WorldWideScience

Sample records for monitoring trace atmospheric

  1. Atmospheric trace gases monitoring by UV-vis spectroscopic techniques

    Science.gov (United States)

    Xie, Pinhua; Li, Ang; Wu, Fengcheng; Qin, Min; Hu, Rezhi; Xu, Jin; Si, Fuqi; Liu, Jianguo; Liu, Wenqing

    2016-04-01

    Due to rapidly economic development, air pollution has become an important issue in China. Phenomena such as regional haze in winter and high O3 concentration in summer are strongly related to increasing trace species. For better understanding the air pollution formation, it is necessary to know spatial and temporal distribution of trace species in the atmosphere. UV-vis spectroscopic techniques are of great advantages for trace species monitoring to meet several requirements, e.g. versatility, high sensitivity, good temporal resolution and field applicability. We have studied and developed various trace gases monitoring techniques and instruments based on UV-vis spectroscopic technique for in-situ measurements and remote sensing, e.g. LP-DOAS, IBBCEAS, CRDS, MAX-DOAS and mobile DOAS for NO2, SO2, HCHO, HONO, NO3, and N2O5 etc. The principle, instrumentation and inversion algorithm are presented. As typical applications of these techniques, investigation of the evolution of HONO and NO3 radicals over Beijing area, measurements of regional pollution in NCP and YRD are discussed in the aspects of HONO and nocturnal NO3 radical characteristics, trace gases (NO2, SO2 etc.) temporal and spatial distribution, pollution transport pathway, emission sources.

  2. Atmosphere Resource Recovery and Environmental Monitoring Trace Contaminant Control Through FY 2012

    Science.gov (United States)

    Perry, J. L.; Pruitt, M. W.; Wheeler, R. M.; Monje, O.

    2013-01-01

    Trace contaminant control has been a concern of spacecraft designers and operators from early in the progression of manned spaceflight. Significant technological advancement has occurred since the first designs were implemented in the 1960s, culminating in the trace contaminant control system currently in use aboard the International Space Station as part of the atmosphere revitalization system.

  3. ANITA: The European Technology Demonstrator for Trace Gas Monitoring in the International Space Station Atmosphere

    Science.gov (United States)

    Tan, Gijsbert; Mosebach, Herbert; Honne, Atle

    2005-12-01

    The accumulation of toxic or otherwise harmful trace gases in a spacecraft cabin is a very serious concern in terms of health and safety of the crew. Much progress has been made in developing techniques for monitoring the air quality on board and in near-real-time. The technique developed in Europe has reached the state of an in-flight technology demonstrator. ANITA (Analysing Interferometer for Ambient Air) is based on FTIR (Fourier Transform Infra-Red) Spectrometry. ANITA is calibrated to identify and quantify quasi online more than 30 contaminants at low ppm (part per million) or sub-ppm detection limits.ANITA is a European Space Agency (ESA) - National Aeronautics and Space Administration (NASA) cooperative programme.ANITA will be launched with Jules Verne, the maiden flight of the Automatic Transfer Vehicle (ATV) currently scheduled for June 2007.

  4. Comparative study of the suitability of two lichen species for trace element atmospheric monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Saiki, Mitiko; Alves, Edson R.; Genezini, Frederico A., E-mail: mitiko@ipen.br, E-mail: eralves@ipen.br, E-mail: fredzini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN-SP), Sao Paulo, SP (Brazil); Saldiva, Paulo H.N., E-mail: pepino@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina

    2013-07-01

    Lichens have been widely used in monitoring studies. Consequently, it is very useful to study the suitability of lichen species to monitor pollutants allowing in this way the best choice. The aim of this study was to compare the accumulation of trace elements by two epiphytic lichen species Canoparmelia texana (Tuck) Elix and Hale and Usnea amblyoclada (Mull. Arg.) Zahlbr. Five samples of each species were collected during the period from November 2010 in a same site far from downtown Sao Paulo city. Lichens collected from tree barks were cleaned, freeze-dried, ground and analyzed by neutron activation analysis. Aliquots of lichen samples and synthetic elemental standards were irradiated at the IEA-R1 nuclear research reactor. The induced gamma activities were measured using a hyperpure Ge detector coupled to a digital spectrum analyzer. Concentrations of As, Ba, Cd, Cr, Cs, Fe, Mg, Mn, Na, Rb, V and Zn were determined in both lichen species. The results demonstrated that both species can be used for evaluating air quality. The element concentrations showed difference between lichen species and also among their sampling periods. These differences may be attributed to the distinct mechanisms of element absorption by lichens as well as various other factors that affect their element accumulation. The comparative evaluation made calculating the ratios between C. texana species sample and that in Usnea amblyoclada for elemental concentrations indicated that, in general, foliose C. texana present similar or higher concentrations than those presented by fruticose Usnea. (author)

  5. Identifying the origin of atmospheric inputs of trace elements in the Prades Mountains (Catalonia) with bryophytes, lichens, and soil monitoring.

    Science.gov (United States)

    Achotegui-Castells, Ander; Sardans, Jordi; Ribas, Àngela; Peñuelas, Josep

    2013-01-01

    The biomonitors Hypnum cupressiforme and Xanthoria parietina were used to assess the deposition of trace elements and their possible origin in the Prades Mountains, a protected Mediterranean forest area of NE Spain with several pollution sources nearby. Al, As, Cd, Co, Cu, Cr, Ni, Pb, Sb, Ti, V, and Zn were determined in 16 locations within this protected area. Soil trace element concentrations were also ascertained to calculate enrichment factors (EF) and use them to distinguish airborne from soilborne trace element inputs. In addition, lichen richness was measured to further assess atmospheric pollution. EF demonstrated to be useful not only for the moss but also for the lichen. Cd, Cr, Cu, Ni, and Zn presented values higher than three in both biomonitors. These trace elements were also the main ones emitted by the potential sources of pollutants. The distance between sampling locations and potential pollution sources was correlated with the concentrations of Cu, Sb, and Zn in the moss and with Cr, Ni, and Sb in the lichen. Lichen richness was negatively correlated with lichen Cu, Pb, and V concentrations on dry weight basis. The study reflected the remarkable influence that the pollution sources have on the presence of trace elements and on lichen species community composition in this natural area. The study highlights the value of combining the use of biomonitors, enrichment factors, and lichen diversity for pollution assessment to reach a better overview of both trace elements' impact and the localization of their sources.

  6. Monitoring every last trace

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    The LHC is set to reach a record energy of 6.5 TeV per beam next year and will therefore be producing high energy radiation, as will the injectors supplying it. When exposed to this radiation, some equipment could potentially become radioactive and must therefore be carefully identified and monitored... this is where TREC comes in: software developed by CERN and currently being deployed in our accelerators.   If it becomes slightly radioactive, some of the equipment that makes up CERN’s accelerators may potentially become a hazard to the people who handle or work near it. Even though the risk is usually very low, CERN is obliged to record the location of this equipment, identify it and deal with it in an appropriate manner. During LS1 for example, almost 30,000 radiation protection checks were carried out on more than 2,500 tonnes of equipment! In 2009, going one step further in monitoring this equipment and making the Laboratory even safer, Luca Bruno, then the Radiation Safety Of...

  7. STUDY OF ATMOSPHERIC POLLUTION LEVELS BY TRACE ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Atmospheric pollution, Trace elements analysis, Tree bark, Tree leaves ... organic matter content, and plant genotype have a marked effect on nutrient availability [5] ... Elements such as lead, cadmium, arsenic, and mercury have.

  8. Remote sensing atmospheric trace gases with infrared imaging spectroscopy

    Science.gov (United States)

    Leifer, Ira; Tratt, David M.; Realmuto, Vincent J.; Gerilowski, Konstantin; Burrows, John P.

    2012-12-01

    Atmospheric pollution affects human health, food production, and ecosystem sustainability, causing environmental and climate change. Species of concern include nitrogen oxides, sulfur dioxide (SO2 ), and the greenhouse gases (GHG) methane (CH4 ) and carbon dioxide (CO2 ). Trace gas remote sensing can provide source detection, attribution, monitoring, hazard alerts, and air quality evaluation.

  9. Global Monitoring of Atmospheric Trace Gases, Clouds and Aerosols from UV/vis/NIR Satellite Instruments: Currents Status and Near Future Perspectives

    Science.gov (United States)

    Wagner, T.; Beirle, S.; Deutschmann, T.; Frankenberg, C.; Grzegorski, M.; Khokhar, M. F.; Kühl, S.; Marbach, T.; Mies, K.; de Vries, M. Penning; Platt, U.; Pukite, J.; Sanghavi, S.

    2008-04-01

    A new generation of UV/vis/near-IR satellite instruments like GOME (since 1995), SCIAMACHY (since 2002), OMI (since 2004), and GOME-2 (since 2006) allows to measure several important stratospheric and tropospheric trace gases like O3, NO2, OClO, HCHO, SO2, BrO, and H2O as well as clouds and aerosols from space. Because of its extended spectral range, the SCIAMACHY instrument also allows the retrieval of Greenhouse gases (CO2, CH4) and CO in the near IR. Almost all of the tropospheric trace gases are observed by these instruments for the first time. From satellite data it is possible to investigate the temporal and spatial variation. Also different sources can be characterised and quantified. The derived global distributions can serve as input and for the validation of atmospheric models. Here we give an overview on the current status of these new instruments and data products and their recent applications to various atmospheric and oceanic phenomena.

  10. Trace Atmospheric Gas Analyzer (TAGA) Dispersant Data for BP Spil/Deepwater Horizon - August 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  11. Remote sensing of atmospheric trace gases by diode laser spectroscopy

    Science.gov (United States)

    Liu, Jianguo; Kan, Ruifeng; He, Yabai; He, Ying; Zhang, Yujun; Xie, Pinhua; liu, Wenqing

    2016-04-01

    Gaseous ammonia is the most abundant alkaline trace gas in the atmosphere. In order to study its role in acid deposition and aerosol formation, as well as its influence on the regional air quality and atmospheric visibility, several instruments has been developed based on TDLAS (Tunable Diode Laser Absorption Spectroscopy) techniques. In this paper, a long open path TDLAS system and a continuous-wave CRDS (Cavity-Ring down Spectroscopy) system are presented. The long open path system has been developed for NH3 in-situ monitoring by combining wavelength modulation with harmonic detection techniques to obtain the necessary detection sensitivity. The prototype instrument has been used to monitor atmospheric NH3 concentration at an urban site near Beijing National Stadium during Beijing Olympics in 2008, and recently used to measure the fluxes of NH3 from farm fields by flux-gradient method. The detection limit for ammonia is proved approximately 3ppb for a total path length of 456m. The continuous-wave, rapidly swept CRDS system has been developed for localized atmospheric sensing of trace gases at remote sites. Passive open-path optical sensor units could be coupled by optical fiber over distances of >1 km to a single transmitter/receiver console incorporating a photodetector and a swept-frequency diode laser tuned to molecule-specific near-infrared wavelengths. A noise-limited minimum detectable mixing ratio of ~11 ppbv is attained for ammonia at atmospheric pressure. The developed instruments are deployable in agricultural, industrial, and natural atmospheric environments.

  12. Monitoring Atmospheric Transmission with FLAME

    Science.gov (United States)

    Zimmer, Peter C.; McGraw, J. T.; Zirzow, D. C.; Koppa, M.; Buttler-Pena, K.

    2014-01-01

    Calibration of ground-based observations in the optical and near-infrared requires precise and accurate understanding of atmospheric transmission, at least as precise and accurate as that required for the spectral energy distributions of science targets. Traditionally this has used the Langley extrapolation method, observing targets and calibrators over a range of airmass and extrapolating to zero airmass by assuming a plane-parallel homogeneous atmosphere. The technique we present uses direct measurements of the atmosphere to derive the transmission along the line of sight to science targets at a few well-chosen wavelengths. The Facility Lidar Atmospheric Monitor of Extinction (FLAME) is a 0.5m diameter three Nd:YAG wavelength (355nm, 532nm & 1064nm) elastic backscatter lidar system. Laser pulses are transmitted into the atmosphere in the direction of the science target. Photons scattered back toward the receiver by molecules, aerosols and clouds are collected and time-gated so that the backscatter intensity is measured as a function of range to the scattering volume. The system is housed in a mobile calibration lab, which also contains auxiliary instrumentation to provide a NIST traceable calibration of the transmitted laser power and receiver efficiency. FLAME was designed to create a million photons per minute signal from the middle stratosphere, where the atmosphere is relatively calm and dominated by molecules of the well-mixed atmosphere (O2 & N2). Routine radiosonde measurements of the density at these altitudes constrain the scattering efficiency in this region and, combined with calibration of the transmitter and receiver, the only remaining unknown quantity is the two-way transmission to the stratosphere. These measurements can inform atmospheric transmission models to better understand the complex and ever-changing observatory radiative transfer environment. FLAME is currently under active development and we present some of our ongoing measurements.

  13. Study of atmospheric pollution levels by trace elements analysis of ...

    African Journals Online (AJOL)

    Study of atmospheric pollution levels by trace elements analysis of tree bark and leaves. ... Bulletin of the Chemical Society of Ethiopia ... The high-pollution automobile parking lots showed higher levels of these elements (p < 0.05).

  14. Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants

    NARCIS (Netherlands)

    Dobben, van H.F.; Wamelink, G.W.W.; Braak, ter C.J.F.

    2001-01-01

    A study was conducted to determine the joint effect of gaseous atmospheric pollutants and trace elements on epiphytic lichens. We used our data to test the hypothesis that lichens are generally insensitive to toxic effects of trace elements, and can therefore be used as accumulator organisms to esti

  15. Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants

    NARCIS (Netherlands)

    Dobben, van H.F.; Wamelink, G.W.W.; Braak, ter C.J.F.

    2001-01-01

    A study was conducted to determine the joint effect of gaseous atmospheric pollutants and trace elements on epiphytic lichens. We used our data to test the hypothesis that lichens are generally insensitive to toxic effects of trace elements, and can therefore be used as accumulator organisms to esti

  16. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - August 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  17. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - July 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  18. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - May 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  19. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - June 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  20. Ray tracing and refraction in the modified US1976 atmosphere

    NARCIS (Netherlands)

    van der Werf, SY

    2003-01-01

    A new and flexible ray-tracing procedure for calculating astronomical refraction is outlined and applied to the US1976 standard atmosphere. This atmosphere is generalized to allow for a free choice of the temperature and pressure at sea level, and in this form it has been named the modified US1976

  1. Millimeter wavelength spectroscopy of trace atmospheric constituents from the Five College Radio Astronomy Observatory

    Science.gov (United States)

    Huguenin, G. R.; Irvine, W. M.

    1978-01-01

    The Five College Radio Astronomy Observatory system, located in western Massachusetts, is described. It is suggested that high sensitivity in the three-millimeter wavelength band facilitates detection and monitoring of a number of trace molecules in the earth's atmosphere as well as astonomical observation at radio wavelengths. Line formation and radiative transfer in the earth's atmosphere are discussed, and the receiver sensitivity is considered.

  2. Atmospheric transport of trace elements and nutrients to the oceans

    Science.gov (United States)

    Jickells, T. D.; Baker, A. R.; Chance, R.

    2016-11-01

    This paper reviews atmospheric inputs of trace elements and nutrients to the oceans in the context of the GEOTRACES programme and provides new data from two Atlantic GEOTRACES cruises. We consider the deposition of nitrogen to the oceans, which is now dominated by anthropogenic emissions, the deposition of mineral dust and related trace elements, and the deposition of other trace elements which have a mixture of anthropogenic and dust sources. We then consider the solubility (as a surrogate for bioavailability) of the various elements. We consider briefly the sources, atmospheric transport and transformations of these elements and how this results in strong spatial deposition gradients. Solubility of the trace elements also varies systematically between elements, reflecting their sources and cycling, and for some trace elements there are also systematic gradients in solubility related to dust loading. Together, these effects create strong spatial gradients in the inputs of bioavailable trace elements to the oceans, and we are only just beginning to understand how these affect ocean biogeochemistry. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  3. Trace Molecules in Giant Planet Atmospheres

    Science.gov (United States)

    Huestis, D. L.; Smith, G. P.

    2010-12-01

    Chemical kinetics matters in the upper atmospheres of giant planets in our solar system and in extrasolar systems. The composition of a volume of gas depends not only on where it is, but also on how it got there. The giant planets in our own solar system still have much to teach us about what we will be observing on extrasolar giant planets and how to interpret what we observe. Some molecules, such as CO, C2H2, C2H6, PH3, and NH3, which we call tracer molecules, provide remotely observable signatures of vertical transport. PH3 and NH3 especially have complicated thermochemistry and chemical kinetics that, until recently, have been poorly understood. Based on analysis of recent literature, we have identified new chemical mechanisms for interconverting NH3 and N2 and for interconverting PH3 and NH4-H2PO4.

  4. A Fourier transform infrared trace gas analyser for atmospheric applications

    Directory of Open Access Journals (Sweden)

    D. W. T. Griffith

    2012-05-01

    Full Text Available Concern in recent decades about human impacts on Earth's climate has led to the need for improved and expanded measurement capabilities for greenhouse gases in the atmosphere. In this paper we describe in detail an in situ trace gas analyser based on Fourier Transform Infrared (FTIR spectroscopy that is capable of simultaneous and continuous measurements of carbon dioxide (CO2, methane (CH4, carbon monoxide (CO, nitrous oxide (N2O and 13C in CO2 in air with high precision and accuracy. Stable water isotopes can also be measured in undried airstreams. The analyser is automated and allows unattended operation with minimal operator intervention. Precision and accuracy meet and exceed the compatibility targets set by the World Meteorological Organisation – Global Atmosphere Watch Programme for baseline measurements in the unpolluted troposphere for all species except 13C in CO2.

    The analyser is mobile and well suited to fixed sites, tower measurements, mobile platforms and campaign-based measurements. The isotopic specificity of the optically-based technique and analysis allows application of the analyser in isotopic tracer experiments, for example 13C in CO2 and 15N in N2O. We review a number of applications illustrating use of the analyser in clean air monitoring, micrometeorological flux and tower measurements, mobile measurements on a train, and soil flux chamber measurements.

  5. The ray-tracing mapping operator in an asymmetric atmosphere

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In a spherically symmetric atmosphere, the refractive index profile is retrieved from bending angle measurements through Abel integral transform. As horizontal refractivity inhomogeneity becomes significant in the moist low atmosphere, the error in refractivity profile obtained from Abel inversion reaches about 10%. One way to avoid this error is to directly assimilate bending angle profile into numerical weather models. This paper discusses the 2D ray-tracing mapping operator for bending angle in an asymmetric atmosphere. Through simulating computations, the retrieval error of the refractivity in horizontal inhomogeneity is assessed. The step length of 4 rank Runge-Kutta method is also tested.

  6. Atmospheric Monitoring for the MAGIC Telescopes

    CERN Document Server

    Gaug, M; Dorner, D; Doro, M; Font, Ll; Fruck, C; Garczarczyk, M; Garrido, D; Hrupec, D; Hose, J; López-Oramas, A; Maneva, G; Martinez, M; Mirzoyan, R; Temnikov, P; Zanin, R

    2014-01-01

    The monitoring of the atmosphere is very relevant for Imaging Atmospheric Cherenkov Telescopes. Adverse weather conditions (strong wind, high humidity, etc.) may damage the telescopes and must therefore be monitored continuously to guarantee a safe operation, and the presence of clouds and aerosols affects the transmission of the Cherenkov light and consequently the performance of the telescopes. The ATmospheric CAlibration (ATCA) technical working group of the MAGIC collaboration aims to cover all aspects related to atmosphere monitoring and calibration. In this paper we give an overview of the ATCA goals and activities, which include the set-up and maintenance of appropriate instrumentation, proper analysis of its data, the realization of MC studies, and the correction of real data taken under non-optimal atmospheric conditions. The final goal is to reduce the systematic uncertainties in the determination of the $\\gamma$-ray flux and energy, and to increase the duty cycle of the telescopes by establishing o...

  7. Wet precipitation scavenging of soluble atmospheric trace gases due to chemical absorption in inhomogeneous atmosphere

    Science.gov (United States)

    Elperin, Tov; Fominykh, Andrew; Krasovitov, Boris

    2017-02-01

    We analyze the effects of irreversible chemical reactions of the first and higher orders and aqueous-phase dissociation reactions on the rate of trace gas scavenging by rain in the atmosphere with non-uniform concentration and temperature. We employ an one-dimensional model of precipitation scavenging of chemically active soluble gaseous pollutants that is valid for small gradients of temperature and concentration in the atmosphere. It is demonstrated that transient altitudinal distribution of concentration under the influence of rain is determined by the partial hyperbolic differential equation of the first order. Scavenging coefficients are calculated for wet removal of chlorine, nitrogen dioxide and sulfur dioxide for the exponential and linear initial altitudinal distributions of trace gases concentration in the atmosphere and linear and uniform altitudinal temperature distributions. Theoretical predictions of the dependence of the magnitude of the scavenging coefficient on rain intensity for sulfur dioxide are in a good agreement with the available atmospheric measurements.

  8. Martian Atmospheric Plumes: Behavior, Detectability and Plume Tracing

    Science.gov (United States)

    Banfield, Don; Mischna, M.; Sykes, R.; Dissly, R.

    2013-10-01

    We will present our recent work simulating neutrally buoyant plumes in the martian atmosphere. This work is primarily directed at understanding the behavior of discrete plumes of biogenic tracer gases, and thus increasing our understanding of their detectability (both from orbit and from in situ measurements), and finally how to use the plumes to identify their precise source locations. We have modeled the detailed behavior of martian atmospheric plumes using MarsWRF for the atmospheric dynamics and SCIPUFF (a terrestrial state of the art plume modeling code that we have modified to represent martian conditions) for the plume dynamics. This combination of tools allows us to accurately simulate plumes not only from a regional scale from which an orbital observing platform would witness the plume, but also from an in situ perspective, with the instantaneous concentration variations that a turbulent flow would present to a point sampler in situ instrument. Our initial work has focused on the detectability of discrete plumes from an orbital perspective and we will present those results for a variety of notional orbital trace gas detection instruments. We have also begun simulating the behavior of the plumes from the perspective of a sampler on a rover within the martian atmospheric boundary layer. The detectability of plumes within the boundary layer has a very strong dependence on the atmospheric stability, with plume concentrations increasing by a factor of 10-1000 during nighttime when compared to daytime. In the equatorial regions of the planet where we have simulated plumes, the diurnal tidal “clocking” of the winds is strongly evident in the plume trail, which similarly “clocks” around its source. This behavior, combined with the strong diurnal concentration variations suggests that a rover hunting a plume source would be well suited to approach it from a particular azimuth (downwind at night) to maximize detectability of the plume and the ability to

  9. Atmospheric trace gases and global climate - A seasonal model study

    Science.gov (United States)

    Wang, Wei-Chyung; Molnar, Gyula; Ko, Malcolm K. W.; Goldenberg, Steven; Sze, Nien Dak

    1990-01-01

    Atmospheric models with seasonal cycles are used to study the possible near-future changes in latitudinal and vertical distributions of atmospheric ozone and temperature caused by increases of trace gases. It is found that increases of CFCs, CH4, and N2O may add to the surface warming from increased CO2. Calculations based on projected trends of CO2, N2O, CH4, and CFCs show that the annual mean and global mean surface temperature could warm by as much as 2.5 C by the year 2050, with larger warming at high latitudes. The results suggest that the warming in the lower stratosphere and upper troposphere is much larger than that at the surface, especially during the summer season.

  10. Atmospheric trace gases and global climate - A seasonal model study

    Science.gov (United States)

    Wang, Wei-Chyung; Molnar, Gyula; Ko, Malcolm K. W.; Goldenberg, Steven; Sze, Nien Dak

    1990-01-01

    Atmospheric models with seasonal cycles are used to study the possible near-future changes in latitudinal and vertical distributions of atmospheric ozone and temperature caused by increases of trace gases. It is found that increases of CFCs, CH4, and N2O may add to the surface warming from increased CO2. Calculations based on projected trends of CO2, N2O, CH4, and CFCs show that the annual mean and global mean surface temperature could warm by as much as 2.5 C by the year 2050, with larger warming at high latitudes. The results suggest that the warming in the lower stratosphere and upper troposphere is much larger than that at the surface, especially during the summer season.

  11. Bioindication of atmospheric trace metals - With special references to megacities

    Energy Technology Data Exchange (ETDEWEB)

    Markert, Bernd, E-mail: markert@schlundmail.de [Fliederweg 17, D-49733 Haren/Erika (Germany); Wuenschmann, Simone [Fliederweg 17, D-49733 Haren/Erika (Germany); Fraenzle, Stefan [International Graduate School Zittau, D-02763 Zittau (Germany); Graciana Figueiredo, Ana Maria; Ribeiro, Andreza P. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Linea Prestes 2242, CEP 05508-090, Sao Paulo (Brazil); Wang Meie [State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Beijing 110016 (China)

    2011-08-15

    After considering the particular problems of atmospheric pollution in megacities, i.e. agglomerations larger than 5 mio. inhabitants, with urbanization of World's population going on steadily, possibilities of active biomonitoring by means of green plants are discussed. Based on specific definitions of active and passive bioindication the chances of monitoring heavy metals in Sao Paulo megacity were demonstrated (first results published before). This is to show that there is need for increased use of bioindication to tackle the particular problems of megacities concerning environmental 'health', the data to be processed according to the Multi-Markered-Bioindication-Concept (MMBC). Comparison to other work shows this approach to be reasonable. - Highlights: > Chemical Pollution. > Bioindication. > Multi-Markered-Bioindication-Concept (MMBC). > Mega cities. - Bioindication is a relevant technique for observing the atmospheric deposition of chemical elements of the environment in megacities.

  12. Integrated method for the measurement of trace atmospheric bases

    Science.gov (United States)

    Key, D.; Stihle, J.; Petit, J.-E.; Bonnet, C.; Depernon, L.; Liu, O.; Kennedy, S.; Latimer, R.; Burgoyne, M.; Wanger, D.; Webster, A.; Casunuran, S.; Hidalgo, S.; Thomas, M.; Moss, J. A.; Baum, M. M.

    2011-09-01

    Nitrogenous atmospheric bases are thought to play a key role in the global nitrogen cycle, but their sources, transport, and sinks remain poorly understood. Of the many methods available to measure such compounds in ambient air, few meet the current need of being applicable to the complete range of potential analytes and fewer still are convenient to implement using instrumentation that is standard to most laboratories. In this work, an integrated approach to measuring trace atmospheric nitrogenous bases has been developed and validated. The method uses a simple acid scrubbing step to capture and concentrate the bases as their phosphite salts, which then are derivatized and analyzed using GC/MS and/or LC/MS. The advantages of both techniques in the context of the present measurements are discussed. The approach is sensitive, selective, reproducible, as well as convenient to implement and has been validated for different sampling strategies. The limits of detection for the families of tested compounds are suitable for ambient measurement applications, as supported by field measurements in an urban park and in the exhaust of on-road vehicles.

  13. Integrated method for the measurement of trace nitrogenous atmospheric bases

    Science.gov (United States)

    Key, D.; Stihle, J.; Petit, J.-E.; Bonnet, C.; Depernon, L.; Liu, O.; Kennedy, S.; Latimer, R.; Burgoyne, M.; Wanger, D.; Webster, A.; Casunuran, S.; Hidalgo, S.; Thomas, M.; Moss, J. A.; Baum, M. M.

    2011-12-01

    Nitrogenous atmospheric bases are thought to play a key role in the global nitrogen cycle, but their sources, transport, and sinks remain poorly understood. Of the many methods available to measure such compounds in ambient air, few meet the current need of being applicable to the complete range of potential analytes and fewer still are convenient to implement using instrumentation that is standard to most laboratories. In this work, an integrated approach to measuring trace, atmospheric, gaseous nitrogenous bases has been developed and validated. The method uses a simple acid scrubbing step to capture and concentrate the bases as their phosphite salts, which then are derivatized and analyzed using GC/MS and/or LC/MS. The advantages of both techniques in the context of the present measurements are discussed. The approach is sensitive, selective, reproducible, as well as convenient to implement and has been validated for different sampling strategies. The limits of detection for the families of tested compounds are suitable for ambient measurement applications (e.g., methylamine, 1 pptv; ethylamine, 2 pptv; morpholine, 1 pptv; aniline, 1 pptv; hydrazine, 0.1 pptv; methylhydrazine, 2 pptv), as supported by field measurements in an urban park and in the exhaust of on-road vehicles.

  14. Integrated method for the measurement of trace atmospheric bases

    Directory of Open Access Journals (Sweden)

    D. Key

    2011-09-01

    Full Text Available Nitrogenous atmospheric bases are thought to play a key role in the global nitrogen cycle, but their sources, transport, and sinks remain poorly understood. Of the many methods available to measure such compounds in ambient air, few meet the current need of being applicable to the complete range of potential analytes and fewer still are convenient to implement using instrumentation that is standard to most laboratories. In this work, an integrated approach to measuring trace atmospheric nitrogenous bases has been developed and validated. The method uses a simple acid scrubbing step to capture and concentrate the bases as their phosphite salts, which then are derivatized and analyzed using GC/MS and/or LC/MS. The advantages of both techniques in the context of the present measurements are discussed. The approach is sensitive, selective, reproducible, as well as convenient to implement and has been validated for different sampling strategies. The limits of detection for the families of tested compounds are suitable for ambient measurement applications, as supported by field measurements in an urban park and in the exhaust of on-road vehicles.

  15. Computerized atmospheric trace contaminant control simulation for manned spacecraft

    Science.gov (United States)

    Perry, J. L.

    1993-01-01

    Buildup of atmospheric trace contaminants in enclosed volumes such as a spacecraft may lead to potentially serious health problems for the crew members. For this reason, active control methods must be implemented to minimize the concentration of atmospheric contaminants to levels that are considered safe for prolonged, continuous exposure. Designing hardware to accomplish this has traditionally required extensive testing to characterize and select appropriate control technologies. Data collected since the Apollo project can now be used in a computerized performance simulation to predict the performance and life of contamination control hardware to allow for initial technology screening, performance prediction, and operations and contingency studies to determine the most suitable hardware approach before specific design and testing activities begin. The program, written in FORTRAN 77, provides contaminant removal rate, total mass removed, and per pass efficiency for each control device for discrete time intervals. In addition, projected cabin concentration is provided. Input and output data are manipulated using commercial spreadsheet and data graphing software. These results can then be used in analyzing hardware design parameters such as sizing and flow rate, overall process performance and program economics. Test performance may also be predicted to aid test design.

  16. Trace gases in the atmosphere over Russian cities

    Science.gov (United States)

    Elansky, Nikolai F.; Lavrova, Olga V.; Skorokhod, Andrey I.; Belikov, Igor B.

    2016-10-01

    Multiyear observational data (obtained at the mobile railroad laboratory in the course of the 1995-2010 TROICA experiments) on the composition and state of the atmosphere were used to study the features of both spatial and temporal variations in the contents of trace gases in the surface air layer over Russian cities. The obtained characteristics of urban air noticeably differ from those obtained at stationary stations. The emission fluxes of NOx, CO, and CH4 and their integral emissions from large cities have been estimated on the basis of observational data obtained at the mobile laboratory. The values of these emission fluxes reflect the state of urban infrastructure. The integral urban emissions of CO depend on the city size and vary from 50 Gg yr-1 for Yaroslavl to 130 Gg yr-1 for Yekaterinburg. For most cities, they agree with the EDGAR v4.2 data within the limits of experimental error. The agreement is worse for the emissions of NOx. The EDGAR v4.2 data on the emissions of CH4 seem to be overestimated.

  17. Atmospheric dry deposition fluxes of trace elements measured in Queretaro City, Mexico

    Science.gov (United States)

    Garcia, R.; Hernandez, R.; Solis, S.; Perez, R.; Hernandez, G.; Morton, O.; Hernandez, E.; Torres, M. C.; Baez, A.

    2012-04-01

    Sampling was made in the southern section of downtown Mexico City. Samples were collected with an Mini-Vol PM10 . Eight different sources were identified for PM10 aerosols: secondary sulfate, wood combustion, fireworks, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The ions SO42-, NO3-, Cl-, Na+, K+, Ca2+, Mg2+ and NH4+,were analyzed by ion chromatography and the trace metals using an atomic absorption spectrometer. The result indicated that SO42- was the most abundant ion and with respect to trace metal. All the trace elements except Mn and V show statistically significant differences between monitoring sites. The Pearson's correlation applied to all data, showed a high correlation among SO42-, NO3- and NH4+, indicating a common anthropogenic origin. In addition the correlation found between Ca2+ and Al indicated a crustal origin. On the other hand, in considering the total sampling period for particles as well as for all the metals, it is appreciable the significant differences between sites and meteorological seasons. The cluster analysis of air back-trajectories employed in the paper is a technique widely used to identify transport patterns and potential sources of both anthropogenic pollution and natural constituents of the atmosphere, including atmospheric aerosols. It is also used to determine how aerosol optical properties observed over the station differ depending on source region and transport pathways In order to gain a better insight into the origin of trace metal and major inorganic ions, a Principal Component Analysis was applied to the results for 6 elements and 8 ions, from the years 2009 and 2010. Further, the statistical analysis demonstrated the adequate selection of the monitoring areas, confirming that main emission source of these atmospheric pollutants is anthropogenic origin. Evidence suggests that the organic and inorganic species are not always internally mixed, especially in the small modes. The

  18. Application of cascade lasers to detection of trace gaseous atmospheric pollutants

    Science.gov (United States)

    Miczuga, Marcin; Kopczyński, Krzysztof

    2016-12-01

    Understanding the impact of gaseous pollutants on the earth's atmosphere, as well as more and more felt by mankind negative effects of its contamination, result in increasing the level of environmental awareness and contribute to the intensification of actions aimed at reducing the emission of harmful gases into the atmosphere. At the same time, the extensive studies are conducted in order to continuously monitor the level of air contamination with harmful gases and the industry compliance with the standards limited the amount of emitted pollutants. Over recent years, there has been increasing use of cascade lasers and multi-pass cells in optical systems detecting the gaseous atmospheric pollutants and measuring the gas concentrations. The paper presents the use of a tunable quantum cascade laser as a source of the IR radiation in an advanced detection system enabling the trace gaseous atmospheric pollutants to be identified. Apart from the laser, the main elements of the system are: a multi-pass cell, an IR detector and a module for control and analysis. Operation of the system is exemplified by measuring the level of the air pollution with ammonia, carbon oxide and nitrous oxide.

  19. Potential for the use of reconstructed IASI radiances in the detection of atmospheric trace gases

    Directory of Open Access Journals (Sweden)

    N. C. Atkinson

    2010-07-01

    Full Text Available Principal component (PC analysis has received considerable attention as a technique for the extraction of meteorological signals from hyperspectral infra-red sounders such as the Infrared Atmospheric Sounding Interferometer (IASI and the Atmospheric Infrared Sounder (AIRS. In addition to achieving substantial bit-volume reductions for dissemination purposes, the technique can also be used to generate reconstructed radiances in which random instrument noise has been reduced. Studies on PC analysis of hyperspectral infrared sounder data have been undertaken in the context of numerical weather prediction, instrument monitoring and geophysical variable retrieval, as well as data compression. This study examines the potential of PC analysis for chemistry applications.

    A major concern in the use of PC analysis for chemistry is that the spectral features associated with trace gases may not be well represented in the reconstructed spectra, either due to deficiencies in the training set or due to the limited number of PC scores used in the radiance reconstruction. In this paper we show examples of reconstructed IASI radiances for several trace gases: ammonia, sulphur dioxide, methane and carbon monoxide. It is shown that care must be taken in the selection of spectra for the initial training set: an iterative technique, in which outlier spectra are added to a base training set, gives the best results. For the four trace gases examined, key features of the chemical signatures are retained in the reconstructed radiances, whilst achieving a substantial reduction in instrument noise.

    A new regional re-transmission service for IASI is scheduled to start in 2010, as part of the EUMETSAT Advanced Retransmission Service (EARS. For this EARS-IASI service it is intended to include PC scores as part of the data stream. The paper describes the generation of the reference eigenvectors for this new service.

  20. Organic Nitrates: A Complex Family of Atmospheric Trace Constituents

    Science.gov (United States)

    Ballschmiter, K.; Fischer, R. G.; Grünert, A.; Kastler, J.; Schneider, M.; Woidich, S.

    2003-04-01

    Biogenic and geogenic hydrocarbons are the precursors of organic nitrates that are formed as tropospheric photo-oxidation products in the presence of NOx. Air chemistry leads to a very complex pattern of nitric acid esters: alkyl nitrates, aryl-alkyl nitrates, and bifunctional nitrates like alkyl dinitrates, hydroxy alkyl nitrates and carbonyl alkyl nitrates. We have analyzed the pattern of organic nitrates in air samples after adsorption/thermal desorption (low volume sampling-LVS) or adsorption/solvent desorption (high volume sampling-HVS) by capillary gas chromatography with electron capture (ECD) and mass spectrometric detection (MSD) using air aliquotes of 100 up to 3000 liters on column. The complexity of the organic nitrates found in air requires a group pre-separation by normal phase liquid chromatography. A detection limit per compound of 0.005 ppt(v) is achieved by our approach. We have synthesized a broad spectrum of organic nitrates as reference compounds. Air samples were taken from central Europe, the US West (Utah, Nevada, California), and the North- and South Atlantic including Antarctica. Levels and patterns of the regional and global occurrence of the various groups of C1-C12 organic nitrates including dinitrates and hydroxy nitrates and nitrates of isoprene (2-methylbutadiene) are presented. Werner G., J. Kastler, R. Looser, K. Ballschmiter: "Organic nitrates of isoprene as atmospheric trace compounds" Angewandte Chemie - International Edition (1999) 38: 1634-1637. Woidich S., O. Froescheis, O. Luxenhofer, K. Ballschmiter: "EI- and NCI-mass spectrometry of arylalkyl nitrates and their occurrence in urban air" Fresenius J. Anal. Chem. (1999) 364 : 91-99. Kastler, J; Jarman, W; Ballschmiter, K.: "Multifunctional organic nitrates as constituents in European and US urban photo-smog" Fresenius J. Anal. Chem. (2000) 368:244-249. Schneider M., K. Ballschmiter: "C3-C14 alkyl nitrates in remote South Atlantic air" Chemosphere (1999) 38: 233-244. Fischer

  1. Measurement of Trace Gases in the Atmosphere of Venus Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop small, lightweight, low power instrumentation for the in situ balloon-borne measurement of several trace gases of importance...

  2. Real-Time Monitoring of Trace Gas Concentrations in Syngas

    Directory of Open Access Journals (Sweden)

    Herbig J.

    2013-08-01

    Full Text Available A Proton Transfer Reaction Mass Spectrometer (PTR-MS was used for the analysis of syngas in an industrial Fischer-Tropsch process. A PTR-MS can detect a variety of volatile organic and inorganic compounds in real-time and with high sensitivity. Together with a multiplexer, this allows for online (real-time monitoring of the trace contaminations at different stages of a Fischer-Tropsch process. Several volatile compounds, such as HCN, H2S, RSH, carbonyls, acids, alcohols and others have been measured in Syngas. This paper describes the setup to monitor syngas using PTR-MS and summarizes the result of this proof-of-principle project.

  3. Atmospherically deposited trace metals from bulk mineral concentrate port operations.

    Science.gov (United States)

    Taylor, Mark Patrick

    2015-05-15

    Although metal exposures in the environment have declined over the last two decades, certain activities and locations still present a risk of harm to human health. This study examines environmental dust metal and metalloid hazards (arsenic, cadmium, lead and nickel) associated with bulk mineral transport, loading and unloading port operations in public locations and children's playgrounds in the inner city of Townsville, northern Queensland. The mean increase in lead on post-play hand wipes (965 μg/m(2)/day) across all sites was more than 10-times the mean pre-play loadings (95 μg/m(2)/day). Maximum loading values after a 10-minute play period were 3012 μg/m(2), more than seven times the goal of 400 μg/m(2) used by the Government of Western Australia (2011). Maximum daily nickel post-play hand loadings (404 μg/m(2)) were more than 26 times above the German Federal Immission Control Act 2002 annual benchmark of 15 μg/m(2)/day. Repeat sampling over the 5-day study period showed that hands and surfaces were re-contaminated daily from the deposition of metal-rich atmospheric dusts. Lead isotopic composition analysis of dust wipes ((208)Pb/(207)Pb and (206)Pb/(207)Pb) showed that surface dust lead was similar to Mount Isa type ores, which are exported through the Port of Townsville. While dust metal contaminant loadings are lower than other mining and smelting towns in Australia, they exceeded national and international benchmarks for environmental quality. The lessons from this study are clear - even where operations are considered acceptable by managing authorities, targeted assessment and monitoring can be used to evaluate whether current management practices are truly best practice. Reassessment can identify opportunities for improvement and maximum environmental and human health protection.

  4. Monte Carlo Ray Tracing Based Sensitivity Analysis of the Atmospheric and the Ocean Parameters on Top of the Atmosphere Radiance

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-01-01

    Full Text Available Monte Carlo Ray Tracing: MCRT based sensitivity analysis of the geophysical parameters (the atmosphere and the ocean on Top of the Atmosphere: TOA radiance in visible to near infrared wavelength regions is conducted. As the results, it is confirmed that the influence due to the atmosphere is greater than that of the ocean. Scattering and absorption due to aerosol particles and molecules in the atmosphere is major contribution followed by water vapor and ozone while scattering due to suspended solid is dominant contribution for the ocean parameters.

  5. Atmospherically deposited trace metals from bulk mineral concentrate port operations

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Mark Patrick, E-mail: mark.taylor@mq.edu.au

    2015-05-15

    Although metal exposures in the environment have declined over the last two decades, certain activities and locations still present a risk of harm to human health. This study examines environmental dust metal and metalloid hazards (arsenic, cadmium, lead and nickel) associated with bulk mineral transport, loading and unloading port operations in public locations and children's playgrounds in the inner city of Townsville, northern Queensland. The mean increase in lead on post-play hand wipes (965 μg/m{sup 2}/day) across all sites was more than 10-times the mean pre-play loadings (95 μg/m{sup 2}/day). Maximum loading values after a 10-minute play period were 3012 μg/m{sup 2}, more than seven times the goal of 400 μg/m{sup 2} used by the Government of Western Australia (2011). Maximum daily nickel post-play hand loadings (404 μg/m{sup 2}) were more than 26 times above the German Federal Immission Control Act 2002 annual benchmark of 15 μg/m{sup 2}/day. Repeat sampling over the 5-day study period showed that hands and surfaces were re-contaminated daily from the deposition of metal-rich atmospheric dusts. Lead isotopic composition analysis of dust wipes ({sup 208}Pb/{sup 207}Pb and {sup 206}Pb/{sup 207}Pb) showed that surface dust lead was similar to Mount Isa type ores, which are exported through the Port of Townsville. While dust metal contaminant loadings are lower than other mining and smelting towns in Australia, they exceeded national and international benchmarks for environmental quality. The lessons from this study are clear — even where operations are considered acceptable by managing authorities, targeted assessment and monitoring can be used to evaluate whether current management practices are truly best practice. Reassessment can identify opportunities for improvement and maximum environmental and human health protection. - Graphical abstract: Post-play hand wipe, Headland Park, Townsville, Australia. - Highlights: • Bulk mineral port

  6. A Fourier transform infrared trace gas and isotope analyser for atmospheric applications

    Directory of Open Access Journals (Sweden)

    D. W. T. Griffith

    2012-10-01

    Full Text Available Concern in recent decades about human impacts on Earth's climate has led to the need for improved and expanded measurement capabilities of greenhouse gases in the atmosphere. In this paper we describe in detail an in situ trace gas analyser based on Fourier Transform Infrared (FTIR spectroscopy that is capable of simultaneous and continuous measurements of carbon dioxide (CO2, methane (CH4, carbon monoxide (CO, nitrous oxide (N2O and 13C in CO2 in air with high precision. High accuracy is established by reference to measurements of standard reference gases. Stable water isotopes can also be measured in undried airstreams. The analyser is automated and allows unattended operation with minimal operator intervention. Precision and accuracy meet and exceed the compatibility targets set by the World Meteorological Organisation – Global Atmosphere Watch for baseline measurements in the unpolluted troposphere for all species except 13C in CO2.

    The analyser is mobile and well suited to fixed sites, tower measurements, mobile platforms and campaign-based measurements. The isotopic specificity of the optically-based technique and analysis allows its application in isotopic tracer experiments, for example in tracing variations of 13C in CO2 and 15N in N2O. We review a number of applications illustrating use of the analyser in clean air monitoring, micrometeorological flux and tower measurements, mobile measurements on a train, and soil flux chamber measurements.

  7. Atmospheric pollution in the Tula Industrial Corridor studied using a bio monitor and nuclear analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, M. A.; Solis, C.; Andrade, E. [UNAM, Instituto de Fisica, Apdo. Postal 20-364, 01000 Mexico D. F. (Mexico); Beltran H, R. I. [Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Carretera Pachuca-Tulancingo Km. 4.5, 42184 Pachuca, Hidalgo (Mexico); Issac O, K. [Universidad Autonoma del Estado de Mexico, Facultad de Medicina, Paseo Tollocan s/n, esq. Jesus Carranza, 50120 Toluca, Estado de Mexico (Mexico); Lucho C, C. A. [Universidad Politecnica de Pachuca, Carretera Pachuca-Cd. Sahagun Km. 20, Hidalgo (Mexico); Lopez R, M. C.; Longoria, L. C. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-02-15

    This study deals with the application of nuclear analytical techniques to analyze trace elements in the biological monitor Tillandsia usneoides. Biological monitors provides an alternative advantageous way of particulate matter sampling in air pollution studies, since there is no need of special sampling devices, accumulation time can be as long as desired. T. usneoides, which occurs naturally throughout Mexico, was used to monitor air quality of Tula-Vito-Apasco (TVA) industrial corridor at central Mexico. This area is considered one of the critical zones of the country because of atmospheric contaminants high concentration. Particulate matter is regulated by Mexican norms, but its chemical composition is not. Plants were transplanted from a clean environment to four sites at the TVA corridor, and exposed for 12 weeks from February to April 2008. Trace element accumulation of plants was determined by particle induced X-ray emission and neutron activation analysis. Results reveal differences in trace elements distribution among sites in the TVA corridor. Furthermore, anthropogenic elements (S, V) and crustal elements (Ca) in T. usneoides exhibit high levels. Highly toxic elements such as Hg, As and Cr although present at trace levels, showed un enrichment relative to the initial values, when transplanted to the TVA corridor. Results show that monitoring with T. usneoides allows a first approximation of air sources to provide insights of the atmospheric pollution in the TVA corridor. (Author)

  8. Use of seaweeds for monitoring trace elements in coastal waters.

    Science.gov (United States)

    Jayasekera, R; Rossbach, M

    1996-06-01

    Concentrations of a wide range of trace elements: arsenic, cadmium, cobalt, chromium, hafnium, nickel, thorium, uranium, zinc and the rare earth elements, cerium, europium, samarium, terbium and ytterbium were determined by instrumental neutron activation analysis in the brown alga,Fucus vesiculosus from Eckwarder Hörne, North Sea and from Rügen, Baltic Sea. Another brown alga,Sargassum filipendula from Sri Lanka, Indian ocean (representing an unpolluted control station) was similarly investigated. Cobalt, chromium and nickel concentrations were highest inF. vesiculosus from the North Sea while zinc was highest in samples from the Baltic Sea, reflecting high levels of these elements in coastal waters of the North and the Baltic sea. Cadmium, cobalt, nickel and zinc levels were lowest inS. filipendula from Sri Lanka, probably demonstrating lower levels of those elements in coastal waters. Concentration levels of hafnium, thorium, uranium, and the rare earth elements were highest inS. filipendula. Two years later in 1994,S. filipendula along withUlva sp. (green alga) was resampled from the same sampling site, and in addition to the above elements, six other trace elements (Ag, Ba, Br, Rb, Se and Sr) were determined.Sargassium filipendula showed a particular affinity for Ag, As, Br and Sr. For the other elements, marginal concentration differences were observed betweenS. filipendula andUlva sp., probably reflecting the regional background levels. Substantially higher concentrations of Hf, Th, U, and the rare earths were found again in the 1994Sargassum andUlva samples, reflecting the effect of a substrate rich in rare earth elements. The brown algae used in this study may be used to monitor trace elements in coastal waters.

  9. Development of monitoring and control technology based on trace gas monitoring. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liebowitz, B.

    1997-07-01

    Trace gases are generated by many biological reactions. During anaerobic decomposition, trace levels of hydrogen (H{sub 2}) and carbon monoxide (CO) gases are produced. It was shown previously that these trace gases are intrinsically related to the biochemical reactions occurring and, therefore, offer promise for on-line process monitoring and control. This work was designed to test how effectively hydrogen and CO could be to monitor high-rate anaerobic systems that has significant mass transfer and complex hydraulics. An experimental program was designed to examine the behavior of an upflow anaerobic sludge blanket (UASB) reactor system under steady state and in response to organic loading perturbations. The responses of trace gases CO and H{sub 2} were tracked using an on-line, real-time gas-monitoring system linked to a computer-controlled data acquisition package. Data on conventional process parameters such as pH, chemical oxygen demand (COD), volatile fatty acids (VFAs) were concurrently collected. Monitoring of conventional process indicators (i.e., pH, VFA, gas production) and trace gas (H{sub 2} and CO) indicators was conducted using a matrix of nine different steady-state OLRs (4-23 kg COD/m{sup 3} -d) and system HRTs (0.5 to 2.5 days) was performed to determine any correlation among the indicators. Of OLR, HRT, and influent COD, only OLR had any significant influence on the process indicators examined. All parameters except methane increased with increases in OLR; methane decreased with increased OLR. The OLR and gas production rate (GP) were observed to be linearly correlated.

  10. Potential Trace Metal–Organic Complexation in the Atmosphere

    Directory of Open Access Journals (Sweden)

    Hiroshi Okochi

    2002-01-01

    Full Text Available It is possible that metal–organic complexation enhances the uptake of gaseous organic compounds and the solubility of metals in aerosols and atmospheric water. We investigated potential atmospheric organic ligands and the enhanced uptake of hydroxy-, oxo-, and dicarboxylic acids as well as dicarbonyls into atmospheric aqueous aerosol. We examined complexation with transition metals (iron, manganese, nickel, copper, zinc and lead on the basis of available references and our experimental data. Humic-like substances are most likely ligands in the atmosphere, although this is a poorly characterized material. A number of polycarboxylic acids and hydroxy forms (e.g., citric and tartronic acids effectively complex metals such as copper in atmospheric aerosols. The simple equilibrium model calculations show that the effect of the complexation on the gas–aqueous phase partition of gaseous atmospheric ligands is quite small for the ligands with the high physical Henry’s law constants, e.g., dicarboxylic acids represented by oxalic acid, even if they have high affinity with metal ions. The lower Henry’s law constants of the α-dicarbonyls, such as glyoxal and methylglyoxal, mean that the complexation could lead to profound increases in their partition into the aqueous phase. Despite quantum mechanical arguments for copper–glyoxal complexes, experiments showed no evidence of complexation between either hydrated or unhydrated α-dicarbonyls and the cupric ion. By contrast the β-dicarbonyl, malondialdehyde, has properties that would allow it to partition into atmospheric water via the complexation with metal ions under some conditions.

  11. Expected trace gas and aerosol retrieval accuracy of the Geostationary Environment Monitoring Spectrometer

    Science.gov (United States)

    Jeong, U.; Kim, J.; Liu, X.; Lee, K. H.; Chance, K.; Song, C. H.

    2015-12-01

    The predicted accuracy of the trace gases and aerosol retrievals from the geostationary environment monitoring spectrometer (GEMS) was investigated. The GEMS is one of the first sensors to monitor NO2, SO2, HCHO, O3, and aerosols onboard geostationary earth orbit (GEO) over Asia. Since the GEMS is not launched yet, the simulated measurements and its precision were used in this study. The random and systematic component of the measurement error was estimated based on the instrument design. The atmospheric profiles were obtained from Model for Ozone And Related chemical Tracers (MOZART) simulations and surface reflectances were obtained from climatology of OMI Lambertian equivalent reflectance. The uncertainties of the GEMS trace gas and aerosol products were estimated based on the OE method using the atmospheric profile and surface reflectance. Most of the estimated uncertainties of NO2, HCHO, stratospheric and total O3 products satisfied the user's requirements with sufficient margin. However, about 26% of the estimated uncertainties of SO2 and about 30% of the estimated uncertainties of tropospheric O3 do not meet the required precision. Particularly the estimated uncertainty of SO2 is high in winter, when the emission is strong in East Asia. Further efforts are necessary in order to improve the retrieval accuracy of SO2 and tropospheric O3 in order to reach the scientific goal of GEMS. Random measurement error of GEMS was important for the NO2, SO2, and HCHO retrieval, while both the random and systematic measurement errors were important for the O3 retrievals. The degree of freedom for signal of tropospheric O3 was 0.8 ± 0.2 and that for stratospheric O3 was 2.9 ± 0.5. The estimated uncertainties of the aerosol retrieval from GEMS measurements were predicted to be lower than the required precision for the SZA range of the trace gas retrievals.

  12. enrichment factor of atmospheric trace metal using zirconium ...

    African Journals Online (AJOL)

    user

    Copper(Cu), 0.20-1.12mg/m3; Zirconium(Zr), 0.01-0.22mg/m3; Vanadium(V), 0.00-0.05mg/m3; Chlorine(Cl), ... enrichment factor formula, the values are in addition ... chemical composition of atmospheric particulate ... serious health effect [26].

  13. Synthesis of corrected multi-wavelength spectrometers for atmospheric trace gases

    Institute of Scientific and Technical Information of China (English)

    Hikmat H.Asadov; Islam M.Mirzabalayev; Davud Z.Aliyev; Javid A.Agayev; Sima R.Azimova; Nabi A.Nabiyev; Sevinj N.Abdullayeva

    2009-01-01

    The method for synthesis of corrected three-wavelengths spectrometers for trace gas components of atmo sphere on the basis of development of mathematical model has been suggested.The classification table for possible structures of corrected spectrometers is considered.The synthesis allows to reveal some new variants for development of three-wavelength spectrometers for trace gas components of atmosphere.For experimental checkup of achieved theoretical results,a laboratory pattern of three-wavelength spectrometer is developed and tested.

  14. Evaluation of trace elemental composition of aerosols in the atmosphere of Rawalpindi and Islamabad using radio analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Qadir, Muhammad Abdul, E-mail: mabdulqadir@gmail.com [Institute of Chemistry, University of the Punjab, Lahore-54590 (Pakistan); Zaidi, Jamshaid Hussain [Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad Capital Territory (Pakistan); Ahmad, Shaikh Asrar; Gulzar, Asad [Division of Science and Technology, University of Education, Township, Lahore (Pakistan); Yaseen, Muhammad [Department of Chemistry, Gugrat University, Gugrat (Pakistan); Atta, Sadia; Tufail, Asma [Institute of Chemistry, University of the Punjab, Lahore-54590 (Pakistan)

    2012-05-15

    Geological and anthropogenic contributions to air pollution were monitored by analyzing aerosol particulates present in the atmosphere of Rawalpindi and Islamabad, Pakistan, using instrumental neutron activation for trace elemental analysis. A scanning electron microscope was used to study particulate size distribution and morphology. Twenty two elements were analyzed and their likely sources were identified. It was found that 69% of the suspended particulate matter in the atmosphere of Islamabad, and 52% in Rawalpindi, were of a diameter less than 3 {mu}m. The presence of Yb, Cs, Sc, Rb, Co, Eu, La, Ba, Zn and Hf indicates that a major portion of the trace elements in the aerosol particulates was due to the geological nature of the land, while Sc was considered to be arising from coal burning. The presence of Cr, Fe, Ce, Pb and Cd was attributed to anthropogenic activities at Rawalpindi and Islamabad. Unusually high concentrations of Mo and Nb were found in the atmosphere of Islamabad, based on soil derived aerosols. - Highlights: Black-Right-Pointing-Pointer Discussion is made on Total suspended Particulate (TSP) matter in the atmosphere. Black-Right-Pointing-Pointer Measurement of Radio active elements in the TSP by using SSNTD which was found non significant. Black-Right-Pointing-Pointer 23 Trace element analysis of the TSPs in the atmosphere of twin cities i.e. Rawalpindi and Islamabad and their relation to their sources by using Neutron activation analysis. Black-Right-Pointing-Pointer The mountain of Islamabad has some unique and important deposits of Nb and Gd , this paper will help the Geological survey of Pakistan to explore their deposits. Black-Right-Pointing-Pointer There is high level of TSPs>10 um, which is a great threat to the peoples of Islamabad.

  15. Atmospheric Deposition of Trace Elements in Ombrotrophic Peat as a Result of Anthropic Activities

    Science.gov (United States)

    Fabio Lourençato, Lucio; Cabral Teixeira, Daniel; Vieira Silva-Filho, Emmanoel

    2014-05-01

    Ombrotrophic peat can be defined as a soil rich in organic matter, formed from the partial decomposition of vegetable organic material in a humid and anoxic environment, where the accumulation of material is necessarily faster than the decomposition. From the physical-chemical point of view, it is a porous and highly polar material with high adsorption capacity and cation exchange. The high ability of trace elements to undergo complexation by humic substances happens due to the presence of large amounts of oxygenated functional groups in these substances. Since the beginning of industrialization human activities have scattered a large amount of trace elements in the environment. Soil contamination by atmospheric deposition can be expressed as a sum of site contamination by past/present human activities and atmospheric long-range transport of trace elements. Ombrotrophic peat records can provide valuable information about the entries of trace metals into the atmosphere and that are subsequently deposited on the soil. These trace elements are toxic, non-biodegradable and accumulate in the food chain, even in relatively low quantities. Thus studies on the increase of trace elements in the environment due to human activities are necessary, particularly in the southern hemisphere, where these data are scarce. The aims of this study is to evaluate the concentrations of mercury in ombrotrophic peat altomontanas coming from atmospheric deposition. The study is conducted in the Itatiaia National Park, Brazilian conservation unit, situated between the southeastern state of Rio de Janeiro, São Paulo and Minas Gerais. An ombrotrophic peat core is being sampled in altitude (1980m), to measure the trace elements concentrations of this material. As it is conservation area, the trace elements found in the samples is mainly from atmospheric deposition, since in Brazil don't exist significant lithology of trace elements. The samples are characterized by organic matter content which

  16. Bifunctional alkyl nitrates - trace constituents of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kastler, J. [Department of Analytical and Environmental Chemistry, University of Ulm (Germany); Ballschmiter, K. [Center of Technology Assessment in Baden-Wuerttemberg, Stuttgart (Germany)

    1998-04-01

    Mono- and multifunctional esters of nitric acid (alkyl nitrates or organonitrates) form very complex mixtures of organic trace constituents in air. An analytical method was developed which combines selectivity in separation and detection in order to simplify this complexity in analytical terms. Mononitrates, dinitrates, keto nitrates, hydroxy nitrates of alkanes and alkenes, respecitvely, and bifunctional terpene nitrates were synthesized as reference substances. A specially developed new HPLC stationary phase (organonitrate phase) allows a group separation of mono-, di-, and hydroxy nitrates. After the HPLC preseparation the single components were finally separated by capillary HRGC-ECD and HRGC-MSD on polar and non-polar stationary phases. Mass spectrometric detection in the selected-ion-mode using the highly selective NO{sub 2}{sup +} fragment (m/z = 46 amu) led to very good selectivities for the nitric acid ester moiety. The analysis of a 100 m{sup 3} ambient air sample using this new analytical protocol allowed the identification of seven hydroxy nitrates and 24 dinitrates ranging from C2 to C7, 22 of them for the first time ever. (orig.) With 3 figs., 3 tabs., 20 refs.

  17. Emissions to the atmosphere - monitoring and abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sage, P.W. [British Coal Corp., Cheltenham (United Kingdom); Ford, N.W.J. [CRE Group Ltd., Cheltenham (United Kingdom)

    1995-06-01

    In 1996, paper-mills will be subject to the requirements of the UK Environmental Protection Act 1990. This will involve the monitoring and reduction of emissions of SO{sub 2} and NO{sub x}. This paper describes the sources of these emissions - fluidised bed boilers, stoker fuel beds, pulverized fuel -and the available technologies for monitoring and abating them. The cost and effectiveness of pollution control is site specific. Large mills may benefit from the installation of Pound 100k monitoring systems with annual running costs of Pound 50 k; while small mills may achieve the desired results through periodic monitoring by consultants at Pound 10k a year. (author)

  18. Refraction in planetary atmospheres: improved analytical expressions and comparison with a new ray-tracing algorithm

    CERN Document Server

    Betremieux, Yan

    2015-01-01

    Atmospheric refraction affects to various degrees exoplanet transit, lunar eclipse, as well as stellar occultation observations. Exoplanet retrieval algorithms often use analytical expressions for the column abundance along a ray traversing the atmosphere as well as for the deflection of that ray, which are first order approximations valid for low densities in a spherically symmetric homogeneous isothermal atmosphere. We derive new analytical formulae for both of these quantities, which are valid for higher densities, and use them to refine and validate a new ray tracing algorithm which can be used for arbitrary atmospheric temperature-pressure profiles. We illustrate with simple isothermal atmospheric profiles the consequences of our model for different planets: temperate Earth-like and Jovian-like planets, as well as HD189733b, and GJ1214b. We find that, for both hot exoplanets, our treatment of refraction does not make much of a difference to pressures as high as 10 atmosphere, but that it is important to ...

  19. Optical remote sensing of properties and concentrations of atmospheric trace constituents

    Science.gov (United States)

    Vladutescu, Daniela Viviana

    application is the detection of water vapor in the atmosphere. Water vapor is an important greenhouse gas due to its high concentration in the atmosphere (parts per thousand), among the trace constituents, and its interaction with tropospheric aerosols particles. The upward convection of water vapor and aerosols due to intense heating of the ground lead to aggregation of water particles or ice on aerosols in the air forming different types of clouds at various altitudes. In this regard a reliable method of retrieving atmospheric water vapor profiles is presented in the third part of the paper. The proposed technique here is the Raman lidar procedure that is calibrated afterwards. The accuracy of the water vapor measurements is obtained by calibration techniques based on different techniques that where compared and validated. The calibration method is based on data fusion from different sources like: GPS (global positioning system) sunphotometer, radiosonde. The condensation of water vapor on aerosols is affecting their size, shape, refractive index and chemical composition. The warming or cooling effect of the clouds hence formed are both possible depending on the cloud location, cover, composition and structure. The effect of these clouds on radiative global forcing and therefore on the short and long term global climate is of high interest in the scientific world. In an effort to understand the hygroscopic properties of aerosols, a major interest is manifested in obtaining accurate vertical water vapor profiles simultaneously with aerosol extinction and backscatter profiles. A reliable method of retrieving atmospheric water vapor profiles and aerosols backscatter and extinction in the same atmospheric volume is presented in the fourth chapter of the paper. As mentioned above the determination of greenhouse gases and other molecular pollutants is important in process control as well as environmental monitoring. Since many molecular vibrational modes are in the infrared

  20. Ray-Tracing studies in a perturbed atmosphere I- The initial value problem

    CERN Document Server

    Tannous, C

    2001-01-01

    We report the development of a new ray-tracing simulation tool having the potential of the full characterization of a radio link through the accurate study of the propagation path of the signal from the transmitting to the receiving antennas across a perturbed atmosphere. The ray-tracing equations are solved, with controlled accuracy, in three dimensions (3D) and the propagation characteristics are obtained using various refractive index models. The launching of the rays, the atmospheric medium and its disturbances are characterized in 3D. The novelty in the approach stems from the use of special numerical techniques dealing with so called stiff differential equations without which no solution of the ray-tracing equations is possible. Starting with a given launching angle, the solution consists of the ray trajectory, the propagation time information at each point of the path, the beam spreading, the transmitted (resp. received) power taking account of the radiation pattern and orientation of the antennas and ...

  1. Mobile lidar complex for ecological monitoring of the atmosphere

    Science.gov (United States)

    Boreisho, Anatoly S.; Volodenko, V. A.; Gryaznov, N. A.; Malamed, Evgeny R.; Mendov, Yu. N.; Moshkov, V. L.; Pantaleev, S. M.; Pankratiev, A. V.; Finagin, A. E.; Chakchir, S. Y.; Frolov-Bagreev, Leonid Y.; Konyaev, M. A.

    2004-06-01

    Mobile lidar complex provides monitoring of the atmosphere at the ranges up to 15 km in the wide spectral range from UV to mid IR. Three types of lasers are used for atmosphere probing via a common telescopic and scanner system. First tests of complex operability have shown high reliability of the equipment and realization of the main parameters.

  2. Laboratory infrared spectroscopy of some important atmospheric trace gases

    Science.gov (United States)

    Zou, Qunjun

    -broadened line widths has been determined for the lines in both bands. Assuming a similar power law relationship, the temperature- dependence of the self- and air-induced line shifts, an exponent Π, has also been determined. The absorption cross-sections have been measured for C2F 6 under the conditions appropriate to the terrestrial atmosphere, with temperatures in the range of 180 to 296 K, and the broadening pressures in the range of 30 to 760 torr. The measured band strengths (in units of 10 -16 cm-molecule-1) of the 8.0 and 8.95 μm bands are 1.636 +/- 0.003 and 0.467 +/- 0.0018, respectively. The highly accurate spectroscopic parameters obtained in this work, many of which have not been reported previously, can be applied to the remote sensing and radiative transfer modeling of the terrestrial atmosphere. The data are also compared with the results in the literature reported by other investigators.

  3. Monitoring of the Atmosphere on the International Space Station with the Air Quality Monitor

    Science.gov (United States)

    Wallace William T.; Limero, Thomas F.; Loh, Leslie J.; Mudgett, Paul D.; Gazda, Daniel B.

    2017-01-01

    During the early years of human spaceflight, short duration missions allowed for monitoring of the spacecraft environment to be performed via archival sampling, in which samples were returned to Earth for analysis. With the construction of the International Space Station (ISS) and the accompanying extended mission durations, the need for enhanced, real-time monitors became apparent. The Volatile Organic Analyzer (VOA) operated on ISS for 7 years, where it assessed trace volatile organic compounds in the cabin air. The large and fixed-position VOA was eventually replaced with the smaller Air Quality Monitor (AQM). Since March 2013, the atmosphere of the U.S. Operating Segment (USOS) has been monitored in near real-time by a pair of AQMs. These devices consist of a gas chromatograph (GC) coupled with a differential mobility spectrometer (DMS) and currently target detection list of 22 compounds. These targets are of importance to both crew health and the Environmental Control and Life Support Systems (ECLSS) on ISS. Data is collected autonomously every 73 hours, though the units can be controlled remotely from mission control to collect data more frequently during contingency or troubleshooting operations. Due to a nominal three-year lifetime on-orbit, the initial units were replaced in February 2016. This paper will focus on the preparation and use of the AQMs over the past several years. A description of the technical aspects of the AQM will be followed by lessons learned from the deployment and operation of the first set of AQMs. These lessons were used to improve the already-excellent performance of the instruments prior to deployment of the replacement units. Data trending over the past several years of operation on ISS will also be discussed, including data obtained during a survey of the USOS modules. Finally, a description of AQM use for contingency and investigative studies will be presented.

  4. An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds

    Directory of Open Access Journals (Sweden)

    C. E. Kolb

    2010-11-01

    Full Text Available A workshop was held in the framework of the ACCENT (Atmospheric Composition Change – a European Network Joint Research Programme on "Aerosols" and the Programme on "Access to Laboratory Data". The aim of the workshop was to hold "Gordon Conference" type discussion covering accommodation and reactive uptake of water vapour and trace pollutant gases on condensed phase atmospheric materials. The scope was to review and define the current state of knowledge of accommodation coefficients for water vapour on water droplet and ice surfaces, and uptake of trace gas species on a variety of different surfaces characteristic of the atmospheric condensed phase particulate matter and cloud droplets. Twenty-six scientists participated in this meeting through presentations, discussions and the development of a consensus review.

    In this review we present an analysis of the state of knowledge on the thermal and mass accommodation coefficient for water vapour on aqueous droplets and ice and a survey of current state-of the-art of reactive uptake of trace gases on a range of liquid and solid atmospheric droplets and particles. The review recommends consistent definitions of the various parameters that are needed for quantitative representation of the range of gas/condensed surface kinetic processes important for the atmosphere and identifies topics that require additional research.

  5. An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds

    Directory of Open Access Journals (Sweden)

    C. E. Kolb

    2010-04-01

    Full Text Available A workshop was held in the framework of the ACCENT (Atmospheric Composition Change – a European Network Joint Research Programme on "Aerosols" and the Programme on "Access to Laboratory Data". The aim of the workshop was to hold "Gordon Conference" type discussion covering accommodation and reactive uptake of water vapour and trace pollutant gases on condensed phase atmospheric materials. The scope was to review and define the current state of knowledge of accommodation coefficients for water vapour on water droplet and ice surfaces, and uptake of trace gas species on a variety of different surfaces characteristic of the atmospheric condensed phase particulate matter and cloud droplets. Twenty-six scientists participated in this meeting through presentations, discussions and the development of a consensus review.

    In this review we present an analysis of the state of knowledge on the thermal and mass accommodation coefficient for water vapour on aqueous droplets and ice and a survey of current state-of the-art of reactive uptake of trace gases on a range of liquid and solid atmospheric droplets and particles. The review recommends consistent definitions of the various parameters that are needed for quantitative representation of the range of gas/condensed surface kinetic processes important for the atmosphere and identifies topics that require additional research.

  6. An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds

    Science.gov (United States)

    Kolb, C. E.; Cox, R. A.; Abbatt, J. P. D.; Ammann, M.; Davis, E. J.; Donaldson, D. J.; Garrett, B. C.; George, C.; Griffiths, P. T.; Hanson, D. R.; Kulmala, M.; McFiggans, G.; Pöschl, U.; Riipinen, I.; Rossi, M. J.; Rudich, Y.; Wagner, P. E.; Winkler, P. M.; Worsnop, D. R.; O'Dowd, C. D.

    2010-11-01

    A workshop was held in the framework of the ACCENT (Atmospheric Composition Change - a European Network) Joint Research Programme on "Aerosols" and the Programme on "Access to Laboratory Data". The aim of the workshop was to hold "Gordon Conference" type discussion covering accommodation and reactive uptake of water vapour and trace pollutant gases on condensed phase atmospheric materials. The scope was to review and define the current state of knowledge of accommodation coefficients for water vapour on water droplet and ice surfaces, and uptake of trace gas species on a variety of different surfaces characteristic of the atmospheric condensed phase particulate matter and cloud droplets. Twenty-six scientists participated in this meeting through presentations, discussions and the development of a consensus review. In this review we present an analysis of the state of knowledge on the thermal and mass accommodation coefficient for water vapour on aqueous droplets and ice and a survey of current state-of the-art of reactive uptake of trace gases on a range of liquid and solid atmospheric droplets and particles. The review recommends consistent definitions of the various parameters that are needed for quantitative representation of the range of gas/condensed surface kinetic processes important for the atmosphere and identifies topics that require additional research.

  7. Monitoring steel bridge renovation using lead isotopic tracing.

    Science.gov (United States)

    Salome, Fred; Gulson, Brian; Chiaradia, Massimo; Davis, Jeffrey; Morris, Howard

    2017-05-01

    Monitoring removal of lead (Pb) paint from steel structures usually involves analysis of environmental samples for total lead and determination of blood Pb levels of employees involved in the Pb paint removal. We used high precision Pb isotopic tracing for a bridge undergoing Pb paint removal to determine if Pb in the environmental and blood samples originated from the bridge paint. The paint system on the bridge consisted of an anti-corrosive red Pb primer top-coated with a Micaceous Iron Oxide (MIO) alkyd. Analysis of the red Pb primer gave uniform isotopic ratios indicative of Pb from the geologically-ancient Broken Hill mines in western New South Wales, Australia. Likewise waste abrasive material, as anticipated, had the same isotopic composition as the paint. The isotopic ratios for other samples lay on 2 separate linear arrays on a(207)Pb/(204)Pb versus (206)Pb/(204)Pb diagram, one largely defined by gasoline and the majority of the ambient air data, and the other by data for one sample each of gasoline and ambient air and underwater sediments. Isotopic ratios in background ambient air samples for the project were characteristic of leaded gasoline. Air sampling during paint removal showed a contribution of paint Pb ranging from about 20 to 40%. Isotopic ratios in the blood of 8 employees prior to the commencement of work showed that 6 of these had been previously exposed to the Broken Hill Pb possibly from earlier bridge paint removal projects. One subject appeared to have increased exposure to Pb probably from the paint renovations.

  8. Volcano emissions of trace metals, atmospheric deposition, and supply to biogeochemical cycles

    Science.gov (United States)

    Hinkley, T.; Thornber, C. R.; Matsumoto, A.

    2003-12-01

    Quiescently degassing (not exploding) volcanoes inject into the troposphere plumes that have remarkably high concentrations of ordinarily-rare, volatile trace metals. In pre-industrial times, these emissions appear to have accounted for the strong "enrichments" (relative to concentrations in crustal material or in ocean solute) of many such trace metals in the material deposited from the atmosphere. This has been shown by measuring the source strength of the emissions of metals from volcanoes, and comparing that to the amounts of the metals (excess over amounts accounted for by rock dust and sea salt) deposited onto high-latitude ice sheets: volcano degassing outputs of metals and deposition masses of metals to ice are comparable, on the basis of the masses (fluxes) and proportions of the metals, and from the proportions of lead (Pb) isotopes. There is indication that in modern industrial times the elevated trace metal fractions in the atmospheric material that has small particle size and long atmospheric residence time is still more strongly influenced by volcano emissions than by industrial emissions. Throughout earth's history it is likely that volcano emissions were a major control on the environmental background levels of trace elements, in which plants and animals evolved their tolerances to these mostly-poisonous substances.

  9. External cavity tunable quantum cascade lasers and their applications to trace gas monitoring.

    Science.gov (United States)

    Rao, Gottipaty N; Karpf, Andreas

    2011-02-01

    Since the first quantum cascade laser (QCL) was demonstrated approximately 16 years ago, we have witnessed an explosion of interesting developments in QCL technology and QCL-based trace gas sensors. QCLs operate in the mid-IR region (3-24 μm) and can directly access the rotational vibrational bands of most molecular species and, therefore, are ideally suited for trace gas detection with high specificity and sensitivity. These sensors have applications in a wide range of fields, including environmental monitoring, atmospheric chemistry, medical diagnostics, homeland security, detection of explosive compounds, and industrial process control, to name a few. Tunable external cavity (EC)-QCLs in particular offer narrow linewidths, wide ranges of tunability, and stable power outputs, which open up new possibilities for sensor development. These features allow for the simultaneous detection of multiple species and the study of large molecules, free radicals, ions, and reaction kinetics. In this article, we review the current status of EC-QCLs and sensor developments based on them and speculate on possible future developments.

  10. A novel aircraft-based tandem mass spectrometer for atmospheric ion and trace gas measurements

    Science.gov (United States)

    Moehler, O.; Reiner, Th.; Arnold, F.

    1993-05-01

    The general design and operation of a novel aircraft-based triple-quadrupole mass spectrometer (TQMS) developed for the improved detection and collisional analysis of atmospheric ions and trace gases are described. The instrument is also suitable for laboratory collision-induced dissociation measurements, studies of ion-molecule reactions, and analytical applications. Highly sensitive and selective trace gas detection by chemical ionization mass spectrometry is also possible using a novel ion injection technique. Result of aircraft-based measurements made with the TQMS are summarized.

  11. Trace Contaminant Monitor for Air in Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A need exists for analyzers that can measure trace contaminants in air on board spacecraft. Toxic gas buildup can endanger the crew particularly during long...

  12. Unmanned Platforms Monitor the Arctic Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    de Boer, Gijs; Ivey, Mark D.; Schmid, Beat; McFarlane, Sally A.; Petty, Rickey C.

    2016-02-22

    In the Arctic, drones and tethered balloons can make crucial atmospheric measurement to provide a unique perspective on an environment particularly vulnerable to climate change. Climate is rapidly changing all over the globe, but nowhere is that change faster than in the Arctic. The evidence from recent years is clear: Reductions in sea ice (Kwok and Unstersteiner, 2011) and permafrost (Romanovsky et al., 2002), in addition to modification of the terriestrial ecosystem through melting permafrost and shifting vegetation zones (burek et al., 2008; Sturm, et al., 2001), all point to a rapidly evolving.

  13. Atmospheric monitoring in H.E.S.S.

    Directory of Open Access Journals (Sweden)

    Hahn J.

    2015-01-01

    Full Text Available Instruments applying the IACT method, such as H.E.S.S. (High Energy Stereoscopic System, observe VHE (very high energy, E > 100 GeV photons indirectly, using the Earth's atmosphere as a calorimeter. In the H.E.S.S. data reconstruction, the properties of this component are estimated by Monte Carlo simulations of a yearly averaged atmosphere density profile. Deviations of the real atmospheric conditions from this assumed atmospheric model will result in a biased reconstruction of the primary gamma-ray energy and thus the resulting source spectrum. In order to keep the corresponding systematic effects to a minimum, H.E.S.S. operates a set of atmospheric monitoring devices that allows it to characterise the atmospheric conditions during data taking. This information in turn is then used in data selection. Here, a short overview with respect to their usage during source observation and a posteriori analysis data selection will be presented.

  14. Tube bundle system: for monitoring of coal mine atmosphere.

    Science.gov (United States)

    Zipf, R Karl; Marchewka, W; Mohamed, K; Addis, J; Karnack, F

    2013-05-01

    A tube bundle system (TBS) is a mechanical system for continuously drawing gas samples through tubes from multiple monitoring points located in an underground coal mine. The gas samples are drawn via vacuum pump to the surface and are typically analyzed for oxygen, methane, carbon dioxide and carbon monoxide. Results of the gas analyses are displayed and recorded for further analysis. Trends in the composition of the mine atmosphere, such as increasing methane or carbon monoxide concentration, can be detected early, permitting rapid intervention that prevents problems, such as a potentially explosive atmosphere behind seals, fire or spontaneous combustion. TBS is a well-developed technology and has been used in coal mines around the world for more than 50 years. Most longwall coal mines in Australia deploy a TBS, usually with 30 to 40 monitoring points as part of their atmospheric monitoring. The primary uses of a TBS are detecting spontaneous combustion and maintaining sealed areas inert. The TBS might also provide mine atmosphere gas composition data after a catastrophe occurs in an underground mine, if the sampling tubes are not damaged. TBSs are not an alternative to statutory gas and ventilation airflow monitoring by electronic sensors or people; rather, they are an option to consider in an overall mine atmosphere monitoring strategy. This paper describes the hardware, software and operation of a TBS and presents one example of typical data from a longwall coal mine.

  15. Gas adsorption and desorption effects on high pressure small volume cylinders and their relevance to atmospheric trace gas analysis

    Science.gov (United States)

    Satar, Ece; Nyfeler, Peter; Pascale, Céline; Niederhauser, Bernhard; Leuenberger, Markus

    2017-04-01

    Long term atmospheric monitoring of trace gases requires great attention to precision and accuracy of the measurement setups. For globally integrated and well established greenhouse gas observation networks, the World Meteorological Organization (WMO) has set recommended compatibility goals within the framework of its Global Atmosphere Watch (GAW) Programme [1]. To achieve these challenging limits, the measurement systems are regularly calibrated with standard gases of known composition. Therefore, the stability of the primary and secondary gas standards over time is an essential issue. Past studies have explained the small instabilities in high pressure standard gas cylinders through leakage, diffusion, regulator effects, gravimetric fractionation and surface processes [2, 3]. The latter include adsorption/desorption, which are functions of temperature, pressure and surface properties. For high pressure standard gas mixtures used in atmospheric trace gas analysis, there exists only a limited amount of data and few attempts to quantify the surface processes [4, 5]. Specifically, we have designed a high pressure measurement chamber to investigate trace gases and their affinity for adsorption on different surfaces over various temperature and pressure ranges. Here, we focus on measurements of CO2, CH4 and CO using a cavity ring down spectroscopy analyzer and quantify the concentration changes due to adsorption/desorption. In this study, the first results from these prototype cylinders of steel and aluminum will be presented. References [1] World Meteorological Organization (WMO), Global Atmosphere Watch.(GAW): Report No. 229, 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015), 2016. [2] Keeling, R. F., Manning, A. C., Paplawsky, W. J., and Cox, A. C.: On the long-term stability of reference gases for atmospheric O2 /N2 and CO2 measurements, Tellus B, 59, 10.3402/tellusb.v59i1.16964, 2007. [3

  16. Universal trace pollutant detector for aircraft monitoring of the ozone layer and industrial areas

    Science.gov (United States)

    Filiouguine, I. V.; Kostiouchenko, S. V.; Koudriavtsev, N. N.

    1994-01-01

    A method of monitoring the trace impurities of nitrogen oxides based on controlling of luminescence of NO molecules excited by nanosecond gas discharge have been developed having pptv-ppbv sensitivity and temporal resolution less than 0.01 s.

  17. The spectroscopic search for the trace aerosols in the planetary atmospheres - the results of numerical simulations

    Science.gov (United States)

    Blecka, Maria I.

    2010-05-01

    The passive remote spectrometric methods are important in examinations the atmospheres of planets. The radiance spectra inform us about values of thermodynamical parameters and composition of the atmospheres and surfaces. The spectral technology can be useful in detection of the trace aerosols like biological substances (if present) in the environments of the planets. We discuss here some of the aspects related to the spectroscopic search for the aerosols and dust in planetary atmospheres. Possibility of detection and identifications of biological aerosols with a passive InfraRed spectrometer in an open-air environment is discussed. We present numerically simulated, based on radiative transfer theory, spectroscopic observations of the Earth atmosphere. Laboratory measurements of transmittance of various kinds of aerosols, pollens and bacterias were used in modeling.

  18. Atmospheric monitoring and model applications at the Pierre Auger Observatory

    Science.gov (United States)

    Keilhauer, Bianca

    2015-03-01

    The Pierre Auger Observatory detects high-energy cosmic rays with energies above ˜1017 eV. It is built as a multi-hybrid detector measuring extensive air showers with different techniques. For the reconstruction of extensive air showers, the atmospheric conditions at the site of the Observatory have to be known quite well. This is particularly true for reconstructions based on data obtained by the fluorescence technique. For these data, not only the weather conditions near ground are relevant, most important are altitude-dependent atmospheric profiles. The Pierre Auger Observatory has set up a dedicated atmospheric monitoring programme at the site in the Mendoza province, Argentina. Beyond this, exploratory studies were performed in Colorado, USA, for possible installations in the northern hemisphere. In recent years, the atmospheric monitoring programme at the Pierre Auger Observatory was supplemented by applying data from atmospheric models. Both GDAS and HYSPLIT are developments by the US weather department NOAA and the data are freely available. GDAS is a global model of the atmospheric state parameters on a 1 degree geographical grid, based on real-time measurements and numeric weather predictions, providing a full altitude-dependent data set every 3 hours. HYSPLIT is a powerful tool to track the movement of air masses at various heights, and with it the aerosols. Combining local measurements of the atmospheric state variables and aerosol scattering with the given model data, advanced studies about atmospheric conditions can be performed and high precision air shower reconstructions are achieved.

  19. Noble gas atmospheric monitoring at reprocessing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakhleh, C.W.; Perry, R.T. Jr.; Poths, J.; Stanbro, W.D.; Wilson, W.B.; Fearey, B.L.

    1997-05-01

    The discovery in Iraq after the Gulf War of the existence of a large clandestine nuclear-weapon program has led to an across-the-board international effort, dubbed Programme 93+2, to improve the effectiveness and efficiency of International Atomic Energy Agency (IAEA) safeguards. One particularly significant potential change is the introduction of environmental monitoring (EM) techniques as an adjunct to traditional safeguards methods. Monitoring of stable noble gas (Kr, Xe) isotopic abundances at reprocessing plant stacks appears to be able to yield information on the burnup and type of the fuel being processed. To estimate the size of these signals, model calculations of the production of stable Kr, Xe nuclides in reactor fuel and the subsequent dilution of these nuclides in the plant stack are carried out for two case studies: reprocessing of PWR fuel with a burnup of 35 GWd/tU, and reprocessing of CAND fuel with a burnup of 1 GWd/tU. For each case, a maximum-likelihood analysis is used to determine the fuel burnup and type from the isotopic data.

  20. Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, M. M. [Physics Department, Doctorate Technical Center of PNU, P.O. Box 19536-33511, Tehran (Iran, Islamic Republic of); Parvin, P., E-mail: parvin@aut.ac.ir; Moosakhani, A. [Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Mortazavi, S. Z.; Reyhani, A. [Physics Department, Imam Khomeini International University, P.O. Box 34149-16818, Qazvin (Iran, Islamic Republic of); Majdabadi, A. [Laser and Optics Research School, NSTRI, P.O. Box 11155-3486, Tehran (Iran, Islamic Republic of); Abachi, S. [Physics Department, University of California, Irvin, CA 92697 (United States)

    2014-06-15

    Several characteristic emission lines from the metal targets (Cu, Zn and Pb) were investigated in trace presence of radon gas in the atmospheric air, using Q-SW Nd:YAG laser induced plasma inside a control chamber. The emission lines of metal species are noticeably enhanced in (Rn+air), relative to those in the synthetic air alone. Similar spectra were also taken in various sub-atmospheric environments in order to determine the optimum pressure for enhancement. Solid-state nuclear track detectors were also employed to count the tracks due to alpha particles for the activity assessment.

  1. Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS

    Directory of Open Access Journals (Sweden)

    M. M. Hashemi

    2014-06-01

    Full Text Available Several characteristic emission lines from the metal targets (Cu, Zn and Pb were investigated in trace presence of radon gas in the atmospheric air, using Q-SW Nd:YAG laser induced plasma inside a control chamber. The emission lines of metal species are noticeably enhanced in (Rn+air, relative to those in the synthetic air alone. Similar spectra were also taken in various sub-atmospheric environments in order to determine the optimum pressure for enhancement. Solid-state nuclear track detectors were also employed to count the tracks due to alpha particles for the activity assessment.

  2. Delonix regia and Casuarina equisetifolia as passive biomonitors and as bioaccumulators of atmospheric trace metals.

    Science.gov (United States)

    Ukpebor, Emmanuel Ehiabhi; Ukpebor, Justina Ebehirieme; Aigbokhan, Emmanuel; Goji, Idris; Onojeghuo, Alex Okiemute; Okonkwo, Anthony Chinedum

    2010-01-01

    The suitability of two common and ubiquitously distributed and exotic ornamental plant species in Nigeria-Delonix regia and Casuarina equisetifolia as biomonitors and as effective bioaccumulators of atmospheric trace metals (Cd, Pb, Zn and Cu) has been evaluated. Bark and leaf samples from these plant species were collected in June and July 2006 at five locations in Benin City. Four of the sampling sites were in areas of high traffic density and commercial activities, the fifth site is a remote site, selected to act as a control and also to provide background information for the metals. The plant samples were collected and processed using standard procedures and trace metals were determined using atomic absorption spectrometer. The bark of the plants was able to bioaccumulate the trace metals, especially Pb which originates from anthropogenic contributions in the city. The Pb range of 20.00-70.00 microg/g measured for the bark samples of D. regia, exceeded the normal plant Pb concentration of 0.2-20.0 microg/g and most Pb data available in literature. The bark of the plants was observed to accumulate more metals compared to the leave, while D. regia was found to be slightly better than C. equisetifolia in trace metal uptake efficiency. Spatial variations in the distributions of Pb and Zn were significant (p < 0.05), and the continuous use of leaded fuel in Nigeria was identified as the predominant source of Pb in the atmosphere.

  3. Innovative Monitoring of Atmospheric Gaseous Hydrogen Fluoride

    Directory of Open Access Journals (Sweden)

    Stefano Dugheri

    2016-01-01

    Full Text Available Hydrogen fluoride (HF is a basic raw material for a wide variety of industrial products, with a worldwide production capacity of more than three million metric tonnes. A novel method for determining particulate fluoride and gaseous hydrogen fluoride in air is presented herewith. Air was sampled using miniaturised 13 mm Swinnex two-stage filter holders in a medium-flow pumping system and through the absorption of particulate fluoride and HF vapours on cellulose ester filters uncoated or impregnated with sodium carbonate. Furthermore, filter desorption from the holders and the extraction of the pentafluorobenzyl ester derivative based on solid-phase microextraction were performed using an innovative robotic system installed on an xyz autosampler on-line with gas chromatography (GC/mass spectrometry (MS. After generating atmospheres of a known concentration of gaseous HF, we evaluated the agreement between the results of our sampling method and those of the conventional preassembled 37 mm cassette (±8.10%; correlation coefficient: 0.90. In addition, precision (relative standard deviation for n=10, 4.3%, sensitivity (0.2 μg/filter, and linearity (2.0–4000 μg/filter; correlation coefficient: 0.9913 were also evaluated. This procedure combines the efficiency of GC/MS systems with the high throughput (96 samples/day and the quantitative accuracy of pentafluorobenzyl bromide on-sample derivatisation.

  4. Innovative Monitoring of Atmospheric Gaseous Hydrogen Fluoride

    Science.gov (United States)

    Bonari, Alessandro; Pompilio, Ilenia; Monti, Alessandro; Arcangeli, Giulio

    2016-01-01

    Hydrogen fluoride (HF) is a basic raw material for a wide variety of industrial products, with a worldwide production capacity of more than three million metric tonnes. A novel method for determining particulate fluoride and gaseous hydrogen fluoride in air is presented herewith. Air was sampled using miniaturised 13 mm Swinnex two-stage filter holders in a medium-flow pumping system and through the absorption of particulate fluoride and HF vapours on cellulose ester filters uncoated or impregnated with sodium carbonate. Furthermore, filter desorption from the holders and the extraction of the pentafluorobenzyl ester derivative based on solid-phase microextraction were performed using an innovative robotic system installed on an xyz autosampler on-line with gas chromatography (GC)/mass spectrometry (MS). After generating atmospheres of a known concentration of gaseous HF, we evaluated the agreement between the results of our sampling method and those of the conventional preassembled 37 mm cassette (±8.10%; correlation coefficient: 0.90). In addition, precision (relative standard deviation for n = 10, 4.3%), sensitivity (0.2 μg/filter), and linearity (2.0–4000 μg/filter; correlation coefficient: 0.9913) were also evaluated. This procedure combines the efficiency of GC/MS systems with the high throughput (96 samples/day) and the quantitative accuracy of pentafluorobenzyl bromide on-sample derivatisation. PMID:27829835

  5. The Atmospheric Monitoring system of the JEM-EUSO telescope

    CERN Document Server

    Toscano, S; Frías, M D Rodríguez

    2014-01-01

    The JEM-EUSO observatory on board of the International Space Station (ISS) is a proposed pioneering space mission devoted to the investigation of Ultra High Energy Cosmic Rays (UHECRs). Looking downward at the earth's atmosphere with a 60$^\\circ$ Field of View (FoV), the JEM-EUSO telescope will detect the fluorescence and Cherenkov UV emission from UHECR induced Extensive Air Showers (EAS) penetrating in the atmosphere. The capability of reconstructing the properties of the primary cosmic ray depends on the accurate measurement of the atmospheric conditions in the region of EAS development. The Atmospheric Monitoring system of JEM-EUSO will continuously monitor the atmosphere at the location of the EAS candidates and between the EAS and the JEM-EUSO telescope. With an UV LIDAR and an Infrared (IR) Camera the system will monitor the cloud cover and retrieve the cloud top altitude with an accuracy of $\\sim$ 500 m and the optical depth profile of the atmosphere with an accuracy of $\\Delta\\tau \\leq$ 0.15 and a re...

  6. Trace gas detection and monitoring with the Digital Array Gas-correlation Radiometer (DAGR)

    Science.gov (United States)

    Gordley, Larry L.; Hervig, Mark E.; Fish, Chad; McHugh, Martin J.

    2011-05-01

    We present the first results from a Digital Array Gas-correlation Radiometer (DAGR) prototype sensor, and discuss applications in remote sensing of trace gases. The sensor concept is based on traditional and reliable Gas Filter Correlation Radiometry (GFCR), but overcomes the limitations in solar backscatter applications. The DAGR sensor design can be scaled to the size of a digital camera and is ideal for downlooking detection of gases in the boundary layer, where solar backscatter measurements are needed to overcome the lack of thermal contrast in the IR. Ground-based portable DAGR sensors can monitor carbon sequestration sites or industrial facilities. Aircraft or UAV deployment can quickly survey large areas and are particularly well suited for gas leak detection or carbon monitoring. From space-based platforms, Doppler modulation can be exploited to produce an extremely fine spectral resolution with effective resolving power exceeding 100,000. Such space-based DAGR observations could provide near-global sensing of climatically important species such as such as CO2, CO, CH4, O3 and N2O. Planetary science applications include detection and mapping of biomarkers in the Martian atmosphere.

  7. Mid-Infrared OPO for High Resolution Measurements of Trace Gases in the Mars Atmosphere

    Science.gov (United States)

    Yu, Anthony W.; Numata,Kenji; Riris, haris; Abshire, James B.; Allan, Graham; Sun, Xiaoli; Krainak, Michael A.

    2008-01-01

    The Martian atmosphere is composed primarily (>95%) of CO2 and N2 gas, with CO, O2, CH4, and inert gases such as argon comprising most of the remainder. It is surprisingly dynamic with various processes driving changes in the distribution of CO2, dust, haze, clouds and water vapor on global scales in the meteorology of Mars atmosphere [I]. The trace gases and isotopic ratios in the atmosphere offer important but subtle clues as to the origins of the planet's atmosphere, hydrology, geology, and potential for biology. In the search for life on Mars, an important process is the ability of bacteria to metabolize inorganic substrates (H2, CO2 and rock) to derive energy and produce methane as a by-product of anaerobic metabolism. Trace gases have been measured in the Mars atmosphere from Earth, Mars orbit, and from the Mars surface. The concentration of water vapor and various carbon-based trace gases are observed in variable concentrations. Within the past decade multiple groups have reported detection of CH4, with concentrations in the 10's of ppb, using spectroscopic observations from Earth [2]. Passive spectrometers in the mid-infrared (MIR) are restricted to the sunlit side of the planet, generally in the mid latitudes, and have limited spectral and spatial resolution. To accurately map the global distribution and to locate areas of possibly higher concentrations of these gases such as plumes or vents requires an instrument with high sensitivity and fine spatial resolution that also has global coverage and can measure during both day and night. Our development goal is a new MIR lidar capable of measuring, on global scales, with sensitivity, resolution and precision needed to characterize the trace gases and isotopic ratios of the Martian atmosphere. An optical parametric oscillator operating in the MIR is well suited for this instrument. The sufficient wavelength tuning range of the OPO can extend the measurements to other organic molecules, CO2, atmospheric water

  8. Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands

    Science.gov (United States)

    Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.

    2016-09-19

    Between 2010 and 2014, the U.S. Geological Survey completed a series of laboratory and field experiments designed to develop methodology to support the National Park Service’s long-term atmospheric pollutant monitoring efforts in parklands of Arctic Alaska. The goals of this research were to develop passive sampling methods that could be used for long-term monitoring of inorganic pollutants in remote areas of arctic parklands and characterize relations between wet and dry deposition of atmospheric pollutants to that of concentrations accumulated by mosses, specifically the stair-step, splendid feather moss, Hylocomium splendens. Mosses and lichens have been used by National Park Service managers as atmospheric pollutant biomonitors since about 1990; however, additional research is needed to better characterize the dynamics of moss bioaccumulation for various classes of atmospheric pollutants. To meet these research goals, the U.S. Geological Survey investigated the use of passive ionexchange collectors (IECs) that were adapted from the design of Fenn and others (2004). Using a modified IEC configuration, mulitple experiments were completed that included the following: (a) preliminary laboratory and development testing of IECs, (b) pilot-scale validation field studies during 2012 with IECs at sites with instrumental monitoring stations, and (c) deployment of IECs in 2014 at sites in Alaska having known or suspected regional sources of atmospheric pollutants where samples of Hylocomium splendens moss also could be collected for comparison. The targeted substances primarily included ammonium, nitrate, and sulfate ions, and certain toxicologically important trace metals, including cadmium, cobalt, copper, nickel, lead, and zinc.Deposition of atmospheric pollutants is comparatively low throughout most of Alaska; consequently, modifications of the original IEC design were needed. The most notable modification was conversion from a single-stage mixed-bed column to a two

  9. Atmospheric aerosol monitoring at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Cester, R.; Chiosso, M.; Chirin, J.; Clay, R.; Dawson, B.; Fick, B.; Filipcic, A.; Garcia, B.; Grillo, A.; Horvat, M.; Iarlori, M.; Malek, M.; Matthews, J.; Matthews,; Melo, D.; Meyhandan, R.; Mostafa, M.; Mussa, R.; Prouza, M.; Raefert, B.; Rizi, V.

    2005-07-01

    For a ground based cosmic-ray observatory the atmosphere is an integral part of the detector. Air fluorescence detectors (FDs) are particularly sensitive to the presence of aerosols in the atmosphere. These aerosols, consisting mainly of clouds and dust, can strongly affect the propagation of fluorescence and Cherenkov light from cosmic-ray induced extensive air showers. The Pierre Auger Observatory has a comprehensive program to monitor the aerosols within the atmospheric volume of the detector. In this paper the aerosol parameters that affect FD reconstruction will be discussed. The aerosol monitoring systems that have been deployed at the Pierre Auger Observatory will be briefly described along with some measurements from these systems.

  10. The Rapid Atmospheric Monitoring System of the Pierre Auger Observatory

    CERN Document Server

    Abreu, P; Ahlers, M; Ahn, E J; Albuquerque, I F M; Allard, D; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antičić, T; Aramo, C; Arganda, E; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Badescu, A M; Balzer, M; Barber, K B; Barbosa, A F; Bardenet, R; Barroso, S L C; Baughman, B; Bäuml, J; Baus, C; Beatty, J J; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Buroker, L; Burton, R E; Caballero-Mora, K S; Caccianiga, B; Caramete, L; Caruso, R; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Cheng, S H; Chiavassa, A; Chinellato, J A; Diaz, J Chirinos; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cook, H; Cooper, M J; Coppens, J; Cordier, A; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; del Peral, L; del Río, M; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Castro, M L Díaz; Diep, P N; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fratu, O; Fröhlich, U; Fuchs, B; Gaior, R; Gamarra, R F; Gambetta, S; García, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Garilli, G; Bravo, A Gascon; Gemmeke, H; Ghia, P L; Giller, M; Gitto, J; Glass, H; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Vitale, P F Gómez; Gonçalves, P; Gonzalez, J G; Gookin, B; Gorgi, A; Gouffon, P; Grashorn, E; Grebe, S; Griffith, N; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hojvat, C; Hollon, N; Holmes, V C; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Ionita, F; Italiano, A; Jansen, S; Jarne, C; Jiraskova, S; Josebachuili, M; Kadija, K; Kampert, K H; Karhan, P; Kasper, P; Katkov, I; Kégl, B; Keilhauer, B; Keivani, A; Kelley, J L; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapp, J; Koang, D -H; Kotera, K; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kulbartz, J K; Kunka, N; La Rosa, G; Lachaud, C; LaHurd, D; Latronico, L; Lauer, R; Lautridou, P; Coz, S Le; Leão, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, J; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mazur, P O; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Mertsch, P; Meurer, C; Meyhandan, R; Mićanović, S; Micheletti, M I; Minaya, I A; Miramonti, L; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Münchmeyer, M; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nhung, P T; Niechciol, M; Niemietz, L; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Oehlschläger, J; Olinto, A; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parizot, E; Parra, A; Pastor, S; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrolini, A; Petrov, Y; Pfendner, C; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Ponce, V H; Pontz, M; Porcelli, A; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivera, H; Rizi, V; Roberts, J; de Carvalho, W Rodrigues; Rodriguez, G; Cabo, I Rodriguez; Martino, J Rodriguez; Rojo, J Rodriguez; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Rühle, C; Saftoiu, A; Salamida, F; Salazar, H; Greus, F Salesa; Salina, G; Sánchez, F; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schröder, F; Schulte, S; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Lopez, H H Silva; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Srivastava, Y N; Stanic, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Šuša, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tapia, A; Tartare, M; Taşcău, O; Tcaciuc, R; Thao, N T; Thomas, D; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; Berg, A M van den; van Vliet, A; Varela, E; Cárdenas, B Vargas; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Westerhoff, S; Whelan, B J; Widom, A; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Wommer, M; Wundheiler, B; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Garcia, B Zamorano; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M

    2012-01-01

    The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10^17 eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e.g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air show...

  11. Atmosphere-Space Interactions Monitor (ASIM: State of the Art

    Directory of Open Access Journals (Sweden)

    Pere Blay

    2014-12-01

    Full Text Available Atmosphere-Space Interactions Monitor (ASIM mission is an ESA pay load which will be installed in the Columbus module of the International Space Station (ISS. ASIM is optimized to the observation and monitoring of luminescent phenomena in the upper atmosphere, the so called Transient Luminous Event (TLEs and Terrestrial Gamma Ray Flashes(TGFs. Both TLEs and TGFs have been discovered recently (past two decades and opened a new field of research in high energetic phenomena in the atmosphere. We will review the capabilities of ASIM and how it will help researchers to gain deeper knowledge of TGFs, TLEs, their inter-relationship and how they are linked to severe thunderstorms and the phenomena of lightning.

  12. Strategy implementation for the CTA Atmospheric monitoring program

    Directory of Open Access Journals (Sweden)

    Doro Michele

    2015-01-01

    Full Text Available The Cherenkov Telescope Array (CTA is the next generation facility of Imaging Atmospheric Cherenkov Telescopes. It reaches unprecedented sensitivity and energy resolution in very-high-energy gamma-ray astronomy. CTA detects Cherenkov light emitted within an atmospheric shower of particles initiated by cosmic-gamma rays or cosmic rays entering the Earth's atmosphere. From the combination of images the Cherenkov light produces in the telescopes, one is able to infer the primary particle energy and direction. A correct energy estimation can be thus performed only if the local atmosphere is well characterized. The atmosphere not only affects the shower development itself, but also the Cherenkov photon transmission from the emission point in the particle shower, at about 10–20 km above the ground, to the detector. Cherenkov light on the ground is peaked in the UV-blue region, and therefore molecular and aerosol extinction phenomena are important. The goal of CTA is to control systematics in energy reconstruction to better than 10%. For this reason, a careful and continuous monitoring and characterization of the atmosphere is required. In addition, CTA will be operated as an observatory, with data made public along with appropriate analysis tools. High-level data quality can only be ensured if the atmospheric properties are consistently and continuously taken into account. In this contribution, we concentrate on discussing the implementation strategy for the various atmospheric monitoring instruments currently under discussion in CTA. These includes Raman lidars and ceilometers, stellar photometers and others available both from commercial providers and public research centers.

  13. Atmospheric monitoring and model applications at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Keilhauer Bianca

    2015-01-01

    Full Text Available The Pierre Auger Observatory detects high-energy cosmic rays with energies above ∼1017 eV. It is built as a multi-hybrid detector measuring extensive air showers with different techniques. For the reconstruction of extensive air showers, the atmospheric conditions at the site of the Observatory have to be known quite well. This is particularly true for reconstructions based on data obtained by the fluorescence technique. For these data, not only the weather conditions near ground are relevant, most important are altitude-dependent atmospheric profiles. The Pierre Auger Observatory has set up a dedicated atmospheric monitoring programme at the site in the Mendoza province, Argentina. Beyond this, exploratory studies were performed in Colorado, USA, for possible installations in the northern hemisphere. In recent years, the atmospheric monitoring programme at the Pierre Auger Observatory was supplemented by applying data from atmospheric models. Both GDAS and HYSPLIT are developments by the US weather department NOAA and the data are freely available. GDAS is a global model of the atmospheric state parameters on a 1 degree geographical grid, based on real-time measurements and numeric weather predictions, providing a full altitude-dependent data set every 3 hours. HYSPLIT is a powerful tool to track the movement of air masses at various heights, and with it the aerosols. Combining local measurements of the atmospheric state variables and aerosol scattering with the given model data, advanced studies about atmospheric conditions can be performed and high precision air shower reconstructions are achieved.

  14. Fractionation of trace elements in total atmospheric deposition by filtrating-bulk passive sampling.

    Science.gov (United States)

    Rueda-Holgado, F; Palomo-Marín, M R; Calvo-Blázquez, L; Cereceda-Balic, F; Pinilla-Gil, E

    2014-07-01

    We have developed and validated a new simple and effective methodology for fractionation of soluble and insoluble forms of trace elements in total atmospheric deposition. The proposed methodology is based on the modification of a standard total deposition passive sampler by integrating a quartz fiber filter that retains the insoluble material, allowing the soluble fraction to pass through and flow to a receiving bottle. The quartz filter containing the insoluble fraction and the liquid containing the soluble fraction are then separately assayed by standardized ICP-MS protocols. The proposed atmospheric elemental fractionation sampler (AEFS) was validated by analyzing a Coal Fly Ash reference material with proper recoveries, and tested for field fractionation of a set of 10 key trace elements in total atmospheric deposition at the industrial area of Puchuncaví-Ventanas, Chile. The AEFS was proven useful for pollution assessment and also to identify variability of the soluble and insoluble fractions of the selected elements within the study area, improving the analytical information attainable by standard passive samplers for total deposition without the need of using sophisticated and high cost wet-only/dry only collectors.

  15. Detectability of trace gases in the Martian atmosphere using gas correlation filter radiometry

    Science.gov (United States)

    Sinclair, J.; Irwin, P. G. J.; Wilson, E.; Calcutt, S.

    2015-10-01

    We present the results of radiative transfer simulations of a gas correlation filter radiometer (GCFR) in the detection of trace species in the Martian atmosphere. We investigated two scenarios: 1) nadir and/or limb sounding from a Mars orbiter in the thermal infrared, 2) solar occultation measurements in the near-infrared from the Martian surface. In both scenarios, a GCFR would allow detection of trace gases at a lower concentration than that detectable by a conventional filter radiometer. In nadir/limb sounding, we find that CH4, SO2, N2O, C2H2 and CH3OH are detectable at concentrations lower than previously-derived upper limits. From solar occultation measurements, we find that CH4, SO2, C2H2, C2H6 are detectable at concentrations lower than previously-derived upper limits but only in low dust conditions.

  16. Infrasonic ray tracing applied to mesoscale atmospheric structures: refraction by hurricanes.

    Science.gov (United States)

    Bedard, Alfred J; Jones, R Michael

    2013-11-01

    A ray-tracing program is used to estimate the refraction of infrasound by the temperature structure of the atmosphere and by hurricanes represented by a Rankine-combined vortex wind plus a temperature perturbation. Refraction by the hurricane winds is significant, giving rise to regions of focusing, defocusing, and virtual sources. The refraction of infrasound by the temperature anomaly associated with a hurricane is small, probably no larger than that from uncertainties in the wind field. The results are pertinent to interpreting ocean wave generated infrasound in the vicinities of tropical cyclones.

  17. Atmospheric CO{sub 2}, trace gas and CN concentrations in Vaerrioe

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, T.; Aalto, P.; Kulmala, M.; Rannik, U.; Vesala, T. [Helsinki Univ. (Finland). Dept. of Physics; Hari, P.; Pohja, T. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1995-12-31

    The Vaerrioe environmental measurement station is founded in 1991. The aim of the station is to obtain more information on air quality influenced by Kola industrial areas and effects of pollutants on photosynthesis in subarctic climate. In the station air quality and meteorological quantities are measured together with photosynthesis, which makes it quite unique in comparison with other measurement stations located in northern Finland. The measurements also provide information of aerosol and trace gas concentrations in order to study the direct and indirect aerosol effects on climate. These measurements also increase the knowledge of atmospheric chemistry and deposition in subarctic conditions

  18. Design of Fore Optical System in Space-Borne Differential Optical Absorption Spectrometer for Atmospheric Trace Gas Monitoring%星载大气痕量气体差分吸收光谱仪前置光学系统设计

    Institute of Scientific and Technical Information of China (English)

    司福祺; 江宇; 江庆五; 薛辉; 周海金; 刘文清

    2013-01-01

    Space-borne differential optical absorption spectrometer is used for atmospheric trace gas distribution monitoring through acquiring high accuracy ultraviolet/visible (UV/VIS) radiation scattered or reflected by air or earth surface. To achieve the goals of large view angle, wide UV/VIS waveband detection, high spectral resolution and compact structure in space, a fore optical system is designed. It includes fore-optics telescope and relay optical system. To detect viewing field at 114° in cross-orbit direction, fore-optics telescope with two pieces of off-axis spherical mirrors is designed. Relay optical system consists of relay mirror, color-separation filters, and relay lens, which separates the incident light into four spectral channels covering 240 ~ 710 nm. Then we import each beam of light into corresponding spectral imaging channels respectively. The design result shows that the fore optical system works efficiently inside the field of view for both UV and VIS waveband, providing good imaging quality. That makes it possible to implement high spectral resolution of subsequent systems. The fore optical system has more compact structure and lighter weight comparing with other products. It can meet the requirement of spaceborne and airborne platforms without using a scan mirror.%星载大气痕量气体差分吸收光谱仪通过获取地球大气或地表反射、散射的紫外/可见光辐射,监测大气痕量气体的全球分布.为实现大视场、紫外/可见光宽波段探测、高光谱分辨率和小型化等研制目标,设计了一种前置光学系统,具体由前置望远镜和中继光学系统构成.其中,前置望远镜通过两片偏轴球面镜实现在交轨方向114°视场的覆盖;中继光学系统则通过中继反射镜、分色片及中继镜头将探测光谱(240~710 nm)分为4个光谱通道,并将各谱段的光分别导入各自光谱成像系统中进行探测.设计结果表明,前置光学系统在大视场范围内

  19. Model JC-1 Laser System for Monitoring Atmospheric Pollution,

    Science.gov (United States)

    2007-11-02

    differential absorption mode atmospheric pollution laser monitoring system, in which a phase locking technique and single board computer are used for...amplification 1 3. synchronous demodulation 2 4. phase locking amplification 2 5. single board computer 6. function logging Instrument 7. oscillator...were then fed into a DBJ-Z80 single - board computer to undergo a multiple averaging process before going through functional operation, and were logged

  20. Atmospheric inverse modeling with known physical bounds: an example from trace gas emissions

    Directory of Open Access Journals (Sweden)

    S. M. Miller

    2013-09-01

    Full Text Available Many inverse problems in the atmospheric sciences involve parameters with known physical constraints. Examples include non-negativity (e.g., emissions of some urban air pollutants or upward limits implied by reaction or solubility constants. However, probabilistic inverse modeling approaches based on Gaussian assumptions cannot incorporate such bounds and thus often produce unrealistic results. The atmospheric literature lacks consensus on the best means to overcome this problem, and existing atmospheric studies rely on a limited number of the possible methods with little examination of the relative merits of each. This paper investigates the applicability of several approaches to bounded inverse problems and is also the first application of Markov chain Monte Carlo (MCMC to estimation of atmospheric trace gas fluxes. The approaches discussed here are broadly applicable. A common method of data transformations is found to unrealistically skew estimates for the examined example application. The method of Lagrange multipliers and two MCMC methods yield more realistic and accurate results. In general, the examined MCMC approaches produce the most realistic result but can require substantial computational time. Lagrange multipliers offer an appealing alternative for large, computationally intensive problems when exact uncertainty bounds are less central to the analysis. A synthetic data inversion of US anthropogenic methane emissions illustrates the strengths and weaknesses of each approach.

  1. Trace determination of the flame retardant tetrabromobisphenol A in the atmosphere by gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Xie Zhiyong [GKSS Research Centre, Institute for Coastal Research, Department of Environmental Chemistry, Max-Planck-Str. 1, D-21502 Geesthacht (Germany) and Johann Wolfgang Goethe-University Frankfurt at Main, Institute of Atmospheric and Environmental Sciences, Department of Analytical Environmental Chemistry, Georg-Voigt-Str. 14, 60054 Frankfurt (Germany)]. E-mail: zhiyong.xie@gkss.de; Ebinghaus, Ralf [GKSS Research Centre, Institute for Coastal Research, Department of Environmental Chemistry, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Lohmann, Rainer [Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882-1197 (United States); Heemken, Olaf [LAVES, Philosophenweg 36/38, D-26121 Oldenburg (Germany); Caba, Armando [GKSS Research Centre, Institute for Coastal Research, Department of Environmental Chemistry, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Puettmann, Wilhelm [Johann Wolfgang Goethe-University Frankfurt at Main, Institute of Atmospheric and Environmental Sciences, Department of Analytical Environmental Chemistry, Georg-Voigt-Str. 14, 60054 Frankfurt (Germany)

    2007-02-19

    A simple and effective method has been developed for analysis of the flame retardant tetrabromobisphenol A (TBBPA) in environmental samples by using modified soxhlet extraction in combination with silica gel clean-up, derivatization with silylation reagent and gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring mode (SIM). Satisfactory recoveries were achieved for the large volume sampling, soxhlet extraction and silica gel clean-up. The overall recovery is 79 {+-} 1%. The derivatization procedure is simple and fast, and produces stable TBBPA derivative. GC-MS with electronic impact (EI) ionization mode shows better detection power than using negative chemical ionization (NCI) mode. EI gives a method detection limit of 0.04 pg m{sup -3} and enables to determine trace TBBPA in ambient air in remote area. The method was successfully applied to the determination of TBBPA in atmospheric samples collected over land and coastal regions. The concentrations of TBBPA ranged from below the method detection limit (0.04 pg m{sup -3}) to 0.85 pg m{sup -3}. A declining trend with increasing latitude was present from the Wadden Sea to the Arctic. The atmospheric occurrence of TBBPA in the Arctic is significant and might imply that TBBPA has long-range transport potential.

  2. A Synopsis of Technical Issues of Concern for Monitoring Trace Elements in Highway and Urban Runoff

    Science.gov (United States)

    Breault, Robert F.; Granato, Gregory E.

    2000-01-01

    Trace elements, which are regulated for aquatic life protection, are a primary concern in highway- and urban-runoff studies because stormwater runoff may transport these constituents from the land surface to receiving waters. Many of these trace elements are essential for biological activity and become detrimental only when geologic or anthropogenic sources exceed concentrations beyond ranges typical of the natural environment. The Federal Highway Administration and State Transportation Agencies are concerned about the potential effects of highway runoff on the watershed scale and for the management and protection of watersheds. Transportation agencies need information that is documented as valid, current, and scientifically defensible to support planning and management decisions. There are many technical issues of concern for monitoring trace elements; therefore, trace-element data commonly are considered suspect, and the responsibility to provide data-quality information to support the validity of reported results rests with the data-collection agency. Paved surfaces are fundamentally different physically, hydraulically, and chemically from the natural surfaces typical of most freshwater systems that have been the focus of many traceelement- monitoring studies. Existing scientific conceptions of the behavior of trace elements in the environment are based largely upon research on natural systems, rather than on systems typical of pavement runoff. Additionally, the logistics of stormwater sampling are difficult because of the great uncertainty in the occurrence and magnitude of storm events. Therefore, trace-element monitoring programs may be enhanced if monitoring and sampling programs are automated. Automation would standardize the process and provide a continuous record of the variations in flow and water-quality characteristics. Great care is required to collect and process samples in a manner that will minimize potential contamination or attenuation of trace

  3. A Great Lakes atmospheric mercury monitoring network: evaluation and design

    Science.gov (United States)

    Risch, Martin R.; Kenski, Donna M.; ,; David, A.

    2014-01-01

    As many as 51 mercury (Hg) wet-deposition-monitoring sites from 4 networks were operated in 8 USA states and Ontario, Canada in the North American Great Lakes Region from 1996 to 2010. By 2013, 20 of those sites were no longer in operation and approximately half the geographic area of the Region was represented by a single Hg-monitoring site. In response, a Great Lakes Atmospheric Mercury Monitoring (GLAMM) network is needed as a framework for regional collaboration in Hg-deposition monitoring. The purpose of the GLAMM network is to detect changes in regional atmospheric Hg deposition related to changes in Hg emissions. An optimized design for the network was determined to be a minimum of 21 sites in a representative and approximately uniform geographic distribution. A majority of the active and historic Hg-monitoring sites in the Great Lakes Region are part of the National Atmospheric Deposition Program (NADP) Mercury Deposition Network (MDN) in North America and the GLAMM network is planned to be part of the MDN. To determine an optimized network design, active and historic Hg-monitoring sites in the Great Lakes Region were evaluated with a rating system of 21 factors that included characteristics of the monitoring locations and interpretations of Hg data. Monitoring sites were rated according to the number of Hg emissions sources and annual Hg emissions in a geographic polygon centered on each site. Hg-monitoring data from the sites were analyzed for long-term averages in weekly Hg concentrations in precipitation and weekly Hg-wet deposition, and on significant temporal trends in Hg concentrations and Hg deposition. A cluster analysis method was used to group sites with similar variability in their Hg data in order to identify sites that were unique for explaining Hg data variability in the Region. The network design included locations in protected natural areas, urban areas, Great Lakes watersheds, and in proximity to areas with a high density of annual Hg

  4. Atmospheric monitoring for fugitive emissions from geological carbon storage

    Science.gov (United States)

    Loh, Z. M.; Etheridge, D.; Luhar, A.; Leuning, R.; Jenkins, C.

    2013-12-01

    We present a multi-year record of continuous atmospheric CO2 and CH4 concentration measurements, flask sampling (for CO2, CH4, N2O, δ13CO2 and SF6) and CO2 flux measurements at the CO2CRC Otway Project (http://www.co2crc.com.au/otway/), a demonstration site for geological storage of CO2 in south-western Victoria, Australia. The measurements are used to develop atmospheric methods for operational monitoring of large scale CO2 geological storage. Characterization of emission rates ideally requires concentration measurements upwind and downwind of the source, along with knowledge of the atmospheric turbulence field. Because only a single measurement location was available for much of the measurement period, we develop techniques to filter the record and to construct a ';pseudo-upwind' measurement from our dataset. Carbon dioxide and methane concentrations were filtered based on wind direction, downward shortwave radiation, atmospheric stability and hour-to-hour changes in CO2 flux. These criteria remove periods of naturally high concentration due to the combined effects of biogenic respiration, stable atmospheric conditions and pre-existing sources (both natural and anthropogenic), leaving a reduced data set, from which a fugitive leak from the storage reservoir, the ';(potential) source sector)', could more easily be detected. Histograms of the filtered data give a measure of the background variability in both CO2 and CH4. Comparison of the ';pseudo-upwind' dataset histogram with the ';(potential) source sector' histogram shows no statistical difference, placing limits on leakage to the atmosphere over the preceding two years. For five months in 2011, we ran a true pair of up and downwind CO2 and CH4 concentration measurements. During this period, known rates of gas were periodically released at the surface (near the original injection point). These emissions are clearly detected as elevated concentrations of CO2 and CH4 in the filtered data and in the measured

  5. The bark of the branches of holm oak (Quercus ilex L.) for a retrospective study of trace elements in the atmosphere.

    Science.gov (United States)

    Drava, Giuliana; Brignole, Daniele; Giordani, Paolo; Minganti, Vincenzo

    2017-04-01

    Tree bark has proved to be a useful bioindicator for trace elements in the atmosphere, however it reflects an exposure occurring during an unidentified period of time, so it provides spatial information about the distribution of contaminants in a certain area, but it cannot be used to detect temporal changes or trends, which is an important achievement in environmental studies. In order to obtain information about a known period of time, the bark collected from the annual segments of tree branches can be used, allowing analyses going back 10-15 years with annual resolution. In the present study, the concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn were measured by atomic emission spectrometry in a series of samples covering the period from 2001 to 2013 in an urban environment. Downward time trends were significant for Cd, Pb and Zn. The only trace element showing an upward time trend was V. The concentrations of the remaining six trace elements were constant over time, showing that their presence in bark is not simply proportional to the duration of exposure. This approach, which is simple, reliable and widely applicable at a low cost, allows the "a posteriori" reconstruction of atmospheric trace element deposition when or where no monitoring programme is in progress and no other natural archives are available. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Atmospheric reaction systems as null-models to identify structural traces of evolution in metabolism.

    Directory of Open Access Journals (Sweden)

    Petter Holme

    Full Text Available The metabolism is the motor behind the biological complexity of an organism. One problem of characterizing its large-scale structure is that it is hard to know what to compare it to. All chemical reaction systems are shaped by the same physics that gives molecules their stability and affinity to react. These fundamental factors cannot be captured by standard null-models based on randomization. The unique property of organismal metabolism is that it is controlled, to some extent, by an enzymatic machinery that is subject to evolution. In this paper, we explore the possibility that reaction systems of planetary atmospheres can serve as a null-model against which we can define metabolic structure and trace the influence of evolution. We find that the two types of data can be distinguished by their respective degree distributions. This is especially clear when looking at the degree distribution of the reaction network (of reaction connected to each other if they involve the same molecular species. For the Earth's atmospheric network and the human metabolic network, we look into more detail for an underlying explanation of this deviation. However, we cannot pinpoint a single cause of the difference, rather there are several concurrent factors. By examining quantities relating to the modular-functional organization of the metabolism, we confirm that metabolic networks have a more complex modular organization than the atmospheric networks, but not much more. We interpret the more variegated modular arrangement of metabolism as a trace of evolved functionality. On the other hand, it is quite remarkable how similar the structures of these two types of networks are, which emphasizes that the constraints from the chemical properties of the molecules has a larger influence in shaping the reaction system than does natural selection.

  7. Atmospheric trace element concentrations in total suspended particles near Paris, France

    Science.gov (United States)

    Ayrault, Sophie; Senhou, Abderrahmane; Moskura, Mélanie; Gaudry, André

    2010-09-01

    To evaluate today's trace element atmospheric concentrations in large urban areas, an atmospheric survey was carried out for 18 months, from March 2002 to September 2003, in Saclay, nearby Paris. The total suspended particulate matter (TSP) was collected continuously on quartz fibre filters. The TSP contents were determined for 36 elements (including Ag, Bi, Mo and Sb) using two analytical methods: Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The measured concentrations were in agreement within the uncertainties with the certified values for the polycarbonate reference material filter SRM-2783 (National Institute for Standard Technology NIST, USA). The measured concentrations were significantly lower than the recommended atmospheric concentrations. In 2003, the Pb atmospheric level at Saclay was 15 ng/m 3, compared to the 500 ng/m 3 guideline level and to the 200 ng/m 3 observed value in 1994. The typical urban background TSP values of 1-2, 0.2-1, 4-6, 10-30 and 3-5 ng/m 3 for As, Co, Cr, Cu and Sb, respectively, were inferred from this study and were compared with the literature data. The typical urban background TSP concentrations could not be realised for Cd, Pb and Zn, since these air concentrations are highly influenced by local features. The Zn concentrations and Zn/Pb ratio observed in Saclay represented a characteristic fingerprint of the exceptionally large extent of zinc-made roofs in Paris and its suburbs. The traffic-related origin of Ba, Cr, Cu, Pb and Sb was demonstrated, while the atmospheric source(s) of Ag was not identified.

  8. Management of the Atmosphere Resource Recovery and Environmental Monitoring Project

    Science.gov (United States)

    Roman, Monsi; Perry, Jay; Howard, David

    2013-01-01

    The Advanced Exploration Systems Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project is working to further optimize atmosphere revitalization and environmental monitoring system architectures. This paper discusses project management strategies that tap into skill sets across multiple engineering disciplines, projects, field centers, and industry to achieve the project success. It is the project's objective to contribute to system advances that will enable sustained exploration missions beyond Lower Earth Orbit (LEO) and improve affordability by focusing on the primary goals of achieving high reliability, improving efficiency, and reducing dependence on ground-based logistics resupply. Technology demonstrations are achieved by infusing new technologies and concepts with existing developmental hardware and operating in a controlled environment simulating various crewed habitat scenarios. The ARREM project's strengths include access to a vast array of existing developmental hardware that perform all the vital atmosphere revitalization functions, exceptional test facilities to fully evaluate system performance, and a well-coordinated partnering effort among the NASA field centers and industry partners to provide the innovative expertise necessary to succeed.

  9. Monitoring Atmospheric CO2 From Space: Challenge & Approach

    Science.gov (United States)

    Lin, Bing; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Dobler, Jeremy; Campbell, Joel; Meadows, Byron; Obland, Michael; Kooi, Susan; Fan, Tai-Fang; Ismail, Syed

    2015-01-01

    Atmospheric CO2 is the key radiative forcing for the Earth's climate and may contribute a major part of the Earth's warming during the past 150 years. Advanced knowledge on the CO2 distributions and changes can lead considerable model improvements in predictions of the Earth's future climate. Large uncertainties in the predictions have been found for decades owing to limited CO2 observations. To obtain precise measurements of atmospheric CO2, certain challenges have to be overcome. For an example, global annual means of the CO2 are rather stable, but, have a very small increasing trend that is significant for multi-decadal long-term climate. At short time scales (a second to a few hours), regional and subcontinental gradients in the CO2 concentration are very small and only in an order of a few parts per million (ppm) compared to the mean atmospheric CO2 concentration of about 400 ppm, which requires atmospheric CO2 space monitoring systems with extremely high accuracy and precision (about 0.5 ppm or 0.125%) in spatiotemporal scales around 75 km and 10-s. It also requires a decadal-scale system stability. Furthermore, rapid changes in high latitude environments such as melting ice, snow and frozen soil, persistent thin cirrus clouds in Amazon and other tropical areas, and harsh weather conditions over Southern Ocean all increase difficulties in satellite atmospheric CO2 observations. Space lidar approaches using Integrated Path Differential Absorption (IPDA) technique are considered to be capable of obtaining precise CO2 measurements and, thus, have been proposed by various studies including the 2007 Decadal Survey (DS) of the U.S. National Research Council. This study considers to use the Intensity-Modulated Continuous-Wave (IM-CW) lidar to monitor global atmospheric CO2 distribution and variability from space. Development and demonstration of space lidar for atmospheric CO2 measurements have been made through joint adventure of NASA Langley Research Center and

  10. On the detectability of trace chemical species in the martian atmosphere using gas correlation filter radiometry

    Science.gov (United States)

    Sinclair, J. A.; Irwin, P. G. J.; Calcutt, S. B.; Wilson, E. L.

    2015-11-01

    The martian atmosphere is host to many trace gases including water (H2O) and its isotopologues, methane (CH4) and potentially sulphur dioxide (SO2), nitrous oxide (N2O) and further organic compounds, which would serve as indirect tracers of geological, chemical and biological processes on Mars. With exception of the recent detection of CH4 by Curiosity, previous detections of these species have been unsuccessful or considered tentative due to the low concentrations of these species in the atmosphere (∼10-9 partial pressures), limited spectral resolving power and/or signal-to-noise and the challenge of discriminating between telluric and martian features when observing from the Earth. In this study, we present radiative transfer simulations of an alternative method for detection of trace gas species - the gas correlation radiometry method. Two potential observing scenarios were explored where a gas correlation filter radiometer (GCFR) instrument: (1) performs nadir and/or limb sounding of the martian atmosphere in the thermal infrared (200-2000 cm-1 from an orbiting spacecraft or (2) performs solar occultation measurements in the near-infrared (2000-5000 cm-1) from a lander on the martian surface. In both scenarios, simulations of a narrowband filter radiometer (without gas correlation) were also generated to serve as a comparison. From a spacecraft, we find that a gas correlation filter radiometer, in comparison to a filter radiometer (FR), offers a greater discrimination between temperature and dust, a greater discrimination between H2O and HDO, and would allow detection of N2O and CH3OH at concentrations of ∼10 ppbv and ∼2 ppbv, respectively, which are lower than previously-derived upper limits. However, the lowest retrievable concentration of SO2 (approximately 2 ppbv) is comparable with previous upper limits and CH4 is only detectable at concentrations of approximately 10 ppbv, which is an order of magnitude higher than the concentration recently measured

  11. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China

    Science.gov (United States)

    Pan, Y. P.; Wang, Y. S.

    2015-01-01

    Atmospheric deposition is considered to be a major process that removes pollutants from the atmosphere and an important source of nutrients and contaminants for ecosystems. Trace elements (TEs), especially toxic metals deposited on plants and into soil or water, can cause substantial damage to the environment and human health due to their transfer and accumulation in food chains. Despite public concerns, quantitative knowledge of metal deposition from the atmosphere to ecosystems remains scarce. To advance our understanding of the spatiotemporal variations in the magnitudes, pathways, compositions and impacts of atmospherically deposited TEs, precipitation (rain and snow) and dry-deposited particles were collected simultaneously at 10 sites in Northern China from December 2007 to November 2010. The measurements showed that the wet and dry depositions of TEs in the target areas were orders of magnitude higher than previous observations within and outside China, generating great concern over the potential risks. The spatial distribution of the total (wet plus dry) deposition flux was consistent with that of the dry deposition, with a significant decrease from industrial and urban areas to suburban, agricultural and rural sites, while the wet deposition exhibited less spatial variation. In addition, the seasonal variation of wet deposition was also different from that of dry deposition, although they were both governed by the precipitation and emission patterns. For the majority of TEs that exist as coarse particles, dry deposition dominated the total flux at each site. This was not the case for potassium, nickel, arsenic, lead, zinc, cadmium, selenium, silver and thallium, for which the relative importance between wet and dry deposition fluxes varied by site. Whether wet deposition is the major atmospheric cleansing mechanism for the TEs depends on the size distribution of the particles. We found that atmospheric inputs of copper, lead, zinc, cadmium, arsenic and

  12. Development of micro pulse lidar system for atmospheric monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Kyu Seok; Lee, Jong Min; Lee, Yong Ju; Kim, Duk Hyeon; Nam, Sung Mo; Go, Do Kyung; Yang, Gi Ho; Hong, Kyang He

    1999-12-01

    A compact small micro pulse lidar system is developed for atmospheric monitoring. The developed system can be operated during 24 hrs for four seasons. The maximum detection distance is 5 km at day time and 10 km at night. Specially, the problem of eye safety is solved by using diode pumped low pulse-energy Nd:YAG laser. Two rotational axis, vertical and horizontal, is chosen for 3D mapping of the atmospheric aerosol. The spatial resolution can be optionally changed from 5 m to 300 m, but time resolution which changes from several sec to several minutes depends on the detection distance and background signal. To analyze the obtained lidar signal, processing software is developed and applied to the lidar signal obtained near the chimney. Vertical lidar signal is also obtained and from this data we can find the thickness and change of cloud. (author)

  13. Development of Atmospheric Monitoring System for Auger North

    Science.gov (United States)

    Claus, John; Allen, Clint; Botts, Adam; Carande, Bryce; Calhoun, Mike; Emmert, Lucas; Hamilton, Levi; Heid, T. J.; Koop, John; Morgan, Sarah; Robinson, Shay; Sherman, John; Wiencke, Lawrence

    2009-10-01

    The Pierre Auger Northern Fluorescence Detector will measure air-showers over distances of 40 km. Vertical Aerosol profile of the atmosphere at the Pierre Auger Northern site will be measured using the side-scatter method over the 40 km baseline. An atmospheric monitoring telescope (AMT) will use a 3.5 m^2 mirror optimized for UV reflection to focus light from a laser onto a cluster of phototmultiplier tubes. The AMT has been built and final testing and modifications are being carried out before its installation later this year. A remotely programmed, 355 nm YAG laser with a final beam energy of 5 mJ is being used. The automation of the laser and the AMT is controlled via a single board computer (SBC). This talk will present an overview of this R&D program.

  14. The ExoMars Trace Gas Orbiter NOMAD Spectrometer Suite for Nadir and Solar Occultation Observations of Mars' Atmosphere

    Science.gov (United States)

    Thomas, Ian; Carine Vandaele, Ann; López-Moreno, José Juan; Patel, Manish; Bellucci, Giancarlo; Drummond, Rachel; Neefs, Eduard; Depiesse, Cedric; Daerden, Frank; Rodriguez-Gómez, Julio; Neary, Lori; Robert, Séverine; Willame, Yannick; Mahieux, Arnaud

    2015-04-01

    NOMAD (Nadir and Occultation for MArs Discovery) is one of four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in January 2016 and to begin nominal science mission around Mars in late 2017. It consists of a suite of three high-resolution spectrometers - Solar Occultation (SO), LNO (Limb Nadir and Occultation) and UVIS (Ultraviolet-Visible) - which will generate a huge dataset of Martian atmospheric observations during the mission, across a wide spectral range. Specifically, the SO spectrometer channel will perform occultation measurements, operating between 2.2-4.3μm at a resolution of 0.15cm-1, with 180-1000m vertical spatial resolution and an SNR of 1500-3000. LNO will perform limb scanning, nadir and occultation measurements, operating between 2.2-3.8μm at a resolution of 0.3cm-1. In nadir, global coverage will extend between ±74O latitude with an IFOV of 0.5x17km on the surface. This channel can also make occultation measurements should the SO channel fail. UVIS will make limb, nadir and occultation measurements between 200-650nm, at a resolution of 1nm. It will have 300-1000m vertical resolution during occultation and 5x60km ground resolution during 15s nadir observations. An order-of-magnitude increase in spectral resolution over previous instruments will allow NOMAD to map previously unresolvable gas species, such as important trace gases and isotopes. CO, CO2, H2O, C2H2, C2H4, C2H6, H2CO, CH4, SO2, H2S, HCl, O3 and several isotopologues of methane and water will be detectable, providing crucial measurements of the Martian D/H and methane isotope ratios. It will also be possible to map the sources and sinks of these gases, such as regions of surface volcanism/outgassing and atmospheric production, over the course of an entire Martian year, to further constrain atmospheric dynamics and climatology. NOMAD will also continue to monitor the Martian water, carbon, ozone and dust cycles, extending existing datasets made by successive

  15. Development of a mobile and high-precision atmospheric CO2 monitoring station

    Science.gov (United States)

    Molnár, M.; Haszpra, L.; Major, I.; Svingor, É.; Veres, M.

    2009-04-01

    Nowadays one of the most burning questions for the science is the rate and the reasons of the recent climate change. Greenhouse gases (GHG), mainly CO2 and CH4 in the atmosphere could affect the climate of our planet. However, the relation between the amount of atmospheric GHG and the climate is complex, full with interactions and feedbacks partly poorly known even by now. The only way to understand the processes, to trace the changes, to develop and validate mathematical models for forecasts is the extensive, high precision, continuous monitoring of the atmosphere. Fossil fuel CO2 emissions are a major component of the European carbon budget. Separation of the fossil fuel signal from the natural biogenic one in the atmosphere is, therefore, a crucial task for quantifying exchange flux of the continental biosphere through atmospheric observations and inverse modelling. An independent method to estimate trace gas emissions is the top-down approach, using atmospheric CO2 concentration measurements combined with simultaneous radiocarbon (14C) observations. As adding fossil fuel CO2 to the atmosphere, therefore, leads not only to an increase in the CO2 content of the atmosphere but also to a decrease in the 14C/12C ratio in atmospheric CO2. The ATOMKI has more than two decade long experience in atmospheric 14CO2 monitoring. As a part of an ongoing research project being carried out in Hungary to investigate the amount and temporal and spatial variations of fossil fuel CO2 in the near surface atmosphere we developed a mobile and high-precision atmospheric CO2 monitoring station. We describe the layout and the operation of the measuring system which is designed for the continuous, unattended monitoring of CO2 mixing ratio in the near surface atmosphere based on an Ultramat 6F (Siemens) infrared gas analyser. In the station one atmospheric 14CO2 sampling unit is also installed which is developed and widely used since more than one decade by ATOMKI. Mixing ratio of CO2 is

  16. Real-time monitoring of trace-level VOCs by an ultrasensitive compact lamp-based VUV photoionization mass spectrometer

    Directory of Open Access Journals (Sweden)

    W. Q. Sun

    2015-06-01

    Full Text Available In this study, we report on the development of a compact lamp-based vacuum ultraviolet (VUV photoionization mass spectrometer (PIMS; hereafter referred to as VUV-PIMS in our laboratory; it is composed of a radio frequency-powered VUV lamp, a VUV photoionizer, an ion-immigration region, and a reflection time-of-flight mass spectrometer. By utilizing the novel photoionizer consisting of a photoionization cavity and a VUV light baffle, extremely low background noise was obtained. An ultrasensitive detection limit (2σ of 3 pptv was achieved for benzene after an acquisition time of 10 s. To examine its potential for application in real-time sample monitoring, the developed VUV-PIMS was employed for the continuous measurement of urban air for six days in Beijing, China. Strong signals of trace-level volatile organic compounds such as benzene and its alkylated derivatives were observed in the mass spectra. These initial experimental results reveal that the instrument can be used for the online monitoring of trace-level species in the atmosphere.

  17. Simulation of ion motion at atmospheric pressure: particle tracing versus electrokinetic flow.

    Science.gov (United States)

    Wissdorf, Walter; Pohler, Larissa; Klee, Sonja; Müller, David; Benter, Thorsten

    2012-02-01

    Results obtained with two computational approaches for the simulation of ion motion at elevated pressure are compared with experimentally derived ion current data. The computational approaches used are charged particle tracings with the software package SIMION ver. 8 and finite element based calculations using the software package Comsol Multiphysics ver. 4.0/4.0a. The experimental setup consisted of a tubular corona discharge ion source coupled to a cylindrical measurement chamber held at atmospheric pressure. Generated ions are flown into the chamber at essentially subsonic laminar isothermal conditions. In the simulations, strictly stationary conditions were assumed. The results show very good agreement between the SIMION/SDS model and experimental data. For the Comsol model, only qualitative agreement is observed.

  18. Predicting the thermal/structural performance of the atmospheric trace molecules spectroscopy /ATMOS/ Fourier transform spectrometer

    Science.gov (United States)

    Miller, J. M.

    1980-01-01

    ATMOS is a Fourier transform spectrometer to measure atmospheric trace molecules over a spectral range of 2-16 microns. Assessment of the system performance of ATMOS includes evaluations of optical system errors induced by thermal and structural effects. In order to assess the optical system errors induced from thermal and structural effects, error budgets are assembled during system engineering tasks and line of sight and wavefront deformations predictions (using operational thermal and vibration environments and computer models) are subsequently compared to the error budgets. This paper discusses the thermal/structural error budgets, modelling and analysis methods used to predict thermal/structural induced errors and the comparisons that show that predictions are within the error budgets.

  19. Tracing atmospheric nitrate in groundwater using triple oxygen isotopes: evaluation based on bottled drinking water

    Directory of Open Access Journals (Sweden)

    F. Nakagawa

    2013-06-01

    Full Text Available The stable isotopic compositions of nitrate dissolved in 49 brands of bottled drinking water collected worldwide were measured, to trace the fate of atmospheric nitrate (NO3− atm that had been deposited into subaerial ecosystems, using the 17O anomalies (Δ17O of nitrate as tracers. The use of bottled water enables collection of groundwater recharged at natural, background watersheds. The nitrate in groundwater had small Δ17O values ranging from −0.2‰ to +4.5‰ n = 49. The average Δ17O value and average mixing ratio of atmospheric nitrate to total nitrate in the groundwater samples were estimated to be 0.8‰ and 3.1%, respectively. These findings indicated that the majority of atmospheric nitrate had undergone biological processing before being exported from the surface ecosystem to the groundwater. Moreover, the concentrations of atmospheric nitrate were estimated to range from less than 0.1 μmol L−1 to 8.5 μmol L−1 with higher NO3−atm concentrations being obtained for those recharged in rocky, arid or elevated areas with little vegetation and lower NO3−atm concentrations being obtained for those recharged in forested areas with high levels of vegetation. Additionally, many of the NO3−atm-depleted samples were characterized by elevated δ15N values of more than +10‰. Uptake by plants and/or microbes in forested soils subsequent to deposition and the progress of denitrification within groundwater likely plays a significant role in the removal of NO3−atm.

  20. Tracing atmospheric nitrate in groundwater using triple oxygen isotopes: evaluation based on bottled drinking water

    Science.gov (United States)

    Nakagawa, F.; Suzuki, A.; Daita, S.; Ohyama, T.; Komatsu, D. D.; Tsunogai, U.

    2013-06-01

    The stable isotopic compositions of nitrate dissolved in 49 brands of bottled drinking water collected worldwide were measured, to trace the fate of atmospheric nitrate (NO3- atm) that had been deposited into subaerial ecosystems, using the 17O anomalies (Δ17O) of nitrate as tracers. The use of bottled water enables collection of groundwater recharged at natural, background watersheds. The nitrate in groundwater had small Δ17O values ranging from -0.2‰ to +4.5‰ n = 49). The average Δ17O value and average mixing ratio of atmospheric nitrate to total nitrate in the groundwater samples were estimated to be 0.8‰ and 3.1%, respectively. These findings indicated that the majority of atmospheric nitrate had undergone biological processing before being exported from the surface ecosystem to the groundwater. Moreover, the concentrations of atmospheric nitrate were estimated to range from less than 0.1 μmol L-1 to 8.5 μmol L-1 with higher NO3-atm concentrations being obtained for those recharged in rocky, arid or elevated areas with little vegetation and lower NO3-atm concentrations being obtained for those recharged in forested areas with high levels of vegetation. Additionally, many of the NO3-atm-depleted samples were characterized by elevated δ15N values of more than +10‰. Uptake by plants and/or microbes in forested soils subsequent to deposition and the progress of denitrification within groundwater likely plays a significant role in the removal of NO3-atm.

  1. Miniaturized Hollow-Waveguide Gas Correlation Radiometer (GCR) for Trace Gas Detection in the Martian Atmosphere

    Science.gov (United States)

    Wilson, Emily L.; Georgieva, E. M.; Melroy, H. R.

    2012-01-01

    Gas correlation radiometry (GCR) has been shown to be a sensitive and versatile method for detecting trace gases in Earth's atmosphere. Here, we present a miniaturized and simplified version of this instrument capable of mapping multiple trace gases and identifying active regions on the Mars surface. Reduction of the size and mass of the GCR instrument has been achieved by implementing a lightweight, 1 mm inner diameter hollow-core optical fiber (hollow waveguide) for the gas correlation cell. Based on a comparison with an Earth orbiting CO2 gas correlation instrument, replacement of the 10 meter mUltipass cell with hollow waveguide of equivalent pathlength reduces the cell mass from approx 150 kg to approx 0.5 kg, and reduces the volume from 1.9 m x 1.3 m x 0.86 m to a small bundle of fiber coils approximately I meter in diameter by 0.05 m in height (mass and volume reductions of >99%). This modular instrument technique can be expanded to include measurements of additional species of interest including nitrous oxide (N2O), hydrogen sulfide (H2S), methanol (CH3OH), and sulfur dioxide (SO2), as well as carbon dioxide (CO2) for a simultaneous measure of mass balance.

  2. Microwave assisted digestion followed by ICP-MS for determination of trace metals in atmospheric and lake ecosystem.

    Science.gov (United States)

    Ahmed, Manan; Chin, Ying Hui; Guo, Xinxin; Zhao, Xing-Min

    2017-05-01

    The study of trace metals in the atmosphere and lake water is important due to their critical effects on humans, aquatic animals and the geochemical balance of ecosystems. The objective of this study was to investigate the concentration of trace metals in atmospheric and lake water samples during the rainy season (before and after precipitation) between November and December 2015. Typical methods of sample preparation for trace metal determination such as cloud point extraction, solid phase extraction and dispersive liquid-liquid micro-extraction are time-consuming and difficult to perform; therefore, there is a crucial need for development of more effective sample preparation procedure. A convection microwave assisted digestion procedure for extraction of trace metals was developed for use prior to inductively couple plasma-mass spectrometric determination. The result showed that metals like zinc (133.50-419.30μg/m(3)) and aluminum (53.58-378.93μg/m(3)) had higher concentrations in atmospheric samples as compared to lake samples before precipitation. On the other hand, the concentrations of zinc, aluminum, chromium and arsenic were significantly higher in lake samples after precipitation and lower in atmospheric samples. The relationship between physicochemical parameters (pH and turbidity) and heavy metal concentrations was investigated as well. Furthermore, enrichment factor analysis indicated that anthropogenic sources such as soil dust, biomass burning and fuel combustion influenced the metal concentrations in the atmosphere. Copyright © 2016. Published by Elsevier B.V.

  3. Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands

    Science.gov (United States)

    Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.

    2016-09-19

    Between 2010 and 2014, the U.S. Geological Survey completed a series of laboratory and field experiments designed to develop methodology to support the National Park Service’s long-term atmospheric pollutant monitoring efforts in parklands of Arctic Alaska. The goals of this research were to develop passive sampling methods that could be used for long-term monitoring of inorganic pollutants in remote areas of arctic parklands and characterize relations between wet and dry deposition of atmospheric pollutants to that of concentrations accumulated by mosses, specifically the stair-step, splendid feather moss, Hylocomium splendens. Mosses and lichens have been used by National Park Service managers as atmospheric pollutant biomonitors since about 1990; however, additional research is needed to better characterize the dynamics of moss bioaccumulation for various classes of atmospheric pollutants. To meet these research goals, the U.S. Geological Survey investigated the use of passive ionexchange collectors (IECs) that were adapted from the design of Fenn and others (2004). Using a modified IEC configuration, mulitple experiments were completed that included the following: (a) preliminary laboratory and development testing of IECs, (b) pilot-scale validation field studies during 2012 with IECs at sites with instrumental monitoring stations, and (c) deployment of IECs in 2014 at sites in Alaska having known or suspected regional sources of atmospheric pollutants where samples of Hylocomium splendens moss also could be collected for comparison. The targeted substances primarily included ammonium, nitrate, and sulfate ions, and certain toxicologically important trace metals, including cadmium, cobalt, copper, nickel, lead, and zinc.Deposition of atmospheric pollutants is comparatively low throughout most of Alaska; consequently, modifications of the original IEC design were needed. The most notable modification was conversion from a single-stage mixed-bed column to a two

  4. Development and evaluation of an instantaneous atmospheric corrosion rate monitor

    Science.gov (United States)

    Mansfeld, F.; Jeanjaquet, S. L.; Kendig, M. W.; Roe, D. K.

    1985-06-01

    A research program was carried out in which a new instantaneous atmospheric corrosion rate monitor (ACRM) was developed and evaluated, and equipment was constructed which will allow the use of many sensors in an economical way in outdoor exposures. In the first task, the ACRM was developed and tested in flow chambers in which relative humidity and gaseous and particulate pollutant levels can be controlled. Diurnal cycles and periods of rain were simulated. The effects of aerosols were studied. A computerized system was used for collection, storage, and analysis of the electrochemical data. In the second task, a relatively inexpensive electronics system for control of the ACRM and measurement of atmospheric corrosion rates was designed and built. In the third task, calibration of deterioration rates of various metallic and nonmetallic materials with the response of the ACRMs attached to these materials was carried out under controlled environmental conditions using the system developed in the second task. A Quality Assurance project plan was prepared with inputs from the Rockwell International Environmental Monitoring and Service Center and Quality Assurance System audits were performed.

  5. Atmospheric pollution in an urban environment by tree bark biomonitoring--part I: trace element analysis.

    Science.gov (United States)

    Guéguen, Florence; Stille, Peter; Lahd Geagea, Majdi; Boutin, René

    2012-03-01

    Tree bark has been shown to be a useful biomonitor of past air quality because it accumulates atmospheric particulate matter (PM) in its outermost structure. Trace element concentrations of tree bark of more than 73 trees allow to elucidate the impact of past atmospheric pollution on the urban environment of the cities of Strasbourg and Kehl in the Rhine Valley. Compared to the upper continental crust (UCC) tree barks are strongly enriched in Mn, Ni, Cu, Zn, Cd and Pb. To assess the degree of pollution of the different sites in the cities, a geoaccumulation index I(geo) was applied. Global pollution by V, Ni, Cr, Sb, Sn and Pb was observed in barks sampled close to traffic axes. Cr, Mo, Cd pollution principally occurred in the industrial area. A total geoaccumulation index I(GEO-tot) was defined; it is based on the total of the investigated elements and allows to evaluate the global pollution of the studied environment by assembling the I(geo) indices on a pollution map.

  6. A lightweight near-infrared spectrometer for the detection of trace atmospheric species.

    Science.gov (United States)

    Gardiner, T; Mead, M I; Garcelon, S; Robinson, R; Swann, N; Hansford, G M; Woods, P T; Jones, R L

    2010-08-01

    This paper describes the development and deployment of a lightweight in situ near-infrared tunable diode laser absorption spectrometer (TDLAS) for balloon-borne measurements of trace species such as methane in the upper troposphere and stratosphere. The key feature of the instrument design is its ability to provide high sensitivity measurements with better than 1 part in 10(6) Hz(-1/2) optical sensitivity in a lightweight package weighing as little as 6 kg, and maintaining this level of performance over the wide range of conditions experienced during field measurements. The absolute accuracy for methane measurements is approximately 10% limited by uncertainties in determining the gas temperature in the measurement volume. The high sensitivity and high temporal resolution (2.3 s measurement period) enables details of the fine-scale structure in the atmosphere to be measured. The TDLAS instrument has been used on a number of major international measurement campaigns. Intercomparison with other instruments during these campaigns have confirmed the comparability of the results from this instrument with measurements made by a range of other techniques, and demonstrated the instruments suitability for studies of atmospheric dynamics, transport, and mixing processes.

  7. Canopy influence on trace metal atmospheric inputs on forest ecosystems: Speciation in throughfall

    Science.gov (United States)

    Gandois, L.; Tipping, E.; Dumat, C.; Probst, A.

    2010-02-01

    Atmospheric inputs of selected Trace Metals (TM: Cd, Cu, Ni, Pb, Sb, Zn, as well as Al, Fe and Mn) were studied on six forested sites in France. In order to evaluate canopy interaction with atmospheric inputs, TM were measured in both Open Field Bulk Deposition (BD) and Throughfall (TF). Anthropogenic contribution to BD composition is high for Zn, Cd and Sb, reflecting actual TM emissions trends. Canopy greatly influences precipitation composition, through different processes, including assimilation and leaching by canopy, complexation as well as accumulation/dissolution of dry deposition. TM and Dissolved Organic Carbon (DOC) physical fractionation between colloidal and truly dissolved phases was performed with ultrafiltration. Al, Fe, Pb and Cu are found in the colloidal fraction whereas Cd, Ni, Zn and Sb are mostly in the truly dissolved fraction. Chemical speciation predicted with WHAM-VI shows that in throughfall, Al, Fe, Pb and Cu are almost entirely complexed by DOC, whereas Ni, Cd and Zn are present in average 30% in the free metal ion form. TM present in labile forms (Cd, Ni, Zn) interact with the canopy, are cycled in the ecosystem, and their concentration is either slightly increased or even decreased in throughfall. Sb, Pb and Cu concentration are increased through canopy, as a consequence of dry deposition accumulation.

  8. An atmosphere monitoring system for the Sardinia radio telescope

    Science.gov (United States)

    Buffa, F.; Bolli, P.; Sanna, G.; Serra, G.

    2017-01-01

    The Sardinia radio telescope (SRT) is a new facility managed by the Italian National Institute for Astrophysics (INAF). SRT will detect the extremely faint radio wave signals emitted by astronomical objects in a wide frequency range from decimeter to millimeter wavelengths. Especially at high frequencies (>10 GHz), specific weather conditions and interactions between signal and atmospheric constituents (mainly water and oxygen molecules) affect the radio astronomic observation reducing the antenna performances. Thus, modern ground-based telescopes are usually equipped with systems able to examine in real-time several atmospheric parameters (opacity, integrated water vapor, etc.), and in some cases to forecast the weather conditions (wind, rain, snow, etc.), in order to ensure the antenna safety and support the schedule of the telescope observations. Here, we describe the atmosphere monitoring system (AMS) realized with the aim to improve the SRT operative efficiency. It consists of a network of different sensors such as radiometers, radiosondes, weather stations, GPS and some well-established weather models. After a validation of the scheme, we successfully tested the AMS in two real practical scenarios, comparing the AMS outcomes with those of independent techniques. In the first one we were able to detect an incoming storm front applying different techniques (GPS, radiometer and the weather forecast model), while in the last one we modeled the SRT antenna system temperature at 22 GHz processing the AMS data set.

  9. Bioindication of atmospheric trace metals--with special references to megacities.

    Science.gov (United States)

    Markert, Bernd; Wuenschmann, Simone; Fraenzle, Stefan; Graciana Figueiredo, Ana Maria; Ribeiro, Andreza P; Wang, Meie

    2011-01-01

    After considering the particular problems of atmospheric pollution in megacities, i.e. agglomerations larger than 5 mio. inhabitants, with urbanization of World's population going on steadily, possibilities of active biomonitoring by means of green plants are discussed. Based on specific definitions of active and passive bioindication the chances of monitoring heavy metals in Sao Paulo megacity were demonstrated (first results published before). This is to show that there is need for increased use of bioindication to tackle the particular problems of megacities concerning environmental "health", the data to be processed according to the Multi-Markered-Bioindication-Concept (MMBC). Comparison to other work shows this approach to be reasonable.

  10. Impact features tracing hypervelocity airbursts on earth from the atmosphere to the ground

    Science.gov (United States)

    Courty, M. M.

    2012-12-01

    In the absence of deep craters, impact features have been debated to possibly tracing proximal ejecta from yet undetected structure or airburst debris from a meteorite collision with the terrestrial atmosphere or lithosphere. We examine the possibility for impact features to have originated from the shock layer formed ahead of a hypervelocity collider in the earth atmosphere. This hypothesis is approached by comparing impact features from controlled materials to puzzling geological ones: (1) debris collected at the ground from a high altitude meteor airburst recorded on 2011 August 2nd in Southern France; (2) laboratory experiments performed for defense purposes at the CEA Gramat Center (France) with the Persephone hypervelocity light gas gun; (3) the Zhamanshin impact breccia, the Lybian glass, the Egyptian Dakhleh glass, the Tasmanian Darwin glass, the Australasian tektite strewnfield and the Australian Henbury crater field. The Persephone experiments include collisions from 4.1 to 7.9 km/s by a steel projectile embedded into a polycarbonate holder with a polystyrene separator on to a 40 mm thick aluminum target. The impact features been characterized by coupling Environmental SEM with EDS, Raman micro-spectrometry, XRD, TEM, Tof-SIMS, ICP-MS and isotope analyses. Similar carbonaceous polymorphs that are closely imbricated at meso to nano-scales to the crystallized components (including the metal blebs) and to the glass phases (spherules or matrix) are present in all the impact features studied. They dominantly consist of aliphatic polymers, rare aromatic compounds, with graphite-lonsdaleite inclusions. The Persephone experiments help relating the graphite-lonsdaleite couple to transformed organic residues by the transient high pressure shock (a few tens MPa) and the transient heating (ca 100°C) and the aliphatic polymers to new hydrocarbons that formed from the pulverized polycarbonate and polystyrene. The Persephone experiments provide the controlled situation

  11. Sources of Sahelian-Sudan moisture: Insights from a moisture-tracing atmospheric model

    Science.gov (United States)

    Salih, Abubakr A. M.; Zhang, Qiong; Pausata, Francesco S. R.; Tjernström, Michael

    2016-07-01

    The summer rainfall across Sahelian-Sudan is one of the main sources of water for agriculture, human, and animal needs. However, the rainfall is characterized by large interannual variability, which has attracted extensive scientific efforts to understand it. This study attempts to identify the source regions that contribute to the Sahelian-Sudan moisture budget during July through September. We have used an atmospheric general circulation model with an embedded moisture-tracing module (Community Atmosphere Model version 3), forced by observed (1979-2013) sea-surface temperatures. The result suggests that about 40% of the moisture comes with the moisture flow associated with the seasonal migration of the Intertropical Convergence Zone (ITCZ) and originates from Guinea Coast, central Africa, and the Western Sahel. The Mediterranean Sea, Arabian Peninsula, and South Indian Ocean regions account for 10.2%, 8.1%, and 6.4%, respectively. Local evaporation and the rest of the globe supply the region with 20.3% and 13.2%, respectively. We also compared the result from this study to a previous analysis that used the Lagrangian model FLEXPART forced by ERA-Interim. The two approaches differ when comparing individual regions, but are in better agreement when neighboring regions of similar atmospheric flow features are grouped together. Interannual variability with the rainfall over the region is highly correlated with contributions from regions that are associated with the ITCZ movement, which is in turn linked to the Atlantic Multidecadal Oscillation. Our result is expected to provide insights for the effort on seasonal forecasting of the rainy season over Sahelian Sudan.

  12. Rare earths and trace elements contents in leaves: A new indicator of the composition of atmospheric dust.

    Science.gov (United States)

    Censi, P; Cibella, F; Falcone, E E; Cuttitta, G; Saiano, F; Inguaggiato, C; Latteo, V

    2017-02-01

    The relationship between the trace element distribution in atmospheric particles and leaves of some exposed plants in the environment was recently demonstrated. This indication would suggest that the trace element analysis of leaves in these plants could provide information about the composition, nature and origin of the atmospheric dust dispersed in the environment. In order to corroborate this hypothesis, the distribution of trace elements and Rare Earths were studied in leaves of some endemic plants, in the atmospheric fallout and in soils of rural, urban and industrial ecosystems in Sicily. These elements have been chosen to discriminate the source and nature of different source on atmospheric dust and the larger capability of the composition of the latter materials to influence the metal ion distribution in leaves of studied plants rather than the soil composition. These evidences are related to the recognition both of positive La anomaly and trace element enrichments in studied leaves and to their particular V/Th and Co/Ni signature. On the other hand, some particular normalised REE features recognised in leaves suggest that a limited contribution to the REE budget in studied leaves is provided by the REE migration from roots.

  13. Carbon dioxide Information Analysis Center and World Data Center: A for Atmospheric trace gases. Annual progress report, FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Burtis, M.D. [comp.] [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Nelson, T.R.; Stoss, F.W. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    This report summarizes the activities and accomplishments made by the Carbon Dioxide Information Analysis Center and World Data Center-A for Atmospheric Trace Gases during the fiscal year 1994. Topics discussed in this report include; organization and staff, user services, systems, communications, Collaborative efforts with China, networking, ocean data and activities of the World Data Center-A.

  14. Tracing changes in atmospheric sources of lead contamination using lead isotopic compositions in Australian red wine.

    Science.gov (United States)

    Kristensen, Louise Jane; Taylor, Mark Patrick; Evans, Andrew James

    2016-07-01

    Air quality data detailing changes to atmospheric composition from Australia's leaded petrol consumption is spatially and temporally limited. In order to address this data gap, wine was investigated as a potential proxy for atmospheric lead conditions. Wine spanning sixty years was collected from two wine regions proximal to the South Australian capital city, Adelaide, and analysed for lead concentration and lead and strontium isotopic composition for source apportionment. Maximum wine lead concentrations (328 μg/L) occur prior to the lead-in-air monitoring in South Australia in the later 1970s. Wine lead concentrations mirror available lead-in-air measurements and show a declining trend reflecting parallel reductions in leaded petrol emissions. Lead from petrol dominated the lead in wine ((206)Pb/(207)Pb: 1.086; (208)Pb/(207)Pb: 2.360) until the introduction of unleaded petrol, which resulted in a shift in the wine lead isotopic composition closer to vineyard soil ((206)Pb/(207)Pb: 1.137; (208)Pb/(207)Pb: 2.421). Current mining activities or vinification processes appear to have no impact with recent wine samples containing less than 4 μg/L of lead. This study demonstrates wine can be used to chronicle changes in environmental lead emissions and is an effective proxy for atmospherically sourced depositions of lead in the absence of air quality data.

  15. Airborne multi-axis DOAS measurements of atmospheric trace gases on CARIBIC long-distance flights

    Directory of Open Access Journals (Sweden)

    B. Dix

    2009-11-01

    Full Text Available A DOAS (Differential Optical Absorption Spectroscopy instrument was implemented and operated onboard a long-distance passenger aircraft within the framework of the CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container. The instrument was designed to keep weight, size and power consumption low and to comply with civil aviation regulations. It records spectra of scattered light from three viewing directions (nadir, 10° above and below horizon using a miniaturized telescope system. The telescopes are integrated in the main pylon of the inlet system which is mounted at the belly of the aircraft. Fibre bundles transmit light from the telescopes to spectrograph-detector units inside the DOAS container instrument. The latter is part of the removable CARIBIC instrument container, which is installed monthly on the aircraft for a series of measurement flights.

    During 30 flight operations within three years, measurements of HCHO, HONO, NO2, BrO, O3 and the oxygen dimer O4 were conducted. All of these trace gases except BrO could be analysed with a 30 s time resolution. HONO was detected for the first time in a deep convective cloud over central Asia, while BrO, NO2 and O3 could be observed in tropopause fold regions. Biomass burning signatures over South America could be seen and measurements during ascent and descent provided information on boundary layer trace gas profiles (e.g. NO2 or HCHO.

  16. Atmospheric trace elements at Enewetak Atoll: 2. Transport to the ocean by wet and dry deposition

    Science.gov (United States)

    Arimoto, R.; Duce, R. A.; Ray, B. J.; Unni, C. K.

    1985-02-01

    The concentrations of trace elements in precipitation and dry deposition are presented for samples collected at Enewetak Atoll (11°N, 162° E) during SEAREX experiments in 1979. The concentrations of Al, Sc, Mn, Fe, Co, and Th in rain are dominated by crustal material, and for these elements, wet deposition evidently exceeds dry deposition. For most of these elements the present rates of atmospheric deposition at Enewetak are similar to their mean rate of accumulation in sediments over the past 5-10,000 years, suggesting that the air-to-sea exchange of particles is closely tied to the sedimentary cycle of the mid-Pacific. Noncrustal sources govern the concentrations of Pb, Zn, Cu, Se, and Cd in wet and dry deposition samples. Analyses of dry deposition collected from a flat plastic plate indicate that the amount of material recycled from the sea surface varies markedly between samples, and even though these estimates do not necessarily reflect the dry deposition to the ocean surface, the results suggest that recycled sea spray often amounts to more than 50% of the total dry deposition of the enriched elements. Recycled sea spray also makes up a significant fraction of the total wet deposition of the enriched elements. The net deposition rates of elements such as Cu and Zn are greater than or equal to their inputs from vertical mixing, but the net deposition of Pb clearly exceeds the input from upwelling. The current net deposition rates of the enriched elements are also similar to their rates of removal to sediments. These results indicate that air-sea exchange processes may significantly affect the chemistry of trace metals in the open ocean.

  17. Atmospheric input of N, P, Fe and trace metals to north Indian Ocean

    Science.gov (United States)

    Sarin, Manmohan; Srinivas, Bikkina

    2016-04-01

    The air-sea deposition of chemical constituents to the north Indian Ocean is influenced by seasonal continental outflow during the late NE-monsoon (December-April). Our recent studies have focused on deposition of mineral dust, nutrients (N, P and Fe) and toxic trace metals to the Arabian Sea (ARS) and Bay of Bengal (BoB), two important limbs of the north Indian Ocean. The chemical composition of PM2.5 in the continental outflow to the marine atmospheric boundary layer reveals dominance of nss-SO42- (as high as 25 μg m-3) and abundance of dust varies from 3 to 20 μg m-3. A striking similarity in the temporal variability of total inorganic acidity (TIA = NO3- + nss-SO42-) and fractional solubility of aerosol-Fe (FeTot: 60 - 1145 ng m-3) provides evidence for chemical processing of mineral dust during atmospheric transport. The enhanced solubility of Fe has implications to further increase in the deposition of this micro-nutrient to ocean surface. The mass ratio of nutrients (NInorg/NTot, Norg/NTot and PInorg/nss-Ca2+) also suggests further increase in their air-sea deposition to the surface BoB. The dry-deposition flux of PInorgto BoB varies by one order of magnitude (0.5 - 5.0 μmol-P m-2 d-1; Av: 0.02 Tg P yr-1). Based on atmospheric deposition of P and Fe, C-fixation in BoB (˜1 Pg yr-1) is dominated by anthropogenic sources and that in ARS (0.3 Pg yr-1) is limited by P and Fe. This is attributed to poor fractional solubility (˜1%) of mineral dust over the Arabian Sea. However, N-fixation by diazotrophs in the two oceanic regions is somewhat similar (0.03 Pg yr-1). Our estimate of N-deposition (0.2 Tg yr-1) to the northern Indian Ocean is significantly lower than the model results (˜800 - 1200 mg-N m-2 yr-1 ≈ 5.7 - 8.6 Tg yr-1 by Duce et al. (2008); ˜4.1 Tg yr-1 by Okin et al. (2011); and ˜0.8 Tg yr-1 by Kanakidou et al. (2012). The increase in aerosol toxicity is also evident from high enrichment factors of anthropogenic trace metal (Pb, Cd, Cr, Cu and

  18. Sensitivity of net thermal flux to the abundance of trace gases in the lower atmosphere of Venus

    Science.gov (United States)

    Lee, Yeon Joo; Sagawa, Hideo; Haus, Rainer; Stefani, Stefania; Imamura, Takeshi; Titov, Dmitrij V.; Piccioni, Giuseppe

    2016-09-01

    We calculated the net thermal flux in the atmosphere of Venus from the surface to 100 km altitude. Our atmospheric model was carefully constructed especially for altitudes below the clouds (Venus using 20-50 ppmv H2O, suggesting that the high H2O abundance of 200 ppmv derived in the earlier analysis is not required. Our sensitivity study shows that the trace gases SO2, H2O, and OCS are effective thermal agents, while CO and HCl influences are rather weak. We suggest that the influence of the former three gases should be taken into account to estimate the net radiative energy in the deep atmosphere.

  19. Uncertainties in the current knowledge of some atmospheric trace gases associated with U.S. agriculture: a review.

    Science.gov (United States)

    Krupa, Sagar; Booker, Fitzerald; Bowersox, Van; Lehmann, Christopher; Lehmann, Chris Topher; Grantz, David

    2008-08-01

    Approximately 80 different crop species are grown in the United States in widely differing geographic areas, climatic and edaphic conditions, and management practices. Although the majority of cultivated acreage in the United States is planted with only about 10 primary crops, uncertainties associated with trace gas emissions arise from: (1) limited data availability, (2) inaccurate estimates because of large temporal and spatial variability in trace gas composition and magnitude of trace gas emissions from agricultural activities, (3) differing characteristics of pollutant emissions from highly dispersed animal feed-lots, and (4) limited understanding of the emissions of semi-volatile organic compounds (SVOCs) associated with agriculture. Although emission issues are of concern, so also is atmospheric deposition to cropping systems, including wet and dry nitrogen, minerals, and organic compounds. These can have feedback effects on trace gas emissions. Overall, the many gaps in our understanding of these aspects of agricultural systems deserve serious attention.

  20. Use of passive sampling for atmospheric tritium monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira Ideias, P.; Pierrard, O.; Tournieux, D. [Institut de Radioprotection et de Surete Nucleaire - IRSN (France); Tenailleau, L. [Marine nationale (France)

    2014-07-01

    Tritium is one of the most important radionuclide in environmental radiological monitoring. In French civil and military nuclear facilities, the releases levels are between 100 to 100 000 higher than any other radionuclide (rare gas excluded). Moreover these levels will probably increase in the next decades. With an average energy of 6 keV, the beta particle from tritium radioactive decay is difficult to detect and quantify within the environmental levels. To monitor the tritium in the air, French actors (authorities, operator, and experts) commonly use atmospheric bubblers and water vapour condensers. This type of sampling approach is time-consuming and very costly. To simplify and complete these methods, the Institute for Radiological Protection and Nuclear Safety (IRSN), had developed an atmospheric tritium monitoring device based on passive sampling. The passive sampler developed consists in a small container designed with a patented specific geometry and filled with 13X molecular sieve. This system is based on free diffusion flow principle (Fick's law). The driving force is the partial pressure gradient existing between the environmental atmosphere and the passive sampler. The constancy of the sampling rate for different moisture conditions assures the representativeness of the proposed device. The desorption bench developed specifically allows the recovery of 99% of the water vapour sampled in the molecular sieve. More than 99% of the sampled tritium (HTO) activity is recovered in the range between 0 and 100 Bq.L{sup -1}. Above 100 Bq.L{sup -1} to 25 k Bq.L{sup -1} (max tested activity), it was verified that no more than 3% of the tritium remains in the molecular sieve.. Thus, the use of passive sampler provides: - a representative sampling method, - a good detection limit (0,01 Bq.m{sup -3}), - no electric power supply needs, - a wide range of sampling duration (1 day to 1 month), - a low-cost method for monitoring. Different performance tests were

  1. Tracing atmospheric nitrate in groundwater using triple oxygen isotopes: evaluation based on bottled drinking water

    Directory of Open Access Journals (Sweden)

    U. Tsunogai

    2012-11-01

    Full Text Available The stable isotopic compositions of nitrate dissolved in 49 types of bottled drinking water collected worldwide were determined, to trace the fate of atmospheric nitrate (NO3atm that had been deposited into subaerial ecosystems, using the 17O anomalies (Δ17O of nitrate as tracers. The use of bottled water enables collection of groundwater recharged at natural, background watersheds. The nitrate in groundwater had small Δ17O values ranging from −0.2‰ to +4.5‰ (n = 49. The average Δ17O value and average mixing ratio of atmospheric nitrate to total nitrate in the groundwater samples were estimated to be 0.8‰ and 3.1%, respectively. These findings indicated that the majority of atmospheric nitrate had undergone biological processing before being exported from the surface ecosystem to the groundwater. Moreover, the concentrations of atmospheric nitrate were estimated to range from less than 0.1 μmol l−1 to 8.5 μmol l−1, with higher NO3atm concentrations being obtained for those recharged in rocky, arid or elevated areas with little vegetation and lower NO3atm concentrations being obtained for those recharged in forested areas with high levels of vegetation. Additionally, many of the NO3atm-depleted samples were characterized by elevated δ15N values of more than +10‰. Uptake by plants and/or microbes in forested soils subsequent to deposition and the progress of denitrification within groundwater likely plays a significant role in the removal of NO3atm.

  2. Miniaturized Gas Correlation Radiometer for the Detection of Trace Gases in the Martian Atmosphere

    Science.gov (United States)

    Melroy, Hilary R.; Wilson, Emily L.; Georgieva, Elena

    2012-01-01

    We present a miniaturized and simplified version of a gas correlation radiometer (GCR) capable of simultaneously mapping multiple trace gases and identifying active regions on the Mars surface. Gas correlation radiometry (GCR) has been shown to be a sensitive and versatile method for detecting trace gases in Earth's atmosphere. Reduction of the size and mass of the GCR was achieved by implementing compact, light-weight 1 mm inner diameter hollow-core optical fibers (hollow waveguides) as the gas correlation cells. In a comparison with an Earth orbiting CO2 GCR instrument, exchanging the 10 m multipass cells with hollow waveguide gas correlation cells of equivalent path length reduces the mass from approximately 150 kg to approximately 0.5 kg, and reduces the volume from 1.9 m x 1.3 m x 0.86 m to a small bundle of fiber coils approximately 1 meter in diameter by 0.05 m in height (mass and volume reductions of greater than 99%). A unique feature of this instrument is its stackable module design, with a single module for each trace gas. Each of the modules is self-contained, and fundamentally identical; differing by the bandpass filter wavelength range and gas mixtures inside the hollow-waveguide absorption cells. The current configuration contains four stacked modules for simultaneous measurements of methane (CH4), formaldehyde (H2CO), water vapor (H2O), and deuterated water vapor (HDO) but could easily be expanded to include measurements of additional species of interest including nitrous oxide (N2O), hydrogen sulfide (H2S), methanol (CH3OH), and sulfur dioxide (SO2), as well as carbon dioxide (CO2) for a simultaneous measure of mass balance. Preliminary results indicate that a 1 ppb detection limit is possible for both formaldehyde and methane with one second of averaging. Using non-optimized components, we have demonstrated an instrument sensitivity equivalent to approximately 30 ppb for formaldehyde, and approximately 500 ppb for methane. We expect custom

  3. Miniaturized Gas Correlation Radiometer for the Detection of Trace Gases in the Martian Atmosphere

    Science.gov (United States)

    Melroy, H.; Wilson, E. L.; Georgieva, E.

    2012-12-01

    We present a miniaturized and simplified version of a gas correlation radiometer (GCR) capable of simultaneously mapping multiple trace gases and identifying active regions on the Mars surface. Gas correlation radiometry (GCR) has been shown to be a sensitive and versatile method for detecting trace gases in Earth's atmosphere. Reduction of the size and mass of the GCR was achieved by implementing compact, light-weight 1 mm inner diameter hollow-core optical fibers (hollow waveguides) as the gas correlation cells. In a comparison with an Earth orbiting CO2 GCR instrument, exchanging the 10 m multipass cells with hollow waveguide gas correlation cells of equivalent pathlength reduces the mass from ~150 kg to ~0.5 kg, and reduces the volume from 1.9 m x 1.3 m x 0.86 m to a small bundle of fiber coils approximately 1 meter in diameter by 0.05 m in height (mass and volume reductions of >99%). A unique feature of this instrument is its stackable module design, with a single module for each trace gas. Each of the modules is self-contained, and fundamentally identical; differing by the bandpass filter wavelength range and gas mixtures inside the hollow-waveguide absorption cells. The current configuration contains four stacked modules for simultaneous measurements of methane (CH4), formaldehyde (H2CO), water vapor (H2O), and deuterated water vapor (HDO) but could easily be expanded to include measurements of additional species of interest including nitrous oxide (N2O), hydrogen sulfide (H2S), methanol (CH3OH), and sulfur dioxide (SO2), as well as carbon dioxide (CO2) for a simultaneous measure of mass balance. Preliminary results indicate that a 1 ppb detection limit is possible for both formaldehyde and methane with one second of averaging. Using non-optimized components, we have demonstrated an instrument sensitivity equivalent to ~30 ppb for formaldehyde, and ~500 ppb for methane. We expect custom bandpass filters and 6 m long waveguides to significantly improve these

  4. A broadband cavity ringdown spectrometer for in-situ measurements of atmospheric trace gases

    Directory of Open Access Journals (Sweden)

    M. Bitter

    2005-01-01

    Full Text Available This paper describes a broadband cavity ringdown spectrometer and its deployment during the 2002 North Atlantic Marine Boundary Layer Experiment (NAMBLEX to measure ambient concentrations of NO3, N2O5, I2 and OIO at the Mace Head Atmospheric Research Station, Co. Galway, Ireland. The effective absorption path lengths accessible with the spectrometer generally exceeded 10 km, enabling sensitive localised ``point' measurements of atmospheric absorbers to be made adjacent to the other instruments monitoring chemically related species at the same site. For the majority of observations, the spectrometer was used in an open path configuration thereby avoiding surface losses of reactive species. A subset of observations targeted the N2O5 molecule by detecting the additional NO3 formed by the thermal dissociation of N2O5. In all cases the concentrations of the atmospheric absorbers were retrieved by fitting the differential structure in the broadband cavity ringdown spectra using a methodology adapted from long path differential optical absorption spectroscopy. The uncertainty of the retrieval depends crucially on the correct treatment and fitting of the absorption bands due to water vapour, a topic that is discussed in the context of analysing broadband cavity ringdown spectra. The quality of the measurements and the retrieval method are illustrated with representative spectra acquired during NAMBLEX in spectral regions around 660 nm (NO3 and N2O5 and 570 nm (I2 and OIO. Typical detection limits were 1 pptv for NO3 in an integration time of 100 s, 4 pptv for OIO and 20 pptv for I2 in an integration time of 10 min. Additionally, the concentrations of atmospheric water vapour and the aerosol optical extinction were retrieved in both spectral regions. A companion paper in this issue presents the time series of the measurements and discusses their significance for understanding the variability of short lived nitrogen and iodine compounds in the marine

  5. A Wireless Sensor Network for Monitoring Atmospheric Aggressiveness in Metals

    Directory of Open Access Journals (Sweden)

    Pablo Pancardo

    2011-12-01

    Full Text Available Humid tropical climate favours the existence of a c orrosive atmosphere that causes deterioration of me tals. This article describes an automated system for moni toring environmental values (temperature and relati ve humidity in order to know the time of wetness (TOW , which is key factor in determining the atmospher ic aggressiveness which are exposed the metals used, f or example, in industrial facilities. System is implemented on a wireless sensor network and the ma in function of the software developed is to count t he time of wetness which is considered the effective t ime in which metals corrode. System was designed considering the user requirements as the selection of the frequency of measurements, the calculation o f TOW and verification of the residual energy of sens or nodes. The results show the effectiveness of the technology used, so that, we can conclude that this type of networks represent a feasible alternative for automated monitoring of corrosion in metals.

  6. Silicon microring refractometric sensor for atmospheric CO(2) gas monitoring.

    Science.gov (United States)

    Mi, Guangcan; Horvath, Cameron; Aktary, Mirwais; Van, Vien

    2016-01-25

    We report a silicon photonic refractometric CO(2) gas sensor operating at room temperature and capable of detecting CO(2) gas at atmospheric concentrations. The sensor uses a novel functional material layer based on a guanidine polymer derivative, which is shown to exhibit reversible refractive index change upon absorption and release of CO(2) gas molecules, and does not require the presence of humidity to operate. By functionalizing a silicon microring resonator with a thin layer of the polymer, we could detect CO(2) gas concentrations in the 0-500ppm range with a sensitivity of 6 × 10(-9) RIU/ppm and a detection limit of 20ppm. The microring transducer provides a potential integrated solution in the development of low-cost and compact CO(2) sensors that can be deployed as part of a sensor network for accurate environmental monitoring of greenhouse gases.

  7. Atmospheric Deposition of Trace Elements Around Ulan-Bator City Studied by Moss and Lichen Biomonitoring Technique and INAA

    CERN Document Server

    Ganbold, G; Gundorina, S F; Frontasyeva, M V; Ostrovnaya, T M; Pavlov, S S; Tsendeekhuu, T

    2005-01-01

    For the first time the moss and lichen biomonitoring technique has been applied to air pollution in Mongolia (Ulan-Bator, the capital city). INAA at the IBR-2 reactor has made it possible to determine the content of 35 elements in moss and lichen biomonitors. Samples collected at sites located 10-15 km from the center of Ulan-Bator were analyzed by Instrumental Neutron Activation Analysis (INAA) using epithermal neutrons. The mosses (\\textit{Rhytidium rugosum}, \\textit{Thuidium abietinum}, \\textit{Entodon concinnus}) and lichens (\\textit{Cladonia stellaris}, \\textit{Parmelia separata}) were used to study the atmospheric deposition of trace elements. It was shown that the suggested types of mosses could be used as suitable biomonitors to estimate the concentration levels of heavy metals and trace elements in Ulan-Bator atmospheric deposition. The results are compared to the data of atmospheric deposition of some European countries.

  8. Atmospheric trace elements in aerosols observed over the Southern Ocean and coastal East Antarctica

    Directory of Open Access Journals (Sweden)

    Guojie Xu

    2014-11-01

    Full Text Available Atmospheric aerosol samples were collected over the Southern Ocean (SO and coastal East Antarctica (CEA during the austral summer of 2010/11. Samples were analysed for trace elements, including Na, Mg, K, Al, Fe, Mn, Ni, Cd and Se, by inductively coupled plasma mass spectrometry (ICP-MS. The mean atmospheric concentrations over the SO were 1100 ng m−3 for Na, 190 ng m−3 for Mg, 150 ng m−3 for Al, 14 ng m−3 for Fe, 0.46 ng m−3 for Mn and 0.25 ng m−3 for Se. Over CEA, the mean concentrations were 990 ng m−3 for Na, 180 ng m−3 for Mg, 190 ng m−3 for Al, 26 ng m−3 for Fe, 0.70 ng m−3 for Mn and 0.29 ng m−3 for Se. Particle size distributions, enrichment factors (EFs and correlation analysis indicate that Na, Mg and K mainly came from the marine source, while Al, Fe and Mn were mainly from the crustal source, which also contributed to Mg and K over CEA. High EFs were associated with Ni, Cd and Se, suggesting likely contributions from mixed sources from the Antarctic continent, long-range transport, marine biogenic emissions and anthropogenic emissions. Sea-salt elements (Na, Mg, K were mainly accumulated in the coarse mode, and crustal elements (Al, Fe, Mn presented a bimodal size distribution pattern. Bioactive elements (Fe, Ni, Cd were enriched in the fine mode, especially with samples collected over the SO, possibly affecting biogeochemical cycles in this oceanic region.

  9. Seasonal and spatial variations of atmospheric trace elemental deposition in the Aliaga industrial region, Turkey

    Science.gov (United States)

    Kara, Melik; Dumanoglu, Yetkin; Altiok, Hasan; Elbir, Tolga; Odabasi, Mustafa; Bayram, Abdurrahman

    2014-11-01

    Atmospheric bulk deposition (wet + dry deposition) samples (n = 40) were collected concurrently at ten sites in four seasons between June 2009 and April 2010 in the Aliaga heavily industrialized region, Turkey, containing a number of significant air pollutant sources. Analyses of trace elements were carried out using inductively coupled plasma-mass spectrometry (ICP-MS). While there were significant differences in the particulate matter (PM) deposition fluxes among the sampling sites, seasonal variations were not statistically significant (Kruskal-Wallis test, p deposition and elemental fluxes were increased at the sampling sites in the vicinity of industrial activities. The crustal elements (i.e., Ca, Mg) and some anthropogenic elements (such as Fe, Zn, Mn, Pb, Cu, and Cr) were high, and the highest fluxes were mostly measured in summer and winter seasons. The enrichment factor (EF) and principal component analysis (PCA) was applied to the data to determine the possible sources in the study area. High EF values were obtained for the anthropogenic elements such as Ag, Cd, Zn, Pb, Cu and Sb. The possible sources were identified as anthropogenic sources (i.e., iron-steel production) (45.4%), crustal and re-suspended dust (27.1%), marine aerosol (7.9%), and coal and wood combustion (8.2%). Thus, the iron-steel production and its related activities were found to be the main pollutant sources for this region.

  10. Atmospheric wet deposition of mercury and other trace elements in Pensacola, Florida

    Directory of Open Access Journals (Sweden)

    W. M. Landing

    2010-05-01

    Full Text Available In an effort to understand and quantify the impact of local, regional, and far-distant atmospheric mercury sources to rainfall mercury deposition in the Pensacola, Florida watershed, a program of event-based rainfall sampling was started in late 2004. Modified Aerochem-Metrics wet/dry rainfall samplers were deployed at three sites in the region around the Crist coal-fired power plant and event-based samples were collected continuously for three years. Samples were analyzed for total Hg and a suite of trace elements including Al, As, Ba, Bi, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, La, Li, Mg, Mn, Na, Nb, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Th, U, V, and Zn. Nutrients (ammonia and nitrate and major anions (chloride and sulfate were also measured on each sample. Multivariate statistical methods were used to sort these tracers into factors that represent potential source categories contributing to the rainfall chemistry. As, Hg, Sb, Se, Sn, and non sea-salt sulfate were all significantly correlated (R>0.6 with one factor which we interpret as an anthropogenic source term reflecting input from coal combustion throughout the southeastern US. Using ratios of total Hg to volatile elements, we estimate that 22–33% of the rainfall Hg results from coal combustion in the southeastern US with the majority coming from the global background.

  11. Heavy Metals and Trace Elements Atmospheric Deposition Studies in Tula Region Using Moss Biomonitors Technique

    CERN Document Server

    Ermakova, E V; Steinnes, E

    2002-01-01

    For the first time the moss biomonitors technique was used in air pollution studies in Tula Region (Central Russia), applying NAA, AAS. Moss samples were collected at 83 sites in accordance with the sampling strategy adopted in European projects on biomonitoring atmospheric deposition. A wide set of trace elements in mosses was determined. The method of epithermal neutron activation at IBR-2 reactor of FLNP JINR has made it possible to identify 33 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Br, Rb, Sr, Mo, Sb, I, Cs, Ba, La, Ce, Sm, Tb, Yb, Hf, Ta, W, Th, U) in the large-scale concentration range - from 10000 ppm for K to 0,001 ppm for Tb and Ta. Cu, Cd and Pb were determined by the flame AAS in the Norwegian Institute of Science and Technology. Using the graphical technique and principal component analysis allowed to separate plant, crustal and general pollution components in the moss. The obtained data will be used for constructing coloured maps of the distribution of elements over t...

  12. Atmospheric wet deposition of mercury and other trace elements in Pensacola, Florida

    Directory of Open Access Journals (Sweden)

    W. M. Landing

    2009-12-01

    Full Text Available To understand and quantify the impact of local, regional, and distant atmospheric mercury sources to rainfall mercury deposition in the Pensacola, Florida watershed, a program of event-based rainfall sampling was started in late 2004. Modified Aerochem-Metrics wet/dry rainfall samplers were deployed at three sites in the region around the Crist coal-fired power plant and event-based samples were collected continuously for three years. Samples were analyzed for total mercury, volatile elements As, Se, and Sn, and a suite of trace elements including Al, Bi, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ho, Ga, Gd, La, Li, Lu, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, Sb, Sc, Si, Sm, Sr, Tb, Th, Ti, Tm, U, V, Y, Yb, and Zn. Nutrients and major ions were also measured on each sample.

    Multivariate statistical methods are used to sort these tracers into factors that represent potential source components that contribute to the rainfall chemistry. Hg, As, Se, Sn, Sb, and non sea-salt sulfate were all significantly correlated with one anthropogenic factor. Using various Hg/element ratios, we can estimate that 22–33% of the rainfall mercury in the region results from coal combustion.

  13. Marine Primary Productivity as a Potential Indirect Source of Selenium and Other Trace Elements in Atmospheric Deposition.

    Science.gov (United States)

    Blazina, Tim; Läderach, Alexander; Jones, Gerrad D; Sodemann, Harald; Wernli, Heini; Kirchner, James W; Winkel, Lenny H E

    2017-01-03

    Atmospheric processes play an important role in the supply of the trace element selenium (Se) as well as other essential trace elements to terrestrial environments, mainly via wet deposition. Here we investigate whether the marine biosphere can be identified as a source of Se and of other trace elements in precipitation samples. We used artificial neural network (ANN) modeling and other statistical methods to analyze relationships between a high-resolution atmospheric deposition chemistry time series (March 2007-January 2009) from Plynlimon (UK) and exposure of air masses to marine chlorophyll a and to other source proxies. Using ANN sensitivity analyses, we found that higher air mass exposure to marine productivity leads to higher concentrations of dissolved organic carbon (DOC) in rainfall. Furthermore, marine productivity was found to be an important but indirect factor in controlling Se as well as vanadium (V), cobalt (Co), nickel (Ni), zinc (Zn), and aluminum (Al) concentrations in atmospheric deposition, likely via scavenging by organic compounds derived from marine organisms. Marine organisms may thus play an indirect but important role in the delivery of trace elements to terrestrial environments and food chains.

  14. Advancement and application of gas chromatography isotope ratio mass spectrometry techniques for atmospheric trace gas analysis

    Science.gov (United States)

    Giebel, Brian M.

    2011-12-01

    The use of gas chromatography isotope ratio mass spectrometry (GC-IRMS) for compound specific stable isotope analysis is an underutilized technique because of the complexity of the instrumentation and high analytical costs. However stable isotopic data, when coupled with concentration measurements, can provide additional information on a compounds production, transformation, loss, and cycling within the biosphere and atmosphere. A GC-IRMS system was developed to accurately and precisely measure delta13C values for numerous oxygenated volatile organic compounds having natural and anthropogenic sources. The OVOCs include methanol, ethanol, acetone, methyl ethyl ketone, 2-pentanone, and 3-pentanone. Guided by the requirements for analysis of trace components in air, the GC-IRMS system was developed with the goals of increasing sensitivity, reducing dead-volume and peak band broadening, optimizing combustion and water removal, and decreasing the split ratio to the IRMS. The technique relied on a two-stage preconcentration system, a low-volume capillary reactor and water trap, and a balanced reference gas delivery system. Measurements were performed on samples collected from two distinct sources (i.e. biogenic and vehicle emissions) and ambient air collected from downtown Miami and Everglades National Park. However, the instrumentation and the method have the capability to analyze a variety of source and ambient samples. The measured isotopic signatures that were obtained from source and ambient samples provide a new isotopic constraint for atmospheric chemists and can serve as a new way to evaluate their models and budgets for many OVOCs. In almost all cases, OVOCs emitted from fuel combustion were enriched in 13C when compared to the natural emissions of plants. This was particularly true for ethanol gas emitted in vehicle exhaust, which was observed to have a uniquely enriched isotopic signature that was attributed to ethanol's corn origin and use as an alternative

  15. Wash effect of atmospheric trace metals wet deposition and its source characteristic in subtropical watershed in China.

    Science.gov (United States)

    Gao, Yang; Hao, Zhuo; Yang, Tiantian; He, Nianpeng; Tian, Jing; Wen, Xuefa

    2016-10-01

    In order to better understand air pollution in deve-loping regions, such as China, it is important to investigate the wet deposition behavior of atmospheric trace metals and its sources in the subtropical watershed. This paper studies the seasonal change of trace metal concentrations in precipitation and other potential sources in a typical subtropical watershed (Jiazhuhe watershed) located in the downstream of the Yangtze River of China. The results show that typical crustal elements (Al, Fe) and trace element (Zn) have high seasonal variation patterns and these elements have higher contents in precipitation as compared to other metals in Jiazhuhe watershed. In addition, there is no observed Pb in base flow in this study, and the concentration magnitudes of Al, Ba, Fe, Mn, Sr, and Zn in base flow are significantly higher than that of other metals. During different rainfall events, the dynamic export processes are also different for trace metals. The various trace metals dynamic export processes lead to an inconsistent mass first flush and a significant accumulative variance throughout the rainfall events. It is found that in this region, most of the trace metals in precipitation are from anthropogenic emission and marine aerosols brought by typhoon and monsoon.

  16. Rationale and Methods for Archival Sampling and Analysis of Atmospheric Trace Chemical Contaminants On Board Mir and Recommendations for the International Space Station

    Science.gov (United States)

    Perry, J. L.; James, J. T.; Cole, H. E.; Limero, T. F.; Beck, S. W.

    1997-01-01

    Collection and analysis of spacecraft cabin air samples are necessary to assess the cabin air quality with respect to crew health. Both toxicology and engineering disciplines work together to achieve an acceptably clean cabin atmosphere. Toxicology is concerned with limiting the risk to crew health from chemical sources, setting exposure limits, and analyzing air samples to determine how well these limits are met. Engineering provides the means for minimizing the contribution of the various contaminant generating sources by providing active contamination control equipment on board spacecraft and adhering to a rigorous material selection and control program during the design and construction of the spacecraft. A review of the rationale and objectives for sampling spacecraft cabin atmospheres is provided. The presently-available sampling equipment and methods are reviewed along with the analytical chemistry methods employed to determine trace contaminant concentrations. These methods are compared and assessed with respect to actual cabin air quality monitoring needs. Recommendations are presented with respect to the basic sampling program necessary to ensure an acceptably clean spacecraft cabin atmosphere. Also, rationale and recommendations for expanding the scope of the basic monitoring program are discussed.

  17. Trace metals in atmospheric fine particles in one industrial urban city: spatial variations, sources, and health implications.

    Science.gov (United States)

    Zhou, Shengzhen; Yuan, Qi; Li, Weijun; Lu, Yaling; Zhang, Yangmei; Wang, Wenxing

    2014-01-01

    Trace metals in PM2.5 were measured at one industrial site and one urban site during September, 2010 in Ji'nan, eastern China. Individual aerosol particles and PM2.5 samples were collected concurrently at both sites. Mass concentrations of eleven trace metals (i.e., Al, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Sr, Ba, and Pb) and one metalloid (i.e., As) were measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The result shows that mass concentrations of PM2.5 (130 microg/m3) and trace metals (4.03 microg/m3) at the industrial site were 1.3 times and 1.7 times higher than those at the urban site, respectively, indicating that industrial activities nearby the city can emit trace metals into the surrounding atmosphere. Fe concentrations were the highest among all the measured trace metals at both sites, with concentrations of 1.04 microg/m 3 at the urban site and 2.41 microg/m3 at the industrial site, respectively. In addition, Pb showed the highest enrichment factors at both sites, suggesting the emissions from anthropogenic activities existed around the city. Correlation coefficient analysis and principal component analysis revealed that Cu, Fe, Mn, Pb, and Zn were originated from vehicular traffic and industrial emissions at both sites; As, Cr, and part of Pb from coal-fired power plant; Ba and Ti from natural soil. Based on the transmission electron microscopy analysis, we found that most of the trace metals were internally mixed with secondary sulfate/organic particles. These internally mixed trace metals in the urban air may have different toxic abilities compared with externally mixed trace metals.

  18. Advanced Detection Technology of Trace-level Borate for SG Leakage Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seban; Kang, Dukwon; Kim, Seungil; Kim, Hyunki; Heo, Jun; Sung, Jinhyun [Radiation Eng. Center, Shihung (Korea, Republic of); Lee, Dongbum [Academic Support Dept., Seoul (Korea, Republic of)

    2013-05-15

    Many studies have been reported for monitoring technology of steam generator, however, all of these methods have their own limitations. The leakage monitoring technology of steam generator of PWR has also got a limit due to the adoption of specific radionuclides (N-16, Ar-41, H-3, Xe, etc.) generated by nuclear fission, which are available only when reactor output is 20% or more. Most of domestic NPPs apply the N-16 technique for monitoring tube leakage but it has some problem that it is difficult to calculate the leakage rate because neutron flux are not completely formed during low power operation. For example, tube leakage of steam generator occurred in the Uljin nuclear power plant in 2002 during coast down operation for periodic plant maintenance. This plant could not prevent a rupture accident in advance because N-16 method is not possible the leak monitoring less than 20% reactor power. The development of excellent alternative monitoring technology that can monitor the real-time leakage is required under a variety of operating conditions like start-up and abnormal conditions of NPPs. This study was performed to lay a foundation in monitoring the leakage of steam generator coping with the lower output and low power operational condition using trace level of boron which is non-radioactive nuclide to inject control neutron injection. In this study, non-radioactive nuclide boron ion, which existed in the secondary system water, as leakage monitoring indicator was investigated for the separation of complex cation and anion phase. Borate was detected by using borate concentrator column coupled with the ion-exclusion column analytical column, revealing the problem of overlapped peak between fluoride and boron ions. Meanwhile, ion-exchange column could confirm the possibility as a leakage monitoring indicator of steam generator, despite the peak of glycolic acid salts was slightly overlapped. It will be needed for further research regarding the selectivity of the

  19. Atmospheric effects on infrared measurements at ground level: Application to monitoring of transport infrastructures

    Science.gov (United States)

    Boucher, Vincent; Dumoulin, Jean

    2014-05-01

    and the water. These changes in refractive indexes lead to the evolution of extinction coefficient Kext according to relative humidity. Using such models in very low visibility conditions leads to the following question: Up to which optical depth (i.e. tau=Kext.d) can we use a simple scattering model as Mie Theory? To show the effect of multiple scattering on previous transmission estimation, Monte-Carlo calculations have been performed. Calculations used a software dedicated to photometrical rendering of fog (PROF [5]). Up to an optical depth tau=1, simple and multiple scatterings differ of less than 2%. For tau >1 the simple scattering model is no more available to keep the error less than 10%. Finally, study of fog effect is proposed. Results obtained by numerical simulations but also by experiments carried out in a dedicated fog tunnel are presented and discussed. Perspectives about possible implementation on on site measurement systems are evocated. REFERENCES [1]Proto M. et al., , 2010. Transport infrastructure surveillance and monitoring by electromagnetic sensing: the ISTIMES project. Sensors, 10,10620-10639, doi: 10.3390/s101210620. [2]J. Dumoulin, A. Crinière, R. Averty ," Detection and thermal characterization of the inner structure of the "Musmeci" bridge deck by infrared thermography monitoring ",Journal of Geophysics and Engineering, Volume 10, Number 2, November 2013, IOP Science, doi:10.1088/1742-2132/10/6/064003. [3]Shettle. P. and Fenn R. W., "Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties", Air Force Geophysics Laboratory 79-0214, (1979). [4]30. Hänel, Gottfried, "The properties of atmospheric aerosol particles as functions of the relarive humidity at thermodynamic equilibrium with the surrounding moist air, in Advances in Geophysics, 73-188. Edited by H.E. Landsberg, and J. Van Mieghem, Academic Press, New York, 1976. [5]31. Dumont E., "Semi-Monte Carlo light tracing applied to

  20. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution

    Science.gov (United States)

    Large, Ross R.; Halpin, Jacqueline A.; Danyushevsky, Leonid V.; Maslennikov, Valeriy V.; Bull, Stuart W.; Long, John A.; Gregory, Daniel D.; Lounejeva, Elena; Lyons, Timothy W.; Sack, Patrick J.; McGoldrick, Peter J.; Calver, Clive R.

    2014-03-01

    Sedimentary pyrite formed in the water column, or during diagenesis in organic muds, provides an accessible proxy for seawater chemistry in the marine rock record. Except for Mo, U, Ni and Cr, surprisingly little is known about trace element trends in the deep time oceans, even though they are critical to developing better models for the evolution of the Earth's atmosphere and evolutionary pathways of life. Here we introduce a novel approach to simultaneously quantify a suite of trace elements in sedimentary pyrite from marine black shales. These trace element concentrations, at least in a first-order sense, track the primary elemental abundances in coeval seawater. In general, the trace element patterns show significant variation of several orders of magnitude in the Archaean and Phanerozoic, but less variation on longer wavelengths in the Proterozoic. Certain trace elements (e.g., Ni, Co, As, Cr) have generally decreased in the oceans through the Precambrian, other elements (e.g., Mo, Zn, Mn) have generally increased, and a further group initially increased and then decreased (e.g., Se and U). These changes appear to be controlled by many factors, in particular: 1) oxygenation cycles of the Earth's ocean-atmosphere system, 2) the composition of exposed crustal rocks, 3) long term rates of continental erosion, and 4) cycles of ocean anoxia. We show that Ni and Co content of seawater is affected by global Large Igneous Province events, whereas redox sensitive trace elements such as Se and Mo are affected by atmosphere oxygenation. Positive jumps in Mo and Se concentrations prior to the Great Oxidation Event (GOE1, c. 2500 Ma) suggest pulses of oxygenation may have occurred as early as 2950 Ma. A flat to declining pattern of many biologically important nutrient elements through the mid to late Proterozoic may relate to declining atmosphere O2, and supports previous models of nutrient deficiency inhibiting marine evolution during this period. These trace elements (Mo

  1. Traces of influence of the surface topography in the Venus atmosphere

    Science.gov (United States)

    Zasova, Ludmila; Khatuntsev, Igor; Patsaeva, Marina; Ignatiev, Nikolay; Gorinov, Dmitry

    2017-04-01

    We study the traces of influence of the Venus' topography like Ishtar , Beta Regio, Atalanta Planitia in the Venus atmosphere. From the Fourier Spectrometry on Venera-15 (FS-V15) the 3-D temperature and clouds fields in mesosphere were retrieved [Zasova et al, PSS,2007]. It was found that distribution of temperature is described by the Fourier decomposition with 1, 1/2, 1/3, and 1/4days and upper boundary of clouds (1, 1/2 days) harmonics in Solar-fixed coordinates. The amplitudes of the thermal tide harmonics with wavenumbers 1 and 2 reach 10 K. We found that in the Sun- fixed frame of reference, both maxima and minima are shifted from noon and from midnight to westwards, in direction of the superrotation. Comparison the fields of temperature at isobaric levels (from 60 to 95 km), altitude of upper boundary of the upper and middle clouds, the thermal zonal wind with the Magellan topography maps shows that for all cases the high correlation with the images of the structures in Ishtar, Beta Regio, Atalanta Planitia are observed. For example, it was found that temperature field near upper boundary of clouds (at 65 km) in latitude-longitude coordinates shows a good correspondence between topography (Ishtar, Beta Regio and Atalanta Planitia) and temperature perturbations with coefficient of correlation CC>0.9. The temperature and clouds maps in comparison to the map of Magellan topography show that the perturbations are shifted by 30° also in the direction of superrotation. Venera-15 had geometry observations very convenient for thermal tides observation (polar orbit with pericenter near N-pole), the important results was obtained even with spatial coverage not enough. Interpretation of observed phenomena still not clear. Detailed study continues, also in comparison with VMS and VIRTIS observations for the Southern hemisphere.

  2. Thermal dissociation atmospheric chemical ionization ion trap mass spectrometry with a miniature source for selective trace detection of dimethoate in fruit juices.

    Science.gov (United States)

    Ouyang, Yongzhong; Zhang, Xinglei; Han, Jing; Guo, Xiali; Zhu, Zhiqiang; Chen, Huanwen; Luo, Liping

    2013-01-21

    A miniature thermal dissociation atmospheric chemical ionization (TDCI) source, coupled with LTQ-MS, has been developed for rapid trace detection of pesticide residues such as dimethoate in highly viscous fruit juice samples. Instead of toxic organic solvents and the high electric field used in the conventional ionizations, an ionic liquid, a "green solvent", was employed to directly generate reagent ions in the TDCI process, followed by the proton or charge transfer with the analytes prior to the LTQ instrument for mass analysis. Trace amounts of dimethoate in fresh orange juices have been quantitatively detected, without any sample pretreatment or aid of high-pressure gas. A low limit of detection (LOD = 8.76 × 10(-11) g mL(-1)), acceptable relative standard deviation (RSD = 3.1-10.0%), and reasonable recoveries (91.2-102.8%) were achieved with this method for direct detection of dimethoate in highly viscous orange juice samples. The average analysis time for each single sample was less than 30 seconds. These experimental results showed that the miniature TDCI developed here is a powerful tool for the fast trace detection of pesticide residues in complex viscous fruit juices, with the advantage of high sensitivity, high speed, and high-throughput, ease of operation, and so on. Because of no chemical contamination and high voltage damage to the analytes and the environment, the technique has promising applications for online quality monitoring in the area of food safety.

  3. Sensitive Multi-Species Emissions Monitoring: Infrared Laser-Based Detection of Trace-Level Contaminants.

    Energy Technology Data Exchange (ETDEWEB)

    Steill, Jeffrey D

    2015-01-01

    This report summarizes our development of spectroscopic chemical analysis techniques and spectral modeling for trace-gas measurements of highly-regulated low-concentration species present in flue gas emissions from utility coal boilers such as HCl under conditions of high humidity. Detailed spectral modeling of the spectroscopy of HCl and other important combustion and atmospheric species such as H 2 O, CO 2 , N 2 O, NO 2 , SO 2 , and CH 4 demonstrates that IR-laser spectroscopy is a sensitive multi-component analysis strategy. Experimental measurements from techniques based on IR laser spectroscopy are presented that demonstrate sub-ppm sensitivity levels to these species. Photoacoustic infrared spectroscopy is used to detect and quantify HCl at ppm levels with extremely high signal-to-noise even under conditions of high relative humidity. Additionally, cavity ring-down IR spectroscopy is used to achieve an extremely high sensitivity to combustion trace gases in this spectral region; ppm level CH 4 is one demonstrated example. The importance of spectral resolution in the sensitivity of a trace-gas measurement is examined by spectral modeling in the mid- and near-IR, and efforts to improve measurement resolution through novel instrument development are described. While previous project reports focused on benefits and complexities of the dual-etalon cavity ring-down infrared spectrometer, here details on steps taken to implement this unique and potentially revolutionary instrument are described. This report also illustrates and critiques the general strategy of IR- laser photodetection of trace gases leading to the conclusion that mid-IR laser spectroscopy techniques provide a promising basis for further instrument development and implementation that will enable cost-effective sensitive detection of multiple key contaminant species simultaneously.

  4. Sensitive Multi-Species Emissions Monitoring: Infrared Laser-Based Detection of Trace-Level Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Steill, Jeffrey D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Huang, Haifeng [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hoops, Alexandra A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Birtola, Salvatore R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Jaska, Mark [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Strecker, Kevin E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bisson, Soott [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    This report summarizes our development of spectroscopic chemical analysis techniques and spectral modeling for trace-gas measurements of highly-regulated low-concentration species present in flue gas emissions from utility coal boilers such as HCl under conditions of high humidity. Detailed spectral modeling of the spectroscopy of HCl and other important combustion and atmospheric species such as H 2 O, CO 2 , N 2 O, NO 2 , SO 2 , and CH 4 demonstrates that IR-laser spectroscopy is a sensitive multi-component analysis strategy. Experimental measurements from techniques based on IR laser spectroscopy are presented that demonstrate sub-ppm sensitivity levels to these species. Photoacoustic infrared spectroscopy is used to detect and quantify HCl at ppm levels with extremely high signal-to-noise even under conditions of high relative humidity. Additionally, cavity ring-down IR spectroscopy is used to achieve an extremely high sensitivity to combustion trace gases in this spectral region; ppm level CH 4 is one demonstrated example. The importance of spectral resolution in the sensitivity of a trace-gas measurement is examined by spectral modeling in the mid- and near-IR, and efforts to improve measurement resolution through novel instrument development are described. While previous project reports focused on benefits and complexities of the dual-etalon cavity ring-down infrared spectrometer, here details on steps taken to implement this unique and potentially revolutionary instrument are described. This report also illustrates and critiques the general strategy of IR- laser photodetection of trace gases leading to the conclusion that mid-IR laser spectroscopy techniques provide a promising basis for further instrument development and implementation that will enable cost-effective sensitive detection of multiple key contaminant species simultaneously.

  5. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: volume 1. Inorganic compounds

    Science.gov (United States)

    Tang, M. J.; Cox, R. A.; Kalberer, M.

    2014-09-01

    Diffusion of gas molecules to the surface is the first step for all gas-surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions; however, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. Here we compile and evaluate, for the first time, the diffusivities (pressure-independent diffusion coefficients) of atmospheric inorganic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed. A different version of this compilation/evaluation, which will be updated when new data become available, is uploaded online (google.com/site/mingjintang/home/diffusion"target="_blank">https://sites.google.com/site/mingjintang/home/diffusion).

  6. 49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false What must I do to monitor atmospheric corrosion... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.583 What must I do to monitor atmospheric corrosion control? (a) You must inspect each pipeline or portion of pipeline that...

  7. 1993 Annual Report: San Francisco estuary regional monitoring program for trace substances

    Science.gov (United States)

    Thompson, B.; Lacy, Jessica; Hardin, Dane; Grovhaug, Tom; Taberski, K.; Jassby, Alan D.; Cloern, James E.; Caffrey, J.; Cole, B.; Schoellhamer, David H.

    1993-01-01

    This first annual report of the San Francisco Estuary Regional Monitoring Program contains the results of monitoring measurements made in 1993. Measurements of conventional water quality parameters and trace contaminant concentrations were made at 16 stations throughout the Estuary three times during the year: the wet period (March), during declining Delta outflow (May), and during the dry period (September). Water toxicity tests were conducted at 8 of those stations. Measurements of sediment quality and contaminant concentrations were made at the same 16 stations during the wet and dry sampling periods. Sediment toxicity was measured at 8 of those stations. Transplanted, bagged bivalve bioaccumulation and condition was measured at 11 stations during the wet and dry sampling periods.

  8. Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media

    Directory of Open Access Journals (Sweden)

    Seyed Alireza Ghaffari

    2015-07-01

    Full Text Available With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3− in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications.

  9. Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media

    Science.gov (United States)

    Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Normandeau, Charles-O.; Viens, Jeff; Lamhamedi, Mohammed S.; Gosselin, Benoit; Messaddeq, Younes

    2015-01-01

    With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3− in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications. PMID:26197322

  10. Russian contribution to ExoMars Trace Gas Orbiter: Atmospheric Chemistry Suite (ACS)

    Science.gov (United States)

    Shakun, Alexey; Korablev, Oleg; Trokhimovskiy, Alexander; Grigoriev, Alexey; Anufreychik, Konstantin; Fedorova, Anna; Ignatiev, Nikolay; Ivanov, Yuriy; Moshkin, Boris; Kalinnikov, Yuriy; Montmessin, Franck

    2016-04-01

    Atmospheric Chemistry Suite (ACS) is a part of science payload of Trace Gas Orbiter (TGO), ExoMars mission. This project developed by European Space Agency (ESA) in collaboration with Russian Space Agency (Roscosmos). Russian contribution to ExoMars TGO is the Proton rocket and two science instruments ACS (three infrared spectrometers) and FREND (neutron detector). ACS consists of three infrared spectrometers (ACS/NIR, ACS/MIR and ACS/TIRVIM) capable to take spectral measurements from near to thermal infrared range simultaneously or separately. Spectrometric channels of ACS share common mechanical, electrical, and thermal interfaces. Electronic box (ACS/BE) provides to spectrometric channels power and data transfer interfaces. SpaceWire link is used for science data transfer and MIL-1553 link - for commanding and housekeeping data transfer. The NIR channel is an echelle spectrometer with acousto-optic tunable filter (AOTF) for the selection of diffraction orders. ACS NIR is capable to perform nadir and occultation observations. NIR covers the spectral range of 0.7-1.7 μm with resolving power of ~25000. NIR will perform unique for TGO instruments nightglow science (searching for O2, OH, NO nightglow emissions on Mars). From the 1.38 μm band NIR will do water vapour mapping in nadir and H2O vertical profiling in solar occultations. High resolution NIR measurements of 1.27 μm O2(a1Δg) dayglow will supply indirect ozone observations on the dayside on nadir. In solar occultation mode, the O2 vertical profiles will be measured from the surface (in case of low dust activity) to the 40 km altitude based on 0.76 μm absorption band. Together with MIR channel in solar occultation NIR will support the measurements of CO2 density profiles (based on 1.43 μm band) and aerosols characterization from 0.7 to 4 μm. The wide spectral range will allow not just determine aerosol particle sizes and density at different altitudes, but also distinguish between dust and ice particles

  11. Atmospheric Monitoring at the Site of the MAGIC Telescopes

    Directory of Open Access Journals (Sweden)

    Will Martin

    2017-01-01

    Full Text Available The MAGIC telescopes in La Palma, Canary Islands, measure the Cherenkov light emitted by gamma ray-induced extended air showers in the atmosphere. The good knowledge of the atmospheric parameters is important, both for the correct and safe operations of the telescopes, but also for subsequent data analysis. A weather station measures the state variables of the atmosphere, temperature, humidity and wind, an elastic Lidar system and an infrared pyrometer determine the optical transmission of the atmosphere. Using an AllSky camera, the cloud cover can be estimated. The measured values are completed by data from global atmospheric models based on numeric weather forecasts.

  12. Study of Atmospheric Trace Gas Amounts at the Stara Zagora Ground-Based Station

    Science.gov (United States)

    Werner, R.; Valev, D.; Kostadinov, I.; Atanassov, At.; Giovanelli, G.; Petritoli, A.; Bortoli, D.; Ravegnani, F.

    2006-03-01

    Since the end of August 1999 twilight daily measurements of scattered zenith sky radiation have been carried out at Stara Zagora for determination of trace gas amounts, deploying GASCOD instrument. It was developed at the Institute of Atmospheric Science and Climate, Bologna. Reference spectra are obtained at midday. The instrument, appearing a UV-VIS spectrometer, registers the zenith sky spectra automatically and 410 nm to 460 nm spectral interval is used to retrieve NO2 and O3 slant column amounts (SCA) by application of the DOAS methodology. The spectral analysis uses minimum least squares fitting of the cross sections at the expected absorbers to a logarithm of the twilight spectrum and a reference spectrum. The accumulated time series show the well-known typical seasonal variations, caused by the solar insulation. The residual time series of the removed semi-annual seasonal cycles from the measured original series show many different variations, with short periods up to inter-annual variations. Single spikes of SCA are detected and we consider them a result of over-passing weather fronts and/or lightning. Variations of SCA with time scale up to about 10 days are the consequence of weather cyclones. Some short-term variations of NO2 and O3 SCA are a result of intensive stratospheric-tropospheric exchange. Other residual time series periods are caused by Rossby waves, by over-passing of the polar vortex filaments. The inter-annual variations can be affected by QBO and NAO. Applying wavelet analysis of the obtained NO2 slant column amount data series, and the total O3 amount obtained by the GOME instrument, during the 23-rd solar cycle maximum, time intervals are found with periods of 27 days on the time scale. The applied cross-correlation analysis demonstrates a phase lag of some days of the NO2 and O3 response to the 27-days solar cycle. The calculated vertical column amounts of NO2 are used for validation of the satellite measurements, e.g. SCIAMACHY NO2

  13. Detailed history of atmospheric trace elements from the Quelccaya ice core (Southern Peru) during the last 1200 years

    Science.gov (United States)

    Uglietti, C.; Gabrielli, P.; Thompson, L. G.

    2013-12-01

    The recent increase in trace element concentrations, for example Cr, Cu, Zn, Ag, Pb, Bi, and U, in polar snow and ice has provided compelling evidence of a hemispheric change in atmospheric composition since the nineteenth century. This change has been concomitant with the expansion of the Industrial Revolution and points towards an anthropogenic source of trace elements in the atmosphere. There are very few low latitude trace element ice core records and these are believed to be sensitive to perturbations of regional significance. To date, these records have not been used to document a preindustrial anthropogenic impact on atmospheric composition at low latitudes. Ice cores retrieved from the tropical Andes are particularly interesting because they have the potential to reveal detailed information about the evolution and environmental consequences of mineral exploitation related to the Pre Inca Civilizations, the Inca Empire (1438-1533 AD) and the subsequent Spanish invasion and dominance (1532-1833 AD). The chemical record preserved in the ice of the Quelccaya ice cap (southern Peruvian Andes) offers the exceptional opportunity to geochemically constrain the composition of the tropical atmosphere at high resolution over the last ~1200 years. Quantification of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was performed by ICP-SFMS over 105 m of the Quelccaya North Dome core (5600 m asl, 128.57 m) by analyzing 2450 samples. This provides the first atmospheric trace element record in South America spanning continuously and at high resolution for the time period between 1990 and 790 AD. Ag, As, Bi, Cd, Cr, Co, Cu, Mn, Mo, Sb, Sn, Pb and Zn show increases in concentration and crustal enrichment factor starting at different times between 1450 and 1550 AD, in concomitance with the expansions of the Inca Empire and, subsequently, the Spanish Empire well before the inception of the Industrial Revolution. This

  14. Investigating atmospheric transport processes of trace gases with ICON-ART on different scales

    Science.gov (United States)

    Schröter, Jennifer; Ruhnke, Roland; Rieger, Daniel; Vogel, Heike; Vogel, Bernhard

    2016-04-01

    We have extended the global ICON [1] (ICOsahedral Nonhydrostatic) modelling framework by introducing ICON-ART [2]. ICON is jointly developed by the German Weather Service (DWD) and Max-Planck-Institute for Meteorology (MPI-M), and is used for numerical weather prediction as well as for future climate predictions. ICON-ART is developed at the KIT with the goal to simulate interactions between trace substances and the state of the atmosphere. For the dynamics (transport and diffusion) of gaseous tracers, the original ICON tracer framework is used. A process splitting approach separates the physical processes. In this study, we present results of the ICON-ART extension, including the full gas-phase chemistry module. This module uses the kpp formalism [3] to generate chemistry modules and the photolysis module is based on Cloud-J7.3 [4]. Photolysis rates are calculated online based on the meteorological state of the atmosphere, as well as on the actual ozone profile and cloud optical parameters. Two simulations are performed with ICON-ART. The first one with physics parameterisations for the numerical weather prediction (NWP) and the second one with that for climate simulation in order to investigate the dynamical influence on the distribution of long-lived as well as of short-lived species by comparing both simulations. The results are evaluated with other model results and with observation. In addition to that, we use aircraft campaign data to validate the results on the regional scale for short term simulations by using the NWP physics. [1] Zängl, G., Reinert, D., Ripodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamicalcore, Q. J. Roy. Meteor. Soc,141, 563-579, doi:10.1002/qj.2378, 2015 [2] Rieger, D., Bangert, M., Bischoff-Gauss, I., Förstner, J., Lundgren, K., Reinert, D., Schröter, J., Vogel, H., Zängl, G., Ruhnke, R., and Vogel, B.: ICON-ART 1.0 - a new online

  15. Atmospheric concentrations and dry deposition fluxes of particulate trace metals in Salvador, Bahia, Brazil

    Science.gov (United States)

    de P. Pereira, Pedro A.; Lopes, Wilson A.; Carvalho, Luiz S.; da Rocha, Gisele O.; de Carvalho Bahia, Nei; Loyola, Josiane; Quiterio, Simone L.; Escaleira, Viviane; Arbilla, Graciela; de Andrade, Jailson B.

    Respiratory system is the major route of entry for airborne particulates, being the effect on the human organism dependent on chemical composition of the particles, exposure time and individual susceptibility. Airborne particulate trace metals are considered to represent a health hazard since they may be absorbed into human lung tissues during breathing. Fossil fuel and wood combustion, as well as waste incineration and industrial processes, are the main anthropic sources of metals to the atmosphere. In urban areas, vehicular emissions—and dust resuspension associated to road traffic—become the most important manmade source. This work investigated the atmospheric concentrations of TSP, PM 10 and elements such as iron, manganese, copper and zinc, from three different sites around Salvador Region (Bahia, Brazil), namely: (i) Lapa Bus Station, strongly impacted by heavy-duty diesel vehicles; (ii) Aratu harbor, impacted by an intense movement of goods, including metal ores and concentrates and near industrial centers and; (iii) Bananeira Village located on Maré Island, a non-vehicle-influenced site, with activities such as handcraft work and fishery, although placed near the port. Results have pointed out that TSP concentrations ranged between 16.9 (Bananeira) and 354.0 μg m -3 (Aratu#1), while for PM 10 they ranged between 30.9 and 393.0 μg m -3, both in the Lapa Bus Station. Iron was the major element in both Lapa Station and Aratu (#1 and #2), with average concentrations in the PM 10 samples of 148.9, 79.6 and 205.0 ng m -3, respectively. Zinc, on the other hand, was predominant in samples from Bananeira, with an average concentration of 145.0 ng m -3 in TSP samples, since no PM 10 sample was taken from this site. The main sources of iron in the Lapa Station and Aratu harbor were, respectively, soil resuspension by buses and discharge of solid granaries, as fertilizers and metal ores. On the other hand, zinc and copper in the bus station were mainly from

  16. Continuous on-line calibration of diffusive soil-atmosphere trace gas transport using vertical {sup 220}Rn- and {sup 222}Rn-activity profiles

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, B.E. [Bern Univ. (Switzerland). Physics Inst.; Neftel, A. [Inst. of Environmental Protection and Agriculture, Bern (Switzerland); Tarakanov, S.V. [Inst. of Silicate Chemistry, St. Petersburg (Russian Federation)

    2001-07-01

    Continuous monitoring of {sup 220}Rn- and {sup 222}Rn-activities above and below the soil surface combined with sporadic direct {sup 222}Rn-flux measurements is used to quantify diffusive trace gas transport in the air-filled pore space of soil, through the soil-atmosphere interface and in the lowest layers of the atmosphere. In a calm night, {sup 222}Rn-activities above the surface first build-up near the ground (z < 10 cm) and subsequently with a delay of 2-3 hours at higher altitudes (z < 5 m). Knowing (1) the {sup 222}Rn-flux from activity profiles measured in soil gas, (2) from direct flux determinations and (3) using information about atmospheric diffusion parameters from {sup 220}Rn-activities measured near the surface it is possible to model the temporal evolution of the vertical {sup 222}Rn-profiles in a night with stable weather and constant soil conditions. The system operates automatically for extended periods of time in the field enabling a better understanding of transport processes in response to changing environmental conditions (wind, rain, soil humidity). (orig.)

  17. Air Quality Impacts of Atmospheric Particles & Trace Gases: Field Studies in Diverse Environments

    Science.gov (United States)

    Mwaniki, George R.

    Air pollution impacts occur at all scales, meaning that policies and air quality management practices must be implemented and coordinated at the local, regional, national, and global scales. This dissertation is part of a continuing effort to improve our understanding of various air quality related issues in different environments. The dissertation consists of four studies. In the first study, wintertime chemical composition of water-soluble particulate matter with aerodynamic diameter less than 2.5 microm (PM2.5) was monitored in the Treasure Valley region near Boise, Idaho. This study was aimed at understanding the major drivers of wintertime PM2.5 within the locality of Boise and its suburbs. From this study, organics and particulate nitrate were the dominant contributors to the PM2.5 mass during wintertime. In the second study, particle size distribution, light scattering coefficient, speciated water soluble PM2.5, and cloud condensation nuclei (CCN) concentration were monitored in a mixed deciduous forest in Northern Michigan during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX-2009). The overall goal of this study was to understand on how emissions of biogenic volatile organic compounds (BVOC) affect the gas-phase and particle-phase chemistry in the near-canopy environment, and the implications on local and regional air quality. From this study aerosol derived from the oxidation of BVOCs exhibited reduced hygroscopicity and CCN activation potential compared to aerosols derived from anthropogenic activities. The third study employed the eddy covariance (EC) technique to understand source-sink interactions of carbon dioxide (CO2), methane (CH 4), carbon monoxide (CO) and nitrous oxide (N2O) in Xi'an, China. In this study urban vegetation were found to play a major role in regulating CO2 emissions within the city while vehicular activities were a major driver for CO and CH4 fluxes. In the fourth study, visibility degradation effects of

  18. Development of a Ground-Based Atmospheric Monitoring Network for the Global Mercury Observation System (GMOS

    Directory of Open Access Journals (Sweden)

    Sprovieri F.

    2013-04-01

    Full Text Available Consistent, high-quality measurements of atmospheric mercury (Hg are necessary in order to better understand Hg emissions, transport, and deposition on a global scale. Although the number of atmospheric Hg monitoring stations has increased in recent years, the available measurement database is limited and there are many regions of the world where measurements have not been extensively performed. Long-term atmospheric Hg monitoring and additional ground-based monitoring sites are needed in order to generate datasets that will offer new insight and information about the global scale trends of atmospheric Hg emissions and deposition. In the framework of the Global Mercury Observation System (GMOS project, a coordinated global observational network for atmospheric Hg is being established. The overall research strategy of GMOS is to develop a state-of-the-art observation system able to provide information on the concentration of Hg species in ambient air and precipitation on the global scale. This network is being developed by integrating previously established ground-based atmospheric Hg monitoring stations with newly established GMOS sites that are located both at high altitude and sea level locations, as well as in climatically diverse regions. Through the collection of consistent, high-quality atmospheric Hg measurement data, we seek to create a comprehensive assessment of atmospheric Hg concentrations and their dependence on meteorology, long-range atmospheric transport and atmospheric emissions.

  19. Atmospheric ammonia monitoring near Beijing National Stadium from July to October in 2008 by open-path TDLAS system

    Science.gov (United States)

    He, Ying; Zhang, Yujun; Liu, Wenqing; Kan, Ruifeng; Xia, Hui

    2009-07-01

    Gaseous ammonia is the most abundant alkaline trace gas in the atmosphere. As ammonia plays an important role in acid deposition and aerosol formation, it influences the regional air quality and atmospheric visibility. TDLAS (Tunable Diode Laser Absorption Spectroscopy)is a method to obtain the spectroscopy of single molecule absorption line in the characteristic absorption spectrum region as the characteristic of the distributed feed back (DFB) diode laser with narrow linewidth and tunability, which makes it possible to detect trace-gas qualitatively or quantificationally. The NH3 in-situ monitoring instrument based on TDLAS and long open path technology have been developed combining with wavelength modulation and harmonic detection techniques to obtain the necessary detection sensitivity. This instrument has been used to measure atmospheric NH3 concentration at an urban site near Beijing National Stadium from July to October in 2008, especially in the period of Beijing Olympics and Paralympics. The continuously monitoring results show that the atmospheric NH3 concentration variation has an obvious diurnal periodicity in the urban of Beijing. First of all, the general diurnal variation rule is the concentration decreased to the minimum in the daytime, and then increased to the maximum at night. Moreover, the NH3 peak concentration decreased obviously at the beginning of the Beijing Olympics then it kept descending during the Paralympics. The obtained maximum of NH3 is between 20.31μg/m3~ 48.54μg/m3 with the daily average concentration between 12.6μg/m3~27.5μg/m3. During these three months, Air Quality Assurance Scheme for the Olympics (AQASO) was implemented through the joint actions of Beijing Municipal Government and the five neighboring provinces/municipalities in north China. The measures such as auto restriction and plant ejection-decreasing are carried out in Beijing. In conclusion, the open-path TDLAS instrument is suitable for atmospheric trace

  20. Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: a critical review.

    Science.gov (United States)

    Donaldson, D J; Valsaraj, Kalliat T

    2010-02-01

    The air-water interface in atmospheric water films of aerosols and hydrometeors (fog, mist, ice, rain, and snow) presents an important surface for the adsorption and reaction of many organic trace gases and gaseous reactive oxidants (hydroxyl radical (OH(.)), ozone (O(3)), singlet oxygen (O(2)((1)Delta(g))), nitrate radicals (NO(3)(.)), and peroxy radicals (RO(2)(.)). Knowledge of the air-water interface partition constant of hydrophobic organic species is necessary for elucidating the significance of the interface in atmospheric fate and transport. Various methods of assessing both experimental and theoretical values of the thermodynamic partition constant and adsorption isotherm are described in this review. Further, the reactivity of trace gases with gas-phase oxidants (ozone and singlet oxygen) at the interface is summarized. Oxidation products are likely to be more water-soluble and precursors for secondary organic aerosols in hydrometeors. Estimation of characteristic times shows that heterogeneous photooxidation in water films can compete effectively with homogeneous gas-phase reactions for molecules in the atmosphere. This provides further support to the existing thesis that reactions of organic compounds at the air-water interface should be considered in gas-phase tropospheric chemistry.

  1. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.

    2001-11-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  2. Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, A.J. III; Dougherty, D.R.; Chen, C.L.

    1993-04-01

    Raman scattering is a coherent, inelastic, two-photon process, which shifts the frequency of an outgoing photon according to the vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. When involving an allowed electronic transition (resonance Raman), this scattering cross section can be enhanced by 10{sup 4} to 10{sup 6} and provides the basis for a viable technique that can monitor and detect trace quantities of hazardous wastes and toxic chemicals. Resonance Raman spectroscopy (RRS) possesses many of the ideal characteristics for monitoring and detecting of hazardous waste and toxic chemicals. Some of these traits are: (1) very high selectivity (chemical specific fingerprints); (2) independence from the excitation wavelength (ability to monitor in the solar blind region); (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk); (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid and solutions -- either bulk or aerosols); and (5) insensitivity of the Raman signature to environmental conditions (no quenching). Data from a few chemicals will be presented which illustrate these features. In cases where background fluorescence accompanies the Raman signals, an effective frequency modulation technique has been developed, which can completely eliminate this interference.

  3. Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, A.J. III; Dougherty, D.R.; Chen, C.L.

    1993-01-01

    Raman scattering is a coherent, inelastic, two-photon process, which shifts the frequency of an outgoing photon according to the vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. When involving an allowed electronic transition (resonance Raman), this scattering cross section can be enhanced by 10[sup 4] to 10[sup 6] and provides the basis for a viable technique that can monitor and detect trace quantities of hazardous wastes and toxic chemicals. Resonance Raman spectroscopy (RRS) possesses many of the ideal characteristics for monitoring and detecting of hazardous waste and toxic chemicals. Some of these traits are: (1) very high selectivity (chemical specific fingerprints); (2) independence from the excitation wavelength (ability to monitor in the solar blind region); (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk); (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid and solutions -- either bulk or aerosols); and (5) insensitivity of the Raman signature to environmental conditions (no quenching). Data from a few chemicals will be presented which illustrate these features. In cases where background fluorescence accompanies the Raman signals, an effective frequency modulation technique has been developed, which can completely eliminate this interference.

  4. Atmospheric transport and chemistry of trace gases in LMDz5B: evaluation and implications for inverse modelling

    Directory of Open Access Journals (Sweden)

    R. Locatelli

    2014-07-01

    Full Text Available Representation of atmospheric transport is a major source of error in the estimation of greenhouse gas sources and sinks by inverse modelling. Here we assess the impact on trace gas mole fractions of the new physical parameterisations recently implemented in the Atmospheric Global Climate Model LMDz to improve vertical diffusion, mesoscale mixing by thermal plumes in the planetary boundary layer (PBL, and deep convection in the troposphere. At the same time, the horizontal and vertical resolution of the model used in the inverse system has been increased. The aim of this paper is to evaluate the impact of these developments on the representation of trace gas transport and chemistry, and to anticipate the implications for inversions of greenhouse gas emissions using such an updated model. Comparison of a one-dimensional version of LMDz with large eddy simulations shows that the thermal scheme simulates shallow convective tracer transport in the PBL over land very efficiently, and much better than previous versions of the model. This result is confirmed in three dimensional simulations, by a much improved reproduction of the Radon-222 diurnal cycle. However, the enhanced dynamics of tracer concentrations induces a stronger sensitivity of the new LMDz configuration to external meteorological forcings. At larger scales, the inter-hemispheric exchange is slightly slower when using the new version of the model, bringing them closer to observations. The increase in the vertical resolution (from 19 to 39 layers significantly improves the representation of stratosphere/troposphere exchange. Furthermore, changes in atmospheric thermodynamic variables, such as temperature, due to changes in the PBL mixing, significantly modify chemical reaction rates and the equilibrium value of reactive trace gases. One implication of LMDz model developments for future inversions of greenhouse gas emissions is the ability of the updated system to assimilate a larger

  5. Modeling ionospheric disturbance features in quasi-vertically incident ionograms using 3-D magnetoionic ray tracing and atmospheric gravity waves

    Science.gov (United States)

    Cervera, M. A.; Harris, T. J.

    2014-01-01

    The Defence Science and Technology Organisation (DSTO) has initiated an experimental program, Spatial Ionospheric Correlation Experiment, utilizing state-of-the-art DSTO-designed high frequency digital receivers. This program seeks to understand ionospheric disturbances at scales employ a 3-D magnetoionic Hamiltonian ray tracing engine, developed by DSTO, to (1) model the various disturbance features observed on both the O and X polarization modes in our QVI data and (2) understand how they are produced. The ionospheric disturbances which produce the observed features were modeled by perturbing the ionosphere with atmospheric gravity waves.

  6. [The Research for Trace Ammonia Escape Monitoring System Based on Tunable Diode Laser Absorption Spectroscopy].

    Science.gov (United States)

    Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa

    2015-06-01

    In order to on-line measure the trace ammonia slip of the commercial power plant in the future, this research seeks to measure the trace ammonia by using tunable diode laser absorption spectroscopy under ambient temperature and pressure, and at different temperatures, and the measuring temperature is about 650 K in the power plant. In recent years lasers have become commercially available in the near-infrared where the transitions are much stronger, and ammonia's spectroscopy is pretty complicated and the overlapping lines are difficult to resolve. A group of ammonia transitions near 4 433.5 cm(-1) in the v2 +v3 combination band have been thoroughly selected for detecting lower concentration by analyzing its absorption characteristic and considering other absorption interference in combustion gases where H2O and CO2 mole fraction are very large. To illustrate the potential for NH3 concentration measurements, predictions for NH3, H2O and CO2 are simultaneously simulated, NH3 absorption lines near 4 433.5 cm(-1) wavelength meet weaker H2O absorption than the commercial NH3 lines, and there is almost no CO2 absorption, all the parameters are based on the HITRAN database, and an improved detection limit was obtained for interference-free NH3 monitoring, this 2.25 μm band has line strengths several times larger than absorption lines in the 1.53 μm band which was often used by NH3 sensors for emission monitoring and analyzing. The measurement system was developed with a new Herriott cell and a heated gas cell realizing fast absorption measurements of high resolution, and combined with direct absorption and wavelenguh modulation based on tunable diode laser absorption spectroscopy at different temperatures. The lorentzian line shape is dominant at ambient temperature and pressure, and the estimated detectivity is approximately 0.225 x 10(-6) (SNR = 1) for the directed absorption spectroscopy, assuming a noise-equivalent absorbance of 1 x 10(-4). The heated cell

  7. Chemcatcher and DGT passive sampling devices for regulatory monitoring of trace metals in surface water.

    Science.gov (United States)

    Allan, Ian J; Knutsson, Jesper; Guigues, Nathalie; Mills, Graham A; Fouillac, Anne-Marie; Greenwood, Richard

    2008-07-01

    This work aimed to evaluate whether the performance of passive sampling devices in measuring time-weighted average (TWA) concentrations supports their application in regulatory monitoring of trace metals in surface waters, such as for the European Union's Water Framework Directive (WFD). The ability of the Chemcatcher and the diffusive gradient in thin film (DGT) device sampler to provide comparable TWA concentrations of Cd, Cu, Ni, Pb and Zn was tested through consecutive and overlapping deployments (7-28 days) in the River Meuse (The Netherlands). In order to evaluate the consistency of these TWA labile metal concentrations, these were assessed against total and filtered concentrations measured at relatively high frequencies by two teams using standard monitoring procedures, and metal species predicted by equilibrium speciation modeling using Visual MINTEQ. For Cd and Zn, the concentrations obtained with filtered water samples and the passive sampling devices were generally similar. The samplers consistently underestimated filtered concentrations of Cu and Ni, in agreement with their respective predicted speciation. For Pb, a small labile fraction was mainly responsible for low sampler accumulation and hence high measurement uncertainty. While only the high frequency of spot sampling procedures enabled the observation of higher Cd concentrations during the first 14 days, consecutive DGT deployments were able to detect it and provide a reasonable estimate of ambient concentrations. The range of concentrations measured by spot and passive sampling, for exposures up to 28 days, demonstrated that both modes of monitoring were equally reliable. Passive sampling provides information that cannot be obtained by a realistic spot sampling frequency and this may impact on the ability to detect trends and assess monitoring data against environmental quality standards when concentrations fluctuate.

  8. Employing GNSS radio occultation for solving the global climate monitoring problem for the fundamental state of the atmosphere

    Science.gov (United States)

    Kirchengast, Gottfried; Schwaerz, Marc; Schwarz, Jakob; Scherllin-Pirscher, Barbara; Pock, Christian; Innerkofler, Josef; Proschek, Veronika; Steiner, Andrea; Danzer, Julia; Ladstaedter, Florian; Foelsche, Ulrich

    2016-04-01

    Monitoring the atmosphere to gain accurate and long-term stable records of essential climate variables (ECVs) such as temperature is the backbone of atmospheric and climate science. Earth observation from space is the key to obtain such data globally. Currently, however, not any atmospheric ECV record can serve as authoritative reference from weekly to decadal scales so that climate variability and change is not yet reliably monitored, despite of satellite data since the 1970s. We aim to solve this decades-long problem for the fundamental state of the atmosphere, the thermodynamic state of the gas as expressed by air density, pressure, temperature, and tropospheric water vapor, which are the fundamental ECVs for tracking climate change and in fact fundamental to all weather and climate processes. We base the solution on the unique SI-traceable data of the GNSS radio occultation (RO) space geodetic observing system, available since 2001 and scheduled long-term into the future. We introduce a new system modeling and data analysis approach which, in contrast to current RO retrieval chains using classical data inversion, enables us to exploit the traceability to universal time (SI second) and to realize SI-traced profiles of atmospheric ECVs, accounting also for relevant side influences such as from the ionosphere, with unprecedented utility for climate monitoring and science. We work to establish such a trace first-time in form of the Reference Occultation Processing System rOPS, providing reference RO data for calibration/validation and climate applications. This rOPS development is a current cornerstone endeavor at the WEGC Graz over 2013 to 2016, supported also by colleagues from EUMETSAT Darmstadt, ECMWF Reading, DMI Copenhagen, AIUB Berne, UCAR Boulder, JPL Pasadena, and others. The rOPS approach demands to process the full chain from the SI-tied raw data to the ECVs with integrated uncertainty propagation, both of estimated systematic and estimated random

  9. Methods of InSAR atmosphere correction for volcano activity monitoring

    Science.gov (United States)

    Gong, W.; Meyer, F.; Webley, P.W.; Lu, Zhiming

    2011-01-01

    When a Synthetic Aperture Radar (SAR) signal propagates through the atmosphere on its path to and from the sensor, it is inevitably affected by atmospheric effects. In particular, the applicability and accuracy of Interferometric SAR (InSAR) techniques for volcano monitoring is limited by atmospheric path delays. Therefore, atmospheric correction of interferograms is required to improve the performance of InSAR for detecting volcanic activity, especially in order to advance its ability to detect subtle pre-eruptive changes in deformation dynamics. In this paper, we focus on InSAR tropospheric mitigation methods and their performance in volcano deformation monitoring. Our study areas include Okmok volcano and Unimak Island located in the eastern Aleutians, AK. We explore two methods to mitigate atmospheric artifacts, namely the numerical weather model simulation and the atmospheric filtering using Persistent Scatterer processing. We investigate the capability of the proposed methods, and investigate their limitations and advantages when applied to determine volcanic processes. ?? 2011 IEEE.

  10. Strategy Implementation for the CTA Atmospheric Monitoring Program

    CERN Document Server

    Doro, M; Reyes, R de los; Gaug, M; Maccarone, M C

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation facility of Imaging Atmospheric Cherenkov Telescopes. It will reach unprecedented sensitivity and energy resolution in very-high-energy gamma-ray astronomy. CTA will detect Cherenkov light emitted within an atmospheric shower of particles initiated by cosmic-gamma rays or cosmic rays entering the Earth's atmosphere. From the combination of images the Cherenkov light produces in the telescopes, one is able to infer the primary particle energy and direction. A correct energy estimation can be thus performed only if the local atmosphere is well characterized. The atmosphere not only affects the shower development itself, but also the Cherenkov photon transmission from the emission point in the particle shower, at about 10-20 km above the ground, to the detector. Cherenkov light on the ground is peaked in the UV-blue region, and therefore molecular and aerosol extinction phenomena are important. The goal of CTA is to control systematics in energy reconstr...

  11. Annual input fluxes and source identification of trace elements in atmospheric deposition in Shanxi Basin: the largest coal base in China.

    Science.gov (United States)

    Zhong, Cong; Yang, Zhongfang; Jiang, Wei; Yu, Tao; Hou, Qingye; Li, Desheng; Wang, Jianwu

    2014-11-01

    Industrialization and urbanization have led to a great deterioration of air quality and provoked some serious environmental concerns. One hundred and five samples of atmospheric deposition were analyzed for their concentrations of 13 trace elements (As, Cd, Cu, Fe, Al, Co, Cr, Hg, Mn, Mo, Pb, Se, and Zn) in Shanxi Basin, which includes six isolate basins. The input fluxes of the trace elements in atmospheric deposition were observed and evaluated. Geostatistical analysis (EF, PCA, and CA ) were conducted to determine the spatial distribution, possible sources, and enrichment degrees of trace elements in atmospheric deposition. Fe/Al and K/Al also contribute to identify the sources of atmospheric deposition. The distribution of trace elements in atmospheric deposition was proved to be geographically restricted. The results show that As, Cd, Pb, Zn, and Se mainly come from coal combustion. Fe, Cu, Mn, Hg, and Co originate mainly from interactions between local polluted soils and blowing dust from other places, while the main source of Al, Cr, and Mo are the soil parent materials without pollution. This work provides baseline information to develop policies to control and reduce trace elements, especially toxic elements, from atmospheric deposition. Some exploratory analytical methods applied in this work are also worth considering in similar researches.

  12. Solving the Global Climate Monitoring Problem in the Atmosphere: Towards SI-tied Climate Records with Integrated Uncertainty Propagation

    Science.gov (United States)

    Kirchengast, G.; Schwaerz, M.; Fritzer, J.; Schwarz, J.; Scherllin-Pirscher, B.; Steiner, A. K.

    2013-12-01

    Monitoring the atmosphere to gain accurate and long-term stable records of essential climate variables (ECVs) such as temperature and greenhouse gases is the backbone of contemporary atmospheric and climate science. Earth observation from space is the key to obtain such data globally in the atmosphere. Currently, however, not any existing satellite-based atmospheric ECV record can serve as authoritative benchmark over months to decades so that climate variability and change in the atmosphere are not yet reliably monitored. Radio occultation (RO) using Global Navigation Satellite System (GNSS) signals provides a unique opportunity to solve this problem in the free atmosphere (from ~1-2 km altitude upwards) for core ECVs: the thermodynamic variables temperature and pressure, and to some degree water vapor, which are key parameters for tracking climate change. On top of RO we have recently conceived next-generation methods, microwave and infrared-laser occultation and nadir-looking infrared-laser reflectometry. These can monitor a full set of thermo-dynamic ECVs (incl. wind) as well as the greenhouse gases such as carbon dioxide and methane as main drivers of climate change; for the latter we also target the boundary layer for tracking carbon sources and sinks. We briefly introduce to why the atmospheric climate monitoring challenge is unsolved so far and why just the above methods have the capabilities to break through. We then focus on RO, which already provided more than a decade of observations. RO accurately measures time delays from refraction of GNSS signals during atmospheric occultation events. This enables to tie RO-derived ECVs and their uncertainty to fundamental time standards, effectively the SI second, and to their unique long-term stability and narrow uncertainty. However, despite impressive advances since the pioneering RO mission GPS/Met in the mid-1990ties no rigorous trace from fundamental time to the ECVs (duly accounting also for relevant side

  13. Tracing the fate of carbon and the atmospheric evolution of Mars

    CERN Document Server

    Hu, Renyu; Ehlmann, Bethany L; Yung, Yuk L

    2015-01-01

    The climate of Mars likely evolved from a warmer, wetter early state to the cold, arid current state. However, no solutions for this evolution have previously been found to satisfy the observed geological features and isotopic measurements of the atmosphere. Here we show that a family of solutions exist, invoking no missing reservoirs or loss processes. Escape of carbon via CO photodissociation and sputtering enriches heavy carbon (13C) in the Martian atmosphere, partially compensated by moderate carbonate precipitation. The current atmospheric 13C/12C and rock and soil carbonate measurements indicate an early atmosphere with a surface pressure <1 bar. Only scenarios with large amounts of carbonate formation in open lakes permit higher values up to 1.8 bar. The evolutionary scenarios are fully testable with data from the MAVEN mission and further studies of the isotopic composition of carbonate in the Martian rock record through time.

  14. Monitoring of trace metals and pharmaceuticals as anthropogenic and socio-economic indicators of urban and industrial impact on surface waters

    Science.gov (United States)

    Vystavna, Yuliya

    2014-05-01

    The research focuses on the monitoring of trace metals and pharmaceuticals as potential anthropogenic indicators of industrial and urban influences on surface water in poorly gauged transboundary Ukraine/Russia region. This study includes analysis of tracers use for the indication of water pollution events, including controlled and emerging discharges, and discussion of the detection method of these chemicals. The following criteria were proposed for the evaluation of indicators: specificity (physical chemical properties), variability (spatial and temporal) and practicality (capacity of the sampling and analytical techniques). The combination of grab and passive water sampling (i.e. DGT and POCIS) procedure was applied for the determination of dissolved and labile trace metals (Ag, Cd, Cr, Cu, Ni, Pb and Zn) and pharmaceuticals (carbamazepine, diazepam, paracetamol, caffeine, diclofenac and ketoprofen). Samples were analysed using ICP - MS (trace metals) and LC-MS/MS ESI +/- (pharmaceuticals). Our results demonstrate the distinctive spatial and temporal patterns of trace elements distribution along an urban watercourse. Accordingly, two general groups of trace metals have been discriminated: 'stable' (Cd and Cr) and 'time-varying' (Cu, Zn, Ni and Pb). The relationship Cd >> Cu > Ag > Cr ≥ Zn was proposed as an anthropogenic signature of the industrial and urban activities pressuring the environment from point sources (municipal wastewaters) and the group Pb - Ni was discussed as a relevant fingerprint of the economic activity (industry and transport) mainly from non-point sources (run-off, atmospheric depositions, etc.). Pharmaceuticals with contrasting hydro-chemical properties of molecules (water solubility, bioaccumulation, persistence during wastewater treatment processes) were discriminated on conservative, labile and with combined properties in order to provide information on wastewater treatment plant efficiency, punctual events (e.g. accidents on sewage

  15. Monitoring of trace metals and pharmaceuticals as anthropogenic and socio-economic indicators of urban and industrial impact on surface waters.

    Science.gov (United States)

    Vystavna, Y; Le Coustumer, P; Huneau, F

    2013-04-01

    The research focuses on the monitoring of trace metals and pharmaceuticals as potential anthropogenic indicators of industrial and urban influences on surface water. This study includes analysis of tracers use for the indication of water pollution events and discussion of the detection method of these chemicals. The following criteria were proposed for the evaluation of indicators: specificity (physical chemical properties), variability (spatial and temporal), and practicality (capacity of the sampling and analytical techniques). The combination of grab and passive water sampling (i.e., diffusive gradient in the thin film and polar organic chemical integrated samplers) procedure was applied for the determination of dissolved and labile trace metals (Ag, Cd, Cr, Cu, Ni, Pb, and Zn) and pharmaceuticals (carbamazepine, diazepam, paracetamol, caffeine, diclofenac, and ketoprofen). Samples were analyzed using inductively coupled plasma mass spectrometry (MS; trace metals) and liquid chromatography-tandem MS electrospray ionization+/- (pharmaceuticals). Our results demonstrate the distinctive spatial and temporal patterns of trace elements distribution along an urban watercourse. Accordingly, two general groups of trace metals have been discriminated: "stable" (Cd and Cr) and "time varying" (Cu, Zn, Ni, and Pb). The relationship Cd > Cu > Ag > Cr ≥ Zn was proposed as an anthropogenic signature of the industrial and urban activities pressuring the environment from point sources (municipal wastewaters) and the group Pb-Ni was discussed as a relevant fingerprint of the economic activity (industry and transport) mainly from non-point sources (runoff, atmospheric depositions, etc.). Pharmaceuticals with contrasting hydro-chemical properties of molecules (water solubility, bioaccumulation, persistence during wastewater treatment processes) were discriminated on conservative, labile, and with combined properties in order to provide information on wastewater treatment plant

  16. Urban deciduous tree leaves as biomonitors of trace element (As, V and Cd atmospheric pollution in Belgrade, Serbia

    Directory of Open Access Journals (Sweden)

    KATARINA M. ŠUĆUR

    2010-10-01

    Full Text Available Leaves of common deciduous trees: horse chestnut (Aesculus hippocastanum and linden (Tilia spp. from three parks within the urban area of Belgrade were studied as biomonitors of trace element (As, V, and Cd atmospheric pollution. The May–September trace element accumulation in the leaves, and their temporal trends, were assayed in a multi-year period (2002–2006. Significant accumulation in the leaves was evident for As and V, but not so regularly for Cd. Slightly decreasing temporal trends of V and As ac-cumulated in the leaf tissues were observed over the years. During the time span, the concentrations of Cd remained approximately on the same level, except in May 2002 and September 2005, when a rapid increase was observed. The May–September accumulations of As and V were higher in horse chestnut than in linden, although both may be used as biomonitors for these elements, and optionally for Cd in conditions of its high atmospheric loadings.

  17. SWING-UAV: Small Whiskbroom Imager for atmospheric compositioN monitorinG from an UAV

    Science.gov (United States)

    Merlaud, A.; Constantin, D.; Van Roozendael, M.; Fayt, C.; Maes, J.; Mingireanu, F.; Voiculescu, M.; Murariu, G.; Georgescu, L. P.

    2012-12-01

    We present a new instrument, the Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING), dedicated to trace gases mapping at high spatial resolution from Unmanned Aerial Vehicles (UAVs). The system maps trace gases fields based on a compact ultra-violet visible spectrometer and a scanning mirror. The payload's weight, size and power consumption are respectively 920g, 27*12*12 cm3, and 6W. The custom-built UAV wingspan is 2.5m and can reach an altitude of 3km during 2 hours, flying at 60 km/h in preprogrammed tracks. Considering the 120° swath of the instrument, it is able to cover an area of 20*20 km2 in less than one hour. The spectra are analyzed using Differential Optical Absorption Spectroscopy (DOAS) and several species are detectable. Our primary objective is NO2, a major pollutant and a key species in tropospheric chemistry for which simulations show that a 200*200m ground resolution is possible in polluted zones. We show first measurements of NO2 in Belgium and Romania. Such measurements are complementary to ground-based instruments and, besides studying air quality and NOx sources, are valuable for satellite validation. Another promising application is monitoring of SO2 emissions from volcanoes.

  18. Characterization of Atmospheric Infrasound for Improved Weather Monitoring

    Science.gov (United States)

    Threatt, Arnesha; Elbing, Brian

    2016-11-01

    Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUD MAP) is a multi-university collaboration focused on development and implementation of unmanned aircraft systems (UAS) and integration with sensors for atmospheric measurements. A primary objective for this project is to create and demonstrate UAS capabilities needed to support UAS operating in extreme conditions, such as a tornado producing storm system. These storm systems emit infrasound (acoustic signals below human hearing, resources to high-decision-value-information. To achieve this the infrasonic signals with and without severe storms must be understood. This presentation will report findings from the first CLOUD MAP field demonstration, which acquired infrasonic signals while simultaneously sampling the atmosphere with UAS. Infrasonic spectra will be shown from a typical calm day, a continuous source (pulsed gas-combustion torch), singular events, and UAS flights as well as localization results from a controlled source and multiple microphones. This work was supported by NSF Grant 1539070: CLOUD MAP - Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics.

  19. 49 CFR 192.481 - Atmospheric corrosion control: Monitoring.

    Science.gov (United States)

    2010-10-01

    ... calendar years, but with intervals not exceeding 39 months Offshore At least once each calendar year, but... attention to pipe at soil-to-air interfaces, under thermal insulation, under disbonded coatings, at pipe supports, in splash zones, at deck penetrations, and in spans over water. (c) If atmospheric corrosion...

  20. A comparative study between the fluxes of trace elements in bulk atmospheric deposition at industrial, urban, traffic, and rural sites.

    Science.gov (United States)

    Fernández-Olmo, I; Puente, M; Irabien, A

    2015-09-01

    The input of trace elements via atmospheric deposition towards industrial, urban, traffic, and rural areas is quite different and depends on the intensity of the anthropogenic activity. A comparative study between the element deposition fluxes in four sampling sites (industrial, urban, traffic, and rural) of the Cantabria region (northern Spain) has been performed. Sampling was carried out monthly using a bulk (funnel bottle) sampler. The trace elements, As, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Ti, Zn, and V, were determined in the water soluble and insoluble fractions of bulk deposition samples. The element deposition fluxes at the rural, urban, and traffic sites followed a similar order (Zn > Mn> > Cu ≈ Ti > Pb > V ≈ Cr > Ni> > As ≈ Mo > Cd). The most enriched elements were Cd, Zn, and Cu, while V, Ni, and Cr were less enriched. An extremely high deposition of Mn was found at the industrial site, leading to high enrichment factor values, resulting from the presence of a ferro-manganese/silico-manganese production plant in the vicinity of the sampling site. Important differences were found in the element solubilities in the studied sites; the element solubilities were higher at the traffic and rural sites, and lower at the urban and industrial sites. For all sites, Zn and Cd were the most soluble elements, whereas Cr and Ti were less soluble. The inter-site correlation coefficients for each element were calculated to assess the differences between the sites. The rural and traffic sites showed some similarities in the sources of trace elements; however, the sources of these elements at the industrial and rural sites were quite different. Additionally, the element fluxes measured in the insoluble fraction of the bulk atmospheric deposition exhibited a good correlation with the daily traffic volume at the traffic site.

  1. Spatial Variability of Trace Gases During DISCOVER-AQ: Planning for Geostationary Observations of Atmospheric Composition

    Science.gov (United States)

    Follette-Cook, Melanie B.; Pickering, K.; Crawford, J.; Appel, W.; Diskin, G.; Fried, A.; Loughner, C.; Pfister, G.; Weinheimer, A.

    2015-01-01

    Results from an in-depth analysis of trace gas variability in MD indicated that the variability in this region was large enough to be observable by a TEMPO-like instrument. The variability observed in MD is relatively similar to the other three campaigns with a few exceptions: CO variability in CA was much higher than in the other regions; HCHO variability in CA and CO was much lower; MD showed the lowest variability in NO2All model simulations do a reasonable job simulating O3 variability. For CO, the CACO simulations largely under over estimate the variability in the observations. The variability in HCHO is underestimated for every campaign. NO2 variability is slightly overestimated in MD, more so in CO. The TX simulation underestimates the variability in each trace gas. This is most likely due to missing emissions sources (C. Loughner, manuscript in preparation).Future Work: Where reasonable, we will use these model outputs to further explore the resolvability from space of these key trace gases using analyses of tropospheric column amounts relative to satellite precision requirements, similar to Follette-Cook et al. (2015).

  2. Trace elements associated with atmospheric particulate matter in the Upper Hunter Valley, NSW, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Farhana, Biswas Karabi [Bangladesh Institute of Research and Rehabilitation in Diabetes, Endcrine and Metabolic Disorders (BIRDEM), Research Division, Dhaka (Bangladesh); Bridgman, Howard [University of Newcastle, Dept. of Geography and Environmental Science (Australia); McOrist, Gordon [Australian Nuclear Science and Technology Organization (ANSTO), Environment Division, Menai (Australia)

    2002-05-01

    Airbone particulate matter, both total suspended particulate (TSP) and PM{sub 10}, and soil samples from four sampling sites were collected in the Upper Hunter Valley in NSW, Australia in early 1999. This study aimed to measure relative amounts of particulates during this period, and identify associated trace elements and their potential sources. Particulates were analyzed for trace elements using Neutron Activation Analysis technique. Total concentrations ({mu}g m{sup -3}) of TSP and PM{sub 10} varied within 7-135 and 4-19, respectively, among sampling sites. Mean concentrations (ng m{sup -3}) of iron, barium, zinc, lanthanum, bromine, chromium, rubidium, neodymium, cobalt, hafnium, cerium, thorium, uranium, scandium and cesium varied within 2042-2867, 529-1500, 28-40, 5.45-11.44, 5.3-20.6, 10.4-12.7, 4.14-11.56, 5.4-8.1, 1.16-1.98, 1.76-2.17, 0.71-3.9, 0.21-0.50, 0.29-0.84, 0.28-1.23, and 0.18-0.30, respectively. Significant correlation between sites for many elements suggested some common source(s) of some elements. The enrichment levels of the trace elements identified some crustal materials as a predominant source of particulate matter. (author)

  3. A new method based on low background instrumental neutron activation analysis for major, trace and ultra-trace element determination in atmospheric mineral dust from polar ice cores

    Energy Technology Data Exchange (ETDEWEB)

    Baccolo, Giovanni, E-mail: giovanni.baccolo@mib.infn.it [Graduate School in Polar Sciences, University of Siena, Via Laterina 8, 53100, Siena (Italy); Department of Environmental Sciences, University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano (Italy); INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Clemenza, Massimiliano [INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Department of Physics, University of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Delmonte, Barbara [Department of Environmental Sciences, University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano (Italy); Maffezzoli, Niccolò [Centre for Ice and Climate, Niels Bohr Institute, Juliane Maries Vej, 30, 2100, Copenhagen (Denmark); Nastasi, Massimiliano; Previtali, Ezio [INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Department of Physics, University of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Prata, Michele; Salvini, Andrea [LENA, University of Pavia, Pavia (Italy); Maggi, Valter [Department of Environmental Sciences, University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano (Italy); INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy)

    2016-05-30

    Dust found in polar ice core samples present extremely low concentrations, in addition the availability of such samples is usually strictly limited. For these reasons the chemical and physical analysis of polar ice cores is an analytical challenge. In this work a new method based on low background instrumental neutron activation analysis (LB-INAA) for the multi-elemental characterization of the insoluble fraction of dust from polar ice cores is presented. Thanks to an accurate selection of the most proper materials and procedures it was possible to reach unprecedented analytical performances, suitable for ice core analyses. The method was applied to Antarctic ice core samples. Five samples of atmospheric dust (μg size) from ice sections of the Antarctic Talos Dome ice core were prepared and analyzed. A set of 37 elements was quantified, spanning from all the major elements (Na, Mg, Al, Si, K, Ca, Ti, Mn and Fe) to trace ones, including 10 (La, Ce, Nd, Sm, Eu, Tb, Ho, Tm, Yb and Lu) of the 14 natural occurring lanthanides. The detection limits are in the range of 10{sup −13}–10{sup −6} g, improving previous results of 1–3 orders of magnitude depending on the element; uncertainties lies between 4% and 60%. - Highlights: • A new method based on neutron activation for the multi-elemental characterization of atmospheric dust entrapped in polar ice cores is proposed. • 37 elements were quantified in μg size dust samples with detection limits ranging from 10{sup −13} to 10{sup −6} g. • A low background approach and a clean analytical protocol improved INAA performances to unprecedented levels for multi-elemental analyses.

  4. Towards Solving the Global Climate Monitoring Problem for the Fundamental State of the Atmosphere with GNSS Radio Occultation

    Science.gov (United States)

    Kirchengast, G.; Schwaerz, M.; Schwarz, J.; Scherllin-Pirscher, B.; Pock, C.; Innerkofler, J.; Proschek, V.; Steiner, A. K.; Danzer, J.; Ladstaedter, F.; Foelsche, U.

    2015-12-01

    Monitoring the atmosphere to gain accurate and long-term stable records of essential climate variables (ECVs) such as temperature is the backbone of atmospheric and climate science. Earth observation from space is the key to obtain such data globally. Currently, however, not any atmospheric ECV record can serve as authoritative reference from weekly to decadal scales so that climate variability and change is not yet reliably monitored, despite of satellite data since the 1970s. We aim to solve this decades-long problem for the fundamental state of the atmosphere, the thermodynamic state of the gas as expressed by air density, pressure, temperature, and tropospheric water vapor, which are the fundamental ECVs for tracking climate change and in fact fundamental to all weather and climate processes. We base the solution on the unique SI-traceable data of the GNSS radio occultation (RO) observing system, available since 2001 and scheduled long-term into the future. We introduce a new system modeling and data analysis approach which, in contrast to current RO retrieval chains using classical data inversion, enables us to exploit the traceability to universal time (SI second) and to realize SI-traced ECV profiles, accounting also for relevant side influences, with unprecedented utility for climate monitoring and science. We work to establish such a trace first-time in form of the Reference Occultation Processing System rOPS, providing reference RO data for cal/val and climate applications. This rOPS development is a current cornerstone endeavor at the WEGC Graz over 2013 to 2016, supported also by colleagues from EUMETSAT, ECMWF, DMI Copenhagen, UCAR Boulder, JPL Pasadena, and others. The rOPS approach demands to process the full chain from the SI-tied raw data to the ECVs with integrated uncertainty propagation. We first briefly summarize the RO promise along the above lines and where we currently stand in quantifying RO accuracy and long-term stability. We then

  5. A new method based on low background instrumental neutron activation analysis for major, trace and ultra-trace element determination in atmospheric mineral dust from polar ice cores.

    Science.gov (United States)

    Baccolo, Giovanni; Clemenza, Massimiliano; Delmonte, Barbara; Maffezzoli, Niccolò; Nastasi, Massimiliano; Previtali, Ezio; Prata, Michele; Salvini, Andrea; Maggi, Valter

    2016-05-30

    Dust found in polar ice core samples present extremely low concentrations, in addition the availability of such samples is usually strictly limited. For these reasons the chemical and physical analysis of polar ice cores is an analytical challenge. In this work a new method based on low background instrumental neutron activation analysis (LB-INAA) for the multi-elemental characterization of the insoluble fraction of dust from polar ice cores is presented. Thanks to an accurate selection of the most proper materials and procedures it was possible to reach unprecedented analytical performances, suitable for ice core analyses. The method was applied to Antarctic ice core samples. Five samples of atmospheric dust (μg size) from ice sections of the Antarctic Talos Dome ice core were prepared and analyzed. A set of 37 elements was quantified, spanning from all the major elements (Na, Mg, Al, Si, K, Ca, Ti, Mn and Fe) to trace ones, including 10 (La, Ce, Nd, Sm, Eu, Tb, Ho, Tm, Yb and Lu) of the 14 natural occurring lanthanides. The detection limits are in the range of 10(-13)-10(-6) g, improving previous results of 1-3 orders of magnitude depending on the element; uncertainties lies between 4% and 60%.

  6. Chemical and isotopical characterisation of atmospheric pollution from urban and rural environments of the Rhine Valley (PCBs, trace elements and Sr-, Nd- and Pb- isotope determinations)

    Science.gov (United States)

    Guéguen, F.; Stille, P.; Millet, M.; Dietze, V.; Gieré, R.

    2010-05-01

    from traffic and the principal industrial activities. UCC normalized trace element distribution patterns of aerosols and tree bark are very similar. 206Pb/207Pb and 208Pb/207Pb isotope ratios of today's PM vary within a small range and are very similar to those of steel plant, waste incinerator and thermal power plant emissions. Older aerosols (collected 1995, before leaded petrol was phased out), have significantly lower Pb isotope ratios pointing to the impact of leaded gasoline at that time. Tree bark monitoring covers a 10-y history of Pb emissions. Combining Pb isotope ratios with 87Sr/86Sr and 143Nd/144Nd allows for a much better discrimination between the different anthropogenic emissions and might be suitable for source apportionments. PCBs concentrations of tree bark or PAS samples are generally correlated with trace element contents determined on the same material. PAS/tree bark PCBs ratio allows distinguishing between current or past contamination. 1Lahd Geagea, M., Stille, P., Gauthier-Lafaye, F., Perrone, Th., Aubert, D. 2008. Baseline determination of the atmospheric Pb, Sr and Nd isotopic compositions in the Rhine valley, Vosges mountains (France) and the Central Swiss Alps. Applied Geochemistry, 23, 1703-1714.

  7. Trace metals in atmospheric particulates characterized of aerosol emitted by industrial and urban sources

    Energy Technology Data Exchange (ETDEWEB)

    Del Borghi, A.; Solisio, C.; Zilli, M.; Del Borghi, M. [Genoa University, Genoa (Italy). Chemical and Process Engineering Institute G.B. Bonino

    1998-12-31

    The results of a year`s study in the Savona area (Italy) for dust deposition have been analyzed in order to characterize the emission sources. The contribution of the major pollutant sources has been determined by tracer metals and their enrichment factors. The selected metals were Cd, Cu, Pb, An, Cr, and Ni. The obtained results show four types of emission sources responsible for airborne trace metals; traffic, industrial plants a large oil and coal fired power station, resuspension of soil particles and residential heating. 9 refs., 9 figs., 1 tab.

  8. 30 CFR 75.351 - Atmospheric monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... the center in the upper third of the entry, in a location that does not expose personnel working on.... (e) Location of sensors-belt air course. (1) In addition to the requirements of paragraph (d) of this section, any AMS used to monitor belt air courses under § 75.350(b) must have approved sensors to...

  9. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases, Fiscal Year 2002 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.

    2003-08-28

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including atmospheric concentrations and atmospheric emissions of carbon dioxide (CO{sub 2}) and other radiatively active gases; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  10. A versatile integrating sphere based photoacoustic sensor for trace gas monitoring

    CERN Document Server

    Lassen, Mikael; Brusch, Anders; Petersen, Jan C

    2014-01-01

    A compact versatile photoacoustic (PA) sensor for trace gas detection is reported. The sensor is based on an integrating sphere as the PA absorption cell with an organ pipe tube attached to increase the sensitivity of the PA sensor. The versatility and enhancement of the sensitivity of the PA signal is investigated by monitoring specific ro-vibrational lines of CO2 in the 2 mm wavelength region and of NO2 in the 405 nm region. The measured enhancement factor of the PA signal exceeds 1200, which is due to the acoustic resonance of the tube and the absorption enhancement of the integrating sphere relatively to a non-resonant single pass cell. It is observed that the background absorption signals are highly attenuated due to the thermal conduction and diffusion effects in the polytetrafluoroethylene cell walls. This demonstrates that careful choice of cell wall materials can be highly beneficial to the sensitivity of the PA sensor. These properties makes the sensor suitable for various practical sensor applicati...

  11. Asbestos real-time monitor in an atmospheric environment.

    Science.gov (United States)

    Hiromoto, N; Hashiguchi, K; Ito, S; Itabe, T

    1997-12-20

    The concentration of asbestos fiber aerosols can be monitored by measuring the polarization of laser light scattered by asbestos fibers. The principle of discriminating asbestos fibers is based on the theoretically expected difference in polarization at a scattering angle of 170 deg between cylindrical and spherical airborne particles; polarization at this scattering angle should be positive for cylindrical particles such as asbestos fibers but should be negative or close to zero for spherical mineral particles. We constructed an experimental asbestos real-time monitor that uses a strong electric field to align the airborne particles, that uses lasers having linear polarization with an equal amplitude in parallel and perpendicular components to the aligned long axis of particles, and that simultaneously detects the two components of the linear polarization of light scattered at 170 deg, i.e., close to the backscatter. Experiments that were performed to detect the light scattered from airborne standard asbestos fibers showed that the measured polarization fits theoretical prediction. The concentrations of airborne asbestos fibers obtained by the asbestos real-time monitor were consistent with those estimated by the standard phase contrast microscope method.

  12. AtmoHEAD 2013 workshop / Atmospheric Monitoring for High-Energy Astroparticle Detectors

    CERN Document Server

    Bernlöhr, K; Blanch, O; Bourgeat, M; Bruno, P; Buscemi, M; Cassardo, C; Chadwick, P M; Chalme-Calvet, R; Chouza, F; Cilmo, M; Coco, M; Colombi, J; Compin, M; Daniel, M K; Reyes, R De Los; Ebr, J; D'Elia, R; Deil, C; Etchegoyen, A; Doro, M; Ferrarese, S; Fiorini, M; Font, LL; Garrido, D; Gast, H; Gaug, M; Gonzales, F; Grillo, A; Guarino, F; Hahn, J; Hrabovsky, M; Kosack, K; Krüger, P; La Rosa, G; Leto, G; Lo, Y T E; López-Oramas, A; Louedec, K; Maccarone, M C; Mandat, D; Marandon, V; Martinetti, E; Martinez, M; de Naurois, M; Neronov, A; Nolan, S J; Otero, L; Palatka, M; Pallotta, J; Pech, M; Puhlhofer, G; Prouza, M; Quel, E; Raul, D; Ristori, P; Frias, M D Rodriguez; Rivoire, S; Rulten, C B; Schovanek, P; Segreto, A; Sottile, G; Stringhetti, L; Tavernet, J -P; Tonachini, A S; Toscano, S; Travnicek, P; Valore, L; Vasileiadis, G; Vincent, S; Wada, S; Wiencke, L; Will, M

    2014-01-01

    A 3-day international workshop on atmospheric monitoring and calibration for high-energy astroparticle detectors, with a view towards next-generation facilities. The atmosphere is an integral component of many high-energy astroparticle detectors. Imaging atmospheric Cherenkov telescopes and cosmic-ray extensive air shower detectors are the two instruments driving the rapidly evolving fields of very-high- and ultra-high-energy astrophysics. In these instruments, the atmosphere is used as a giant calorimeter where cosmic rays and gamma rays deposit their energy and initiate EASs; it is also the medium through which the resulting Cherenkov light propagates. Uncertainties in real-time atmospheric conditions and in the fixed atmospheric models typically dominate all other systematic errors. With the improved sensitivity of upgraded IACTs such as H.E.S.S.-II and MAGIC-II and future facilities like the Cherenkov Telescope Array (CTA) and JEM-EUSO, statistical uncertainties are expected to be significantly reduced, l...

  13. Study on On-line Trace Analysis Technique for SG Tube Leakage Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seban; Park, Jongsuk; Kim, Seungil; Jo, Youngsoo; Kang, Dukwon [HaJI Co. Ltd., Radiation Eng. Center, Shihung (Korea, Republic of)

    2014-05-15

    NPPs steam generator leakage monitoring method is mainly adopted in the world. Since this method is using nuclear fission product of certain radionuclides ({sup 16}N, {sup 3}H, Xe, etc.), it is only available when the reactor power is more than 20%. Therefore, it requires alternative techniques of real-time leakage monitoring under a variety of operation conditions such as start-up, abnormal environment of NPPs, etc. Boron which exists mostly nonionic particle state has been weakly ionized, revealing the lowest anionic tendency in aqueous phase (SO{sub 4}{sup 2-}>Cl{sup -}>F{sup -}>SiO{sub 2}{sup -}>HBO{sub 3}{sup -}). In general, B has been titrated with a NaOH solution into a new compound forming a strong alkaline anion after being dissociated with addition of a polyhydric alcohol. And that has been also measured amplified conductivity that reacting directly polyhydric alcohol by conductivity detector. GE (General Electric Company) has applied monitoring equipment of ultrapure water production by using mannitol reagent as polyhydric alcohol, which is detected less than 20 ppb of boron in the semiconductor company. However, the separation of boron among the secondary water system has been regarded as a critical issue because it contains a lot of impurities and particulate materials which are N{sub 2}H{sub 4}, NH{sub 3}, ETA and component of the iron in the system. This study is a follow-up study concerning the separation of boron peak presented at the 2013 Korean Nuclear Society. This study indicates the possibility of analysis of trace-level boron. The study investigated the separation of boron peak with anion through 3-steps mode. In previous studies, the problem of peaks overlap has been solved through the rinse process completely removing the interfering ions presented on the line. The combination of mannitol and MSA was dissociated from the strong compound between boron and a chelating type resin in the CB column. In particular, the CB column will be able to

  14. Ratios among atmospheric trace gases together with winds imply exploitable information for bird navigation: a model elucidating experimental results

    Science.gov (United States)

    Wallraff, H. G.

    2013-11-01

    A model of avian goal-oriented navigation is described that is based on two empirical findings building a bridge from ornithology to atmospheric chemistry. (1) To orient their courses homeward from distant unfamiliar areas, homing pigeons require long-term exposure to undisturbed winds at the home site and olfactory access to the environmental air at home and abroad. (2) Above Germany, ratios among some atmospheric trace gases vary along differently oriented spatial gradients as well as depending on wind direction. The model emulates finding (1) by utilising the analysed air samples on which finding (2) is based. Starting with an available set of 46 omnipresent compounds, virtual pigeons determine the profile of relative weights among them at each of 96 sites regularly distributed around a central home site within a radius of 200 km and compare this profile with corresponding profiles determined at home under varying wind conditions. Referring to particular similarities and dissimilarities depending on home-wind direction, they try to estimate, at each site, the compass direction they should fly in order to approach home. To make the model work, an iterative algorithm imitates evolution by modifying sensitivity to the individual compounds stepwise at random. In the course of thousands of trial-and-error steps it gradually improves homeward orientation by selecting smaller sets of most useful and optimally weighted substances from whose proportional configurations at home and abroad it finally derives navigational performances similar to those accomplished by real pigeons. It is concluded that the dynamic chemical atmosphere most likely contains sufficient spatial information for home-finding over hundreds of kilometres of unfamiliar terrain. The underlying chemo-atmospheric processes remain to be clarified.

  15. Atmospheric dry deposition of trace elements measured around the urban and industrially impacted NY-NJ harbor

    Science.gov (United States)

    Yi, Seung-Muk; Totten, Lisa A.; Thota, Sathyapriya; Yan, Shu; Offenberg, John H.; Eisenreich, Steven J.; Graney, Joseph; Holsen, Thomas M.

    Long-term direct trace metal dry deposition measurements were made during 2001 and 2002 at two sites near the NY/NJ Harbor Estuary in New Jersey: Jersey City (JC) and New Brunswick (NB). In addition intensive dry deposition and atmospheric size distribution (ASD) measurements were made between September 2001 and June 2002. Dry deposition samples were obtained using modified MIC-B wet deposition samplers which deployed knife-edge surrogate surfaces during dry periods. ASDs were measured with micro-orifice uniform deposit impactors (MOUDI) and coarse particle rotary impactors (CPRI). The fluxes of trace metals were found to be highest at the JC site and lowest at the NB site. The dry deposition fluxes ranged from 0.030 (Cd) to 3800 (Al) μg m -2 d -1 and 0.14 (Cd) to 8100 (Al) μg m -2 d -1at NB and JC sites, respectively. Metals of crustal origin were found mostly in the coarse particle fraction and anthropogenic metals were found mostly in the fine particle fraction. For the intensive experiments, overall dry deposition velocities of several trace metals were determined by dividing measured fluxes by measured concentrations in different particle size ranges. For most of the elements, the flux was highly correlated with PM 10 and coarse particle concentrations. The overall dry deposition velocities of crustal elements (Al and Mg) varied from 3.7 to 8.7 cm s -1 with correlation coefficients ranging from 0.50 to 0.84. The best-fit dry deposition velocities for anthropogenic elements (Cr, Mn, Zn, and Pb; Cu, Mo, and Ba; V and Ni) varied more than those for crustal elements (0.52-25 vs. 3.7-8.7 cm s -1). The dry deposition velocities for most elements obtained using three size ranges were statistically significant with R2 values ranging from 0.37 to 0.84 except for V and Ni (0.12).

  16. Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: FY 1993 activities

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Stoss, F.W. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center]|[Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment, and Resources Center

    1994-01-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provide technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC (including World Data Center-A for Atmospheric Trace Gases) during the period October 1, 1992, to September 30, 1993. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of NDPS, CMPS, technical reports, newsletters, fact sheets, specialty publications, and reprints are provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also presented.

  17. Atmospheric Fossil Fuel CO2 Tracing By 14C In Some Chinese Cities

    Science.gov (United States)

    Zhou, W.; Niu, Z.; Zhu, Y., Sr.

    2016-12-01

    CO2 plays an important role in global climate as a primary greenhouse gas in the atmosphere. Moreover, it has been shown that more than 70% of global fossil fuel CO2 (CO2ff) emissions are concentrated in urban areas (Duren and Miller, 2012). Our study focuses on atmospheric CO2ff concentrations in 15 Chinese cities using accelerator mass spectrometer (AMS) to measure 14C. Our objectives are: (1) to document atmospheric CO2ff concentrations in a variety of urban environments, (2) to differentiate the spatial-temporal variations in CO2ff among these cities, and (3) to ascertain the factors that control the observed variations. For about two years (winter 2014 to winter 2016), the CO2ff concentrations we observed from all sites varied from 5.1±4.5 ppm to 65.8±39.0 ppm. We observed that inland cities display much higher CO2ff concentrations and overall temporal variations than coastal cities in winter, and that northern cities have higher CO2ff concentrations than those of southern cities in winter. For inland cities relatively high CO2ff values are observed in winter and low values in summer; while seasonal variations are not distinct in the coastal cities. No significant (p > 0.05) differences in CO2ff values are found between weekdays and weekends as was shown previously in Xi'an (Zhou et al., 2014). Diurnal CO2ff variations are plainly evident, with high values between midnight and 4:00 am, and during morning and afternoon rush hours (Niu et al., 2016). The high CO2ff concentrations in northern inland cities in winter results mainly from the substantial consumption of fossil fuels for heating. The high CO2ff concentrations seen in diurnal measurements result mainly from variations in atmospheric dispersion, and from vehicle emissions related to traffic flows. The inter-annual variations in CO2ff in cities could provide a useful reference for local governments to develop policy around the effect of energy conservation and emission reduction strategies.

  18. Development of a space-borne spectrometer to monitor atmospheric ozone.

    Science.gov (United States)

    Dobrolenskiy, Yury S; Ionov, Dmitry V; Korablev, Oleg I; Fedorova, Anna A; Zherebtsov, Evgeny A; Shatalov, Andrey E; Mantsevich, Sergey N; Belyaev, Denis A; Vyazovetskiy, Nikita A; Moiseev, Pavel P; Tchikov, Konstantin N; Krasavtsev, Valery M; Savushkin, Alexander V; Rumyantsev, Dmitry M; Kananykhin, Igor V; Viktorov, Alexey I; Kozyura, Alexey V; Moryakin, Sergey A; Poberovskii, Anatoly V

    2015-04-10

    A new compact satellite spectrometer dedicated to monitoring terrestrial atmospheric ozone (ozonometer) is in preparation for the Russian Geophysics Program. Four instruments at four satellites (Ionosphere) are intended to monitor the total ozone content by measuring spectra of scattered solar radiation in nadir. The spectrometer is based on the Rowland scheme with a concave holographic diffraction grating. It covers the near UV and visible range of the spectrum, 300-500 nm, with a spectral resolution of ∼0.3  nm. At present, a qualification model has been manufactured and tested. We introduce the description of the instrument and the results of laboratory and ground-based atmospheric calibrations. The ozone amount retrieved from atmospheric measurements using the differential optical absorption spectroscopy (DOAS) method is in good agreement with that measured by the collocated Brewer spectrophotometer and ozone monitoring instrument on board the Aura satellite.

  19. Impact of acid atmospheric deposition on soils: Field monitoring and aluminium chemistry.

    OpenAIRE

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions were obtained from intensive monitoring programmes conducted at a number of sites in northwestern Europe and North-America. Specific hypotheses were tested in laboratory experiments.Atmospheric acid inputs do...

  20. Wmo's activities on background atmospheric pollution and integrated monitoring and research.

    Science.gov (United States)

    Köhler, A

    1988-01-01

    As early as 1968, WMO decided to start a programme on atmospheric pollution. Consequently, a Panel of Experts on Meteorological Aspects of Atmospheric Pollution was established. It was also decided to operate a network of background air pollution monitoring stations. With increasing public concern on environmental pollution impacts, a growing number of WMO Members joined the programme. The Environmental Pollution Monitoring and Research Programme, as well as the World Climate Programme launched in the late seventies, will provide information on a possible influence of pollution on climate.When the network of background ait pollution monitoring started, some Members had already proposed to carry out multimedia monitoring at suitable stations. Later on, it became obvious that more information is required on levels and trends of pollutants in media interacting with the atmosphere and a project on integrated monitoring was established, the purpose of which is to define the objectives and uses of integrated monitoring and to establish procedures for routine standardized integrated monitoring of the of the environment.Pilot projects presently being carried out in a few Member countries are meant to provide most of the information required for the implementation of global background integrated environmental monitorting.

  1. Development of Mid-Infrared Lasers for the Measurement of Trace Atmospheric Gases

    Science.gov (United States)

    Hannun, R. A.; Witinski, M. F.; Forouhar, S.; Anderson, J.

    2012-12-01

    In order to thoroughly characterize atmospheric composition at all altitudes, an unprecedented scientific and technical effort is needed. Essential to the advancement of both satellite and in situ science are improvements in continuous wave (CW) and high-power pulsed laser systems in the infrared spectral region integrated with miniaturized electronic and optical components, allowing for the deployment of single mode light sources aboard satellite and UAV platforms. Sources in the the spectral region from 2.8 μm to 3.5 μm are crucial to the sensitive and precise quantification of several atmospherically relevant species, including: OH, H2O, H218O, HDO, CH4, 13CH4, CO2, CH2O, and C2H6, all of which present strong fundamental vibrational absorptions in this mid-infrared range. Currently, however, a massive technology gap exists in both CW and pulsed laser systems within this spectral window. Recent developments include the advancement of CW tunable diode technology using new solid state materials to improve electron hole localization, and the initial integration of these lasers into miniaturized optoelectronic systems ideal for in situ deployment. In addition, high-power pulsed light sources have been produced using optical parametric generation (OPG). A single-frequency Nd:YAG pumps a nonlinear crystal, injection seeded with a diode laser to enhance efficiency and reduce the bandwidth of the output radiation, creating a light source ideal for LIDAR and other remote sensing applications.

  2. Atmospheric trace elements at Enewetak Atoll. I Concentrations, sources, and temporal variability

    Science.gov (United States)

    Duce, R. A.; Arimoto, R.; Ray, B. J.; Unni, C. K.; Harder, P. J.

    1983-06-01

    The concentrations of 29 elements in aerosol particles collected in 1979 during Searex (Sea/Air Exchange) experiments at Enewetak Atoll (11 deg N, 162 deg E), in the tropical North Pacific, are measured. The concentrations of Na, Mg, Cl, K, Ca, and Br are dominated by marine sources; the elements have similar mass-size distributions, and their atmospheric concentration ratios (normalized to Na) are similar to the corresponding ratios in bulk seawater. Atmospheric inputs of aluminosilicate particles from crustal weathering are found to control the aerosol particle concentration of Al, Sc, Mn, Fe, Co, Cs, Ba, Ce, Eu, Hf, Ta, and Th. The mean concentrations of these crustally derived elements decrease by an average of 91 percent (+ or - 4.1 percent) from the local dry season (April to May) to the wet season (July to August); this general decrease is attributed to the abatement of dust storms in Asia. At times, the influx of dust from Asia dominates the concentrations of V, Cr, Rb, and Cu in aerosol particles, but when dust concentrations decrease, noncrustal sources for these elements manifest themselves.

  3. Triazines based Molecular Imprinted Polymers: As a novel technology for occupational trace pollutants monitoring

    Directory of Open Access Journals (Sweden)

    Alireza Koohpaei

    2015-06-01

    Full Text Available Background and Objective: Biological adsorbents under undesirable conditions have not suitable performance. Based on this problem, the using of the molecular imprinted polymers (MIPs have been proposed. This study was conducted to adsorption of trace triazinic pesticides with synthesis and optimization of molecular imprinted polymers as a novel solid phase extraction (MISPE. Methods: In this study, atrazine and ametrin polymer and blank were synthesized by central composite design method and optimized based on the amount of functional monomer, template, cross linker, initiator, solvents and polymerization temperature. Then the appropriate cartridge was selected and SPE procedure based on the concentration, sample volume, flow rate and sample pH were optimized with response surface methodology. Concentration factor and as well as reusability of the cartridges were examined finally. Results: Based on the obtained results, for ametryn and atrazine, optimized temperature was calculated equals to 40.86 °c, 6.41 and 5.03 ml for solvent, 27.070 and 21.32 for crosslinker, 2.03 and 2.27 mmol of initiator, 5.41 and 4.73 mmol for monomer and 1.204 and 0.811 for template respectively. Based on the optimization results of the molecular imprinted solid phase extraction, it was revealed that there are recovery rate over 90 percent for the drinking water and urine as spike. Conclusion: The results showed that central composite design can be used as a general tool for polymer synthesis and optimization of molecular imprinted solid phase extraction. Polymers according to theirs high-performance and selectivity also can assume an important role in monitoring the work environment.

  4. Urban and industrial contribution to trace elements in the atmosphere as measured in holm oak bark

    Science.gov (United States)

    Drava, Giuliana; Brignole, Daniele; Giordani, Paolo; Minganti, Vincenzo

    2016-11-01

    The concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn were measured by ICP-OES in samples of bark of the holm oak (Quercus ilex L.) collected from trees in different urban environments (residential and mixed residential/industrial). The use of tree bark as a bioindicator makes it easy to create maps that can provide detailed data on the levels and on the spatial distribution of each trace element. For most of the elements considered (As, Co, Fe, Mn, Ni, V and Zn), the concentrations in the industrial sites are about twice (from 1.9 to 2.8 times higher) of those in the residential area. Arsenic, Fe and Zn show the highest concentrations near a steel plant (operational until 2005), but for the other elements it is not possible to identify any localized source, as evident from the maps. In areas where urban pollution is summed up by the impact of industrial activities, the population is exposed to significantly higher amounts of some metals than people living in residential areas.

  5. Simulation of trace metals and PAH atmospheric pollution over Greater Paris: Concentrations and deposition on urban surfaces

    Science.gov (United States)

    Thouron, L.; Seigneur, C.; Kim, Y.; Legorgeu, C.; Roustan, Y.; Bruge, B.

    2017-10-01

    Urban areas can be subject not only to poor air quality, but also to contamination of other environmental media by air pollutants. Here, we address the potential transfer of selected air pollutants (two metals and three PAH) to urban surfaces. To that end, we simulate meteorology and air pollution from Europe to a Paris suburban neighborhood, using a four-level one-way nesting approach. The meteorological and air quality simulations use urban canopy sub-models in order to better represent the effect of the urban morphology on the air flow, atmospheric dispersion, and deposition of air pollutants to urban surfaces. This modeling approach allows us to distinguish air pollutant deposition among various urban surfaces (roofs, roads, and walls). Meteorological model performance is satisfactory, showing improved results compared to earlier simulations, although precipitation amounts are underestimated. Concentration simulation results are also satisfactory for both metals, with a fractional bias urban surfaces are mostly uniform for PAH, which are entirely present in fine particles. However, there is significantly less wall deposition compared to deposition to roofs and roads for trace metals, due to their coarse fraction. Meteorology, particle size distribution, and urban morphology are all important factors affecting air pollutant deposition. Future work should focus on the collection of data suitable to evaluate the performance of atmospheric models for both wet and dry deposition with fine spatial resolution.

  6. Atmospheric Chemistry Research in New EU Countries. A survey on atmospheric chemistry research and monitoring of air pollution in some new EU Member States and Candidate Countries

    Energy Technology Data Exchange (ETDEWEB)

    Batchvarova, E.; Spassova, T.; Valkov, N.; Iordanova, L. [Department of Composition of the Atmosphere and Hydrosphere, National IInstitute of Meteorology and Hydrology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Hjorth, J. (ed.) [Institute for Environment and Sustainability, Joint Research Centre JRC, Ispra (Italy)

    2005-07-01

    Historically some of the new EU Member States and the Candidate countries experienced high levels of pollution in the past. Enhanced management measures were and are needed to improve the air quality. The present survey on the ongoing air chemistry research is in support to such measures and the incorporation of the EU environmental legislation in the air quality management of these countries. The aim of the survey is to list the current research activities on atmospheric chemistry in these countries, as well as groups and institutions involved in it. The air chemistry plays essential part of air quality and climate change modelling, energy industry planning and health risk assessments. In addition, the air quality monitoring networks and management are briefly discussed, as well as some information on the air pollution modelling research. The ongoing research (field, laboratory and modelling) in the field of chemical transformation of trace compounds in the atmosphere is discussed here and parallels are drown among 10 of the new EU Member States and Candidate Countries, namely Bulgaria, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, the Slovak Republic and Slovenia. Laboratory studies traditionally emphasize on rate and equilibrium processes. Field studies are based on aircraft and surface measurements of reaction chemistry, advective influences on the chemical composition of the atmosphere, and air-surface exchange processes. Both types experimental studies on atmospheric chemistry are demanding concerning equipment and resources. Therefore, most of the studies in the field are coming from international projects, EU, ESF or NATO funded. Modelling efforts address both chemistry and dynamics on regional and global scales. The analysis of research activities in those fields is made with regards of the current EU practice in the field and the historical frames in the ten countries of interest. The unique traditions and achievements in

  7. Temporal and spatial variation of trace elements in atmospheric deposition around the industrial area of Puchuncaví-Ventanas (Chile) and its influence on exceedances of lead and cadmium critical loads in soils.

    Science.gov (United States)

    Rueda-Holgado, F; Calvo-Blázquez, L; Cereceda-Balic, F; Pinilla-Gil, E

    2016-02-01

    Fractionation of elemental contents in atmospheric samples is useful to evaluate pollution levels for risk assessment and pollution sources assignment. We present here the main results of long-term characterization of atmospheric deposition by using a recently developed atmospheric elemental fractionation sampler (AEFS) for major and trace elements monitoring around an important industrial complex located in Puchuncaví region (Chile). Atmospheric deposition samples were collected during two sampling campaigns (2010 and 2011) at four sampling locations: La Greda (LG), Los Maitenes (LM), Puchuncaví (PU) and Valle Alegre (VA). Sample digestion and ICP-MS gave elements deposition values (Al, As, Ba, Cd, Co, Cu, Fe, K, Mn, Pb, Sb, Ti, V and Zn) in the insoluble fraction of the total atmospheric deposition. Results showed that LG location, the closest location to the industrial complex, was the more polluted sampling site having the highest values for the analyzed elements. PU and LM were the next more polluted and, finally, the lowest elements concentrations were registered at VA. The application of Principal Component Analysis and Cluster Analysis identified industrial, traffic and mineral-crustal factors. We found critical loads exceedances for Pb at all sampling locations in the area affected by the industrial emissions, more significant in LG close to the industrial complex, with a trend to decrease in 2011, whereas no exceedances due to atmospheric deposition were detected for Cd.

  8. Miniature Tunable Laser Spectrometers for Quantifying Atmospheric Trace Gases, Water Resources, Earth Back-Contamination, and In Situ Resource Utilization

    Science.gov (United States)

    Webster, Chris; Blacksberg, Jordana; Flesch, Greg; Keymeulen, Didier; Christensen, Lance; Forouhar, Siamak

    2012-01-01

    The Tunable Laser Spectrometers (TLS) technique has seen wide applicability in gas measurement and analysis for atmospheric analysis, industrial, commercial and health monitoring and space applications. In Earth science using balloons and aircraft over 2 decades, several groups (JPL, NASA Langley & Ames, NOAA, Harvard U., etc) have demonstrated the technique for ozone hole studies, lab kinetics measurements, cloud physics and transport, climate change in the ice record. The recent availability of high-power (mW) room temperature lasers (TDL, IC, QC) has enabled miniaturized, high-sensitivity spectrometers for industry and space (1) Mars, Titan, Venus, Saturn, Moon (2) Commercial isotope ratio spectrometers are replacing bulkier, complex isotope ratio mass spectrometers.

  9. A kinetic chemistry tagging technique and its application to modelling the stable isotopic composition of atmospheric trace gases

    Directory of Open Access Journals (Sweden)

    S. Gromov

    2010-02-01

    Full Text Available Isotope composition, in many cases, holds unique information on sources, chemical modification and sinks of atmospheric trace gases. Vital to the interpretation and use of an increasing number of isotope analyses is appropriate modelling. However, the exact implementation of isotopic information is a challenge, and often studies use simplifications which limit their applicability. Here we confer a thorough isotopic extension to MECCA, a comprehensive kinetic chemistry sub-model. To this end, we devise a generic tagging technique for the kinetic chemistry mechanisms implemented as the sub-submodel MECCA-TAG. The technique constitutes a diagnostic tool that can benefit the investigation of various aspects of kinetic chemistry schemes; at the same time, the designed numerical optimisation reduces the computational effort while keeping important details unaffected. We further focus specifically on the modelling of stable isotopic composition, including the required extensions of the approach. The results of MECCA-TAG are evaluated against the reference sub-submodel MECCA-DBL, which is implicitly full-detailed, but necessarily is sub-optimal in practical applications due to its high computational demands. Furthermore, we evaluate the elaborate carbon and oxygen isotopic mechanism by simulating the multi-isotope composition of CO and other trace gases in the CAABA/MECCA box-model. The mechanism realistically simulates the oxygen isotope composition of key species resulting from the interchange with ozone and main atmospheric reservoirs, as well as the carbon isotope signature transfer. The model adequately reproduces the isotope chemistry features for CO under the limitation of the modelling domain. In particular, the mass-independently fractionated (MIF composition of CO due to reactions of ozone with unsaturated hydrocarbons (a source effect versus its intrinsic MIF enrichment induced in the removal reaction via oxidation by OH is assessed. As for

  10. Poster 6: Influence of traces elements in the organic chemistry of upper atmosphere of Titan

    Science.gov (United States)

    Mathe, Christophe; Carrasco, Nathalie; Trainer, Melissa G.; Gautier, Thomas; Gavilan, Lisseth; Dubois, David; Li, Xiang

    2016-06-01

    In the upper atmosphere of Titan, complex chemistry leads to the formation of organic aerosols. Since the work of Khare et al. in 1984, several experiments investigated the formation of Titan aerosols, so called tholins, in the laboratory. It has been suggested that nitrogen-containing compounds may contribute significantly to the aerosols formation process. In this study, we focused on the influence of pyridine, the simplest nitrogenous aromatic hydrocarbon, on the chemistry of Titan's atmosphere and on aerosol formation. To assess the effect of pyridine on aerosol formation chemistry, we used two different experimental setups : a capacitively coupled radio-frequency (electronic impact), and a VUV Deuterium lamp (photochemistry) in a collaboration between LATMOS (Guyancourt) and NASA-GSFC (Greenbelt), respectively. Aerosols produced with both setups were first analyzed using a FTIR-ATR (Fourier Transform Infrared spectroscopy - Attenuated Total Reflection) with a spectral range of 4000-800 cm-1 to characterize their optical properties. Next the samples were analysed using a Bruker Autoflex Speed MALDI mass spectrometer with a m/z range up to 2000 Da in order to infer their composition. Infrared spectroscopy analysis showed that tholins produced with a nitrogen-methane gas mixture (95:5) and nitrogenpyridine gas mixture (99:250ppm) present very similar spectra features. Tholins produced with a mixture of nitrogenmethane-pyridine (99:1:250ppm) do not present aliphatic CH2 or CH3 vibrational signatures. This could indicate a cyclic polymerization by a pyridine skeleton. Mass spectrometry is still in progress to confirm this.

  11. Sulfur Isotope of Epilithic Mosses to Trace Variation of Atmospheric Sulfur Sources

    Directory of Open Access Journals (Sweden)

    HU Fei-fei1,2;PAN Jia-yong1,3;ZHANG Liang1,2;XIE Shu-rong3;CHEN Yi-ping3;XIA Fei1,3

    2016-08-01

    Full Text Available 全文: PDF (5099 KB HTML (1 KB 输出: BibTeX | EndNote (RIS 摘要 为探讨石生苔藓硫同位素组成特征对区域性大气硫源的指示作用,连续两年采集鄱阳湖生态经济区内的石生苔藓样品,测定δ34S值;并结合已有的雨水、煤的硫同位素值等相关研究数据进行对比分析。样品δ34S值均偏正,平均为+4.9‰,取值范围为+1.9‰~+9.6‰;石生苔藓δ34S值与空气中SO2浓度呈负相关关系;南昌、抚州两市苔藓δ34S值的取值范围与其对应城市大气降水δ34S值的变化区间相接近;研究区内土壤相对富集重硫,且土壤中可溶性硫主要受大气硫沉降影响。结果表明,石生苔藓的硫同位素组成对区域性大气硫源具有指示意义,鄱阳湖生态经济区大气硫沉降的硫源主要来自人为成因硫和生物成因硫,可能还有远距离传输硫等其他硫源的影响。 服务 把本文推荐给朋友 加入我的书架 加入引用管理器 E-mail Alert RSS 作者相关文章 胡菲菲 潘家永 张良 谢淑容 陈益平 夏菲 关键词 : 石生苔藓, 硫同位素, 大气硫源 Abstract: The variation of atmospheric sulfur sources in Poyang Lake Eco-economic Region was explored by sulfur isotopes in epilithic mosses which collected from the research area during 2012 to 2013, and then compared it with the existing research δ34S values of rain and coal. The results showed that all of the δ34S values of epilithic mosses performed as positive value at a range of 1.9‰ to 9.6‰, the average was 4.9‰. It was found a significant negative correlation existed between the δ34S values of epilithic mosses (x and atmospheric SO2 concentration (y (y=-82.61x+7.63, R2=0.85. The δ34S values of epilithic mosses in Nanchang and Fuzhou were close to the δ34S values of its corresponding city’s atmospheric precipitation. The δ34S values of soil total sulfur were higher than that of epilithic mosses

  12. Heavy metals and trace elements in atmospheric fall-out: Their relationship with topsoil and wheat element composition

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, Gonzalo M.A., E-mail: gbermudez@com.uncor.edu [Instituto Multidisciplinario de Biologia Vegetal (IMBIV), CONICET (Argentina); Catedra de Quimica General, FCEFyN, Universidad Nacional de Cordoba, Avda. Velez Sarsfield 1611, Ciudad Universitaria (X5016 GCA), Cordoba (Argentina); Jasan, Raquel; Pla, Rita [Tecnicas Analiticas Nucleares, Comision Nacional de Energia Atomica (CAE), Presbitero Gonzalez y Aragon N Degree-Sign 15 (B1802AYA), Ezeiza (Argentina); Pignata, Maria L. [Instituto Multidisciplinario de Biologia Vegetal (IMBIV), CONICET (Argentina); Catedra de Quimica General, FCEFyN, Universidad Nacional de Cordoba, Avda. Velez Sarsfield 1611, Ciudad Universitaria (X5016 GCA), Cordoba (Argentina)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Metal and trace element deposition rates and concentrations in bulk samples. Black-Right-Pointing-Pointer Anthropogenic vs. natural sources were identified using enrichment factors and PCA. Black-Right-Pointing-Pointer Anthropogenic sources for Ca, Cd, Cu, Fe, Mn, Ni, Pb, Sb, U, Zn and lanthanides. Black-Right-Pointing-Pointer Main sources were a cement plant, chemical-mechanical industries, cities and mining. Black-Right-Pointing-Pointer Metals in wheat grain were predicted by soil and bulk deposition composition. - Abstract: The objectives of this study were to determine the average concentrations and deposition rates of 28 elements in atmospheric bulk deposition and to elucidate associations among topsoil, bulk deposition and wheat element composition. The fluxes of arsenic (As), copper (Cu), lead (Pb) and zinc (Zn) deposition in Cordoba were higher than in other agro-ecosystems, which reflects both natural (geochemistry and topsoil removal) and anthropogenic sources. High lanthanide, uranium (U) and thorium (Th) concentrations revealed the impact of an open cast uranium mine. The highest enrichment factors (EF) were those of Cu, Pb, Zn and nickel (Ni), with calcium (Ca) being the most prominent in the surroundings of a cement plant. Industries and the transport of airborne urban pollutants were the main anthropogenic sources for Ca, Cu, Ni, Pb, Zn, cadmium (Cd), iron (Fe), manganese (Mn) and antimony (Sb). The concentrations of metals in wheat grain were predicted using the topsoil and atmospheric fall-out composition with R{sup 2} = 0.90, with the latter being the best explanatory variable. The present study highlights the potential health hazards of wheat consumption (Environmental Protection Agency) by the assessment of heavy metals in bulk atmospheric deposition.

  13. Using Unmanned Air Systems to Monitor Methane in the Atmosphere

    Science.gov (United States)

    Clow, Jacqueline; Smith, Jeremy Christopher

    2016-01-01

    Methane is likely to be an important contributor to global warming, and our current knowledge of its sources, distributions, and transport is insufficient. It is estimated that there could be from 7.5 to 400 billion tons carbon-equivalent of methane in the arctic region, a broad range that is indicative of the uncertainty within the Earth Science community. Unmanned Air Systems (UASs) are often used for combat or surveillance by the military, but they also have been used for Earth Science field missions. In this study, we will analyze the utility of the NASA Global Hawk and the Aurora Flight Sciences Orion UASs compared to the manned DC-8 aircraft for conducting a methane monitoring mission. The mission will focus on the measurement of methane along the boundaries of Arctic permafrost thaw and melting glaciers. The use of Long Endurance UAS brings a new range of possibilities including the ability to obtain long- term and persistent observations and to significantly augment methane measurements/retrievals collected by satellite. Furthermore, we discuss the future of long endurance UAS and their potential for science applications in the next twenty to twenty-five years.

  14. Monitoring trace metals in urban aerosols from Buenos Aires city. Determination by plasma-based techniques.

    Science.gov (United States)

    Smichowski, Patricia; Gómez, Dario R; Dawidowski, Laura E; Giné, María Fernanda; Bellato, Ana Claudia Sánchez; Reich, Silvia L

    2004-04-01

    A study was undertaken, within the framework of a 3 years national project, to assess the content of 13 elements in airborne particulate matter collected in representative zones of the metropolitan area of Buenos Aires. The sampling strategy followed consisted in collecting simultaneously 67 samples of PM10 particulate matter in 9 sampling sites covering an area of about 30 km2 during one week. The collection was performed on ash-free fibre-glass filters using high volume samplers. A combination of aqua regia and perchloric acid was used for leaching metals from filters. Key elements, namely Al, Ca, Cu, Fe, Mn, Mo, Ni, Pb, S, Sb, Sn, Zn and Zr, were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) at micro g g(-1) and ng g(-1) levels. Analyte concentration varied from 130 ng g(-1)(Mo) to over 30%(Ca). Multivariate statistical analysis was performed on the data set including the measured elemental compositions for the monitored period. The atmospheric concentration found for Pb confirms the decreasing levels of this element since the introduction of unleaded gasoline in 1995: 88 ng m(-3)(2001) gas imply low emissions of this element from combustion activities. To the best of our knowledge, S concentrations are reported for the first time for this city.

  15. Tracing changes in atmospheric moisture supply to the drying Southwest China

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2017-09-01

    Full Text Available Precipitation over Southwest China (SWC significantly decreased during 1979–2013. The months from July to September (JAS contributed the most to the decrease in precipitation. By tracing moisture sources of JAS precipitation over the SWC region, it is found that most moisture originates in regions from the northern Indian Ocean to SWC and from South China Sea to SWC. The major moisture contributing area is divided into an extended west region, SWC, and an extended east region. The extended west region is mainly influenced by the South Asian summer monsoon (SASM and the westerlies, while the extended east region is mainly influenced by the East Asian summer monsoon (EASM. The extended west, SWC, and extended east regions contribute 48.2, 15.5, and 24.5 % of the moisture for the SWC precipitation, respectively. Moisture supply from the extended west region decreased at a rate of −7.9 mm month−1 decade−1, whereas that from the extended east increased at a rate of 1.4 mm month−1 decade−1, resulting in an overall decrease in moisture supply. Further analysis reveals that the decline of JAS precipitation is mainly caused by change in the seasonal-mean component rather than the transient component of the moisture transport over the SWC region. In addition, the dynamic processes (i.e., changes in wind rather than the thermodynamic processes (i.e., changes in specific humidity are dominant in affecting the seasonal-mean moisture transport. A prevailing easterly anomaly of moisture transport that weakened moisture supply from the Indian Ocean is to a large extent responsible for the precipitation decrease over the SWC region.

  16. Monitoring of the atmospheric ozone layer and natural ultraviolet radiation: Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Svendby, T.M.; Myhre, C.L.; Stebel, K.; Edvardsen, K; Orsolini, Y.; Dahlback, A.

    2012-07-01

    This is an annual report describing the activities and main results of the monitoring programme: Monitoring of the atmospheric ozone layer and natural ultraviolet radiation for 2011. 2011 was a year with generally low ozone values above Norway. A clear decrease in the ozone layer above Norway during the period 1979-1997 stopped after 1998 and the ozone layer above Norway seems now to have stabilized.(Author)

  17. A Novel Miniaturised Infrared Imaging Spectrometer for the Measurement of Atmospheric Trace Gases

    Science.gov (United States)

    Mortimer, A. H.

    2012-04-01

    A novel, ultra-compact Static Imaging Fourier Transform Spectrometer, SIFTS, with no moving parts has been developed for the remote and in-situ detection of atmospheric gases. This technique has previously been demonstrated in the visible spectral region (400 to 1100nm) using a CCD detector. This paper the author presents the results of the infrared version of the SIFTS instrument, which uses an uncooled microbolometer detector array to measure infrared spectra (7 to 14μm) with a resolution of up 4 cm-1 and temporal resolution of 30Hz. The technique is based on a static optical configuration whereby light is split into two paths and made to recombine along a focal plane producing an interference pattern. The spectral information is returned using a detector array to digitally capture the interferogram which can then be processed into a spectrum by the application of a Fourier transform. The novel optical design has reduced the optics required to only 3 optical components and the detector array, to generate and measure the interferogram. The experimental performance of the SIFTS instrument has verified the theoretical models, which has shown that the spectral resolution is for the infrared instrument is 4cm-1. The Connes advantage, inherent to the Michelson spectrometer Fourier Transform Spectrometer (FTS), whereby the spectral wavelength accuracy is referenced to a stabilised laser has also been demonstrated in the SIFTS instrument. This has been implemented through the use of an expanded internal laser diode with Distributed Bragg Reflector (DFB) which acts as the calibration source used to maintain the wavelength stability of the SIFTS instrument. As there are no moving components, the instrument is compact, light and insensitive to mechanical vibration, additionally the speed of measurement is determined by the frame rate of the detector array. Thus, this instrument has a temporal advantage over common Michelson FTIR instruments. For example, this technique has

  18. Fourier Transform Infrared (FT-IR) Spectroscopy of Atmospheric Trace Gases HCl, NO and SO2

    Science.gov (United States)

    Haridass, C.; Aw-Musse, A.; Dowdye, E.; Bandyopadhyay, C.; Misra, P.; Okabe, H.

    1998-01-01

    Fourier Transform Infrared (FT-IR) spectral data have been recorded in the spectral region 400-4000/cm of hydrogen chloride and sulfur dioxide with I/cm resolution and of nitric oxide with 0.25 cm-i resolution, under quasi-static conditions, when the sample gas was passed through tubings of aluminum, copper, stainless steel and teflon. The absorbance was measured for the rotational lines of the fundamental bands of (1)H(35)Cl and (1)H(37)Cl for pressures in the range 100-1000 Torr and for the (14)N(16)O molecule in the range 100-300 Torr. The absorbance was also measured for individual rotational lines corresponding to the three modes of vibrations (upsilon(sub 1) - symmetric stretch, upsilon(sub 2) - symmetric bend, upsilon(sub 3) - anti-symmetric stretch) of the SO2 molecule in the pressure range 25-150 Torr. A graph of absorbance versus pressure was plotted for the observed rotational transitions of the three atmospherically significant molecules, and it was found that the absorbance was linearly proportional to the pressure range chosen, thereby validating Beer's law. The absorption cross-sections were determined from the graphical slopes for each rotational transition recorded for the HCl, NO and SO2 species. Qualitative and quantitative spectral changes in the FT-IR data will be discussed to identify and characterize various tubing materials with respect to their absorption features.

  19. Atmospheric trace metals in the snow layers deposited at the South Pole from 1928 to 1977

    Energy Technology Data Exchange (ETDEWEB)

    Boutron, C.

    1982-01-01

    Forty-seven successive dated snow samples, covering a 50 y continuous time sequence between 1928 and 1977 with a time resolution of approximately one sample per year, have been collected using stringent contamination-free techniques from a 10 m deep pit in the clean sector at the geographic South Pole, Antarctica. They have been analyzed for Na, Mg, K, Ca, Fe, Al, Mn, Pb, Cd, Cu, Zn and Ag in clean room conditions by flameless atomic absorption after preconcentration. For all the elements, the concentrations observed in the most recent snow layers are comparable to the ones in the 50 y old snow layers, except for Pb, for which an increase (x4) is observed after 1960 approximately. These data therefore confirm that the influence of global atmospheric pollution is probably still negligible in the remote areas of the southern hemisphere for the 12 measured elements except possibly for Pb after 1960. For this last element, however, an alternative explanation of the post-1960 increase could be that the post-1960 snow layers have been contaminated by operations at Amundsen Scott station, which has been occupied since 1957.

  20. Degradation and emission of carbonyl sulfide, an atmospheric trace gas, by fungi isolated from forest soil.

    Science.gov (United States)

    Masaki, Yoshihito; Ozawa, Rie; Kageyama, Kei; Katayama, Yoko

    2016-09-01

    Soil is thought to be important both as a source and a sink of carbonyl sulfide (COS) in the troposphere, but the mechanism affecting COS uptake, especially for fungi, remains uncertain. Fungal isolates that were collected randomly from forest soil showed COS-degrading ability at high frequencies: 38 out of 43 isolates grown on potato dextrose agar showed degradation of 30 ppmv COS within 24 h. Of these isolates, eight degraded 30 ppmv of COS to below the detection limit within 2 h. These isolates also showed an ability to degrade COS included in ambient air (around 500 pptv) and highly concentrated (12 500 ppmv) level, even though the latter is higher than the lethal level for mammals. COS-degrading activity was estimated by using ergosterol as a biomass index for fungi. Trichoderma sp. THIF08 had the highest COS-degrading activity of all the isolates. Interestingly, Umbelopsis/Mortierella spp. THIF09 and THIF13 were unable to degrade 30 ppmv COS within 24 h, and actually emitted COS during the cultivation in ambient air. These results indicate a fungal contribution to the flux of COS between the terrestrial and atmospheric environments.

  1. Interweaving monitoring activities and model development towards enhancing knowledge of the soil-plant-atmosphere continuum

    NARCIS (Netherlands)

    Romano, N.; Angulo-Jaramillo, M.; Javaux, M.; Ploeg, van der M.J.

    2012-01-01

    The guest editors summarize the advances and challenges associated with monitoring and modeling of the soil–plant–atmosphere continuum. They introduce the contributions in the special section, with an emphasis on the scale addressed in each study. The study of water pathways from the soil to the

  2. Interweaving monitoring activities and model development towards enhancing knowledge of the soil-plant-atmosphere continuum

    NARCIS (Netherlands)

    Romano, N.; Angulo-Jaramillo, M.; Javaux, M.; Ploeg, van der M.J.

    2012-01-01

    The guest editors summarize the advances and challenges associated with monitoring and modeling of the soil–plant–atmosphere continuum. They introduce the contributions in the special section, with an emphasis on the scale addressed in each study. The study of water pathways from the soil to the atm

  3. Strategies to monitor non-homogeneous atmospheres in sealed off panels in coal mines.

    CSIR Research Space (South Africa)

    Hardman, DR

    2001-06-01

    Full Text Available to thank SIMRAC for the opportunity to undertake this research, which could not have proceeded without their financial support of project COL 602. The section on current practice in Europe and North America was contributed by Dr D P Creedy. In doing... of international practice 7 2.1 Monitoring of atmospheres in inaccessible areas of 8 coal mines - practices in Europe and North America 2.1.1 Introduction 8 2.1.2 Monitoring techniques 9 2.1.3 Monitoring...

  4. Technical Note: A trace gas climatology derived from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer dataset

    Directory of Open Access Journals (Sweden)

    A. Jones

    2011-11-01

    Full Text Available The Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS aboard the Canadian satellite SCISAT (launched in August 2003 was designed to investigate the composition of the upper troposphere, stratosphere, and mesosphere. ACE-FTS utilizes solar occultation to measure temperature and pressure as well as vertical profiles of over thirty chemical species including O3, H2O, CH4, N2O, CO, NO, NO2, N2O5, HNO3, HCl, ClONO2, CCl3F, CCl2F2, and HF. Global coverage for each species is obtained approximately over a three month period and measurements are made with a vertical resolution of typically 3–4 km. A quality-controlled climatology has been created for each of these 14 baseline species, where individual profiles are averaged over the period of February 2004 to February 2009. Measurements used are from the ACE-FTS version 2.2 data set including updates for O3 and N2O5. The climatological fields are provided on a monthly and three-monthly basis (DJF, MAM, JJA, SON at 5 degree latitude and equivalent latitude spacing and on 28 pressure surfaces (26 of which are defined by the Stratospheric Processes And their Role in Climate (SPARC Chemistry Climate Model validation activity. The ACE-FTS climatological dataset is available through the ACE website.

  5. Miniaturized Sensors for Monitoring of Atmospheric Trace Gases using Multiple Deployment Platforms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Daylight Solutions proposes a miniaturized sensor package based on ECqcLTM and QEPAS technology that were independently developed by Daylight Solutions (San Diego,...

  6. Monitoring of the terrestrial atmospheric characteristics with using of stellar and solar photometry

    CERN Document Server

    Alekseeva, G A; Leiterer, U; Naebert, T; Novikov, V V; Pakhomov, V P

    2010-01-01

    On the basis of experience acquired at creation of the Pulkovo Spectrophotometric Catalog the method of investigation of a terrestrial atmospheric components (aerosols and water vapor) in night time are designed. For these purposes the small-sized photometers were created. Carried out in 1995-1999{\\Gamma}.{\\Gamma}. series of night and daily monitoring of the atmospheric condition in Pulkovo, in MGO by A.I.Voejkov., in Germany (complex experiments LITFASS 98 and LACE 98) confirmed suitability of devices, techniques of observations and their reduction designed in Pulkovo Observatory for the solution of geophysical and ecological problems. A final aim of this work - creation of small-sized automatic complexes (telescope + photometer), which would be rightful component of meteorological observatories. Such complexes will work without the help of the observer and would provide the daily monitoring of a terrestrial atmosphere.

  7. Satellite Remote Sensing Atmospheric Compositions and their Application in Air Quality Monitoring in China

    Science.gov (United States)

    Zhang, P.; Zhang, X. Y.; Bai, W. G.; Wang, W. H.; Huang, F. X.; Li, X. J.; Sun, L.; Wang, G.; Qi, J.; Qiu, H.; Zhang, Y.; van der A, R. J.; Mijling, B.

    2013-01-01

    This paper summarizes the achievements related to atmospheric compositions remote sensing from the bilateral cooperation under the framework of MOST-ESA Dragon Programme. The algorithms to retrieve Aerosol, ozone amount and profile, NO2, SO2, CH4, CO2, etc. have been developed since 2004. Such algorithms are used to process FY-3 series (Chinese second generation polar orbit satellites) observation and ground based FTIR observation. The results are validated with in-situ measurements. Aerosol, total ozone amount shows the very good consistent with the ground measurements. The temporal and spatial characteristics of the important atmospheric compositions, such as aerosol, O3, NO2, SO2, CH4, CO etc., have been analysed from satellite derived products. These works demonstrate the satellite’s capacity on atmospheric composition monitoring, as well as the possible application in the air quality monitoring and climate change research.

  8. Soil-atmosphere trace gas exchange from tropical oil palm plantations on peat

    Science.gov (United States)

    Arn Teh, Yit; Manning, Frances; Zin Zawawi, Norliyana; Hill, Timothy; Chocholek, Melanie; Khoon Kho, Lip

    2015-04-01

    Oil palm is the largest agricultural crop in the tropics, accounting for 13 % of all tropical land cover. Due to its large areal extent, oil palm cultivation may have important implications not only for terrestrial stores of C and N, but may also impact regional and global exchanges of material and energy, including fluxes of trace gases and water vapor. In particular, recent expansion of oil palm into tropical peatlands has raised concerns over enhanced soil C emissions from degradation of peat, and elevated N-gas fluxes linked to N fertilizer application. Here we report our preliminary findings on soil carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes from a long-term, multi-scale project investigating the C, N and greenhouse gas (GHG) dynamics of oil palm ecosystems established on peat soils in Sarawak, Malaysian Borneo. Flux chamber measurements indicate that soil CO2, CH4 and N2O fluxes averaged 20.0 ± 16.0 Mg CO2-C ha-1 yr-1, 37.4 ± 29.9 kg CH4-C ha-1 yr-1 and 4.7 ± 4.2 g N2O-N ha-1 yr-1, respectively. Soil CO2 fluxes were on par with other drained tropical peatlands; whereas CH4 fluxes exceeded observations from similar study sites elsewhere. Nitrous oxide fluxes were in a similar range to fluxes from other drained tropical peatlands, but lower than emissions from mineral-soil plantations by up to three orders of magnitude. Fluxes of soil CO2 and N2O were spatially stratified, and contingent upon the distribution of plants, deposited harvest residues, and soil moisture. Soil CO2 fluxes were most heavily influenced by the distribution of palms and their roots. On average, autotrophic (root) respiration accounted for approximately 78 % of total soil CO2 flux, and total soil respiration declined steeply away from palms; e.g. soil CO2 fluxes in the immediate 1 m radius around palms were up to 6 times greater than fluxes in inter-palm spaces due to higher densities of roots. Placement of harvest residues played an important - but secondary

  9. A kinetic chemistry tagging technique and its application to modelling the stable isotopic composition of atmospheric trace gases

    Directory of Open Access Journals (Sweden)

    S. Gromov

    2010-08-01

    Full Text Available Isotope composition, in many cases, holds unique information on the sources, chemical modification and sinks of atmospheric trace gases. Vital to the interpretation and use of an increasing number of isotope analyses is appropriate modelling. However, the exact implementation of isotopic information in chemistry-climate models is a challenge, and often studies use simplifications which limit their applicability. Here we implement a thorough isotopic extension in MECCA, a comprehensive kinetic chemistry sub-model. To this end, we devise a generic tagging technique for the kinetic chemistry mechanisms implemented as the sub-submodel MECCA-TAG. The technique is diagnostic and numerically efficient and supports the investigation of various aspects of kinetic chemistry schemes. We focus specifically on the application to the modelling of stable isotopic composition. The results of MECCA-TAG are evaluated against the reference sub-submodel MECCA-DBL, which is implicitly full-detailed, but computationally expensive and thus sub-optimal in practical applications. Furthermore, we evaluate the elaborate carbon and oxygen isotopic mechanism by simulating the multi-isotope composition of CO and other trace gases in the CAABA/MECCA box-model. The mechanism realistically simulates the oxygen isotope composition of key species, as well as the carbon isotope signature transfer. The model adequately reproduces the isotope chemistry features for CO, taking into account the limits of the modelling domain. In particular, the mass-independently fractionated (MIF composition of CO due to reactions of ozone with unsaturated hydrocarbons (a source effect versus its intrinsic MIF enrichment induced in the removal reaction via oxidation by OH is assessed. The simulated ozone source effect was up to +1‰ in Δ17O(CO. The versatile modelling framework we employ (the Modular Earth Submodel System, MESSy opens the way for implementation of the novel detailed

  10. Year-round retrievals of trace gases in the Arctic using the Extended-range Atmospheric Emitted Radiance Interferometer

    Directory of Open Access Journals (Sweden)

    Z. Mariani

    2013-06-01

    Full Text Available The Extended-range Atmospheric Emitted Radiance Interferometer (E-AERI was installed at the Polar Environment Atmospheric Research Laboratory (PEARL at Eureka, Nunavut, Canada in October 2008. Spectra from the E-AERI provide information about the radiative balance and budgets of trace gases in the Canadian high Arctic. Measurements are taken every 7 min year-round, including polar night when the solar-viewing spectrometers at PEARL are not operated. This allows E-AERI measurements to fill the gap in the PEARL dataset during the four months of polar night. Measurements were taken year-round in 2008–2009 at the PEARL Ridge Lab, which is 610 m a.s.l. (above sea-level, and from 2011 onwards at the Zero-Altitude PEARL Auxiliary Lab (0PAL, which is at sea level 15 km from the Ridge Lab. Total columns of O3, CO, CH4, and N2O have been retrieved using a modified version of the SFIT2 retrieval algorithm adapted for emission spectra. This provides the first ground-based nighttime measurements of these species at Eureka. Changes in the total columns driven by photochemistry and dynamics are observed. Analyses of E-AERI retrievals indicate accurate spectral fits (root-mean-square residuals consistent with noise and a 10–15% uncertainty in the total column, depending on the trace gas. O3 comparisons between the E-AERI and a Bruker IFS 125HR Fourier transform infrared (FTIR spectrometer, three Brewer spectrophotometers, two UV-visible ground-based spectrometers, and a System D'Analyse par Observations Zenithales (SAOZ at PEARL are made from 2008–2009 and for 2011. 125HR CO, CH4, and N2O columns are also compared with the E-AERI measurements. Mean relative differences between the E-AERI and the other spectrometers are 1–10% (14% is for the un-smoothed profiles, which are less than the E-AERI's total column uncertainties. The E-AERI O3 and CO measurements are well correlated with the other spectrometers (r > 0.92 with the 125HR. The 24 h diurnal cycle

  11. Are coarse particles unexpected common reservoirs for some atmospheric anthropogenic trace elements? A case study

    Science.gov (United States)

    Catinon, Mickaël; Ayrault, Sophie; Boudouma, Omar; Bordier, Louise; Agnello, Gregory; Reynaud, Stéphane; Tissut, Michel

    2013-08-01

    Without specific experimental equipment, it is very difficult to sample long-term atmospheric deposits on a pure state. That is why the composition of air-transferred solid material accumulated for 40 years in the 2 m-high walls, pierced with numerous holes of an outdoor public shelter, Grenoble city, France, was studied. An appropriate fractionation procedure allowed to obtain several fractions which were i) a sand fraction (8.3%) (fraction A), ii) a large mass of organic matter corresponding mostly to large fragments (>250 μm) of plant origin (66.7%) (fraction B) or to pollen fraction C (0.4%), iii) a slowly depositing organo-clay fraction (20%) (fractions D1 and D2) and iv) a solution mixed with non-settable particles (4.3%) (fraction E). The composition of each fraction was determined for 20 elements. The sand fraction showed very high concentrations specifically in Cu, Pb and Fe corresponding respectively to 81.5, 48.2 and 35.2% of the samples content in these elements. In contrast, Cd and Zn were mainly accumulated in the fraction B (67.5 and 62.2%, respectively). The scanning electron microscopy coupled to energy dispersive X-ray analysis (SEM-EDX) study of the fraction A showed the presence of large particles bearing Pb and Fe, particles rich in Cu and typical fly ashes originating mostly from iron industry. Most of these particles had a crystalline shape suggesting that they were formed after emission at a high temperature. The Pb-Fe-Cu deposit seen in fraction A likely originates from the neighbouring road surface contaminated by car traffic for several decades. The 206Pb/207Pb ratio (1.146 ± 0.004) showed that in the coarse sandy fraction A, Pb was represented at 65% by non-gasoline lead and 35% by "gasoline" lead emitted before 1999. The fraction A particles can only be transported on a limited distance by high magnitude events. They constitute a large reservoir for Cu and Pb and may play a major role in the long-term contamination of urban soils.

  12. The impact of atmospheric dust deposition and trace elements levels on the villages surrounding the former mining areas in a semi-arid environment (SE Spain)

    Science.gov (United States)

    Sánchez Bisquert, David; Matías Peñas Castejón, José; García Fernández, Gregorio

    2017-03-01

    It is understood that particulate matter in the atmosphere from metallic mining waste has adverse health effects on populations living nearby. Atmospheric deposition is a process connecting the mining wasteswith nearby ecosystems. Unfortunately, very limited information is available about atmospheric deposition surrounding rural metallic mining areas. This article will focus on the deposition from mining areas, combined with its impact on nearby rural built areas and populations. Particle samples were collected between June 2011 and March 2013. They were collected according to Spanish legislation in ten specialised dust collectors. They were located near populations close to a former Mediterranean mining area, plus a control, to assess the impact of mining waste on these villages. This article and its results have been made through an analysis of atmospheric deposition of these trace elements (Mn, Zn, As, Cd and Pb). It also includes an analysis of total dust flux. Within this analysis it has considered the spatial variations of atmospheric deposition flux in these locations. The average annual level of total bulk deposition registered was 42.0 g m-2 per year. This was higher than most of the areas affected by a Mediterranean climate or in semi-arid conditions around the world. Regarding the overall analysis of trace elements, the annual bulk deposition fluxes of total Zn far exceeded the values of other areas. While Mn, Cd and Pb showed similar or lower values, and in part much lower than those described in other Mediterranean mining areas. This study confirmed some spatial variability of dust and trace elements, contained within the atmospheric deposition. From both an environmental and a public health perspective, environmental managers must take into account the cumulative effect of the deposition of trace elements on the soil and air quality around and within the villages surrounding metallic mining areas.

  13. Atmospheric dry deposition of mineral dust to the Gulf of Aqaba, Red Sea: rate and trace elements.

    Science.gov (United States)

    Al-Taani, Ahmed A; Rashdan, Maen; Khashashneh, Safaa

    2015-03-15

    Atmospheric dry deposition to the Gulf of Aqaba (GoA) is particularly a significant source of trace elements. Amid desert regions, the Gulf receives high fluxes of mineral dust with an average rate of 34.68 g/m(2)/year measured in 2012. Patterns of dry deposition showed seasonal fluxes with highest rates observed in summer and lowest in winter. The observed variations were attributed to wind direction, timing of deposition and sources of dust. The average dry fluxes of Al, Fe, Mn, Cr, Cd, Cu, Pb and Zn were 551, 440, 10.29, 1.42, 0.04, 0.68, 1.42 and 4.02 mg/m(2)/year, respectively. While the dry deposition fluxes were enriched in Cd, Cu, Pb and Zn indicating their dominant anthropogenic sources, they appeared to be less influenced compared to the neighboring Mediterranean area and other industrial countries, but were similar to or slightly higher than those in remote areas. The enrichment values for Fe and Mn were low, consistent with their crustal origin. The fluxes of all elements suggested the impacts of both crustal (due to climate change) and anthropogenic sources became stronger in this region. The Sahara dust was probably a minor contributor to dry deposition in the GoA.

  14. Laser photoacoustic trace detection of C2H4 revealing adverse environmental effects of atmospheric pollution on plant material

    Science.gov (United States)

    Harren, Frans J. M.; Petruzzelli, Luciana

    1993-03-01

    The photoacoustic detection method for trace gases in the atmosphere is well developed towards very low limits of detection, in the last years. Due to the combination of a sensitive photoacoustic cell placed intracavity in an infrared CO2 laser we were able to detect C2H4 at ultralow (hormone which seems to play an important role throughout all the life stages of a plant, including seed germination. In addition, various types of stress have been reported to promote ethylene production from different plant tissues. As part of our ongoing research on the role of ethylene in seed germination, we have compared our laser photoacoustic set-up to a gaschromatograph for measuring C2H4 produced by germinating Pisum sativum L. seeds within the first days of imbibition. C2H4 evolution by intact seeds shows a maximum at about 25 hours of germination. Thereafter, the rate of ethylene measured by gaschromatograph continues to decrease while that measured by the laser-driven photoacoustic system shows further increases. Most of the ethylene produced by seeds is found in isolated embryonic axes. The fumigation with ozone affects the growth of seedlings and their ethylene evolution.

  15. Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy)

    Science.gov (United States)

    Caggiano, R.; Trippetta, S.; Sabia, S.

    2015-02-01

    The atmospheric concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn) were measured by means of the "lichen-bag" technique in the Agri Valley (southern Italy). The lichen samples were collected from an unpolluted site located in Rifreddo forest (southern Italy), about 30 km away from the study area along the north direction. The bags were exposed to ambient air for 6 and 12 months. The exposed-to-control (EC) ratio values highlighted that the used lichen species were suitable for biomonitoring investigations. The results showed that the concentrations of almost all the examined trace elements increased with respect to the control after 6-12-month exposures. Furthermore, Ca, Al, Fe, K, Mg and S were the most abundant trace elements both in the 6-month and 12-month-exposed samples. Moreover, principal component analysis (PCA) results highlighted that the major sources of the measured atmospheric trace elements were related both to anthropogenic contributions due to traffic, combustion processes agricultural practices, construction and quarrying activities, and to natural contributions mainly represented by the re-suspension of local soil and road dusts. In addition, the contribution both of secondary atmospheric reactions involving Centro Olio Val d'Agri (COVA) plant emissions and the African dust long-range transport were also identified.

  16. Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy

    Directory of Open Access Journals (Sweden)

    R. Caggiano

    2014-10-01

    Full Text Available The atmospheric concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn were measured by means of the "lichen-bag" technique in the Agri Valley (southern Italy. The lichen samples were collected from an unpolluted site located in Rifreddo forest (southern Italy. The bags were exposed to ambient air for 6 and 12 months. The exposed-to-control (EC ratio values highlighted that the used lichen species were suitable for biomonitoring investigations. The results showed that the concentrations of almost all the examined trace elements increased with respect to the control after 6–12 month exposures. Furthermore, Ca, Al, Fe, K, Mg and S were the most abundant trace elements both in the 6 and 12 month-exposed samples. Moreover, principal component analysis (PCA results highlighted that the major sources of the measured atmospheric trace elements were related both to anthropogenic contributions due to traffic, combustion processes, agricultural practices, construction and quarrying activities, and to natural contributions mainly represented by the re-suspension of local soil and road dusts. In addition, the contribution both of secondary atmospheric reactions involving Centro Olio Val d'Agri (COVA plant emissions and the African dust long-range transport were also identified.

  17. Monitoring of trace organic air pollutants – a developing country perspective

    CSIR Research Space (South Africa)

    Forbes, PBC

    2008-09-01

    Full Text Available for domestic heating and cooking purposes in developing countries. This paper focuses on the current status of organic air pollutant monitoring in southern Africa, and discusses developments in this regard. Screening methods and monitoring of indicator...

  18. Tracing the Sources of Atmospheric Phosphorus Deposition to a Tropical Rain Forest in Panama Using Stable Oxygen Isotopes.

    Science.gov (United States)

    Gross, A; Turner, B L; Goren, T; Berry, A; Angert, A

    2016-02-01

    Atmospheric dust deposition can be a significant source of phosphorus (P) in some tropical forests, so information on the origins and solubility of atmospheric P is needed to understand and predict patterns of forest productivity under future climate scenarios. We characterized atmospheric dust P across a seasonal cycle in a tropical lowland rain forest on Barro Colorado Nature Monument (BCNM), Republic of Panama. We traced P sources by combining remote sensing imagery with the first measurements of stable oxygen isotopes in soluble inorganic phosphate (δ(18)OP) in dust. In addition, we measured soluble inorganic and organic P concentrations in fine (1 μm) aerosol fractions and used this data to estimate the contribution of P inputs from dust deposition to the forest P budget. Aerosol dry mass was greater in the dry season (December to April, 5.6-15.7 μg m(-3)) than the wet season (May to November, 3.1-7.1 μg m(-3)). In contrast, soluble P concentrations in the aerosols were lower in the dry season (980-1880 μg P g(-1)) than the wet season (1170-3380 μg P g(-1)). The δ(18)OP of dry-season aerosols resembled that of nearby forest soils (∼19.5‰), suggesting a local origin. In the wet season, when the Trans-Atlantic Saharan dust belt moves north close to Panama, the δ(18)OP of aerosols was considerably lower (∼15.5‰), suggesting a significant contribution of long-distance dust P transport. Using satellite retrieved aerosol optical depth (AOD) and the P concentrations in aerosols we sampled in periods when Saharan dust was evident we estimate that the monthly P input from long distance dust transport during the period with highest Saharan dust deposition is 88 ± 31 g P ha(-1) month(-1), equivalent to between 10 and 29% of the P in monthly litter fall in nearby forests. These findings have important implications for our understanding of modern nutrient budgets and the productivity of tropical forests in the region under future climate scenarios.

  19. Monitoring the content and intake of trace elements from food in Denmark

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Andersen, N. L.; Møller, A.

    2002-01-01

    slightly. The distribution in dietary intake of the five trace elements was estimated by combining the mean trace element concentrations with food consumption data from 1837 Danes aged 15-80 years. The lead intake for 1993-97 showed a decrease in comparison with similar estimates from the previous...... of the distribution in cadmium intake amounts to 34% of PTWI, which is relatively high, and therefore calls for a more detailed future risk assessment. The intakes of lead and mercury were 11% of PTWI and, like the intake of nickel, did not cause any health concern in the adult population. The Danes ingest close...

  20. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 1999 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.

    2000-03-31

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global-change data and information analysis center of the Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has--since its inception in 1982--enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea level. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Acting Director) of DOE's Office of Biological and Environmental Research. CDIAC's FY 1999 budget was 2.2M dollars. CDIAC represents the DOE in the multi-agency Global Change Data and Information System. Bobbi Parra, and Wanda Ferrell on an interim basis, is DOE's Program Manager with responsibility for CDIAC. CDIAC comprises three groups, Global Change Data, Computer Systems, and

  1. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2001 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.

    2002-10-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on climate and vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Director) of DOE's Office of Biological and Environmental Research. CDIAC represents DOE in the multi-agency Global Change Data and Information System (GCDIS). Wanda Ferrell is DOE's Program Manager with overall responsibility for CDIAC. Roger Dahlman is responsible for CDIAC's AmeriFlux tasks, and Anna Palmisano for CDIAC's Ocean Data tasks. CDIAC is made

  2. Development of a Test Protocol for Spacecraft Post-Fire Atmospheric Cleanup and Monitoring

    Science.gov (United States)

    Zuniga, David; Hornung, Steven D.; Haas, Jon P.; Graf, John C.

    2009-01-01

    Detecting and extinguishing fires, along with post-fire atmospheric cleaning and monitoring, are vital components of a spacecraft fire response system. Preliminary efforts focused on the technology evaluation of these systems under realistic conditions are described in this paper. While the primary objective of testing is to determine a smoke mitigation filter s performance, supplemental evaluations measuring the smoke-filled chamber handheld commercial off-the-shelf (COTS) atmospheric monitoring devices (combustion product monitors) are also conducted. The test chamber consists of a 1.4 cubic meter (50 cu. ft.) volume containing a smoke generator. The fuel used to generate the smoke is a mixture of polymers in quantities representative of materials involved in a circuit board fire as a typical spacecraft fire. Two fire conditions were examined: no flame and flame. No flame events are produced by pyrolyzing the fuel mixture in a quartz tube furnace with forced ventilation to produce a white, lingering-type smoke. Flame events ignite the smoke at the outlet of the tube furnace producing combustion characterized by a less opaque smoke with black soot. Electrochemical sensor measurements showed carbon monoxide is a major indicator of each fire. Acid gas measurements were recorded, but cross interferents are currently uncharacterized. Electrochemical sensor measurements and sample acquisition techniques from photoacoustic sensors are being improved. Overall, this research shows fire characterization using traditional analytical chemistry techniques is required to verify measurements recorded using COTS atmospheric monitoring devices.

  3. Passive monitoring of Mt. Etna and Mt. Yasur to probe the upper atmosphere

    Science.gov (United States)

    Assink, J. D.; Le Pichon, A.; Blanc, E.

    2013-12-01

    We present two case studies in which the influence of atmospheric dynamics on infrasound propagation is studied. We make use of a volcanic infrasound data set that has been recorded at infrasound arrays in the vicinity of Mount Etna, Italy (37 N). In addition, we revisit the Mt. Yasur (22 S) dataset. Respectively, over 6 and 10 years of infrasound observables are compared to theoretical estimates obtained from propagation modeling using existing European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric databases. Long-term detail comparisons such as presented in this study have been unprecedented and are useful for atmospheric modeling and infrasound propagation studies. While a first-order agreement is found, we report on significant discrepancies around the equinox period and during intervals during which anomalous detections occur during the winter, such as during Sudden Stratospheric Warmings (SSWs). We present an inversion study in which we make use of measured trace velocity estimates to predict effective sound speed model updates in a Bayesian framework. Such estimates will be compared to independent wind and temperature measurements that are available through the Atmospheric dynamics Research InfraStructure in Europe (ARISE) network.

  4. Recent advances and perspectives in analytical methodologies for monitoring the bioavailability of trace metals in environmental solid substrates

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald

    2006-01-01

    In the last decades, researchers have realised that the impact of trace elements (TE) in environmental solid substrates on ecological systems and biota cannot be ascertained appropriately by means of total metal content measurements. Assessment of TE chemical forms, types of binding and reactivity...... and the eventual impact of anthropogenic TE in environmental solids are addressed. The potential of passive dosimeters based on microdialysis sampling for on-site, real-time monitoring of chemical contaminants in pore soil solution is thoroughly discussed and critically compared with active microsamplers. Recent...

  5. Monitoring of the atmospheric ozone layer and natural ultraviolet radiation: Annual report 2014

    OpenAIRE

    Svendby, Tove Marit; Edvardsen, Kåre; Hansen, Georg Heinrich; Stebel, Kerstin; Dahlback, Arne

    2015-01-01

    This is an annual report describing the activities and main results of the monitoring programme “Monitoring of the atmospheric ozone layer and natural ultraviolet radiation” for 2014. The ozone layer was below the long-term mean in spring 2014, but increased in April/May and was close to normal rest of the year. A clear decrease in total ozone above Norway during the period 1979-1997 stopped after 1998 and the ozone layer above Norway now seems to have stabilized.

  6. Kalman filtration of radiation monitoring data from atmospheric dispersion of radioactive materials

    DEFF Research Database (Denmark)

    Drews, M.; Lauritzen, B.; Madsen, H.;

    2004-01-01

    A Kalman filter method using off-site radiation monitoring data is proposed as a tool for on-line estimation of the source term for short-range atmospheric dispersion of radioactive materials. The method is based on the Gaussian plume model, in which the plume parameters including the source term...... exhibit a ‘random walk’ process. The embedded parameters of the Kalman filter are determined through maximum-likelihood estimation making the filter essentially free of external parameters. The method is tested using both real and simulated radiation monitoring data. For simulated data, the method...

  7. Evaluation of atmospheric corrosion on electroplated zinc and zinc nickel coatings by Electrical Resistance (ER) Monitoring

    DEFF Research Database (Denmark)

    Møller, Per

    2013-01-01

    ER (Electrical Resistance) probes provide a measurement of metal loss, measured at any time when a metal is exposed to the real environment. The precise electrical resistance monitoring system can evaluate the corrosion to the level of nanometers, if the conductivity is compensated for temperature...... for the automotive industry, off-shore construction or component and devices used in harsh industrial environments. The ER monitoring makes it possible to study the corrosion rate on-line in remote locations as a function of temperature, relative humidity and changes in the composition of the atmosphere. Different...

  8. Atmospheric tracer monitoring and surface plume development at the ZERT pilot test in Bozeman, Montana, USA

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Arthur [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Strazisar, Brian [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Rodney Diehl, J. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Veloski, Garret [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2010-03-01

    A controlled release of CO2 was conducted at a field site in Bozeman, Montana, USA in July of 2008 in a multi-laboratory study of near surface transport and detection technologies. The development of a subsurface CO2 plume near the middle packer section of the horizontal release was studied using soil-gas and surface flux measurements of CO2. A perfluorocarbon tracer was added to the CO2 released from this section of the horizontal well, and the development of atmospheric plumes of the tracer was studied under various meteorological conditions using horizontal and vertical grids of monitors containing sorbent material to collect the tracer. This study demonstrated the feasibility of using remote sensing for the ultra low level detection of atmospheric plumes of tracers as means to monitor the near surface leakage of sequestered CO2.

  9. An advanced open-path atmospheric pollution monitor for large areas

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L. [Westinghouse Science & Technology Center, Pittsburgh, PA (United States)

    1995-10-01

    Large amounts of toxic waste materials, generated in manufacturing fuel for nuclear reactors, are stored in tanks buried over large areas at DOE sites. Flammable and hazardous gases are continually generated by chemical reactions in the waste materials. To prevent explosive concentrations of these gases, the gases are automatically vented to the atmosphere when the pressure exceeds a preset value. Real-time monitoring of the atmosphere above the tanks with automatic alarming is needed to prevent exposing workers to unsafe conditions when venting occurs. This report describes the development of a monitor which can measure concentrations of hazardous gases over ranges as long as 4km. The system consists of a carbon dioxide laser combined with an acousto-optic tunable filter.

  10. A twin-type airflow pulse ionization chamber for continuous alpha-radioactivity monitoring in atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kada, Wataru, E-mail: kada@nf.eie.eng.osaka-u.ac.j [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Dwaikat, Nidal; Datemichi, Jun; Sato, Fuminobu; Murata, Isao; Kato, Yushi; Iida, Toshiyuki [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2010-10-15

    A simple and inexpensive twin-type airflow pulse ionization chamber was developed for the continuous monitoring of alpha-radioactivity in atmosphere under high humidity condition. The symmetrical structure of the twin-type ionization chamber was effective in the improvement of the ratio of signal to noise in the measurement of pulses induced by alpha-rays. Outdoor alpha-ray measurement was well performed with this ionization chamber by applying sufficiently high bias voltage to the electrodes, except for at very high humidity conditions. It was confirmed that the declination of the counting efficiency due to wetting was easily recovered by the dry-up of the inside of the chamber. Alpha-radioactivity from radon and other alpha-emitting radionuclide in atmosphere was satisfactorily monitored by the detector.

  11. Evaluation of a Possibility to Identify Port Pollutants Trace in Klaipeda City Air Pollution Monitoring Stations

    OpenAIRE

    Prof. dr. habil. Vytautas SMAILYS; Renata Strazdauskienė; Kristina Bereišienė

    2009-01-01

    Attempts are made to determine whether it is possible to identify fractions of air pollutants emitted in Klaipeda port in the data recorded in the city air monitoring station. Two components, SO2 and NOx , controlled aboard ship since 2006 were chosen for evaluation. To determine the port influence, a due account was taken of the location of monitoring stations. For this purpose the sectors where port pollutants could enter the samplers of air monitoring stations were identified. For the asse...

  12. Modelling of anthropogenic pollutant diffusion in the atmosphere and applications to civil protection monitoring

    CERN Document Server

    Tessarotto, Marco

    2008-01-01

    A basic feature of fluid mechanics concerns the frictionless phase-space dynamics of particles in an incompressible fluid. The issue, besides its theoretical interest in turbulence theory, is important in many applications, such as the pollutant dynamics in the atmosphere, a problem relevant for civil protection monitoring of air quality. Actually, both the numerical simulation of the ABL (atmospheric boundary layer) portion of the atmosphere and that of pollutant dynamics may generally require the correct definition of the Lagrangian dynamics which characterizes arbitrary fluid elements of incompressible thermofluids. We claim that particularly important for applications would be to consider these trajectories as phase-space trajectories. This involves, however, the unfolding of a fundamental theoretical problem up to now substantially unsolved: {\\it namely the determination of the exact frictionless dynamics of tracer particles in an incompressible fluid, treated either as a deterministic or a turbulent (i....

  13. Polar night retrievals of trace gases in the Arctic using the Extended-range Atmospheric Emitted Radiance Interferometer

    Directory of Open Access Journals (Sweden)

    Z. Mariani

    2013-01-01

    Full Text Available The Extended-range Atmospheric Emitted Radiance Interferometer (E-AERI was installed at the Polar Environment Atmospheric Research Laboratory (PEARL at Eureka, Nunavut, Canada in October 2008. Spectra from the E-AERI provide information about the radiative balance and budgets of trace gases in the Canadian high Arctic. Measurements are taken every seven minutes year-round, including polar night when the solar-viewing spectrometers at PEARL are not operated. This allows E-AERI measurements to fill the gap in the PEARL dataset during the four months of polar night. Measurements were taken year-round in 2008–2009 at the PEARL Ridge Lab, which is 610 m above sea-level, and from 2011-onwards at the Zero-Altitude PEARL Auxiliary Lab (0PAL, which is 15 km from the Ridge Lab at sea level. Total columns of O3, CO, CH4, and N2O have been retrieved using a modified version of the SFIT2 retrieval algorithm adapted for emission spectra. This provides the first nighttime measurements of these species at Eureka. Changes in the total columns driven by photochemistry and dynamics are observed. Analyses of E-AERI retrievals indicate accurate spectral fits (root-mean-square residuals < 1.5% and a 10–15% uncertainty in the total column, depending on the trace gas. O3 comparisons between the E-AERI and a Bruker IFS 125HR Fourier transform infrared (FTIR spectrometer, three Brewer spectrophotometers, two UV-visible ground-based spectrometers, and a System D'Analyse par Observations Zenithales (SAOZ at PEARL are made from 2008–2009 and for 2011. 125HR CO, CH4, and N2O columns are also compared with the E-AERI measurements. Mean relative differences between the E-AERI and the other spectrometers are 1–14% (depending on the gas, which are less than the E-AERI's total column uncertainties. The E-AERI O3 and CO measurements are well correlated with the other spectrometers; the best

  14. The Atmospheric Monitoring System of the JEM-EUSO Space Mission

    CERN Document Server

    Frias, M D Rodriguez; Bozzo, E; del Peral, L; Neronov, A; Wada, S

    2015-01-01

    An Atmospheric Monitoring System (AMS) is a mandatory and key device of a space-based mission which aims to detect Ultra-High Energy Cosmic Rays (UHECR) and Extremely-High Energy Cosmic Rays (EHECR) from Space. JEM-EUSO has a dedicated atmospheric monitoring system that plays a fundamental role in our understanding of the atmospheric conditions in the Field of View (FoV) of the telescope. Our AMS consists of a very challenging space infrared camera and a LIDAR device, that are being fully designed with space qualification to fulfil the scientific requirements of this space mission. The AMS will provide information of the cloud cover in the FoV of JEM-EUSO, as well as measurements of the cloud top altitudes with an accuracy of 500 m and the optical depth profile of the atmosphere transmittance in the direction of each air shower with an accuracy of 0.15 degree and a resolution of 500 m. This will ensure that the energy of the primary UHECR and the depth of maximum development of the EAS ( Extensive Air Shower)...

  15. The Atmospheric Monitoring System of the JEM-EUSO space mission

    Directory of Open Access Journals (Sweden)

    Cremonini R.

    2013-06-01

    Full Text Available An Atmospheric Monitoring System (AMS is mandatory and a key element of a space-based mission which aims to detect Ultra-High Energy Cosmic Rays (UHECR. JEM-EUSO has a dedicated atmospheric monitoring system that plays a fundamental role in our understanding of the atmospheric conditions in the Field of View (FoV of the telescope. Our AMS consists of an infrared camera and a LIDAR device that are being fully designed with space qualification to fulfil the scientific requirements of this space mission. This AMS will provide information of the cloud cover in the FoV of JEM-EUSO, as well as measurements of the cloud top altitudes with an accuracy of 500 m and the optical depth profile of the atmosphere transmittance in the direction of each air shower with an accuracy of 0.15 degree and a resolution of 500 m. This will ensure that the energy of the primary UHECR and the depth of maximum development of the EAS (Extensive Air Shower are measured with an accuracy better than 30% and 120 g/cm2, for EAS occurring either in the clear sky or with the EAS depth of maximum development above optically thick cloud layers. Moreover novel stereoscopic and radiometric retrieval techniques are under development to infer the Cloud Top Height (CTH from the brightness temperature patterns obtained from the infrared camera.

  16. Atmospheric Ammonia and Particulate Inorganic Nitrogen Monitoring in the United States - A Comparison Study

    Science.gov (United States)

    Kariyawasam, T.

    2016-12-01

    Due to emission by disproportionately high livestock numbers and increased nitrogen fertilization, Ammonia (NH3) has come to play an increasingly important role in the global biogeochemical cycle of reactive nitrogen as well as in secondary aerosol formation and climate. Because of the public health problems it causes and the effects on the atmosphere, monitoring the global distribution of NH3 sources becomes crucial. Accurate measurements of atmospheric NH3 via ground level sensors and satellites are fundamentally essential for meteorological forecasting, hazard warning and various other applications. Since the NH3 retrieval quality is affected by meteorological properties, such as the vertical temperature, water vapor profiles, surface temperatures, and emissivity, which are used to model the atmosphere, even though satellite systems has the capability of monitoring environmental variables with high temporal and spatial coverages, they lack precision at or near ground level. Due to cost of implementation and technical maintenance constraints, daily global coverage of accurate NH3 in situ measurements from ground based sensors is also often limited in spatial representation. In research related to climate and atmospheric physics, the advances in sensor technology have led to the use of automated sensors in a variety of climate and atmospheric data analysis applications. The extant research is expanding further but lacks a framework to consider the current and future trends, gaps, challenges and opportunities. This research will attempt to provide insight into key capabilities of the current and potential future approaches and will present a framework to better understand NH3 research with the use of in - situ as well as remote sensors in detecting NH3 in the ambient atmosphere.

  17. Spatial and temporal variation in domestic biofuel consumption rates and patterns in Zimbabwe: implications for atmospheric trace gas emission

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, J.; Andreae, M.O.; Helas, G. [Max Planck Institute for Chemistry, Mainz (Germany). Dept. of Biogeochemistry; Marufu, L. [Max Planck Institute for Chemistry, Mainz (Germany). Dept. of Biogeochemistry; University of Utrecht, (Netherlands). Institute for Marine and Atmospheric Research Utrecht; Lelieveld, J. [University of Utrecht, (Netherlands). Institute for Marine and Atmospheric Research Utrecht

    1999-05-01

    An ecologically nationwide and all-year-round domestic biofuel consumption study was conducted in Zimbabwe from January 1996 to March 1997. The study aimed at (a) establishing the determinants and magnitudes of spatial and temporal variations in biofuel consumption rates, (b) estimating the overall mean national rural and urban consumption rates, and (c) estimating the contribution of domestic biomass burning in Zimbabwe to the emission of atmospheric trace gases. The main source of spatial variation in biofuel consumption rates was found to be settlement type (rural or urban). Within a settlement type, per capita consumption rates varied in time and space with household size, ambient temperature, and physical availability. In rural areas wood and agricultural residues were consumed at national average rates of 1.3{+-}0.2 and 0.07{+-}0.01 tonnes capita{sup -1} year{sup -1}, respectively. In urban centres wood was consumed at an average rate of 0.4{+-}0.26 tonnes capita{sup -1} year{sup -1}. These consumption rates translate into emission outputs from Zimbabwe of 4.6 Tg CO{sub 2}-C year{sup -1}, 0.4 Tg CO-C year{sup -1}, 5.3 Gg NO-N year{sup -1}, 14.5 Gg CH{sub 4}-C year{sup -1}, 24.2 Gg NMHC-C year{sup -1}, 2.9 Gg organic acid-C year{sup -1} (formic and acetic acids) and 48.4 Gg aerosol-C year{sup -1}. For CO{sub 2}, CO, and NO, these domestic biofuel emissions represent 41{+-}6%, 67{+-}6%, and 8{+-}1%, respectively, of the total output of all sources evaluated and documented in Zimbabwe to date. This means that of the studied sources, domestic biomass burning is the major source of CO{sub 2} and CO emission in Zimbabwe.

  18. Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra

    Science.gov (United States)

    Stiller, G. P.; Gunson, M. R.; Lowes, L. L.; Abrams, M. C.; Raper, O. F.; Farmer, C. B.; Zander, R.; Rinsland, C. P.

    1995-01-01

    A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.

  19. Recent history of atmospheric trace gas concentrations deduced from measurement in the deep sea: application to sulfur hexa-fluoride and carbon tetrachlordie

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.J.; Liddicoat, M.I.

    1985-01-01

    On a time scale of several decades, an increase in the atmospheric burden of certain stable trace gases results in a characteristic oceanic depth profile for the concentration of the dissolved gas. If the atmosphere is the only source of the gas to the sea, the time delay inherent in its downward penetration from the surface results in a profile which decreases with depth. By referencing to compounds such as Freon 11 or Freon 12, the atmospheric histories of which are relatively well known, limits can be placed on the increase of a trace gas whose history is unknown. The method may be particularly valuable in distinguishing the contributions of natural and anthropogenic sources of gases such as CCl/sub 4/ and CF/sub 4/, which may have both. The method is here applied to estimate the concentration of atmospheric SF/sub 6/ since 1970. Both exponential and linear fits are investigated, but the best fit is a linear increase, C = 0.34 + 0.084 (Yr-1970), where Yr is the calendar year and C is the concentration in pptv. A preliminary look at two CCl/sub 4/ profiles suggests that at least 50% of the atmospheric burden is of recent anthropogenic origin.

  20. Paired geochemical tracing and load monitoring analysis for identifying sediment sources in a large catchment draining into the Great Barrier Reef Lagoon

    Science.gov (United States)

    Furuichi, Takahisa; Olley, Jon; Wilkinson, Scott; Lewis, Stephen; Bainbridge, Zoe; Burton, Joanne

    2016-08-01

    While sediment tracing has been typically applied to identify sediment sources that are difficult to measure by gauging (monitoring), it can also be useful in estimating relative sediment yields from gauged river catchments. The major and trace element composition of river sediments from eleven locations in the 130000 km2 Burdekin River catchment, northeastern Australia was analysed to examine relative contributions from upstream source areas in the 2011/12 water year. Sediment tracing results are compared against estimates derived from sediment load monitoring at three locations. Comparisons show that there is good agreement between tracing results and monitoring data at one of the tributary confluences. At the second site, notable contrasts were found between the load estimates from the monitoring and tracing data. At this site a large impoundment occurs between the upstream sampling/gauging sites for source sediments and the downstream sampling/gauging sites for target sediments. The contrast is likely caused by temporal variations in particle size distributions of suspended sediment from each river and differential trapping efficiencies in the impoundment for sediment derived from the different tributaries. In the absence of the detailed particle size data and trapping efficiency estimates, sediment tracing provides the unique opportunity to elucidate source contributions of the finer fractions of suspended sediment. At a third site, where there were recognised measurement gaps in the monitoring data during large discharge events, the relative load estimates from the tracing data provided a means of constraining the recognized uncertainty of monitored load estimates. We conclude that sediment tracing can be used as a valuable adjunct to monitoring data particularly in remote, large and data-sparse catchments. Both tracing results and monitoring data show that the Upper Burdekin River and Bowen-Bogie Rivers were the dominant source of the < 10 μm sediments

  1. Monitoring atmospheric pollutants in the biosphere reserve Wienerwald by a combined approach of biomonitoring methods and technical measurements.

    Science.gov (United States)

    Krommer, Viktoria; Zechmeister, Harald G; Roder, Ingrid; Scharf, Sigrid; Hanus-Illnar, Andrea

    2007-05-01

    In this study a combined approach of bioindication results correlated with an extensive set of data on air pollution and climate was used to assess the pollution status of the Man and Biosphere Reserve Wienerwald (Austria). Bryophytes served as impact indicators (via the Index of Atmospheric Purity-method IAP) at 30 sites as well as accumulation monitors for airborne trace elements (Al, Pb, V, S, Zn, Fe, Cu, Cr, Ni, Co, Mo, Cd, As, Sb and 16 EPA-PAHs) at 10 sites within the reserve. The results of these bioindication methods were subsequently correlated with further pollution (NO(2), SO(2) and dust) and climate data (precipitation, temperature and humidity). The findings obtained clearly indicate the following: Bryophyte distribution is solely influenced by the status of air quality, without interference by climatic or site-related factors, which is in contrast to several previous investigations. IAP-values correlated significantly with NO(2) (0.553; P=0.004), SO(2) winter values (0.511; P=0.013) and PM10 (dust) (0.561; P=0.013). The results obtained via chemical analyses revealed a strong correlation with data derived from the IAP methodology. In terms of the overall air quality within the biosphere reserve Wienerwald, the north-eastern part appears to be the most affected one with a most likely pollution contribution emitted by the capital city Vienna, agriculture and neighbouring countries.

  2. Contribution of the infrasound technology to characterize large scale atmospheric disturbances and impact on infrasound monitoring

    Science.gov (United States)

    Blanc, Elisabeth; Le Pichon, Alexis; Ceranna, Lars; Pilger, Christoph; Charlton Perez, Andrew; Smets, Pieter

    2016-04-01

    The International Monitoring System (IMS) developed for the verification of the Comprehensive nuclear-Test-Ban Treaty (CTBT) provides a unique global description of atmospheric disturbances generating infrasound such as extreme events (e.g. meteors, volcanoes, earthquakes, and severe weather) or human activity (e.g. explosions and supersonic airplanes). The analysis of the detected signals, recorded at global scales and over near 15 years at some stations, demonstrates that large-scale atmospheric disturbances strongly affect infrasound propagation. Their time scales vary from several tens of minutes to hours and days. Their effects are in average well resolved by the current model predictions; however, accurate spatial and temporal description is lacking in both weather and climate models. This study reviews recent results using the infrasound technology to characterize these large scale disturbances, including (i) wind fluctuations induced by gravity waves generating infrasound partial reflections and modifications of the infrasound waveguide, (ii) convection from thunderstorms and mountain waves generating gravity waves, (iii) stratospheric warming events which yield wind inversions in the stratosphere, (iv)planetary waves which control the global atmospheric circulation. Improved knowledge of these disturbances and assimilation in future models is an important objective of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project. This is essential in the context of the future verification of the CTBT as enhanced atmospheric models are necessary to assess the IMS network performance in higher resolution, reduce source location errors, and improve characterization methods.

  3. Chemistry and aerosol model development for the Copernicus Atmosphere Monitoring Service at ECWMF

    Science.gov (United States)

    Flemming, Johannes; Huijnen, Vincent; Remy, Samuel; Kipling, Zak

    2017-04-01

    The global forecast and data assimilation system for atmospheric composition of the Copernicus Atmosphere Monitoring Service (CAMS) is part of ECMWF's integrated forecasting system (IFS). The CAMS system is run on a lower resolution (40 km) than the operational Numerical Weather Prediction (NWP) suite (9km), but it uses the same meteorological model for both configurations in order to maintain a seamless approach to earth-system forecasting. The IFS with the modules for atmospheric composition is referred to as C-IFS. Although developments of the chemistry and aerosol modules are by far the most important reasons for changes in the simulation of atmospheric composition with C-IFS, the impact of continuous developments of the meteorological part of C-IFS also introduces changes to the operational composition forecast. The development of the IFS is predominantly driven by the improvements in weather predication scores at high resolution. IFS model upgrades occur several times a year. In the presentation we will address the opportunities and challenges to improve the quality of the CAMS operational composition forecasts as part of a steadily changing operational NWP system. We will discuss examples on how changes in the IFS model impact the composition simulation such as changes to the convection scheme, lightning activity and surface processes. We will also provide a detailed break down of the additional computational cost of the atmospheric composition simulation.

  4. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].

    Science.gov (United States)

    He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing

    2009-01-01

    With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.

  5. Laser system for remote sensing monitoring of air pollution and quality control of the atmosphere

    Directory of Open Access Journals (Sweden)

    Belić Ilija

    2012-01-01

    Full Text Available Monitoring of the atmosphere and determination of the types and amounts of pollutants is becoming more important issue in complex and global monitoring of the environment. On the geocomponent and geocomplex level problem of monitoring the environment is attracting the attention of the scientific experts of different profiles (chemists, physicists, geographers, biologists, meteorologists, both in the national and international projects. Because of the general characteristics of the Earth's atmosphere (Dynamically Ballanced Instability DBI and the potential contribution to climate change solutions air-pollution monitoring has become particularly important field of environmental research. Control of aerosol distribution over Europe is enabled by EARLINET systems (European Aerosol Lidar NETwork. Serbia’s inclusion into these European courses needs development of the device, the standardization of methods and direct activity in determining the type, quantity and location of aerosol. This paper is analyzing the first step in the study of air-pollution, which is consisted of the realization of a functional model of LIDAR remote sensing devices for the large particle pollutants.

  6. IR heterodyne spectrometer MILAHI for continuous monitoring observatory of Martian and Venusian atmospheres at Mt. Haleakalā, Hawaii

    Science.gov (United States)

    Nakagawa, Hiromu; Aoki, Shohei; Sagawa, Hideo; Kasaba, Yasumasa; Murata, Isao; Sonnabend, Guido; Sornig, Manuela; Okano, Shoichi; Kuhn, Jeffrey R.; Ritter, Joseph M.; Kagitani, Masato; Sakanoi, Takeshi; Taguchi, Makoto; Takami, Kosuke

    2016-07-01

    A new Mid-Infrared Laser Heterodyne Instrument (MILAHI) with >106 resolving power at 7-12 μm was developed for continuous monitoring of planetary atmospheres by using dedicated ground-based telescopes for planetary science at Mt. Haleakalā, Hawaii. Room-temperature-type quantum cascade lasers (QCLs) that cover wavelength ranges of 7.69-7.73, 9.54-9.59, and 10.28-10.33 μm have been newly installed as local oscillators to allow observation of CO2, CH4, H2O2, H2O, and HDO. Modeling and predictions by radiative transfer code gave the following scientific capabilities and measurement sensitivities of the MILAHI. (1) Temperature profiles are achieved at altitudes of 65-90 km on Venus, and the ground surface to 30 km on Mars. (2) New wind profiles are provided at altitudes of 75-90 km on Venus, and 5-25 km on Mars. (3) Direct measurements of the mesospheric wind and temperature are obtained from the Doppler-shifted emission line at altitudes of 110 km on Venus and 75 km on Mars. (4) Detections of trace gases and isotopic ratios are performed without any ambiguity of the reproducing the terrestrial atmospheric absorptions in the observed wavelength range. A HDO measurement of twice the Vienna Standard Mean Ocean Water (VSMOW) can be obtained by 15-min integration, while H2O of 75 ppm is provided by 3.62-h integration. The detectability of the 100 ppb-CH4 on Mars corresponds to an integration time of 32 h.

  7. Monitoring and modelling of biosphere/atmosphere exchange of gases and aerosols in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Erisman, Jan Willem [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands)]. E-mail: erisman@ecn.nl; Vermeulen, Alex [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Hensen, Arjan [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Flechard, Chris [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Daemmgen, Ulrich [Federal Agricultural Research Centre, Institute of Agroecology, D-38116 Braunschweig, (Germany); Fowler, David [CEH, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Sutton, Mark [CEH, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Gruenhage, Ludger [Institute for Plant Ecology, Justus-Liebig-University, D-35392 Giessen (Germany); Tuovinen, Juha-Pekka [Finnish Meteorological Institute, FIN-00810 Helsinki (Finland)

    2005-02-01

    Monitoring and modelling of deposition of air pollutants is essential to develop and evaluate policies to abate the effects related to air pollution and to determine the losses of pollutants from the atmosphere. Techniques for monitoring wet deposition fluxes are widely applied. A recent intercomparison experiment, however, showed that the uncertainty in wet deposition is relatively high, up to 40%, apart from the fact that most samplers are biased because of a dry deposition contribution. Wet deposition amounts to about 80% of the total deposition in Europe with a range of 10-90% and uncertainty should therefore be decreased. During recent years the monitoring of dry deposition has become possible. Three sites have been operational for 5 years. The data are useful for model development, but also for model evaluation and monitoring of progress in policy. Data show a decline in SO{sub 2} dry deposition, whereas nitrogen deposition remained constant. Furthermore, surface affinities for pollutants changed leading to changes in deposition. Deposition models have been further developed and tested with dry deposition measurements and total deposition measurements on forests as derived from throughfall data. The comparison is reasonable given the measurement uncertainties. Progress in ozone surface exchange modelling and monitoring shows that stomatal uptake can be quantified with reasonable accuracy, but external surface uptake yields highest uncertainty. - Monitoring and modelling of the deposition of sulphur and nitrogen components and the exposure of ozone has gained much progress through the research within BIATEX.

  8. Comparative study of the suitability of three lichen species to trace-element air monitoring.

    Science.gov (United States)

    Cercasov, V; Pantelică, A; Sălăgean, M; Caniglia, G; Scarlat, A

    2002-01-01

    To investigate the suitability of three lichen species (Cetraria islandica, Evernia prunastri, and Ramalina farinacea) as transplants to trace-element air biomonitoring, they were exposed on substratum-free supports, from July 1996 until July 1997, in three European countries with different climates (Germany, Italy, Romania), at six sites with different types of air pollutants (two in each country). After 2, 4, 6, and 12 months of exposure, some portions of thallus were collected, prepared, and measured by instrumental neutron activation analysis (INAA) at the Institute of Physics and Nuclear Engineering in Bucharest and by energy dispersive X-ray fluorescence analysis (EDXRFA) at the University of Hohenheim in Stuttgart. Fifteen environmentally relevant elements: As, Br, Ca, Co, Cr, Cu, Fe, K, Mn, Ni, Pb, S, Sb, V, and Zn were determined. The analytical results were compared statistically. To study the distribution of the trace-elements between the lichens and the lichen throughfall water inside a virtual column, the throughfall water was collected under the lichen transplants during 6 and 12 months. The dried residues were analysed by INAA at Bucharest. The accumulating capacity for all investigated species is evident. For a comparative evaluation, the initial element contents, the "accumulation factors" relative to the bulk deposition, the interspecies "calibration factors", and the "retention efficiencies", defined as ratios of the lichen enrichment to the sum of this enrichment and the content in the lichen throughfall water, were considered. These criteria attest the best suitability for Evernia prunastri, followed by Ramalina farinacea and Cetraria islandica.

  9. Trace determination of 13 haloacetamides in drinking water using liquid chromatography triple quadrupole mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Krasner, Stuart W; Templeton, Michael R

    2012-04-27

    The haloacetamides (HAcAms) are disinfection by-products (DBPs) in drinking water which are currently receiving increased scientific attention due to their elevated toxicity relative to regulated disinfection by-products. A simultaneous determination method of 13 HAcAms, combining solid-phase extraction (SPE) enrichment, liquid chromatographic (LC) separation, and triple quadrupole mass spectrometry (tqMS) detection with atmospheric pressure chemical ionization (APCI) using selective reaction monitoring in positive mode, was developed to measure HAcAms, including chlorinated, brominated, and iodinated analogs. Ammonium chloride and Oasis HLB were selected as the dechlorinating reagent and polymeric SPE sorbent of HAcAm samples. The used tqMS apparatus showed higher sensitivity for the studied HAcAms in the APCI mode than electrospray ionization. 13 HAcAms were separated by LC in 9.0 min, and the detection limits ranged from 7.6 to 19.7 ng/L. The SPE-LC/tqMS method was successfully applied to quantify 13 HAcAms in drinking water samples for the first time, and first indentified tribromoacetamide and chloroiodoacetamide as DBPs in drinking water.

  10. Bidimensional and Multidimensional Principal Component Analysis in Long Term Atmospheric Monitoring

    Directory of Open Access Journals (Sweden)

    Barbara Giussani

    2016-12-01

    Full Text Available Atmospheric monitoring produces huge amounts of data. Univariate and bivariate statistics are widely used to investigate variations in the parameters. To summarize information graphs are usually used in the form of histograms or tendency profiles (e.g., variable concentration vs. time, as well as bidimensional plots where two-variable correlations are considered. However, when dealing with big data sets at least two problems arise: a great quantity of numbers (statistics and graphs are produced, and only two-variable interactions are often considered. The aim of this article is to show how the use of multivariate statistics helps in handling atmospheric data sets. Multivariate modeling considers all the variables simultaneously and returns the main results as bidimensional graphs that are easy-to-read. Principal Component Analysis (PCA; the most known multivariate method and multiway-PCA (Tucker3 are compared from methodological and interpretative points of view. The article demonstrates the ability to emphasize different information depending on the data handling performed. The results and benefits achieved using a more complex model that allows for the simultaneous consideration of the entire variability of the system are compared with the results provided by the simpler but better-known model. Atmospheric monitoring (SO2, NOx, NO2, NO, and O3 data from the Lake Como Area (Italy since 1992 to 2007 were chosen for consideration for the case study.

  11. Basic characteristics of atmospheric particles, trace gases and meteorology in a relatively clean Southern African Savannah environment

    Directory of Open Access Journals (Sweden)

    L. Laakso

    2008-08-01

    Full Text Available We have analyzed one year (July 2006–July 2007 of measurement data from a relatively clean background site located in dry savannah in South Africa. The annual-median trace gas concentrations were equal to 0.7 ppb for SO2, 1.4 ppb for NOx, 36 ppb for O3 and 105 ppb for CO. The corresponding PM1, PM2.5 and PM10 concentrations were 9.0, 10.5 and 18.8 μg m−3, and the annual median total particle number concentration in the size range 10–840 nm was 2340 cm−3. During Easterly winds, influence of industrial sources approximately 150 km away from the measurement site was clearly visible, especially in SO2 and NOx concentrations. Of gases, NOx and CO had a clear annual, and SO2, NOx and O3 clear diurnal cycle. Atmospheric new-particle formation was observed to take place in more than 90% of the analyzed days. The days with no new particle formation were cloudy or rainy days. The formation rate of 10 nm particles varied in the range of 0.1–28 cm−3 s−1 (median 1.9 cm−3 s−1 and nucleation mode particle growth rates were in the range 3–21 nm h−1 (median 8.5 nm h−1. Due to high formation and growth rates, observed new particle formation gives a significant contribute to the number of cloud condensation nuclei budget, having a potential to affect the regional climate forcing patterns.

  12. A comparison of minor trace gas retrievals from the Tropospheric Emission Spectrometer (TES) and the Infrared Atmospheric Sounding Interferometer (IASI)

    Science.gov (United States)

    Cady-Pereira, K. E.; Shephard, M. W.; Henze, D. K.; Millet, D. B.; Gombos, D.; Van Damme, M.; Clarisse, L.; Coheur, P. F.; Pommier, M.; Clerbaux, C.

    2014-12-01

    The advent of hyperspectral infrared instruments orbiting the Earth has allowed for detecting and measuring numerous trace gas species that play important roles in atmospheric chemistry and impact air quality, but for which there is a dearth of information on their distribution and temporal variability. Here we will present global and regional comparisons of measurements from the NASA TES and the European MetOp IASI instruments of three of these gases: ammonia (NH3), formic acid (HCOOH) and methanol (CH3OH). Ammonia is highly reactive and thus very variable in space and time, while the sources and sinks of methanol and formic acid are poorly quantified: thus space-based measurements have the potential of significantly increasing our knowledge of the emissions and distributions of these gases. IASI and TES have many similarities but some significant differences. TES has significantly higher spectral resolution (0.06 cm-1), and its equator crossing times are ~1:30 am and 1:30 pm, local time, while IASI has lower resolution (0.5 cm-1) and an earlier equator crossing time (9:30 am and 9:30 pm), which leads to lower thermal contrast; however IASI provides much greater temporal and spatial coverage due to its cross-track scanning. Added to the instrumental differences are the differences in retrieval algorithms. The IASI team uses simple but efficient methods to estimate total column amounts of the species above, while the TES team performs full optimal estimation retrievals. We will compare IASI and TES total column measurements averaged on a 2.5x2.5 degree global grid for each month in 2009, and we will examine the seasonal cycle in some regions of interest, such as South America, eastern China, and the Midwest and the Central Valley in the US. In regions where both datasets are in agreement this analysis will provide confidence that the results are robust and reliable. In regions where there is disagreement we will look for the causes of the discrepancies, which will

  13. Performance of sulfation and nitration plates used to monitor atmospheric pollutant deposition in a real environment

    Energy Technology Data Exchange (ETDEWEB)

    Noel, D.; Hechler, J.; Roberge, H.

    1989-01-01

    Sulfation and nitration plates were exposed outdoors for various periods of time to evaluate their performance in a real environment. These passive monitors are used to estimate the deposition of pollutants on metallic surfaces, and thus to evaluate the influence of the atmosphere on the corrosion. Single-column ion chromatography was used to determine the quantity of anions absorbed on the plates. This technique is better than other analytical procedures such as turbidimetry or colorimetry because passive monitors exposed in an atmosphere with a low degree of pollution can be analyzed without preconcentration. However, the pH of the sample to be injected on the chromatographic column must be adjusted to between 6.0 and 12.0 in order to obtain reproducible sulfate values. For sulfation plates, the additivity of the deposition process is excellent for a period of exposure up to 3 months, with a reproducibility of about 2%. For nitration plates, the deposition process is not cumulative due to a physical change of the monitor during exposure. The correlation between the amounts of sulfate found on sulfation snd nitration plates was also examined. 16 refs., 6 figs., 5 tabs.

  14. Monitoring and modelling of biosphere/atmosphere exchange of gases and aerosols in Europe.

    Science.gov (United States)

    Erisman, Jan Willem; Vermeulen, Alex; Hensen, Arjan; Flechard, Chris; Dämmgen, Ulrich; Fowler, David; Sutton, Mark; Grünhage, Ludger; Tuovinen, Juha-Pekka

    2005-02-01

    Monitoring and modelling of deposition of air pollutants is essential to develop and evaluate policies to abate the effects related to air pollution and to determine the losses of pollutants from the atmosphere. Techniques for monitoring wet deposition fluxes are widely applied. A recent intercomparison experiment, however, showed that the uncertainty in wet deposition is relatively high, up to 40%, apart from the fact that most samplers are biased because of a dry deposition contribution. Wet deposition amounts to about 80% of the total deposition in Europe with a range of 10-90% and uncertainty should therefore be decreased. During recent years the monitoring of dry deposition has become possible. Three sites have been operational for 5 years. The data are useful for model development, but also for model evaluation and monitoring of progress in policy. Data show a decline in SO(2) dry deposition, whereas nitrogen deposition remained constant. Furthermore, surface affinities for pollutants changed leading to changes in deposition. Deposition models have been further developed and tested with dry deposition measurements and total deposition measurements on forests as derived from throughfall data. The comparison is reasonable given the measurement uncertainties. Progress in ozone surface exchange modelling and monitoring shows that stomatal uptake can be quantified with reasonable accuracy, but external surface uptake yields highest uncertainty.

  15. Analysis of influence of atmosphere extinction to Raman lidar monitoring CO2 concentration profile

    Institute of Scientific and Technical Information of China (English)

    Zhao Pei-Tao; Zhang Yin-Chao; Wang Lian; Zhao Yue-Feng; Su Jia; Fang Xin; Cao Kai-Fa; Xie Jun; Du Xiao-Yong

    2007-01-01

    Lidar (Light detection and ranging) system monitoring of the atmosphere is a novel and powerful technique tool. The Raman lidar is well established today as a leading research tool in the study of numerous important areas in the atmospheric sciences. In this paper, the principle of Raman lidar technique measurement CO2 concentration profile is presented and the errors caused by molecular and aerosol extinction for CO2 concentration profile measurement with Raman lidar are also presented. The standard atmosphere extinction profile and 'real-time' Hefei area extinction profile are used to conduct correction and the corresponding results are yielded. Simulation results with standard atmosphere mode correction indicate that the errors caused by molecule and aerosol extinction should be counted for the reason that they could reach about 8 ppm and 5 ppm respectively. The relative error caused by Hefei area extinction correction could reach about 6%. The errors caused by the two components extinction influence could produce significant changes for CO2 concentration profile and need to be counted in data processing which could improve the measurement accuracies.

  16. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2009-08-01

    Full Text Available Atmospheric remote sounding from satellites is an essential component of the observational strategy deployed to monitor atmospheric pollution and changing composition. The IASI nadir looking thermal infrared sounder onboard MetOp will provide 15 years of global scale observations for a series of key atmospheric species, with unprecedented spatial sampling and coverage. This paper gives an overview of the instrument's capability for measuring atmospheric composition in the perspective of chemistry and air quality. The assessment is made in terms of species, accuracy and vertical information. Global distributions are presented for CO, CH4, O3 (total and tropospheric, HNO3, NH3, and volcanic SO2. Local distributions of organic species measured during fire events, such as C2H4, CH3OH, HCOOH, and PAN are also shown. For each species or process, the link is made to specialized papers in this issue.

  17. Monitoring of Trace Metal Pollution in Meenachil River at Kottayam, Kerala (India

    Directory of Open Access Journals (Sweden)

    Indu. V. Nair

    2011-01-01

    Full Text Available The water quality of the Meenachil river at Kottayam has been studied with reference to toxic trace metals during pre and post monsoon seasons for 10 stations during May 2009-September 2009. The metals analyzed include Zinc, Manganese, Iron, Lead, Copper and Cadmium. Among the metals studied, iron, lead and cadmium showed higher concentrations above the permissible limit for drinking water prescribed by Bureau of Indian Standards. Iron and lead showed higher concentration during post monsoon and the cadmium content was high during pre-monsoon. It was observed that the main causes of deterioration in water quality might be due to the discharge of domestic wastes, municipal wastes, terrestrial runoff from seepage sites, agricultural sites and also due to geological weathering process.

  18. Monitoring the Temporal Changes of Trace Elements Pollution in Lake Uluabat Water (in 2003-2004 and 2008-2009

    Directory of Open Access Journals (Sweden)

    Aslıhan KATİP

    2014-12-01

    Full Text Available Due to its biological diversity wetland is considered the world's natural wealth museums and because of the natural functions and economic values they are the most important ecosystems on earth. The studies to identify the water quality of wetlands, their biodiversity, environmental pressures faced by efforts and protection methods have gained importance in our country. In particular, heavy metal and trace element pollution is one of the most important problems in wetlands affecting water quality and aquatic organisms. In this study, trace elements and contaminants temporal variation of pollution sources of trace elements was conducted to determine the effects of pollution in Lake Uluabat which is one of Turkey's most important wetlands identified as an area protected under the RAMSAR. In Uluabat Lake, five different stations were selected taking into account the distance to pollution sources, different depths and hydrodynamic properties. In the years of 2003-2004 (1st term and 2008-2009 (2nd term monthly water samples were taken and dissolved concentrations of Boron (B, chromium (Cr, Lead (Pb, Nickel (Ni elements were examined between years. As a result of the evaluations, seasonal factors, industrial discharges and agricultural activities are seen to be effective on changes in pollution. In particular, high concentrations of B elements thought to be due to take place by geological structure of the Lake Basin which is rich in boron and boron operating facilities in this basin. In order to prevent pollution of the water quality of Lake Uluabat it is necessary to be monitored at regular intervals and for the control of pollutants, all of the technical studies should be carried out in the Lake Basin in conjunction with participatory approaches of scientific and public institutions.

  19. Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies

    Science.gov (United States)

    Mendoza, Luciano; Bianchi, Clara; Fernández, Laura; Natali, María Paula; Meza, Amalia; Moirano, Juan

    2017-04-01

    Atmospheric water vapour has been acknowledged as an essential climate variable. Weather prediction and hazard assessment systems benefit from real-time observations, whereas long-term records contribute to climate studies. Nowadays, ground-based GNSS products have become widely employed, complementing satellite observations over the oceans. Although the past decade has seen a significant development of the GNSS infrastructure in Central and South America, its potential for atmospheric water vapour monitoring has not been fully exploited. With this in mind, we have performed a regional, seven-year long and homogeneous analysis, comprising 136 GNSS tracking stations, obtaining high-rate and continuous observations of column integrated water vapour and troposphere zenith total delay (Bianchi et al. 2016). As preliminary application for this data set, we have estimated local water vapour trends, their significance, and their relation with specific climate regimes. We have found evidence of drying at temperate regions in South America, at a rate of about 2% per decade, while a slow moistening of the troposphere over tropical regions is also weakly suggested by our results. Furthermore, we have assessed the regional performance of the empirical model GPT2w to blindly estimate troposphere delays. The model fairly reproduces the observed mean delays, including their annual and semi-annual variations. Nevertheless, a long-term evaluation has shown systematical biases, up to 20 mm, probably inherited form the underling atmospheric reanalysis. Additionally, the complete data set has been made openly available at a scientific repository (doi:10.1594/PANGAEA.858234). References: C. Bianchi, L. Mendoza, L. Fernandez, M. P. Natali, A. Meza, J. F. Moirano, Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies, Ann. Geophys., ISSN 0992-7689, eISSN 1432-0576, 34 (7), 623-639 (doi:10.5194/angeo-34-623-2016).

  20. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species

    Science.gov (United States)

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.

    2015-08-01

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH4 and also identify fugitive urban CH4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.

  1. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuefei [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); Jiang Zucheng [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); He Man [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China)]. E-mail: binhu@whu.edu.cn

    2007-07-15

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m{sup -3}(Eu) to 6.7 pg m{sup -3}(Nd) with the precisions of 4.1%(Yb) to 10%(La) (c = 1 {mu}g L{sup -1}, n = 9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. - A new method for direct determination of trace rare earth elements in coal fly ash and atmospheric particulates by fluorination ETV-ICP-MS with slurry sampling.

  2. Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts.

    Science.gov (United States)

    Kibria, Golam; Hossain, Md Maruf; Mallick, Debbrota; Lau, T C; Wu, Rudolf

    2016-04-15

    Using artificial mussels (AMs), this study reports and compares time-integrated level of eleven trace metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, U, Zn) in Karnafuli River estuary and coastal area of the Bay of Bengal, Bangladesh. Through this study, "hot spots" of metal pollution were identified. The results may demonstrate that the Karnafuli Estuary, and adjacent coastal area of Chittagong, Bangladesh are highly polluted by high risk metals (cadmium, chromium, copper, mercury, nickel, lead, uranium). Agricultural, domestic and industrial wastes directly discharged into the waterways have been identified as the main causes of metal pollution in Chittagong, Bangladesh. The high level of metal pollution identified may impact on local water quality, and seafood catch, livelihoods of people and public health resulting from seafood consumption. There is a need for regular monitoring to ascertain that local water quality with respect to metal levels are within acceptable levels to safeguards both environmental health and public health.

  3. Recent advances and perspectives in analytical methodologies for monitoring the bioavailability of trace metals in environmental solid substrates

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald

    2006-01-01

    of their associations with particulate forms has, thus, been commonly performed via batch-wise equilibrium-based sequential extraction fractionation methods able to discern TE bound to different soil-phase compartments. In this paper, novel analytical strategies for monitoring the mobility, bioavailability...... miniaturised configurations designed for following the fate of target pollutants and the on-going chemical changes occurring at local soil sites, e.g., the rhizosphere environment, at high temporal resolution are also presented in detail. Kinetic information on the lability of the various TE forms associated......In the last decades, researchers have realised that the impact of trace elements (TE) in environmental solid substrates on ecological systems and biota cannot be ascertained appropriately by means of total metal content measurements. Assessment of TE chemical forms, types of binding and reactivity...

  4. An Automated Electronic Tongue for In-Situ Quick Monitoring of Trace Heavy Metals in Water Environment

    Science.gov (United States)

    Cai, Wei; Li, Yi; Gao, Xiaoming; Guo, Hongsun; Zhao, Huixin; Wang, Ping

    2009-05-01

    An automated electronic tongue instrumentation has been developed for in-situ concentration determination of trace heavy metals in water environment. The electronic tongue contains two main parts. The sensor part consists of a silicon-based Hg-coated Au microelectrodes array (MEA) for the detection of Zn(II), Cd(II), Pb(II) and Cu(II) and a multiple light-addressable potentiometric sensor (MLAPS) for the detection of Fe(III) and Cr(VI). The control part employs pumps, valves and tubes to enable the pick-up and pretreatment of aqueous sample. The electronic tongue realized detection of the six metals mentioned above at part-per-billion (ppb) level without manual operation. This instrumentation will have wide application in quick monitoring and prediction the heavy metal pollution in lakes and oceans.

  5. Forest condition and chemical characteristics of atmospheric depositions: research and monitoring network in Lombardy

    Directory of Open Access Journals (Sweden)

    Flaminio DI GIROLAMO

    2002-09-01

    Full Text Available Since 1987, the Regional Forestry Board of Lombardy and the Water Research Institute of the National Research Council have been carrying out surveys of forest conditions and the response of the ecosystem to environmental factors. The study approach is based on a large number of permanent plots for extensive monitoring (Level 1. At this level, crown condition is assessed annually, and soil condition and the nutritional status of forests surveyed. Some of the permanent plots were selected for intensive monitoring (Level 2, focussing mainly on the impact of atmospheric pollution on forest ecosystems. Level 2 monitoring also includes increment analyses, ground vegetation assessment, atmospheric deposition, soil solution analyses and climatic observations. This paper summarises the main results of a pluriannual research, which provides a general picture of the state of forest health in the region and focuses on more detailed investigations, described as case studies. Modified wet and dry samplers which use a water surface to collect dry deposition were used in a pluriannual field campaign at five sites in alpine and prealpine areas, to measure the total atmospheric depositions and to evaluate the nitrogen and sulphate exceedances of critical loads. Throughfall and bulk precipitation chemistry were studied for five years (June 1994-May 1999 at two high elevation forest sites (Val Gerola and Val Masino which were known to differ in terms of tree health, as assessed by live crown condition. Results indicated a higher contribution from the dry deposition of N-NO3 -, N-NH4 + and H+ and considerable canopy leaching of Ca2+, K+ and weak organic acids at Val Gerola, where the symptoms of damage were more evident. In the area of Val Masino (SO, included since 1997 in the national CONECOFOR network, investigations focused on the effectiveness of the biological compartment in modifying fluxes of atmospheric elements, and on the role of nitrogen both as an

  6. Evaluation of atmospheric corrosion on electroplated zinc and zinc nickel coatings by Electrical Resistance (ER) Monitoring

    DEFF Research Database (Denmark)

    Møller, Per

    2013-01-01

    ER (Electrical Resistance) probes provide a measurement of metal loss, measured at any time when a metal is exposed to the real environment. The precise electrical resistance monitoring system can evaluate the corrosion to the level of nanometers, if the conductivity is compensated for temperature...... and magnetic fields. With this technique very important information about the durability of a new conversion coatings for aluminum, zinc and zinc alloys exposed to unknown atmospheric conditions can be gathered. This is expected to have a major impact on a number of industrial segments, such as test cars...

  7. [Application of ICP-MS in assessing the pollution of seldom monitored trace elements in city roadside dusts].

    Science.gov (United States)

    Yin, Shu-Hua; Gao, Bo; Li, Qiang; Zhou, Huai-Dong; Wang, Jian-Kang; Huang, Yong

    2013-12-01

    Seldom monitored trace element concentrations in road dusts colleted from Shihezi City were studied. A total of 32 sampling stations were selected. The concentration of 10 seldom monitored trace elements (B, Be, Bi, Co, Ga, Li, Sb, Sn, T1, V) were determined. Their pollution degree and source identification were analyzed by using Geoaccumulation Index, correlation coefficient and principal factor analysis. The results indicated that the mean concentrations of Li, Be, B, V, Co, Ga, Sn, Sb, T1 and Bi were 24. 91, 1.68, 41. 11, 72. 66, 13. 58, 36. 26, 3.64, 3.37, 0. 42 and 0.52 mgkg-1, respectively. The mean concentrations of Li, T1, Co, Be, B, and V were lower than or similar to the soil background values of Xinjiang province. However, the mean concentrations of Ga, Sn, Sb and Bi were higher than the background values of Xijiang province and world soil. The results of Geoaccumulation Index indicated that the pollution degrees of Li, Be, B, V, Co, Ga and T1 were zero, and belonged to the category of non-pollution. However the pollution of Sb, Bi and Sn were considerably serious, and their pollution grades were 2, 1 and 1 respectively. The source of SMTEs in road dusts of Shihezi City was identified by multivariate statistics (principal component analysis and correlation analysis). The results showed that Sb, Co, T1 and Bi mainly originated from human activities, Li, Be, B, V represented natural sources, while Sn and Ga have the mixed sources of nature and human activities.

  8. Atmospheric radioxenon isotope monitoring in Beijing after the Fukushima nuclear power plant accident.

    Science.gov (United States)

    Zhou, Chongyang; Zhou, Guoqing; Feng, Shujuan; Jin, Yuren; Zhao, Xinhua; Cheng, Ziwei; Huang, Xiongliang; Xu, Hui; Zhou, Xu

    2013-02-01

    A custom-made, on-site radioxenon sampling, separation and monitoring system was used to monitor atmospheric radioxenon concentrations in Beijing, released from the Fukushima Daiichi nuclear power plant after the earthquake of 11 March 2011. The results show that (133)Xe concentrations ranged from 393 to 26 mBq/m(3) from 12 to 27 April 2011, and those of (131 m)Xe were 84 and 40 mBq/m(3) on 13 and 15 April 2011, respectively. The highest dose rate caused by (133)Xe was 2 × 10(-5)mSv/yr, and the average (133)Xe/(131 m)Xe ratio was 3.8 ± 0.4.

  9. FishPopTrace: a new genetic technique for fisheries monitoring and the identification of IUU

    DEFF Research Database (Denmark)

    Helyar, Sarah; Limborg, Morten; Bekkevold, Dorte

    2012-01-01

    The importance of marine organisms for both economic and ecological reasons is enormous; and knowledge of population structure and connectivity is crucial for the sustainable utilization and conservation of exploited fish stocks. However, in most cases our understanding of these spatial patterns...... nucleotide polymorphisms (SNPs) has the potential to demonstrate previously undetected spatial and temporal population structuring and signatures of adaptive variation. In addition, SNPs are uniquely applicable for the identification and monitoring of wild fish populations and the traceability...

  10. Quantification of fluorine traces in solid samples using CaF molecular emission bands in atmospheric air Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Alvarez-Llamas, C.; Pisonero, J.; Bordel, N.

    2016-09-01

    Direct solid determination of trace amounts of fluorine using Laser-Induced Breakdown Spectroscopy (LIBS) is a challenging task due to the low excitation efficiency of this element. Several strategies have been developed to improve the detection capabilities, including the use of LIBS in a He atmosphere to enhance the signal to background ratios of F atomic emission lines. An alternative method is based on the detection of the molecular compounds that are formed with fluorine in the LIBS plasma. In this work, the detection of CaF molecular emission bands is investigated to improve the analytical capabilities of atmospheric air LIBS for the determination of fluorine traces in solid samples. In particular, Cu matrix samples containing different fluorine concentration (between 50 and 600 μg/g), and variable amounts of Ca, are used to demonstrate the linear relationships between CaF emission signal and F concentration. Limits of detection for fluorine are improved by more than 1 order of magnitude using CaF emission bands versus F atomic lines, in atmospheric-air LIBS. Furthermore, a toothpaste powder sample is used to validate this analytical method. Good agreement is observed between the nominal and the predicted fluorine mass-content.

  11. SOLID PHASE MICROEXTRACTION FOR TRACE ANALYSIS OF BENZENE IN ENVIRONMENTAL MONITORING

    Directory of Open Access Journals (Sweden)

    S. J. Shahtaheri, H. R. Heidari, F. Golbabaei, M. Alimohammadi, A. Rahimi Froshani

    2006-07-01

    Full Text Available Conventional analytical method for organic pollutants in water requires extraction of the pollutants, using hazardous solvent. Solid phase microextraction is a solvent free equilibrium extraction method, in which, proper calibration can allow quantitative determinations of organic pollutants at a very good sensitivity without the use of any organic solvent. Because individual volatile organic carbons are generally exposed environmentally and present in urine only at trace levels, a sensitive and accurate determination technique is essential. So, this study describes the optimization of headspace solid phase microextraction (HS-SPME followed by GC-FID for benzene in spiked urine. Through this investigations, the parameters affecting the extraction and gas chromatographic determination of analytes, including extraction time, temperature, desorption temperature, desorption time, salt addition, sample pH, sample volume and sample agitation were studied. An optimized headspace extraction was carried out at 30°C for 6 min in the presence of 0.2 g/mL of NaCl in the sample solution. Desorption of the analytes was carried out for 60 sec. at 250°C. The optimized procedure was also validated with three different pools of spiked urine samples and showed a good reproducibility over six consecutive days as well as six within-day experiments. The accuracy, linearity, detection limits were also determined. The headspace solid phase microextraction, GC-FID technique provides a relatively simple, convenient, practical procedure, which was here successfully applied to determine benzene in spiked urine.

  12. Detection and monitoring of toxic chemical at ultra trace level by utilizing doped nanomaterial.

    Directory of Open Access Journals (Sweden)

    Sher Bahadar Khan

    Full Text Available Composite nanoparticles were synthesized by eco-friendly hydrothermal process and characterized by different spectroscopic techniques. All the spectroscopic techniques suggested the synthesis of well crystalline optically active composite nanoparticles with average diameter of ∼ 30 nm. The synthesized nanoparticles were applied for the development of chemical sensor which was fabricated by coating the nanoparticles on silver electrode for the recognition of phthalimide using simple I-V technique. The developed sensor exhibited high sensitivity (1.7361 µA.mM(-1.cm(-2, lower detection limit (8.0 µM and long range of detection (77.0 µM to 0.38 M. Further the resistances of composite nanoparticles based sensor was found to be 2.7 MΩ which change from 2.7 to 1.7 with change in phthalimide concentration. The major advantages of the designed sensor over existing sensors are its simple technique, low cost, lower detection limit, high sensitivity and long range of detection. It can detect phthalimide even at trace level and sense over wide range of concentrations. Therefore the composite nanoparticals would be a better choice for the fabrication of phthalimide chemical sensor and would be time and cost substituted implement for environmental safety.

  13. The supply of trace elements from the atmosphere recorded in a natural archive by the example of the Ilas ombrotrophic bog in the White Sea drainage basin

    Science.gov (United States)

    Shevchenko, V. P.; Kusnetsov, O. L.; Politova, N. V.; Zaretskaya, N. E.; Kutenkov, S. A.; Lisitzin, A. P.; Pokrovsky, O. S.

    2015-12-01

    The results of studies are presented for the elemental composition of peat from the Ilas ombrotrophic bog (White Sea drainage basin). The calculations of enrichment factors of trace elements over the section of the bog peat relatively to the average composition of the Earth's continental crust showed that the concentrations of most of chemical elements is determined by the contributions of lithogenic and biogenic sources, and the content of trace elements is equal to the background level. Enrichment growth since the beginning of intense development of European industry until the early 21th century was revealed only for Zn, Sb, Pb, and Cd. These elements were supplied to the bog resulting from long-range air transport and precipitation from the atmosphere. No pronounced heavy-metal contamination caused by the Arkhangelsk agglomeration was revealed for the peat in the Ilas bog.

  14. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  15. Monitoring radionuclides in the atmosphere over the Czech Republic after the Fukushima Nuclear Power Plant accident.

    Science.gov (United States)

    Rulík, Petr; Hýža, Miroslav; Bečková, Věra; Borecký, Zdeněk; Havránek, Jiří; Hölgye, Zoltán; Lušňák, Jan; Malá, Helena; Matzner, Jan; Pilátová, Helena; Rada, Jiří; Schlesingerová, Eva; Šindelková, Eva; Dragounová, Lenka; Vlček, Jaroslav

    2015-02-01

    This paper presents the results of atmospheric radioactivity monitoring over the Czech Republic, as obtained by the Radiation Monitoring Network, following the Fukushima Dai-Ichi Nuclear Power Plant accident. Maximum values for (131)I were 5.6 mBq m(-3) in aerosol form and 13 mBq m(-3) in gaseous form. The maximum values for (134)Cs and (137)Cs were 0.64 and 0.72 mBq m(-3), respectively. The estimated effective half-time for removing the activity from the atmosphere was 6-7 d and 3.5 d for caesium and iodine, respectively. The gaseous-to-total activity ratios of (131)I ranged between 0.3 and 0.9, with an arithmetic mean value of 0.77. The mean value for the (134)Cs/(137)Cs ratios was close to 1.0. The effective inhalation dose due to the accident for an adult living in the Czech Republic was estimated at <4 × 10(-5) mSv, out of which the proportion of (131)I was 88%.

  16. Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies

    Science.gov (United States)

    Bianchi, Clara Eugenia; Mendoza, Luciano Pedro Oscar; Fernández, Laura Isabel; Natali, María Paula; Meza, Amalia Margarita; Francisco Moirano, Juan

    2016-07-01

    Atmospheric water vapour has been acknowledged as an essential climate variable. Weather prediction and hazard assessment systems benefit from real-time observations, whereas long-term records contribute to climate studies. Nowadays, ground-based global navigation satellite system (GNSS) products have become widely employed, complementing satellite observations over the oceans. Although the past decade has seen a significant development of the GNSS infrastructure in Central and South America, its potential for atmospheric water vapour monitoring has not been fully exploited. With this in mind, we have performed a regional, 7-year-long and homogeneous analysis, comprising 136 GNSS tracking stations, obtaining high-rate and continuous observations of column-integrated water vapour and troposphere zenith total delay. As a preliminary application for this data set, we have estimated local water vapour trends, their significance, and their relation with specific climate regimes. We have found evidence of drying at temperate regions in South America, at a rate of about 2 % per decade, while a slow moistening of the troposphere over tropical regions is also weakly suggested by our results. Furthermore, we have assessed the regional performance of the empirical model GPT2w to blindly estimate troposphere delays. The model reproduces the observed mean delays fairly well, including their annual and semi-annual variations. Nevertheless, a long-term evaluation has shown systematical biases, up to 20 mm, probably inherited from the underlying atmospheric reanalysis. Additionally, the complete data set has been made openly available as supplementary material.

  17. Monitoring Atmospheric Dust Spring Activity at High Southern Latitudes on Mars using OMEGA

    CERN Document Server

    Douté, S

    2013-01-01

    This article presents a monitoring of the atmospheric dust in the south polar region during spring of martian year 27. Our goal is to contribute to identifying the source regions and to understanding lifting as well as transport mechanisms in relation with the seasonal ice regression and the dynamics of the atmosphere. This is of paramount importance since local dust storms generated in this region sometimes grow to global proportions. The imaging spectrometer OMEGA on board Mars Express has acquired the most comprehensive set of observations to date in the near-infrared (0.93-5.1 microns) of the southern high latitudes of Mars from mid-winter solstice (Ls=110, December 2004) to the end of the recession at Ls=320 (November 2005) . We use an original method presented in the companion paper in order to retrieve the optical depth of the atmospheric dust above mineral surfaces at a reference wavelength of one micron. The method is applied on a time series of OMEGA images acquired between Ls=220 and Ls=280 in conj...

  18. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China

    Directory of Open Access Journals (Sweden)

    W. Xu

    2015-07-01

    Full Text Available Global reactive nitrogen (Nr deposition to terrestrial ecosystems has increased dramatically since the industrial revolution. This is especially true in recent decades in China due to continuous economic growth. However, there are no comprehensive reports of both measured dry and wet Nr deposition across China. We therefore conducted a multiple-year study during the period mainly from 2010 to 2014 to monitor atmospheric concentrations of five major Nr species of gaseous NH3, NO2 and HNO3, and inorganic nitrogen (NH4+ and NO3− in both particles and precipitation, based on a Nationwide Nitrogen Deposition Monitoring Network (NNDMN, covering 43 sites in China. Wet deposition fluxes of Nr species were measured directly; dry deposition fluxes were estimated using airborne concentration measurements and inferential models. Our observations reveal large spatial variations of atmospheric Nr concentrations and dry and wet Nr deposition. The annual average concentrations (1.3–47.0 μg N m−3 and dry plus wet deposition fluxes (2.9–75.2 kg N ha−1 yr−1 of inorganic Nr species ranked by region as North China > Southeast China > Southwest China > Northeast China > Northwest China > the Tibetan Plateau or by land use as urban > rural > background sites, reflecting the impact of anthropogenic Nr emission. Average dry and wet N deposition fluxes were 18.5 and 19.3 kg N ha−1 yr−1, respectively, across China, with reduced N deposition dominating both dry and wet deposition. Our results suggest atmospheric dry N deposition is equally important to wet N deposition at the national scale and both deposition forms should be included when considering the impacts of N deposition on environment and ecosystem health.

  19. Concept of a space optoelectronic system for environmental monitoring of the near-earth space, atmosphere, and earth surface

    Science.gov (United States)

    Eltsov, Anatoli V.; Karasev, Vladimir I.; Kolotkov, Vjacheslav V.; Kondranin, Timothy V.

    1997-06-01

    The sharp increase of the man-induced pressure on the environment and hence the need to predict and monitor natural anomalies makes global monitoring of the ecosphere of planet Earth an issue of vital importance. The notion of the ecosphere covers three basic shells closely interacting with each other: the near-Earth space, the atmosphere and the Earth surface. In the near-Earth space (covering 100 to 2000 km altitudes) the primary objects of monitoring are: functioning artificial space objects, the fragments of their constructions or space rubbish (which by estimation amounts to 3.5 million pieces including 30,000 to 70,000 objects having dimensions sufficient for heavy damaging or even destroying functioning space objects) and objects of space origin (asteroids, meteorites and comets) whose trajectories come closely enough to the Earth. Maximum concentrations of space rubbish observed on orbits with altitudes of 800, 1000 and 1500 km and inclinations of 60 to 100 deg. are related in the first place to spacecraft launch requirements. Taking into account the number of launches implemented by different countries in the framework of their own space programs the probability of collision of functioning spacecraft with space rubbish may be estimation increase from (1.5 - 3.5)% at present to (15 - 40)% by 2020. Besides, registration of space radiation flow intensity and the solar activity is no less important in this space area. Subject to control in the atmosphere are time and space variations in temperature fields, humidity, tracing gas concentrations, first of all ozone and greenhouse gases, the state of the cloud cover, wind velocity, etc. The range of objects to be under environmental management of Earth surface is just as diverse and essentially should include the state of the surface and the near-surface layer of seas and oceans, internal reservoirs, the cryosphere and the land surface along with vegetation cover, natural resources and human activities. No matter

  20. Monitoring PM2.5 in the Atmosphere by Using Terahertz Time-Domain Spectroscopy

    Science.gov (United States)

    Zhan, Honglei; Zhao, Kun; Bao, Rima; Xiao, Lizhi

    2016-09-01

    The real-time monitoring of the air pollution with multiple sources is of great significance for pollution control and environmental protection. In this paper, we presented a study of terahertz time-domain spectroscopy (THz-TDS) as a direct tool for monitoring the component and content of PM2.5 in atmosphere. Due to the THz absorption, the intensities of the peaks in THz-TDS decreased with the augment of PM2.5 and were proportional to the PM2.5 content. The ratio of absorbance A to PM2.5 reflected a basically unchanged tendency, indicating the little change of principal elements under the pollution degree. In the high-pollution condition, a lot of SO2 from vehicle and factory was emitted into air. The elements, such as S and O from anions, had a stronger absorption effect in THz range. Based on the absorbance spectra, the absorption tendencies with PM2.5 over the whole range were validated by principal component analysis and the quantitative model with a high correlation was built by using back propagation artificial neural network. BPANN model improved the precision of linear fitting between peak intensities and PM2.5. The research demonstrates that THz-TDS is a promising tool for fast, direct, and reliable monitoring in environmental applications.

  1. Trace gas retrievals from Airborne Compact Atmospheric Mapper (ACAM) observations during the 2011 DISCOVER-AQ flight campaign

    Science.gov (United States)

    Liu, X.; Kowalewski, M. G.; Janz, S. J.; Bhartia, P. K.; Chance, K.; Krotkov, N. A.; Pickering, K. E.; Crawford, J. H.

    2011-12-01

    The DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) mission has just finished its first flight campaign in the Baltimore-Washington D.C. area in July 2011. The ACAM, flown on board the NASA UC-12 aircraft, includes two spectrographs covering the spectral region 304-900 nm and a high-definition video camera, and is expected to provide column measurements of several important air quality trace gases and aerosols for the DISCOVER-AQ mission. The quick look results for NO2 have been shown to very useful in capturing the strong spatiotemporal variability of NO2. Preliminary fitting of UV/Visible spectra has shown that ACAM measurements have adequate signal to noise ratio to measure the trace gases O2, NO2, HCHO, and maybe SO2 and CHOCHO, at individual pixel resolution, although a great deal of effort is needed to improve the instrument calibration and derive proper reference spectrum for retrieving absolute trace gas column densities. In this study, we present analysis of ACAM instrument calibration including slit function, wavelength registration, and radiometric calibration for both nadir-viewing and zenith-sky measurements. Based on this analysis, an irradiance reference spectrum at ACAM resolution will be derived from a high-resolution reference spectrum with additional correction to account for instrument calibration. Using the derived reference spectrum and/or the measured zenith sky measurements, we will perform non-linear least squares fitting to investigate the retrievals of slant column densities of these trace gases from ACAM measurements, and also use an optimal estimation based algorithm including full radiative transfer calculations to derive the vertical column densities of these trace gases. The initial results will be compared with available in-situ and ground-based measurements taken during the DISCOVER-AQ campaign.

  2. Trace metal concentrations in Posidonia oceanica of North Corsica (northwestern Mediterranean Sea: use as a biological monitor?

    Directory of Open Access Journals (Sweden)

    Gosselin Marc

    2006-09-01

    Full Text Available Abstract Background Within semi-closed areas like the Mediterranean Sea, anthropic wastes tend to concentrate in the environment. Metals, in particular, are known to persist in the environment and can affect human health due to accumulation in the food chain. The seagrass Posidonia oceanica, widely found in Mediterranean coastal waters, has been chosen as a "sentinel" to quantify the distribution of such pollutants within the marine environment. Using a technique similar to dendrochronology in trees, it can act as an indicator of pollutant levels over a timeframe of several months to years. In the present study, we measured and compared the levels of eight trace metals (Cr, Ni, Cu, Zn, As, Se, Cd, and Pb in sheaths dated by lepidochronology and in leaves of shoots sampled from P. oceanica meadows collected from six offshore sites in northern Corsica between 1988 and 2004; in the aim to determine 1 the spatial and 2 temporal variations of these metals in these areas and 3 to compared these two types of tissues. Results We found low trace metal concentrations with no increase over the last decade, confirming the potential use of Corsican seagrass beds as reference sites for the Mediterranean Sea. Temporal trends of trace metal concentrations in sheaths were not significant for Cr, Ni, Cu, As or Se, but Zn, Cd, and Pb levels decreased, probably due to the reduced anthropic use of these metals. Similar temporal trends between Cu levels in leaves (living tissue and in sheaths (dead tissue demonstrated that lepidochronology linked with Cu monitoring is effective for surveying the temporal variability of this metal. Conclusion Leaves of P. oceanica can give an indication of the metal concentration in the environment over a short time period (months with good accuracy. On the contrary, sheaths, which gave an indication of changes over long time periods (decades, seem to be less sensitive to variations in the metal concentration in the environment

  3. Data quality monitoring in the presence of aerosols and other adverse atmospheric conditions with H.E.S.S

    CERN Document Server

    Hahn, J; Bernlöhr, K; Krüger, P; Lo, Y T E; Chadwick, P M; Daniel, M K; Deil, C; Gast, H; Kosack, K; Marandon, V

    2015-01-01

    Cherenkov telescope experiments, such as H.E.S.S., have been very successful in astronomical observations in the very-high-energy (VHE; E $>$ 100 GeV) regime. As an integral part of the detector, such experiments use Earth's atmosphere as a calorimeter. For the calibration and energy determination, a standard model atmosphere is assumed. Deviations of the real atmosphere from the model may therefore lead to an energy misreconstruction of primary gamma rays. To guarantee satisfactory data quality with respect to difficult atmospheric conditions, several atmospheric data quality criteria are implemented in the H.E.S.S. software. These quantities are sensitive to clouds and aerosols. Here, the Cherenkov transparency coefficient will be presented. It is a new monitoring quantity that is able to measure long-term changes in the atmospheric transparency. The Cherenkov transparency coefficient derives exclusively from Cherenkov data and is quite hardware-independent. Furthermore, its positive correlation with indepe...

  4. Molecular tracing of confiscated pangolin scales for conservation and illegal trade monitoring in Southeast Asia

    Science.gov (United States)

    Zhang, Huarong; Miller, Mark P.; Yang, Feng; Chan, Hon Ki; Gaubert, Philippe; Ades, Gary; Fischer, Gunter A

    2015-01-01

    Despite being protected by both international and national regulations, pangolins are threatened by illegal trade. Here we report mitochondrial DNA identification and haplotype richness estimation, using 239 pangolin scale samples from two confiscations in Hong Kong. We found a total of 13 genetically distinct cytochrome c oxidase I (COI) haplotypes in two confiscations (13 and ten haplotypes respectively, with ten shared haplotypes between confiscations). These haplotypes clustered in two distinct clades with one clade representing the Sunda pangolin (Manisjavanica). The other clade did not match with any known Asian pangolin sequences, and likely represented a cryptic pangolin lineage in Asia. By fitting sample coverage and rarefaction/regression models to our sample data, we predicted that the total number of COI haplotypes in two confiscations were 14.86 and 11.06 respectively, suggesting that our sampling caught the majority of haplotypes and that we had adequately characterized each confiscation. We detected substantial sequence divergence among the seized scales, likely evidencing that the Sunda pangolins were harvested over wide geographical areas across Southeast Asia. Our study illustrates the value of applying DNA forensics for illegal wildlife trade monitoring.

  5. Fluorescence-based monitoring of in vivo neural activity using a circuit-tracing pseudorabies virus.

    Directory of Open Access Journals (Sweden)

    Andrea E Granstedt

    Full Text Available The study of coordinated activity in neuronal circuits has been challenging without a method to simultaneously report activity and connectivity. Here we present the first use of pseudorabies virus (PRV, which spreads through synaptically connected neurons, to express a fluorescent calcium indicator protein and monitor neuronal activity in a living animal. Fluorescence signals were proportional to action potential number and could reliably detect single action potentials in vitro. With two-photon imaging in vivo, we observed both spontaneous and stimulated activity in neurons of infected murine peripheral autonomic submandibular ganglia (SMG. We optically recorded the SMG response in the salivary circuit to direct electrical stimulation of the presynaptic axons and to physiologically relevant sensory stimulation of the oral cavity. During a time window of 48 hours after inoculation, few spontaneous transients occurred. By 72 hours, we identified more frequent and prolonged spontaneous calcium transients, suggestive of neuronal or tissue responses to infection that influence calcium signaling. Our work establishes in vivo investigation of physiological neuronal circuit activity and subsequent effects of infection with single cell resolution.

  6. CU AMAX-DOAS applications in cloud-free and cloudy atmospheres: innovative Scattered Sun Light observations of trace gases and aerosol extinction

    Science.gov (United States)

    Volkamer, R.; Baidar, S.; Coburn, S.; Dix, B. K.; Oetjen, H.; Ortega, I.; Sinreich, R.; Atmospeclab

    2011-12-01

    An innovative airborne scanning multi-axis differential optical absorption spectroscopy (CU AMAX-DOAS) instrument has been developed at the University of Colorado, Boulder. The instrument collects scattered sunlight spectra in a sequence of discrete viewing angles, and employs the DOAS method (inherently calibrated, and selective) to simultaneously retrieve multiple trace gases, e.g., nitrogen dioxide (NO2), nitrous acid (HONO), formaldehyde (HCHO), glyoxal (CHOCHO), bromine oxide (BrO), iodine oxide (IO), chlorine dioxide (OClO), water vapor (H2O), and oxygen dimers (O4, at 360nm, 477nm, and 632nm) differential slant column densities (dSCD). Vertical profiles of these gases and multi-spectral aerosol extinction are inferred by combining Monte-Carlo Radiative Transfer Modelling (RTM) and optimal estimation techniques to construct a model atmosphere that can in principle represent 3D clouds and aerosols. The atmospheric state of this model atmosphere is constrained by observations of O4 dSCDs, Raman Scattering Probability (RSP), and intensity ratios, i.e., quantities that depend solely on relative intensity changes, without need for a direct sun view, or absolute radiance calibration. We show results from ongoing validation efforts (NOAA TwinOtter aircraft during CalNex and CARES), and demonstrate vertical profile retrievals (NSF/NCAR GV over the tropical Pacific Ocean) in both cloud-free and cloudy atmospheres.

  7. New experience in atmospheric monitoring in Moscow city on the base of WSN technology

    Science.gov (United States)

    Asavin, Alex; Litvinov, Artur; Baskakov, Sergey; Chesalova, Elena

    2016-04-01

    The aim of this report is to present the gas emission of H2 in the general composition of atmospheric pollution of Moscow city. We start the project at the beginning of 2015 year in two Moscow academicals organization -Vernadsky Institute of Geochemistry and Analytical Chemistry and Moscow Geological State Museum. One place is in the center of Moscow, near the Kremlin and other one is in the most clear zone of Moscow - Moscow State University place, Vorobyevy Mountains (high point of Moscow). We plan to compare these regions by the concentration of H2 and other gases (CH4, SO2) for green gas pollution. Application network of monitoring is composed of gas sensors (H2, CH4), complex autonomous equipment for measurement temperature, pressure, humidity and network of telecommunications (used ZigBee protocol). Our project offer the technical solutions for monitoring network on the base of WSN (wireless sensor network) technology and the high-sensitive sensors of hydrogen and methane, software and electronic equipment with a transmitter network. This work is the first project in Russia. Gas sensors for monitoring system were developed on the base of MIS-structures (metal-insulator-semiconductor). MIS-sensors are suitable for measuring the concentrations of the following gases: hydrogen, hydrogen sulphide, nitrogen dioxide, ethylmercaptan, chlorine and ammonia. The basis of the sensor is MIS - structure Pd-Ta2O5-SiO2-Si,), which capacitance changes when reaction with gases occurs. The sensor fabrication technology is based on the microelectronics device fabrication technologies and the thin film laser deposition technique. Sensor can be used for measuring the concentration of any gas among noted before, in ambient temperature range -30..+40°C and RH 30-90% (30°C).Three gas sensors with analog interface were made for our experimental monitoring system. Original calibration was made using calibration by special standard mixture of H2 and atmosphere. There are 10-15 points

  8. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace-gas and criteria pollutant species

    Directory of Open Access Journals (Sweden)

    S. E. Bush

    2015-01-01

    Full Text Available Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the surface 50 m has the greatest direct impacts on human health as well as ecosystem processes, hence data at this level is necessary for addressing carbon cycle and public health related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We identify fugitive urban CH4 emissions and assess the magnitude of CH4 emissions from known point sources. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.

  9. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace-gas and criteria pollutant species

    Science.gov (United States)

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.

    2015-01-01

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the surface 50 m has the greatest direct impacts on human health as well as ecosystem processes, hence data at this level is necessary for addressing carbon cycle and public health related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We identify fugitive urban CH4 emissions and assess the magnitude of CH4 emissions from known point sources. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.

  10. Future monitoring of charged particle energy deposition into the upper atmosphere and comments on possible relationships between atmospheric phenomena and solar and/or geomagnetic activity

    Science.gov (United States)

    Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.

    1975-01-01

    Monitoring of earth's atmosphere was conducted for several years utilizing the ITOS series of low-altitude, polar-orbiting weather satellites. A space environment monitoring package was included in these satellites to perform measurements of a portion of earth's charged particle environment. The charged particle observations proposed for the low-altitude weather satellite TIROS N, are described which will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Such observations may be of use in future studies of the relationships between geomagnetic activity and atmospheric weather pattern developments. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance of distinguishing between solar and geomagnetic activity as possible causative sources. Such differentiation is necessary because of the widely different spatial and time scales involved in the atmospheric energy input resulting from these various sources of activity.

  11. Quantitative sampling and analysis of trace elements in atmospheric aerosols: impactor characterization and Synchrotron-XRF mass calibration

    Science.gov (United States)

    Richard, A.; Bukowiecki, N.; Lienemann, P.; Furger, M.; Fierz, M.; Minguillón, M. C.; Weideli, B.; Figi, R.; Flechsig, U.; Appel, K.; Prévôt, A. S. H.; Baltensperger, U.

    2010-10-01

    Identification of trace elements in ambient air can add substantial information to pollution source apportionment studies, although they do not contribute significantly to emissions in terms of mass. A method for quantitative size and time-resolved trace element evaluation in ambient aerosols with a rotating drum impactor and synchrotron radiation based X-ray fluorescence is presented. The impactor collection efficiency curves and size segregation characteristics were investigated in an experiment with oil and salt particles. Cutoff diameters were determined through the ratio of size distributions measured with two particle sizers. Furthermore, an external calibration technique to empirically link fluorescence intensities to ambient concentrations was developed. Solutions of elemental standards were applied with an ink-jet printer on thin films and area concentrations were subsequently evaluated with external wet chemical methods. These customized and reusable reference standards enable quantification of different data sets analyzed under varying experimental conditions.

  12. Quantitative sampling and analysis of trace elements in atmospheric aerosols: impactor characterization and Synchrotron-XRF mass calibration

    Directory of Open Access Journals (Sweden)

    A. Richard

    2010-10-01

    Full Text Available Identification of trace elements in ambient air can add substantial information to pollution source apportionment studies, although they do not contribute significantly to emissions in terms of mass. A method for quantitative size and time-resolved trace element evaluation in ambient aerosols with a rotating drum impactor and synchrotron radiation based X-ray fluorescence is presented. The impactor collection efficiency curves and size segregation characteristics were investigated in an experiment with oil and salt particles. Cutoff diameters were determined through the ratio of size distributions measured with two particle sizers. Furthermore, an external calibration technique to empirically link fluorescence intensities to ambient concentrations was developed. Solutions of elemental standards were applied with an ink-jet printer on thin films and area concentrations were subsequently evaluated with external wet chemical methods. These customized and reusable reference standards enable quantification of different data sets analyzed under varying experimental conditions.

  13. A virtual remote sensing observation network for continuous, near-real-time monitoring of atmospheric instability

    Science.gov (United States)

    Toporov, Maria; Löhnert, Ulrich; Potthast, Roland; Cimini, Domenico; De Angelis, Francesco

    2017-04-01

    Short-term forecasts of current high-resolution numerical weather prediction models still have large deficits in forecasting the exact temporal and spatial location of severe, locally influenced weather such as summer-time convective storms or cool season lifted stratus or ground fog. Often, the thermodynamic instability - especially in the boundary layer - plays an essential role in the evolution of weather events. While the thermodynamic state of the atmosphere is well measured close to the surface (i.e. 2 m) by in-situ sensors and in the upper troposphere by satellite sounders, the planetary boundary layer remains a largely under-sampled region of the atmosphere where only sporadic information from radiosondes or aircraft observations is available. The major objective of the presented DWD-funded project ARON (Extramural Research Programme) is to overcome this observational gap and to design an optimized network of ground based microwave radiometers (MWR) and compact Differential Absorption Lidars (DIAL) for a continuous, near-real-time monitoring of temperature and humidity in the atmospheric boundary layer in order to monitor thermodynamic (in)stability. Previous studies showed, that microwave profilers are well suited for continuously monitoring the temporal development of atmospheric stability (i.e. Cimini et al., 2015) before the initiation of deep convection, especially in the atmospheric boundary layer. However, the vertical resolution of microwave temperature profiles is best in the lowest kilometer above the surface, decreasing rapidly with increasing height. In addition, humidity profile retrievals typically cannot be resolved with more than two degrees of freedom for signal, resulting in a rather poor vertical resolution throughout the troposphere. Typical stability indices used to assess the potential of convection rely on temperature and humidity values not only in the region of the boundary layer but also in the layers above. Therefore, satellite

  14. Radio-controlled xenon flashers for atmospheric monitoring at the HiRes cosmic ray observatory

    CERN Document Server

    Wiencke, L R; Al-Seady, M; Belov, K; Bird, D J; Boyer, J; Chen, G F; Clay, R W; Dai, H Y; Dawson, B R; Denholm, P; Gloyn, J; He, D; Ho, Y; Huang, M A; Jui, C C H; Kidd, M J; Kieda, D B; Knapp, B; Ko, S; Larson, K; Loh, E C; Mannel, E J; Matthews, J N; Meyer, J R; Salman, A; Simpson, K M; Smith, J D; Sokolsky, P; Steenblik, D; Tang, J K K; Taylor, S; Thomas, S B; Wilkinson, C R

    1999-01-01

    Stable, robust ultraviolet light sources for atmospheric monitoring and calibration pose a challenge for experiments that measure air fluorescence from cosmic ray air showers. One type of light source in use at the High Resolution Fly's Eye (HiRes) cosmic ray observatory features a xenon flashbulb at the focal point of a spherical mirror to produce a 1 mu s pulse of collimated light that includes a strong UV component. A computer-controlled touch tone radio system provides remote operation of bulb triggering and window heating. These devices, dubbed 'flashers', feature stand-alone operation, +-5% shot-to-shot stability, weather proof construction and are well suited for long-term field use. This paper describes the flashers, the radio control system, and a 12-unit array in operation at the HiRes cosmic ray observatory

  15. Radio-controlled xenon flashers for atmospheric monitoring at the HiRes cosmic ray observatory

    Science.gov (United States)

    Wiencke, L. R.; Abu-Zayyad, T.; Al-Seady, M.; Belov, K.; Bird, D. J.; Boyer, J.; Chen, G. F.; Clay, R. W.; Dai, H. Y.; Dawson, B. R.; Denholm, P.; Gloyn, J.; He, D.; Ho, Y.; Huang, M. A.; Jui, C. C. H.; Kidd, M. J.; Kieda, D. B.; Knapp, B.; Ko, S.; Larson, K.; Loh, E. C.; Mannel, E. J.; Matthews, J. N.; Meyer, J. R.; Salman, A.; Simpson, K. M.; Smith, J. D.; Sokolsky, P.; Steenblik, D.; Tang, J. K. K.; Taylor, S.; Thomas, S. B.; Wilkinson, C. R.

    1999-06-01

    Stable, robust ultraviolet light sources for atmospheric monitoring and calibration pose a challenge for experiments that measure air fluorescence from cosmic ray air showers. One type of light source in use at the High Resolution Fly's Eye (HiRes) cosmic ray observatory features a xenon flashbulb at the focal point of a spherical mirror to produce a 1 μs pulse of collimated light that includes a strong UV component. A computer-controlled touch tone radio system provides remote operation of bulb triggering and window heating. These devices, dubbed "flashers", feature stand-alone operation, ±5% shot-to-shot stability, weather proof construction and are well suited for long-term field use. This paper describes the flashers, the radio control system, and a 12-unit array in operation at the HiRes cosmic ray observatory

  16. Development of a 22 GHz ground-based spectrometer for middle atmospheric water vapour monitoring

    Directory of Open Access Journals (Sweden)

    Pietro Paolo Bertagnolio

    2012-03-01

    Full Text Available The water Vapour Emission SPectrometer for Antarctica at 22 GHz (VESPA-22 has been designed for long-term middle atmospheric climate change monitoring and satellite data validation. It observes the water vapour spectral line at 22.235 GHz using the balanced beam-switching technique. The receiver antenna has been characterized, showing an HPBW of 3.5° and a sidelobe level 40 dB below the main lobe. The receiver front-end has a total gain of 105 dB and a LNA noise temperature of 125 K. A FFT spectrometer (bandwidth 1 GHz, resolution 63 kHz will be used as back-end, allowing the retrieval of H2O concentration profiles in the 20 to 80 km altitude range. The control I/O interface is based on reconfigurable hardware (USB-CPLD.

  17. Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios.

    Science.gov (United States)

    Núñez, Andrés; Amo de Paz, Guillermo; Rastrojo, Alberto; García, Ana M; Alcamí, Antonio; Gutiérrez-Bustillo, A Montserrat; Moreno, Diego A

    2016-03-01

    The first part of this review ("Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios") describes the current knowledge on the major biological particles present in the air regarding their global distribution, concentrations, ratios and influence of meteorological factors in an attempt to provide a framework for monitoring their biodiversity and variability in such a singular environment as the atmosphere. Viruses, bacteria, fungi, pollen and fragments thereof are the most abundant microscopic biological particles in the air outdoors. Some of them can cause allergy and severe diseases in humans, other animals and plants, with the subsequent economic impact. Despite the harsh conditions, they can be found from land and sea surfaces to beyond the troposphere and have been proposed to play a role also in weather conditions and climate change by acting as nucleation particles and inducing water vapour condensation. In regards to their global distribution, marine environments act mostly as a source for bacteria while continents additionally provide fungal and pollen elements. Within terrestrial environments, their abundances and diversity seem to be influenced by the land-use type (rural, urban, coastal) and their particularities. Temporal variability has been observed for all these organisms, mostly triggered by global changes in temperature, relative humidity, et cetera. Local fluctuations in meteorological factors may also result in pronounced changes in the airbiota. Although biological particles can be transported several hundreds of meters from the original source, and even intercontinentally, the time and final distance travelled are strongly influenced by factors such as wind speed and direction. [Int Microbiol 2016; 19(1):1-1 3].

  18. Monitoring atmospheric turbulence profiles with high vertical resolution using PML/PBL instrument

    Science.gov (United States)

    Blary, F.; Ziad, A.; Borgnino, J.; Fantéï-Caujolle, Y.; Aristidi, Eric; Lantéri, H.

    2014-07-01

    Wide-Field Adaptive Optics (WFAO) have been proposed for the next generation of telescopes. In order to be efficient, correction using WFAO require knowledge of atmospheric turbulence parameters. The structure constant of index-of-refraction fluctuations (C2 N ) being one of them. Indirect methods implemented in instruments as SCIDAR, MASS, SLODAR, CO-SLIDAR and MOSP have been proposed to measure C2 N (h) pro le through different layers of the atmosphere. A new monitor called the Profiler of Moon Limb (PML) is presented. In this instrument, C2 N (h) pro les are retrieved from the transverse covariance via minimization of a maximum likelihood criterion under positivity constraint using an iterative gradient method. An other approach using a regularization method (RM) is also studied. Instrument errors are mainly related to the detection of the Moon limb position and are mostly due to photon noise. Numerical simulations have been used to evaluate the error on the extracted pro le and its propagation from the detection to the inverse technique.

  19. NOAA Atmospheric, Marine and Arctic Monitoring Using UASs (including Rapid Response)

    Science.gov (United States)

    Coffey, J. J.; Jacobs, T.

    2015-12-01

    Unmanned systems have the potential to efficiently, effectively, economically, and safely bridge critical observation requirements in an environmentally friendly manner. As the United States' Atmospheric, Marine and Arctic areas of interest expand and include hard-to-reach regions of the Earth (such as the Arctic and remote oceanic areas) optimizing unmanned capabilities will be needed to advance the United States' science, technology and security efforts. Through increased multi-mission and multi-agency operations using improved inter-operable and autonomous unmanned systems, the research and operations communities will better collect environmental intelligence and better protect our Country against hazardous weather, environmental, marine and polar hazards. This presentation will examine NOAA's Atmospheric, Marine and Arctic Monitoring Unmanned Aircraft System (UAS) strategies which includes developing a coordinated effort to maximize the efficiency and capabilities of unmanned systems across the federal government and research partners. Numerous intra- and inter-agency operational demonstrations and assessments have been made to verify and validated these strategies. This includes the introduction of the Targeted Autonomous Insitu Sensing and Rapid Response (TAISRR) with UAS concept of operations. The presentation will also discuss the requisite UAS capabilities and our experience in using them.

  20. Capability of Raman lidar for monitoring the variation of atmospheric CO2 profile

    Institute of Scientific and Technical Information of China (English)

    Zhao Pei-Tao; Zhang Yin-Chao; Wang Lian; Hu Shun-Xing; Su Jia; Cao Kai-Fa; Zhao Yue-Feng; Hu Huan-Ling

    2008-01-01

    Lidar (Light detection and ranging) has special capabilities for remote sensing of many different behaviours of the atmosphere.One of the techniques which show a great deal of promise for several applications is Raman scattering.The detecting capability,including maximum operation range and minimum detectable gas concentration is one of the most significant parameters for lidar remote sensing of pollutants.In this paper,based on the new method for evaluating the capabilities of a Raman lidar system,we present an evaluation of detecting capability of Raman lidar for monitoring atmospheric CO2 in Hefei.Numerical simulations about the influence of atmospheric conditions on lidar detecting capability were carried out,and a conclusion can be drawn that the maximum difference of the operation ranges caused by the weather conditions alone can reach about 0.4 to 0.5kin with a measuring precision within 30ppmv.The range of minimum detectable concentration caused by the weather conditions alone can reach about 20 to 35 ppmv in vertical direction for 20000 shots at a distance of 1 km on the assumption that other parameters are kept constant.The other corresponding parameters under different conditions are also given.The capability of Raman lidar operated in vertical direction was found to be superior to that operated in horizontal direction.During practical measurement with the Raman lidar whose hardware components were fixed,aerosol scattering extinction effect would be a significant factor that influenced the capability of Raman lidar.This work may be a valuable reference for lidar system designing,measurement accuracy improving and data processing.

  1. Environmental networks for large-scale monitoring of Earth and atmosphere

    Science.gov (United States)

    Maurodimou, Olga; Kolios, Stavros; Konstantaras, Antonios; Georgoulas, George; Stylios, Chrysostomos

    2013-04-01

    Installation and operation of instrument/sensor networks are proven fundamental in the monitoring of the physical environment from local to global scale. The advances in electronics, wireless communications and informatics has led to the development of a huge number of networks at different spatial scales that measure, collect and store a wide range of environmental parameters. These networks have been gradually evolved into integrated information systems that provide real time monitoring, forecasts and different products from the initial collected datasets. Instrument/sensor networks have nowadays become important solutions for environmental monitoring, comprising a basic component of fully automated systems developing worldwide that contribute in the efforts for a sustainable Earth's environment (e.g. Hart et al., 2006, Othman et al., 2012). They are also used as a source of data for models parameterization and as verification tools for accuracy assessment techniques of the satellite imagery. Environmental networks can be incorporated into decision support systems (e.g Rizzi et al., 2012) providing informational background along with data from satellites for decision making, manage problems, suggest solutions and best practices for a sustainable management of the environment. This is a comparative study aiming to examine and highlight the significant role of existing instrument/sensor networks for large-scale monitoring of environmental issues, especially atmospheric and marine environment as well as weather and climate. We provide characteristic examples of integrated systems based on large scale instrument/sensor networks along with other sources of data (like satellite datasets) as informational background to measure, identify, monitor, analyze and forecast a vast series of atmospheric parameters (like CO2, O3, particle matter and solar irradiance), weather, climate and their impacts (e.g., cloud systems, lightnings, rainfall, air and surface temperature

  2. Monitoring trace metal contaminants in green mussel, Perna viridis from the coastal waters of Karnataka, southwest coast of India.

    Science.gov (United States)

    Sasikumar, Geetha; Krishnakumar, P K; Bhat, G S

    2006-08-01

    The green mussel (Perna viridis) is widely distributed in the coastal waters of Asia and is used in mussel watch programmes for monitoring environmental contaminants throughout the region. Green mussels representing different size groups and habitats were sampled from their natural beds at 28 locations in the inshore waters of Karnataka (southwest coast of India) to analyze the tissue concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn. Tissue concentrations of Cr, Cu, Fe, and Pb were significantly higher in smaller mussels than in the larger size group. Significantly higher concentrations of Cr, Cu, Fe, Mn, and Ni were observed in mussels sampled from intertidal beds when compared to mussels from the subtidal beds. The sampling sites were categorized into industrial sites (IS), urban sites (US), and nonurban sites (NS) based on principal component analysis of metal concentrations in mussel. Spatial variations in tissue concentrations of all metals were observed except for Zn. Generally, the levels of toxic trace metals like Pb, Cd, Ni, and Cr in the whole tissue of P. viridis were within safe limits throughout the coast of Karnataka. However, relatively high concentrations of Cd, Cr, and Pb were observed in the whole tissue of green mussels collected from the industrial sites (IS), which may be derived from a variety of anthropogenic activities.

  3. Laser-induced incandescence diagnostic for in situ monitoring of nanoparticle synthesis in an atmospheric plasma

    Science.gov (United States)

    Mitrani, James; Patel, Shane; Shneider, Mikhail; Stratton, Brent; Raitses, Yevgeny

    2014-10-01

    A DC arc discharge with a consumed graphite electrode is commonly used for synthesis of carbon nanoaparticles in a low temperature (0.1-1 eV), atmospheric pressure plasma. The formation of nanoparticles in this plasma is poorly understood; it is not clear where nanoparticles nucleate and grow in the arc discharge. Therefore, a laser-induced incandescence (LII) diagnostic for in situ monitoring of the nanoparticles' spatial distribution in the plasma is currently being constructed. The LII diagnostic involves heating the particles with a short-pulsed laser, and measuring the induced spatiotemporal incandescence profiles on longer timescales. By appropriately modeling the induced spatiotemporal incandescence profiles, one can measure particle diameters and volume fraction. LII diagnostics have been extensively used to study soot particles in flames. However, they have never been applied in a strongly coupled plasma background. Even though the spatial dimensions for soot and nanoparticles are similar, great care is needed in developing an LII diagnostic for monitoring nanoparticles in a plasma background. Therefore, we will calibrate our LII diagnostic by measuring spatiotemporal incandescence profiles of known, research grade soot and nanoparticles. This work was supported by DOE Contract DE-AC02-09CH11466.

  4. Study of trace gases in the Martian atmosphere: Groundbased observation using SUBARU/IRCS and development of radiative transfer model for MEX/PFS limb observation

    Science.gov (United States)

    Aoki, S.; Nakagawa, H.; Kasaba, Y.; Giuranna, M.; Geminale, A.; Sindoni, G.; Sagawa, H.; Mendrok, J.; Kasai, Y.; Formisano, V.

    2012-09-01

    We observed Martian atmosphere to investigate CH4, H2O, and HDO on 30 November 2011, 4-5 January 2012, and 12 April 2012 using SUBARU/ IRCS. This observation aims to verify CH4 on Mars, constrain its source, and investigate the distribution of H2O/HDO ratio. Our observation covered possible source areas of CH4, i.e. the areas where the extend plumes of CH4 were detected by previous groundbased and MEX/PFS observations [1,2] and the potential mud volcanism areas [3,4]. This paper will show some preliminary results. Vertical profiles of these trace gases are crucial for understanding their chemistry and transportation. Limb observations by MEX/PFS are a powerful tool to retrieve vertical profiles of H2O, CO, and CH4. For this purpose, we adapted the SARTre model, a radiative transfer code which includes multiple scattering for limb geometry observations developed for the terrestrial atmosphere [5], to the Martian atmosphere. In order to validate our model, SARTre model for Martian limb, we first compared of our synthetic spectra in nadir geometry with the result from ARS [6] which has been widely used for previous studies of MEX/PFS nadir-observation. We concluded that the difference between them is small offset (below 3%) in the spectral range between 3000 and 3030 cm-1.

  5. Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) from an Unmanned Aerial Vehicle (UAV): Results from the 2014 AROMAT campaign

    Science.gov (United States)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Fayt, Caroline; Maes, Jeroen; Mingireanu, Florin; Mocanu, Ionut; Georgescu, Lucian; Van Roozendael, Michel

    2015-04-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is an instrument dedicated to atmospheric trace gas retrieval from an Unmanned Aerial Vehicle (UAV). The payload is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27x12x12 cm3, and 6 W. The custom-built 2.5 m flying wing UAV is electrically powered, has a typical airspeed of 100 km/h, and can operate at a maximum altitude of 3 km. Both the payload and the UAV were developed in the framework of a collaboration between the Belgian Institute for Space Aeronomy (BIRA-IASB) and the Dunarea de Jos University of Galati, Romania. We present here SWING-UAV test flights dedicated to NO2 measurements and performed in Romania on 10 and 11 September 2014, during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign. The UAV performed 5 flights in the vicinity of the large thermal power station of Turceni (44.67° N, 23.4° E). The UAV was operated in visual range during the campaign, up to 900 m AGL , downwind of the plant and crossing its exhaust plume. The spectra recorded on flight are analyzed with the Differential Optical Absorption Spectroscopy (DOAS) method. The retrieved NO2 Differential Slant Column Densities (DSCDs) are up to 1.5e17 molec/cm2 and reveal the horizontal gradients around the plant. The DSCDs are converted to vertical columns and compared with coincident car-based DOAS measurements. We also present the near-future perspective of the SWING-UAV observation system, which includes flights in 2015 above the Black Sea to quantify ship emissions, the addition of SO2 as a target species, and autopilot flights at higher altitudes to cover a typical satellite pixel extent (10x10 km2).

  6. Multipass optical absorption spectroscopy: a fast-scanning laser spectrometer for the in situ determination of atmospheric trace-gas components, in particular OH.

    Science.gov (United States)

    Armerding, W; Spiekermann, M; Walter, J; Comes, F J

    1996-07-20

    The optical design of an absorption spectrometer for in situ measurements of atmospheric trace gases is reported. The light source is a rapidly tuned and power-stabilized dye-ring laser, which is frequency doubled by an intracavity BBO crystal. The second harmonic and the fundamental are used simultaneously for measurement of OH, SO(2), CH(2)O, and naphthalene in the UV and of NO(2) in the visible. The 1.2-km absorption path is folded within a 6-m White-cell-type multiple-reflection system with an open-path setup. The absorption sensitivity of the spectrometer is better than 1 part in 10(-5) under tropospheric conditions (integration time 1 min., signal-to-noise ratio 1).

  7. PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models

    Directory of Open Access Journals (Sweden)

    S. R. Freitas

    2011-05-01

    Full Text Available The preprocessor PREP-CHEM-SRC presented in the paper is a comprehensive tool aiming at preparing emission fields of trace gases and aerosols for use in atmospheric-chemistry transport models. The considered emissions are from the most recent databases of urban/industrial, biogenic, biomass burning, volcanic, biofuel use and burning from agricultural waste sources. For biomass burning, emissions can be also estimated directly from satellite fire detections using a fire emission model included in the tool. The preprocessor provides emission fields interpolated onto the transport model grid. Several map projections can be chosen. The inclusion of these emissions in transport models is also presented. The preprocessor is coded using Fortran90 and C and is driven by a namelist allowing the user to choose the type of emissions and the databases.

  8. Off-axis measurements of atmospheric trace gases by use of an airborne ultraviolet-visible spectrometer.

    Science.gov (United States)

    Petritoli, Andrea; Ravegnani, Fabrizio; Giovanelli, Giorgio; Bortoli, Daniele; Bonafè, Ubaldo; Kostadinov, Ivan; Oulanovsky, Alexey

    2002-09-20

    An airborne UV-visible spectrometer, the Gas Analyzer Spectrometer Correlating Optical Differences, airborne version (GASCOD/A4pi) was successfully operated during the Airborne Polar Experiment, Geophysica Aircraft in Antarctica airborne campaign from Ushuaia (54 degrees 49' S, 68 degrees 18' W), Argentina in southern spring 1999. The instrument measured scattered solar radiation through three optical windows with a narrow field of view (FOV), one from the zenith, two from the horizontal, as well as actinic fluxes through 2pi FOV radiometric heads. Only a few airborne measurements of scattered solar radiation at different angles from the zenith are available in the literature. With our configuration we attempted to obtain the average line-of-sight concentrations of detectable trace gases. The retrieval method, based on differential optical absorption spectroscopy, is described and results for ozone are shown and compared with measurements from an in situ instrument as the first method of validation.

  9. A pre-processor of trace gases and aerosols emission fields for regional and global atmospheric chemistry models

    Directory of Open Access Journals (Sweden)

    S. R. Freitas

    2010-06-01

    Full Text Available The pre-processor PREP-CHEM-SRC presented in the paper is a comprehensive tool aiming at preparing emissions fields of trace gases and aerosols for use in regional or global transport models. The emissions considered are urban/industrial, biogenic, biomass burning, volcanic, biofuel use and burning from agricultural waste sources from most recent databases or from satellite fire detections for biomass burning. A plumerise model is used to derive the height of smoke emissions from satellite fire products. The pre-processor provides emission fields interpolated onto the transport model grid. Several map projections can be chosen. The way to include these emissions in transport models is also detailed. The pre-processor is coded using Fortran 90 and C and is driven by a namelist allowing the user to choose the type of emissions and the database.

  10. Using biogeochemical tracing and ecohydrological monitoring to increase understanding of water, sediment and carbon dynamics across dryland vegetation transitions

    Science.gov (United States)

    Puttock, Alan; Dungait, Jennifer; Macleod, Kit; Bol, Roland; Brazier, Richard

    2014-05-01

    Drylands worldwide have experienced rapid and extensive environmental change, which across large areas has been characterised by the encroachment of woody vegetation into grasslands. Woody encroachment leads to changes in the abiotic and biotic structure and function of dryland ecosystems and has been shown to result in accelerated soil erosion and loss of soil nutrients. The relationship between environmental change, soil erosion and the carbon cycle in dryland environments remains uncertain. Covering over 40 % of the terrestrial land surface, dryland environments are of significant global importance, both as a habitat and a soil carbon store. Thus, there is a clear need to further our understanding of dryland vegetation change and impacts on carbon dynamics. Here, grama grass to creosote shrub and grama grass to piñon-juniper woodland; two grass-to-woody ecotones that occur across large swathes of the semi-arid Southwestern United States are investigated. This study combines an ecohydrological monitoring framework with a multi-proxy biogeochemical approach using stable carbon isotope and n-alkane lipid biomarkers to trace the source of organic carbon. Results will be presented showing that following woody encroachment into grasslands, there is a transition to a more heterogeneous ecosystem structure and an increased hydrological connectivity. Consequentially, not only do drylands lose significantly more soil and organic carbon via accentuated fluvial erosion, but this includes significant amounts of legacy organic carbon which would previously have been stable under the previous grass cover. Results suggest that dryland soils may therefore, not act as a stable organic carbon pool and that accelerated fluvial erosion of carbon, driven by vegetation change, has important implications for the global carbon cycle.

  11. Atmospheric deposition of trace elements around point sources and human health risk assessment. I: Impact zones around a lead source

    DEFF Research Database (Denmark)

    Moseholm, L.; Larsen, Erik Huusfeldt; Andersen, B.

    1992-01-01

    The deposition of lead was monitored over 8 years in the area around a car battery factory north of Copenhagen, Denmark. The area also has heavy traffic. Deposition was measured by in-situ grown vegetables, transplant grass culture biomonitors, bulk deposition and soil samples. Three impact zones...

  12. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.F.; Jiang, Z.C.; He, M.; Hu, B. [Wuhan University, Wuhan (China). Dept. of Chemistry

    2007-07-15

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m{sup -3} (Eu) to 6.7 Pg m{sup -3} (Nd) with the precisions of 4.1% (Yb) to 10% (La) = 1 {mu} g L{sup -1}, n = 9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition.

  13. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling.

    Science.gov (United States)

    Zhang, Yuefei; Jiang, Zucheng; He, Man; Hu, Bin

    2007-07-01

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m(-3)(Eu) to 6.7 pg m(-3)(Nd) with the precisions of 4.1%(Yb) to 10%(La) (c=1 microg L(-1), n=9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition.

  14. Seasonal and diurnal variations of atmospheric mercury across the US determined from AMNet monitoring data

    Directory of Open Access Journals (Sweden)

    X. Lan

    2012-04-01

    Full Text Available Speciated atmospheric mercury observations collected over the period from 2008 to 2010 at the Environmental Protection Agency and National Atmospheric Deposition Program Atmospheric Mercury Network sites (AMNet were analyzed for its spatial, seasonal, and diurnal characteristics across the US Median values of gaseous elemental mercury (GEM, gaseous oxidized mercury (GOM and particulate bound mercury (PBM at 11 different AMNet sites ranged from 148–226 ppqv (1.32–2.02 ng m−3, 0.05–1.4 ppqv (0.47–12.4 pg m−3 and 0.18–1.5 ppqv (1.61–13.7 pg m−3, respectively. Common characteristics of these sites were the similar median levels of GEM as well as its seasonality, with the highest mixing ratios occurring in winter and spring and the lowest in fall. However, discernible differences in monthly average GEM were as large as 30 ppqv, which may be caused by sporadic influence from local emission sources. The largest diurnal variation amplitude of GEM occurred in the summer. Seven rural sites displayed similar GEM summer diurnal patterns, in that the lowest levels appeared in the early morning, and then the GEM mixing ratio increased after sunrise and reached its maxima at noon or in the early afternoon. However, sites in Utah (UT96, UT97 and New York (NY95 showed a distinctly different pattern, with the lowest mixing ratios appearing in the afternoon and the highest mixing ratios at night. Unlike GEM, GOM exhibited higher mixing ratios in spring and summer. The largest diurnal variation amplitude of GOM occurred in spring for most AMNet sites. GOM diurnal minima appeared before sunrise and maxima appeared in the afternoon, and the variation in magnitude for all seasons at most monitoring sites fell in the range of 0 to 2 ppqv, except the Utah sites (up to 5 ppqv. The increased GOM mixing ratio in the afternoon indicated a photochemically driven oxidation of GEM resulting in GOM formation. PBM exhibited

  15. Use of the lichen Xanthoria mandschurica in monitoring atmospheric elemental deposition in the Taihang Mountains, Hebei, China

    Science.gov (United States)

    Liu, Hua-Jie; Zhao, Liang-Cheng; Fang, Shi-Bo; Liu, Si-Wa; Hu, Jian-Sen; Wang, Lei; Liu, Xiao-Di; Wu, Qing-Feng

    2016-04-01

    Air pollution is a major concern in China. Lichens are a useful biomonitor for atmospheric elemental deposition but have rarely been used in North China. The aim of this study was to investigate the atmospheric depositions of 30 trace elements (Al, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, Sb, Sc, Sm, Sr, Tb, Th, Ti, Tl, V and Zn) in a region of the Taihang Mountains, Hebei Province, China using lichens as biomonitors. Epilithic foliose lichen Xanthoria mandschurica was sampled from 21 sites and analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The results show that 1) eight elements (Cd, Cr, Cu, Mo, P, Pb, Sb and Zn) are of atmospheric origin and are highly influenced by the atmospheric transportation from the North China Plain, as well as local mining activities, while 2) the remaining 22 elements are primarily of crustal origin, the concentration of which has been enhanced by local mining and quarrying activities. These results clearly validate the applicability of lichens in biomonitoring of atmospheric elemental deposition and demonstrate the spatial pattern for air pollution in the region.

  16. Atmospheric monitoring of a perfluorocarbon tracer at the 2009 ZERT Center experiment

    Science.gov (United States)

    Pekney, Natalie; Wells, Arthur; Rodney Diehl, J.; McNeil, Matthew; Lesko, Natalie; Armstrong, James; Ference, Robert

    2012-02-01

    Field experiments at Montana State University are conducted for the U.S. Department of Energy as part of the Zero Emissions Research and Technology Center (ZERT) to test and verify monitoring techniques for carbon capture and storage (CCS). A controlled release of CO 2 with an added perfluorocarbon tracer was conducted in July 2009 in a multi-laboratory study of atmospheric transport and detection technologies. Tracer plume dispersion was measured with various meteorological conditions using a tethered balloon system with Multi-Tube Remote Samplers (MTRS) at elevations of 10 m, 20 m, and 40 m above ground level (AGL), as well as a ground-based portable tower with monitors containing sorbent material to collect the tracer at 1 m, 2 m, 3 m, and 4 m AGL. Researchers designed a horizontal grid of sampling locations centered at the tracer plume source, with the tower positioned at 10 m and 30 m in both upwind and downwind directions, and the MTRS spaced at 50 m and 90 m downwind and 90 m upwind. Tracer was consistently detected at elevated concentrations at downwind sampling locations. With very few exceptions, higher tracer concentrations correlated with lower elevations. Researchers observed no statistical difference between sampling at 50 m and 90 m downwind at the same elevation. The US EPA AERMOD model applied using site-specific information predicted transport and dispersion of the tracer. Model results are compared to experimental data from the 2009 ZERT experiment. Successful characterization of the tracer plume simulated by the ZERT experiment is considered a step toward demonstrating the feasibility of remote sampling with unmanned aerial systems (UAS's) at future sequestration sites.

  17. Terrestrial Monitoring from Aquifers into the Atmosphere: Merging Integrated Models with Observations

    Science.gov (United States)

    Kollet, S. J.; Goergen, K.; Vereecken, H.; Hendricks Franssen, H. J.; Keune, J.; Kulkarni, K.; Kurtz, W.; Sharples, W.; Shrestha, P.; Simmer, C.; Sulis, M.; Vanderborght, J.

    2016-12-01

    Human impacts on the terrestrial water, energy and nutrient cycles, such as water use, land management and climate change, put increasing pressure on natural resources. Thus, there is a strong need for estimates of current and future natural resource availability. While observations of the terrestrial system from remote sensing and in-situ networks have been increasing in recent years, we still know very little about the current states and fluxes (CSFs) and interactions of the aforementioned terrestrial cycles at socioeconomic relevant spatial and temporal resolutions on the order of 102m and 100h, respectively. The reason for this is that available observations are rarely continuous in space and time, especially with regard to the soil and groundwater compartments of the terrestrial system. This also means that initial and boundary conditions are missing that are needed for predictions using models of the terrestrial system. Therefore, the objective must be to obtain best estimates and uncertainties of CSFs from aquifers into the atmosphere honoring non-linear feedbacks between the different compartments.Here, scientific and technical approaches, and results of a terrestrial monitoring system are discussed merging observations with models using TerrSysMP-PDAF, the fully coupled Terrestrial Systems Modelling Platform (TerrSysMP) combined with the Parallel Data Assimilation Framework (PDAF). The system is used to invert unknown model parameters, and correct and interpolate simultaneously sparse CSFs using commensurate observations to provide best estimates including uncertainties. These are then used to generate ensemble predictions. Because TerrSysMP-PDAF is based on massively parallel HPC technologies, the system is applicable over large model domains at high spatial resolution for large sets of parameters and states. Examples are provided at the catchment to the regional scale including an experimental near-real time monitoring system.

  18. Automatic trace metal monitoring station use for early warning and short term events in polluted rivers: application to streams loaded by mining tailing.

    Science.gov (United States)

    Lourino-Cabana, Beatriz; Iftekhar, Shafia; Billon, Gabriel; Mikkelsen, Oyvind; Ouddane, Baghdad

    2010-10-06

    An automatic trace metal monitoring station (ATMS) system was implemented to study seasonal and short time changes in selected metal concentrations in two river courses influenced by mine drainage. High frequency monitoring over periods of months revealed daily variations of zinc, iron and copper, and also proved the use of ATMS as an early warning system in such polluted environments. Complementary measurements with ICP-MS (inductively coupled plasma-mass spectrometry), ionic chromatography, and thermodynamic equilibrium calculations also gave some new insights into the geochemical behaviour of the metals in these two rivers.

  19. Atmospheric deposition of trace elements around point sources and human health risk assessment. I: Impact zones around a lead source

    DEFF Research Database (Denmark)

    Moseholm, L.; Larsen, Erik Huusfeldt; Andersen, B.

    1992-01-01

    The deposition of lead was monitored over 8 years in the area around a car battery factory north of Copenhagen, Denmark. The area also has heavy traffic. Deposition was measured by in-situ grown vegetables, transplant grass culture biomonitors, bulk deposition and soil samples. Three impact zones...... were identified by a multivariate statistical analysis. Within each zone, the total dietary intake of lead was estimated for adults and children as a percentage of the provisional tolerably weekly intake (PTWI), and as a result recommendation on restrictions in use of locally grown fruit and vegetables...... were given to the public. The pattern of lead deposition in the area during the period 1981-1988 was monitored and the amount of lead ingested via vegetables was toxically evaluated. Lead emission reduction measures introduced in the factory and in the traffic during the period produced significant...

  20. Design of atmospheric composition monitor based on ultraviolet optical absorption technology

    Institute of Scientific and Technical Information of China (English)

    LI Wen-jun

    2011-01-01

    An open path atmospheric composition monitor is designed based on ultraviolet differential absorption technology.Dark current correction and diode response correction are used to improve the detection limit and Savitzky-Golay filter is used to improve the measurement accuracy.The experimental results show that the designed system has the ability to measure NO and NO2 in real time with reasonable accuracy.The detection limit of the system is about 0.25 ppm for NO and 0.28 ppm for NOr When the concentration level of the target gases is below 100 ppm,the system has good linearity and high measurement accuracy,i.e.,the measurement accuracy is about 2% for NO and about 4% for NO2.The detection limit of dark current can be improved by about 5 to 10 ppb,and the correction of diode response can improve the detection limit by around 30 ppb.Moving window average can improve the detection limit at low concentration levels but will generate more errors at higher concentration leveis.Generally,the designed system meets the requirement of measuring multi-species air pollutants in real time and accurately.

  1. The Site of the ASTRI SST-2M Telescope Prototype: Atmospheric Monitoring and Auxiliary Instrumentation

    CERN Document Server

    Leto, G; Bellassai, G; Bruno, P; Fiorini, M; Grillo, A; Martinetti, E; La Rosa, G; Segreto, A; Sottile, G; Stringhetti, L

    2014-01-01

    ASTRI is a Flagship Project led by the Italian National Institute of Astrophysics, INAF. The main objective of the ASTRI project is to develop a prototype of the Small Size class Telescope for the Cherenkov Telescope Array (CTA) in a dual-mirror configuration (SST-2M). The ASTRI SST-2M is an end-to-end prototype that will be fully developed by the ASTRI Collaboration from the optics design and manufacturing to the focal plane camera, from the structure of the mount to all the needed software. The ASTRI SST-2M prototype will be placed at the INAF "M.G. Fracastoro" observing station in Serra La Nave on the Etna Mountain near Catania, Italy. The technological solutions adopted will be tested on field: observations of the Crab Nebula and of other sources will be essential part of the science verification phase, with the aim to assess the achievement of the scientific requirements. In the following we present the Serra La Nave site together with all the auxiliary instruments needed for atmospheric monitoring and c...

  2. Atmospheric water vapor monitoring from local GNSS networks: comparisons of GNSS data adjustment strategies

    Science.gov (United States)

    Capponi, Martina; Fermi, Alessandro; Monti Guarnieri, Andrea; Realini, Eugenio; Venuti, Giovanna

    2016-04-01

    Since many years GNSS has been regarded by the meteorological community as one of the systems for atmospheric water vapor remote sensing. Time series of GNSS wet delays are estimated as by-products of accurate positioning. Their assimilation into numerical weather prediction (NWP) models is being investigated at both research and operational levels, although typically at coarse space resolutions (e.g. few tens of km). A dedicated use of this system for water vapor monitoring at higher resolutions is still under investigation. Ad hoc networks have been designed and implemented to collect data at a high spatial resolution (station inter-distances of 1-10 km), to have an insight into the spatial distribution of GNSS derived wet delays and/or into the impact of such information on high resolution NWP models. Within this research framework the paper reports the comparisons carried out between ZWD time series obtained from the data collected by an Italian and a Japanese dense networks of permanent geodetic GNSS receivers. Tropospheric delays have been estimated by applying different data adjustment strategies: relative positioning and PPP (precise point positioning). For this last strategy two different solutions have been analyzed and compared: the Bernese software batch solution, and the RTNet software Kalman filter solution. Assessment of the results were performed against IGS GNSS delays as well as by comparison with radiosonde-derived precipitable water vapor (PWV).

  3. Trace analysis of organics in air by corona discharge atmospheric pressure ionization using an electrospray ionization interface.

    Science.gov (United States)

    Nikolaev, Eugene; Riter, Leah S; Laughlin, Brian C; Handberg, Eric; Cooks, R Graham

    2004-01-01

    A corona discharge ion source operating at atmospheric pressure in the point-to-plane configuration was constructed by reconfiguring the ion source of a commercial electrospray ionization (ESI) quadrupole mass spectrometer. This new source allows direct air analysis without modification to the mass spectrometer. Detection and quantitation of semi-volatile compounds in air is demonstrated. The analytical performance of the system was established using the chemical warfare agent simulants methyl salicylate and dimethyl methylphosphonate. Limits of detection are 60 pptr in the negative-ion mode and 800 pptr in the positive-ion mode for methyl salicylate and 800 pptr in the negative-ion mode and 3.6 ppb in the positive-ion mode for dimethyl methylphosphonate. A linear response was observed from 60 pptr to 8 ppb for methyl salicylate in air in the negative-ionization mode. Cluster ion formation versus production of analyte ions was investigated and it was found that dry air or an elevated capillary interface temperature (130 degrees C) was needed to avoid extensive clustering, mostly of water. Reagent gases are not needed as proton sources, as is usually the case for atmospheric pressure chemical ionization, and this, together with the simplicity, sensitivity and speed of the technique, makes it promising for miniaturization and future field studies.

  4. Atmospheric Fossil Fuel CO2 Traced by Δ(14)C in Beijing and Xiamen, China: Temporal Variations, Inland/Coastal Differences and Influencing Factors.

    Science.gov (United States)

    Niu, Zhenchuan; Zhou, Weijian; Wu, Shugang; Cheng, Peng; Lu, Xuefeng; Xiong, Xiaohu; Du, Hua; Fu, Yunchong; Wang, Gehui

    2016-06-07

    One year of atmospheric Δ(14)CO2 were observed in 2014 in the inland city of Beijing and coastal city of Xiamen, China, to trace temporal CO2ff variations and to determine the factors influencing them. The average CO2ff concentrations at the sampling sites in Beijing and Xiamen were 39.7 ± 36.1 ppm and 13.6 ± 12.3 ppm, respectively. These contributed 75.2 ± 14.6% and 59.1 ± 26.8% to their respective annual ΔCO2 offsets over background CO2 concentrations. Significantly (p < 0.05) high CO2ff values were observed in winter in Beijing. We did not find any significant differences in CO2ff values between weekdays and weekends. Diurnal CO2ff variations were plainly evident, with high values between midnight and 4:00, and during morning and afternoon rush hours. The sampling site in the inland city of Beijing displayed much higher CO2ff inputs and overall temporal variations than the site in the coastal city of Xiamen. The variations of CO2ff at both sites were controlled by a combination of emission sources, topography, and atmospheric dispersion. In particular, diurnal observations at the urban site in Beijing showed that CO2ff was easily accumulated under the southeast wind conditions.

  5. High resolution imaging Fourier transform spectrometer with no moving components for the measurement of atmospheric trace gases

    Science.gov (United States)

    Mortimer, H.

    2014-12-01

    A high resolution Static Imaging Fourier Transform Spectrometer, SIFTS, with no moving parts has been developed for the detection of atmospheric gases. The instrument has been shown to have high spectral resolution (4 cm-1) and temporal resolution (10kHz) resolution in both the mid and near infrared and moderate spectral resolution (14cm-1) in the visible. This instrument has been developed for the remote sensing and in-situ measurements of atmospheric gases. It has been identified that due to the low mass and compact size of the instrument system, that the SIFTS could be deployed as a remote sensing instrument onboard a Earth Observation satellite or Unmanned Aerial Vehicle (UAV), or conversely as a radiosonde instrument for in-situ measurements of atmospheric gases. The technique is based on a static optical configuration whereby light is split into two paths and made to recombine along a focal plane producing an interference pattern. The spectral information is returned using a detector array to digitally capture the interferogram which can then be processed into a spectrum by applying a Fourier transform. As there are no moving components, the speed of measurement is determined by the frame rate of the detector array. Thus, this instrument has a temporal advantage over common Michelson FTIR instruments. Using a high speed Toshiba CCD line array, sensitive over the spectral region of 400 - 1100nm, spectra have been recorded at a rate of one every 100 microseconds. Using an uncooled microbolometer infrared detector array, sensitive over the spectral region of 2 to 15μm, the gases NH3, O3 and CH4 have been used to demonstrate the sensitivity of the SIFTS instrument. It has been shown that the Signal to Noise of the SIFTSMIR is >1200 using an integration time of 77msec. The novel optical design has reduced the optics to only 3 optical components, and the detector array, to generate and measure the interferogram. The experimental performance of the SIFTS instrument

  6. Reconstruction of atmospheric trace metals pollution in Southwest China using sediments from a large and deep alpine lake: Historical trends, sources and sediment focusing.

    Science.gov (United States)

    Lin, Qi; Liu, Enfeng; Zhang, Enlou; Nath, Bibhash; Shen, Ji; Yuan, Hezhong; Wang, Rong

    2017-09-13

    Atmospheric pollution, one of the leading environmental problems in South and East Asia, and its impact on the terrestrial environmental quality remain poorly understood particularly in alpine areas where both historical and present-day mining and smelting operations might leave an imprint. Here, we reconstructed atmospheric trace metals pollution during the past century using core sediments from a large and deep alpine lake in Southwest China. The implication of in lake and/or in watershed sediment focusing in pollution quantification is discussed by analyzing 15 sediment cores. Factor analysis and enrichment factor indicated Cd, Pb and Sb as the typical pollutants. Distinct peaks of Pb and Sb pollution were observed around the 1920s, but little Pb pollution was detected in recent decades, different from other studies in similar regions. Cadmium pollution was observed until the mid-1980s synchronized with Sb. The distinctive variations in atmospheric trace metal pollution process in Southwest China highlight the regional and sub-regional sources of metal pollutants, which should be primarily attributed to non-ferrous metal smelting emissions. Both natural and anthropogenic metals showed wide concentration ranges though exhibited similar temporal trends in the 15 cores. Spatial variations of anthropogenic metals were influenced by the in-watershed pollutants remobilization, whereas, natural metals were regulated by the detrital materials in the sub-basin. In-lake sediment focusing had little influence on the spatial distributions of all metals, different from the traditional sediment focusing pattern observed in small lakes. Anthropogenic Cd accumulation in sediments ranged from 1.5 to 10.1mgm(-2) in a specific core with an average of 6.5mgm(-2) for the entire lake, highlighting that a reliable whole-lake pollutant budget requires an analysis of multiple cores. Our study suggests that the management of aquatic ecosystem health should take the remobilization of in

  7. Fiscal Year 1998 Annual Report, Carbon Dioxide Information Analysis Center, World Data Center -- A for Atmospheric Trace Gases

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.; Boden, T.A.; Hook, L.A.; Jones, S.B.; Kaiser, D.P.; Nelson, T.R.

    1999-03-01

    Once again, the most recent fiscal year was a productive one for the Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL), as well as a year for change. The FY 1998 in Review section in this report summarizes quite a few new and updated data and information products, and the ''What's Coming in FY 1999'' section describes our plans for this new fiscal year. During FY 1998, CDIAC began a data-management system for AmeriFlux, a long-term study of carbon fluxes between the terrestrial biosphere of the Western Hemisphere and the atmosphere. The specific objectives of AmeriFlux are to establish an infrastructure for guiding, collecting, synthesizing, and disseminating long-term measurements of CO{sub 2}, water, and energy exchange from a variety of ecosystems; collect critical new information to help define the current global CO{sub 2} budget; enable improved predictions of future concentrations of atmospheric CO{sub 2}; and enhance understanding of carbon fluxes. Net Ecosystem Production (NEP), and carbon sequestration in the terrestrial biosphere. The data-management system, available from CDIAC'S AmeriFlux home page (http://cdiac.esd.ornl.gov/programs/ameriflux/ ) is intended to provide consistent, quality-assured, and documented data across all AmeriFlux sites in the US, Canada, Costa Rica, and Brazil. It is being developed by Antoinette Brenkert and Tom Boden, with assistance from Susan Holladay (who joined CDIAC specifically to support the AmeriFlux data-management effort).

  8. Impacts of aerosols on the chemistry of atmospheric trace gases: a case study of peroxides and HO2 radicals

    Directory of Open Access Journals (Sweden)

    H. Liang

    2013-06-01

    Full Text Available Field measurements of atmospheric peroxides were obtained during the summer on two consecutive years over urban Beijing, and focused on the impacts of aerosols on the chemistry of peroxide compounds and hydroperoxyl radicals (HO2. The major peroxides were determined to be hydrogen peroxide (H2O2, methyl hydroperoxide (MHP, and peroxyacetic acid (PAA. A negative correlation was found between H2O2 and PAA in rainwater, providing evidence for a conversion between H2O2 and PAA in the aqueous phase. A standard gas phase chemistry model based on the NCAR Master Mechanism provided a good reproduction of the observed H2O2 profile on non-haze days but greatly overpredicted the H2O2 level on haze days. We attribute this overprediction to the reactive uptake of HO2 by the aerosols, since there was greatly enhanced aerosol loading and aerosol liquid water content on haze days. The discrepancy between the observed and modeled H2O2 can be diminished by adding to the model a newly proposed transition metal ion catalytic mechanism of HO2 in aqueous aerosols. This confirms the importance of the aerosol uptake of HO2 and the subsequent aqueous phase reactions in the reduction of H2O2. The closure of HO2 and H2O2 between the gas and aerosol phases suggests that the aerosols do not have a net reactive uptake of H2O2, because the conversion of HO2 to H2O2 on aerosols compensates for the H2O2 loss. Laboratory studies for the aerosol uptake of H2O2 in the presence of HO2 are urgently required to better understand the aerosol uptake of H2O2 in the real atmosphere.

  9. Atmospheric background trace elements deposition in Tierra del Fuego region (Patagonia, Argentina), using transplanted Usnea barbata lichens.

    Science.gov (United States)

    Conti, Marcelo Enrique; Finoia, Maria Grazia; Bocca, Beatrice; Mele, Giustino; Alimonti, Alessandro; Pino, Anna

    2012-01-01

    Lichen, Usnea barbata, transplants taken from Tierra del Fuego (south Patagonia, Argentina) were tested as potential biomonitors of atmospheric airborne deposition in an apparently pristine environment. In 2005, lichens were sampled in a reference site (n = 31) and transplanted in the northern Region of Tierra del Fuego. After, respectively, 1 month and 1 year of exposure, we collected them. The aim of the study was to determine the bioaccumulation of 26 elements in order to evaluate the background levels in the selected area. Samples were analyzed by the sector field inductively coupled plasma mass spectrometry. Discriminant analysis on principal component analysis factors was applied in order to explore the relationship among the different elements as far as time and spatial variation in transplants regards. The analysis was tested by Monte Carlo test based on 999 replicates. The most important contamination source resulted to be the atmospheric soil particle deposition. Furthermore, the results were compared with those obtained from the lichens collected in central and southern Tierra del Fuego. This study confirms the ability of U. barbata to reflect the background levels of the 26 elements in that environment. Compared with other background sites in the world, we did confirm that Tierra del Fuego lichens have a low content of the studied elements. Tierra del Fuego turned out not to be a pristine environment as supposed, but it can be considered as a reference basal ecosystem for useful comparisons among different geographical areas. These findings can be very relevant and useful for environmental conservation programs.

  10. Real-time atmospheric monitoring for the Cherenkov Telescope Array using a wide-field optical telescope

    CERN Document Server

    Ebr, Jan; Prouza, Michael; Blazek, Jiri

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation of ground-based very high energy gamma-ray instruments and is planned to be built on two sites (one in each hemisphere) in the coming years, with full array operation foreseen to begin 2020. The goal of performing high precision gamma-ray energy measurements while maximizing the use of observation time demands detailed and fast information about atmospheric conditions. Besides LIDARs designed to monitor clouds and aerosol content of the atmosphere in the pointing direction of the CTA telescopes, we propose to use the "FRAM" (F(/Ph)otometric Robotic Atmospheric Monitor) device, which is a small robotic astronomical telescope with a large field of view and a sensitive CCD camera that together ensure precise atmospheric characterization over the complete field-of-view of the CTA. FRAM will use stellar photometry to measure atmospheric extinction across the field of view of the CTA without interfering with the observation (unlike laser-based methods). Thi...

  11. The French-German Climate Monitoring Initiative on global observations of atmospheric CH4

    Science.gov (United States)

    Ehret, Gerhard; Flamant, Pierre; Amediek, Axel; Ciais, Philippe; Fabien, Gibert; Fix, Andreas; Kiemle, Christoph; Quatrevalet, Mathieu; Wirth, Martin

    2010-05-01

    We report on a new French-German Climate Monitoring Initiative targeting on global measurements of atmospheric methane (CH4). Among the greenhouse gases banned by the Kyoto protocol, CH4 contributes most to global warming after CO2. Questions arise whether global warming in Arctic regions might foster the melting of permafrost soils which contain significant amounts of carbon in organic form which under anaerobic conditions might be converted to CH4 and partially released to the atmosphere. Also the development of natural wetlands which are the biggest methane source, play an important role in climate prediction. Up to now, there is very little knowledge about CH4 sources and sinks in connection with changes in the agro-industrial era of predominant human influence or the very large deposits of CH4 as gas hydrates on ocean shelves that are vulnerable to ocean warming. The objective of this initiative is to improve our knowledge on regional to synoptic scale methane sources, globally. This will be obtained by the measurement of the column-weighted dry-air mixing ratio of CH4, commonly referred to XCH4 which can be used as input for flux inversion models. As a novel feature, the observational instrument will have its own light source emitting pulsed narrow-line laser radiation, not relying on sunlight. The XCH4 values will be provided by a lidar technique with no bias due to particles scattering in the light path, which can have strong regional variability. Using a range-gated receiver for detection of the signals scattered from the Earth surface, the lidar can distinguish surface from cloud or aerosol backscatter, permitting high-precision retrievals of XCH4 in the presence of thin cirrus or aerosol layers. The proposed measurement approach is also capable of providing measurements in partially cloudy conditions. The emitted laser pulses can reach the surface when gaps between clouds occur due to the near-nadir view and the small lidar footprint. The instrument will

  12. Comprehensive assessment of seldom monitored trace elements pollution in the riparian soils of the Miyun Reservoir, China.

    Science.gov (United States)

    Han, Lanfang; Gao, Bo; Zhou, Yang; Xu, Dongyu; Gao, Li; Yu, Hui; Wang, Shiyan

    2016-10-01

    The South-to-North Water Diversion Project has aroused widespread concerns about the potential ecological risks posed by the project, especially for the Miyun Reservoir (MYR). The potential release risk of metals from the flooded riparian soils into MYR after water impoundment is one of key scientific problems. In this study, riparian soil samples were collected considering three vertical heights (130, 140, and 145 m) and four types of land uses in the MYR areas, namely, forestland, grassland, wasteland, and recreational land. We analyzed soils texture, the content and chemical fractionations of seldom monitored trace elements (SMTEs): Li, Be, B, V, Co, Ni, Ga, Sn, Sb, Tl, and Bi). Results showed that the four types of soils in MYR had the similar textures, while recreational land showed significantly higher contents of Ni and V. Additionally, there were no significant differences found for most SMTEs (except for V) at different vertical heights in each soil type, while the concentrations of V at 140 and 145 m in forestland and recreational land were significantly higher than those at 130 m. However, a comprehensive evaluation of potential ecological risk (contamination factor (CF), modified degree of contamination (mCd), and geoaccumulation factor (I geo)) consistently indicated the insignificant contaminations of all SMTEs in MYR soils before water impoundment. The Community Bureau of Reference (BCR) sequential extraction results showed that the chemical fractionations of SMTEs were independent of land use patterns and vertical heights. Co in reducible fractions and Ni were identified as the candidates which had potential to release into MYR when the lands were submerged. Principal component analysis (PCA) and cluster analysis (CA) results suggested that a portion of V, Co, and Ni may originate from anthropogenic activities, and the coal combustion was possibly the main anthropogenic source. The findings of this work would provide valuable information on the

  13. Effects of land use on surface-atmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and a rainforest.

    Science.gov (United States)

    Fowler, David; Nemitz, Eiko; Misztal, Pawel; Di Marco, Chiara; Skiba, Ute; Ryder, James; Helfter, Carole; Cape, J Neil; Owen, Sue; Dorsey, James; Gallagher, Martin W; Coyle, Mhairi; Phillips, Gavin; Davison, Brian; Langford, Ben; MacKenzie, Rob; Muller, Jennifer; Siong, Jambery; Dari-Salisburgo, Cesare; Di Carlo, Piero; Aruffo, Eleonora; Giammaria, Franco; Pyle, John A; Hewitt, C Nicholas

    2011-11-27

    This paper reports measurements of land-atmosphere fluxes of sensible and latent heat, momentum, CO(2), volatile organic compounds (VOCs), NO, NO(2), N(2)O and O(3) over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO(2) flux to the two canopies differs by approximately a factor of 2, 1200 mg C m(-2) h(-1) for the oil palm and 700 mg C m(-2) h(-1) for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O(3) to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces.

  14. Technical Note: A trace gas climatology derived from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS data set

    Directory of Open Access Journals (Sweden)

    A. Jones

    2012-06-01

    Full Text Available The Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS aboard the Canadian satellite SCISAT (launched in August 2003 was designed to investigate the composition of the upper troposphere, stratosphere, and mesosphere. ACE-FTS utilizes solar occultation to measure temperature and pressure as well as vertical profiles of over thirty chemical species including O3, H2O, CH4, N2O, CO, NO, NO2, N2O5, HNO3, HCl, ClONO2, CCl3F, CCl2F2, and HF. Global coverage for each species is obtained approximately over a three month period and measurements are made with a vertical resolution of typically 3–4 km. A quality-controlled climatology has been created for each of these 14 baseline species, where individual profiles are averaged over the period of February 2004 to February 2009. Measurements used are from the ACE-FTS version 2.2 data set including updates for O3 and N2O5. The climatological fields are provided on a monthly and three-monthly basis (DJF, MAM, JJA, SON at 5 degree latitude and equivalent latitude spacing and on 28 pressure surfaces (26 of which are defined by the Stratospheric Processes And their Role in Climate (SPARC Chemistry-Climate Model Validation Activity. The ACE-FTS climatological data set is available through the ACE website.

  15. Health and Safety Laboratory environmental quarterly, June 1, 1977--September 1, 1977. [Fallout radioactivity monitoring at selected world sites, trace metals in surface air and marine sediments, and N/sub 2/O concentrations in stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, E.P. Jr.

    1977-10-01

    This report presents current information from the HASL environmental programs, the Australian Radiation Laboratory, the Air Resources Laboratories of NOAA, the Air Monitoring Section of the Bhabha Atomic Research Centre in Bombay, India and the National Radiation Laboratory in New Zealand. The initial section consists of interpretive reports and notes on background corrections for /sup 90/Sr in ion-exchange resin used in the Australian fallout network, corrections to previously reported N/sub 2/O concentrations in the stratosphere, trace metal concentrations in a marine sediment as measured by five laboratories, an estimate of maximum credible atmospheric radioactivity concentrations from nuclear tests, strontium-90 concentrations in human bone in New York City and San Francisco through 1976, and worldwide deposition of /sup 90/Sr through 1976. Subsequent sections include tabulations of radionuclide and stable lead concentrations in surface air; strontium-90 in deposition, milk, diet and tapwater; fallout and atmospheric radioactivity measurements in India and environmental radioactivity measurements in New Zealand. A bibliography of recent publications related to environmental studies is also presented.

  16. The dynamic chamber method: trace gas exchange fluxes (NO, NO2, O3 between plants and the atmosphere in the laboratory and in the field

    Directory of Open Access Journals (Sweden)

    F. X. Meixner

    2012-05-01

    Full Text Available We describe a dynamic chamber system to determine reactive trace gas exchange fluxes between plants and the atmosphere under laboratory and, with small modifications, also under field conditions. The system allows measurements of the flux density of the reactive NO-NO2-O3 triad and additionally of the non-reactive trace gases CO2 and H2O. The chambers are made of transparent and chemically inert wall material and do not disturb plant physiology. For NO2 detection we used a highly NO2 specific blue light converter coupled to chemiluminescence detection of the photolysis product, NO. Exchange flux densities derived from dynamic chamber measurements are based on very small concentration differences of NO2 (NO, O3 between inlet and outlet of the chamber. High accuracy and precision measurements are therefore required, and high instrument sensitivity (limit of detection and the statistical significance of concentration differences are important for the determination of corresponding exchange flux densities, compensation point concentrations, and deposition velocities. The determination of NO2 concentrations at sub-ppb levels (2 analyzer with a lower detection limit (3σ-definition of 0.3 ppb or better. Deposition velocities and compensation point concentrations were determined by bi-variate weighted linear least-squares fitting regression analysis of the trace gas concentrations, measured at the inlet and outlet of the chamber. Performances of the dynamic chamber system and data analysis are demonstrated by studies of Picea abies L. (Norway Spruce under field and laboratory conditions. Our laboratory data show that the quality selection criterion based on the use of only significant NO2 concentration differences has a considerable impact on the resulting compensation point concentrations yielding values closer to zero. The results of field experiments demonstrate the need to consider photo-chemical reactions of NO, NO2, and O3 inside the chamber for

  17. Infrared tunable diode laser applications: (i) atmospheric pollutants monitoring (ii) gas phase kinetics of elementary reactions; Application des diodes laser infrarouge accordables a deux problematiques: (i) la metrologie de polluants (ii) la cinetique des reactions elementaires

    Energy Technology Data Exchange (ETDEWEB)

    Dusanter, S.

    2002-12-15

    Infrared Tunable Diode Laser Absorption Spectroscopy provides sensibility, selectivity and high temporal resolution. We have applied this technique to atmospheric trace pollutants monitoring and to gas phase kinetics of elementary reactions. For metrology, we have developed a novel and effective protocol: pressure increase measurements. It has been applied to monitoring nitrous oxide, formaldehyde, acetaldehyde and 1,3-butadiene, in air or car exhausts. This work represents a first step toward the elaboration of a compact and portable instrument. The kinetic setup, where reactions are initiated by laser photolysis, has been validated with the well-known reactions of formyl and hydroxymethyl radicals with oxygen. A preliminary study of the rate constant for the unimolecular decomposition of pivaloyl radical has been performed. (author)

  18. Atmosphere Resource Recovery & Environmental Monitoring (ARREM) for Long Duration Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The project focuses on key physico-chemical process technologies for Atmosphere Revitalization Systems (ARS) that increase reliability, capability, and consumable...

  19. Can positive matrix factorization help to understand patterns of organic trace gases at the continental Global Atmosphere Watch site Hohenpeissenberg?

    Science.gov (United States)

    Leuchner, M.; Gubo, S.; Schunk, C.; Wastl, C.; Kirchner, M.; Menzel, A.; Plass-Dülmer, C.

    2015-02-01

    From the rural Global Atmosphere Watch (GAW) site Hohenpeissenberg in the pre-alpine area of southern Germany, a data set of 24 C2-C8 non-methane hydrocarbons over a period of 7 years was analyzed. Receptor modeling was performed by positive matrix factorization (PMF) and the resulting factors were interpreted with respect to source profiles and photochemical aging. Differing from other studies, no direct source attribution was intended because, due to chemistry along transport, mass conservation from source to receptor is not given. However, at remote sites such as Hohenpeissenberg, the observed patterns of non-methane hydrocarbons can be derived from combinations of factors determined by PMF. A six-factor solution showed high stability and the most plausible results. In addition to a biogenic and a background factor of very stable compounds, four additional anthropogenic factors were resolved that could be divided into two short- and two long-lived patterns from evaporative sources/natural gas leakage and incomplete combustion processes. The volume or mass contribution at the site over the entire period was, in decreasing order, from the following factor categories: background, gas leakage and long-lived evaporative, residential heating and long-lived combustion, short-lived evaporative, short-lived combustion, and biogenic. The importance with respect to reactivity contribution was generally in reverse order, with the biogenic and the short-lived combustion factors contributing most. The seasonality of the factors was analyzed and compared to results of a simple box model using constant emissions and the photochemical decay calculated from the measured annual cycles of OH radicals and ozone. Two of the factors, short-lived combustion and gas leakage/long-lived evaporative, showed winter/summer ratios of about 9 and 7, respectively, as expected from constant source estimations. Contrarily, the short-lived evaporative emissions were about 3 times higher in summer

  20. Multianalytical determination of trace elements in atmospheric biomonitors by k{sub 0}-INAA, ICP-MS and AAS

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, M.C. [ITN-Reactor, Technological and Nuclear Institute, E.N. 10, 2686-953 Sacavem (Portugal)]. E-mail: cfreitas@itn.pt; Pacheco, A.M.G. [CVRM-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Dionisio, I. [ITN-Reactor, Technological and Nuclear Institute, E.N. 10, 2686-953 Sacavem (Portugal); Sarmento, S. [ITN-Reactor, Technological and Nuclear Institute, E.N. 10, 2686-953 Sacavem (Portugal); Baptista, M.S. [CIIMAR, University of Porto, R. Bragas 289, 4050-123 Porto (Portugal); Vasconcelos, M.T.S.D. [CIIMAR, University of Porto, R. Bragas 289, 4050-123 Porto (Portugal); Chemistry Department, University of Porto, R. Campo Alegre 687, 4169-071 Porto (Portugal); Cabral, J.P. [CIIMAR, University of Porto, R. Bragas 289, 4050-123 Porto (Portugal); Botany Department, University of Porto, R. Campo Alegre 1191, 4150-181 Porto (Portugal)

    2006-08-15

    Elemental contents of atmospheric biomonitors-epiphytic lichens and tree bark, exposed in continuous and discontinuous modes-have been assessed through k{sub 0}-standardised instrumental neutron activation analysis (k{sub 0}-INAA) (two different institutions), inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS). Certified reference materials-ISE-921 (river clay), NIST-1547 (peach leaves), ICHTJ-INCT-TL-1 (tea leaves; TL-1 hereinafter) and IAEA-336 (lichen material), and nonparametric statistics-rank-order correlations (Spearman R{sub S}) and enhanced-sign tests (Wilcoxon T)-were used for analytical control and data comparison, respectively. In general, quality of procedures was deemed good, except for k{sub 0}-INAA in determining Br, Cu and Na, all likely affected by high counting statistics, and/or contamination issues (the latter). Results for Cu, Ni, Pb and Sr (by both ICP-MS and AAS) revealed that, despite an outstanding correlation (asymptotic p=0.000), they could be viewed as statistically equal for Cu only: AAS tended to yield higher values for Pb and Ni, and lower ones for Sr. The comparison between ICP-MS and k{sub 0}-INAA data from TUDelft, for Al, Ca, Cu, Mg, Mn, Na, Ti and V, showed an excellent correlation (as above) and random (relative) magnitude for Cu, Mg, Mn and Ti only: ICP-MS tended to yield higher values for Al, Na and V, and lower ones for Ca, whereas between k{sub 0}-INAA data from TUDelft and ITN, for Br, Ca and Na, resulted in systematically higher [Br] and [Ca] variates from TUDelft, even if all corresponding data sets were found to correlate at stringent significance levels. In a few cases, though-Ca, Sr in lichens; Pb in bark-matrix effects did appear to interfere in the outcome of matched-pairs, signed-rank tests, since random hierarchy of variates could be asserted just when lichen and bark data sets were processed separately.

  1. Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) Upgrade to Full Sun-Sky-Cloud-Trace Gas Spectrometry Capability for Airborne Science

    Science.gov (United States)

    Dunagan, S. E.; Flynn, C. J.; Johnson, R. R.; Kacenelenbogen, M. S.; Knobelspiesse, K. D.; LeBlanc, S. E.; Livingston, J. M.; Redemann, J.; Russell, P. B.; Schmid, B.; Segal-Rosenhaimer, M.; Shinozuka, Y.

    2014-12-01

    The Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) instrument has been developed at NASA Ames in collaboration with Pacific Northwest National Laboratory (PNNL) and NASA Goddard, supported substantially since 2009 by NASA's Radiation Science Program and Earth Science Technology Office. It combines grating spectrometers with fiber optic links to a tracking, scanning head to enable sun tracking, sky scanning, and zenith viewing. 4STAR builds on the long and productive heritage of the NASA Ames Airborne Tracking Sunphotometers (AATS-6 and -14), which have yielded more than 100 peer-reviewed publications and extensive archived data sets in many NASA Airborne Science campaigns from 1986 to the present. The baseline 4STAR instrument has provided extensive data supporting the TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013), SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys, 2013), and ARISE (Arctic Radiation - IceBridge Sea and Ice Experiment, 2014), field campaigns.This poster presents plans and progress for an upgrade to the 4STAR instrument to achieve full science capability, including (1) direct-beam sun tracking measurements to derive aerosol optical depth spectra, (2) sky radiance measurements to retrieve aerosol absorption and type (via complex refractive index and mode-resolved size distribution), (3) cloud properties via zenith radiance, and (4) trace gas spectrometry. Technical progress in context with the governing physics is reported on several upgrades directed at improved light collection and usage, particularly as related to spectrally and radiometrically stable propagation through the collection light path. In addition, improvements to field calibration and verification, and flight operability and reliability are addressed.

  2. The summer 2012 Greenland heat wave: monitoring water vapour isotopic composition along an atmospheric river event

    Science.gov (United States)

    Bonne, Jean-Louis; Steen-Larsen, Hans Christian; Masson-Delmotte, Valérie; Sodemann, Harald; Lacour, Jean-Lionel; Risi, Camille; Werner, Martin; Clerbaux, Cathy; Fettweis, Xavier

    2014-05-01

    In July 2012, an extreme warm event occurred in Greenland, leading to surface melt over almost all the ice sheet. This event was recorded in the isotopic composition of water vapour measured by the IASI satellite along the transport pathway and at two sites where continuous in situ surface vapour isotopic measurements were conducted, situated at a coastal station of South Greenland (Ivittuut) and further North on top of the ice sheet (NEEM, NW Greenland). These observations allowed us to monitor the isotopic composition of the air mass at different stages of its advection towards Greenland, which can inform on processes along this trajectory, such as cloud properties and moisture sources. In addition, two simulations of this event, using the atmospheric general circulation models LMDZiso and ECHAM5wiso equipped with water stable isotopes and nudged towards large scale wind fields, are investigated. Furthermore, a regional high-resolution model was used to study the moisture transport to Greenland during this event using tagged water tracers of the North Atlantic ocean and coastal land evaporation. Using moisture source diagnostic based on the Lagrangian particle dispersion model Flexpart, we show that this 2012 heat wave event corresponds to moisture sources located over the subtropical Atlantic Ocean, where intense evaporation was caused by dry air masses associated with the US intense summer drought. This moisture was then advected northward along a narrow band, due to a very stationary surface cyclone southwest of Greenland, reached southern Greenland and Ivittuut coastal station on July 9th, travelled along the west coast of Greenland, continued eastwards above the ice sheet and arrived above the NEEM deep drilling camp on July 11th. Surface isotopic observations during the event show larger variations at NEEM than in Ivittuut, strongly reducing the isotopic and deuterium excess latitudinal gradient usually observed between South and North Greenland. This

  3. Top of Atmosphere Radiation MVIRI/SEVIRI Data Record within the Climate Monitoring SAF

    Science.gov (United States)

    Urbain, Manon; Clerbaux, Nicolas; Ipe, Alessandro; Tornow, Florian; Hollmann, Rainer; Baudrez, Edward; Velazquez Blazquez, Almudena; Moreels, Johan; Trentmann, Jörg

    2017-04-01

    The CM SAF Top of Atmosphere (TOA) Radiation MVIRI/SEVIRI Data Record provides a homogeneous satellite-based climatology of the TOA Reflected Solar (TRS) and Emitted Thermal (TET) radiation in all-sky conditions. The continuous monitoring of these two components of the Earth Radiation Budget is of prime importance to study climate variability and change. The Meteosat Visible and InfraRed Imager (MVIRI - from 1983 until 2004) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI - from 2004 onward) on board the Meteosat First and Second Generation satellites are combined to generate a long Thematic Climate Data Record (TCDR). Combining MVIRI and SEVIRI allows an unprecedented temporal (30 minutes / 15 minutes) and spatial (2.5 km / 3 km) resolution compared to the Clouds and the Earth's Radiant Energy System (CERES) products. This is a step forward as it helps to increase the knowledge of the diurnal cycle and the small-scale spatial variations of radiation. The MVIRI/SEVIRI Data Record covers a 32 years time period from 1 February 1983 to 30 April 2015. The TOA radiation products are provided as daily mean, monthly mean and monthly averages of the hourly integrated values (diurnal cycle). To ensure consistency with other CM SAF products, the data is provided on a regular grid at a spatial resolution of 0.05 degrees (i.e. about 5.5 km) and covers the region between +/- 70° longitude and +/- 70° latitude. Validation of the MVIRI/SEVIRI Data Record has been performed by intercomparison with several references such as the CERES products (EBAF, SYN1deg-Day and SYN1deg-M3Hour), the HIRS OLR Climate Data Record (Daily and Monthly), the reconstructed ERBS WFOV-CERES (or DEEP-C) dataset and the ISCCP FD products. CERES is considered as the best reference from March 2000 onward. The quality of the early part of the Data Record is verified against the other references. In general, the stability of all the TOA radiation products is estimated to be better than 4 W.m-2

  4. [Comparison of Monitoring Methods of Organic Carbon and Element Carbon in Atmospheric Fine Particles].

    Science.gov (United States)

    Pang, Bo; Ji, Dong-sheng; Liu, Zi-rui; Zhu, Bin; Wang, Yue-si

    2016-04-15

    Accurate measurement of organic carbon (OC) and elemental carbon (EC) in atmospheric fine particulate is an important scientific basis for studying the formation and source apportionment of carbonaceous aerosol. The selection of different analysis programs will lead to difference in the OC and EC concentrations, and further result in the misjudgment of the results. The OC and EC concentrations observed using three temperature protocols including RT-Quartz ( R) , NIOSH 5040 (N) and Fast-TC (F) were compared and analyzed in combination with the degree of air pollution in Beijing. The results showed that there was no significant difference in the TC (TC = OC + EC), OC and EC concentrations observed using R, N and F protocols and certain deviation was found among the TC (TC = OC + EC) , OC and EC concentrations. For TC, the results observed using R protocol were 5% lower than those using N protocol; hut 1% higher than those using F protocol. For OC, the results obtained using R were 9% lower than those using N protocol and 1% higher than those using F protocol. For EC, the results obtained using R were 20% higher than those using N protocol and 11% lower than those using F protocol. The variation coefficients for TC, OC and EC obtained based on R protocol were less than the other two temperature protocols under different air quality degrees. The slopes of regression curves of TC, OC and EC between on-line analysis using R protocol and off-line analysis were 1.21,1. 14 and 1.35, respectively. The correlation coefficients of TC, OC and EC were 0.99, 0.99 and 0.98, respectively. In contrast with the Black carbon ( BC) concentrations monitored by multi-angle absorption spectrophotometer (MAAP), the EC concentrations measured by on-line OC/EC analyzer using R protocol were obviously lower. When the BC concentrations were less than or equal to 8 gg*m3, the EC/BC ratio was 0.39. While the EC/BC ratio was 0.88, when the BC concentrations were greater than 8 ggm3. The variation

  5. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network

    Science.gov (United States)

    Sprovieri, Francesca; Pirrone, Nicola; Bencardino, Mariantonia; D'Amore, Francesco; Carbone, Francesco; Cinnirella, Sergio; Mannarino, Valentino; Landis, Matthew; Ebinghaus, Ralf; Weigelt, Andreas; Brunke, Ernst-Günther; Labuschagne, Casper; Martin, Lynwill; Munthe, John; Wängberg, Ingvar; Artaxo, Paulo; Morais, Fernando; Barbosa, Henrique de Melo Jorge; Brito, Joel; Cairns, Warren; Barbante, Carlo; Diéguez, María del Carmen; Garcia, Patricia Elizabeth; Dommergue, Aurélien; Angot, Helene; Magand, Olivier; Skov, Henrik; Horvat, Milena; Kotnik, Jože; Read, Katie Alana; Mendes Neves, Luis; Gawlik, Bernd Manfred; Sena, Fabrizio; Mashyanov, Nikolay; Obolkin, Vladimir; Wip, Dennis; Feng, Xin Bin; Zhang, Hui; Fu, Xuewu; Ramachandran, Ramesh; Cossa, Daniel; Knoery, Joël; Marusczak, Nicolas; Nerentorp, Michelle; Norstrom, Claus

    2016-09-01

    Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (gmos.eu" target="_blank">http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.

  6. PRELIMINARY RESULTS OF ATMOSPHERIC DEPOSITION OF MAJOR AND TRACE ELEMENTS IN THE GREATER AND LESSER CAUCASUS MOUNTAINS STUDIED BY THE MOSS TECHNIQUE AND NEUTRON ACTIVATION ANALYSIS

    Directory of Open Access Journals (Sweden)

    S. Shetekauri

    2015-05-01

    Full Text Available The method of moss biomonitoring of atmospheric deposition of trace elements was applied for the first time in the western Caucasus Mountains to assess the environmental situation in this region. The sixteen moss samples have been collected in 2014 summer growth period along altitudinal gradients in the range of altitudes from 600 m to 2665 m. Concentrations of Na, Mg, Al, Cl, K, Ca, Ti, V, Mn, Fe, Zn, As, Br, Rb, Mo, Cd, I, Sb, Ba, La, Sm, W, Au, and U determined by neutron activation analysis in the moss samples are reported. A comparison with the data for moss collected in Norway (pristine area was carried out.  Multivariate statistical analysis of the results was used for assessment pollution sources in the studied part of the Caucasus. The increase in concentrations of most of elements with rising altitude due to gradually disappearing vegetation cover and wind erosion of soil was observed. A comparison with the available data for moss collected in the Alps at the same altitude (~ 2500 m was performed.

  7. How to improve the atmospheric environmental monitoring quality assurance%如何做好大气环境监测的质量保证

    Institute of Scientific and Technical Information of China (English)

    芦胜华

    2011-01-01

    通过了解大气环境监测质量保证的意义,就目前大气环境监测质量保证工作的现状,结合实际,如何把握大气环境监测的质量保证和质量控制。%Learn about significance of atmospheric environmental monitoring quality assurance, on the current status quo of atmospheric environmental monitoring quality assurance, in connection with reality, how to grasp the atmospheric environmental monitoring quality assurance and quality control.

  8. Isotope modeling of nitric acid formation in the atmosphere using ISO-RACM: testing the importance of NO oxidation, heterogeneous reactions, and trace gas chemistry

    Directory of Open Access Journals (Sweden)

    G. Michalski

    2010-03-01

    Full Text Available Here we present ISO-RACM, an isotope mass balance model that utilizes the Regional Atmospheric Chemistry Mechanism to predict Δ17O values in atmospheric nitrate. A large number of simulations were carried out that varied atmospheric parameters that are important in altering the magnitude and range of Δ17O values generated in photochemically produce nitrate. These parameters included temperature, relative humidity, actinic flux, aerosol surface area and chemical speciation, and three different N2O5 uptake parameterizations. Trace gas mixing ratios were also varied including CH4, CO, NOx, O3, volatile organic compounds and biogenic organic compounds. The model predicts that there are seasonal, latitudinal and diurnal variations in Δ17O values due to changes in actinic flux with lower values corresponding to higher actinic fluxes. There was also a minor positive correlation between higher Δ17O values and increased temperature. There were distinct differences in Δ17O depending on which N2O5 parameterization was used, mostly the result of changing relative humidity being a factor in two of the parameterization schemes. Changing CO and CH4 mixing ratios had negligible impact on Δ17O values but significant variation in magnitude and range were predicted with NOx, O3, and organic loading. High NOx and O3 generated high Δ17O with a narrow (10 ‰ range, while high organics led to low Δ17O values and a wider range of possible values. Implications for using Δ17O to evaluate NOx-NOy chemistry and aerosol formation processes are discussed, as is needed future research.

  9. Mercury, trace elements and organic constituents in atmospheric fine particulate matter, Shenandoah National Park, Virginia, USA: A combined approach to sampling and analysis

    Science.gov (United States)

    Kolker, A.; Engle, M.A.; Orem, W.H.; Bunnell, J.E.; Lerch, H.E.; Krabbenhoft, D.P.; Olson, M.L.; McCord, J.D.

    2008-01-01

    Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 ?? m-3) and yearly (15 ??g m-3) mass-per-unit-volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non-regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size-limiting cyclone, or with no particle-size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate-bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM2.5 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM 2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production

  10. A spatial framework for assessing current conditions and monitoring future change in the chemistry of the Antarctic atmosphere

    Directory of Open Access Journals (Sweden)

    D. A. Dixon

    2011-03-01

    , Pb, Bi, As, and Li are enriched across Antarctica relative to both ocean and upper crust elemental ratios. Global volcanic outgassing accounts for the majority of the Bi measured in East and West Antarctica and for a significant fraction of the Cd in East Antarctica. Nonetheless, global volcanic outgassing cannot account for the enriched values of Pb or As. Local volcanic outgassing from Mount Erebus may account for a significant fraction of the As and Cd in West Antarctica and for a significant fraction in East Antarctic glaze/dune areas. However, despite potential contributions from local and global volcanic sources, significant concentrations of Pb, Cd, and As remain across much of Antarctica.

    Most importantly, this study provides a baseline from which changes in the chemistry of the atmosphere over Antarctica can be monitored under expected warming scenarios and continued intensification of industrial activities in the Southern Hemisphere.

  11. Acid-leachable trace metals in sediments from an industrialized region (Ennore Creek) of Chennai City, SE coast of India: An approach towards regular monitoring

    Science.gov (United States)

    Jayaprakash, M.; Jonathan, M. P.; Srinivasalu, S.; Muthuraj, S.; Ram-Mohan, V.; Rajeshwara-Rao, N.

    2008-02-01

    The article presents the results for enrichment of acid-leachable trace metals (ALTMs) from Ennore Creek in north Chennai, a metropolis on the southeast coast of India. ALTMs Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd along with sediment texture, OC and CaCO 3 were analyzed in surface sediments collected during two different seasons, pre-monsoon (PRM) and post-monsoon (POM) seasons to identify and observe the input of trace metals in the creek from various sources in the city limits. The most prominent feature of the ALTMs is the enrichment of Fe, Cr, Cu, Ni, Pb and Zn in the sediments, which is mainly attributed to the intense industrial activities around Chennai, and to the rapid industrialization policies. The ALTMs also indicate their association with the finer fractions, OC and Fe-Mn oxyhydroxides. The enrichment is very well supported by the correlation, grouping and clustering of ALTMs in statistical analysis. The differential behavior of ALTMs in POM season compared to PRM season is possibly due to the excess level of industrial effluents in the channel feeding Ennore Creek. Comparative results of ALTMs with other estuarine regions also indicate that the study area has been enriched with trace metals during the past two decades. The results of the present study suggest the need for a regular monitoring program which will help to improve the quality of Ennore Creek.

  12. Investigation of inhomogeneity and anisotropy in near ground layers of atmospheric air turbulence using image motion monitoring method

    Science.gov (United States)

    Mohammadi Razi, Ebrahim; Rasouli, Saifollah

    2017-01-01

    In this work the anisotropy and inhomogeneity of real atmospheric turbulence have been investigated using image motion monitoring and differential image motion monitoring methods. For this purpose the light beam of a point source is propagated through the atmospheric turbulence layers in horizontal path and then impinged to a telescope aperture. The telescope and point source were 350 m apart. In front of the telescope's aperture a mask consisting of four subapertures was installed. Image of the point source was formed on a sensitive CCD camera located at the focal plane of the telescope. By displacing CCD camera along the axis of telescope, four distinct images were recorded. Angle of arrival (AA) of each spot was calculated by image processing. Air turbulence causes AA to fluctuate. By comparing AA fluctuation variances of different spots in two directions isotropy and homogeneity of turbulence were studied. Results have shown that atmospheric turbulence in near ground layers is treated as an anisotropic and inhomogeneous medium. In addition, the inhomogeneity and anisotropy of turbulence decreases with the distance from earth surface.

  13. Online monitoring of trace chlorinated benzenes in flue gas of municipal solid waste incinerator by windowless VUV lamp single photon ionization TOFMS coupled with automatic enrichment system.

    Science.gov (United States)

    Liu, Wei; Jiang, Jichun; Hou, Keyong; Wang, Weiguo; Qi, Yachen; Wang, Yan; Xie, Yuanyuan; Hua, Lei; Li, Haiyang

    2016-12-01

    Chlorinated benzenes are typical precursors and indicators for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) emissions from waste incinerators. Online and real-time monitoring of chlorobenzenes is a challenge due to their low concentration and complex nature of the flue gas. In this work, a continuous online monitoring system was built for detection of trace chlorinated benzenes based on a time-of-flight mass spectrometer (TOFMS). A single photon ionization (SPI) source based on a radiofrequency-excited windowless vacuum ultraviolet (VUV) lamp was developed for the first time to eliminate the signal attenuation resulting from the contamination of magnesium fluoride windows and to avoid the fragment ions. An automatic enrichment system including three parallel Tenax TA adsorption tubes was designed and coupled to the TOFMS to achieve the required ultrahigh sensitivity. The limits of quantitation at 7.65, 5.37 and 6.77pptv were obtained for monochlorobenzene (MCBz), dichlorobenzene (DCBz) and trichlorobenzene (TrCBz), respectively, within a 29-min analytical period. Moreover, this apparatus was applied to continuously online monitor the actual flue gas from a waste incinerator for three months. During this period, the concentrations of MCBz, DCBz and TrCBz detected in the flue gas were in the range of 100-1200, 50-800 and 50-300pptv, respectively. The relative standard deviation (RSD) of the sensitivity for the windowless VUV lamp ion source was 9.71% evaluated by the internal standard benzene over the 3-months flue gas monitoring. These results demonstrated the capability of this method in long-term analysis of the trace chlorinated benzenes in the flue gas. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The dynamic chamber method: trace gas exchange fluxes (NO, NO2, O3) between plants and the atmosphere in the laboratory and in the field

    Science.gov (United States)

    Breuninger, C.; Oswald, R.; Kesselmeier, J.; Meixner, F. X.

    2012-05-01

    We describe a dynamic chamber system to determine reactive trace gas exchange fluxes between plants and the atmosphere under laboratory and, with small modifications, also under field conditions. The system allows measurements of the flux density of the reactive NO-NO2-O3 triad and additionally of the non-reactive trace gases CO2 and H2O. The chambers are made of transparent and chemically inert wall material and do not disturb plant physiology. For NO2 detection we used a highly NO2 specific blue light converter coupled to chemiluminescence detection of the photolysis product, NO. Exchange flux densities derived from dynamic chamber measurements are based on very small concentration differences of NO2 (NO, O3) between inlet and outlet of the chamber. High accuracy and precision measurements are therefore required, and high instrument sensitivity (limit of detection) and the statistical significance of concentration differences are important for the determination of corresponding exchange flux densities, compensation point concentrations, and deposition velocities. The determination of NO2 concentrations at sub-ppb levels (data analysis are demonstrated by studies of Picea abies L. (Norway Spruce) under field and laboratory conditions. Our laboratory data show that the quality selection criterion based on the use of only significant NO2 concentration differences has a considerable impact on the resulting compensation point concentrations yielding values closer to zero. The results of field experiments demonstrate the need to consider photo-chemical reactions of NO, NO2, and O3 inside the chamber for the correct determination of the exchange flux densities, deposition velocities, as well as compensation point concentrations. Under our field conditions NO2 deposition velocities would have been overestimated up to 80%, if NO2 photolysis has not been considered. We also quantified the photolysis component for some previous NO2 flux measurements. Neglecting photo

  15. Spatiotemporal inhomogeneity in atmospheric trace-gas over Fukuoka, an urban area in Japan, observed by ground-based MAX-DOAS

    Science.gov (United States)

    Takashima, H.; Kanaya, Y.; Irie, H.

    2015-12-01

    Continuous trace-gas observations have been made using ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) at Fukuoka (33.55N, 130.36E), an urban area in Japan. The maximum of the NOx emissions at Fukuoka is estimated to be at the city center, and the monitoring site is located ~5 km southwest of the city center, outside of the central area. To clarify the inhomogeneity as well as the transport/mixing processes of the polluted air in the urban area, continuous profile measurements have been conducted in two azimuth directions: towards and away from the city center. From NO2 observations, we sometimes observed spatial inhomogeneity associated with vertical/horizontal transport of high concentrations of NO2 from the city center, and horizontal transport of low concentrations from the ocean via a land-sea breeze. On the other hand, we observed spatial inhomogeneity in HONO and HCHO during summer, which was probably due to photochemical production over the city center.

  16. Agricultural Machinery Trace Monitoring System with Google Maps%基于Google Maps的农业机械作业轨迹监测系统

    Institute of Scientific and Technical Information of China (English)

    史国滨; 王熙; 庄卫东

    2012-01-01

    为满足现代农业机械管理需要,实现农业机械作业调度与实时监控,运用GPS、GPRS和Google Maps技术进行有机集成,构建了农业机械作业轨迹监测系统.该系统采用单片机整合GPS模块、GPRS模块实现车载GPS数据无线远程回传,通过Google Maps API构建Web GIS系统,采用ASP.NET实现农业机械田间作业管理;以Web Service技术及Ajax技术实现作业轨迹回放、作业实时定位及长度、面积测量等功能.%To meet the needs of modern agricultural machinery management, an agricultural machinery trace monitoring system based on the technology of GPS, GPRS and Google Maps was developed in order to realize the real-time monitoring and scheduling of farm machinery. This system with built-in GPS and GPRS modules, which use wireless network transfer GPS data to remote machine by single-chip microcomputer. With Google Maps API, a Web GIS system was established. An agricultural machinery management by ASP. NET was achieved. Web Service and Ajax technology was used to do such things like trace playback, length measuring, and calculation of land area function.

  17. Monitoring Saturn's Upper Atmosphere Density Variations Using Helium 584 Å Airglow

    Science.gov (United States)

    Parkinson, Chris

    2016-10-01

    The study of He 584 Å brightness of Saturn is interesting as the EUV planetary airglow have the potential to yield useful information about mixing and other important parameters in its thermosphere. Resonance scattering of sunlight by He atoms is the principal source of the planetary emission of He 585 Å. The helium is embedded in an absorbing atmosphere of H2 and since it is heavier than the background atmosphere, it's concentration falls off rapidly above the homopause. The scattering region (i.e. where the absorption optical depth in H2 is greatly improved estimate of the mixing ratio of He in the upper atmosphere and below. The second topic addressed is regarding constraining the dynamics in the atmosphere by using the estimate of the He mixing ratio from the main objective. Once we have an estimate of the He mixing ratio in the lower atmosphere that agrees with both occultations and airglow, helium becomes an effective tracer species as any variations in the Cassini UVIS helium data are direct indicator of changes in Kzz i.e., dynamics.

  18. Innovative optical spectrometers for ice core sciences and atmospheric monitoring at polar regions

    Science.gov (United States)

    Grilli, Roberto; Alemany, Olivier; Chappellaz, Jérôme; Desbois, Thibault; Faïn, Xavier; Kassi, Samir; Kerstel, Erik; Legrand, Michel; Marrocco, Nicola; Méjean, Guillaume; Preunkert, Suzanne; Romanini, Daniele; Triest, Jack; Ventrillard, Irene

    2015-04-01

    In this talk recent developments accomplished from a collaboration between the Laboratoire Interdisciplinaire de Physique (LIPhy) and the Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) both in Grenoble (France), are discussed, covering atmospheric chemistry of high reactive species in polar regions and employing optical spectrometers for both in situ and laboratory measurements of glacial archives. In the framework of an ANR project, a transportable spectrometer based on the injection of a broadband frequency comb laser into a high-finesse optical cavity for the detection of IO, BrO, NO2 and H2CO has been realized.[1] The robust spectrometer provides shot-noise limited measurements for as long as 10 minutes, reaching detection limits of 0.04, 2, 10 and 200 ppt (2σ) for the four species, respectively. During the austral summer of 2011/12 the instrument has been used for monitoring, for the first time, NO2, IO and BrO at Dumont d'Urville Station at East of Antarctica. The measurements highlighted a different chemistry between East and West coast, with the halogen chemistry being promoted to the West and the OH and NOx chemistry on the East.[2] In the framework of a SUBGLACIOR project, an innovative drilling probe has been realized. The instrument is capable of retrieving in situ real-time vertical profiles of CH4 and δD of H2O trapped inside the ice sheet down to more than 3 km of depth within a single Antarctic season. The drilling probe containing an embedded OFCEAS (optical-feedback cavity-enhanced absorption spectroscopy) spectrometer will be extremely useful for (i) identify potential sites for investigating the oldest ice (aiming 1.5 Myrs BP records for resolving a major climate reorganization called the Mid-Pleistocene transition occurred around 1 Myrs ago) and (ii) providing direct access to past temperatures and climate cycles thanks to the vertical distribution of two key climatic signatures.[3] The spectrometer provides detection

  19. Analysis of a Kalman filter based method for on-line estimation of atmospheric dispersion parameters using radiation monitoring data

    DEFF Research Database (Denmark)

    Drews, Martin; Lauritzen, Bent; Madsen, Henrik

    2005-01-01

    A Kalman filter method is discussed for on-line estimation of radioactive release and atmospheric dispersion from a time series of off-site radiation monitoring data. The method is based on a state space approach, where a stochastic system equation describes the dynamics of the plume model...... parameters, and the observables are linked to the state variables through a static measurement equation. The method is analysed for three simple state space models using experimental data obtained at a nuclear research reactor. Compared to direct measurements of the atmospheric dispersion, the Kalman filter...... estimates are found to agree well with the measured parameters, provided that the radiation measurements are spread out in the cross-wind direction. For less optimal detector placement it proves difficult to distinguish variations in the source term and plume height; yet the Kalman filter yields consistent...

  20. Monitoring of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of southern Luxembourg using XAD-2 resin-based passive samplers.

    Science.gov (United States)

    Schummer, Claude; Appenzeller, Brice M; Millet, Maurice

    2014-02-01

    XAD-2 resin-based passive samplers (PAS) with dimensions adapted to 100 mL accelerated solvent extraction cells were used to study the temporal and spatial variations of 17 PAHs on five sites in the atmosphere of southern Luxembourg. This new design allowed extracting the PAS without emptying the resin from the shelter. PAH analyses were done with gas chromatography-tandem mass spectrometry. PAS were deployed for 1 year with varying sampling periodicities, and 16 PAHs were detected with concentrations ranging from 1 ng/PAS for chrysene to 9,727 ng/PAS for naphthalene. The PAS were found adapted to the monitoring of temporal and spatial variations for lightweight PAHs (up to four aromatic rings) though not for heavy PAHs with five aromatic rings or more, as these compounds are preferably in the particle phase of the atmosphere and the amount of these PAHs trapped on the PAS will be too low.

  1. Atmospheric monitoring in the mm and sub-mm bands for cosmological observations: CASPER2

    CERN Document Server

    De Petris, Marco; Decina, Barbara; Lamagna, Luca; Pardo, Juan R

    2012-01-01

    Cosmological observations from ground at millimetre and sub-millimetre wavelengths are affected by atmospheric absorption and consequent emission. The low and high frequency (sky noise) fluctuations of atmospheric performance imply careful observational strategies and/or instrument technical solutions. Measurements of atmospheric emission spectra are necessary for accurate calibration procedures as well as for site testing statistics. CASPER2, an instrument to explore the 90-450 GHz (3-15 1/cm) spectral region, was developed and verified its operation in the Alps. A Martin-Puplett Interferometer (MPI) operates comparing sky radiation, coming from a field of view (fov) of 28 arcminutes (FWHM) collected by a 62-cm in diameter Pressman-Camichel telescope, with a reference source. The two output ports of the interferometer are detected by two bolometers cooled down to 300 mK inside a wet cryostat. Three different and complementary interferometric techniques can be performed with CASPER2: Amplitude Modulation (AM)...

  2. Scanning Lidar Based Atmospheric Monitoring for Fluorescent Detectors of Cosmic Showers

    CERN Document Server

    Veberic, D; Horváth, M; Zavrtanik, D; Zavrtanik, M

    2003-01-01

    Measurements of the cosmic-ray air-shower fluorescence at extreme energies require precise knowledge of atmospheric conditions. The absolute calibration of the cosmic-ray energy depends on the absorption of fluorescence light between its origin and point of its detection. We review a novel analysis method to reconstruct basic atmospheric parameters from measurements performed by the scanning backscatter lidar system. Applied inversion methods, optical depth, absorption and backscatter coefficient, as well as other parameters that enter the lidar equation are discussed in connection to the attenuation of the light traveling from the shower to fluorescence detector.

  3. Analytical quality control in trace element analysis of atmospheric particulate; Controllo di qualita' nell'analisi degli elementi in traccia contenuti nel particolato atmosferico

    Energy Technology Data Exchange (ETDEWEB)

    Rizzio, E.; Giavieri, G.; Bergamaschi, L.; Profumo, A.; Gallorini, M. [Consiglio Nazionale delle Ricerche, Centro di Radiochimica e Analisi per Attivazione, Pavia (Italy)

    2001-07-01

    Trace elements (TE) determination in airborne particulate matter collected onto filters requires an accurate evaluation of the entire analytical procedure. Since many elements have to be determined in few milligrams of air dust at nanogram level, possible sources of error can arise from uncontrolled parameters such as blank of the filters, sample homogeneity, pre-analytical treatment, primary and comparator standards. These potential critical points are here presented and discussed on the basis of the experience developed in the laboratory in previous studies. The data were obtained in several TE air monitoring campaigns in urban as well as in rural-residential areas of north Italy. Instrumental neutron activation analysis (INAA) and electrothermal atomic absorption spectroscopy (ET-AAS) have been used for the investigation of more than 30 trace elements. [Italian] La corretta determinazione di elementi in tracce (TE) nel particolato atmosferico raccolto su filtri e, in special modo nel PM10, richiede un'accurata valutazione dell'intera procedura analitica. Molti elementi sono presenti a livello di nanogrammi e devono essere determinati in frazioni di milligrammo di materiale. Cio' richiede un severo controllo di qualita' sui dati ottenuti mediante la valutazione degli errori che possono derivare da ogni singolo passaggio del processo analitico. In questo lavoro vengono discussi quei parametri che, a prescindere dalle tecniche analitiche utilizzate, possono influire, in modo sostanziale, sulla qualita' del dato finale. In particolare vengono considerati: il bianco dei filtri, l'omogeneita' del campione, il trattamento pre-analitico, gli standard primari e quelli di riferimento. I dati sperimentali di questo studio si riferiscono alla determinazione di oltre 30 elementi in tracce in campioni di particolato atmosferico raccolto in zone urbane, industriali e rurali-residenziali durante precedenti campagne di monitoraggio. La maggior

  4. Review of Trace-Element Field-Blank Data Collected for the California Groundwater Ambient Monitoring and Assessment (GAMA) Program, May 2004-January 2008

    Science.gov (United States)

    Olsen, Lisa D.; Fram, Miranda S.; Belitz, Kenneth

    2010-01-01

    Trace-element quality-control samples (for example, source-solution blanks, field blanks, and field replicates) were collected as part of a statewide investigation of groundwater quality in California, known as the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB) to assess and monitor the quality of groundwater resources used for drinking-water supply and to improve public knowledge of groundwater quality in California. Trace-element field blanks were collected to evaluate potential bias in the corresponding environmental data. Bias in the environmental data could result from contamination in the field during sample collection, from the groundwater coming into contact with contaminants on equipment surfaces or from other sources, or from processing, shipping, or analyzing the samples. Bias affects the interpretation of environmental data, particularly if any constituents are present solely as a result of extrinsic contamination that would have otherwise been absent from the groundwater that was sampled. Field blanks were collected, analyzed, and reviewed to identify and quantify extrinsic contamination bias. Data derived from source-solution blanks and laboratory quality-control samples also were considered in evaluating potential contamination bias. Eighty-six field-blank samples collected from May 2004 to January 2008 were analyzed for the concentrations of 25 trace elements. Results from these field blanks were used to interpret the data for the 816 samples of untreated groundwater collected over the same period. Constituents analyzed were aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), molybdenum

  5. Using a diagnostic soil-plant-atmosphere model for monitoring drought at field to continental scales

    Science.gov (United States)

    Drought assessment is a complex undertaking, requiring monitoring of deficiencies in multiple components of the hydrologic budget. Precipitation anomalies reflect variability in water supply to the land surface, while soil moisture, groundwater and surface water anomalies reflect deficiencies in mo...

  6. Updated study reporting levels (SRLs) for trace-element data collected for the California Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project, October 2009-March 2013

    Science.gov (United States)

    Davis, Tracy A.; Olsen, Lisa D.; Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater samples have been collected in California as part of statewide investigations of groundwater quality conducted by the U.S. Geological Survey for the Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project (PBP). The GAMA-PBP is being conducted in cooperation with the California State Water Resources Control Board to assess and monitor the quality of groundwater resources used for drinking-water supply and to improve public knowledge of groundwater quality in California. Quality-control samples (source-solution blanks, equipment blanks, and field blanks) were collected in order to ensure the quality of the groundwater sample results. Olsen and others (2010) previously determined study reporting levels (SRLs) for trace-element results based primarily on field blanks collected in California from May 2004 through January 2008. SRLs are raised reporting levels used to reduce the likelihood of reporting false detections attributable to contamination bias. The purpose of this report is to identify any changes in the frequency and concentrations of detections in field blanks since the last evaluation and update the SRLs for more recent data accordingly. Constituents analyzed were aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), tungsten (W), uranium (U), vanadium (V), and zinc (Zn). Data from 179 field blanks and equipment blanks collected from March 2006 through March 2013 by the GAMA-PBP indicated that for trace elements that had a change in detection frequency and concentration since the previous review, the shift occurred near October 2009, in conjunction with a change in the capsule filters used by the study. Results for 89 field blanks and equipment blanks collected from October 2009 through March 2013 were

  7. The Atmosphere-Space Interactions Monitor (ASIM) Payload Facility on the ISS

    DEFF Research Database (Denmark)

    Reibaldi, Giuseppe; Nasca, Rosario; Neubert, Torsten

    ASIM is a payload facility to be mounted on a Columbus external platform on the International Space Station (ISS). ASIM will study the coupling of thunderstorm processes to the upper atmosphere, ionosphere and radiation belts. ASIM is the most complex Earth Observation payload facility planned...

  8. Impact of acid atmosphere deposition on soils : field monitoring and aluminum chemistry

    NARCIS (Netherlands)

    Mulder, J.

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions

  9. Impact of acid atmospheric deposition on soils: Field monitoring and aluminium chemistry.

    NARCIS (Netherlands)

    Mulder, J.

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions were obtain

  10. Remote monitoring of electroencephalogram, electrocardiogram, and behavior during controlled atmosphere stunning in broilers: Implications for welfare

    NARCIS (Netherlands)

    Coenen, A.M.L.; Lankhaar, J.A.C.; Lowe, J.C.; McKeegan, D.

    2009-01-01

    This study examined the welfare implications of euthanizing broilers with 3 gas mixtures relevant to the commercial application of controlled atmosphere stunning (CAS). Birds were implanted/equipped with electrodes to measure brain activity (electroencephalogram, EEG) and heart rate. These signals w

  11. The Atmosphere-Space Interactions Monitor (ASIM) Payload Facility on the ISS

    DEFF Research Database (Denmark)

    Reibaldi, Giuseppe; Nasca, Rosario; Neubert, Torsten

    ASIM is a payload facility to be mounted on a Columbus external platform on the International Space Station (ISS). ASIM will study the coupling of thunderstorm processes to the upper atmosphere, ionosphere and radiation belts. ASIM is the most complex Earth Observation payload facility planned...

  12. Monitoring atmospheric nitrous oxide background concentrations at Zhongshan Station, east Antarctica.

    Science.gov (United States)

    Ye, Wenjuan; Bian, Lingen; Wang, Can; Zhu, Renbin; Zheng, Xiangdong; Ding, Minghu

    2016-09-01

    At present, continuous observation data for atmospheric nitrous oxide (N2O) concentrations are still lacking, especially in east Antarctica. In this paper, nitrous oxide background concentrations were measured at Zhongshan Station (69°22'25″S, 76°22'14″E), east Antarctica during the period of 2008-2012, and their interannual and seasonal characteristics were analyzed and discussed. The mean N2O concentration was 321.9nL/L with the range of 320.5-324.8nL/L during the five years, and it has been increasing at a rate of 0.29% year(-1). Atmospheric N2O concentrations showed a strong seasonal fluctuation during these five years. The concentrations appeared to follow a downtrend from spring to autumn, and then increased in winter. Generally the highest concentrations occurred in spring. This trend was very similar to that observed at other global observation sites. The overall N2O concentration at the selected global sites showed an increasing annual trend, and the mean N2O concentration in the Northern Hemisphere was slightly higher than that in the Southern Hemisphere. Our result could be representative of atmospheric N2O background levels at the global scale. This study provided valuable data for atmospheric N2O concentrations in east Antarctica, which is important to study on the relationships between N2O emissions and climate change.

  13. Real time corrosion monitoring in atmosphere using automated battery driven corrosion loggers

    DEFF Research Database (Denmark)

    Prosek, T.; Kouril, M.; Hilbert, Lisbeth Rischel

    2008-01-01

    A logger enabling continuous measurement of corrosion rate of selected metals in indoor and outdoor atmospheres has been developed. Principle of the measurement method is based on the increasing electrical resistance of a measuring element made of the material concerned as its cross-sectional are...

  14. Biomagnetic monitoring of heavy metals contamination in deposited atmospheric dust, a case study from Isfahan, Iran.

    Science.gov (United States)

    Norouzi, Samira; Khademi, Hossein; Cano, Angel Faz; Acosta, Jose A

    2016-05-15

    Tree leaves are considered as one of the best biogenic dust collectors due to their ability to trap and retain particulate matter on their surfaces. In this study, the magnetic susceptibility (MS) and the concentration of selected heavy metals of plane tree (Platanus orientalis L.) leaves and deposited atmospheric dust, sampled by an indirect and a direct method, respectively, were determined to investigate the relationships between leaf magnetic parameters and the concentration of heavy metals in deposited atmospheric dust. The objective was to develop a biomagnetic method as an alternative to the common ones used for determining atmospheric heavy metal contaminations. Plane tree leaves were monthly sampled on the 19th of May to November, 2012 (T1-T7), for seven months from 21 different sites in the city of Isfahan, central Iran. Deposited atmospheric dust samples were also collected using flat glass surfaces from the same sites on the same dates, except for T1. MS (χlf, χhf) values in washed (WL) and unwashed leaves (UL) as well as Cu, Fe, Mn, Ni, Pb, and Zn concentrations in UL and deposited atmospheric dust samples were determined. The results showed that the MS content with a biogenic source was low with almost no significant change during the sampling period, while an increasing trend was observed in the MS content of UL samples due to the deposition of heavy metals and magnetic particles on leaf surfaces throughout the plant growth. The latter type of MS content could be reduced through washing off by rain. Most heavy metals examined, as well as the Tomlinson pollution load index (PLI) in UL, showed statistically significant correlations with MS values. The correlation between heavy metals content in atmospheric dust deposited on glass surfaces and leaf MS values was significant for Cu, Fe, Pb, and Zn. Moreover, the similarity observed between the spatial distribution maps of leaf MS and deposited atmospheric dust PLI provided convincing evidence regarding

  15. Trace elements in dialysis.

    Science.gov (United States)

    Filler, Guido; Felder, Sarah

    2014-08-01

    In end-stage chronic kidney disease (CKD), pediatric nephrologists must consider the homeostasis of the multiple water-soluble ions that are influenced by renal replacement therapy (RRT). While certain ions such as potassium and calcium are closely monitored, little is known about the handling of trace elements in pediatric dialysis. RRT may lead to accumulation of toxic trace elements, either due to insufficient elimination or due to contamination, or to excessive removal of essential trace elements. However, trace elements are not routinely monitored in dialysis patients and no mechanism for these deficits or toxicities has been established. This review summarizes the handling of trace elements, with particular attention to pediatric data. The best data describe lead and indicate that there is a higher prevalence of elevated lead (Pb, atomic number 82) levels in children on RRT when compared to adults. Lead is particularly toxic in neurodevelopment and lead levels should therefore be monitored. Monitoring of zinc (Zn, atomic number 30) and selenium (Se, atomic number 34) may be indicated in the monitoring of all pediatric dialysis patients to reduce morbidity from deficiency. Prospective studies evaluating the impact of abnormal trace elements and the possible therapeutic value of intervention are required.

  16. Standard practice for monitoring atmospheric SO2 using the sulfation plate technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This practice covers a weighted average effective SO2 level for a 30-day interval through the use of the sulfation plate method, a technique for estimating the effective SO2 content of the atmosphere, and especially with regard to the atmospheric corrosion of stationary structures or panels. This practice is aimed at determining SO2 levels rather than sulfuric acid aerosol or acid precipitation. 1.2 The results of this practice correlate approximately with volumetric SO2 concentrations, although the presence of dew or condensed moisture tends to enhance the capture of SO2 into the plate. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  17. Modeling atmospheric transport of CO2 at High Resolution to estimate the potentialities of spaceborne observation to monitor anthropogenic emissions

    Science.gov (United States)

    Ciais, P.; Chimot, J.; Klonecki, A.; Prunet, P.; Vinuessa, J.; Nussli, C.; Breon, F.

    2010-12-01

    There is a crucial and urgent need to quantify and monitor anthropogenic fossil fuel emissions of CO2. Spaceborne measurements, such as those from GOSAT or the forthcoming OCO-2, or other space missions in preparation, could provide the necessary information, in particular over regions with few in-situ measurements of atmospheric concentration are too scarce. Contrarily to biogenic flux, anthropogenic emissions are highly heterogeneous in space with typical values that vary by several orders of magnitudes. A proper analysis of the impact of anthropogenic emissions on the atmospheric concentration of CO2 therefore requires a high spatial resolution, typically of a few km. Simulations of the transport of fossil CO2 plumes were performed with a resolution of 1 km over the main industrialized regions of France, and using other models of lower resolution to account for the influence of distant sources advected into the area of interest. The results clearly show the plumes from intense yet localized sources, such as urban areas or power plants, and how their structures vary with the meteorology (wind speed and direction). They also show that the plume from distant sources, such as the large emission from Northern Europe, may sometime mask the local plume, even from large cities like Paris or Lyon. These atmospheric transport simulations are then sampled according to cloud cover, spaceborne instrument sampling and typical errors, to analyze the information content of the remote sensing data and how they can improve the current knowledge on anthropogenic emissions.

  18. Mussel-based monitoring of trace metal and organic contaminants along the east coast of China using Perna viridis and Mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Fung, C.N.; Lam, J.C.W.; Zheng, G.J.; Connell, D.W.; Monirith, I.; Tanabe, S.; Richardson, B.J.; Lam, P.K.S

    2004-01-01

    Green lipped mussels, Perna viridis, and blue mussels, Mytilus edulis, were collected from seven locations along the east coast of China in September and October 2001. The mussel tissues were analyzed for metals (Ag, As, Cd, Cr, Ni, Pb, Se, Zn, Cu, Fe and Hg), and trace organic contaminants including organochlorine compounds (OCs), polycyclic aromatic hydrocarbons (PAHs; based on 24 individual PAHs), polychlorinated biphenyls (PCBs) and petroleum hydrocarbons (PHCs). Maximum concentrations of Ag, As, Cd, Cr, Ni, Pb, Se, Zn, Cu, Fe and Hg in the mussel tissues were 0.14, 26.76, 5.31, 15.72, 4.78, 2.93, 7.40, 231.0, 54.17, 1002 and 317.3 {mu}g/g dry weight respectively. Levels of DDTs, PAHs, PCBs and PHCs in the mussel samples were 14-640, 456-3495, 1-13 ng/g and 621-2863 {mu}g/g dry weight, respectively. Results of this study indicated that contaminant levels were, in general, higher or at least comparable to those reported in other local or regional studies. Mussel samples collected in Chongming Dao in Shanghai and Jiao Zhou Wan in Qingdao had significantly higher levels of metal and trace organic contaminants among the seven sampling stations. Examination of the contaminant profiles suggests that PHCs originated from petrogenic sources, while both petrogenic and pyrolytic sources were important for PAHs. The generally high levels of metals and organochlorine compounds are probably the result of increasingly intense industrial activities along the east coast of China. An assessment of potential risks to human health due to consumption of the mussels was undertaken for the metals, PCBs, DDTs and chlordanes, and the results indicated that all metals, except Ni, could pose a health risk to heavy seafood consumers, while Hg appears to be of concern even for low level consumers. - Mussel-based monitoring revealed trace metal and organic contaminants which pose potential human health risks.

  19. Solid phase extraction and trace monitoring of cadmium ions in environmental water and food samples based on modified magnetic nanoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Omidi, Fariborz [Department of Occupational Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud (Iran, Islamic Republic of); Behbahani, Mohammad, E-mail: mohammadbehbahai89@yahoo.com [Department of Chemistry, Shahid Beheshti University, Evin, Tehran (Iran, Islamic Republic of); Kalate Bojdi, Majid [Faculty of Chemistry, Kharazmi (Tarbiat Moallem) University, Tehran (Iran, Islamic Republic of); Shahtaheri, Seyed Jamaleddin [Department of Occupational Health Engineering, School of Public Health and Institute for Environmental Research, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-12-01

    A new method has been developed for trace separation/preconcentration of cadmium ions using pyridine-functionalized magnetic nanoporous silica material (called Py-Fe{sub 3}O{sub 4}@MCM-41) as a new magnetic sorbent and their determination by flame atomic absorption spectrometry (FAAS). The Py-Fe{sub 3}O{sub 4}@MCM-41 sorbent was characterized by thermogravimetric analysis, differential thermal analysis, transmission electron microscopy, Fourier transform infrared spectrometry and X-ray diffraction. The modified Fe{sub 3}O{sub 4}@MCM-41 can be easily separated from an aqueous solution by applying an external magnetic field. Effects of pH, amount of functionalized Fe{sub 3}O{sub 4}@MCM-41, extraction time, type and quantity of eluent, desorption time, and interfering ions on the extraction efficiency were evaluated and optimized. Under the optimized conditions, the detection limit and relative standard deviation was 0.04 μg L{sup –1} and 2.9%, respectively and the maximum adsorption capacity of the synthesized sorbent for cadmium ions was 154 mg g{sup −1}. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, rice, onion, carrot, lettuce, parsley, basil, tap water, river water and seawater with satisfactory results. - Highlights: • The introducing of modified magnetic mesoporous silica as a novel magnetic sorbent. • Trace monitoring of cadmium ions. • The limit of detection (LOD) by the proposed solid phase extraction method was 0.04 ng mL{sup −1} for the cadmium ions. • High surface areas and magnetic characteristic of the sorbent. • Maximum adsorption capacity of the sorbent was 154 mg g{sup −1}.

  20. Development of an Implementation Plan for Atmospheric Carbon Monitoring in California

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Marc L.; Riley, William J.; Tonse, Shaheen

    2004-10-01

    This report describes the design of atmospheric CO{sub 2} concentration measurements that, in combination with other measurements and models, would be used to quantify regionally distributed CO{sub 2} exchanges from California's terrestrial ecosystems and CO{sub 2} emissions from fossil fuel combustion. Using models of net ecosystem CO{sub 2} exchange (NEE), fossil fuel CO{sub 2} emissions, and regional meteorology, we predict CO{sub 2} concentration ''signals'' in the atmosphere. The predictions of NEE exhibit spatial and temporal variations that are controlled by land cover and climate. Fossil fuel CO{sub 2} emissions from metropolitan areas are the strongest localized sources of CO{sub 2} while weaker but spatially extensive fossil emissions are present throughout the Central Valley. We subdivide the CO{sub 2} sources into four components: NEE inside and outside CA, and fossil fuel CO{sub 2} inside and outside CA. Maps of predicted atmospheric CO{sub 2} concentration signals from these four sources largely mirror the instantaneous emissions near strong sources but plumes of CO{sub 2} enriched or depleted air are predicted to advect far from their sources. We then identify a baseline set of observing stations from existing and possible future sites that could be used to characterize in-state and out-of-state ecosystem and fossil fuel contributions to atmospheric CO{sub 2} concentrations. For each of the stations we calculate mean midday concentration signals with standard deviation for each month and source. We also calculate the covariance of the signal due to NEE inside CA with each of the other signals to quantify how much of the signal from NEE inside CA might be readily separable from the other signals. On the basis of these predictions, we identify new observing stations and a measurement protocol that, in combination with existing stations, would provide data to estimate NEE within CA. Although beyond the scope of this project

  1. Behaviour of suspended particulate matter (SPM and selected trace metals during the 2002 summer flood in the River Elbe (Germany at Magdeburg monitoring station

    Directory of Open Access Journals (Sweden)

    M. Baborowski

    2004-01-01

    Full Text Available In August 2002, in the worst flooding in more than 100 years, the River Elbe destroyed built-up areas and caused widespread erosion and the relocation of soils and river sediments. To assess the pollutants entering the water, surveys of dissolved constituents and suspended particulate matter (SPM were carried out daily during the flood at a monitoring station near Magdeburg. The sampling point is part of the network of the International Commission for the Protection of the Elbe (ICPE. The results were compared with those of previous flood studies which used the same sampling strategy. Unlike past floods, the 2002 flood was characterised by the transport of relatively fine suspended material with a low mass concentration. Owing to different input sources, the maxima of dry weight and of particle number concentration occurred at different times. Hg, Fe, Mn, Zn, Cu, Ni and Cr showed a maximum concentration concurrent with the dry weight of the SPM, whereas the maximum concentrations of As, Pb, and Cd coincided with the particle number concentration peak. The concentration of particulate matter decreased rapidly, unlike the concentrations of dissolved substances such as DOC and trace metals, as well as the values of UV extinction, all of which remained high for a longer period. Comparing the results of the 2002 flood with the winter floods in 1995, 1999 and 2000, revealed increased values of As and Pb as well as higher concentrations of dissolved compounds. Keywords: river, flood, transport, suspended particulate matter, trace metals, dissolved compounds, Elbe

  2. Monitoring of radiation in atmosphere, water and a food chain. Results in the Netherlands in 1991

    NARCIS (Netherlands)

    Kwakman PJM; Aldenkamp FJ; de Vries LJ; Drost RMS; Tijsmans MH; Koolwijk AC; Ockhuizen A

    1993-01-01

    This 1991 annual report presents the results of radioactivity measurements in biosphere samples taken in the Netherlands. The National Measurement Programme (NMP), considered essential for an adequate assessment of radioactivity in the biospere, includes the monitoring of air, deposition and surfac

  3. Laser technology to monitor atmospheric pollution. Tecnologia laser para medicion de la contaminacion atmosferica

    Energy Technology Data Exchange (ETDEWEB)

    Guerao, A.; Caceci, M.

    1993-01-01

    Air quality and pollution can be monitored in a reliable way using LIDAR. Light detection and measurement by using a Laser beam can identify gases, particles, smoke, water vapor and other contaminants. Radiance and directionality of the laser beam are useful for this application. Activities of CISE in this field are presented.

  4. Observations of ambient trace gas and PM10 concentrations at Patna, Central Ganga Basin during 2013-2014: The influence of meteorological variables on atmospheric pollutants

    Science.gov (United States)

    Tiwari, S.; Tunved, P.; Hopke, Philip K.; Srivastava, A. K.; Bisht, D. S.; Pandey, A. K.

    2016-11-01

    Atmospheric pollutants including ozone (O3), sulfur dioxide (SO2), oxides of nitrogen (NOx), carbon monoxide (CO), and inhalable particulate matter (PM10) were measured in the central Indo-Gangetic Basin (IGB) at Patna, India, from 1st March 2013 to 31st December 2014, and significant variability was observed in the temporal patterns of these pollutant concentrations. The mean O3, SO2, NO, NO2, CO (trace gases: TG), and PM10 (PM) concentrations were 14.5 ± 4.8, 5.9 ± 4.8, 23.1 ± 22, 20.6 ± 14.6 ppb, 1.5 ± 0.7 ppm, and 192.0 ± 132.8 μg/m3, respectively, over the study period. The highest concentrations of these species were during the post-monsoon and winter seasons except O3 and SO2 that showed the highest concentrations during the pre-monsoon. The lowest concentrations of TG and PM were observed during the monsoon season as a result of scavenging by rain. NO and NO2 along with PM concentrations decreased by ~ 76, 19, and 63% when the wind speed (WS) was > 0.5 m/s. However, for O3, an opposite trend was observed with ~ 14% higher concentrations. The WS was negatively correlated with PM during the winter (- 0.48) and post-monsoon (- 0.32) seasons. In order to investigate the source region of TG and PM, 5-day air mass back trajectories were computed. The dominance of the air masses (92, 53, and 49%) were from the IGB is highly polluted during the winter, pre-monsoon, and post-monsoon, respectively. The TG and PM were observed much higher during these periods. During the biomass burning period (post-monsoon), the trajectory analysis showed that the TG and PM concentrations were around three-fold higher (flow from the IGB) than the other seasons. To improve air quality over IGB, the mitigation measures should be designed to reduce emissions from both local and regional sources.

  5. Ground-based Measurements of Vertical Profiles and Columns of Atmospheric Trace Gases Over Toronto Using a New High-Resolution Fourier Transform Infrared Spectrometer

    Science.gov (United States)

    Wiacek, A.; Yashcov, D.; Strong, K.; Boudreau, L.; Rochette, L.; Roy, C.

    2002-12-01

    The University of Toronto Atmospheric Observatory (TAO) has recently been established at Toronto, Canada. TAO includes several instruments, with a DA8 Fourier Transform Spectrometer (DA8 FTS, manufactured by ABB Bomem Inc., Québec, Canada) serving as the primary instrument at the facility. The geographic position of TAO (43.66°N, 79.40°W) makes it well suited for long-term measurements of mid-latitude stratospheric ozone and related species, while its urban setting enables measurements of tropospheric pollution. The DA8 FTS is based on a Michelson interferometer with a maximum optical path difference of 250 cm, providing a maximum unapodized resolution of 0.0026 cm-1. It is currently equipped with KBr and CaF2 beamsplitters, and InSb and HgCdTe detectors, for coverage of the spectral range from 700 to 4100 cm-1. A new heliostat (manufactured by Aim Controls Inc., California, USA) provides active solar tracking, collecting the incoming solar radiation and directing it into the FTS. The TAO DA8 FTS incorporates a new optical design recently developed by ABB Bomem Inc., which results in a fixed optical axis through the beamsplitter (and a fixed focal point on the detector) as well as a more stable modulation efficiency. The new instrument optics will be discussed. Next, the performance of the instrument will be examined in the context of standard NDSC (Network for the Detection of Stratospheric Change) trace gas column and vertical profile retrieval techniques, which use least squares fitting algorithms (SFIT, SFIT2). TAO has been operational (weather permitting) since October 2001. We have been retrieving columns and vertical profiles of HCl, HF, CH4, OCS, C2H6, CO, N2O and NO2 since May 2002. A detailed error analysis of retrieved columns and vertical profiles has been undertaken for the above species. Future plans for the TAO FTS include comparing our measurements with satellite measurements made by MOPITT, OSIRIS, and the upcoming ACE and MAESTRO instruments

  6. Influence of orographically induced transport process on the structure of the atmospheric boundary layer and on the distribution of trace gases; Einfluss orographisch induzierter Transportprozesse auf die Struktur der atmosphaerischen Grenzschicht und die Verteilung von Spurengasen

    Energy Technology Data Exchange (ETDEWEB)

    Kossmann, M.

    1998-04-01

    The influence of terrain on the structure of the atmospheric boundary-layer and the distribution of trace gases during periods of high atmospheric pressure was studied by means of meteorological and air-chemical data collected in September 1992 during the TRACT experiment in the transition area between the upper Rhine valley and the northern Black Forest. The emphasis was on the investigation of the development of the convective boundary layer, the formation of thermally induced circulation systems, and the orographic exchange between the atmospheric boundary layer and the free troposphere. Thanks to the extensive measurements, phenomena not yet described in literature could be verified by case studies, and processes that had only been established qualitatively could be quantified. (orig.)

  7. Seasonal and diurnal variations of atmospheric mercury across the US determined from AMNet monitoring data

    Directory of Open Access Journals (Sweden)

    X. Lan

    2012-11-01

    Full Text Available Speciated atmospheric mercury observations collected over the period from 2008 to 2010 at the Environmental Protection Agency and National Atmospheric Deposition Program Atmospheric Mercury Network sites (AMNet were analyzed for its spatial, seasonal, and diurnal characteristics across the US. Median values of gaseous elemental mercury (GEM, gaseous oxidized mercury (GOM and particulate bound mercury (PBM at 11 different AMNet sites ranged from 148–226 ppqv (1.32–2.02 ng m−3, 0.05–1.4 ppqv (0.47–12.4 pg m−3 and 0.18–1.5 ppqv (1.61–13.7 pg m−3, respectively. Common characteristics of these sites were the similar median levels of GEM as well as its seasonality, with the highest mixing ratios occurring in winter and spring and the lowest in fall. However, discernible differences in monthly average GEM were as large as 30 ppqv, which may be caused by sporadic influence from local emission sources. The largest diurnal variation amplitude of GEM occurred in the summer. Seven rural sites displayed similar GEM summer diurnal patterns, in that the lowest levels appeared in the early morning, and then the GEM mixing ratio increased after sunrise and reached its maxima at noon or in the early afternoon. Unlike GEM, GOM exhibited higher mixing ratios in spring and summer. The largest diurnal variation amplitude of GOM occurred in spring for most AMNet sites. The GOM diurnal minima appeared before sunrise and maxima appeared in the afternoon. The increased GOM mixing ratio in the afternoon indicated a photochemically driven oxidation of GEM resulting in GOM formation. PBM exhibited diurnal fluctuations in summertime. The summertime PBM diurnal pattern displayed daily maxima in the early afternoon and lower mixing ratios at night, implying photochemical production of PBM in summer.

  8. Atmospheric CO{sub 2} concentrations the CSIRO (Australia) monitoring program from aircraft 1972 - 1981

    Energy Technology Data Exchange (ETDEWEB)

    Beardsmore, D.J.; Pearman, G.I. [Commonwealth Scientific Industrial Research Organization (CSIRO), Victoria (Australia). Division of Atmospheric Research

    1984-09-01

    Atmospheric CO{sub 2} concentrations were measured in the troposphere and lower stratosphere over the Australia-New Zealand region and as far south as Antarctica for the period 1972-1981. The samples were collected from aircraft over a large range of latitudes and altitudes. The sampling program has been based on the cooperation of the Australia Department of Transport, Quantas Airways, Trans Australia Airlines, the United States, New Zealand and Australian Air Forces and occasional chartering of light aircraft for special purposes.

  9. Monitoring of leaked CO2 through sediment, water column and atmosphere in sub-seabed CCS experiment

    Science.gov (United States)

    Shitashima, K.; Sakamoto, A.; Maea, Y.

    2013-12-01

    CO2 capture and storage in sub-seabed geological formations (sub-seabed CCS) is currently being studied as a feasible option to mitigate the accumulation of anthropogenic CO2 in the atmosphere. In implementing sub-seabed CCS, detecting and monitoring the impact of the sequestered CO2 on the ocean environment is highly important. The first controlled CO2 release experiment, entitled 'Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage (QICS)', took place in Ardmucknish Bay, Oban, in May-July 2012. We applied the in-situ pH/pCO2/ORP sensor to the QICS experiment for detection and monitoring of leaked CO2, and carried out several observations. The on-line sensor that was connected by 400m of RS422 cable was deployed close to the CO2 leakage (bubbling) point, and the fluctuations of pH, pCO2 and ORP were monitored in real-time in a observation van on land. Three sets of off-line sensors were also placed on seafloor in respective points (release point, and two low impacted regions at 25m and 75m distant) for three months. The long-term monitoring of pH in sediment at 50cm depth under the seafloor was conducted. The spear type electrode was stabbed into sediment by diver near the CO2 leakage point. Wide-area mapping surveys of pH, pCO2 and ORP in seawater around the leakage point were carried out by AUV (REMUS-100) that some chemical sensors were installed in. The AUV cruised along the grid line in two layers of 4m and 2m above the seafloor during both of periods of low tide and high tide. Atmospheric CO2 in sea surface above the leakage point was observed by the LI-COR CO2 Analyzer. The analyzer was attached to the bow of ship, and the ship navigated a wide-area along a grid observation line during both of periods of low tide and high tide.

  10. Atmospheric Deposition History of Trace Metals and Metalloids for the Last 200 Years Recorded by Three Peat Cores in Great Hinggan Mountain, Northeast China

    Directory of Open Access Journals (Sweden)

    Kunshan Bao

    2015-03-01

    Full Text Available A large number of studies on trace metals and metalloids (TMs accumulations in peatlands have been reported in Europe and North America. Comparatively little information is available on peat chronological records of atmospheric TMs flux in China. Therefore, the objective of our study was to determine the concentrations and accumulation rates (ARs of TMs in Motianling peatland from Great Hinggan Mountain, northeast China, and to assess these in relation to establish a historical profile of atmospheric metal emissions from anthropogenic sources. To meet these aims we analyzed 14 TMs (As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sr, Sb, Tl, and Zn and Pb isotopes (206Pb, 207Pb, 208Pb using ICP-AES and ICP-MS, respectively, in three peat sections dated by 210Pb and 137Cs techniques (approximately spanning the last 200 years. There is a general agreement in the elemental concentration profiles which suggests that all investigated elements were conserved in the Motianling bog. Three principal components were discriminated by principal component analysis (PCA based on Eigen-values >1 and explaining 85% of the total variance of element concentrations: the first component representing Ba, Co, Cr, Mo, Ni, Sr and Tl reflected the lithogenic source; the second component covering As, Cu and Sb, and Cd is associated with an anthropogenic source from ore mining and processing; the third component (Pb isotope, Pb and Zn is affected by anthropogenic Pb pollution from industrial manufacturing and fossil-fuel combustion. The pre-industrial background of typical pollution elements was estimated as the average concentrations of TMs in peat samples prior to 1830 AD and with a 207Pb/206Pb ratio close to 1.9. ARs and enrichment factors (EFs of TMs suggested enhanced metal concentrations near the surface of the peatland (in peat layers dated from the 1980s linked to an increasing trend since the 2000s. This pollution pattern is also fingerprinted by the Pb isotopic composition

  11. How Enhancing Atmospheric Monitoring and Modelling can be Effective for the Stockholm Convention on POPs

    Directory of Open Access Journals (Sweden)

    Ramon Guardans

    2013-12-01

    Full Text Available The presence of toxic substances such as persistent organic pollutants (POPs in the environment, and in organisms including humans, is a serious public health and environmental problem, even at low levels and poses a challenging scientific problem. The Stockholm Convention on POPs (SC entered into force in 2004 and is a large international effort under the United Nations Environment Programme (UNEP to facilitate cooperation in monitoring, modeling and the design of effective and fair ways to deal with POPs globally. This paper is a contribution to the ongoing effectiveness evaluation (EE work aimed at the assessment and enhancement of the effectiveness of the actions undertaken under the SC. First we consider some aspects related to the monitoring of POPs in the environment and then briefly review modeling frameworks that have been used to simulate long range transport (LRT of POPs. In the final sections we describe the institutional arrangements providing the conditions for this work to unfold now and some suggestions for it in the future. A more effective use of existing monitoring data could be made if scientists who deposited them in publicly available and supervised sites were rewarded in academic and professional terms. We also suggest the development of multi-media, nested, Lagrangian models to improve the understanding of changes over time in the environment and individual organisms.

  12. Monitoring of trace metals in tissues of Wallago attu (lanchi) from the Indus River as an indicator of environmental pollution.

    Science.gov (United States)

    Al-Ghanim, K A; Mahboob, Shahid; Seemab, Sadia; Sultana, S; Sultana, T; Al-Misned, Fahad; Ahmed, Z

    2016-01-01

    We aimed to assess the bioaccumulation of selected four trace metals (Cd, Ni, Zn and Co) in four tissues (muscles, skin, gills and liver) of a freshwater fish Wallago attu (lanchi) from three different sites (upstream, middle stream and downstream) of the Indus River in Mianwali district of Pakistan. Heavy metal contents in water samples and from different selected tissues of fish were examined by using flame atomic absorption spectrometry. The data were statistically compared to study the effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals at P  liver > skin > muscle. The order of bioaccumulation of these metals was Ni < Zn < Co < Cd. Heavy metal concentrations were increased during the dry season as compared to the wet season. The results of this study indicate that freshwater fish produced and marketed in Mianwali have concentrations below the standards of FEPA/WHO for these toxic metals.

  13. Atmospheric metal pollution monitored by spherical moss bags: a case study of Armadale.

    Science.gov (United States)

    Gailey, F A; Lloyd, O L

    1986-01-01

    To supplement epidemiological investigations into the mortality from respiratory cancer in the small industrial town of Armadale, central Scotland, spherical moss bags were used to study the deposition of atmospheric metal pollution there during a period of 17 months. High concentrations of most metals were found in areas close to the local steel foundry. High concentrations of some metals were also found in the north/northeast of the town. Temporal variations in the metal deposition patterns during the survey-period were observed. By means of statistical analyses, those metals were indicated which were probably emitted from the steel foundry. The scientific and financial advantages of using this method of low technology sampling in epidemiological studies are discussed. PMID:3780627

  14. Low Cost Open-Path Instrument for Monitoring Atmospheric Carbon Dioxide at Sequestration Sites

    Energy Technology Data Exchange (ETDEWEB)

    William Goddard

    2008-09-30

    In the past 48 months of the project, we have accomplished all objectives outlined in the proposal. In the first year, we demonstrated the technology for remote sensing on a bench top scale. The core electronics are designed and fabricated. We achieved results that will safely deliver the specifications outlined in the proposal. In the 2nd year, 2 major technical tasks outlined in the Statement of Objectives, i.e. Build a field test ready prototype of a long-range CO2 monitor, and characterize its performance in the short term and demonstrate that the monitor characteristics meet the goals set in the initial proposal, have been accomplished. We also conducted simulation work that defines the different deployment strategies for our sensors at sequestration sites. In the 3rd year, Specifications and Testing protocols have been developed for the CO2 monitor. 1% accuracy had been demonstrated in short period tests ({approx}1 hour). Unattended system operation and stability over a period of a week has been demonstrated with and without EDFA (laser power amplifier). The sensitivity of the instrument to CO2 leaks has been demonstrated. In the 4th no-cost extension year, we further field tested the system and the experience we accumulated give us a clear picture of what else are needed for final field deployment. These results have shown all the objectives of the project have been fulfilled. In July 2008, along with our commercial partner we won the DOE STTR phase I award to commercialize the instrument developed in this project - a testimony to the achievement of this research.

  15. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    Energy Technology Data Exchange (ETDEWEB)

    Tonneijck, A.E.G.; Berge, W.F. ten; Jansen, B.P

    2003-05-01

    Atmospheric ethylene from polyethylene manufacturing plants adversely affected the number of flowers and growth of field-grown marigold and petunia. - Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation and growth were severely reduced close to the emission sources and plant performance improved with increasing distance. Plants exposed near the border of the research area had more flowers than the unexposed control while their growth was normal. Measurements of ethylene concentrations at a border site revealed that the growing season mean was 61.5 {mu}g m{sup -3} in 1982 and 15.6 {mu}g m{sup -3} in 1983. In terms of number of flowers, petunia was more sensitive than marigold and adverse effects were observed within ca. 400 m distance from the sources for marigold and within ca. 460 m for petunia. The area at risk (ca. 870 m) for ethylene-induced growth reduction was also limited to the industrial zone. Plants were more sensitive to ethylene in terms of growth reduction than in terms of inhibition of flowering. In the Netherlands, maximum permissible levels of ethylene are currently based on information from laboratory and greenhouse studies. Our results indicate that these levels are rather conservative in protecting field-grown plants against ethylene-induced injury near polyethylene manufacturing plants.

  16. An online monitoring system for atmospheric nitrous acid (HONO) based on stripping coil and ion chromatography

    Institute of Scientific and Technical Information of China (English)

    Peng Cheng; Yafang Cheng; Keding Lu; Hang Su; Qiang Yang; Yikan Zou; Yanran Zhao

    2013-01-01

    A new instrument for measuring atmospheric nitrous acid (HONO) was developed,consisting of a double-wail glass stripping coil sampler coupled with ion chromatography (SC-IC).SC-IC is featured by small size (50 × 35 × 25 cm) and modular construction,including three independent parts:the sampling unit,the transfer and supporting unit,and the detection unit.High collection efficiency (> 99%) was achieved with 25 μmol/L Na2CO3 as absorption solution even in the presence of highly acidic compounds.This instrument has a detection limit of 8 pptv at 15 min time resolution,with a measurement uncertainty of 7%.Potentiai interferences from NOx,NO2+SO2,NO2+VOCs,HONO+O3,HNO3,peroxyacetyl nitrite (PAN) and particle nitrite were quantified in laboratory studies and were found to be insignificant under typical atmospheric conditions.Within the framework of the 3C-STAR project,inter-comparison between the SC-IC and LOPAP (long path liquid absorption photometer) was conducted at a rurai site in the Pearl River Delta.Good agreement was achieved between the two instruments over three weeks.Both instruments determined a clear diurnai profile of ambient HONO concentrations from 0.1 to 2.5 ppbv.However,deviations were found for low ambient HONO concentrations (i.e.<0.3 ppbv),which cannot be explained by previous investigated interference species.To accurately determine the HONO budget under illuminated conditions,more intercomparison of HONO measurement techniques is still needed in future studies,especiaily at low HONO concentrations.

  17. Spatial and Temporal Variability of Trace Gas Columns Derived from WRF/Chem Regional Model Output: Planning for Geostationary Observations of Atmospheric Composition

    Science.gov (United States)

    Follette-Cook, M. B.; Pickering, K.; Crawford, J.; Duncan, B.; Loughner, C.; Diskin, G.; Fried, A.; Weinheimer, A.

    2015-01-01

    We quantify both the spatial and temporal variability of column integrated O3, NO2, CO, SO2, and HCHO over the Baltimore / Washington, DC area using output from the Weather Research and Forecasting model with on-line chemistry (WRF/Chem) for the entire month of July 2011, coinciding with the first deployment of the NASA Earth Venture program mission Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ). Using structure function analyses, we find that the model reproduces the spatial variability observed during the campaign reasonably well, especially for O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument will be the first NASA mission to make atmospheric composition observations from geostationary orbit and partially fulfills the goals of the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. We relate the simulated variability to the precision requirements defined by the science traceability matrices of these space-borne missions. Results for O3 from 0- 2 km altitude indicate that the TEMPO instrument would be able to observe O3 air quality events over the Mid-Atlantic area, even on days when the violations of the air quality standard are not widespread. The results further indicated that horizontal gradients in CO from 0-2 km would be observable over moderate distances (= 20 km). The spatial and temporal results for tropospheric column NO2 indicate that TEMPO would be able to observe not only the large urban plumes at times of peak production, but also the weaker gradients between rush hours. This suggests that the proposed spatial and temporal resolutions for these satellites as well as their prospective precision requirements are sufficient to answer the science questions they are tasked to address.

  18. Characterisation and quantification of trace metal elements in atmospheric deposition and particularities in the Aspe valley (Pyrenees): implementation of road traffic air quality indicators; Caracterisation et quantification des elements traces metalliques dans les depots et les particules atmospheriques de la vallee d'Aspe (Pyrenees): Mise en place d'indicateurs de la qualite de l'air lies au trafic routier

    Energy Technology Data Exchange (ETDEWEB)

    Veschambre, S

    2006-04-15

    This study of inputs of trace metal elements (TME) in the Aspe valley (Pyrenees Atlantiques) has two objectives: (1) to define a reference state of metallic contaminants for the monitoring of road traffic emissions since the opening of the Somport tunnel and, (2) to evaluate sources and climatic conditions which contribute to TME inputs in the Aspe valley. To establish air quality indicators, TME (Al, Na, Mg, K, V, Mn, Cr, Zn, Cu, Rb, Cd, Sn, Sb, Ba, Ce, Pb and U) and lead isotopic ratios ({sup 208}Pb/{sup 206}Pb, {sup 206}Pb/{sup 207}Pb and {sup 208}Pb/{sup 207}Pb) were determined in the atmospheric receptors (fresh snow, wet deposition, atmospheric particulates and lichen). Sampling and analyses with ultra clean procedures were employed for TME quantification. Variability of atmospheric receptors studied, allows integration on a daily and pluri-annual temporal scale and a spatial scale in the North-South axis of the valley and as a function of the altitude from the road. The Aspe valley presents a level of contamination characteristic of remote European areas and the metallic contaminants identified are Cd, Sb, Zn, Cu, Pb and Sn. In the low valley, air quality indicators indicate contaminant contributions (i) from local emissions of domestic heat sources, from agricultural burning practices and road traffic, and (ii) from regional anthropogenic sources of waste incinerators, metallurgic industries and urban centres. In altitude, the valley is significantly influenced by wind erosion and long range transport of TME in the Northern Hemisphere. Characterisation of TME and the isotopic ratios of Pb in the Somport tunnel indicate (i) a significant emission of Cu, Sb, Zn and Ba and (ii) an isotopic composition from a slightly radiogenic source even though Pb concentrations indicate low emissions from road traffic emissions. Nevertheless, the low traffic volume in the Aspe valley prevents conclusive evidence of significant contamination from road traffic. (author)

  19. Analysis system and remote monitoring of atmospheric discharges; Sistema de analisis y monitoreo remoto de descargas atmosfericas

    Energy Technology Data Exchange (ETDEWEB)

    Zabre Borgaro, Eric; Rodriguez Padilla, Ma. Consuelo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    A system for analysis and monitoring of atmospheric discharges (SAMDA (Sistema de Analisis y Monitoreo de Descargas Atmosfericas) (lightnings)) in an electronic device that subsequently transmits these data as automatic processing or by request of a user from a computer operating as a remote station, is described. Also, the characteristics of the SAMDA, its evolution, and the challenges encountered along the development of this project and comments on possible improvements to the equipment and data recordings of this nature, are described. [Espanol] Se presenta el sistema de analisis y monitoreo de descargas atmosfericas (SAMDA) utilizado en la deteccion y registro de descargas atmosfericas (rayos) en un equipo electronico que posteriormente transmite estos datos como procesamiento automatico o por peticion de un usuario desde una computadora, operando como estacion remota. Asimismo, se describen las caracteristicas del SAMDA, su evolucion, los retos encontrados a lo largo del desarrollo de este proyecto y comentarios sobre posibles mejoras a equipos y registros de datos de esta naturaleza.

  20. The monitoring of atmospheric mercury species in the Southern Indian Ocean at Amsterdam Island (38°S

    Directory of Open Access Journals (Sweden)

    Barret M.

    2013-04-01

    Full Text Available The role of oceans in the global cycle of mercury is still poorly characterized, mainly because of a lack a long-term data on atmospheric mercury concentrations in the remote Southern Ocean. In the frame of GMOS (Global Mercury Observation System, we present here the first results from a new monitoring station at Amsterdam Island in the Southern Indian Ocean. For the period January to April 2012, we recorded mean concentration of gaseous elemental mercury (GEM, reactive gaseous mercury (RGM and particulate-bounded mercury (PHg of 1.03 ng m−3, 0.37 and 0.34 pg m−3 respectively. While GEM concentrations showed little variations, RGM and PHg exhibited fast variations with alternation of value below the instrumental detection limit and maximum values up to 4 pg m−3.

  1. Experimental Study of Trace Element Migration Characteristics in an O_2/CO_2 Atmosphere%O_2/CO_2气氛下痕量元素迁移特性试验研究

    Institute of Scientific and Technical Information of China (English)

    卢骏营; 陈晓平; 段伦博; 周骛

    2009-01-01

    在管式炉上进行徐州烟煤的燃烧试验,采用电感耦合等离子体光谱质谱联用仪(ICP-MS)对燃烧剩余灰渣进行测定.研究了不同温度和不同燃烧气氛(空气气氛和O_2/CO_2气氛)下痕量元素的迁移特性.结果表明,煤燃烧过程中,痕量元素Cr、Mn、Ni、Zn、Cd、Pb在灰渣中富集,As挥发率达70%以上.随着温度的升高,大部分痕量元素在灰渣中的含量降低,Mn、Ni、Cr在灰渣中的含量相对比较稳定.O_2/CO_2气氛下,各元素随温度的变化趋势并未受到影响,但整体上O_2/CO_2气氛下各痕量元素在灰渣中的含量要大于空气气氛下的,随着温度的升高,O_2/CO_2气氛和空气气氛下痕量元素在灰渣中的含量越来越接近,说明燃烧气氛对痕量元素迁移的影响随温度升高而减弱.%On a tubular boiler,conducted was a combustion test of Xuzhou-originated bituminous coal and determined were the ash slag remnants from combustion by using an inductively coupled plasma-mass spectrometer (ICP-MS).The migration characteristics of trace elements were studied under various temperatures and combustion atmospheres (including air and O_2/CO_2 atmosphere).The research results show that during the coal combustion process,such trace elements as Cr,Mn,Ni,Zn,Cd and Pb become enriched in the ash slag,and the As volatilization rate is over 70%.With an increase of temperature,the contents of the majority of trace elements in the ash slag will decrease.However,the contents of Mn,Ni and Cr in the ash slag are relatively stable.In an O_2/CO_2 atmosphere,the changing tendency of various elements with temperature was not affected.In the O_2/CO_2 atmosphere,as a whole,the contents of various trace elements in the ash slag are greater than those in air atmosphere.With an increase of temperature,the above-mentioned contents in the O_2/CO_2 atmosphere are more and more close to those in the air atmosphere,indicating that the influence of the combustion atmosphere

  2. Novel Method of Monitoring Trace Cytokines and Activated STAT Molecules in the Paws of Arthritic Mice using Multiplex Bead Technology

    Directory of Open Access Journals (Sweden)

    Stump Kristine L

    2010-11-01

    Full Text Available Abstract Background The use of mouse models to study human disease provides useful data that can provide support for research projects or an existing drug discovery program. How well a model recapitulates the human condition and the ease and reproducibility of data collected will determine how much confidence a scientist can place on results obtained. Designing new treatments for rheumatic diseases, such as rheumatoid arthritis (RA, requires complex immunocompetent models that depend on intricate cytokine networks. Using local cytokines, signal transduction and transcription factor molecules as potential biomarkers to monitor disease and treatment efficacy is the best method to follow the progression of tissue damage and repair when testing an unknown compound or biologic. Described here in this report, a novel method for the non-enzymatic extraction and measurement of cytokines and signal transducers and activators of transcription (STAT molecules using Luminex® bead array technology in two different mouse models for human RA - collagen antibody-dependent arthritis (CAIA and collagen-induced arthritis (CIA. Results Dynamic expression of several pro-inflammatory cytokines responsible for promoting disease augmentation overtime were monitored, such as IL-1β, TNFα, IL-6 and IL-12, locally in the paws of affected animals directly ex vivo. Local cytokine responses could be matched with serum cytokine levels and joint pathology results. In addition, STAT1, 3, and 5a/b activation status could be monitored with confidence using specifically formulated extraction buffer that protected the phosphorylation site. STAT3 activation followed paw swelling and cytokine levels in both models and correlates of disease could be ablated upon treatment with dexamethasone. Here reported a novel method of extracting joint fluid from the paws of inflamed mice coupled with powerful multiplex bead technology allowing us to measure cytokine responses, pharmacodynamic

  3. Natural Radioactivity Accumulated in the Arctic from Long-range Atmospheric Transport - Observations in Canadian Monitoring Stations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Zhang, Weihua [Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa K1A 1C1 (Canada)

    2014-07-01

    In the environment, the main sources of naturally occurring radionuclides come from radionuclides in the uranium decay series. Activity concentrations of uranium decay series radionuclides may vary considerably from place to place depending on the geological characteristics at the location. Their releases to the atmosphere are mainly through radon ({sup 222}Rn), a radioactive noble gas occurring naturally as an indirect decay product of uranium in soils and rocks. Due to the abundance of uranium, radon continuously emanates from continental land masses. With radon as the main source of naturally occurring radioactivity in the environment, one would think that the Arctic should be an area of low background radiation, because a considerable area of the Arctic is covered by glaciers and permafrost, and radon emanation rate has been reported to be negligible from those glacier and permafrost areas. However, available data have shown the opposite. The elevated level of naturally occurring radioactivity in the Arctic is due to natural sources outside of the Arctic, mainly through long-range atmospheric transport of radon and radon progeny. In some cases, natural radioactivity can accumulate to relatively high levels and become a health concern or a limiting factor of country food consumption. By definition, contaminants are undesirable substances which can cause harm to the environment, the biota, and humans. We can call these naturally accumulating radiological burdens to the Arctic 'natural contaminants' to distinguish them from the traditional meaning of contamination, the 'artificial contaminants' which are attributable to industrial or man-made sources. This paper reviews information available in the literature, analyses long-term atmospheric monitoring data in the Canadian high Arctic, sub-Arctic and mid-latitude sites, and provides discussion on research needed to address questions, such as how heavily the Arctic has been impacted by the

  4. Monitoring and source apportionment of trace elements in PM2.5: Implications for local air quality management.

    Science.gov (United States)

    Li, Yueyan; Chang, Miao; Ding, Shanshan; Wang, Shiwen; Ni, Dun; Hu, Hongtao

    2017-03-08

    Fine particulate matter (PM2.5) samples were collected simultaneously every hour in Beijing between April 2014 and April 2015 at five sites. Thirteen trace elements (TEs) in PM2.5 were analyzed by online X-ray fluorescence (XRF). The annual average PM2.5 concentrations ranged from 76.8 to 102.7 μg m(-3). TEs accounted for 5.9%-8.7% of the total PM2.5 mass with Cl, S, K, and Si as the most dominant elements. Spearman correlation coefficients of PM2.5 or TE concentrations between the background site and other sites showed that PM2.5 and some element loadings were affected by regional and local sources, whereas Cr, Si, and Ni were attributed to substantial local emissions. Temporal variations of TEs in PM2.5 were significant and provided information on source profiles. The PM2.5 concentrations were highest in autumn and lowest in summer. Mn and Cr showed similar variation. Fe, Ca, Si, and Ti tended to show higher concentrations in spring, whereas concentrations of S peaked in summer. Concentrations of Cl, K, Pb, Zn, Cu, and Ni peaked in winter. PM2.5 and TE median concentrations were higher on Saturdays than on weekdays. The diurnal pattern of PM2.5 and TE median concentrations yielded similar bimodal patterns. Five dominant sources of PM2.5 mass were identified via positive matrix factorization (PMF). These sources included the regional and local secondary aerosols, traffic, coal burning, soil dust, and metal processing. Air quality management strategies, including regional environmental coordination and collaboration, reduction in secondary aerosol precursors, restrictive vehicle emission standards, promotion of public transport, and adoption of clean energy, should be strictly implemented. High time-resolution measurements of TEs provided detailed source profiles, which can greatly improve precision in interpreting source apportionment calculations; the PMF analysis of online XRF data is a powerful tool for local air quality management.

  5. Magnetic Study on Environmental Samples from Guadalajara Mexico for Monitoring of Atmospheric Pollution

    Science.gov (United States)

    Aguilar, B.; Cejudo, R.; Bogalo, M. F.; Rosas-Elguera, J.; Quintana, P.; Bautista, F.; Gogichaishvili, A.; Morales, J.

    2013-05-01

    Guadalajara is the second bigger city in Mexico, catalogued as critical zone because of atmospheric pollution levels. The magnetic methodology has been largely used as an alternative way to evaluate the pollution levels as well as identify the critical points in a given area. In this work, results from chemical analyses and magnetic measurements are presented in order to show the correlation between magnetic signal and the pollution level. We analyzed three kinds of environmental samples: urban soils, urban dust and leaves from ficus benjamina. Samples were taken in 30 sites distributed along a main avenue and two secondary avenues, including three points with very poor traffic influence. We determined a ferromagnetic carrier in most of samples, magnetite probably, since the Tc calculated from the thermomagnetic curves is around 580 °C. The magnetic susceptibility (Xlf) as well as the Saturation Isothermal Remanent Magnetization (SIRM) correlate well with the heavy metals content, specially Pb in urban dusts. These results allowed us to identify the most affected points, by vehicular traffic and industrial emissions. Furthermore, the values obtained for these magnetic parameters are above of those found in other studies for polluted cities in Europe and Asia.

  6. Atmospheric air density analysis with Meteo-40S wind monitoring system

    Directory of Open Access Journals (Sweden)

    Zahariea Dănuţ

    2017-01-01

    Full Text Available In order to estimate the wind potential of wind turbine sites, the wind resource maps can be used for mean annual wind speed, wind speed frequency distribution and mean annual wind power density determination. The general evaluation of the wind resource and the wind turbine ratings are based on the standard air density measured at sea level and at 15°C, ρs=1.225 kg/m3. Based on the experimental data obtained for a continental climate specific location, this study will present the relative error between the standard air density and the density of the dry and the moist air. Considering a cold day, for example on Friday 10th February 2017, on 1-second measurement rate and 10-minute measuring interval starting at 16:20, the mean relative errors obtained are 10.4145% for dry air, and 10.3634% for moist air. Based on these results, a correction for temperature, atmospheric air pressure and relative humidity should be always considered for wind resource assessment, as well as for the predicting the wind turbines performance.

  7. Optical monitoring of CH3NH3PbI3 thin films upon atmospheric exposure

    Science.gov (United States)

    Ghimire, Kiran; Zhao, Dewei; Cimaroli, Alex; Ke, Weijun; Yan, Yanfa; Podraza, Nikolas J.

    2016-10-01

    CH3NH3PbI3 perovskite films of interest for photovoltaic (PV) devices have been prepared by (i) vapor deposition and (ii) solution processing. Complex dielectric function (ε  =  ε 1  +  iε 2) spectra and structural parameters of the films have been extracted using near infrared to ultraviolet spectroscopic ellipsometry. In situ real time spectroscopic ellipsometry (RTSE) over a 48 h period has been performed on vapor deposited CH3NH3PbI3 after the deposition in normal atmospheric laboratory ambient conditions. Analysis of RTSE data for vapor deposited CH3NH3PbI3 film prepared under un-optimized conditions identifies phase segregated PbI2 and CH3NH3I at the substrate/film interface and unreacted PbI2 and CH3NH3I on the film surface. This analysis also provides the time dependence of the effective thicknesses of perovskite film, unreacted components, and phase segregated layers to track CH3NH3PbI3 decomposition.

  8. Phase space representation of neutron monitor count rate and atmospheric electric field in relation to solar activity in cycles 21 and 22.

    Science.gov (United States)

    Silva, H G; Lopes, I

    Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.

  9. Quantitative Evaluation of an Air-monitoring Network Using Atmospheric Transport Modeling and Frequency of Detection Methods.

    Science.gov (United States)

    Rood, Arthur S; Sondrup, A Jeffrey; Ritter, Paul D

    2016-04-01

    A methodology has been developed to quantify the performance of an air-monitoring network in terms of frequency of detection. Frequency of detection is defined as the fraction of "events" that result in a detection at either a single sampler or network of samplers. An "event" is defined as a release to the atmosphere of a specified amount of activity over a finite duration that begins on a given day and hour of the year. The methodology uses an atmospheric transport model to predict air concentrations of radionuclides at the samplers for a given release time and duration. Another metric of interest determined by the methodology is called the network intensity, which is defined as the fraction of samplers in the network that have a positive detection for a given event. The frequency of detection methodology allows for evaluation of short-term releases that include effects of short-term variability in meteorological conditions. The methodology was tested using the U.S. Department of Energy Idaho National Laboratory Site ambient air-monitoring network consisting of 37 low-volume air samplers in 31 different locations covering a 17,630 km region. Releases from six major facilities distributed over an area of 1,435 km were modeled and included three stack sources and eight ground-level sources. A Lagrangian Puff air dispersion model (CALPUFF) was used to model atmospheric transport. The model was validated using historical Sb releases and measurements. Relevant 1-wk release quantities from each emission source were calculated based on a dose of 1.9×10 mSv at a public receptor (0.01 mSv assuming release persists over a year). Important radionuclides were Am, Cs, Pu, Pu, Sr, and tritium. Results show the detection frequency was over 97.5% for the entire network considering all sources and radionuclides. Network intensity results ranged from 3.75% to 62.7%. Evaluation of individual samplers indicated some samplers were poorly located and added little to the overall

  10. Characterizing dust aerosols in the atmospheric boundary layer over the deserts in Northwest China: monitoring network and field observation

    Science.gov (United States)

    He, Q.; Matimin, A.; Yang, X.

    2016-12-01

    TheTaklimakan, Gurbantunggut and BadainJaran Deserts with the total area of 43.8×104 km2 in Northwest China are the major dust emission sources in Central Asia. Understanding Central Asian dust emissions and the interaction with the atmospheric boundary layer has an important implication for regional and global climate and environment changes. In order to explore these scientific issues, a monitoring network of 63 sites was established over the vast deserts (Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert) in Northwest China for the comprehensive measurements of dust aerosol emission, transport and deposition as well as the atmospheric boundary layer including the meteorological parameters of boundary layer, surface radiation, surface heat fluxes, soil parameters, dust aerosol properties, water vapor profiles, and dust emission. Based on the monitoring network, the field experiments have been conducted to characterize dust aerosols and the atmospheric boundary layer over the deserts. The experiment observation indicated that depth of the convective boundary layer can reach 5000m on summer afternoons. In desert regions, the diurnal mean net radiation was effected significantly by dust weather, and sensible heat was much greater than latent heat accounting about 40-50% in the heat balance of desert. The surface soil and dust size distributions of Northwest China Deserts were obtained through widely collecting samples, results showed that the dominant dust particle size was PM100within 80m height, on average accounting for 60-80% of the samples, with 0.9-2.5% for PM0-2.5, 3.5-7.0% for PM0-10 and 5.0-14.0% for PM0-20. The time dust emission of Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert accounted for 0.48%, 7.3%×10-5and 1.9% of the total time within a year, and the threshold friction velocity for dust emission were 0.22-1.06m/s, 0.29-1.5m/s and 0.21-0.59m/s, respectively.

  11. Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses

    Directory of Open Access Journals (Sweden)

    A. Gobiet

    2007-02-01

    Full Text Available This study describes and evaluates a Global Navigation Satellite System (GNSS radio occultation (RO retrieval scheme particularly aimed at delivering bias-free atmospheric parameters for climate monitoring and research. The focus of the retrieval is on the sensible use of a priori information for careful high-altitude initialisation in order to maximise the usable altitude range. The RO retrieval scheme has been meanwhile applied to more than five years of data (September 2001 to November 2006 from the German CHAllenging Minisatellite Payload for geoscientific research (CHAMP satellite. In this study it was validated against various correlative datasets including the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS and the Global Ozone Monitoring for Occultation of Stars (GOMOS sensors on Envisat, five different atmospheric analyses, and the operational CHAMP retrieval product from GeoForschungsZentrum (GFZ Potsdam. In the global mean within 10 to 30 km altitude we find that the present validation observationally constrains the potential RO temperature bias to be <0.2 K. Latitudinally resolved analyses show biases to be observationally constrained to <0.2–0.5 K up to 35 km in most cases, and up to 30 km in any case, even if severely biased (about 10 K or more a priori information is used in the high altitude initialisation of the retrieval. No evidence is found for the 10–35 km altitude range of RO bias sources other than those potentially propagated downward from initialisation, indicating that the widely quoted RO promise of "unbiasedness and long-term stability due to intrinsic self-calibration" can indeed be realized given care in the data processing to strictly limit structural uncertainty. The results demonstrate that an adequate high-altitude initialisation technique is crucial for accurate stratospheric RO retrievals and that still common methods of initialising the involved hydrostatic integral with an upper boundary

  12. Toxic Volatile Organic Compounds (VOCs in the Atmospheric Environment: Regulatory Aspects and Monitoring in Japan and Korea

    Directory of Open Access Journals (Sweden)

    Wen-Tien Tsai

    2016-09-01

    Full Text Available In the past decades, hazardous air pollutants (HAPs, so-called air toxics or toxic air pollutants, have been detected in the atmospheric air at low concentration levels, causing public concern about the adverse effect of long-term exposure to HAPs on human health. Most HAPs belong to volatile organic compounds (VOCs. More seriously, most of them are known carcinogens or probably carcinogenic to humans. The objectives of this paper were to report the regulatory aspects and environmental monitoring management of toxic VOCs designated by Japan and Korea under the Air Pollution Control Act, and the Clean Air Conservation Act, respectively. It can be found that the environmental quality standards and environmental monitoring of priority VOCs (i.e., benzene, trichloroethylene, tetrachloroethylene, and dichloromethane have been set and taken by the state and local governments of Japan since the early 2000, but not completely established in Korea. On the other hand, the significant progress in reducing the emissions of some toxic VOCs, including acrylonitrile, benzene, 1,3-butadiene, 1,2-dichloroethane, dichloromethane, chloroform, tetrachloroethylene, and trichloroethylene in Japan was also described as a case study in the brief report paper.

  13. Tracing the diet of the monitor lizard Varanus mabitang by stable isotope analyses (δ15N, δ13C)

    Science.gov (United States)

    Struck, Ulrich; Altenbach, Alexander; Gaulke, Maren; Glaw, Frank

    2002-09-01

    In this study, we used analyses of stable isotopes of nitrogen (δ15N) and carbon (δ13C) to determine the trophic ecology of the monitor lizard Varanus mabitang. Stable isotopes from claws, gut contents, and soft tissues were measured from the type specimen. Samples from Varanus olivaceus, Varanus prasinus, Varanus salvator, the herbivorous agamid lizard Hydrosaurus pustulatus, and some plant matter were included for comparison. Our data show a rapid decrease in δ13C (about10‰) from food plants towards gut contents and soft tissues of herbivorous species. For the varanids, we found a significant linear correlation of decreasing δ13C and increasing δ15N from herbivorous towards carnivorous species. In terms of trophic isotope ecology, the type specimen of V. mabitang is a strict herbivore. Thus it differs significantly in its isotopic composition from the morphologically next closest related species V. olivaceus. The most highly carnivorous species is V. salvator, while δ15N values for V. prasinus and V. olivaceus are intermediate. Claws provide very valuable samples for such measurements, because they can be sampled from living animals without harm. Additionally, their range of variability is relatively small in comparison with measurements from soft tissues.

  14. From Mobile Phone Monitoring of Depressive States using GPS Traces Analysis to Data-Driven Behaviour Change Interventions

    Directory of Open Access Journals (Sweden)

    Luca Canzian

    2015-10-01

    We have also shown that it is possible to develop inference algorithms as a basis for unobtrusive monitoring and prediction of depressive mood disorders. The key open question is how to exploit the correlations between mobility metrics and depressive states we observe in the data. We are currently exploring a variety of possible solutions for enabling automatic delivery of behaviour intervention through real-time analysis of the sensed data. The focus of this initial work is on a specific modality, i.e., GPS location, but the results of this work can be indeed exploited to build more complex system based on the analysis of data extracted by means of other sensors, such as accelerometers, and other sources of information, such as call and SMS logs. We indeed plan to use the application in future studies that will focus on specific populations, such as clinically-diagnosed depressed individuals. Ethical considerations are also an important part of our investigation: we believe that the potential risks associated to the delivery of incorrect behaviour interventions should be analysed in depth. A possible solution might consist in mixed intervention methods, based on the automatic delivery of behaviour interventions by means of mobile phones with the involvement of mental healthcare officers and clinicians, at least in case of mild and severe depressive cases.

  15. Modelling trace metal (Hg and Pb) bioaccumulation in the Mediterranean mussel, Mytilus galloprovincialis , applied to environmental monitoring

    Science.gov (United States)

    Casas, Stellio; Bacher, Cédric

    2006-08-01

    Bioaccumulation of metal within an organism results from interactions between physiological factors (growth, weight loss, absorption and accumulation), chemical factors (metal concentration, speciation and bioavailability) and environmental factors (temperature and food concentration). To account for such interactions in the mussel Mytilus galloprovincialis, we combined bioaccumulation and Dynamic Energy Budget models. Field experiments were conducted to measure uptake and elimination kinetics for two metals (Hg and Pb) in three Mediterranean sites with differences in contamination levels, and to calibrate the models. Metal uptake from water and from food was considered separately. Metal elimination resulted from reproduction and/or from direct excretion. Contributions of physiological variables, such as body size and tissue composition, were quantified. By combining environmental and biological data, the model provided an efficient bio-monitoring tool which can be applied to various coastal environments. An application to the French bio-integrator network (RINBIO) was carried out through inverse analysis and enabled us to assess the real level of contamination in water on the basis of contamination measured in mussels.

  16. BOU: Development of a low-cost tethered balloon sensing system for monitoring the lower atmosphere

    Science.gov (United States)

    Picos, Rodrigo; Lopez-Grifol, Alvaro; Martinez-Villagrassa, Daniel; Simó, Gemma; Wenger, Burkhard; Dünnermann, Jens; Jiménez, Maria Antonia; Cuxart, Joan

    2016-04-01

    The study of the atmospheric boundary layer, the lowest part of the atmosphere, and the processes that occur therein often requires the observation of vertical profiles of the main meteorological variables, i.e. air temperature and humidity, wind vector and barometric pressure. In particular, when the interest is focused on the air-surface interactions, a high vertical resolution over the first 500 m is required for the observations to describe the physical processes that occur immediately above the surface. Typically, these needs are covered with the use of captive balloons, which are helium-filled balloons tethered to a winch on the ground and a sensor package suspended a short distance below the balloon. Since the commercial version of such instrumental platforms are scarce and expensive, a new low-cost device has been developed in the last years: BOU (tethered Balloon sonde OWL-UIB). In this paper, we focus on the sensor package and data acquisition system part, that is able to fulfill the low-cost requirements. The system uses a low-cost Arduino Mega board as the processor, and stores all the data in a SD card, though an RF connection is also possible but more unreliable. The system has been configured to sample temperature, humidity, air pressure, wind speed, having also a magnetometer and an accelerometer. Sampling time was 1 second, though it was possible to set it faster. It is worth mentioning that the system is easily reconfigurable, and more sensors can be added. The system is powered by a Polymer battery of 1800mA , allowing the system to run continously for more than 6 hours. The temperature is acquired using three different sensors (a HYT 271 calibrated sensor with an accuracy of ±0.2 °C, plus the internal temperature sensors of the wind and pressure sensors, with accuracies around ±0.5 °C). The humidity is also sensed using the calibrated HYT 271 sensor, which features an accuracy of ±1.8%. Air pressure is sensed using a BMP080 sensor, which

  17. Ionic liquids as passive monitors of an atmosphere rich in mercury

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.A. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico); Solis, C., E-mail: corina@fisica.unam.mx [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico); Andrade, E. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico); Mondragon, M.A. [Centro de Fisica Aplicada y Tecnologia Avanzada, Departamento de Nanotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 1-1010, Queretaro 76000 (Mexico); Isaac-Olive, K. [Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo