing the state of the nearshore and open waters of the Great Lakes

    Science.gov (United States)

    Neilson, Melanie A.; Painter, D. Scott; Warren, Glenn; Hites, Ronald A.; Basu, Ilora; Weseloh, D.V. Chip; Whittle, D. Michael; Christie, Gavin; Barbiero, Richard; Tuchman, Marc; Johannsson, Ora E.; Nalepa, Thomas F.; Edsall, Thomas A.; Fleischer, Guy; Bronte, Charles; Smith, Stephen B.; Baumann, Paul C.

    2003-01-01

    The Great Lakes Water Quality Agreement stipulates that the Governments of Canada and the United States are responsible for restoring and maintaining the chemical, physical and biological integrity of the waters of the Great Lakes Basin Ecosystem. Due to varying mandates and areas of expertise, monitoring to assess progress towards this objective is conducted by a multitude of Canadian and U.S. federal and provincial/state agencies, in cooperation with academia and regional authorities. This paper highlights selected long-term monitoring programs and discusses a number of documented ecological changes that indicate the present state of the open and nearshore waters of the Great Lakes.

  20. Assessing disproportionate costs to achieve good ecological status of water bodies in a Mediterranean river basin.

    Science.gov (United States)

    Molinos-Senante, María; Hernández-Sancho, Francesc; Sala-Garrido, Ramón

    2011-08-01

    Water management is becoming increasingly important as the demand for water grows, diversifies, and includes more complex environmental concerns. The Water Framework Directive (WFD) seeks to achieve a good ecological status for all European Community water bodies by 2015. To achieve this objective, economic consideration of water management must be given to all decision-making processes. Exemption (time or level of stringency) from the objectives of the EU Directive can be justified by proving that the cost of implementing measures is disproportionate to the benefits. This paper addresses the issue of disproportionate costs through a cost-benefit analysis (CBA). To predict the costs, the function costs method is used. The quantification of environmental benefits is more complex, because they are not determined by the market. As an alternative to stated preference methods, we use the distance function approach to estimate the environmental benefits of improving water quality. We then apply this methodological approach to a Mediterranean River Basin in Spain. The results show that the achievement of good status could not be rejected based on the criterion of disproportionate costs in this river basin. This paper illustrates that CBA is a useful tool to inform policy and decision making. Furthermore, it is shown that economics, particularly the valuation of environmental benefits, plays a crucial role in fulfilling the environmental objectives of the WFD.