WorldWideScience

Sample records for monitoring spacecraft atmosphere

  1. Development of a Test Protocol for Spacecraft Post-Fire Atmospheric Cleanup and Monitoring

    Science.gov (United States)

    Zuniga, David; Hornung, Steven D.; Haas, Jon P.; Graf, John C.

    2009-01-01

    Detecting and extinguishing fires, along with post-fire atmospheric cleaning and monitoring, are vital components of a spacecraft fire response system. Preliminary efforts focused on the technology evaluation of these systems under realistic conditions are described in this paper. While the primary objective of testing is to determine a smoke mitigation filter s performance, supplemental evaluations measuring the smoke-filled chamber handheld commercial off-the-shelf (COTS) atmospheric monitoring devices (combustion product monitors) are also conducted. The test chamber consists of a 1.4 cubic meter (50 cu. ft.) volume containing a smoke generator. The fuel used to generate the smoke is a mixture of polymers in quantities representative of materials involved in a circuit board fire as a typical spacecraft fire. Two fire conditions were examined: no flame and flame. No flame events are produced by pyrolyzing the fuel mixture in a quartz tube furnace with forced ventilation to produce a white, lingering-type smoke. Flame events ignite the smoke at the outlet of the tube furnace producing combustion characterized by a less opaque smoke with black soot. Electrochemical sensor measurements showed carbon monoxide is a major indicator of each fire. Acid gas measurements were recorded, but cross interferents are currently uncharacterized. Electrochemical sensor measurements and sample acquisition techniques from photoacoustic sensors are being improved. Overall, this research shows fire characterization using traditional analytical chemistry techniques is required to verify measurements recorded using COTS atmospheric monitoring devices.

  2. Spacecraft Power Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will develop the Spacecraft Power Monitor (SPM) which will use non-intrusive electrical monitoring (NEMO). NEMO transforms the power...

  3. Miniaturized, Multi-Analyte Sensor Array for the Automated Monitoring of Major Atmospheric Constituents in Spacecraft Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — InnoSense LLC (ISL) proposes to develop a miniaturized, multi-analyte sensor for near real-time monitoring of analytes in the spacecraft environment. The proposed...

  4. Miniaturized, Multi-Analyte Sensor Array for the Automated Monitoring of Major Atmospheric Constituents in Spacecraft Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II SBIR project is to develop a prototype sensor system to detect gaseous analytes in support of the spacecraft environmental monitoring...

  5. Spacecraft Cabin Particulate Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build and test an optical extinction monitor for the detection of spacecraft cabin particulates. This monitor will be sensitive to particle...

  6. Spacecraft Cabin Particulate Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We have built and tested an optical extinction monitor for the detection of spacecraft cabin particulates. This sensor sensitive to particle sizes ranging from a few...

  7. The Space Environment Monitors of Shenzhou Manned Spacecrafts

    Institute of Scientific and Technical Information of China (English)

    XU Ying; WANG Chunqin; YE Haihua; JING Guiru; ZHU Guangwu; WANG Shijin; QIN Guotai; LIANG Jinbao; SUN Yueqiang; HUANG Xiuying; YANG Xiaochao; WANG Yue

    2004-01-01

    For the purpose of ensuring normal operations of Shenzhou (SZ) series of manned spacecrafts and cosmonauts' safety, Space Environment Monitors (SEM)are mounted on board SZ-2, 3, 4, 5. SEMs aim to detect the high energy particles, the low energy particles, charging potential, atmospheric desity and composition. Detection of SEMs enable us to understand better the space environment in the manned spacecraft's orbit, and to provide a good space environment services for the spacecraft and cosmonauts. In addition, by using the data from SEMs, we have achieved some scientific accomplishments, such as the energy spectra of precipitating electrons, the abnormal variety of atmospheric density and composition during geomagnetic disturbances, the electron angle distribution in the low orbit and so on.

  8. A Novel Spacecraft Charge Monitor for LEO

    Science.gov (United States)

    Goembel, Luke

    2004-01-01

    Five years ago we introduced a new method for measuring spacecraft chassis floating potential relative to the space plasma (absolute spacecraft potential) in low Earth orbit. The method, based on a straightforward interpretation of photoelectron spectra, shows promise for numerous applications, but has not yet been tried. In the interest of testing the method, and ultimately supplying another tool for measuring absolute spacecraft charge, we are producing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. Although insight into the technique came from data collected in space over two decades ago, very little data are available. The data indicate that it may be possible to determine spacecraft floating potential to within 0.1 volt each with the SCM second under certain conditions. It is debatable that spacecraft floating potential has ever been measured with such accuracy. The compact, easily deployed SCM also offers the advantage of long-term stability in calibration. Accurate floating potential determinations from the SCM could be used to correct biases in space plasma measurements and evaluate charge mitigation and/or sensing devices. Although this paper focuses on the device's use in low Earth orbit (LEO), the device may also be able to measure spacecraft charge at higher altitudes, in the solar wind, and in orbits around other planets. The flight prototype SCM we are producing for delivery to NASA in the third quarter of 2004 will measure floating potential from 0 to -150 volts with 0.1 volt precision, weigh approximately 600-700 grams, consume approximately 2 watts, and will measure approximately 8 x 10 x 17 cm.

  9. Advances in spacecraft atmospheric entry guidance

    Science.gov (United States)

    Benito Manrique, Joel

    In order to advance entry guidance technology two different research areas have been explored with the objective of increasing the reachable landing area and the landing accuracy for future Mars missions. Currently only the northern hemisphere of Mars is available for landing due to its low elevation. Only low elevation landing sites have the necessary atmospheric density to allow landing using current Entry, Descent and Landing (EDL) technology. In order to reach most of the Ancient Highlands, the majority of the southern hemisphere, advanced EDL technology is needed in multiple fields, including entry guidance. The first research area is the definition and applications of reachable and controllable sets for entry. The definition of the reachable and controllable sets provides a framework for the study of the capabilities of an entry vehicle in a given planet. Reachable and controllable sets can be used to comprehensively characterize the envelope of trajectories that a vehicle can fly, the sites it can reach and the entry states that can be accommodated. The sets can also be used for the evaluation of trajectory planning algorithms and to assist in the selection of the entry or landing sites. In essence, the reachable and controllable sets offer a powerful vehicle and trajectory analysis and design framework that allows for better mission design choices. In order to illustrate the use of the sets, they are computed for a representative Mars mission using two different vehicle configurations. The sets characterize the impact of the vehicle configuration on the entry capability. Furthermore, the sets are used to find the best skip-entry trajectory for a return from the Moon mission, highlighting the utility of the sets in atmospheric maneuvers other than entry. The second research area is the development of the components of an entry guidance algorithm that allow high elevation landing and provide as well high landing accuracy. The approach taken follows the

  10. Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma

    Science.gov (United States)

    Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander

    2007-01-01

    As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

  11. Micro GC's for Contaminant Monitoring in Spacecraft Air Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to create new gas chromatographs (GCs) for contaminant monitoring in spacecraft air that do not require any reagents or special...

  12. High-Performance Contaminant Monitor for Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Vision for Space Exploration demands increasing reliance on real-time trace gas monitors onboard spacecraft. Present grab samples and badges will be inadequate...

  13. Towards spacecraft applications of structural health monitoring

    Directory of Open Access Journals (Sweden)

    Adrian TOADER

    2012-12-01

    Full Text Available The first part of the paper presents recent developments in the field of structural health monitoring (SHM with special attention on the piezoelectric wafer active sensors (PWAS technologies utilizing guided waves (GW as propagating waves (pitch-catch, pulse-echo, standing wave (electromechanical impedance, and phased arrays. The second part of the paper describes the challenges of extending the PWAS GW SHM approach to in-space applications. Three major issues are identified, (a cryogenic temperatures; (b high temperatures; and (c space radiation exposure. Preliminary results in which these three issues were address in a series of carefully conducted experiments are presented and discussed. The third part of the paper discusses a new project that is about to start in collaboration between three Romanian institutes to address the issues and challenging of developing space SHM technologies based on PWAS concepts. The paper finishes with conclusions and suggestions for further work.

  14. Handling Qualities of a Capsule Spacecraft During Atmospheric Entry

    Science.gov (United States)

    Bilimoria, Karl D.; Mueller, Eric R.

    2010-01-01

    A piloted simulation was conducted to study handling qualities for capsule spacecraft entering the Earth s atmosphere. Eight evaluation pilots, including six pilot astronauts, provided Cooper-Harper ratings, workload ratings, and qualitative comments. The simulation began after descending through the atmospheric entry interface point and continued until the drogue parachutes deployed. There were two categories of piloting tasks, both of which required bank angle control. In one task category, the pilot followed a closed-loop bank angle command computed by the backup guidance system to manage g-loads during entry. In the other task category, the pilot used intuitive rules to determine the desired bank angle independently, based on an open-loop schedule of vertical speed, Mach, and total energy specified at several range-to-target gates along the entry trajectory. Pilots were able to accurately track the bank angle guidance commands and steered the capsule toward the recovery site with essentially the same range error as the benchmark autopilot trajectory albeit with substantially higher propellant usage, and the handling qualities for this task were satisfactory. Another key result was that the complex piloting task of atmospheric entry could be performed satisfactorily, even in the presence of large dispersions, by controlling bank angle to follow a simple open-loop schedule.

  15. Spacecraft Water Monitoring: Adapting to an Era of Emerging Scientific Challenges

    Science.gov (United States)

    McCoy, J. Torin

    2009-01-01

    This viewgraph presentation reviews spacecraft water monitoring, and the scientific challenges associated with spacecraft water quality. The contents include: 1) Spacecraft Water 101; 2) Paradigm Shift; and 3) Technology Needs.

  16. The interactions of atmospheric cosmogenic radionuclides with spacecraft surfaces

    Science.gov (United States)

    Gregory, John C.; Fishman, G. J.; Harmon, A.; Parnell, T. A.; Herzog, G.; Klein, J.; Jull, A. J. T.

    1991-01-01

    The discovery of the cosmogenic radionuclide Be-7 on the front surface of the Long Duration Exposure Facility (LDEF) has opened new opportunities to study several unexplored regions of space science. The experiments have shown that the Be-7 found was concentrated in a thin surface layer of spacecraft material. The only reasonable source of the isotope is the atmosphere through which the spacecraft passed. It is expected that the uptake of Be in such circumstances will depend on the chemical form of the Be and the chemical nature of the substrate. It was found that the observed concentration of Be-7 does differ between metal surfaces and organic surfaces such as PTFE (Teflon). It is noted however, that (1) organic surfaces are etched by the atomic oxygen found under these orbital conditions, and (2) the relative velocity of the species is 8 km/s relative to the surface and the interaction chemistry and physics may differ from the norm. Be-7 is formed by disintegration of O and N nuclei under cosmic ray proton bombardment. Many other isotopes are produced by cosmic ray reactions, and some of these are suited to measurement by the extremely sensitive methods of accelerator mass spectrometry.

  17. Computerized atmospheric trace contaminant control simulation for manned spacecraft

    Science.gov (United States)

    Perry, J. L.

    1993-01-01

    Buildup of atmospheric trace contaminants in enclosed volumes such as a spacecraft may lead to potentially serious health problems for the crew members. For this reason, active control methods must be implemented to minimize the concentration of atmospheric contaminants to levels that are considered safe for prolonged, continuous exposure. Designing hardware to accomplish this has traditionally required extensive testing to characterize and select appropriate control technologies. Data collected since the Apollo project can now be used in a computerized performance simulation to predict the performance and life of contamination control hardware to allow for initial technology screening, performance prediction, and operations and contingency studies to determine the most suitable hardware approach before specific design and testing activities begin. The program, written in FORTRAN 77, provides contaminant removal rate, total mass removed, and per pass efficiency for each control device for discrete time intervals. In addition, projected cabin concentration is provided. Input and output data are manipulated using commercial spreadsheet and data graphing software. These results can then be used in analyzing hardware design parameters such as sizing and flow rate, overall process performance and program economics. Test performance may also be predicted to aid test design.

  18. Cold atmospheric plasma - A new technology for spacecraft component decontamination

    Science.gov (United States)

    Shimizu, Satoshi; Barczyk, Simon; Rettberg, Petra; Shimizu, Tetsuji; Klaempfl, Tobias; Zimmermann, Julia L.; Hoeschen, Till; Linsmeier, Christian; Weber, Peter; Morfill, Gregor E.; Thomas, Hubertus M.

    2014-01-01

    Cold atmospheric plasma (CAP) based on the Surface Micro-Discharge (SMD) technology was investigated for inactivation of different bacteria and endospores. The used technique was developed to serve as an alternative method for the decontamination of spacecraft components based on the COSPAR planetary protection policy where currently the dry heat microbial reduction method is the only applicable way to satisfy the required demands. However it is known, that dry heat can thermally damage sophisticated components installed on the device. Therefore, the development of a low temperature sterilization system is one of the high priority issues for upcoming space missions in the extraterrestrial field. In the study presented here, the vegetative bacteria Escherichia coli and Deinococcus radiodurans and several types of bacterial endospores - including Bacillus atrophaeus, Bacillus safensis, Bacillus megaterium, Bacillus megaterium 2c1 and Bacillus thuringiensis E24 - were inactivated by exposing them indirectly i.e. only to the reactive gases produced by the SMD electrode at room temperature. The results showed a 5 log inactivation for E. coli after 10 min of exposure. In contrast D. radiodurans proved to be more resistant resulting in a reduction of 3 log after exposure of 30 min. More than 6 log reductions were achieved for B. safensis, B. megaterium and B. megaterium 2c1 after 90 min of exposure. Furthermore the applicability of the used CAP system for spacecraft decontamination according to the planetary protection policy was investigated. This included also the investigation of the inactivation homogeneity by the plasma gas, the control of the temperature at the area of interest, the measurement of the O3 density in the treatment region and the detailed investigation of the effects of the exposure on different materials.

  19. Monitoring Atmospheric Transmission with FLAME

    Science.gov (United States)

    Zimmer, Peter C.; McGraw, J. T.; Zirzow, D. C.; Koppa, M.; Buttler-Pena, K.

    2014-01-01

    Calibration of ground-based observations in the optical and near-infrared requires precise and accurate understanding of atmospheric transmission, at least as precise and accurate as that required for the spectral energy distributions of science targets. Traditionally this has used the Langley extrapolation method, observing targets and calibrators over a range of airmass and extrapolating to zero airmass by assuming a plane-parallel homogeneous atmosphere. The technique we present uses direct measurements of the atmosphere to derive the transmission along the line of sight to science targets at a few well-chosen wavelengths. The Facility Lidar Atmospheric Monitor of Extinction (FLAME) is a 0.5m diameter three Nd:YAG wavelength (355nm, 532nm & 1064nm) elastic backscatter lidar system. Laser pulses are transmitted into the atmosphere in the direction of the science target. Photons scattered back toward the receiver by molecules, aerosols and clouds are collected and time-gated so that the backscatter intensity is measured as a function of range to the scattering volume. The system is housed in a mobile calibration lab, which also contains auxiliary instrumentation to provide a NIST traceable calibration of the transmitted laser power and receiver efficiency. FLAME was designed to create a million photons per minute signal from the middle stratosphere, where the atmosphere is relatively calm and dominated by molecules of the well-mixed atmosphere (O2 & N2). Routine radiosonde measurements of the density at these altitudes constrain the scattering efficiency in this region and, combined with calibration of the transmitter and receiver, the only remaining unknown quantity is the two-way transmission to the stratosphere. These measurements can inform atmospheric transmission models to better understand the complex and ever-changing observatory radiative transfer environment. FLAME is currently under active development and we present some of our ongoing measurements.

  20. Propellant-free Spacecraft Relative Maneuvering via Atmospheric Differential Drag

    Science.gov (United States)

    2015-07-06

    vectorized form Rp Pearson correlation coefficient Re Earth mean radius S Spacecraft cross-wind section area for chaser and target spacecraft...Gaidash, S. P., Ivanov, K. G., and Kanonidi, Kh. D., “Unusually High Geomagnetic Activity in 2003,” Cosmic Research, Vol. 42, No. 6, 2004, pp. 541-550

  1. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    Science.gov (United States)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1998-01-01

    Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).

  2. Intelligent data management for real-time spacecraft monitoring

    Science.gov (United States)

    Schwuttke, Ursula M.; Gasser, Les; Abramson, Bruce

    1992-01-01

    Real-time AI systems have begun to address the challenge of restructuring problem solving to meet real-time constraints by making key trade-offs that pursue less than optimal strategies with minimal impact on system goals. Several approaches for adapting to dynamic changes in system operating conditions are known. However, simultaneously adapting system decision criteria in a principled way has been difficult. Towards this end, a general technique for dynamically making such trade-offs using a combination of decision theory and domain knowledge has been developed. Multi-attribute utility theory (MAUT), a decision theoretic approach for making one-time decisions is discussed and dynamic trade-off evaluation is described as a knowledge-based extension of MAUT that is suitable for highly dynamic real-time environments, and provides an example of dynamic trade-off evaluation applied to a specific data management trade-off in a real-world spacecraft monitoring application.

  3. Nonlinear guided wave circular array system for microcrack monitoring in spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reliable monitoring of the microcrack formation in the complex composite structure components in NASA spacecraft and launch vehicles is critical for vehicle...

  4. CCSDS Spacecraft Monitor and Control Mission Operations Interoperability Prototype

    Science.gov (United States)

    Lucord, Steve; Martinez, Lindolfo

    2009-01-01

    We are entering a new era in space exploration. Reduced operating budgets require innovative solutions to leverage existing systems to implement the capabilities of future missions. Custom solutions to fulfill mission objectives are no longer viable. Can NASA adopt international standards to reduce costs and increase interoperability with other space agencies? Can legacy systems be leveraged in a service oriented architecture (SOA) to further reduce operations costs? The Operations Technology Facility (OTF) at the Johnson Space Center (JSC) is collaborating with Deutsches Zentrum fur Luft- und Raumfahrt (DLR) to answer these very questions. The Mission Operations and Information Management Services Area (MOIMS) Spacecraft Monitor and Control (SM&C) Working Group within the Consultative Committee for Space Data Systems (CCSDS) is developing the Mission Operations standards to address this problem space. The set of proposed standards presents a service oriented architecture to increase the level of interoperability among space agencies. The OTF and DLR are developing independent implementations of the standards as part of an interoperability prototype. This prototype will address three key components: validation of the SM&C Mission Operations protocol, exploration of the Object Management Group (OMG) Data Distribution Service (DDS), and the incorporation of legacy systems in a SOA. The OTF will implement the service providers described in the SM&C Mission Operation standards to create a portal for interaction with a spacecraft simulator. DLR will implement the service consumers to perform the monitor and control of the spacecraft. The specifications insulate the applications from the underlying transport layer. We will gain experience with a DDS transport layer as we delegate responsibility to the middleware and explore transport bridges to connect disparate middleware products. A SOA facilitates the reuse of software components. The prototype will leverage the

  5. Performance Testing of a Photocatalytic Oxidation Module for Spacecraft Cabin Atmosphere Revitalization

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Scott, Joseph P.; Kaiser, Mark; Seminara, Gary; Bershitsky, Alex

    2011-01-01

    Photocatalytic oxidation (PCO) is a candidate process technology for use in high volumetric flow rate trace contaminant control applications in sealed environments. The targeted application for PCO as applied to crewed spacecraft life support system architectures is summarized. Technical challenges characteristic of PCO are considered. Performance testing of a breadboard PCO reactor design for mineralizing polar organic compounds in a spacecraft cabin atmosphere is described. Test results are analyzed and compared to results reported in the literature for comparable PCO reactor designs.

  6. Atmospheric Monitoring for the MAGIC Telescopes

    CERN Document Server

    Gaug, M; Dorner, D; Doro, M; Font, Ll; Fruck, C; Garczarczyk, M; Garrido, D; Hrupec, D; Hose, J; López-Oramas, A; Maneva, G; Martinez, M; Mirzoyan, R; Temnikov, P; Zanin, R

    2014-01-01

    The monitoring of the atmosphere is very relevant for Imaging Atmospheric Cherenkov Telescopes. Adverse weather conditions (strong wind, high humidity, etc.) may damage the telescopes and must therefore be monitored continuously to guarantee a safe operation, and the presence of clouds and aerosols affects the transmission of the Cherenkov light and consequently the performance of the telescopes. The ATmospheric CAlibration (ATCA) technical working group of the MAGIC collaboration aims to cover all aspects related to atmosphere monitoring and calibration. In this paper we give an overview of the ATCA goals and activities, which include the set-up and maintenance of appropriate instrumentation, proper analysis of its data, the realization of MC studies, and the correction of real data taken under non-optimal atmospheric conditions. The final goal is to reduce the systematic uncertainties in the determination of the $\\gamma$-ray flux and energy, and to increase the duty cycle of the telescopes by establishing o...

  7. Trace Contaminant Monitor for Air in Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A need exists for analyzers that can measure trace contaminants in air on board spacecraft. Toxic gas buildup can endanger the crew particularly during long...

  8. Spacecraft

    Science.gov (United States)

    Clark, John F.; Haggerty, James J.; Woodburn, John H.

    1961-01-01

    In this twentieth century, we are privileged to witness the first steps toward realization of an age-old dream: the exploration of space. Already, in the first few years of the Space Age, man has been able to penetrate the layer of atmosphere which surrounds his planet and to venture briefly into space. Scores of man-made objects have been thrust into space, some of them to roam the solar system forever. Behind each space mission are years of patient research, thousands of man-hours of labor, and large sums of money. Because the sums involved are so enormous, the question is frequently asked, "Is it worth it?" Many people want to know what return this huge investment will bring to mankind. The return on the investment is knowledge. The accumulation of knowledge over the centuries has made possible our advanced way of life. As we unlock more and more of the secrets of the universe through space exploration, we add new volumes to the encyclopedia of man's knowledge. This will be applied to the benefit of mankind. For the practical-minded, there are concrete benefits to our way of life. Although we are still in the Stone Age of space exploration, a number of immediate applications of space technology are already apparent. For instance, imagine the benefits of an absolutely perfect system of predicting the weather. Or, going a step further, even changing the weather. And wouldn't it be fascinating to watch the next Olympic games, telecast from Tokyo, on your TV set? These are just a few of the practical benefits made possible by space technology.

  9. In-Flight spacecraft magnetic field monitoring using scalar/vector gradiometry

    DEFF Research Database (Denmark)

    Primdahl, Fritz; Risbo, Torben; Merayo, José M.G.

    2006-01-01

    Earth magnetic field mapping from planetary orbiting satellites requires a spacecraft magnetic field environment control program combined with the deployment of the magnetic sensors on a boom in order to reduce the measurement error caused by the local spacecraft field. Magnetic mapping missions...... the spacecraft centre-of-gravity. In line with the classical dual vector sensors technique for monitoring the spacecraft magnetic field, this paper proposes and demonstrates that a similar combined scalar/vector gradiometry technique is feasible by using the measurements from the boom-mounted scalar and vector...... sensors onboard the Oersted satellite. For Oersted, a large difference between the pre-flight determined spacecraft magnetic field and the in-flight estimate exists causing some concern about the general applicability of the dual sensors technique....

  10. Dynamics of Space Particles and Spacecrafts Passing by the Atmosphere of the Earth

    Directory of Open Access Journals (Sweden)

    Vivian Martins Gomes

    2013-01-01

    Full Text Available The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity are given at the periapsis of its trajectory around the Earth.

  11. SHARP: A multi-mission artificial intelligence system for spacecraft telemetry monitoring and diagnosis

    Science.gov (United States)

    Lawson, Denise L.; James, Mark L.

    1989-01-01

    The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager 2 spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.

  12. The prospect of responsive spacecraft using aeroassisted, trans-atmospheric maneuvers

    Science.gov (United States)

    Bettinger, Robert A.

    Comprised of exo- and trans-atmospheric trajectory segments, atmospheric re-entry represents a complex dynamical event which traditionally signals the mission end-of-life for low-Earth orbit (LEO) spacecraft, both manned and unmanned. Transcending this paradigm, atmospheric re-entry can be employed as a means of operational maneuver whereby the aerodynamic forces of the upper atmosphere can be exploited to create an aeroassisted maneuver. Utilizing a notional trans-atmospheric, lifting re-entry vehicle with L/D=6, the first phase of research demonstrates the terrestrial reachability potential for skip entry aeroassisted maneuvers. By overflying a geographically diverse set of sample ground targets, comparative analysis indicates a significant savings in DeltaV expenditure for skip entry compared with planar phasing and simple plane change exo-atmospheric maneuvers. In the second phase, the Design of Experiments method of orthogonal arrays provides optimal vehicle and skip entry trajectory designs by employing main effects and Pareto front analysis. Depending on the chosen re-circularization altitude, the coupled optimal design can achieve an inclination change of 19.91 deg with 50-85% less DeltaV than a simple plane change. Finally, the third phase introduces the descent-boost aeroassisted maneuver as an alternative to combined Hohmann and bi-elliptic transfers in order to perform LEO injection. Compared with bi-elliptic transfers, simulations demonstrate that a lifting re-entry vehicle with L/D=6 performing a descent-boost maneuver requires 6-12% less DeltaV for injection into orbits lower than 650 km. In addition, the third phase also introduces the "Maneuver Performance Number" as a dimensionless means of comparative effectiveness analysis for both exo- and trans-atmospheric maneuvers.

  13. In-Flight spacecraft magnetic field monitoring using scalar/vector gradiometry

    DEFF Research Database (Denmark)

    Primdahl, Fritz; Risbo, Torben; Merayo, José M.G.

    2006-01-01

    Earth magnetic field mapping from planetary orbiting satellites requires a spacecraft magnetic field environment control program combined with the deployment of the magnetic sensors on a boom in order to reduce the measurement error caused by the local spacecraft field. Magnetic mapping missions...... (Magsat, Oersted, CHAMP, SAC-C MMP and the planned ESA Swarm project) carry a vector magnetometer and an absolute scalar magnetometer for in-flight calibration of the vector magnetometer scale values and for monitoring of the inter-axes angles and offsets over time intervals from months to years...... sensors onboard the Oersted satellite. For Oersted, a large difference between the pre-flight determined spacecraft magnetic field and the in-flight estimate exists causing some concern about the general applicability of the dual sensors technique....

  14. The application of Cold Atmospheric Plasma (CAP) for the sterilisation of spacecraft materials

    Science.gov (United States)

    Rettberg, Petra; Barczyk, Simon; Morfill, Gregor; Thomas, Hubertus; Satoshi Shimizu, .; Shimizu, Tetsuji; Klaempfl, Tobias

    2012-07-01

    Plasma, oft called the fourth state of matter after solid, liquid and gas, is defined by its ionized state. Ionization can be induced by different means, such as a strong electromagnetic field applied with a microwave generator. The concentration and composition of reactive atoms and molecules produced in Cold Atmospheric Plasma (CAP) depends on the gases used, the gas flow, the power applied, the humidity level etc.. In medicine, low-temperature plasma is already used for the sterilization of surgical instruments, implants and packaging materials as plasma works at the atomic level and is able to reach all surfaces, even the interior of small hollow items like needles. Its ability to sterilise is due to the generation of biologically active bactericidal agents, such as free radicals and UV radiation. In the project PLASMA-DECON (DLR/BMWi support code 50JR1005) a prototype of a device for sterilising spacecraft material and components was built based on the surface micro-discharge (SMD) plasma technology. The produced plasma species are directed into a closed chamber which contains the parts that need to be sterilised. To test the inactivation efficiency of this new device bacterial spores were used as model organisms because in the COSPAR Planetary Protection Policy all bioburden constraints are defined with respect to the number of spores (and other heat-tolerant aerobic microorganisms). Spores from different Bacillus species and strains, i.e. wildtype strains from culture collections and isolates from spacecraft assembly cleanrooms, were dried on three different spacecraft relevant materials and exposed to CAP. The specificity, linearity, precision, and effective range of the device was investigated. From the results obtained it can be concluded that the application of CAP proved to be a suitable method for bioburden reduction / sterilisation in the frame of planetary protection measures and the design of a larger plasma device is planned in the future.

  15. Analytical theories for spacecraft entry into planetary atmospheres and design of planetary probes

    Science.gov (United States)

    Saikia, Sarag J.

    This dissertation deals with the development of analytical theories for spacecraft entry into planetary atmospheres and the design of entry spacecraft or probes for planetary science and human exploration missions. Poincare's method of small parameters is used to develop an improved approximate analytical solution for Yaroshevskii's classical planetary entry equation for the ballistic entry of a spacecraft into planetary atmospheres. From this solution, other important expressions are developed including deceleration, stagnation-point heat rate, and stagnation-point integrated heat load. The accuracy of the solution is assessed via numerical integration of the exact equations of motion. The solution is also compared to the classical solutions of Yaroshevskii and Allen and Eggers. The new second-order analytical solution is more accurate than Yaroshevskii's fifth-order solution for a range of shallow (-3 deg) to steep (up to -90 deg) entry flight path angles, thereby extending the range of applicability of the solution as compared to the classical Yaroshevskii solution, which is restricted to an entry flight path of approximately -40 deg. Universal planetary entry equations are used to develop a new analytical theory for ballistic entry of spacecraft for moderate to large initial flight path angles. Chapman's altitude variable is used as the independent variable. Poincare's method of small parameters is used to develop an analytical solution for the velocity and the flight path angle. The new solution is used to formulate key expressions for range, time-of-flight, deceleration, and aerodynamic heating parameters (e.g., stagnation-point heat rate, total stagnation-point heat load, and average heat input). The classical approximate solution of Chapman's entry equation appears as the zero-order term in the new solution. The new solution represents an order of magnitude enhancement in the accuracy compared to existing analytical solutions for moderate to large entry

  16. New Platforms for Suborbital Astronomical Observations and In Situ Atmospheric Measurements: Spacecraft, Instruments, and Facilities

    Science.gov (United States)

    Rodway, K.; DeForest, C. E.; Diller, J.; Vilas, F.; Sollitt, L. S.; Reyes, M. F.; Filo, A. S.; Anderson, E.

    2014-12-01

    Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. The new commercial space industry is developing suborbital reusable launch vehicles (sRLV's) to provide low-cost, flexible, and frequent access to space at ~100 km altitude. In the case of XCOR Aerospace's Lynx spacecraft, the vehicle design and capabilities work well for hosting specially designed experiments that can be flown with a human-tended researcher or alone with the pilot on a customized mission. Some of the first-generation instruments and facilities that will conduct solar observations on dedicated Lynx science missions include the SwRI Solar Instrument Pointing Platform (SSIPP) and Atsa Suborbital Observatory, as well as KickSat sprites, which are picosatellites for in situ atmospheric and solar phenomena measurements. The SSIPP is a demonstration two-stage pointed solar observatory that operates inside the Lynx cockpit. The coarse pointing stage includes the pilot in the feedback loop, and the fine stage stabilizes the solar image to achieve arcsecond class pointing. SSIPP is a stepping-stone to future external instruments that can operate with larger apertures and shorter wavelengths in the solar atmosphere. The Planetary Science Institute's Atsa Suborbital Observatory combines the strengths of ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with either in-house facility instruments or user-provided instruments. The Atsa prototype is a proof of concept, hand-guided camera that mounts on the interior of the Lynx cockpit to test target acquisition and tracking for human-operated suborbital astronomy. KickSat sprites are mass-producible, one inch printed circuit boards (PCBs) populated by programmable off the shelf microprocessors and radios for real time data transmission. The sprite PCBs can integrate chip-based radiometers, magnetometers

  17. An Autonomous Control System for an Intra-Vehicular Spacecraft Mobile Monitor Prototype

    Science.gov (United States)

    Dorais, Gregory A.; Desiano, Salvatore D.; Gawdiak, Yuri; Nicewarner, Keith

    2003-01-01

    This paper presents an overview of an ongoing research and development effort at the NASA Ames Research Center to create an autonomous control system for an internal spacecraft autonomous mobile monitor. It primary functions are to provide crew support and perform intra- vehicular sensing activities by autonomously navigating onboard the International Space Station. We describe the mission roles and high-level functional requirements for an autonomous mobile monitor. The mobile monitor prototypes, of which two are operational and one is actively being designed, physical test facilities used to perform ground testing, including a 3D micro-gravity test facility, and simulators are briefly described. We provide an overview of the autonomy framework and describe each of its components, including those used for automated planning, goal-oriented task execution, diagnosis, and fault recovery. A sample mission test scenario is also described.

  18. Monitoring of the Atmosphere on the International Space Station with the Air Quality Monitor

    Science.gov (United States)

    Wallace William T.; Limero, Thomas F.; Loh, Leslie J.; Mudgett, Paul D.; Gazda, Daniel B.

    2017-01-01

    During the early years of human spaceflight, short duration missions allowed for monitoring of the spacecraft environment to be performed via archival sampling, in which samples were returned to Earth for analysis. With the construction of the International Space Station (ISS) and the accompanying extended mission durations, the need for enhanced, real-time monitors became apparent. The Volatile Organic Analyzer (VOA) operated on ISS for 7 years, where it assessed trace volatile organic compounds in the cabin air. The large and fixed-position VOA was eventually replaced with the smaller Air Quality Monitor (AQM). Since March 2013, the atmosphere of the U.S. Operating Segment (USOS) has been monitored in near real-time by a pair of AQMs. These devices consist of a gas chromatograph (GC) coupled with a differential mobility spectrometer (DMS) and currently target detection list of 22 compounds. These targets are of importance to both crew health and the Environmental Control and Life Support Systems (ECLSS) on ISS. Data is collected autonomously every 73 hours, though the units can be controlled remotely from mission control to collect data more frequently during contingency or troubleshooting operations. Due to a nominal three-year lifetime on-orbit, the initial units were replaced in February 2016. This paper will focus on the preparation and use of the AQMs over the past several years. A description of the technical aspects of the AQM will be followed by lessons learned from the deployment and operation of the first set of AQMs. These lessons were used to improve the already-excellent performance of the instruments prior to deployment of the replacement units. Data trending over the past several years of operation on ISS will also be discussed, including data obtained during a survey of the USOS modules. Finally, a description of AQM use for contingency and investigative studies will be presented.

  19. Data mining spacecraft telemetry: towards generic solutions to automatic health monitoring and status characterisation

    Science.gov (United States)

    Royer, P.; De Ridder, J.; Vandenbussche, B.; Regibo, S.; Huygen, R.; De Meester, W.; Evans, D. J.; Martinez, J.; Korte-Stapff, M.

    2016-07-01

    We present the first results of a study aimed at finding new and efficient ways to automatically process spacecraft telemetry for automatic health monitoring. The goal is to reduce the load on the flight control team while extending the "checkability" to the entire telemetry database, and provide efficient, robust and more accurate detection of anomalies in near real time. We present a set of effective methods to (a) detect outliers in the telemetry or in its statistical properties, (b) uncover and visualise special properties of the telemetry and (c) detect new behavior. Our results are structured around two main families of solutions. For parameters visiting a restricted set of signal values, i.e. all status parameters and about one third of all the others, we focus on a transition analysis, exploiting properties of Poincare plots. For parameters with an arbitrarily high number of possible signal values, we describe the statistical properties of the signal via its Kernel Density Estimate. We demonstrate that this allows for a generic and dynamic approach of the soft-limit definition. Thanks to a much more accurate description of the signal and of its time evolution, we are more sensitive and more responsive to outliers than the traditional checks against hard limits. Our methods were validated on two years of Venus Express telemetry. They are generic for assisting in health monitoring of any complex system with large amounts of diagnostic sensor data. Not only spacecraft systems but also present-day astronomical observatories can benefit from them.

  20. Emissions to the atmosphere - monitoring and abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sage, P.W. [British Coal Corp., Cheltenham (United Kingdom); Ford, N.W.J. [CRE Group Ltd., Cheltenham (United Kingdom)

    1995-06-01

    In 1996, paper-mills will be subject to the requirements of the UK Environmental Protection Act 1990. This will involve the monitoring and reduction of emissions of SO{sub 2} and NO{sub x}. This paper describes the sources of these emissions - fluidised bed boilers, stoker fuel beds, pulverized fuel -and the available technologies for monitoring and abating them. The cost and effectiveness of pollution control is site specific. Large mills may benefit from the installation of Pound 100k monitoring systems with annual running costs of Pound 50 k; while small mills may achieve the desired results through periodic monitoring by consultants at Pound 10k a year. (author)

  1. Integration of Neutron Monitor Data with Spacecraft Observations: a Historical Perspective

    Science.gov (United States)

    McDonald, Frank B.

    2000-07-01

    Beginning in the early 1950s, data from neutron monitors placed the taxonomy of cosmic ray temporal variations on a firm footing, extended the observations of the Sun as a transient source of high energy particles and laid the foundation of our early concepts of a heliosphere. The first major impact of the arrival of the Space Age in 1957 on our understanding of cosmic rays came from spacecraft operating beyond the confines of our magnetosphere. These new observations showed that Forbush decreases were caused by interplanetary disturbances and not by changes in the geomagnetic field; the existence of both the predicted solar wind and interplanetary magnetic field was confirmed; the Sun was revealed as a frequent source of energetic ions and electrons in the 10 100 MeV range; and a number of new, low-energy particle populations was discovered. Neutron monitor data were of great value in interpreting many of these new results. With the launch of IMP 6 in 1971, followed by a number of other spacecraft, long-term monitoring of low and medium energy galactic and anomalous cosmic rays and solar and interplanetary energetic particles, and the interplanetary medium were available on a continuous basis. Many synoptic studies have been carried out using both neutron monitor and space observations. The data from the Pioneer 10/11 and Voyagers 1/2 deep space missions and the journey of Ulysses over the region of the solar poles have significantly extended our knowledge of the heliosphere and have provided enhanced understanding of many effects that were first identified in the neutron monitor data. Solar observations are a special area of space studies that has had great impact on interpreting results from neutron monitors, in particular the identification of coronal holes as the source of high-speed solar wind streams and the recognition of the importance of coronal mass ejections in producing interplanetary disturbances and accelerating solar energetic particles. In the

  2. Mobile lidar complex for ecological monitoring of the atmosphere

    Science.gov (United States)

    Boreisho, Anatoly S.; Volodenko, V. A.; Gryaznov, N. A.; Malamed, Evgeny R.; Mendov, Yu. N.; Moshkov, V. L.; Pantaleev, S. M.; Pankratiev, A. V.; Finagin, A. E.; Chakchir, S. Y.; Frolov-Bagreev, Leonid Y.; Konyaev, M. A.

    2004-06-01

    Mobile lidar complex provides monitoring of the atmosphere at the ranges up to 15 km in the wide spectral range from UV to mid IR. Three types of lasers are used for atmosphere probing via a common telescopic and scanner system. First tests of complex operability have shown high reliability of the equipment and realization of the main parameters.

  3. Test of Advanced Fine Water Mist Nozzles in a Representative Spacecraft Atmosphere Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fine water mist is being considered as a replacement technology for fire suppression on the next generation of manned spacecraft. It offers advantages in...

  4. Five-Channel Infrared Laser Absorption Spectrometer for Combustion Product Monitoring Aboard Manned Spacecraft

    Science.gov (United States)

    Briggs, Ryan M.; Frez, Clifford; Borgentun, Carl E.; Bagheri, Mahmood; Forouhar, Siamak; May, Randy D.

    2014-01-01

    Continuous combustion product monitoring aboard manned spacecraft can prevent chronic exposure to hazardous compounds and also provides early detection of combustion events. As future missions extend beyond low-Earth orbit, analysis of returned environmental samples becomes impractical and safety monitoring should be performed in situ. Here, we describe initial designs of a five-channel tunable laser absorption spectrometer to continuously monitor combustion products with the goal of minimal maintenance and calibration over long-duration missions. The instrument incorporates dedicated laser channels to simultaneously target strong mid-infrared absorption lines of CO, HCl, HCN, HF, and CO2. The availability of low-power-consumption semiconductor lasers operating in the 2 to 5 micron wavelength range affords the flexibility to select absorption lines for each gas with maximum interaction strength and minimal interference from other gases, which enables the design of a compact and mechanically robust spectrometer with low-level sensitivity. In this paper, we focus primarily on absorption line selection based on the availability of low-power single-mode semiconductor laser sources designed specifically for the target wavelength range.

  5. Unmanned Platforms Monitor the Arctic Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    de Boer, Gijs; Ivey, Mark D.; Schmid, Beat; McFarlane, Sally A.; Petty, Rickey C.

    2016-02-22

    In the Arctic, drones and tethered balloons can make crucial atmospheric measurement to provide a unique perspective on an environment particularly vulnerable to climate change. Climate is rapidly changing all over the globe, but nowhere is that change faster than in the Arctic. The evidence from recent years is clear: Reductions in sea ice (Kwok and Unstersteiner, 2011) and permafrost (Romanovsky et al., 2002), in addition to modification of the terriestrial ecosystem through melting permafrost and shifting vegetation zones (burek et al., 2008; Sturm, et al., 2001), all point to a rapidly evolving.

  6. Atmospheric monitoring in H.E.S.S.

    Directory of Open Access Journals (Sweden)

    Hahn J.

    2015-01-01

    Full Text Available Instruments applying the IACT method, such as H.E.S.S. (High Energy Stereoscopic System, observe VHE (very high energy, E > 100 GeV photons indirectly, using the Earth's atmosphere as a calorimeter. In the H.E.S.S. data reconstruction, the properties of this component are estimated by Monte Carlo simulations of a yearly averaged atmosphere density profile. Deviations of the real atmospheric conditions from this assumed atmospheric model will result in a biased reconstruction of the primary gamma-ray energy and thus the resulting source spectrum. In order to keep the corresponding systematic effects to a minimum, H.E.S.S. operates a set of atmospheric monitoring devices that allows it to characterise the atmospheric conditions during data taking. This information in turn is then used in data selection. Here, a short overview with respect to their usage during source observation and a posteriori analysis data selection will be presented.

  7. Tube bundle system: for monitoring of coal mine atmosphere.

    Science.gov (United States)

    Zipf, R Karl; Marchewka, W; Mohamed, K; Addis, J; Karnack, F

    2013-05-01

    A tube bundle system (TBS) is a mechanical system for continuously drawing gas samples through tubes from multiple monitoring points located in an underground coal mine. The gas samples are drawn via vacuum pump to the surface and are typically analyzed for oxygen, methane, carbon dioxide and carbon monoxide. Results of the gas analyses are displayed and recorded for further analysis. Trends in the composition of the mine atmosphere, such as increasing methane or carbon monoxide concentration, can be detected early, permitting rapid intervention that prevents problems, such as a potentially explosive atmosphere behind seals, fire or spontaneous combustion. TBS is a well-developed technology and has been used in coal mines around the world for more than 50 years. Most longwall coal mines in Australia deploy a TBS, usually with 30 to 40 monitoring points as part of their atmospheric monitoring. The primary uses of a TBS are detecting spontaneous combustion and maintaining sealed areas inert. The TBS might also provide mine atmosphere gas composition data after a catastrophe occurs in an underground mine, if the sampling tubes are not damaged. TBSs are not an alternative to statutory gas and ventilation airflow monitoring by electronic sensors or people; rather, they are an option to consider in an overall mine atmosphere monitoring strategy. This paper describes the hardware, software and operation of a TBS and presents one example of typical data from a longwall coal mine.

  8. Atmospheric monitoring and model applications at the Pierre Auger Observatory

    Science.gov (United States)

    Keilhauer, Bianca

    2015-03-01

    The Pierre Auger Observatory detects high-energy cosmic rays with energies above ˜1017 eV. It is built as a multi-hybrid detector measuring extensive air showers with different techniques. For the reconstruction of extensive air showers, the atmospheric conditions at the site of the Observatory have to be known quite well. This is particularly true for reconstructions based on data obtained by the fluorescence technique. For these data, not only the weather conditions near ground are relevant, most important are altitude-dependent atmospheric profiles. The Pierre Auger Observatory has set up a dedicated atmospheric monitoring programme at the site in the Mendoza province, Argentina. Beyond this, exploratory studies were performed in Colorado, USA, for possible installations in the northern hemisphere. In recent years, the atmospheric monitoring programme at the Pierre Auger Observatory was supplemented by applying data from atmospheric models. Both GDAS and HYSPLIT are developments by the US weather department NOAA and the data are freely available. GDAS is a global model of the atmospheric state parameters on a 1 degree geographical grid, based on real-time measurements and numeric weather predictions, providing a full altitude-dependent data set every 3 hours. HYSPLIT is a powerful tool to track the movement of air masses at various heights, and with it the aerosols. Combining local measurements of the atmospheric state variables and aerosol scattering with the given model data, advanced studies about atmospheric conditions can be performed and high precision air shower reconstructions are achieved.

  9. IMIS desktop & smartphone software solutions for monitoring spacecrafts' payload from anywhere

    Science.gov (United States)

    Baroukh, J.; Queyrut, O.; Airaud, J.

    In the past years, the demand for satellite remote operations has increased guided by on one hand, the will to reduce operations cost (on-call operators out of business hours), and on the other hand, the development of cooperation space missions resulting in a world wide distribution of engineers and science team members. Only a few off-the-shelf solutions exist to fulfill the need of remote payload monitoring, and they mainly use proprietary devices. The recent advent of mobile technologies (laptops, smartphones and tablets) as well as the worldwide deployment of broadband networks (3G, Wi-Fi hotspots), has opened up a technical window that brings new options. As part of the Mars Science Laboratory (MSL) mission, the Centre National D'Etudes Spatiales (CNES, the French space agency) has developed a new software solution for monitoring spacecraft payloads. The Instrument Monitoring Interactive Software (IMIS) offers state-of-the-art operational features for payload monitoring, and can be accessed remotely. It was conceived as a generic tool that can be used for heterogeneous payloads and missions. IMIS was designed as a classical client/server architecture. The server is hosted at CNES and acts as a data provider while two different kinds of clients are available depending on the level of mobility required. The first one is a rich client application, built on Eclipse framework, which can be installed on usual operating systems and communicates with the server through the Internet. The second one is a smartphone application for any Android platform, connected to the server thanks to the mobile broadband network or a Wi-Fi connection. This second client is mainly devoted to on-call operations and thus only contains a subset of the IMIS functionalities. This paper describes the operational context, including security aspects, that led IMIS development, presents the selected software architecture and details the various features of both clients: the desktop and the sm

  10. Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft

    DEFF Research Database (Denmark)

    Bolton, S. J.; Adriani, Alberto; Adumitroaie, V.

    2017-01-01

    On 27 August 2016, the Juno spacecraft acquired science observations of Jupiter, passing less than 5000 kilometers above the equatorial cloud tops. Images of Jupiter's poles show a chaotic scene, unlike Saturn's poles. Microwave sounding reveals weather features at pressures deeper than 100 bars,...

  11. Noble gas atmospheric monitoring at reprocessing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakhleh, C.W.; Perry, R.T. Jr.; Poths, J.; Stanbro, W.D.; Wilson, W.B.; Fearey, B.L.

    1997-05-01

    The discovery in Iraq after the Gulf War of the existence of a large clandestine nuclear-weapon program has led to an across-the-board international effort, dubbed Programme 93+2, to improve the effectiveness and efficiency of International Atomic Energy Agency (IAEA) safeguards. One particularly significant potential change is the introduction of environmental monitoring (EM) techniques as an adjunct to traditional safeguards methods. Monitoring of stable noble gas (Kr, Xe) isotopic abundances at reprocessing plant stacks appears to be able to yield information on the burnup and type of the fuel being processed. To estimate the size of these signals, model calculations of the production of stable Kr, Xe nuclides in reactor fuel and the subsequent dilution of these nuclides in the plant stack are carried out for two case studies: reprocessing of PWR fuel with a burnup of 35 GWd/tU, and reprocessing of CAND fuel with a burnup of 1 GWd/tU. For each case, a maximum-likelihood analysis is used to determine the fuel burnup and type from the isotopic data.

  12. Innovative Monitoring of Atmospheric Gaseous Hydrogen Fluoride

    Directory of Open Access Journals (Sweden)

    Stefano Dugheri

    2016-01-01

    Full Text Available Hydrogen fluoride (HF is a basic raw material for a wide variety of industrial products, with a worldwide production capacity of more than three million metric tonnes. A novel method for determining particulate fluoride and gaseous hydrogen fluoride in air is presented herewith. Air was sampled using miniaturised 13 mm Swinnex two-stage filter holders in a medium-flow pumping system and through the absorption of particulate fluoride and HF vapours on cellulose ester filters uncoated or impregnated with sodium carbonate. Furthermore, filter desorption from the holders and the extraction of the pentafluorobenzyl ester derivative based on solid-phase microextraction were performed using an innovative robotic system installed on an xyz autosampler on-line with gas chromatography (GC/mass spectrometry (MS. After generating atmospheres of a known concentration of gaseous HF, we evaluated the agreement between the results of our sampling method and those of the conventional preassembled 37 mm cassette (±8.10%; correlation coefficient: 0.90. In addition, precision (relative standard deviation for n=10, 4.3%, sensitivity (0.2 μg/filter, and linearity (2.0–4000 μg/filter; correlation coefficient: 0.9913 were also evaluated. This procedure combines the efficiency of GC/MS systems with the high throughput (96 samples/day and the quantitative accuracy of pentafluorobenzyl bromide on-sample derivatisation.

  13. Innovative Monitoring of Atmospheric Gaseous Hydrogen Fluoride

    Science.gov (United States)

    Bonari, Alessandro; Pompilio, Ilenia; Monti, Alessandro; Arcangeli, Giulio

    2016-01-01

    Hydrogen fluoride (HF) is a basic raw material for a wide variety of industrial products, with a worldwide production capacity of more than three million metric tonnes. A novel method for determining particulate fluoride and gaseous hydrogen fluoride in air is presented herewith. Air was sampled using miniaturised 13 mm Swinnex two-stage filter holders in a medium-flow pumping system and through the absorption of particulate fluoride and HF vapours on cellulose ester filters uncoated or impregnated with sodium carbonate. Furthermore, filter desorption from the holders and the extraction of the pentafluorobenzyl ester derivative based on solid-phase microextraction were performed using an innovative robotic system installed on an xyz autosampler on-line with gas chromatography (GC)/mass spectrometry (MS). After generating atmospheres of a known concentration of gaseous HF, we evaluated the agreement between the results of our sampling method and those of the conventional preassembled 37 mm cassette (±8.10%; correlation coefficient: 0.90). In addition, precision (relative standard deviation for n = 10, 4.3%), sensitivity (0.2 μg/filter), and linearity (2.0–4000 μg/filter; correlation coefficient: 0.9913) were also evaluated. This procedure combines the efficiency of GC/MS systems with the high throughput (96 samples/day) and the quantitative accuracy of pentafluorobenzyl bromide on-sample derivatisation. PMID:27829835

  14. Sunsynchronous low Earth orbit spacecraft concepts and technology requirements for global change monitoring

    Science.gov (United States)

    Garrett, L. Bernard; Butterfield, Ansel J.; Taback, Israel; Garn, Paul A.; Burrowbridge, Donald R., Jr.

    1991-01-01

    The Global Change Technology Initiative listing of instruments for operation in low Earth, sunsynchronous orbits contain 21 entries, of which 20 are carried aboard multi-instrument spacecraft. This list identifies the temporal requirements for repetition of measurements and also includes groups of instruments that make complementing measurements. Definitions for individual spacecraft follows the temporal and grouping requirements to establish constellations which will provide the measurement data. The definitions of constellations for multi-instrument spacecraft show two alternatives: a constellation of 10 spacecraft, each compatible with launch by a Delta booster; a constellation of 4 spacecraft, each requiring a Titan booster. Operating subsystems for the individual spacecraft can use modular concepts that are adaptations based upon current plans for improving the performance of the NASA-Goddard Multimission Modular units. The descriptions of the spacecraft and constellations begins with a compilation of instrument related requirements that define the principal system performance parameters and operating capabilities.

  15. The Atmospheric Monitoring system of the JEM-EUSO telescope

    CERN Document Server

    Toscano, S; Frías, M D Rodríguez

    2014-01-01

    The JEM-EUSO observatory on board of the International Space Station (ISS) is a proposed pioneering space mission devoted to the investigation of Ultra High Energy Cosmic Rays (UHECRs). Looking downward at the earth's atmosphere with a 60$^\\circ$ Field of View (FoV), the JEM-EUSO telescope will detect the fluorescence and Cherenkov UV emission from UHECR induced Extensive Air Showers (EAS) penetrating in the atmosphere. The capability of reconstructing the properties of the primary cosmic ray depends on the accurate measurement of the atmospheric conditions in the region of EAS development. The Atmospheric Monitoring system of JEM-EUSO will continuously monitor the atmosphere at the location of the EAS candidates and between the EAS and the JEM-EUSO telescope. With an UV LIDAR and an Infrared (IR) Camera the system will monitor the cloud cover and retrieve the cloud top altitude with an accuracy of $\\sim$ 500 m and the optical depth profile of the atmosphere with an accuracy of $\\Delta\\tau \\leq$ 0.15 and a re...

  16. Potential application of X-ray communication through a plasma sheath encountered during spacecraft reentry into earth's atmosphere

    Science.gov (United States)

    Li, Huan; Tang, Xiaobin; Hang, Shuang; Liu, Yunpeng; Chen, Da

    2017-03-01

    Rapid progress in exploiting X-ray science has fueled its potential application in communication networks as a carrier wave for transmitting information through a plasma sheath during spacecraft reentry into earth's atmosphere. In this study, we addressed the physical transmission process of X-rays in the reentry plasma sheath and near-earth space theoretically. The interactions between the X-rays and reentry plasma sheath were investigated through the theoretical Wentzel-Kramers-Brillouin method, and the Monte Carlo simulation was employed to explore the transmission properties of X-rays in the near-earth space. The simulation results indicated that X-ray transmission was not influenced by the reentry plasma sheath compared with regular RF signals, and adopting various X-ray energies according to different spacecraft reentry altitudes is imperative when using X-ray uplink communication especially in the near-earth space. Additionally, the performance of the X-ray communication system was evaluated by applying the additive white Gaussian noise, Rayleigh fading channel, and plasma sheath channel. The Doppler shift, as a result of spacecraft velocity changes, was also calculated through the Matlab Simulink simulation, and various plasma sheath environments have no significant influence on X-ray communication owing to its exceedingly high carrier frequency.

  17. Modification of spacecraft charging and the near-plasma environment caused by the interaction of an artificial electron beam with the earth's upper atmosphere

    DEFF Research Database (Denmark)

    Neubert, Torsten; Banks, P. M.; Gilchrist, B.E.

    1991-01-01

    The Beam-Atmosphere Interaction (BAI) involves the ionization created in the earth's upper atmosphere by electron beams emitted from a low altitude spacecraft. This process is described by two coupled non-linear differential electron transport equations for the up-going (along magnetic field line...

  18. Monitoring Microbes in the Spacecraft Environment by Mass Spectrometry of Ribosomal RNA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The unique stresses in the spacecraft environment including isolation, containment, weightlessness, increased radiation exposure, and enhanced microbial...

  19. Atmospheric aerosol monitoring at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Cester, R.; Chiosso, M.; Chirin, J.; Clay, R.; Dawson, B.; Fick, B.; Filipcic, A.; Garcia, B.; Grillo, A.; Horvat, M.; Iarlori, M.; Malek, M.; Matthews, J.; Matthews,; Melo, D.; Meyhandan, R.; Mostafa, M.; Mussa, R.; Prouza, M.; Raefert, B.; Rizi, V.

    2005-07-01

    For a ground based cosmic-ray observatory the atmosphere is an integral part of the detector. Air fluorescence detectors (FDs) are particularly sensitive to the presence of aerosols in the atmosphere. These aerosols, consisting mainly of clouds and dust, can strongly affect the propagation of fluorescence and Cherenkov light from cosmic-ray induced extensive air showers. The Pierre Auger Observatory has a comprehensive program to monitor the aerosols within the atmospheric volume of the detector. In this paper the aerosol parameters that affect FD reconstruction will be discussed. The aerosol monitoring systems that have been deployed at the Pierre Auger Observatory will be briefly described along with some measurements from these systems.

  20. The Rapid Atmospheric Monitoring System of the Pierre Auger Observatory

    CERN Document Server

    Abreu, P; Ahlers, M; Ahn, E J; Albuquerque, I F M; Allard, D; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antičić, T; Aramo, C; Arganda, E; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Badescu, A M; Balzer, M; Barber, K B; Barbosa, A F; Bardenet, R; Barroso, S L C; Baughman, B; Bäuml, J; Baus, C; Beatty, J J; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Buroker, L; Burton, R E; Caballero-Mora, K S; Caccianiga, B; Caramete, L; Caruso, R; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Cheng, S H; Chiavassa, A; Chinellato, J A; Diaz, J Chirinos; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cook, H; Cooper, M J; Coppens, J; Cordier, A; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; del Peral, L; del Río, M; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Castro, M L Díaz; Diep, P N; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fratu, O; Fröhlich, U; Fuchs, B; Gaior, R; Gamarra, R F; Gambetta, S; García, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Garilli, G; Bravo, A Gascon; Gemmeke, H; Ghia, P L; Giller, M; Gitto, J; Glass, H; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Vitale, P F Gómez; Gonçalves, P; Gonzalez, J G; Gookin, B; Gorgi, A; Gouffon, P; Grashorn, E; Grebe, S; Griffith, N; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hojvat, C; Hollon, N; Holmes, V C; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Ionita, F; Italiano, A; Jansen, S; Jarne, C; Jiraskova, S; Josebachuili, M; Kadija, K; Kampert, K H; Karhan, P; Kasper, P; Katkov, I; Kégl, B; Keilhauer, B; Keivani, A; Kelley, J L; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapp, J; Koang, D -H; Kotera, K; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kulbartz, J K; Kunka, N; La Rosa, G; Lachaud, C; LaHurd, D; Latronico, L; Lauer, R; Lautridou, P; Coz, S Le; Leão, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, J; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mazur, P O; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Mertsch, P; Meurer, C; Meyhandan, R; Mićanović, S; Micheletti, M I; Minaya, I A; Miramonti, L; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Münchmeyer, M; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nhung, P T; Niechciol, M; Niemietz, L; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Oehlschläger, J; Olinto, A; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parizot, E; Parra, A; Pastor, S; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrolini, A; Petrov, Y; Pfendner, C; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Ponce, V H; Pontz, M; Porcelli, A; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivera, H; Rizi, V; Roberts, J; de Carvalho, W Rodrigues; Rodriguez, G; Cabo, I Rodriguez; Martino, J Rodriguez; Rojo, J Rodriguez; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Rühle, C; Saftoiu, A; Salamida, F; Salazar, H; Greus, F Salesa; Salina, G; Sánchez, F; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schröder, F; Schulte, S; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Lopez, H H Silva; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Srivastava, Y N; Stanic, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Šuša, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tapia, A; Tartare, M; Taşcău, O; Tcaciuc, R; Thao, N T; Thomas, D; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; Berg, A M van den; van Vliet, A; Varela, E; Cárdenas, B Vargas; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Westerhoff, S; Whelan, B J; Widom, A; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Wommer, M; Wundheiler, B; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Garcia, B Zamorano; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M

    2012-01-01

    The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10^17 eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e.g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air show...

  1. Atmosphere-Space Interactions Monitor (ASIM: State of the Art

    Directory of Open Access Journals (Sweden)

    Pere Blay

    2014-12-01

    Full Text Available Atmosphere-Space Interactions Monitor (ASIM mission is an ESA pay load which will be installed in the Columbus module of the International Space Station (ISS. ASIM is optimized to the observation and monitoring of luminescent phenomena in the upper atmosphere, the so called Transient Luminous Event (TLEs and Terrestrial Gamma Ray Flashes(TGFs. Both TLEs and TGFs have been discovered recently (past two decades and opened a new field of research in high energetic phenomena in the atmosphere. We will review the capabilities of ASIM and how it will help researchers to gain deeper knowledge of TGFs, TLEs, their inter-relationship and how they are linked to severe thunderstorms and the phenomena of lightning.

  2. Colorimetric Solid Phase Extraction (CSPE): Using Color to Monitor Spacecraft Water Quality

    Science.gov (United States)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin

    2010-01-01

    In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS). The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was launched as a Station Development Test Objective (SDTO) experiment to evaluate the suitability of CSPE technology for routine use monitoring water quality on the ISS. CSPE is a sorption-spectrophotometric technique that combines colorimetric reagents, solid-phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water samples. In CSPE, a known volume of sample is metered through a membrane disk that has been impregnated with an analyte-specific colorimetric reagent and any additives required to optimize the formation of the analyte-reagent complex. As the sample flows through the membrane disk, the target analyte is selectively extracted, concentrated, and complexed. Formation of the analyte-reagent complex causes a detectable change in the color of the membrane disk that is proportional to the amount of analyte present in the sample. The analyte is then quantified by measuring the color of the membrane disk surface using a hand-held diffuse reflectance spectrophotometer (DRS). The CWQMK provides the capability to measure the ionic silver (Ag +) and molecular iodine (I2) in water samples on-orbit. These analytes were selected for the evaluation of CSPE technology because they are the biocides used in the potable water storage and distribution systems on the ISS. Biocides are added to the potable water systems on spacecraft to inhibit microbial growth. On the United States (US) segment of the ISS molecular iodine serves as the biocide, while the Russian space agency utilizes silver as a biocide in their systems. In both cases, the biocides must be maintained at a level sufficient to control bacterial growth, but low enough to avoid any negative effects on crew health. For example, the

  3. Colorimetric Solid Phase Extraction (CSPE): Using Color to Monitor Spacecraft Water Quality

    Science.gov (United States)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin

    2010-01-01

    In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS). The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was launched as a Station Development Test Objective (SDTO) experiment to evaluate the suitability of CSPE technology for routine use monitoring water quality on the ISS. CSPE is a sorption-spectrophotometric technique that combines colorimetric reagents, solid-phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water samples. In CSPE, a known volume of sample is metered through a membrane disk that has been impregnated with an analyte-specific colorimetric reagent and any additives required to optimize the formation of the analyte-reagent complex. As the sample flows through the membrane disk, the target analyte is selectively extracted, concentrated, and complexed. Formation of the analyte-reagent complex causes a detectable change in the color of the membrane disk that is proportional to the amount of analyte present in the sample. The analyte is then quantified by measuring the color of the membrane disk surface using a hand-held diffuse reflectance spectrophotometer (DRS). The CWQMK provides the capability to measure the ionic silver (Ag +) and molecular iodine (I2) in water samples on-orbit. These analytes were selected for the evaluation of CSPE technology because they are the biocides used in the potable water storage and distribution systems on the ISS. Biocides are added to the potable water systems on spacecraft to inhibit microbial growth. On the United States (US) segment of the ISS molecular iodine serves as the biocide, while the Russian space agency utilizes silver as a biocide in their systems. In both cases, the biocides must be maintained at a level sufficient to control bacterial growth, but low enough to avoid any negative effects on crew health. For example, the

  4. Application of Vacuum Swing Adsorption for Carbon Dioxide and Water Vapor Removal from Manned Spacecraft Atmospheres

    Science.gov (United States)

    Knox, J.; Howard, D.

    2007-01-01

    In NASA's Vision for Space Exploration (Bush, 2004), (Griffin, 2007), humans will once again travel beyond the confines of earth's gravity, this time to remain there for extended periods. These forays will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also liftoff the supplies needed to sustain a larger crew over much longer periods. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. For short-term phases of manned space exploration, such as transit from the earth to the moon, venting of metabolic carbon dioxide and water to space is more efficient than the inclusion of large recycling systems on the spacecraft. The baseline system for the Orion spacecraft is an amine-based vacuum swing system (Smith, Perry et aI., 2006). As part of the development of an alternative approach, a sorbent-based CO2 and H2O removal system (Knox, Adams et aI., 2006), subscale testing was conducted to evaluate potential performance improvements obtainable by recuperating the heat of adsorption to aid in vacuum desorption. This bed design is shown in Figure 1, is depicted here with a lattice structure instead of reticulated foam for heat transfer. The slot widths are approximately 1.2 mm wide and 8.5 mm long. Bed depth is approximately 4.7 mm. Headers (not shown) were produced by the stereo lithography apparatus at MSFC.

  5. Strategy implementation for the CTA Atmospheric monitoring program

    Directory of Open Access Journals (Sweden)

    Doro Michele

    2015-01-01

    Full Text Available The Cherenkov Telescope Array (CTA is the next generation facility of Imaging Atmospheric Cherenkov Telescopes. It reaches unprecedented sensitivity and energy resolution in very-high-energy gamma-ray astronomy. CTA detects Cherenkov light emitted within an atmospheric shower of particles initiated by cosmic-gamma rays or cosmic rays entering the Earth's atmosphere. From the combination of images the Cherenkov light produces in the telescopes, one is able to infer the primary particle energy and direction. A correct energy estimation can be thus performed only if the local atmosphere is well characterized. The atmosphere not only affects the shower development itself, but also the Cherenkov photon transmission from the emission point in the particle shower, at about 10–20 km above the ground, to the detector. Cherenkov light on the ground is peaked in the UV-blue region, and therefore molecular and aerosol extinction phenomena are important. The goal of CTA is to control systematics in energy reconstruction to better than 10%. For this reason, a careful and continuous monitoring and characterization of the atmosphere is required. In addition, CTA will be operated as an observatory, with data made public along with appropriate analysis tools. High-level data quality can only be ensured if the atmospheric properties are consistently and continuously taken into account. In this contribution, we concentrate on discussing the implementation strategy for the various atmospheric monitoring instruments currently under discussion in CTA. These includes Raman lidars and ceilometers, stellar photometers and others available both from commercial providers and public research centers.

  6. Atmospheric monitoring and model applications at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Keilhauer Bianca

    2015-01-01

    Full Text Available The Pierre Auger Observatory detects high-energy cosmic rays with energies above ∼1017 eV. It is built as a multi-hybrid detector measuring extensive air showers with different techniques. For the reconstruction of extensive air showers, the atmospheric conditions at the site of the Observatory have to be known quite well. This is particularly true for reconstructions based on data obtained by the fluorescence technique. For these data, not only the weather conditions near ground are relevant, most important are altitude-dependent atmospheric profiles. The Pierre Auger Observatory has set up a dedicated atmospheric monitoring programme at the site in the Mendoza province, Argentina. Beyond this, exploratory studies were performed in Colorado, USA, for possible installations in the northern hemisphere. In recent years, the atmospheric monitoring programme at the Pierre Auger Observatory was supplemented by applying data from atmospheric models. Both GDAS and HYSPLIT are developments by the US weather department NOAA and the data are freely available. GDAS is a global model of the atmospheric state parameters on a 1 degree geographical grid, based on real-time measurements and numeric weather predictions, providing a full altitude-dependent data set every 3 hours. HYSPLIT is a powerful tool to track the movement of air masses at various heights, and with it the aerosols. Combining local measurements of the atmospheric state variables and aerosol scattering with the given model data, advanced studies about atmospheric conditions can be performed and high precision air shower reconstructions are achieved.

  7. Species and temperature exchange in the atmosphere of “BION-M” spacecraft

    Science.gov (United States)

    Kazakova, A. E.; Ivashnyov, O. E.; Nerchenko, V. A.; Smirnov, N. N.

    2009-10-01

    On going flights of Foton satellites allow to carry out research in the following domains: effect of space flight and outer space factors such as microgravity, artificial gravity and space radiation on physical processes and biological organisms. Experts from many Russian and foreign scientific institutions participated in the research. Over a period of time from 1973 to 1997 there were launched 11 BION satellites designed by the Central Specialized Design Bureau for carrying out fundamental and applied research in the field of space biology, medicine, radio physics and radiobiology with participation of specialists from the foreign countries. The goal of the present investigation was in developing a numerical simulator aimed at determining gas concentration and temperature fields established inside the scientific module of the spacecraft "Bion-M" and to perform optimization studies, which could meet strong requirements for air quality and temperature range allowable for operation of different biological experiments.

  8. Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft

    Science.gov (United States)

    Bolton, S. J.; Adriani, A.; Adumitroaie, V.; Allison, M.; Anderson, J.; Atreya, S.; Bloxham, J.; Brown, S.; Connerney, J. E. P.; DeJong, E.; Folkner, W.; Gautier, D.; Grassi, D.; Gulkis, S.; Guillot, T.; Hansen, C.; Hubbard, W. B.; Iess, L.; Ingersoll, A.; Janssen, M.; Jorgensen, J.; Kaspi, Y.; Levin, S. M.; Li, C.; Lunine, J.; Miguel, Y.; Mura, A.; Orton, G.; Owen, T.; Ravine, M.; Smith, E.; Steffes, P.; Stone, E.; Stevenson, D.; Thorne, R.; Waite, J.; Durante, D.; Ebert, R. W.; Greathouse, T. K.; Hue, V.; Parisi, M.; Szalay, J. R.; Wilson, R.

    2017-05-01

    On 27 August 2016, the Juno spacecraft acquired science observations of Jupiter, passing less than 5000 kilometers above the equatorial cloud tops. Images of Jupiter's poles show a chaotic scene, unlike Saturn's poles. Microwave sounding reveals weather features at pressures deeper than 100 bars, dominated by an ammonia-rich, narrow low-latitude plume resembling a deeper, wider version of Earth's Hadley cell. Near-infrared mapping reveals the relative humidity within prominent downwelling regions. Juno's measured gravity field differs substantially from the last available estimate and is one order of magnitude more precise. This has implications for the distribution of heavy elements in the interior, including the existence and mass of Jupiter's core. The observed magnetic field exhibits smaller spatial variations than expected, indicative of a rich harmonic content.

  9. Hoop column soil moisture spacecraft in low Earth orbit for global change monitoring

    Science.gov (United States)

    Ferebee, Melvin J., Jr.

    1991-01-01

    A subset of the total Global Change Technology Initiative instruments are required to be in low Earth, sunsynchronous orbits. There is one instrument, however, that requires its own specialized spacecraft; the Soil Moisture Microwave Radiometer (SMMR). The characteristic structure of the instrument is the 118 m hoop column support structure. The hoop is supported by an axially placed column. Tension cables support and shape an electromagnetically reflective mesh surface. The instrument is capable of detecting frequencies in the 1.4 GHz range (Soil Moisture and Sea Salinity). Three apertures are used to reduce the degree of paraboloid offset and improve the beam quality. The spacecraft configuration is determined by the instrument support requirements and the requirement that it can fit into the Titan IV cargo bay. The configuration is derived by cross referencing the instrument performance requirements with the performance of the spacecraft. The spacecraft design is similar with the Multi-mission Modular Spacecraft in terms of size and packaging. A description of the spacecraft's features will yield a summary of the technologies needed for the SMMR spacecraft.

  10. Model JC-1 Laser System for Monitoring Atmospheric Pollution,

    Science.gov (United States)

    2007-11-02

    differential absorption mode atmospheric pollution laser monitoring system, in which a phase locking technique and single board computer are used for...amplification 1 3. synchronous demodulation 2 4. phase locking amplification 2 5. single board computer 6. function logging Instrument 7. oscillator...were then fed into a DBJ-Z80 single - board computer to undergo a multiple averaging process before going through functional operation, and were logged

  11. The Prospect of Responsive Spacecraft Using Aeroassisted, Trans-Atmospheric Maneuvers

    Science.gov (United States)

    2014-06-19

    McNish, “Latitude and Longitude,” RASC Calgary Centre, The Royal Astronomical Society of Canada, last modified 11 November 2011, accessed 17 August...maintains the prerogative of performing as many exo- or trans-atmospheric maneuvers as permitted by the ∆ capacity of the vehicle. Consequently, the...Wright-Patterson AFB, OH, March 2004 (ADA424074). McNish, Larry. “Latitude and Longitude.” RASC Calgary Centre, The Royal Astronomical Society

  12. Research to Support the Determination of Spacecraft Maximum Acceptable Concentrations of Potential Atmospheric Contaminants

    Science.gov (United States)

    Orr, John L.

    1997-01-01

    In many ways, the typical approach to the handling of bibliographic material for generating review articles and similar manuscripts has changed little since the use of xerographic reproduction has become widespread. The basic approach is to collect reprints of the relevant material and place it in folders or stacks based on its dominant content. As the amount of information available increases with the passage of time, the viability of this mechanical approach to bibliographic management decreases. The personal computer revolution has changed the way we deal with many familiar tasks. For example, word processing on personal computers has supplanted the typewriter for many applications. Similarly, spreadsheets have not only replaced many routine uses of calculators but have also made possible new applications because the cost of calculation is extremely low. Objective The objective of this research was to use personal computer bibliographic software technology to support the determination of spacecraft maximum acceptable concentration (SMAC) values. Specific Aims The specific aims were to produce draft SMAC documents for hydrogen sulfide and tetrachloroethylene taking maximum advantage of the bibliographic software.

  13. A Great Lakes atmospheric mercury monitoring network: evaluation and design

    Science.gov (United States)

    Risch, Martin R.; Kenski, Donna M.; ,; David, A.

    2014-01-01

    As many as 51 mercury (Hg) wet-deposition-monitoring sites from 4 networks were operated in 8 USA states and Ontario, Canada in the North American Great Lakes Region from 1996 to 2010. By 2013, 20 of those sites were no longer in operation and approximately half the geographic area of the Region was represented by a single Hg-monitoring site. In response, a Great Lakes Atmospheric Mercury Monitoring (GLAMM) network is needed as a framework for regional collaboration in Hg-deposition monitoring. The purpose of the GLAMM network is to detect changes in regional atmospheric Hg deposition related to changes in Hg emissions. An optimized design for the network was determined to be a minimum of 21 sites in a representative and approximately uniform geographic distribution. A majority of the active and historic Hg-monitoring sites in the Great Lakes Region are part of the National Atmospheric Deposition Program (NADP) Mercury Deposition Network (MDN) in North America and the GLAMM network is planned to be part of the MDN. To determine an optimized network design, active and historic Hg-monitoring sites in the Great Lakes Region were evaluated with a rating system of 21 factors that included characteristics of the monitoring locations and interpretations of Hg data. Monitoring sites were rated according to the number of Hg emissions sources and annual Hg emissions in a geographic polygon centered on each site. Hg-monitoring data from the sites were analyzed for long-term averages in weekly Hg concentrations in precipitation and weekly Hg-wet deposition, and on significant temporal trends in Hg concentrations and Hg deposition. A cluster analysis method was used to group sites with similar variability in their Hg data in order to identify sites that were unique for explaining Hg data variability in the Region. The network design included locations in protected natural areas, urban areas, Great Lakes watersheds, and in proximity to areas with a high density of annual Hg

  14. Atmospheric monitoring for fugitive emissions from geological carbon storage

    Science.gov (United States)

    Loh, Z. M.; Etheridge, D.; Luhar, A.; Leuning, R.; Jenkins, C.

    2013-12-01

    We present a multi-year record of continuous atmospheric CO2 and CH4 concentration measurements, flask sampling (for CO2, CH4, N2O, δ13CO2 and SF6) and CO2 flux measurements at the CO2CRC Otway Project (http://www.co2crc.com.au/otway/), a demonstration site for geological storage of CO2 in south-western Victoria, Australia. The measurements are used to develop atmospheric methods for operational monitoring of large scale CO2 geological storage. Characterization of emission rates ideally requires concentration measurements upwind and downwind of the source, along with knowledge of the atmospheric turbulence field. Because only a single measurement location was available for much of the measurement period, we develop techniques to filter the record and to construct a ';pseudo-upwind' measurement from our dataset. Carbon dioxide and methane concentrations were filtered based on wind direction, downward shortwave radiation, atmospheric stability and hour-to-hour changes in CO2 flux. These criteria remove periods of naturally high concentration due to the combined effects of biogenic respiration, stable atmospheric conditions and pre-existing sources (both natural and anthropogenic), leaving a reduced data set, from which a fugitive leak from the storage reservoir, the ';(potential) source sector)', could more easily be detected. Histograms of the filtered data give a measure of the background variability in both CO2 and CH4. Comparison of the ';pseudo-upwind' dataset histogram with the ';(potential) source sector' histogram shows no statistical difference, placing limits on leakage to the atmosphere over the preceding two years. For five months in 2011, we ran a true pair of up and downwind CO2 and CH4 concentration measurements. During this period, known rates of gas were periodically released at the surface (near the original injection point). These emissions are clearly detected as elevated concentrations of CO2 and CH4 in the filtered data and in the measured

  15. Management of the Atmosphere Resource Recovery and Environmental Monitoring Project

    Science.gov (United States)

    Roman, Monsi; Perry, Jay; Howard, David

    2013-01-01

    The Advanced Exploration Systems Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project is working to further optimize atmosphere revitalization and environmental monitoring system architectures. This paper discusses project management strategies that tap into skill sets across multiple engineering disciplines, projects, field centers, and industry to achieve the project success. It is the project's objective to contribute to system advances that will enable sustained exploration missions beyond Lower Earth Orbit (LEO) and improve affordability by focusing on the primary goals of achieving high reliability, improving efficiency, and reducing dependence on ground-based logistics resupply. Technology demonstrations are achieved by infusing new technologies and concepts with existing developmental hardware and operating in a controlled environment simulating various crewed habitat scenarios. The ARREM project's strengths include access to a vast array of existing developmental hardware that perform all the vital atmosphere revitalization functions, exceptional test facilities to fully evaluate system performance, and a well-coordinated partnering effort among the NASA field centers and industry partners to provide the innovative expertise necessary to succeed.

  16. Monitoring Atmospheric CO2 From Space: Challenge & Approach

    Science.gov (United States)

    Lin, Bing; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Dobler, Jeremy; Campbell, Joel; Meadows, Byron; Obland, Michael; Kooi, Susan; Fan, Tai-Fang; Ismail, Syed

    2015-01-01

    Atmospheric CO2 is the key radiative forcing for the Earth's climate and may contribute a major part of the Earth's warming during the past 150 years. Advanced knowledge on the CO2 distributions and changes can lead considerable model improvements in predictions of the Earth's future climate. Large uncertainties in the predictions have been found for decades owing to limited CO2 observations. To obtain precise measurements of atmospheric CO2, certain challenges have to be overcome. For an example, global annual means of the CO2 are rather stable, but, have a very small increasing trend that is significant for multi-decadal long-term climate. At short time scales (a second to a few hours), regional and subcontinental gradients in the CO2 concentration are very small and only in an order of a few parts per million (ppm) compared to the mean atmospheric CO2 concentration of about 400 ppm, which requires atmospheric CO2 space monitoring systems with extremely high accuracy and precision (about 0.5 ppm or 0.125%) in spatiotemporal scales around 75 km and 10-s. It also requires a decadal-scale system stability. Furthermore, rapid changes in high latitude environments such as melting ice, snow and frozen soil, persistent thin cirrus clouds in Amazon and other tropical areas, and harsh weather conditions over Southern Ocean all increase difficulties in satellite atmospheric CO2 observations. Space lidar approaches using Integrated Path Differential Absorption (IPDA) technique are considered to be capable of obtaining precise CO2 measurements and, thus, have been proposed by various studies including the 2007 Decadal Survey (DS) of the U.S. National Research Council. This study considers to use the Intensity-Modulated Continuous-Wave (IM-CW) lidar to monitor global atmospheric CO2 distribution and variability from space. Development and demonstration of space lidar for atmospheric CO2 measurements have been made through joint adventure of NASA Langley Research Center and

  17. Development of micro pulse lidar system for atmospheric monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Kyu Seok; Lee, Jong Min; Lee, Yong Ju; Kim, Duk Hyeon; Nam, Sung Mo; Go, Do Kyung; Yang, Gi Ho; Hong, Kyang He

    1999-12-01

    A compact small micro pulse lidar system is developed for atmospheric monitoring. The developed system can be operated during 24 hrs for four seasons. The maximum detection distance is 5 km at day time and 10 km at night. Specially, the problem of eye safety is solved by using diode pumped low pulse-energy Nd:YAG laser. Two rotational axis, vertical and horizontal, is chosen for 3D mapping of the atmospheric aerosol. The spatial resolution can be optionally changed from 5 m to 300 m, but time resolution which changes from several sec to several minutes depends on the detection distance and background signal. To analyze the obtained lidar signal, processing software is developed and applied to the lidar signal obtained near the chimney. Vertical lidar signal is also obtained and from this data we can find the thickness and change of cloud. (author)

  18. Development of Atmospheric Monitoring System for Auger North

    Science.gov (United States)

    Claus, John; Allen, Clint; Botts, Adam; Carande, Bryce; Calhoun, Mike; Emmert, Lucas; Hamilton, Levi; Heid, T. J.; Koop, John; Morgan, Sarah; Robinson, Shay; Sherman, John; Wiencke, Lawrence

    2009-10-01

    The Pierre Auger Northern Fluorescence Detector will measure air-showers over distances of 40 km. Vertical Aerosol profile of the atmosphere at the Pierre Auger Northern site will be measured using the side-scatter method over the 40 km baseline. An atmospheric monitoring telescope (AMT) will use a 3.5 m^2 mirror optimized for UV reflection to focus light from a laser onto a cluster of phototmultiplier tubes. The AMT has been built and final testing and modifications are being carried out before its installation later this year. A remotely programmed, 355 nm YAG laser with a final beam energy of 5 mJ is being used. The automation of the laser and the AMT is controlled via a single board computer (SBC). This talk will present an overview of this R&D program.

  19. Simultaneous Observations of Atmospheric Tides from Combined in Situ and Remote Observations at Mars from the MAVEN Spacecraft

    Science.gov (United States)

    England, Scott L.; Liu, Guiping; Withers, Paul; Yigit, Erdal; Lo, Daniel; Jain, Sonal; Schneider, Nicholas M. (Inventor); Deighan, Justin; McClintock, William E.; Mahaffy, Paul R.; hide

    2016-01-01

    We report the observations of longitudinal variations in the Martian thermosphere associated with nonmigrating tides. Using the Neutral Gas Ion Mass Spectrometer (NGIMS) and the Imaging Ultraviolet Spectrograph (IUVS) on NASA's Mars Atmosphere and Volatile EvolutioN Mission (MAVEN) spacecraft, this study presents the first combined analysis of in situ and remote observations of atmospheric tides at Mars for overlapping volumes, local times, and overlapping date ranges. From the IUVS observations, we determine the altitude and latitudinal variation of the amplitude of the nonmigrating tidal signatures, which is combined with the NGIMS, providing information on the compositional impact of these waves. Both the observations of airglow from IUVS and the CO2 density observations from NGIMS reveal a strong wave number 2 signature in a fixed local time frame. The IUVS observations reveal a strong latitudinal dependence in the amplitude of the wave number 2 signature. Combining this with the accurate CO2 density observations from NGIMS, this would suggest that the CO2 density variation is as high as 27% at 0-10 deg latitude. The IUVS observations reveal little altitudinal dependence in the amplitude of the wave number 2 signature, varying by only 20% from 160 to 200 km. Observations of five different species with NGIMS show that the amplitude of the wave number 2 signature varies in proportion to the inverse of the species scale height, giving rise to variation in composition as a function of longitude. The analysis and discussion here provide a roadmap for further analysis as additional coincident data from these two instruments become available.

  20. Development and evaluation of an instantaneous atmospheric corrosion rate monitor

    Science.gov (United States)

    Mansfeld, F.; Jeanjaquet, S. L.; Kendig, M. W.; Roe, D. K.

    1985-06-01

    A research program was carried out in which a new instantaneous atmospheric corrosion rate monitor (ACRM) was developed and evaluated, and equipment was constructed which will allow the use of many sensors in an economical way in outdoor exposures. In the first task, the ACRM was developed and tested in flow chambers in which relative humidity and gaseous and particulate pollutant levels can be controlled. Diurnal cycles and periods of rain were simulated. The effects of aerosols were studied. A computerized system was used for collection, storage, and analysis of the electrochemical data. In the second task, a relatively inexpensive electronics system for control of the ACRM and measurement of atmospheric corrosion rates was designed and built. In the third task, calibration of deterioration rates of various metallic and nonmetallic materials with the response of the ACRMs attached to these materials was carried out under controlled environmental conditions using the system developed in the second task. A Quality Assurance project plan was prepared with inputs from the Rockwell International Environmental Monitoring and Service Center and Quality Assurance System audits were performed.

  1. An atmosphere monitoring system for the Sardinia radio telescope

    Science.gov (United States)

    Buffa, F.; Bolli, P.; Sanna, G.; Serra, G.

    2017-01-01

    The Sardinia radio telescope (SRT) is a new facility managed by the Italian National Institute for Astrophysics (INAF). SRT will detect the extremely faint radio wave signals emitted by astronomical objects in a wide frequency range from decimeter to millimeter wavelengths. Especially at high frequencies (>10 GHz), specific weather conditions and interactions between signal and atmospheric constituents (mainly water and oxygen molecules) affect the radio astronomic observation reducing the antenna performances. Thus, modern ground-based telescopes are usually equipped with systems able to examine in real-time several atmospheric parameters (opacity, integrated water vapor, etc.), and in some cases to forecast the weather conditions (wind, rain, snow, etc.), in order to ensure the antenna safety and support the schedule of the telescope observations. Here, we describe the atmosphere monitoring system (AMS) realized with the aim to improve the SRT operative efficiency. It consists of a network of different sensors such as radiometers, radiosondes, weather stations, GPS and some well-established weather models. After a validation of the scheme, we successfully tested the AMS in two real practical scenarios, comparing the AMS outcomes with those of independent techniques. In the first one we were able to detect an incoming storm front applying different techniques (GPS, radiometer and the weather forecast model), while in the last one we modeled the SRT antenna system temperature at 22 GHz processing the AMS data set.

  2. Use of passive sampling for atmospheric tritium monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira Ideias, P.; Pierrard, O.; Tournieux, D. [Institut de Radioprotection et de Surete Nucleaire - IRSN (France); Tenailleau, L. [Marine nationale (France)

    2014-07-01

    Tritium is one of the most important radionuclide in environmental radiological monitoring. In French civil and military nuclear facilities, the releases levels are between 100 to 100 000 higher than any other radionuclide (rare gas excluded). Moreover these levels will probably increase in the next decades. With an average energy of 6 keV, the beta particle from tritium radioactive decay is difficult to detect and quantify within the environmental levels. To monitor the tritium in the air, French actors (authorities, operator, and experts) commonly use atmospheric bubblers and water vapour condensers. This type of sampling approach is time-consuming and very costly. To simplify and complete these methods, the Institute for Radiological Protection and Nuclear Safety (IRSN), had developed an atmospheric tritium monitoring device based on passive sampling. The passive sampler developed consists in a small container designed with a patented specific geometry and filled with 13X molecular sieve. This system is based on free diffusion flow principle (Fick's law). The driving force is the partial pressure gradient existing between the environmental atmosphere and the passive sampler. The constancy of the sampling rate for different moisture conditions assures the representativeness of the proposed device. The desorption bench developed specifically allows the recovery of 99% of the water vapour sampled in the molecular sieve. More than 99% of the sampled tritium (HTO) activity is recovered in the range between 0 and 100 Bq.L{sup -1}. Above 100 Bq.L{sup -1} to 25 k Bq.L{sup -1} (max tested activity), it was verified that no more than 3% of the tritium remains in the molecular sieve.. Thus, the use of passive sampler provides: - a representative sampling method, - a good detection limit (0,01 Bq.m{sup -3}), - no electric power supply needs, - a wide range of sampling duration (1 day to 1 month), - a low-cost method for monitoring. Different performance tests were

  3. A Wireless Sensor Network for Monitoring Atmospheric Aggressiveness in Metals

    Directory of Open Access Journals (Sweden)

    Pablo Pancardo

    2011-12-01

    Full Text Available Humid tropical climate favours the existence of a c orrosive atmosphere that causes deterioration of me tals. This article describes an automated system for moni toring environmental values (temperature and relati ve humidity in order to know the time of wetness (TOW , which is key factor in determining the atmospher ic aggressiveness which are exposed the metals used, f or example, in industrial facilities. System is implemented on a wireless sensor network and the ma in function of the software developed is to count t he time of wetness which is considered the effective t ime in which metals corrode. System was designed considering the user requirements as the selection of the frequency of measurements, the calculation o f TOW and verification of the residual energy of sens or nodes. The results show the effectiveness of the technology used, so that, we can conclude that this type of networks represent a feasible alternative for automated monitoring of corrosion in metals.

  4. Silicon microring refractometric sensor for atmospheric CO(2) gas monitoring.

    Science.gov (United States)

    Mi, Guangcan; Horvath, Cameron; Aktary, Mirwais; Van, Vien

    2016-01-25

    We report a silicon photonic refractometric CO(2) gas sensor operating at room temperature and capable of detecting CO(2) gas at atmospheric concentrations. The sensor uses a novel functional material layer based on a guanidine polymer derivative, which is shown to exhibit reversible refractive index change upon absorption and release of CO(2) gas molecules, and does not require the presence of humidity to operate. By functionalizing a silicon microring resonator with a thin layer of the polymer, we could detect CO(2) gas concentrations in the 0-500ppm range with a sensitivity of 6 × 10(-9) RIU/ppm and a detection limit of 20ppm. The microring transducer provides a potential integrated solution in the development of low-cost and compact CO(2) sensors that can be deployed as part of a sensor network for accurate environmental monitoring of greenhouse gases.

  5. Atmospheric trace gases monitoring by UV-vis spectroscopic techniques

    Science.gov (United States)

    Xie, Pinhua; Li, Ang; Wu, Fengcheng; Qin, Min; Hu, Rezhi; Xu, Jin; Si, Fuqi; Liu, Jianguo; Liu, Wenqing

    2016-04-01

    Due to rapidly economic development, air pollution has become an important issue in China. Phenomena such as regional haze in winter and high O3 concentration in summer are strongly related to increasing trace species. For better understanding the air pollution formation, it is necessary to know spatial and temporal distribution of trace species in the atmosphere. UV-vis spectroscopic techniques are of great advantages for trace species monitoring to meet several requirements, e.g. versatility, high sensitivity, good temporal resolution and field applicability. We have studied and developed various trace gases monitoring techniques and instruments based on UV-vis spectroscopic technique for in-situ measurements and remote sensing, e.g. LP-DOAS, IBBCEAS, CRDS, MAX-DOAS and mobile DOAS for NO2, SO2, HCHO, HONO, NO3, and N2O5 etc. The principle, instrumentation and inversion algorithm are presented. As typical applications of these techniques, investigation of the evolution of HONO and NO3 radicals over Beijing area, measurements of regional pollution in NCP and YRD are discussed in the aspects of HONO and nocturnal NO3 radical characteristics, trace gases (NO2, SO2 etc.) temporal and spatial distribution, pollution transport pathway, emission sources.

  6. A Miniaturized Sensor for Microbial Monitoring of Spacecraft Water Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Accurate real-time microbial monitoring of water environment is of paramount importance to crew health as well as to ensure proper functioning and control of the...

  7. A Miniaturized Sensor for Microbial Monitoring of Spacecraft Water Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Accurate real-time microbial monitoring of water environment is of paramount importance to crew health as well as to ensure proper functioning and control of the...

  8. Atmosphere Resource Recovery and Environmental Monitoring Trace Contaminant Control Through FY 2012

    Science.gov (United States)

    Perry, J. L.; Pruitt, M. W.; Wheeler, R. M.; Monje, O.

    2013-01-01

    Trace contaminant control has been a concern of spacecraft designers and operators from early in the progression of manned spaceflight. Significant technological advancement has occurred since the first designs were implemented in the 1960s, culminating in the trace contaminant control system currently in use aboard the International Space Station as part of the atmosphere revitalization system.

  9. 49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false What must I do to monitor atmospheric corrosion... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.583 What must I do to monitor atmospheric corrosion control? (a) You must inspect each pipeline or portion of pipeline that...

  10. Atmospheric Monitoring at the Site of the MAGIC Telescopes

    Directory of Open Access Journals (Sweden)

    Will Martin

    2017-01-01

    Full Text Available The MAGIC telescopes in La Palma, Canary Islands, measure the Cherenkov light emitted by gamma ray-induced extended air showers in the atmosphere. The good knowledge of the atmospheric parameters is important, both for the correct and safe operations of the telescopes, but also for subsequent data analysis. A weather station measures the state variables of the atmosphere, temperature, humidity and wind, an elastic Lidar system and an infrared pyrometer determine the optical transmission of the atmosphere. Using an AllSky camera, the cloud cover can be estimated. The measured values are completed by data from global atmospheric models based on numeric weather forecasts.

  11. The CRRES IDM spacecraft experiment for insulator discharge pulses. [Internal Discharge Monitor

    Science.gov (United States)

    Frederickson, A. R.; Mullen, E. G.; Kerns, K. J.; Robinson, P. A.; Holeman, E. G.

    1993-01-01

    The Internal Discharge Monitor (IDM) is designed to observe electrical pulses from common electrical insulators in space service. The characteristics of the instrument are described. The IDM was flown on the Combined Release and Radiation Effects Satellite (CRRES). The sixteen insulator samples included G10 circuit boards, FR4 and PTFE fiberglass circuit boards, FEP Teflon, alumina, and wires with common insulations. The samples are fully enclosed, mutually isolated, and space radiation penetrates 0.02 cm of aluminum before striking the samples. Published data in the literature provides a simple method for determining the flux of penetrating electrons. The pulse rate is compared to the penetrating flux of electrons.

  12. Artificial Neural Networks Applications: from Aircraft Design Optimization to Orbiting Spacecraft On-board Environment Monitoring

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2002-01-01

    This paper reviews some of the recent applications of artificial neural networks taken from various works performed by the authors over the last four years at the NASA Glenn Research Center. This paper focuses mainly on two areas. First, artificial neural networks application in design and optimization of aircraft/engine propulsion systems to shorten the overall design cycle. Out of that specific application, a generic design tool was developed, which can be used for most design optimization process. Second, artificial neural networks application in monitoring the microgravity quality onboard the International Space Station, using on-board accelerometers for data acquisition. These two different applications are reviewed in this paper to show the broad applicability of artificial intelligence in various disciplines. The intent of this paper is not to give in-depth details of these two applications, but to show the need to combine different artificial intelligence techniques or algorithms in order to design an optimized or versatile system.

  13. Monitoring solar energetic particles with an armada of European spacecraft and the new automated SEPF (Solar Energetic Proton Fluxes) Tool

    Science.gov (United States)

    Sandberg, I.; Daglis, I. A.; Anastasiadis, A.; Balasis, G.; Georgoulis, M.; Nieminen, P.; Evans, H.; Daly, E.

    2012-01-01

    Solar energetic particles (SEPs) observed in interplanetary medium consist of electrons, protons, alpha particles and heavier ions (up to Fe), with energies from dozens of keVs to a few GeVs. SEP events, or SEPEs, are particle flux enhancements from background level ( 30 MeV. The main part of SEPEs results from the acceleration of particles either by solar flares and/or by interplanetary shocks driven by Coronal Mass Ejections (CMEs); these accelerated particles propagate through the heliosphere, traveling along the interplanetary magnetic field (IMF). SEPEs show significant variability from one event to another and are an important part of space weather, because they pose a serious health risk to humans in space and a serious radiation hazard for the spacecraft hardware which may lead to severe damages. As a consequence, engineering models, observations and theoretical investigations related to the high energy particle environment is a priority issue for both robotic and manned space missions. The European Space Agency operates the Standard Radiation Environment Monitor (SREM) on-board six spacecraft: Proba-1, INTEGRAL, Rosetta, Giove-B, Herschel and Planck, which measures high-energy protons and electrons with a fair angular and spectral resolution. The fact that several SREM units operate in different orbits provides a unique chance for comparative studies of the radiation environment based on multiple data gathered by identical detectors. Furthermore, the radiation environment monitoring by the SREM unit onboard Rosetta may reveal unknown characteristics of SEPEs properties given the fact that the majority of the available radiation data and models only refer to 1AU solar distances. The Institute for Space Applications and Remote Sensing of the National Observatory of Athens (ISARS/NOA) has developed and validated a novel method to obtain flux spectra from SREM count rates. Using this method and by conducting detailed scientific studies we have showed in

  14. Development of a Ground-Based Atmospheric Monitoring Network for the Global Mercury Observation System (GMOS

    Directory of Open Access Journals (Sweden)

    Sprovieri F.

    2013-04-01

    Full Text Available Consistent, high-quality measurements of atmospheric mercury (Hg are necessary in order to better understand Hg emissions, transport, and deposition on a global scale. Although the number of atmospheric Hg monitoring stations has increased in recent years, the available measurement database is limited and there are many regions of the world where measurements have not been extensively performed. Long-term atmospheric Hg monitoring and additional ground-based monitoring sites are needed in order to generate datasets that will offer new insight and information about the global scale trends of atmospheric Hg emissions and deposition. In the framework of the Global Mercury Observation System (GMOS project, a coordinated global observational network for atmospheric Hg is being established. The overall research strategy of GMOS is to develop a state-of-the-art observation system able to provide information on the concentration of Hg species in ambient air and precipitation on the global scale. This network is being developed by integrating previously established ground-based atmospheric Hg monitoring stations with newly established GMOS sites that are located both at high altitude and sea level locations, as well as in climatically diverse regions. Through the collection of consistent, high-quality atmospheric Hg measurement data, we seek to create a comprehensive assessment of atmospheric Hg concentrations and their dependence on meteorology, long-range atmospheric transport and atmospheric emissions.

  15. Spacecraft dynamics characterization and control system failure detection. Volume 3: Control system failure monitoring

    Science.gov (United States)

    Vanschalkwyk, Christiaan M.

    1992-01-01

    We discuss the application of Generalized Parity Relations to two experimental flexible space structures, the NASA Langley Mini-Mast and Marshall Space Flight Center ACES mast. We concentrate on the generation of residuals and make no attempt to implement the Decision Function. It should be clear from the examples that are presented whether it would be possible to detect the failure of a specific component. We derive the equations from Generalized Parity Relations. Two special cases are treated: namely, Single Sensor Parity Relations (SSPR) and Double Sensor Parity Relations (DSPR). Generalized Parity Relations for actuators are also derived. The NASA Langley Mini-Mast and the application of SSPR and DSPR to a set of displacement sensors located at the tip of the Mini-Mast are discussed. The performance of a reduced order model that includes the first five models of the mast is compared to a set of parity relations that was identified on a set of input-output data. Both time domain and frequency domain comparisons are made. The effect of the sampling period and model order on the performance of the Residual Generators are also discussed. Failure detection experiments where the sensor set consisted of two gyros and an accelerometer are presented. The effects of model order and sampling frequency are again illustrated. The detection of actuator failures is discussed. We use Generalized Parity Relations to monitor control system component failures on the ACES mast. An overview is given of the Failure Detection Filter and experimental results are discussed. Conclusions and directions for future research are given.

  16. Methods of InSAR atmosphere correction for volcano activity monitoring

    Science.gov (United States)

    Gong, W.; Meyer, F.; Webley, P.W.; Lu, Zhiming

    2011-01-01

    When a Synthetic Aperture Radar (SAR) signal propagates through the atmosphere on its path to and from the sensor, it is inevitably affected by atmospheric effects. In particular, the applicability and accuracy of Interferometric SAR (InSAR) techniques for volcano monitoring is limited by atmospheric path delays. Therefore, atmospheric correction of interferograms is required to improve the performance of InSAR for detecting volcanic activity, especially in order to advance its ability to detect subtle pre-eruptive changes in deformation dynamics. In this paper, we focus on InSAR tropospheric mitigation methods and their performance in volcano deformation monitoring. Our study areas include Okmok volcano and Unimak Island located in the eastern Aleutians, AK. We explore two methods to mitigate atmospheric artifacts, namely the numerical weather model simulation and the atmospheric filtering using Persistent Scatterer processing. We investigate the capability of the proposed methods, and investigate their limitations and advantages when applied to determine volcanic processes. ?? 2011 IEEE.

  17. Strategy Implementation for the CTA Atmospheric Monitoring Program

    CERN Document Server

    Doro, M; Reyes, R de los; Gaug, M; Maccarone, M C

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation facility of Imaging Atmospheric Cherenkov Telescopes. It will reach unprecedented sensitivity and energy resolution in very-high-energy gamma-ray astronomy. CTA will detect Cherenkov light emitted within an atmospheric shower of particles initiated by cosmic-gamma rays or cosmic rays entering the Earth's atmosphere. From the combination of images the Cherenkov light produces in the telescopes, one is able to infer the primary particle energy and direction. A correct energy estimation can be thus performed only if the local atmosphere is well characterized. The atmosphere not only affects the shower development itself, but also the Cherenkov photon transmission from the emission point in the particle shower, at about 10-20 km above the ground, to the detector. Cherenkov light on the ground is peaked in the UV-blue region, and therefore molecular and aerosol extinction phenomena are important. The goal of CTA is to control systematics in energy reconstr...

  18. Characterization of Atmospheric Infrasound for Improved Weather Monitoring

    Science.gov (United States)

    Threatt, Arnesha; Elbing, Brian

    2016-11-01

    Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUD MAP) is a multi-university collaboration focused on development and implementation of unmanned aircraft systems (UAS) and integration with sensors for atmospheric measurements. A primary objective for this project is to create and demonstrate UAS capabilities needed to support UAS operating in extreme conditions, such as a tornado producing storm system. These storm systems emit infrasound (acoustic signals below human hearing, resources to high-decision-value-information. To achieve this the infrasonic signals with and without severe storms must be understood. This presentation will report findings from the first CLOUD MAP field demonstration, which acquired infrasonic signals while simultaneously sampling the atmosphere with UAS. Infrasonic spectra will be shown from a typical calm day, a continuous source (pulsed gas-combustion torch), singular events, and UAS flights as well as localization results from a controlled source and multiple microphones. This work was supported by NSF Grant 1539070: CLOUD MAP - Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics.

  19. 49 CFR 192.481 - Atmospheric corrosion control: Monitoring.

    Science.gov (United States)

    2010-10-01

    ... calendar years, but with intervals not exceeding 39 months Offshore At least once each calendar year, but... attention to pipe at soil-to-air interfaces, under thermal insulation, under disbonded coatings, at pipe supports, in splash zones, at deck penetrations, and in spans over water. (c) If atmospheric corrosion...

  20. Concept of a space optoelectronic system for environmental monitoring of the near-earth space, atmosphere, and earth surface

    Science.gov (United States)

    Eltsov, Anatoli V.; Karasev, Vladimir I.; Kolotkov, Vjacheslav V.; Kondranin, Timothy V.

    1997-06-01

    The sharp increase of the man-induced pressure on the environment and hence the need to predict and monitor natural anomalies makes global monitoring of the ecosphere of planet Earth an issue of vital importance. The notion of the ecosphere covers three basic shells closely interacting with each other: the near-Earth space, the atmosphere and the Earth surface. In the near-Earth space (covering 100 to 2000 km altitudes) the primary objects of monitoring are: functioning artificial space objects, the fragments of their constructions or space rubbish (which by estimation amounts to 3.5 million pieces including 30,000 to 70,000 objects having dimensions sufficient for heavy damaging or even destroying functioning space objects) and objects of space origin (asteroids, meteorites and comets) whose trajectories come closely enough to the Earth. Maximum concentrations of space rubbish observed on orbits with altitudes of 800, 1000 and 1500 km and inclinations of 60 to 100 deg. are related in the first place to spacecraft launch requirements. Taking into account the number of launches implemented by different countries in the framework of their own space programs the probability of collision of functioning spacecraft with space rubbish may be estimation increase from (1.5 - 3.5)% at present to (15 - 40)% by 2020. Besides, registration of space radiation flow intensity and the solar activity is no less important in this space area. Subject to control in the atmosphere are time and space variations in temperature fields, humidity, tracing gas concentrations, first of all ozone and greenhouse gases, the state of the cloud cover, wind velocity, etc. The range of objects to be under environmental management of Earth surface is just as diverse and essentially should include the state of the surface and the near-surface layer of seas and oceans, internal reservoirs, the cryosphere and the land surface along with vegetation cover, natural resources and human activities. No matter

  1. 30 CFR 75.351 - Atmospheric monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... the center in the upper third of the entry, in a location that does not expose personnel working on.... (e) Location of sensors-belt air course. (1) In addition to the requirements of paragraph (d) of this section, any AMS used to monitor belt air courses under § 75.350(b) must have approved sensors to...

  2. Asbestos real-time monitor in an atmospheric environment.

    Science.gov (United States)

    Hiromoto, N; Hashiguchi, K; Ito, S; Itabe, T

    1997-12-20

    The concentration of asbestos fiber aerosols can be monitored by measuring the polarization of laser light scattered by asbestos fibers. The principle of discriminating asbestos fibers is based on the theoretically expected difference in polarization at a scattering angle of 170 deg between cylindrical and spherical airborne particles; polarization at this scattering angle should be positive for cylindrical particles such as asbestos fibers but should be negative or close to zero for spherical mineral particles. We constructed an experimental asbestos real-time monitor that uses a strong electric field to align the airborne particles, that uses lasers having linear polarization with an equal amplitude in parallel and perpendicular components to the aligned long axis of particles, and that simultaneously detects the two components of the linear polarization of light scattered at 170 deg, i.e., close to the backscatter. Experiments that were performed to detect the light scattered from airborne standard asbestos fibers showed that the measured polarization fits theoretical prediction. The concentrations of airborne asbestos fibers obtained by the asbestos real-time monitor were consistent with those estimated by the standard phase contrast microscope method.

  3. AtmoHEAD 2013 workshop / Atmospheric Monitoring for High-Energy Astroparticle Detectors

    CERN Document Server

    Bernlöhr, K; Blanch, O; Bourgeat, M; Bruno, P; Buscemi, M; Cassardo, C; Chadwick, P M; Chalme-Calvet, R; Chouza, F; Cilmo, M; Coco, M; Colombi, J; Compin, M; Daniel, M K; Reyes, R De Los; Ebr, J; D'Elia, R; Deil, C; Etchegoyen, A; Doro, M; Ferrarese, S; Fiorini, M; Font, LL; Garrido, D; Gast, H; Gaug, M; Gonzales, F; Grillo, A; Guarino, F; Hahn, J; Hrabovsky, M; Kosack, K; Krüger, P; La Rosa, G; Leto, G; Lo, Y T E; López-Oramas, A; Louedec, K; Maccarone, M C; Mandat, D; Marandon, V; Martinetti, E; Martinez, M; de Naurois, M; Neronov, A; Nolan, S J; Otero, L; Palatka, M; Pallotta, J; Pech, M; Puhlhofer, G; Prouza, M; Quel, E; Raul, D; Ristori, P; Frias, M D Rodriguez; Rivoire, S; Rulten, C B; Schovanek, P; Segreto, A; Sottile, G; Stringhetti, L; Tavernet, J -P; Tonachini, A S; Toscano, S; Travnicek, P; Valore, L; Vasileiadis, G; Vincent, S; Wada, S; Wiencke, L; Will, M

    2014-01-01

    A 3-day international workshop on atmospheric monitoring and calibration for high-energy astroparticle detectors, with a view towards next-generation facilities. The atmosphere is an integral component of many high-energy astroparticle detectors. Imaging atmospheric Cherenkov telescopes and cosmic-ray extensive air shower detectors are the two instruments driving the rapidly evolving fields of very-high- and ultra-high-energy astrophysics. In these instruments, the atmosphere is used as a giant calorimeter where cosmic rays and gamma rays deposit their energy and initiate EASs; it is also the medium through which the resulting Cherenkov light propagates. Uncertainties in real-time atmospheric conditions and in the fixed atmospheric models typically dominate all other systematic errors. With the improved sensitivity of upgraded IACTs such as H.E.S.S.-II and MAGIC-II and future facilities like the Cherenkov Telescope Array (CTA) and JEM-EUSO, statistical uncertainties are expected to be significantly reduced, l...

  4. Computing Electric Currents in the Martian Ionosphere Using Magnetometer Data from the Mars Atmospheric Volatile EvolutioN (MAVEN) Spacecraft

    Science.gov (United States)

    Fogle, A. L.

    2015-12-01

    Mars does not have a global magnetic field like Earth does. However, due to solar wind and interplanetary magnetic field (IMF) interactions, electric currents are induced which create an induced magnetosphere. As MAVEN passes through the ionosphere of Mars, the magnetometer on board continuously measures the induced magnetic field in the ionosphere. Using Ampere's Law (∇ × B = µ0j) along with these measurements of the induced magnetic field, we can quantify the electric currents in the ionosphere. We are particularly interested in magnetic field profiles that have a radial component that is less than or equal to 5 nanoteslas in magnitude. By only using measurements where the radial component of the magnetic field satisfies the aforementioned condition and assuming that there are no horizontal gradients in the magnetic field, we will calculate horizontal currents in the ionosphere. Using these calculated currents, we will analyze altitudinal variations in magnitude and direction of the currents. Measuring these horizontal currents can give us insights into how the solar wind and IMF can affect the upper atmosphere of Mars. For example, induced electric currents can cause Joule heating in the atmosphere, which can potentially modify its neutral dynamics.

  5. Development of a space-borne spectrometer to monitor atmospheric ozone.

    Science.gov (United States)

    Dobrolenskiy, Yury S; Ionov, Dmitry V; Korablev, Oleg I; Fedorova, Anna A; Zherebtsov, Evgeny A; Shatalov, Andrey E; Mantsevich, Sergey N; Belyaev, Denis A; Vyazovetskiy, Nikita A; Moiseev, Pavel P; Tchikov, Konstantin N; Krasavtsev, Valery M; Savushkin, Alexander V; Rumyantsev, Dmitry M; Kananykhin, Igor V; Viktorov, Alexey I; Kozyura, Alexey V; Moryakin, Sergey A; Poberovskii, Anatoly V

    2015-04-10

    A new compact satellite spectrometer dedicated to monitoring terrestrial atmospheric ozone (ozonometer) is in preparation for the Russian Geophysics Program. Four instruments at four satellites (Ionosphere) are intended to monitor the total ozone content by measuring spectra of scattered solar radiation in nadir. The spectrometer is based on the Rowland scheme with a concave holographic diffraction grating. It covers the near UV and visible range of the spectrum, 300-500 nm, with a spectral resolution of ∼0.3  nm. At present, a qualification model has been manufactured and tested. We introduce the description of the instrument and the results of laboratory and ground-based atmospheric calibrations. The ozone amount retrieved from atmospheric measurements using the differential optical absorption spectroscopy (DOAS) method is in good agreement with that measured by the collocated Brewer spectrophotometer and ozone monitoring instrument on board the Aura satellite.

  6. Impact of acid atmospheric deposition on soils: Field monitoring and aluminium chemistry.

    OpenAIRE

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions were obtained from intensive monitoring programmes conducted at a number of sites in northwestern Europe and North-America. Specific hypotheses were tested in laboratory experiments.Atmospheric acid inputs do...

  7. Wmo's activities on background atmospheric pollution and integrated monitoring and research.

    Science.gov (United States)

    Köhler, A

    1988-01-01

    As early as 1968, WMO decided to start a programme on atmospheric pollution. Consequently, a Panel of Experts on Meteorological Aspects of Atmospheric Pollution was established. It was also decided to operate a network of background air pollution monitoring stations. With increasing public concern on environmental pollution impacts, a growing number of WMO Members joined the programme. The Environmental Pollution Monitoring and Research Programme, as well as the World Climate Programme launched in the late seventies, will provide information on a possible influence of pollution on climate.When the network of background ait pollution monitoring started, some Members had already proposed to carry out multimedia monitoring at suitable stations. Later on, it became obvious that more information is required on levels and trends of pollutants in media interacting with the atmosphere and a project on integrated monitoring was established, the purpose of which is to define the objectives and uses of integrated monitoring and to establish procedures for routine standardized integrated monitoring of the of the environment.Pilot projects presently being carried out in a few Member countries are meant to provide most of the information required for the implementation of global background integrated environmental monitorting.

  8. Using Unmanned Air Systems to Monitor Methane in the Atmosphere

    Science.gov (United States)

    Clow, Jacqueline; Smith, Jeremy Christopher

    2016-01-01

    Methane is likely to be an important contributor to global warming, and our current knowledge of its sources, distributions, and transport is insufficient. It is estimated that there could be from 7.5 to 400 billion tons carbon-equivalent of methane in the arctic region, a broad range that is indicative of the uncertainty within the Earth Science community. Unmanned Air Systems (UASs) are often used for combat or surveillance by the military, but they also have been used for Earth Science field missions. In this study, we will analyze the utility of the NASA Global Hawk and the Aurora Flight Sciences Orion UASs compared to the manned DC-8 aircraft for conducting a methane monitoring mission. The mission will focus on the measurement of methane along the boundaries of Arctic permafrost thaw and melting glaciers. The use of Long Endurance UAS brings a new range of possibilities including the ability to obtain long- term and persistent observations and to significantly augment methane measurements/retrievals collected by satellite. Furthermore, we discuss the future of long endurance UAS and their potential for science applications in the next twenty to twenty-five years.

  9. Monitoring of the atmospheric ozone layer and natural ultraviolet radiation: Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Svendby, T.M.; Myhre, C.L.; Stebel, K.; Edvardsen, K; Orsolini, Y.; Dahlback, A.

    2012-07-01

    This is an annual report describing the activities and main results of the monitoring programme: Monitoring of the atmospheric ozone layer and natural ultraviolet radiation for 2011. 2011 was a year with generally low ozone values above Norway. A clear decrease in the ozone layer above Norway during the period 1979-1997 stopped after 1998 and the ozone layer above Norway seems now to have stabilized.(Author)

  10. Interweaving monitoring activities and model development towards enhancing knowledge of the soil-plant-atmosphere continuum

    NARCIS (Netherlands)

    Romano, N.; Angulo-Jaramillo, M.; Javaux, M.; Ploeg, van der M.J.

    2012-01-01

    The guest editors summarize the advances and challenges associated with monitoring and modeling of the soil–plant–atmosphere continuum. They introduce the contributions in the special section, with an emphasis on the scale addressed in each study. The study of water pathways from the soil to the

  11. Interweaving monitoring activities and model development towards enhancing knowledge of the soil-plant-atmosphere continuum

    NARCIS (Netherlands)

    Romano, N.; Angulo-Jaramillo, M.; Javaux, M.; Ploeg, van der M.J.

    2012-01-01

    The guest editors summarize the advances and challenges associated with monitoring and modeling of the soil–plant–atmosphere continuum. They introduce the contributions in the special section, with an emphasis on the scale addressed in each study. The study of water pathways from the soil to the atm

  12. Strategies to monitor non-homogeneous atmospheres in sealed off panels in coal mines.

    CSIR Research Space (South Africa)

    Hardman, DR

    2001-06-01

    Full Text Available to thank SIMRAC for the opportunity to undertake this research, which could not have proceeded without their financial support of project COL 602. The section on current practice in Europe and North America was contributed by Dr D P Creedy. In doing... of international practice 7 2.1 Monitoring of atmospheres in inaccessible areas of 8 coal mines - practices in Europe and North America 2.1.1 Introduction 8 2.1.2 Monitoring techniques 9 2.1.3 Monitoring...

  13. Monitoring of the terrestrial atmospheric characteristics with using of stellar and solar photometry

    CERN Document Server

    Alekseeva, G A; Leiterer, U; Naebert, T; Novikov, V V; Pakhomov, V P

    2010-01-01

    On the basis of experience acquired at creation of the Pulkovo Spectrophotometric Catalog the method of investigation of a terrestrial atmospheric components (aerosols and water vapor) in night time are designed. For these purposes the small-sized photometers were created. Carried out in 1995-1999{\\Gamma}.{\\Gamma}. series of night and daily monitoring of the atmospheric condition in Pulkovo, in MGO by A.I.Voejkov., in Germany (complex experiments LITFASS 98 and LACE 98) confirmed suitability of devices, techniques of observations and their reduction designed in Pulkovo Observatory for the solution of geophysical and ecological problems. A final aim of this work - creation of small-sized automatic complexes (telescope + photometer), which would be rightful component of meteorological observatories. Such complexes will work without the help of the observer and would provide the daily monitoring of a terrestrial atmosphere.

  14. Satellite Remote Sensing Atmospheric Compositions and their Application in Air Quality Monitoring in China

    Science.gov (United States)

    Zhang, P.; Zhang, X. Y.; Bai, W. G.; Wang, W. H.; Huang, F. X.; Li, X. J.; Sun, L.; Wang, G.; Qi, J.; Qiu, H.; Zhang, Y.; van der A, R. J.; Mijling, B.

    2013-01-01

    This paper summarizes the achievements related to atmospheric compositions remote sensing from the bilateral cooperation under the framework of MOST-ESA Dragon Programme. The algorithms to retrieve Aerosol, ozone amount and profile, NO2, SO2, CH4, CO2, etc. have been developed since 2004. Such algorithms are used to process FY-3 series (Chinese second generation polar orbit satellites) observation and ground based FTIR observation. The results are validated with in-situ measurements. Aerosol, total ozone amount shows the very good consistent with the ground measurements. The temporal and spatial characteristics of the important atmospheric compositions, such as aerosol, O3, NO2, SO2, CH4, CO etc., have been analysed from satellite derived products. These works demonstrate the satellite’s capacity on atmospheric composition monitoring, as well as the possible application in the air quality monitoring and climate change research.

  15. Monitoring of the atmospheric ozone layer and natural ultraviolet radiation: Annual report 2014

    OpenAIRE

    Svendby, Tove Marit; Edvardsen, Kåre; Hansen, Georg Heinrich; Stebel, Kerstin; Dahlback, Arne

    2015-01-01

    This is an annual report describing the activities and main results of the monitoring programme “Monitoring of the atmospheric ozone layer and natural ultraviolet radiation” for 2014. The ozone layer was below the long-term mean in spring 2014, but increased in April/May and was close to normal rest of the year. A clear decrease in total ozone above Norway during the period 1979-1997 stopped after 1998 and the ozone layer above Norway now seems to have stabilized.

  16. Kalman filtration of radiation monitoring data from atmospheric dispersion of radioactive materials

    DEFF Research Database (Denmark)

    Drews, M.; Lauritzen, B.; Madsen, H.;

    2004-01-01

    A Kalman filter method using off-site radiation monitoring data is proposed as a tool for on-line estimation of the source term for short-range atmospheric dispersion of radioactive materials. The method is based on the Gaussian plume model, in which the plume parameters including the source term...... exhibit a ‘random walk’ process. The embedded parameters of the Kalman filter are determined through maximum-likelihood estimation making the filter essentially free of external parameters. The method is tested using both real and simulated radiation monitoring data. For simulated data, the method...

  17. Evaluation of atmospheric corrosion on electroplated zinc and zinc nickel coatings by Electrical Resistance (ER) Monitoring

    DEFF Research Database (Denmark)

    Møller, Per

    2013-01-01

    ER (Electrical Resistance) probes provide a measurement of metal loss, measured at any time when a metal is exposed to the real environment. The precise electrical resistance monitoring system can evaluate the corrosion to the level of nanometers, if the conductivity is compensated for temperature...... for the automotive industry, off-shore construction or component and devices used in harsh industrial environments. The ER monitoring makes it possible to study the corrosion rate on-line in remote locations as a function of temperature, relative humidity and changes in the composition of the atmosphere. Different...

  18. Atmospheric tracer monitoring and surface plume development at the ZERT pilot test in Bozeman, Montana, USA

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Arthur [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Strazisar, Brian [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Rodney Diehl, J. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Veloski, Garret [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2010-03-01

    A controlled release of CO2 was conducted at a field site in Bozeman, Montana, USA in July of 2008 in a multi-laboratory study of near surface transport and detection technologies. The development of a subsurface CO2 plume near the middle packer section of the horizontal release was studied using soil-gas and surface flux measurements of CO2. A perfluorocarbon tracer was added to the CO2 released from this section of the horizontal well, and the development of atmospheric plumes of the tracer was studied under various meteorological conditions using horizontal and vertical grids of monitors containing sorbent material to collect the tracer. This study demonstrated the feasibility of using remote sensing for the ultra low level detection of atmospheric plumes of tracers as means to monitor the near surface leakage of sequestered CO2.

  19. An advanced open-path atmospheric pollution monitor for large areas

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L. [Westinghouse Science & Technology Center, Pittsburgh, PA (United States)

    1995-10-01

    Large amounts of toxic waste materials, generated in manufacturing fuel for nuclear reactors, are stored in tanks buried over large areas at DOE sites. Flammable and hazardous gases are continually generated by chemical reactions in the waste materials. To prevent explosive concentrations of these gases, the gases are automatically vented to the atmosphere when the pressure exceeds a preset value. Real-time monitoring of the atmosphere above the tanks with automatic alarming is needed to prevent exposing workers to unsafe conditions when venting occurs. This report describes the development of a monitor which can measure concentrations of hazardous gases over ranges as long as 4km. The system consists of a carbon dioxide laser combined with an acousto-optic tunable filter.

  20. A twin-type airflow pulse ionization chamber for continuous alpha-radioactivity monitoring in atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kada, Wataru, E-mail: kada@nf.eie.eng.osaka-u.ac.j [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Dwaikat, Nidal; Datemichi, Jun; Sato, Fuminobu; Murata, Isao; Kato, Yushi; Iida, Toshiyuki [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2010-10-15

    A simple and inexpensive twin-type airflow pulse ionization chamber was developed for the continuous monitoring of alpha-radioactivity in atmosphere under high humidity condition. The symmetrical structure of the twin-type ionization chamber was effective in the improvement of the ratio of signal to noise in the measurement of pulses induced by alpha-rays. Outdoor alpha-ray measurement was well performed with this ionization chamber by applying sufficiently high bias voltage to the electrodes, except for at very high humidity conditions. It was confirmed that the declination of the counting efficiency due to wetting was easily recovered by the dry-up of the inside of the chamber. Alpha-radioactivity from radon and other alpha-emitting radionuclide in atmosphere was satisfactorily monitored by the detector.

  1. Modelling of anthropogenic pollutant diffusion in the atmosphere and applications to civil protection monitoring

    CERN Document Server

    Tessarotto, Marco

    2008-01-01

    A basic feature of fluid mechanics concerns the frictionless phase-space dynamics of particles in an incompressible fluid. The issue, besides its theoretical interest in turbulence theory, is important in many applications, such as the pollutant dynamics in the atmosphere, a problem relevant for civil protection monitoring of air quality. Actually, both the numerical simulation of the ABL (atmospheric boundary layer) portion of the atmosphere and that of pollutant dynamics may generally require the correct definition of the Lagrangian dynamics which characterizes arbitrary fluid elements of incompressible thermofluids. We claim that particularly important for applications would be to consider these trajectories as phase-space trajectories. This involves, however, the unfolding of a fundamental theoretical problem up to now substantially unsolved: {\\it namely the determination of the exact frictionless dynamics of tracer particles in an incompressible fluid, treated either as a deterministic or a turbulent (i....

  2. The Atmospheric Monitoring System of the JEM-EUSO Space Mission

    CERN Document Server

    Frias, M D Rodriguez; Bozzo, E; del Peral, L; Neronov, A; Wada, S

    2015-01-01

    An Atmospheric Monitoring System (AMS) is a mandatory and key device of a space-based mission which aims to detect Ultra-High Energy Cosmic Rays (UHECR) and Extremely-High Energy Cosmic Rays (EHECR) from Space. JEM-EUSO has a dedicated atmospheric monitoring system that plays a fundamental role in our understanding of the atmospheric conditions in the Field of View (FoV) of the telescope. Our AMS consists of a very challenging space infrared camera and a LIDAR device, that are being fully designed with space qualification to fulfil the scientific requirements of this space mission. The AMS will provide information of the cloud cover in the FoV of JEM-EUSO, as well as measurements of the cloud top altitudes with an accuracy of 500 m and the optical depth profile of the atmosphere transmittance in the direction of each air shower with an accuracy of 0.15 degree and a resolution of 500 m. This will ensure that the energy of the primary UHECR and the depth of maximum development of the EAS ( Extensive Air Shower)...

  3. The Atmospheric Monitoring System of the JEM-EUSO space mission

    Directory of Open Access Journals (Sweden)

    Cremonini R.

    2013-06-01

    Full Text Available An Atmospheric Monitoring System (AMS is mandatory and a key element of a space-based mission which aims to detect Ultra-High Energy Cosmic Rays (UHECR. JEM-EUSO has a dedicated atmospheric monitoring system that plays a fundamental role in our understanding of the atmospheric conditions in the Field of View (FoV of the telescope. Our AMS consists of an infrared camera and a LIDAR device that are being fully designed with space qualification to fulfil the scientific requirements of this space mission. This AMS will provide information of the cloud cover in the FoV of JEM-EUSO, as well as measurements of the cloud top altitudes with an accuracy of 500 m and the optical depth profile of the atmosphere transmittance in the direction of each air shower with an accuracy of 0.15 degree and a resolution of 500 m. This will ensure that the energy of the primary UHECR and the depth of maximum development of the EAS (Extensive Air Shower are measured with an accuracy better than 30% and 120 g/cm2, for EAS occurring either in the clear sky or with the EAS depth of maximum development above optically thick cloud layers. Moreover novel stereoscopic and radiometric retrieval techniques are under development to infer the Cloud Top Height (CTH from the brightness temperature patterns obtained from the infrared camera.

  4. Atmospheric Ammonia and Particulate Inorganic Nitrogen Monitoring in the United States - A Comparison Study

    Science.gov (United States)

    Kariyawasam, T.

    2016-12-01

    Due to emission by disproportionately high livestock numbers and increased nitrogen fertilization, Ammonia (NH3) has come to play an increasingly important role in the global biogeochemical cycle of reactive nitrogen as well as in secondary aerosol formation and climate. Because of the public health problems it causes and the effects on the atmosphere, monitoring the global distribution of NH3 sources becomes crucial. Accurate measurements of atmospheric NH3 via ground level sensors and satellites are fundamentally essential for meteorological forecasting, hazard warning and various other applications. Since the NH3 retrieval quality is affected by meteorological properties, such as the vertical temperature, water vapor profiles, surface temperatures, and emissivity, which are used to model the atmosphere, even though satellite systems has the capability of monitoring environmental variables with high temporal and spatial coverages, they lack precision at or near ground level. Due to cost of implementation and technical maintenance constraints, daily global coverage of accurate NH3 in situ measurements from ground based sensors is also often limited in spatial representation. In research related to climate and atmospheric physics, the advances in sensor technology have led to the use of automated sensors in a variety of climate and atmospheric data analysis applications. The extant research is expanding further but lacks a framework to consider the current and future trends, gaps, challenges and opportunities. This research will attempt to provide insight into key capabilities of the current and potential future approaches and will present a framework to better understand NH3 research with the use of in - situ as well as remote sensors in detecting NH3 in the ambient atmosphere.

  5. ANITA: The European Technology Demonstrator for Trace Gas Monitoring in the International Space Station Atmosphere

    Science.gov (United States)

    Tan, Gijsbert; Mosebach, Herbert; Honne, Atle

    2005-12-01

    The accumulation of toxic or otherwise harmful trace gases in a spacecraft cabin is a very serious concern in terms of health and safety of the crew. Much progress has been made in developing techniques for monitoring the air quality on board and in near-real-time. The technique developed in Europe has reached the state of an in-flight technology demonstrator. ANITA (Analysing Interferometer for Ambient Air) is based on FTIR (Fourier Transform Infra-Red) Spectrometry. ANITA is calibrated to identify and quantify quasi online more than 30 contaminants at low ppm (part per million) or sub-ppm detection limits.ANITA is a European Space Agency (ESA) - National Aeronautics and Space Administration (NASA) cooperative programme.ANITA will be launched with Jules Verne, the maiden flight of the Automatic Transfer Vehicle (ATV) currently scheduled for June 2007.

  6. Development of a mobile and high-precision atmospheric CO2 monitoring station

    Science.gov (United States)

    Molnár, M.; Haszpra, L.; Major, I.; Svingor, É.; Veres, M.

    2009-04-01

    Nowadays one of the most burning questions for the science is the rate and the reasons of the recent climate change. Greenhouse gases (GHG), mainly CO2 and CH4 in the atmosphere could affect the climate of our planet. However, the relation between the amount of atmospheric GHG and the climate is complex, full with interactions and feedbacks partly poorly known even by now. The only way to understand the processes, to trace the changes, to develop and validate mathematical models for forecasts is the extensive, high precision, continuous monitoring of the atmosphere. Fossil fuel CO2 emissions are a major component of the European carbon budget. Separation of the fossil fuel signal from the natural biogenic one in the atmosphere is, therefore, a crucial task for quantifying exchange flux of the continental biosphere through atmospheric observations and inverse modelling. An independent method to estimate trace gas emissions is the top-down approach, using atmospheric CO2 concentration measurements combined with simultaneous radiocarbon (14C) observations. As adding fossil fuel CO2 to the atmosphere, therefore, leads not only to an increase in the CO2 content of the atmosphere but also to a decrease in the 14C/12C ratio in atmospheric CO2. The ATOMKI has more than two decade long experience in atmospheric 14CO2 monitoring. As a part of an ongoing research project being carried out in Hungary to investigate the amount and temporal and spatial variations of fossil fuel CO2 in the near surface atmosphere we developed a mobile and high-precision atmospheric CO2 monitoring station. We describe the layout and the operation of the measuring system which is designed for the continuous, unattended monitoring of CO2 mixing ratio in the near surface atmosphere based on an Ultramat 6F (Siemens) infrared gas analyser. In the station one atmospheric 14CO2 sampling unit is also installed which is developed and widely used since more than one decade by ATOMKI. Mixing ratio of CO2 is

  7. Contribution of the infrasound technology to characterize large scale atmospheric disturbances and impact on infrasound monitoring

    Science.gov (United States)

    Blanc, Elisabeth; Le Pichon, Alexis; Ceranna, Lars; Pilger, Christoph; Charlton Perez, Andrew; Smets, Pieter

    2016-04-01

    The International Monitoring System (IMS) developed for the verification of the Comprehensive nuclear-Test-Ban Treaty (CTBT) provides a unique global description of atmospheric disturbances generating infrasound such as extreme events (e.g. meteors, volcanoes, earthquakes, and severe weather) or human activity (e.g. explosions and supersonic airplanes). The analysis of the detected signals, recorded at global scales and over near 15 years at some stations, demonstrates that large-scale atmospheric disturbances strongly affect infrasound propagation. Their time scales vary from several tens of minutes to hours and days. Their effects are in average well resolved by the current model predictions; however, accurate spatial and temporal description is lacking in both weather and climate models. This study reviews recent results using the infrasound technology to characterize these large scale disturbances, including (i) wind fluctuations induced by gravity waves generating infrasound partial reflections and modifications of the infrasound waveguide, (ii) convection from thunderstorms and mountain waves generating gravity waves, (iii) stratospheric warming events which yield wind inversions in the stratosphere, (iv)planetary waves which control the global atmospheric circulation. Improved knowledge of these disturbances and assimilation in future models is an important objective of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project. This is essential in the context of the future verification of the CTBT as enhanced atmospheric models are necessary to assess the IMS network performance in higher resolution, reduce source location errors, and improve characterization methods.

  8. Chemistry and aerosol model development for the Copernicus Atmosphere Monitoring Service at ECWMF

    Science.gov (United States)

    Flemming, Johannes; Huijnen, Vincent; Remy, Samuel; Kipling, Zak

    2017-04-01

    The global forecast and data assimilation system for atmospheric composition of the Copernicus Atmosphere Monitoring Service (CAMS) is part of ECMWF's integrated forecasting system (IFS). The CAMS system is run on a lower resolution (40 km) than the operational Numerical Weather Prediction (NWP) suite (9km), but it uses the same meteorological model for both configurations in order to maintain a seamless approach to earth-system forecasting. The IFS with the modules for atmospheric composition is referred to as C-IFS. Although developments of the chemistry and aerosol modules are by far the most important reasons for changes in the simulation of atmospheric composition with C-IFS, the impact of continuous developments of the meteorological part of C-IFS also introduces changes to the operational composition forecast. The development of the IFS is predominantly driven by the improvements in weather predication scores at high resolution. IFS model upgrades occur several times a year. In the presentation we will address the opportunities and challenges to improve the quality of the CAMS operational composition forecasts as part of a steadily changing operational NWP system. We will discuss examples on how changes in the IFS model impact the composition simulation such as changes to the convection scheme, lightning activity and surface processes. We will also provide a detailed break down of the additional computational cost of the atmospheric composition simulation.

  9. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].

    Science.gov (United States)

    He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing

    2009-01-01

    With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.

  10. Atmospheric pollution in the Tula Industrial Corridor studied using a bio monitor and nuclear analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, M. A.; Solis, C.; Andrade, E. [UNAM, Instituto de Fisica, Apdo. Postal 20-364, 01000 Mexico D. F. (Mexico); Beltran H, R. I. [Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Carretera Pachuca-Tulancingo Km. 4.5, 42184 Pachuca, Hidalgo (Mexico); Issac O, K. [Universidad Autonoma del Estado de Mexico, Facultad de Medicina, Paseo Tollocan s/n, esq. Jesus Carranza, 50120 Toluca, Estado de Mexico (Mexico); Lucho C, C. A. [Universidad Politecnica de Pachuca, Carretera Pachuca-Cd. Sahagun Km. 20, Hidalgo (Mexico); Lopez R, M. C.; Longoria, L. C. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-02-15

    This study deals with the application of nuclear analytical techniques to analyze trace elements in the biological monitor Tillandsia usneoides. Biological monitors provides an alternative advantageous way of particulate matter sampling in air pollution studies, since there is no need of special sampling devices, accumulation time can be as long as desired. T. usneoides, which occurs naturally throughout Mexico, was used to monitor air quality of Tula-Vito-Apasco (TVA) industrial corridor at central Mexico. This area is considered one of the critical zones of the country because of atmospheric contaminants high concentration. Particulate matter is regulated by Mexican norms, but its chemical composition is not. Plants were transplanted from a clean environment to four sites at the TVA corridor, and exposed for 12 weeks from February to April 2008. Trace element accumulation of plants was determined by particle induced X-ray emission and neutron activation analysis. Results reveal differences in trace elements distribution among sites in the TVA corridor. Furthermore, anthropogenic elements (S, V) and crustal elements (Ca) in T. usneoides exhibit high levels. Highly toxic elements such as Hg, As and Cr although present at trace levels, showed un enrichment relative to the initial values, when transplanted to the TVA corridor. Results show that monitoring with T. usneoides allows a first approximation of air sources to provide insights of the atmospheric pollution in the TVA corridor. (Author)

  11. Laser system for remote sensing monitoring of air pollution and quality control of the atmosphere

    Directory of Open Access Journals (Sweden)

    Belić Ilija

    2012-01-01

    Full Text Available Monitoring of the atmosphere and determination of the types and amounts of pollutants is becoming more important issue in complex and global monitoring of the environment. On the geocomponent and geocomplex level problem of monitoring the environment is attracting the attention of the scientific experts of different profiles (chemists, physicists, geographers, biologists, meteorologists, both in the national and international projects. Because of the general characteristics of the Earth's atmosphere (Dynamically Ballanced Instability DBI and the potential contribution to climate change solutions air-pollution monitoring has become particularly important field of environmental research. Control of aerosol distribution over Europe is enabled by EARLINET systems (European Aerosol Lidar NETwork. Serbia’s inclusion into these European courses needs development of the device, the standardization of methods and direct activity in determining the type, quantity and location of aerosol. This paper is analyzing the first step in the study of air-pollution, which is consisted of the realization of a functional model of LIDAR remote sensing devices for the large particle pollutants.

  12. Monitoring and modelling of biosphere/atmosphere exchange of gases and aerosols in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Erisman, Jan Willem [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands)]. E-mail: erisman@ecn.nl; Vermeulen, Alex [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Hensen, Arjan [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Flechard, Chris [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Daemmgen, Ulrich [Federal Agricultural Research Centre, Institute of Agroecology, D-38116 Braunschweig, (Germany); Fowler, David [CEH, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Sutton, Mark [CEH, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Gruenhage, Ludger [Institute for Plant Ecology, Justus-Liebig-University, D-35392 Giessen (Germany); Tuovinen, Juha-Pekka [Finnish Meteorological Institute, FIN-00810 Helsinki (Finland)

    2005-02-01

    Monitoring and modelling of deposition of air pollutants is essential to develop and evaluate policies to abate the effects related to air pollution and to determine the losses of pollutants from the atmosphere. Techniques for monitoring wet deposition fluxes are widely applied. A recent intercomparison experiment, however, showed that the uncertainty in wet deposition is relatively high, up to 40%, apart from the fact that most samplers are biased because of a dry deposition contribution. Wet deposition amounts to about 80% of the total deposition in Europe with a range of 10-90% and uncertainty should therefore be decreased. During recent years the monitoring of dry deposition has become possible. Three sites have been operational for 5 years. The data are useful for model development, but also for model evaluation and monitoring of progress in policy. Data show a decline in SO{sub 2} dry deposition, whereas nitrogen deposition remained constant. Furthermore, surface affinities for pollutants changed leading to changes in deposition. Deposition models have been further developed and tested with dry deposition measurements and total deposition measurements on forests as derived from throughfall data. The comparison is reasonable given the measurement uncertainties. Progress in ozone surface exchange modelling and monitoring shows that stomatal uptake can be quantified with reasonable accuracy, but external surface uptake yields highest uncertainty. - Monitoring and modelling of the deposition of sulphur and nitrogen components and the exposure of ozone has gained much progress through the research within BIATEX.

  13. Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands

    Science.gov (United States)

    Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.

    2016-09-19

    Between 2010 and 2014, the U.S. Geological Survey completed a series of laboratory and field experiments designed to develop methodology to support the National Park Service’s long-term atmospheric pollutant monitoring efforts in parklands of Arctic Alaska. The goals of this research were to develop passive sampling methods that could be used for long-term monitoring of inorganic pollutants in remote areas of arctic parklands and characterize relations between wet and dry deposition of atmospheric pollutants to that of concentrations accumulated by mosses, specifically the stair-step, splendid feather moss, Hylocomium splendens. Mosses and lichens have been used by National Park Service managers as atmospheric pollutant biomonitors since about 1990; however, additional research is needed to better characterize the dynamics of moss bioaccumulation for various classes of atmospheric pollutants. To meet these research goals, the U.S. Geological Survey investigated the use of passive ionexchange collectors (IECs) that were adapted from the design of Fenn and others (2004). Using a modified IEC configuration, mulitple experiments were completed that included the following: (a) preliminary laboratory and development testing of IECs, (b) pilot-scale validation field studies during 2012 with IECs at sites with instrumental monitoring stations, and (c) deployment of IECs in 2014 at sites in Alaska having known or suspected regional sources of atmospheric pollutants where samples of Hylocomium splendens moss also could be collected for comparison. The targeted substances primarily included ammonium, nitrate, and sulfate ions, and certain toxicologically important trace metals, including cadmium, cobalt, copper, nickel, lead, and zinc.Deposition of atmospheric pollutants is comparatively low throughout most of Alaska; consequently, modifications of the original IEC design were needed. The most notable modification was conversion from a single-stage mixed-bed column to a two

  14. Bidimensional and Multidimensional Principal Component Analysis in Long Term Atmospheric Monitoring

    Directory of Open Access Journals (Sweden)

    Barbara Giussani

    2016-12-01

    Full Text Available Atmospheric monitoring produces huge amounts of data. Univariate and bivariate statistics are widely used to investigate variations in the parameters. To summarize information graphs are usually used in the form of histograms or tendency profiles (e.g., variable concentration vs. time, as well as bidimensional plots where two-variable correlations are considered. However, when dealing with big data sets at least two problems arise: a great quantity of numbers (statistics and graphs are produced, and only two-variable interactions are often considered. The aim of this article is to show how the use of multivariate statistics helps in handling atmospheric data sets. Multivariate modeling considers all the variables simultaneously and returns the main results as bidimensional graphs that are easy-to-read. Principal Component Analysis (PCA; the most known multivariate method and multiway-PCA (Tucker3 are compared from methodological and interpretative points of view. The article demonstrates the ability to emphasize different information depending on the data handling performed. The results and benefits achieved using a more complex model that allows for the simultaneous consideration of the entire variability of the system are compared with the results provided by the simpler but better-known model. Atmospheric monitoring (SO2, NOx, NO2, NO, and O3 data from the Lake Como Area (Italy since 1992 to 2007 were chosen for consideration for the case study.

  15. Development of colorimetric solid Phase Extraction (C-SPE) for in-flight Monitoring of spacecraft Water Supplies

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Bryan Gazda

    2004-12-19

    Although having recently been extremely successful gathering data on the surface of Mars, robotic missions are not an effective substitute for the insight and knowledge about our solar system that can be gained though first-hand exploration. Earlier this year, President Bush presented a ''new course'' for the U.S. space program that shifts NASA's focus to the development of new manned space vehicles to the return of humans to the moon. Re-establishing the human presence on the moon will eventually lead to humans permanently living and working in space and also serve as a possible launch point for missions into deeper space. There are several obstacles to the realization of these goals, most notably the lack of life support and environmental regeneration and monitoring hardware capable of functioning on long duration spaceflight. In the case of the latter, past experience on the International Space Station (ISS), Mir, and the Space Shuttle has strongly underscored the need to develop broad spectrum in-flight chemical sensors that: (1) meet current environmental monitoring requirements on ISS as well as projected requirements for future missions, and (2) enable the in-situ acquisition and analysis of analytical data in order to further define on-orbit monitoring requirements. Additionally, systems must be designed to account for factors unique to on-orbit deployment such as crew time availability, payload restrictions, material consumption, and effective operation in microgravity. This dissertation focuses on the development, ground testing, and microgravity flight demonstration of Colorimetric Solid Phase Extraction (C-SPE) as a candidate technology to meet the near- and long-term water quality monitoring needs of NASA. The introduction will elaborate further on the operational and design requirements for on-orbit water quality monitoring systems by discussing some of the characteristics of an ''ideal'' system. A

  16. Development of colorimetric solid Phase Extraction (C-SPE) for in-flight Monitoring of spacecraft Water Supplies

    Energy Technology Data Exchange (ETDEWEB)

    Gazda, Daniel Bryan [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Although having recently been extremely successful gathering data on the surface of Mars, robotic missions are not an effective substitute for the insight and knowledge about our solar system that can be gained though first-hand exploration. Earlier this year, President Bush presented a ''new course'' for the U.S. space program that shifts NASA's focus to the development of new manned space vehicles to the return of humans to the moon. Re-establishing the human presence on the moon will eventually lead to humans permanently living and working in space and also serve as a possible launch point for missions into deeper space. There are several obstacles to the realization of these goals, most notably the lack of life support and environmental regeneration and monitoring hardware capable of functioning on long duration spaceflight. In the case of the latter, past experience on the International Space Station (ISS), Mir, and the Space Shuttle has strongly underscored the need to develop broad spectrum in-flight chemical sensors that: (1) meet current environmental monitoring requirements on ISS as well as projected requirements for future missions, and (2) enable the in-situ acquisition and analysis of analytical data in order to further define on-orbit monitoring requirements. Additionally, systems must be designed to account for factors unique to on-orbit deployment such as crew time availability, payload restrictions, material consumption, and effective operation in microgravity. This dissertation focuses on the development, ground testing, and microgravity flight demonstration of Colorimetric Solid Phase Extraction (C-SPE) as a candidate technology to meet the near- and long-term water quality monitoring needs of NASA. The introduction will elaborate further on the operational and design requirements for on-orbit water quality monitoring systems by discussing some of the characteristics of an ''ideal'' system. A

  17. Performance of sulfation and nitration plates used to monitor atmospheric pollutant deposition in a real environment

    Energy Technology Data Exchange (ETDEWEB)

    Noel, D.; Hechler, J.; Roberge, H.

    1989-01-01

    Sulfation and nitration plates were exposed outdoors for various periods of time to evaluate their performance in a real environment. These passive monitors are used to estimate the deposition of pollutants on metallic surfaces, and thus to evaluate the influence of the atmosphere on the corrosion. Single-column ion chromatography was used to determine the quantity of anions absorbed on the plates. This technique is better than other analytical procedures such as turbidimetry or colorimetry because passive monitors exposed in an atmosphere with a low degree of pollution can be analyzed without preconcentration. However, the pH of the sample to be injected on the chromatographic column must be adjusted to between 6.0 and 12.0 in order to obtain reproducible sulfate values. For sulfation plates, the additivity of the deposition process is excellent for a period of exposure up to 3 months, with a reproducibility of about 2%. For nitration plates, the deposition process is not cumulative due to a physical change of the monitor during exposure. The correlation between the amounts of sulfate found on sulfation snd nitration plates was also examined. 16 refs., 6 figs., 5 tabs.

  18. Monitoring and modelling of biosphere/atmosphere exchange of gases and aerosols in Europe.

    Science.gov (United States)

    Erisman, Jan Willem; Vermeulen, Alex; Hensen, Arjan; Flechard, Chris; Dämmgen, Ulrich; Fowler, David; Sutton, Mark; Grünhage, Ludger; Tuovinen, Juha-Pekka

    2005-02-01

    Monitoring and modelling of deposition of air pollutants is essential to develop and evaluate policies to abate the effects related to air pollution and to determine the losses of pollutants from the atmosphere. Techniques for monitoring wet deposition fluxes are widely applied. A recent intercomparison experiment, however, showed that the uncertainty in wet deposition is relatively high, up to 40%, apart from the fact that most samplers are biased because of a dry deposition contribution. Wet deposition amounts to about 80% of the total deposition in Europe with a range of 10-90% and uncertainty should therefore be decreased. During recent years the monitoring of dry deposition has become possible. Three sites have been operational for 5 years. The data are useful for model development, but also for model evaluation and monitoring of progress in policy. Data show a decline in SO(2) dry deposition, whereas nitrogen deposition remained constant. Furthermore, surface affinities for pollutants changed leading to changes in deposition. Deposition models have been further developed and tested with dry deposition measurements and total deposition measurements on forests as derived from throughfall data. The comparison is reasonable given the measurement uncertainties. Progress in ozone surface exchange modelling and monitoring shows that stomatal uptake can be quantified with reasonable accuracy, but external surface uptake yields highest uncertainty.

  19. Analysis of influence of atmosphere extinction to Raman lidar monitoring CO2 concentration profile

    Institute of Scientific and Technical Information of China (English)

    Zhao Pei-Tao; Zhang Yin-Chao; Wang Lian; Zhao Yue-Feng; Su Jia; Fang Xin; Cao Kai-Fa; Xie Jun; Du Xiao-Yong

    2007-01-01

    Lidar (Light detection and ranging) system monitoring of the atmosphere is a novel and powerful technique tool. The Raman lidar is well established today as a leading research tool in the study of numerous important areas in the atmospheric sciences. In this paper, the principle of Raman lidar technique measurement CO2 concentration profile is presented and the errors caused by molecular and aerosol extinction for CO2 concentration profile measurement with Raman lidar are also presented. The standard atmosphere extinction profile and 'real-time' Hefei area extinction profile are used to conduct correction and the corresponding results are yielded. Simulation results with standard atmosphere mode correction indicate that the errors caused by molecule and aerosol extinction should be counted for the reason that they could reach about 8 ppm and 5 ppm respectively. The relative error caused by Hefei area extinction correction could reach about 6%. The errors caused by the two components extinction influence could produce significant changes for CO2 concentration profile and need to be counted in data processing which could improve the measurement accuracies.

  20. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2009-08-01

    Full Text Available Atmospheric remote sounding from satellites is an essential component of the observational strategy deployed to monitor atmospheric pollution and changing composition. The IASI nadir looking thermal infrared sounder onboard MetOp will provide 15 years of global scale observations for a series of key atmospheric species, with unprecedented spatial sampling and coverage. This paper gives an overview of the instrument's capability for measuring atmospheric composition in the perspective of chemistry and air quality. The assessment is made in terms of species, accuracy and vertical information. Global distributions are presented for CO, CH4, O3 (total and tropospheric, HNO3, NH3, and volcanic SO2. Local distributions of organic species measured during fire events, such as C2H4, CH3OH, HCOOH, and PAN are also shown. For each species or process, the link is made to specialized papers in this issue.

  1. Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies

    Science.gov (United States)

    Mendoza, Luciano; Bianchi, Clara; Fernández, Laura; Natali, María Paula; Meza, Amalia; Moirano, Juan

    2017-04-01

    Atmospheric water vapour has been acknowledged as an essential climate variable. Weather prediction and hazard assessment systems benefit from real-time observations, whereas long-term records contribute to climate studies. Nowadays, ground-based GNSS products have become widely employed, complementing satellite observations over the oceans. Although the past decade has seen a significant development of the GNSS infrastructure in Central and South America, its potential for atmospheric water vapour monitoring has not been fully exploited. With this in mind, we have performed a regional, seven-year long and homogeneous analysis, comprising 136 GNSS tracking stations, obtaining high-rate and continuous observations of column integrated water vapour and troposphere zenith total delay (Bianchi et al. 2016). As preliminary application for this data set, we have estimated local water vapour trends, their significance, and their relation with specific climate regimes. We have found evidence of drying at temperate regions in South America, at a rate of about 2% per decade, while a slow moistening of the troposphere over tropical regions is also weakly suggested by our results. Furthermore, we have assessed the regional performance of the empirical model GPT2w to blindly estimate troposphere delays. The model fairly reproduces the observed mean delays, including their annual and semi-annual variations. Nevertheless, a long-term evaluation has shown systematical biases, up to 20 mm, probably inherited form the underling atmospheric reanalysis. Additionally, the complete data set has been made openly available at a scientific repository (doi:10.1594/PANGAEA.858234). References: C. Bianchi, L. Mendoza, L. Fernandez, M. P. Natali, A. Meza, J. F. Moirano, Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies, Ann. Geophys., ISSN 0992-7689, eISSN 1432-0576, 34 (7), 623-639 (doi:10.5194/angeo-34-623-2016).

  2. Manned Spacecraft

    Science.gov (United States)

    1989-09-14

    34 spacecraft. Improved were systems of conditioning and regeneration , and the system of soft landing, and there was provided high reliability of hermetic...ceramics, cermets or to cool them. 0 DOC = 89059215 PAGE :5Y (i)MeP ce71uneCKag oqKa 2ObtcoMorfle , epO - fi’loddD ueao tuu0 mnyp~aR U30J13NUU cmep

  3. Forest condition and chemical characteristics of atmospheric depositions: research and monitoring network in Lombardy

    Directory of Open Access Journals (Sweden)

    Flaminio DI GIROLAMO

    2002-09-01

    Full Text Available Since 1987, the Regional Forestry Board of Lombardy and the Water Research Institute of the National Research Council have been carrying out surveys of forest conditions and the response of the ecosystem to environmental factors. The study approach is based on a large number of permanent plots for extensive monitoring (Level 1. At this level, crown condition is assessed annually, and soil condition and the nutritional status of forests surveyed. Some of the permanent plots were selected for intensive monitoring (Level 2, focussing mainly on the impact of atmospheric pollution on forest ecosystems. Level 2 monitoring also includes increment analyses, ground vegetation assessment, atmospheric deposition, soil solution analyses and climatic observations. This paper summarises the main results of a pluriannual research, which provides a general picture of the state of forest health in the region and focuses on more detailed investigations, described as case studies. Modified wet and dry samplers which use a water surface to collect dry deposition were used in a pluriannual field campaign at five sites in alpine and prealpine areas, to measure the total atmospheric depositions and to evaluate the nitrogen and sulphate exceedances of critical loads. Throughfall and bulk precipitation chemistry were studied for five years (June 1994-May 1999 at two high elevation forest sites (Val Gerola and Val Masino which were known to differ in terms of tree health, as assessed by live crown condition. Results indicated a higher contribution from the dry deposition of N-NO3 -, N-NH4 + and H+ and considerable canopy leaching of Ca2+, K+ and weak organic acids at Val Gerola, where the symptoms of damage were more evident. In the area of Val Masino (SO, included since 1997 in the national CONECOFOR network, investigations focused on the effectiveness of the biological compartment in modifying fluxes of atmospheric elements, and on the role of nitrogen both as an

  4. Evaluation of atmospheric corrosion on electroplated zinc and zinc nickel coatings by Electrical Resistance (ER) Monitoring

    DEFF Research Database (Denmark)

    Møller, Per

    2013-01-01

    ER (Electrical Resistance) probes provide a measurement of metal loss, measured at any time when a metal is exposed to the real environment. The precise electrical resistance monitoring system can evaluate the corrosion to the level of nanometers, if the conductivity is compensated for temperature...... and magnetic fields. With this technique very important information about the durability of a new conversion coatings for aluminum, zinc and zinc alloys exposed to unknown atmospheric conditions can be gathered. This is expected to have a major impact on a number of industrial segments, such as test cars...

  5. Atmospheric radioxenon isotope monitoring in Beijing after the Fukushima nuclear power plant accident.

    Science.gov (United States)

    Zhou, Chongyang; Zhou, Guoqing; Feng, Shujuan; Jin, Yuren; Zhao, Xinhua; Cheng, Ziwei; Huang, Xiongliang; Xu, Hui; Zhou, Xu

    2013-02-01

    A custom-made, on-site radioxenon sampling, separation and monitoring system was used to monitor atmospheric radioxenon concentrations in Beijing, released from the Fukushima Daiichi nuclear power plant after the earthquake of 11 March 2011. The results show that (133)Xe concentrations ranged from 393 to 26 mBq/m(3) from 12 to 27 April 2011, and those of (131 m)Xe were 84 and 40 mBq/m(3) on 13 and 15 April 2011, respectively. The highest dose rate caused by (133)Xe was 2 × 10(-5)mSv/yr, and the average (133)Xe/(131 m)Xe ratio was 3.8 ± 0.4.

  6. Atmospheric effects on infrared measurements at ground level: Application to monitoring of transport infrastructures

    Science.gov (United States)

    Boucher, Vincent; Dumoulin, Jean

    2014-05-01

    Being able to perform easily non-invasive diagnostics for surveillance and monitoring of critical transport infrastructures is a major preoccupation of many technical offices. Among all the existing electromagnetic methods [1], long term thermal monitoring by uncooled infrared camera [2] is a promising technique due to its dissemination potential according to its low cost on the market. Nevertheless, Knowledge of environmental parameters during measurement in outdoor applications is required to carry out accurate measurement corrections induced by atmospheric effects at ground level. Particularly considering atmospheric effects and measurements in foggy conditions close as possible to those that can be encountered around transport infrastructures, both in visible and infrared spectra. In the present study, atmospheric effects are first addressed by using data base available in literature and modelling. Atmospheric attenuation by particles depends greatly of aerosols density, but when relative humidity increases, water vapor condenses onto the particulates suspended in the atmosphere. This condensed water increases the size of the aerosols and changes their composition and their effective refractive index. The resulting effect of the aerosols on the absorption and scattering of radiation will correspondingly be modified. In a first approach, we used aerosols size distributions derived from Shettle and Fenn [3] for urban area which could match some of experimental conditions encountered during trials on transport infrastructures opened to traffic. In order to calculate the influence of relative humidity on refractive index, the Hänel's model [4] could be used. The change in the particulate size is first related to relative humidity through dry particle radius, particle density and water activity. Once the wet aerosol particle size is found, the effective complex refractive index is the volume weighted average of the refractive indexes of the dry aerosol substance

  7. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  8. Monitoring radionuclides in the atmosphere over the Czech Republic after the Fukushima Nuclear Power Plant accident.

    Science.gov (United States)

    Rulík, Petr; Hýža, Miroslav; Bečková, Věra; Borecký, Zdeněk; Havránek, Jiří; Hölgye, Zoltán; Lušňák, Jan; Malá, Helena; Matzner, Jan; Pilátová, Helena; Rada, Jiří; Schlesingerová, Eva; Šindelková, Eva; Dragounová, Lenka; Vlček, Jaroslav

    2015-02-01

    This paper presents the results of atmospheric radioactivity monitoring over the Czech Republic, as obtained by the Radiation Monitoring Network, following the Fukushima Dai-Ichi Nuclear Power Plant accident. Maximum values for (131)I were 5.6 mBq m(-3) in aerosol form and 13 mBq m(-3) in gaseous form. The maximum values for (134)Cs and (137)Cs were 0.64 and 0.72 mBq m(-3), respectively. The estimated effective half-time for removing the activity from the atmosphere was 6-7 d and 3.5 d for caesium and iodine, respectively. The gaseous-to-total activity ratios of (131)I ranged between 0.3 and 0.9, with an arithmetic mean value of 0.77. The mean value for the (134)Cs/(137)Cs ratios was close to 1.0. The effective inhalation dose due to the accident for an adult living in the Czech Republic was estimated at <4 × 10(-5) mSv, out of which the proportion of (131)I was 88%.

  9. Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies

    Science.gov (United States)

    Bianchi, Clara Eugenia; Mendoza, Luciano Pedro Oscar; Fernández, Laura Isabel; Natali, María Paula; Meza, Amalia Margarita; Francisco Moirano, Juan

    2016-07-01

    Atmospheric water vapour has been acknowledged as an essential climate variable. Weather prediction and hazard assessment systems benefit from real-time observations, whereas long-term records contribute to climate studies. Nowadays, ground-based global navigation satellite system (GNSS) products have become widely employed, complementing satellite observations over the oceans. Although the past decade has seen a significant development of the GNSS infrastructure in Central and South America, its potential for atmospheric water vapour monitoring has not been fully exploited. With this in mind, we have performed a regional, 7-year-long and homogeneous analysis, comprising 136 GNSS tracking stations, obtaining high-rate and continuous observations of column-integrated water vapour and troposphere zenith total delay. As a preliminary application for this data set, we have estimated local water vapour trends, their significance, and their relation with specific climate regimes. We have found evidence of drying at temperate regions in South America, at a rate of about 2 % per decade, while a slow moistening of the troposphere over tropical regions is also weakly suggested by our results. Furthermore, we have assessed the regional performance of the empirical model GPT2w to blindly estimate troposphere delays. The model reproduces the observed mean delays fairly well, including their annual and semi-annual variations. Nevertheless, a long-term evaluation has shown systematical biases, up to 20 mm, probably inherited from the underlying atmospheric reanalysis. Additionally, the complete data set has been made openly available as supplementary material.

  10. Monitoring Atmospheric Dust Spring Activity at High Southern Latitudes on Mars using OMEGA

    CERN Document Server

    Douté, S

    2013-01-01

    This article presents a monitoring of the atmospheric dust in the south polar region during spring of martian year 27. Our goal is to contribute to identifying the source regions and to understanding lifting as well as transport mechanisms in relation with the seasonal ice regression and the dynamics of the atmosphere. This is of paramount importance since local dust storms generated in this region sometimes grow to global proportions. The imaging spectrometer OMEGA on board Mars Express has acquired the most comprehensive set of observations to date in the near-infrared (0.93-5.1 microns) of the southern high latitudes of Mars from mid-winter solstice (Ls=110, December 2004) to the end of the recession at Ls=320 (November 2005) . We use an original method presented in the companion paper in order to retrieve the optical depth of the atmospheric dust above mineral surfaces at a reference wavelength of one micron. The method is applied on a time series of OMEGA images acquired between Ls=220 and Ls=280 in conj...

  11. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China

    Directory of Open Access Journals (Sweden)

    W. Xu

    2015-07-01

    Full Text Available Global reactive nitrogen (Nr deposition to terrestrial ecosystems has increased dramatically since the industrial revolution. This is especially true in recent decades in China due to continuous economic growth. However, there are no comprehensive reports of both measured dry and wet Nr deposition across China. We therefore conducted a multiple-year study during the period mainly from 2010 to 2014 to monitor atmospheric concentrations of five major Nr species of gaseous NH3, NO2 and HNO3, and inorganic nitrogen (NH4+ and NO3− in both particles and precipitation, based on a Nationwide Nitrogen Deposition Monitoring Network (NNDMN, covering 43 sites in China. Wet deposition fluxes of Nr species were measured directly; dry deposition fluxes were estimated using airborne concentration measurements and inferential models. Our observations reveal large spatial variations of atmospheric Nr concentrations and dry and wet Nr deposition. The annual average concentrations (1.3–47.0 μg N m−3 and dry plus wet deposition fluxes (2.9–75.2 kg N ha−1 yr−1 of inorganic Nr species ranked by region as North China > Southeast China > Southwest China > Northeast China > Northwest China > the Tibetan Plateau or by land use as urban > rural > background sites, reflecting the impact of anthropogenic Nr emission. Average dry and wet N deposition fluxes were 18.5 and 19.3 kg N ha−1 yr−1, respectively, across China, with reduced N deposition dominating both dry and wet deposition. Our results suggest atmospheric dry N deposition is equally important to wet N deposition at the national scale and both deposition forms should be included when considering the impacts of N deposition on environment and ecosystem health.

  12. Spacecraft operations

    CERN Document Server

    Sellmaier, Florian; Schmidhuber, Michael

    2015-01-01

    The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).

  13. Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands

    Science.gov (United States)

    Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.

    2016-09-19

    Between 2010 and 2014, the U.S. Geological Survey completed a series of laboratory and field experiments designed to develop methodology to support the National Park Service’s long-term atmospheric pollutant monitoring efforts in parklands of Arctic Alaska. The goals of this research were to develop passive sampling methods that could be used for long-term monitoring of inorganic pollutants in remote areas of arctic parklands and characterize relations between wet and dry deposition of atmospheric pollutants to that of concentrations accumulated by mosses, specifically the stair-step, splendid feather moss, Hylocomium splendens. Mosses and lichens have been used by National Park Service managers as atmospheric pollutant biomonitors since about 1990; however, additional research is needed to better characterize the dynamics of moss bioaccumulation for various classes of atmospheric pollutants. To meet these research goals, the U.S. Geological Survey investigated the use of passive ionexchange collectors (IECs) that were adapted from the design of Fenn and others (2004). Using a modified IEC configuration, mulitple experiments were completed that included the following: (a) preliminary laboratory and development testing of IECs, (b) pilot-scale validation field studies during 2012 with IECs at sites with instrumental monitoring stations, and (c) deployment of IECs in 2014 at sites in Alaska having known or suspected regional sources of atmospheric pollutants where samples of Hylocomium splendens moss also could be collected for comparison. The targeted substances primarily included ammonium, nitrate, and sulfate ions, and certain toxicologically important trace metals, including cadmium, cobalt, copper, nickel, lead, and zinc.Deposition of atmospheric pollutants is comparatively low throughout most of Alaska; consequently, modifications of the original IEC design were needed. The most notable modification was conversion from a single-stage mixed-bed column to a two

  14. Monitoring PM2.5 in the Atmosphere by Using Terahertz Time-Domain Spectroscopy

    Science.gov (United States)

    Zhan, Honglei; Zhao, Kun; Bao, Rima; Xiao, Lizhi

    2016-09-01

    The real-time monitoring of the air pollution with multiple sources is of great significance for pollution control and environmental protection. In this paper, we presented a study of terahertz time-domain spectroscopy (THz-TDS) as a direct tool for monitoring the component and content of PM2.5 in atmosphere. Due to the THz absorption, the intensities of the peaks in THz-TDS decreased with the augment of PM2.5 and were proportional to the PM2.5 content. The ratio of absorbance A to PM2.5 reflected a basically unchanged tendency, indicating the little change of principal elements under the pollution degree. In the high-pollution condition, a lot of SO2 from vehicle and factory was emitted into air. The elements, such as S and O from anions, had a stronger absorption effect in THz range. Based on the absorbance spectra, the absorption tendencies with PM2.5 over the whole range were validated by principal component analysis and the quantitative model with a high correlation was built by using back propagation artificial neural network. BPANN model improved the precision of linear fitting between peak intensities and PM2.5. The research demonstrates that THz-TDS is a promising tool for fast, direct, and reliable monitoring in environmental applications.

  15. Data quality monitoring in the presence of aerosols and other adverse atmospheric conditions with H.E.S.S

    CERN Document Server

    Hahn, J; Bernlöhr, K; Krüger, P; Lo, Y T E; Chadwick, P M; Daniel, M K; Deil, C; Gast, H; Kosack, K; Marandon, V

    2015-01-01

    Cherenkov telescope experiments, such as H.E.S.S., have been very successful in astronomical observations in the very-high-energy (VHE; E $>$ 100 GeV) regime. As an integral part of the detector, such experiments use Earth's atmosphere as a calorimeter. For the calibration and energy determination, a standard model atmosphere is assumed. Deviations of the real atmosphere from the model may therefore lead to an energy misreconstruction of primary gamma rays. To guarantee satisfactory data quality with respect to difficult atmospheric conditions, several atmospheric data quality criteria are implemented in the H.E.S.S. software. These quantities are sensitive to clouds and aerosols. Here, the Cherenkov transparency coefficient will be presented. It is a new monitoring quantity that is able to measure long-term changes in the atmospheric transparency. The Cherenkov transparency coefficient derives exclusively from Cherenkov data and is quite hardware-independent. Furthermore, its positive correlation with indepe...

  16. New experience in atmospheric monitoring in Moscow city on the base of WSN technology

    Science.gov (United States)

    Asavin, Alex; Litvinov, Artur; Baskakov, Sergey; Chesalova, Elena

    2016-04-01

    The aim of this report is to present the gas emission of H2 in the general composition of atmospheric pollution of Moscow city. We start the project at the beginning of 2015 year in two Moscow academicals organization -Vernadsky Institute of Geochemistry and Analytical Chemistry and Moscow Geological State Museum. One place is in the center of Moscow, near the Kremlin and other one is in the most clear zone of Moscow - Moscow State University place, Vorobyevy Mountains (high point of Moscow). We plan to compare these regions by the concentration of H2 and other gases (CH4, SO2) for green gas pollution. Application network of monitoring is composed of gas sensors (H2, CH4), complex autonomous equipment for measurement temperature, pressure, humidity and network of telecommunications (used ZigBee protocol). Our project offer the technical solutions for monitoring network on the base of WSN (wireless sensor network) technology and the high-sensitive sensors of hydrogen and methane, software and electronic equipment with a transmitter network. This work is the first project in Russia. Gas sensors for monitoring system were developed on the base of MIS-structures (metal-insulator-semiconductor). MIS-sensors are suitable for measuring the concentrations of the following gases: hydrogen, hydrogen sulphide, nitrogen dioxide, ethylmercaptan, chlorine and ammonia. The basis of the sensor is MIS - structure Pd-Ta2O5-SiO2-Si,), which capacitance changes when reaction with gases occurs. The sensor fabrication technology is based on the microelectronics device fabrication technologies and the thin film laser deposition technique. Sensor can be used for measuring the concentration of any gas among noted before, in ambient temperature range -30..+40°C and RH 30-90% (30°C).Three gas sensors with analog interface were made for our experimental monitoring system. Original calibration was made using calibration by special standard mixture of H2 and atmosphere. There are 10-15 points

  17. Future monitoring of charged particle energy deposition into the upper atmosphere and comments on possible relationships between atmospheric phenomena and solar and/or geomagnetic activity

    Science.gov (United States)

    Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.

    1975-01-01

    Monitoring of earth's atmosphere was conducted for several years utilizing the ITOS series of low-altitude, polar-orbiting weather satellites. A space environment monitoring package was included in these satellites to perform measurements of a portion of earth's charged particle environment. The charged particle observations proposed for the low-altitude weather satellite TIROS N, are described which will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Such observations may be of use in future studies of the relationships between geomagnetic activity and atmospheric weather pattern developments. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance of distinguishing between solar and geomagnetic activity as possible causative sources. Such differentiation is necessary because of the widely different spatial and time scales involved in the atmospheric energy input resulting from these various sources of activity.

  18. A virtual remote sensing observation network for continuous, near-real-time monitoring of atmospheric instability

    Science.gov (United States)

    Toporov, Maria; Löhnert, Ulrich; Potthast, Roland; Cimini, Domenico; De Angelis, Francesco

    2017-04-01

    Short-term forecasts of current high-resolution numerical weather prediction models still have large deficits in forecasting the exact temporal and spatial location of severe, locally influenced weather such as summer-time convective storms or cool season lifted stratus or ground fog. Often, the thermodynamic instability - especially in the boundary layer - plays an essential role in the evolution of weather events. While the thermodynamic state of the atmosphere is well measured close to the surface (i.e. 2 m) by in-situ sensors and in the upper troposphere by satellite sounders, the planetary boundary layer remains a largely under-sampled region of the atmosphere where only sporadic information from radiosondes or aircraft observations is available. The major objective of the presented DWD-funded project ARON (Extramural Research Programme) is to overcome this observational gap and to design an optimized network of ground based microwave radiometers (MWR) and compact Differential Absorption Lidars (DIAL) for a continuous, near-real-time monitoring of temperature and humidity in the atmospheric boundary layer in order to monitor thermodynamic (in)stability. Previous studies showed, that microwave profilers are well suited for continuously monitoring the temporal development of atmospheric stability (i.e. Cimini et al., 2015) before the initiation of deep convection, especially in the atmospheric boundary layer. However, the vertical resolution of microwave temperature profiles is best in the lowest kilometer above the surface, decreasing rapidly with increasing height. In addition, humidity profile retrievals typically cannot be resolved with more than two degrees of freedom for signal, resulting in a rather poor vertical resolution throughout the troposphere. Typical stability indices used to assess the potential of convection rely on temperature and humidity values not only in the region of the boundary layer but also in the layers above. Therefore, satellite

  19. Formation Flying Spacecraft Concept for Heliophysics Applications

    Science.gov (United States)

    Novo-Gradac, Anne-Marie; Davila, Joseph; Yang, Guangning; Lu, Wei; Shah, Neerav; Li, Steven X.

    2016-05-01

    A number of space-based heliophysics instruments would benefit from formation flying spacecraft. An occulter or a focusing optic such as a photon sieve could be mounted on a separate spacecraft rather than at the end of a boom. This would enable science measurements to be made on smaller, less expensive spacecraft. To accomplish this goal, the relative position of the spacecraft must be monitored and controlled to high precision. We describe two separate optical sensing systems that monitor relative position of the spacecraft to the level required for a photon sieve mission concept wherein the photon sieve is mounted on one spacecraft while the imaging detector is mounted on another. The first system employs a novel time of flight measurement of a laser beam that includes imbedded optical data packets. The contents of the returning data packet can be compared to the departing data packet to provide an extremely high resolution distance measurement. Employing three such systems allows measurement of pitch and yaw in addition to longitudinal separation. The second optical system monitors lateral motion. A mildy divergent laser beam is transmitted from one spacecraft to a sensor array on the second spacecraft. Monitoring the position of the brightest portion of the beam on the sensor array provides a direct measurement of lateral relative motion. Employing at least two such systems enables monitoring roll of the spacecraft as well as centration. We will also discuss low force thruster systems required for high precision station keeping.

  20. Radio-controlled xenon flashers for atmospheric monitoring at the HiRes cosmic ray observatory

    CERN Document Server

    Wiencke, L R; Al-Seady, M; Belov, K; Bird, D J; Boyer, J; Chen, G F; Clay, R W; Dai, H Y; Dawson, B R; Denholm, P; Gloyn, J; He, D; Ho, Y; Huang, M A; Jui, C C H; Kidd, M J; Kieda, D B; Knapp, B; Ko, S; Larson, K; Loh, E C; Mannel, E J; Matthews, J N; Meyer, J R; Salman, A; Simpson, K M; Smith, J D; Sokolsky, P; Steenblik, D; Tang, J K K; Taylor, S; Thomas, S B; Wilkinson, C R

    1999-01-01

    Stable, robust ultraviolet light sources for atmospheric monitoring and calibration pose a challenge for experiments that measure air fluorescence from cosmic ray air showers. One type of light source in use at the High Resolution Fly's Eye (HiRes) cosmic ray observatory features a xenon flashbulb at the focal point of a spherical mirror to produce a 1 mu s pulse of collimated light that includes a strong UV component. A computer-controlled touch tone radio system provides remote operation of bulb triggering and window heating. These devices, dubbed 'flashers', feature stand-alone operation, +-5% shot-to-shot stability, weather proof construction and are well suited for long-term field use. This paper describes the flashers, the radio control system, and a 12-unit array in operation at the HiRes cosmic ray observatory

  1. Radio-controlled xenon flashers for atmospheric monitoring at the HiRes cosmic ray observatory

    Science.gov (United States)

    Wiencke, L. R.; Abu-Zayyad, T.; Al-Seady, M.; Belov, K.; Bird, D. J.; Boyer, J.; Chen, G. F.; Clay, R. W.; Dai, H. Y.; Dawson, B. R.; Denholm, P.; Gloyn, J.; He, D.; Ho, Y.; Huang, M. A.; Jui, C. C. H.; Kidd, M. J.; Kieda, D. B.; Knapp, B.; Ko, S.; Larson, K.; Loh, E. C.; Mannel, E. J.; Matthews, J. N.; Meyer, J. R.; Salman, A.; Simpson, K. M.; Smith, J. D.; Sokolsky, P.; Steenblik, D.; Tang, J. K. K.; Taylor, S.; Thomas, S. B.; Wilkinson, C. R.

    1999-06-01

    Stable, robust ultraviolet light sources for atmospheric monitoring and calibration pose a challenge for experiments that measure air fluorescence from cosmic ray air showers. One type of light source in use at the High Resolution Fly's Eye (HiRes) cosmic ray observatory features a xenon flashbulb at the focal point of a spherical mirror to produce a 1 μs pulse of collimated light that includes a strong UV component. A computer-controlled touch tone radio system provides remote operation of bulb triggering and window heating. These devices, dubbed "flashers", feature stand-alone operation, ±5% shot-to-shot stability, weather proof construction and are well suited for long-term field use. This paper describes the flashers, the radio control system, and a 12-unit array in operation at the HiRes cosmic ray observatory

  2. Development of a 22 GHz ground-based spectrometer for middle atmospheric water vapour monitoring

    Directory of Open Access Journals (Sweden)

    Pietro Paolo Bertagnolio

    2012-03-01

    Full Text Available The water Vapour Emission SPectrometer for Antarctica at 22 GHz (VESPA-22 has been designed for long-term middle atmospheric climate change monitoring and satellite data validation. It observes the water vapour spectral line at 22.235 GHz using the balanced beam-switching technique. The receiver antenna has been characterized, showing an HPBW of 3.5° and a sidelobe level 40 dB below the main lobe. The receiver front-end has a total gain of 105 dB and a LNA noise temperature of 125 K. A FFT spectrometer (bandwidth 1 GHz, resolution 63 kHz will be used as back-end, allowing the retrieval of H2O concentration profiles in the 20 to 80 km altitude range. The control I/O interface is based on reconfigurable hardware (USB-CPLD.

  3. Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios.

    Science.gov (United States)

    Núñez, Andrés; Amo de Paz, Guillermo; Rastrojo, Alberto; García, Ana M; Alcamí, Antonio; Gutiérrez-Bustillo, A Montserrat; Moreno, Diego A

    2016-03-01

    The first part of this review ("Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios") describes the current knowledge on the major biological particles present in the air regarding their global distribution, concentrations, ratios and influence of meteorological factors in an attempt to provide a framework for monitoring their biodiversity and variability in such a singular environment as the atmosphere. Viruses, bacteria, fungi, pollen and fragments thereof are the most abundant microscopic biological particles in the air outdoors. Some of them can cause allergy and severe diseases in humans, other animals and plants, with the subsequent economic impact. Despite the harsh conditions, they can be found from land and sea surfaces to beyond the troposphere and have been proposed to play a role also in weather conditions and climate change by acting as nucleation particles and inducing water vapour condensation. In regards to their global distribution, marine environments act mostly as a source for bacteria while continents additionally provide fungal and pollen elements. Within terrestrial environments, their abundances and diversity seem to be influenced by the land-use type (rural, urban, coastal) and their particularities. Temporal variability has been observed for all these organisms, mostly triggered by global changes in temperature, relative humidity, et cetera. Local fluctuations in meteorological factors may also result in pronounced changes in the airbiota. Although biological particles can be transported several hundreds of meters from the original source, and even intercontinentally, the time and final distance travelled are strongly influenced by factors such as wind speed and direction. [Int Microbiol 2016; 19(1):1-1 3].

  4. Monitoring atmospheric turbulence profiles with high vertical resolution using PML/PBL instrument

    Science.gov (United States)

    Blary, F.; Ziad, A.; Borgnino, J.; Fantéï-Caujolle, Y.; Aristidi, Eric; Lantéri, H.

    2014-07-01

    Wide-Field Adaptive Optics (WFAO) have been proposed for the next generation of telescopes. In order to be efficient, correction using WFAO require knowledge of atmospheric turbulence parameters. The structure constant of index-of-refraction fluctuations (C2 N ) being one of them. Indirect methods implemented in instruments as SCIDAR, MASS, SLODAR, CO-SLIDAR and MOSP have been proposed to measure C2 N (h) pro le through different layers of the atmosphere. A new monitor called the Profiler of Moon Limb (PML) is presented. In this instrument, C2 N (h) pro les are retrieved from the transverse covariance via minimization of a maximum likelihood criterion under positivity constraint using an iterative gradient method. An other approach using a regularization method (RM) is also studied. Instrument errors are mainly related to the detection of the Moon limb position and are mostly due to photon noise. Numerical simulations have been used to evaluate the error on the extracted pro le and its propagation from the detection to the inverse technique.

  5. NOAA Atmospheric, Marine and Arctic Monitoring Using UASs (including Rapid Response)

    Science.gov (United States)

    Coffey, J. J.; Jacobs, T.

    2015-12-01

    Unmanned systems have the potential to efficiently, effectively, economically, and safely bridge critical observation requirements in an environmentally friendly manner. As the United States' Atmospheric, Marine and Arctic areas of interest expand and include hard-to-reach regions of the Earth (such as the Arctic and remote oceanic areas) optimizing unmanned capabilities will be needed to advance the United States' science, technology and security efforts. Through increased multi-mission and multi-agency operations using improved inter-operable and autonomous unmanned systems, the research and operations communities will better collect environmental intelligence and better protect our Country against hazardous weather, environmental, marine and polar hazards. This presentation will examine NOAA's Atmospheric, Marine and Arctic Monitoring Unmanned Aircraft System (UAS) strategies which includes developing a coordinated effort to maximize the efficiency and capabilities of unmanned systems across the federal government and research partners. Numerous intra- and inter-agency operational demonstrations and assessments have been made to verify and validated these strategies. This includes the introduction of the Targeted Autonomous Insitu Sensing and Rapid Response (TAISRR) with UAS concept of operations. The presentation will also discuss the requisite UAS capabilities and our experience in using them.

  6. Capability of Raman lidar for monitoring the variation of atmospheric CO2 profile

    Institute of Scientific and Technical Information of China (English)

    Zhao Pei-Tao; Zhang Yin-Chao; Wang Lian; Hu Shun-Xing; Su Jia; Cao Kai-Fa; Zhao Yue-Feng; Hu Huan-Ling

    2008-01-01

    Lidar (Light detection and ranging) has special capabilities for remote sensing of many different behaviours of the atmosphere.One of the techniques which show a great deal of promise for several applications is Raman scattering.The detecting capability,including maximum operation range and minimum detectable gas concentration is one of the most significant parameters for lidar remote sensing of pollutants.In this paper,based on the new method for evaluating the capabilities of a Raman lidar system,we present an evaluation of detecting capability of Raman lidar for monitoring atmospheric CO2 in Hefei.Numerical simulations about the influence of atmospheric conditions on lidar detecting capability were carried out,and a conclusion can be drawn that the maximum difference of the operation ranges caused by the weather conditions alone can reach about 0.4 to 0.5kin with a measuring precision within 30ppmv.The range of minimum detectable concentration caused by the weather conditions alone can reach about 20 to 35 ppmv in vertical direction for 20000 shots at a distance of 1 km on the assumption that other parameters are kept constant.The other corresponding parameters under different conditions are also given.The capability of Raman lidar operated in vertical direction was found to be superior to that operated in horizontal direction.During practical measurement with the Raman lidar whose hardware components were fixed,aerosol scattering extinction effect would be a significant factor that influenced the capability of Raman lidar.This work may be a valuable reference for lidar system designing,measurement accuracy improving and data processing.

  7. Environmental networks for large-scale monitoring of Earth and atmosphere

    Science.gov (United States)

    Maurodimou, Olga; Kolios, Stavros; Konstantaras, Antonios; Georgoulas, George; Stylios, Chrysostomos

    2013-04-01

    Installation and operation of instrument/sensor networks are proven fundamental in the monitoring of the physical environment from local to global scale. The advances in electronics, wireless communications and informatics has led to the development of a huge number of networks at different spatial scales that measure, collect and store a wide range of environmental parameters. These networks have been gradually evolved into integrated information systems that provide real time monitoring, forecasts and different products from the initial collected datasets. Instrument/sensor networks have nowadays become important solutions for environmental monitoring, comprising a basic component of fully automated systems developing worldwide that contribute in the efforts for a sustainable Earth's environment (e.g. Hart et al., 2006, Othman et al., 2012). They are also used as a source of data for models parameterization and as verification tools for accuracy assessment techniques of the satellite imagery. Environmental networks can be incorporated into decision support systems (e.g Rizzi et al., 2012) providing informational background along with data from satellites for decision making, manage problems, suggest solutions and best practices for a sustainable management of the environment. This is a comparative study aiming to examine and highlight the significant role of existing instrument/sensor networks for large-scale monitoring of environmental issues, especially atmospheric and marine environment as well as weather and climate. We provide characteristic examples of integrated systems based on large scale instrument/sensor networks along with other sources of data (like satellite datasets) as informational background to measure, identify, monitor, analyze and forecast a vast series of atmospheric parameters (like CO2, O3, particle matter and solar irradiance), weather, climate and their impacts (e.g., cloud systems, lightnings, rainfall, air and surface temperature

  8. Laser-induced incandescence diagnostic for in situ monitoring of nanoparticle synthesis in an atmospheric plasma

    Science.gov (United States)

    Mitrani, James; Patel, Shane; Shneider, Mikhail; Stratton, Brent; Raitses, Yevgeny

    2014-10-01

    A DC arc discharge with a consumed graphite electrode is commonly used for synthesis of carbon nanoaparticles in a low temperature (0.1-1 eV), atmospheric pressure plasma. The formation of nanoparticles in this plasma is poorly understood; it is not clear where nanoparticles nucleate and grow in the arc discharge. Therefore, a laser-induced incandescence (LII) diagnostic for in situ monitoring of the nanoparticles' spatial distribution in the plasma is currently being constructed. The LII diagnostic involves heating the particles with a short-pulsed laser, and measuring the induced spatiotemporal incandescence profiles on longer timescales. By appropriately modeling the induced spatiotemporal incandescence profiles, one can measure particle diameters and volume fraction. LII diagnostics have been extensively used to study soot particles in flames. However, they have never been applied in a strongly coupled plasma background. Even though the spatial dimensions for soot and nanoparticles are similar, great care is needed in developing an LII diagnostic for monitoring nanoparticles in a plasma background. Therefore, we will calibrate our LII diagnostic by measuring spatiotemporal incandescence profiles of known, research grade soot and nanoparticles. This work was supported by DOE Contract DE-AC02-09CH11466.

  9. The Development and Optimization of Techniques for Monitoring Water Quality on-Board Spacecraft Using Colorimetric Solid-Phase Extraction (C-SPE)

    Energy Technology Data Exchange (ETDEWEB)

    Hill, April Ann [Iowa State Univ., Ames, IA (United States)

    2007-12-01

    The main focus of this dissertation is the design, development, and ground and microgravity validation of methods for monitoring drinking water quality on-board NASA spacecraft using clorimetric-solid phase extraction (C-SPE). The Introduction will overview the need for in-flight water quality analysis and will detail some of the challenges associated with operations in the absence of gravity. The ability of C-SPE methods to meet these challenges will then be discussed, followed by a literature review on existing applications of C-SPE and similar techniques. Finally, a brief discussion of diffuse reflectance spectroscopy theory, which provides a means for analyte identification and quantification in C-SPE analyses, is presented. Following the Introduction, four research chapters are presented as separate manuscripts. Chapter 1 reports the results from microgravity testing of existing C-SPE methods and procedures aboard NASA's C-9 microgravity simulator. Chapter 2 discusses the development of a C-SPE method for determining the total concentration of biocidal silver (i.e., in both dissolved and colloidal forms) in water samples. Chapter 3 presents the first application of the C-SPE technique to the determination of an organic analyte (i.e., formaldehyde). Chapter 4, which is a departure from the main focus of the thesis, details the results of an investigation into the effect of substrate rotation on the kinetics involved in the antigen and labeling steps in sandwich immunoassays. These research chapters are followed by general conclusions and a prospectus section.

  10. The SATRAM Timepix spacecraft payload in open space on board the Proba-V satellite for wide range radiation monitoring in LEO orbit

    Science.gov (United States)

    Granja, Carlos; Polansky, Stepan; Vykydal, Zdenek; Pospisil, Stanislav; Owens, Alan; Kozacek, Zdenek; Mellab, Karim; Simcak, Marek

    2016-06-01

    The Space Application of Timepix based Radiation Monitor (SATRAM) is a spacecraft platform radiation monitor on board the Proba-V satellite launched in an 820 km altitude low Earth orbit in 2013. The is a technology demonstration payload is based on the Timepix chip equipped with a 300 μm silicon sensor with signal threshold of 8 keV/pixel to low-energy X-rays and all charged particles including minimum ionizing particles. For X-rays the energy working range is 10-30 keV. Event count rates can be up to 106 cnt/(cm2 s) for detailed event-by-event analysis or over 1011 cnt/(cm2 s) for particle-counting only measurements. The single quantum sensitivity (zero-dark current noise level) combined with per-pixel spectrometry and micro-scale pattern recognition analysis of single particle tracks enables the composition (particle type) and spectral characterization (energy loss) of mixed radiation fields to be determined. Timepix's pixel granularity and particle tracking capability also provides directional sensitivity for energetic charged particles. The payload detector response operates in wide dynamic range in terms of absorbed dose starting from single particle doses in the pGy level, particle count rate up to 106-10 /cm2/s and particle energy loss (threshold at 150 eV/μm). The flight model in orbit was successfully commissioned in 2013 and has been sampling the space radiation field in the satellite environment along its orbit at a rate of several frames per minute of varying exposure time. This article describes the design and operation of SATRAM together with an overview of the response and resolving power to the mixed radiation field including summary of the principal data products (dose rate, equivalent dose rate, particle-type count rate). The preliminary evaluation of response of the embedded Timepix detector to space radiation in the satellite environment is presented together with first results in the form of a detailed visualization of the mixed radiation

  11. Seasonal and diurnal variations of atmospheric mercury across the US determined from AMNet monitoring data

    Directory of Open Access Journals (Sweden)

    X. Lan

    2012-04-01

    Full Text Available Speciated atmospheric mercury observations collected over the period from 2008 to 2010 at the Environmental Protection Agency and National Atmospheric Deposition Program Atmospheric Mercury Network sites (AMNet were analyzed for its spatial, seasonal, and diurnal characteristics across the US Median values of gaseous elemental mercury (GEM, gaseous oxidized mercury (GOM and particulate bound mercury (PBM at 11 different AMNet sites ranged from 148–226 ppqv (1.32–2.02 ng m−3, 0.05–1.4 ppqv (0.47–12.4 pg m−3 and 0.18–1.5 ppqv (1.61–13.7 pg m−3, respectively. Common characteristics of these sites were the similar median levels of GEM as well as its seasonality, with the highest mixing ratios occurring in winter and spring and the lowest in fall. However, discernible differences in monthly average GEM were as large as 30 ppqv, which may be caused by sporadic influence from local emission sources. The largest diurnal variation amplitude of GEM occurred in the summer. Seven rural sites displayed similar GEM summer diurnal patterns, in that the lowest levels appeared in the early morning, and then the GEM mixing ratio increased after sunrise and reached its maxima at noon or in the early afternoon. However, sites in Utah (UT96, UT97 and New York (NY95 showed a distinctly different pattern, with the lowest mixing ratios appearing in the afternoon and the highest mixing ratios at night. Unlike GEM, GOM exhibited higher mixing ratios in spring and summer. The largest diurnal variation amplitude of GOM occurred in spring for most AMNet sites. GOM diurnal minima appeared before sunrise and maxima appeared in the afternoon, and the variation in magnitude for all seasons at most monitoring sites fell in the range of 0 to 2 ppqv, except the Utah sites (up to 5 ppqv. The increased GOM mixing ratio in the afternoon indicated a photochemically driven oxidation of GEM resulting in GOM formation. PBM exhibited

  12. Atmospheric monitoring of a perfluorocarbon tracer at the 2009 ZERT Center experiment

    Science.gov (United States)

    Pekney, Natalie; Wells, Arthur; Rodney Diehl, J.; McNeil, Matthew; Lesko, Natalie; Armstrong, James; Ference, Robert

    2012-02-01

    Field experiments at Montana State University are conducted for the U.S. Department of Energy as part of the Zero Emissions Research and Technology Center (ZERT) to test and verify monitoring techniques for carbon capture and storage (CCS). A controlled release of CO 2 with an added perfluorocarbon tracer was conducted in July 2009 in a multi-laboratory study of atmospheric transport and detection technologies. Tracer plume dispersion was measured with various meteorological conditions using a tethered balloon system with Multi-Tube Remote Samplers (MTRS) at elevations of 10 m, 20 m, and 40 m above ground level (AGL), as well as a ground-based portable tower with monitors containing sorbent material to collect the tracer at 1 m, 2 m, 3 m, and 4 m AGL. Researchers designed a horizontal grid of sampling locations centered at the tracer plume source, with the tower positioned at 10 m and 30 m in both upwind and downwind directions, and the MTRS spaced at 50 m and 90 m downwind and 90 m upwind. Tracer was consistently detected at elevated concentrations at downwind sampling locations. With very few exceptions, higher tracer concentrations correlated with lower elevations. Researchers observed no statistical difference between sampling at 50 m and 90 m downwind at the same elevation. The US EPA AERMOD model applied using site-specific information predicted transport and dispersion of the tracer. Model results are compared to experimental data from the 2009 ZERT experiment. Successful characterization of the tracer plume simulated by the ZERT experiment is considered a step toward demonstrating the feasibility of remote sampling with unmanned aerial systems (UAS's) at future sequestration sites.

  13. Terrestrial Monitoring from Aquifers into the Atmosphere: Merging Integrated Models with Observations

    Science.gov (United States)

    Kollet, S. J.; Goergen, K.; Vereecken, H.; Hendricks Franssen, H. J.; Keune, J.; Kulkarni, K.; Kurtz, W.; Sharples, W.; Shrestha, P.; Simmer, C.; Sulis, M.; Vanderborght, J.

    2016-12-01

    Human impacts on the terrestrial water, energy and nutrient cycles, such as water use, land management and climate change, put increasing pressure on natural resources. Thus, there is a strong need for estimates of current and future natural resource availability. While observations of the terrestrial system from remote sensing and in-situ networks have been increasing in recent years, we still know very little about the current states and fluxes (CSFs) and interactions of the aforementioned terrestrial cycles at socioeconomic relevant spatial and temporal resolutions on the order of 102m and 100h, respectively. The reason for this is that available observations are rarely continuous in space and time, especially with regard to the soil and groundwater compartments of the terrestrial system. This also means that initial and boundary conditions are missing that are needed for predictions using models of the terrestrial system. Therefore, the objective must be to obtain best estimates and uncertainties of CSFs from aquifers into the atmosphere honoring non-linear feedbacks between the different compartments.Here, scientific and technical approaches, and results of a terrestrial monitoring system are discussed merging observations with models using TerrSysMP-PDAF, the fully coupled Terrestrial Systems Modelling Platform (TerrSysMP) combined with the Parallel Data Assimilation Framework (PDAF). The system is used to invert unknown model parameters, and correct and interpolate simultaneously sparse CSFs using commensurate observations to provide best estimates including uncertainties. These are then used to generate ensemble predictions. Because TerrSysMP-PDAF is based on massively parallel HPC technologies, the system is applicable over large model domains at high spatial resolution for large sets of parameters and states. Examples are provided at the catchment to the regional scale including an experimental near-real time monitoring system.

  14. Design of atmospheric composition monitor based on ultraviolet optical absorption technology

    Institute of Scientific and Technical Information of China (English)

    LI Wen-jun

    2011-01-01

    An open path atmospheric composition monitor is designed based on ultraviolet differential absorption technology.Dark current correction and diode response correction are used to improve the detection limit and Savitzky-Golay filter is used to improve the measurement accuracy.The experimental results show that the designed system has the ability to measure NO and NO2 in real time with reasonable accuracy.The detection limit of the system is about 0.25 ppm for NO and 0.28 ppm for NOr When the concentration level of the target gases is below 100 ppm,the system has good linearity and high measurement accuracy,i.e.,the measurement accuracy is about 2% for NO and about 4% for NO2.The detection limit of dark current can be improved by about 5 to 10 ppb,and the correction of diode response can improve the detection limit by around 30 ppb.Moving window average can improve the detection limit at low concentration levels but will generate more errors at higher concentration leveis.Generally,the designed system meets the requirement of measuring multi-species air pollutants in real time and accurately.

  15. The Site of the ASTRI SST-2M Telescope Prototype: Atmospheric Monitoring and Auxiliary Instrumentation

    CERN Document Server

    Leto, G; Bellassai, G; Bruno, P; Fiorini, M; Grillo, A; Martinetti, E; La Rosa, G; Segreto, A; Sottile, G; Stringhetti, L

    2014-01-01

    ASTRI is a Flagship Project led by the Italian National Institute of Astrophysics, INAF. The main objective of the ASTRI project is to develop a prototype of the Small Size class Telescope for the Cherenkov Telescope Array (CTA) in a dual-mirror configuration (SST-2M). The ASTRI SST-2M is an end-to-end prototype that will be fully developed by the ASTRI Collaboration from the optics design and manufacturing to the focal plane camera, from the structure of the mount to all the needed software. The ASTRI SST-2M prototype will be placed at the INAF "M.G. Fracastoro" observing station in Serra La Nave on the Etna Mountain near Catania, Italy. The technological solutions adopted will be tested on field: observations of the Crab Nebula and of other sources will be essential part of the science verification phase, with the aim to assess the achievement of the scientific requirements. In the following we present the Serra La Nave site together with all the auxiliary instruments needed for atmospheric monitoring and c...

  16. Atmospheric water vapor monitoring from local GNSS networks: comparisons of GNSS data adjustment strategies

    Science.gov (United States)

    Capponi, Martina; Fermi, Alessandro; Monti Guarnieri, Andrea; Realini, Eugenio; Venuti, Giovanna

    2016-04-01

    Since many years GNSS has been regarded by the meteorological community as one of the systems for atmospheric water vapor remote sensing. Time series of GNSS wet delays are estimated as by-products of accurate positioning. Their assimilation into numerical weather prediction (NWP) models is being investigated at both research and operational levels, although typically at coarse space resolutions (e.g. few tens of km). A dedicated use of this system for water vapor monitoring at higher resolutions is still under investigation. Ad hoc networks have been designed and implemented to collect data at a high spatial resolution (station inter-distances of 1-10 km), to have an insight into the spatial distribution of GNSS derived wet delays and/or into the impact of such information on high resolution NWP models. Within this research framework the paper reports the comparisons carried out between ZWD time series obtained from the data collected by an Italian and a Japanese dense networks of permanent geodetic GNSS receivers. Tropospheric delays have been estimated by applying different data adjustment strategies: relative positioning and PPP (precise point positioning). For this last strategy two different solutions have been analyzed and compared: the Bernese software batch solution, and the RTNet software Kalman filter solution. Assessment of the results were performed against IGS GNSS delays as well as by comparison with radiosonde-derived precipitable water vapor (PWV).

  17. Control of particle-spacecraft interactions in a LEO near-spacecraft environment

    Science.gov (United States)

    Conger, J. C.; Hastings, D. E.

    1993-01-01

    Spacecraft may actively modify their environment by the release of particulate contamination. Particles may also enter the near-spacecraft environment when spacecraft enter clouds of dust or debris in space. This contamination may seriously hamper the function of systems on board the craft. Particulate contamination in the vicinity of a spacecraft may interfere substantially with electromagnetic observations in the infrared, visible and ultraviolet regions of the spectrum. Particles may also accumulate on surfaces such as radiators, and degrade their performance. A computational model is developed to observe the behavior of particulate contamination in the spacecraft environment. This model self-consistently monitors the forces and charge on the particle.

  18. Real-time atmospheric monitoring for the Cherenkov Telescope Array using a wide-field optical telescope

    CERN Document Server

    Ebr, Jan; Prouza, Michael; Blazek, Jiri

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation of ground-based very high energy gamma-ray instruments and is planned to be built on two sites (one in each hemisphere) in the coming years, with full array operation foreseen to begin 2020. The goal of performing high precision gamma-ray energy measurements while maximizing the use of observation time demands detailed and fast information about atmospheric conditions. Besides LIDARs designed to monitor clouds and aerosol content of the atmosphere in the pointing direction of the CTA telescopes, we propose to use the "FRAM" (F(/Ph)otometric Robotic Atmospheric Monitor) device, which is a small robotic astronomical telescope with a large field of view and a sensitive CCD camera that together ensure precise atmospheric characterization over the complete field-of-view of the CTA. FRAM will use stellar photometry to measure atmospheric extinction across the field of view of the CTA without interfering with the observation (unlike laser-based methods). Thi...

  19. The French-German Climate Monitoring Initiative on global observations of atmospheric CH4

    Science.gov (United States)

    Ehret, Gerhard; Flamant, Pierre; Amediek, Axel; Ciais, Philippe; Fabien, Gibert; Fix, Andreas; Kiemle, Christoph; Quatrevalet, Mathieu; Wirth, Martin

    2010-05-01

    We report on a new French-German Climate Monitoring Initiative targeting on global measurements of atmospheric methane (CH4). Among the greenhouse gases banned by the Kyoto protocol, CH4 contributes most to global warming after CO2. Questions arise whether global warming in Arctic regions might foster the melting of permafrost soils which contain significant amounts of carbon in organic form which under anaerobic conditions might be converted to CH4 and partially released to the atmosphere. Also the development of natural wetlands which are the biggest methane source, play an important role in climate prediction. Up to now, there is very little knowledge about CH4 sources and sinks in connection with changes in the agro-industrial era of predominant human influence or the very large deposits of CH4 as gas hydrates on ocean shelves that are vulnerable to ocean warming. The objective of this initiative is to improve our knowledge on regional to synoptic scale methane sources, globally. This will be obtained by the measurement of the column-weighted dry-air mixing ratio of CH4, commonly referred to XCH4 which can be used as input for flux inversion models. As a novel feature, the observational instrument will have its own light source emitting pulsed narrow-line laser radiation, not relying on sunlight. The XCH4 values will be provided by a lidar technique with no bias due to particles scattering in the light path, which can have strong regional variability. Using a range-gated receiver for detection of the signals scattered from the Earth surface, the lidar can distinguish surface from cloud or aerosol backscatter, permitting high-precision retrievals of XCH4 in the presence of thin cirrus or aerosol layers. The proposed measurement approach is also capable of providing measurements in partially cloudy conditions. The emitted laser pulses can reach the surface when gaps between clouds occur due to the near-nadir view and the small lidar footprint. The instrument will

  20. Spacecraft and Stellar Occultations by Turbulent Planetary Atmospheres. A Theoretical Investigation of Various Wave Propagation Effects and Their Impact on Derived Profiles of Refractivity, Temperature and Pressure,

    Science.gov (United States)

    1981-05-08

    fluctuations are a small fraction only of the ambient refractivity. The intensity fluctuations also depend on the radiation wavelength X, whereas the...atmospheric 48 Fresnel zone. We also find that for Kolmogorov turbulence the bias in phase path scales with radiation wavelength as X" , implying that an...iII nije Li 2r,,,, a, aIs the( impact parametehr) b\\ thu( solair dix iiti tld !wld. \\wi\\ )Y’l l~iiss Is tw to1mill to) sign ificatitl\\ degrade the mia

  1. Atmosphere Resource Recovery & Environmental Monitoring (ARREM) for Long Duration Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The project focuses on key physico-chemical process technologies for Atmosphere Revitalization Systems (ARS) that increase reliability, capability, and consumable...

  2. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  3. Detection of the martian atmosphere and ionosphere using spacecraft-earth radio occultation%星-地无线电掩星技术探测火星大气和电离层

    Institute of Scientific and Technical Information of China (English)

    张素君; 平劲松; 洪振杰; 韩婷婷; 毛晓飞

    2009-01-01

    历史上几乎所有的行星探测任务都开展了无线电掩星实验,以探测行星的大气、电离层、行星环以及磁场,并取得了很多重要的科学成果.掩星发生时刻前后,测量航天器发出的信号穿过行星电离层和大气层时被遮掩而引起的信号频率、相位、幅度或极化等物理特性的变化,通过某种反演技术,可以得到大气的折射率廓线,推出中性大气的密度、温度、压强廓线以及电离层的电子浓度廓线.文章嗣绕中国"萤火1号"火星探测器(YH-1)火星探测计划中将要开展的星-地无线电掩星实验,介绍了该技术用于探测火星大气和电离层的相关情况.%Investigations of planetary atmospheres, ionospheres, rings, and magnetic fields using radio science techniques have been conducted by almost every planetary mission, and have acquired many significant scientific results. Changes in the frequency, phase, amplitude and polarization of spacecraft radio signals, caused by passage through a planet's atmosphere and ionosphere, have been observed in rising and descending planet occultation events. Utilizing an inversion method, we can obtain the refractivity profiles of the atmosphere, as well as the density, temperature and pressure profiles of the neutral atmosphere, and the electron density profile of the ionosphere. In the first Chinese YH-1 Mars mission, characteristics of the Martian atmosphere and ionosphere will be detected by a radio occultation experiment. The details are presented in this paper.

  4. The summer 2012 Greenland heat wave: monitoring water vapour isotopic composition along an atmospheric river event

    Science.gov (United States)

    Bonne, Jean-Louis; Steen-Larsen, Hans Christian; Masson-Delmotte, Valérie; Sodemann, Harald; Lacour, Jean-Lionel; Risi, Camille; Werner, Martin; Clerbaux, Cathy; Fettweis, Xavier

    2014-05-01

    In July 2012, an extreme warm event occurred in Greenland, leading to surface melt over almost all the ice sheet. This event was recorded in the isotopic composition of water vapour measured by the IASI satellite along the transport pathway and at two sites where continuous in situ surface vapour isotopic measurements were conducted, situated at a coastal station of South Greenland (Ivittuut) and further North on top of the ice sheet (NEEM, NW Greenland). These observations allowed us to monitor the isotopic composition of the air mass at different stages of its advection towards Greenland, which can inform on processes along this trajectory, such as cloud properties and moisture sources. In addition, two simulations of this event, using the atmospheric general circulation models LMDZiso and ECHAM5wiso equipped with water stable isotopes and nudged towards large scale wind fields, are investigated. Furthermore, a regional high-resolution model was used to study the moisture transport to Greenland during this event using tagged water tracers of the North Atlantic ocean and coastal land evaporation. Using moisture source diagnostic based on the Lagrangian particle dispersion model Flexpart, we show that this 2012 heat wave event corresponds to moisture sources located over the subtropical Atlantic Ocean, where intense evaporation was caused by dry air masses associated with the US intense summer drought. This moisture was then advected northward along a narrow band, due to a very stationary surface cyclone southwest of Greenland, reached southern Greenland and Ivittuut coastal station on July 9th, travelled along the west coast of Greenland, continued eastwards above the ice sheet and arrived above the NEEM deep drilling camp on July 11th. Surface isotopic observations during the event show larger variations at NEEM than in Ivittuut, strongly reducing the isotopic and deuterium excess latitudinal gradient usually observed between South and North Greenland. This

  5. Space Weather Impacts on Spacecraft Design and Operations in Auroral Charging Environments

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda N.

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth s land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems are episodically exposed to environments characterized by a high flux of energetic (approx.1 to 10 s kilovolt) electrons in regions of very low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. While it is well established that charging conditions in geostationary orbit are responsible for many anomalies and even spacecraft failures, to date there have been relatively few such reports due to charging in auroral environments. This presentation first reviews the physics of the space environment and its interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments and discuss how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  6. Top of Atmosphere Radiation MVIRI/SEVIRI Data Record within the Climate Monitoring SAF

    Science.gov (United States)

    Urbain, Manon; Clerbaux, Nicolas; Ipe, Alessandro; Tornow, Florian; Hollmann, Rainer; Baudrez, Edward; Velazquez Blazquez, Almudena; Moreels, Johan; Trentmann, Jörg

    2017-04-01

    The CM SAF Top of Atmosphere (TOA) Radiation MVIRI/SEVIRI Data Record provides a homogeneous satellite-based climatology of the TOA Reflected Solar (TRS) and Emitted Thermal (TET) radiation in all-sky conditions. The continuous monitoring of these two components of the Earth Radiation Budget is of prime importance to study climate variability and change. The Meteosat Visible and InfraRed Imager (MVIRI - from 1983 until 2004) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI - from 2004 onward) on board the Meteosat First and Second Generation satellites are combined to generate a long Thematic Climate Data Record (TCDR). Combining MVIRI and SEVIRI allows an unprecedented temporal (30 minutes / 15 minutes) and spatial (2.5 km / 3 km) resolution compared to the Clouds and the Earth's Radiant Energy System (CERES) products. This is a step forward as it helps to increase the knowledge of the diurnal cycle and the small-scale spatial variations of radiation. The MVIRI/SEVIRI Data Record covers a 32 years time period from 1 February 1983 to 30 April 2015. The TOA radiation products are provided as daily mean, monthly mean and monthly averages of the hourly integrated values (diurnal cycle). To ensure consistency with other CM SAF products, the data is provided on a regular grid at a spatial resolution of 0.05 degrees (i.e. about 5.5 km) and covers the region between +/- 70° longitude and +/- 70° latitude. Validation of the MVIRI/SEVIRI Data Record has been performed by intercomparison with several references such as the CERES products (EBAF, SYN1deg-Day and SYN1deg-M3Hour), the HIRS OLR Climate Data Record (Daily and Monthly), the reconstructed ERBS WFOV-CERES (or DEEP-C) dataset and the ISCCP FD products. CERES is considered as the best reference from March 2000 onward. The quality of the early part of the Data Record is verified against the other references. In general, the stability of all the TOA radiation products is estimated to be better than 4 W.m-2

  7. [Comparison of Monitoring Methods of Organic Carbon and Element Carbon in Atmospheric Fine Particles].

    Science.gov (United States)

    Pang, Bo; Ji, Dong-sheng; Liu, Zi-rui; Zhu, Bin; Wang, Yue-si

    2016-04-15

    Accurate measurement of organic carbon (OC) and elemental carbon (EC) in atmospheric fine particulate is an important scientific basis for studying the formation and source apportionment of carbonaceous aerosol. The selection of different analysis programs will lead to difference in the OC and EC concentrations, and further result in the misjudgment of the results. The OC and EC concentrations observed using three temperature protocols including RT-Quartz ( R) , NIOSH 5040 (N) and Fast-TC (F) were compared and analyzed in combination with the degree of air pollution in Beijing. The results showed that there was no significant difference in the TC (TC = OC + EC), OC and EC concentrations observed using R, N and F protocols and certain deviation was found among the TC (TC = OC + EC) , OC and EC concentrations. For TC, the results observed using R protocol were 5% lower than those using N protocol; hut 1% higher than those using F protocol. For OC, the results obtained using R were 9% lower than those using N protocol and 1% higher than those using F protocol. For EC, the results obtained using R were 20% higher than those using N protocol and 11% lower than those using F protocol. The variation coefficients for TC, OC and EC obtained based on R protocol were less than the other two temperature protocols under different air quality degrees. The slopes of regression curves of TC, OC and EC between on-line analysis using R protocol and off-line analysis were 1.21,1. 14 and 1.35, respectively. The correlation coefficients of TC, OC and EC were 0.99, 0.99 and 0.98, respectively. In contrast with the Black carbon ( BC) concentrations monitored by multi-angle absorption spectrophotometer (MAAP), the EC concentrations measured by on-line OC/EC analyzer using R protocol were obviously lower. When the BC concentrations were less than or equal to 8 gg*m3, the EC/BC ratio was 0.39. While the EC/BC ratio was 0.88, when the BC concentrations were greater than 8 ggm3. The variation

  8. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network

    Science.gov (United States)

    Sprovieri, Francesca; Pirrone, Nicola; Bencardino, Mariantonia; D'Amore, Francesco; Carbone, Francesco; Cinnirella, Sergio; Mannarino, Valentino; Landis, Matthew; Ebinghaus, Ralf; Weigelt, Andreas; Brunke, Ernst-Günther; Labuschagne, Casper; Martin, Lynwill; Munthe, John; Wängberg, Ingvar; Artaxo, Paulo; Morais, Fernando; Barbosa, Henrique de Melo Jorge; Brito, Joel; Cairns, Warren; Barbante, Carlo; Diéguez, María del Carmen; Garcia, Patricia Elizabeth; Dommergue, Aurélien; Angot, Helene; Magand, Olivier; Skov, Henrik; Horvat, Milena; Kotnik, Jože; Read, Katie Alana; Mendes Neves, Luis; Gawlik, Bernd Manfred; Sena, Fabrizio; Mashyanov, Nikolay; Obolkin, Vladimir; Wip, Dennis; Feng, Xin Bin; Zhang, Hui; Fu, Xuewu; Ramachandran, Ramesh; Cossa, Daniel; Knoery, Joël; Marusczak, Nicolas; Nerentorp, Michelle; Norstrom, Claus

    2016-09-01

    Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (gmos.eu" target="_blank">http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.

  9. The prediction of zenith range refraction from surface measurements of meteorological parameters. [mathematical models of atmospheric refraction used to improve spacecraft tracking space navigation

    Science.gov (United States)

    Berman, A. L.

    1976-01-01

    In the last two decades, increasingly sophisticated deep space missions have placed correspondingly stringent requirements on navigational accuracy. As part of the effort to increase navigational accuracy, and hence the quality of radiometric data, much effort has been expended in an attempt to understand and compute the tropospheric effect on range (and hence range rate) data. The general approach adopted has been that of computing a zenith range refraction, and then mapping this refraction to any arbitrary elevation angle via an empirically derived function of elevation. The prediction of zenith range refraction derived from surface measurements of meteorological parameters is presented. Refractivity is separated into wet (water vapor pressure) and dry (atmospheric pressure) components. The integration of dry refractivity is shown to be exact. Attempts to integrate wet refractivity directly prove ineffective; however, several empirical models developed by the author and other researchers at JPL are discussed. The best current wet refraction model is here considered to be a separate day/night model, which is proportional to surface water vapor pressure and inversely proportional to surface temperature. Methods are suggested that might improve the accuracy of the wet range refraction model.

  10. How to improve the atmospheric environmental monitoring quality assurance%如何做好大气环境监测的质量保证

    Institute of Scientific and Technical Information of China (English)

    芦胜华

    2011-01-01

    通过了解大气环境监测质量保证的意义,就目前大气环境监测质量保证工作的现状,结合实际,如何把握大气环境监测的质量保证和质量控制。%Learn about significance of atmospheric environmental monitoring quality assurance, on the current status quo of atmospheric environmental monitoring quality assurance, in connection with reality, how to grasp the atmospheric environmental monitoring quality assurance and quality control.

  11. Simulating spacecraft systems

    CERN Document Server

    Eickhoff, Jens

    2009-01-01

    This book on the application of functional system simulation in spacecraft development covers the entire process from spacecraft design to final verification. It offers the latest research in all relevant topics and includes numerous examples.

  12. Solving the Global Climate Monitoring Problem in the Atmosphere: Towards SI-tied Climate Records with Integrated Uncertainty Propagation

    Science.gov (United States)

    Kirchengast, G.; Schwaerz, M.; Fritzer, J.; Schwarz, J.; Scherllin-Pirscher, B.; Steiner, A. K.

    2013-12-01

    Monitoring the atmosphere to gain accurate and long-term stable records of essential climate variables (ECVs) such as temperature and greenhouse gases is the backbone of contemporary atmospheric and climate science. Earth observation from space is the key to obtain such data globally in the atmosphere. Currently, however, not any existing satellite-based atmospheric ECV record can serve as authoritative benchmark over months to decades so that climate variability and change in the atmosphere are not yet reliably monitored. Radio occultation (RO) using Global Navigation Satellite System (GNSS) signals provides a unique opportunity to solve this problem in the free atmosphere (from ~1-2 km altitude upwards) for core ECVs: the thermodynamic variables temperature and pressure, and to some degree water vapor, which are key parameters for tracking climate change. On top of RO we have recently conceived next-generation methods, microwave and infrared-laser occultation and nadir-looking infrared-laser reflectometry. These can monitor a full set of thermo-dynamic ECVs (incl. wind) as well as the greenhouse gases such as carbon dioxide and methane as main drivers of climate change; for the latter we also target the boundary layer for tracking carbon sources and sinks. We briefly introduce to why the atmospheric climate monitoring challenge is unsolved so far and why just the above methods have the capabilities to break through. We then focus on RO, which already provided more than a decade of observations. RO accurately measures time delays from refraction of GNSS signals during atmospheric occultation events. This enables to tie RO-derived ECVs and their uncertainty to fundamental time standards, effectively the SI second, and to their unique long-term stability and narrow uncertainty. However, despite impressive advances since the pioneering RO mission GPS/Met in the mid-1990ties no rigorous trace from fundamental time to the ECVs (duly accounting also for relevant side

  13. Atmospheric Chemistry Research in New EU Countries. A survey on atmospheric chemistry research and monitoring of air pollution in some new EU Member States and Candidate Countries

    Energy Technology Data Exchange (ETDEWEB)

    Batchvarova, E.; Spassova, T.; Valkov, N.; Iordanova, L. [Department of Composition of the Atmosphere and Hydrosphere, National IInstitute of Meteorology and Hydrology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Hjorth, J. (ed.) [Institute for Environment and Sustainability, Joint Research Centre JRC, Ispra (Italy)

    2005-07-01

    Historically some of the new EU Member States and the Candidate countries experienced high levels of pollution in the past. Enhanced management measures were and are needed to improve the air quality. The present survey on the ongoing air chemistry research is in support to such measures and the incorporation of the EU environmental legislation in the air quality management of these countries. The aim of the survey is to list the current research activities on atmospheric chemistry in these countries, as well as groups and institutions involved in it. The air chemistry plays essential part of air quality and climate change modelling, energy industry planning and health risk assessments. In addition, the air quality monitoring networks and management are briefly discussed, as well as some information on the air pollution modelling research. The ongoing research (field, laboratory and modelling) in the field of chemical transformation of trace compounds in the atmosphere is discussed here and parallels are drown among 10 of the new EU Member States and Candidate Countries, namely Bulgaria, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, the Slovak Republic and Slovenia. Laboratory studies traditionally emphasize on rate and equilibrium processes. Field studies are based on aircraft and surface measurements of reaction chemistry, advective influences on the chemical composition of the atmosphere, and air-surface exchange processes. Both types experimental studies on atmospheric chemistry are demanding concerning equipment and resources. Therefore, most of the studies in the field are coming from international projects, EU, ESF or NATO funded. Modelling efforts address both chemistry and dynamics on regional and global scales. The analysis of research activities in those fields is made with regards of the current EU practice in the field and the historical frames in the ten countries of interest. The unique traditions and achievements in

  14. Investigation of inhomogeneity and anisotropy in near ground layers of atmospheric air turbulence using image motion monitoring method

    Science.gov (United States)

    Mohammadi Razi, Ebrahim; Rasouli, Saifollah

    2017-01-01

    In this work the anisotropy and inhomogeneity of real atmospheric turbulence have been investigated using image motion monitoring and differential image motion monitoring methods. For this purpose the light beam of a point source is propagated through the atmospheric turbulence layers in horizontal path and then impinged to a telescope aperture. The telescope and point source were 350 m apart. In front of the telescope's aperture a mask consisting of four subapertures was installed. Image of the point source was formed on a sensitive CCD camera located at the focal plane of the telescope. By displacing CCD camera along the axis of telescope, four distinct images were recorded. Angle of arrival (AA) of each spot was calculated by image processing. Air turbulence causes AA to fluctuate. By comparing AA fluctuation variances of different spots in two directions isotropy and homogeneity of turbulence were studied. Results have shown that atmospheric turbulence in near ground layers is treated as an anisotropic and inhomogeneous medium. In addition, the inhomogeneity and anisotropy of turbulence decreases with the distance from earth surface.

  15. Monitoring Saturn's Upper Atmosphere Density Variations Using Helium 584 Å Airglow

    Science.gov (United States)

    Parkinson, Chris

    2016-10-01

    The study of He 584 Å brightness of Saturn is interesting as the EUV planetary airglow have the potential to yield useful information about mixing and other important parameters in its thermosphere. Resonance scattering of sunlight by He atoms is the principal source of the planetary emission of He 585 Å. The helium is embedded in an absorbing atmosphere of H2 and since it is heavier than the background atmosphere, it's concentration falls off rapidly above the homopause. The scattering region (i.e. where the absorption optical depth in H2 is greatly improved estimate of the mixing ratio of He in the upper atmosphere and below. The second topic addressed is regarding constraining the dynamics in the atmosphere by using the estimate of the He mixing ratio from the main objective. Once we have an estimate of the He mixing ratio in the lower atmosphere that agrees with both occultations and airglow, helium becomes an effective tracer species as any variations in the Cassini UVIS helium data are direct indicator of changes in Kzz i.e., dynamics.

  16. Innovative optical spectrometers for ice core sciences and atmospheric monitoring at polar regions

    Science.gov (United States)

    Grilli, Roberto; Alemany, Olivier; Chappellaz, Jérôme; Desbois, Thibault; Faïn, Xavier; Kassi, Samir; Kerstel, Erik; Legrand, Michel; Marrocco, Nicola; Méjean, Guillaume; Preunkert, Suzanne; Romanini, Daniele; Triest, Jack; Ventrillard, Irene

    2015-04-01

    In this talk recent developments accomplished from a collaboration between the Laboratoire Interdisciplinaire de Physique (LIPhy) and the Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) both in Grenoble (France), are discussed, covering atmospheric chemistry of high reactive species in polar regions and employing optical spectrometers for both in situ and laboratory measurements of glacial archives. In the framework of an ANR project, a transportable spectrometer based on the injection of a broadband frequency comb laser into a high-finesse optical cavity for the detection of IO, BrO, NO2 and H2CO has been realized.[1] The robust spectrometer provides shot-noise limited measurements for as long as 10 minutes, reaching detection limits of 0.04, 2, 10 and 200 ppt (2σ) for the four species, respectively. During the austral summer of 2011/12 the instrument has been used for monitoring, for the first time, NO2, IO and BrO at Dumont d'Urville Station at East of Antarctica. The measurements highlighted a different chemistry between East and West coast, with the halogen chemistry being promoted to the West and the OH and NOx chemistry on the East.[2] In the framework of a SUBGLACIOR project, an innovative drilling probe has been realized. The instrument is capable of retrieving in situ real-time vertical profiles of CH4 and δD of H2O trapped inside the ice sheet down to more than 3 km of depth within a single Antarctic season. The drilling probe containing an embedded OFCEAS (optical-feedback cavity-enhanced absorption spectroscopy) spectrometer will be extremely useful for (i) identify potential sites for investigating the oldest ice (aiming 1.5 Myrs BP records for resolving a major climate reorganization called the Mid-Pleistocene transition occurred around 1 Myrs ago) and (ii) providing direct access to past temperatures and climate cycles thanks to the vertical distribution of two key climatic signatures.[3] The spectrometer provides detection

  17. Analysis of a Kalman filter based method for on-line estimation of atmospheric dispersion parameters using radiation monitoring data

    DEFF Research Database (Denmark)

    Drews, Martin; Lauritzen, Bent; Madsen, Henrik

    2005-01-01

    A Kalman filter method is discussed for on-line estimation of radioactive release and atmospheric dispersion from a time series of off-site radiation monitoring data. The method is based on a state space approach, where a stochastic system equation describes the dynamics of the plume model...... parameters, and the observables are linked to the state variables through a static measurement equation. The method is analysed for three simple state space models using experimental data obtained at a nuclear research reactor. Compared to direct measurements of the atmospheric dispersion, the Kalman filter...... estimates are found to agree well with the measured parameters, provided that the radiation measurements are spread out in the cross-wind direction. For less optimal detector placement it proves difficult to distinguish variations in the source term and plume height; yet the Kalman filter yields consistent...

  18. Monitoring of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of southern Luxembourg using XAD-2 resin-based passive samplers.

    Science.gov (United States)

    Schummer, Claude; Appenzeller, Brice M; Millet, Maurice

    2014-02-01

    XAD-2 resin-based passive samplers (PAS) with dimensions adapted to 100 mL accelerated solvent extraction cells were used to study the temporal and spatial variations of 17 PAHs on five sites in the atmosphere of southern Luxembourg. This new design allowed extracting the PAS without emptying the resin from the shelter. PAH analyses were done with gas chromatography-tandem mass spectrometry. PAS were deployed for 1 year with varying sampling periodicities, and 16 PAHs were detected with concentrations ranging from 1 ng/PAS for chrysene to 9,727 ng/PAS for naphthalene. The PAS were found adapted to the monitoring of temporal and spatial variations for lightweight PAHs (up to four aromatic rings) though not for heavy PAHs with five aromatic rings or more, as these compounds are preferably in the particle phase of the atmosphere and the amount of these PAHs trapped on the PAS will be too low.

  19. Atmospheric monitoring in the mm and sub-mm bands for cosmological observations: CASPER2

    CERN Document Server

    De Petris, Marco; Decina, Barbara; Lamagna, Luca; Pardo, Juan R

    2012-01-01

    Cosmological observations from ground at millimetre and sub-millimetre wavelengths are affected by atmospheric absorption and consequent emission. The low and high frequency (sky noise) fluctuations of atmospheric performance imply careful observational strategies and/or instrument technical solutions. Measurements of atmospheric emission spectra are necessary for accurate calibration procedures as well as for site testing statistics. CASPER2, an instrument to explore the 90-450 GHz (3-15 1/cm) spectral region, was developed and verified its operation in the Alps. A Martin-Puplett Interferometer (MPI) operates comparing sky radiation, coming from a field of view (fov) of 28 arcminutes (FWHM) collected by a 62-cm in diameter Pressman-Camichel telescope, with a reference source. The two output ports of the interferometer are detected by two bolometers cooled down to 300 mK inside a wet cryostat. Three different and complementary interferometric techniques can be performed with CASPER2: Amplitude Modulation (AM)...

  20. Scanning Lidar Based Atmospheric Monitoring for Fluorescent Detectors of Cosmic Showers

    CERN Document Server

    Veberic, D; Horváth, M; Zavrtanik, D; Zavrtanik, M

    2003-01-01

    Measurements of the cosmic-ray air-shower fluorescence at extreme energies require precise knowledge of atmospheric conditions. The absolute calibration of the cosmic-ray energy depends on the absorption of fluorescence light between its origin and point of its detection. We review a novel analysis method to reconstruct basic atmospheric parameters from measurements performed by the scanning backscatter lidar system. Applied inversion methods, optical depth, absorption and backscatter coefficient, as well as other parameters that enter the lidar equation are discussed in connection to the attenuation of the light traveling from the shower to fluorescence detector.

  1. Employing GNSS radio occultation for solving the global climate monitoring problem for the fundamental state of the atmosphere

    Science.gov (United States)

    Kirchengast, Gottfried; Schwaerz, Marc; Schwarz, Jakob; Scherllin-Pirscher, Barbara; Pock, Christian; Innerkofler, Josef; Proschek, Veronika; Steiner, Andrea; Danzer, Julia; Ladstaedter, Florian; Foelsche, Ulrich

    2016-04-01

    Monitoring the atmosphere to gain accurate and long-term stable records of essential climate variables (ECVs) such as temperature is the backbone of atmospheric and climate science. Earth observation from space is the key to obtain such data globally. Currently, however, not any atmospheric ECV record can serve as authoritative reference from weekly to decadal scales so that climate variability and change is not yet reliably monitored, despite of satellite data since the 1970s. We aim to solve this decades-long problem for the fundamental state of the atmosphere, the thermodynamic state of the gas as expressed by air density, pressure, temperature, and tropospheric water vapor, which are the fundamental ECVs for tracking climate change and in fact fundamental to all weather and climate processes. We base the solution on the unique SI-traceable data of the GNSS radio occultation (RO) space geodetic observing system, available since 2001 and scheduled long-term into the future. We introduce a new system modeling and data analysis approach which, in contrast to current RO retrieval chains using classical data inversion, enables us to exploit the traceability to universal time (SI second) and to realize SI-traced profiles of atmospheric ECVs, accounting also for relevant side influences such as from the ionosphere, with unprecedented utility for climate monitoring and science. We work to establish such a trace first-time in form of the Reference Occultation Processing System rOPS, providing reference RO data for calibration/validation and climate applications. This rOPS development is a current cornerstone endeavor at the WEGC Graz over 2013 to 2016, supported also by colleagues from EUMETSAT Darmstadt, ECMWF Reading, DMI Copenhagen, AIUB Berne, UCAR Boulder, JPL Pasadena, and others. The rOPS approach demands to process the full chain from the SI-tied raw data to the ECVs with integrated uncertainty propagation, both of estimated systematic and estimated random

  2. Using a diagnostic soil-plant-atmosphere model for monitoring drought at field to continental scales

    Science.gov (United States)

    Drought assessment is a complex undertaking, requiring monitoring of deficiencies in multiple components of the hydrologic budget. Precipitation anomalies reflect variability in water supply to the land surface, while soil moisture, groundwater and surface water anomalies reflect deficiencies in mo...

  3. The Atmosphere-Space Interactions Monitor (ASIM) Payload Facility on the ISS

    DEFF Research Database (Denmark)

    Reibaldi, Giuseppe; Nasca, Rosario; Neubert, Torsten

    ASIM is a payload facility to be mounted on a Columbus external platform on the International Space Station (ISS). ASIM will study the coupling of thunderstorm processes to the upper atmosphere, ionosphere and radiation belts. ASIM is the most complex Earth Observation payload facility planned...

  4. Impact of acid atmosphere deposition on soils : field monitoring and aluminum chemistry

    NARCIS (Netherlands)

    Mulder, J.

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions

  5. Impact of acid atmospheric deposition on soils: Field monitoring and aluminium chemistry.

    NARCIS (Netherlands)

    Mulder, J.

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions were obtain

  6. Remote monitoring of electroencephalogram, electrocardiogram, and behavior during controlled atmosphere stunning in broilers: Implications for welfare

    NARCIS (Netherlands)

    Coenen, A.M.L.; Lankhaar, J.A.C.; Lowe, J.C.; McKeegan, D.

    2009-01-01

    This study examined the welfare implications of euthanizing broilers with 3 gas mixtures relevant to the commercial application of controlled atmosphere stunning (CAS). Birds were implanted/equipped with electrodes to measure brain activity (electroencephalogram, EEG) and heart rate. These signals w

  7. The Atmosphere-Space Interactions Monitor (ASIM) Payload Facility on the ISS

    DEFF Research Database (Denmark)

    Reibaldi, Giuseppe; Nasca, Rosario; Neubert, Torsten

    ASIM is a payload facility to be mounted on a Columbus external platform on the International Space Station (ISS). ASIM will study the coupling of thunderstorm processes to the upper atmosphere, ionosphere and radiation belts. ASIM is the most complex Earth Observation payload facility planned...

  8. Passive monitoring of Mt. Etna and Mt. Yasur to probe the upper atmosphere

    Science.gov (United States)

    Assink, J. D.; Le Pichon, A.; Blanc, E.

    2013-12-01

    We present two case studies in which the influence of atmospheric dynamics on infrasound propagation is studied. We make use of a volcanic infrasound data set that has been recorded at infrasound arrays in the vicinity of Mount Etna, Italy (37 N). In addition, we revisit the Mt. Yasur (22 S) dataset. Respectively, over 6 and 10 years of infrasound observables are compared to theoretical estimates obtained from propagation modeling using existing European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric databases. Long-term detail comparisons such as presented in this study have been unprecedented and are useful for atmospheric modeling and infrasound propagation studies. While a first-order agreement is found, we report on significant discrepancies around the equinox period and during intervals during which anomalous detections occur during the winter, such as during Sudden Stratospheric Warmings (SSWs). We present an inversion study in which we make use of measured trace velocity estimates to predict effective sound speed model updates in a Bayesian framework. Such estimates will be compared to independent wind and temperature measurements that are available through the Atmospheric dynamics Research InfraStructure in Europe (ARISE) network.

  9. Monitoring atmospheric nitrous oxide background concentrations at Zhongshan Station, east Antarctica.

    Science.gov (United States)

    Ye, Wenjuan; Bian, Lingen; Wang, Can; Zhu, Renbin; Zheng, Xiangdong; Ding, Minghu

    2016-09-01

    At present, continuous observation data for atmospheric nitrous oxide (N2O) concentrations are still lacking, especially in east Antarctica. In this paper, nitrous oxide background concentrations were measured at Zhongshan Station (69°22'25″S, 76°22'14″E), east Antarctica during the period of 2008-2012, and their interannual and seasonal characteristics were analyzed and discussed. The mean N2O concentration was 321.9nL/L with the range of 320.5-324.8nL/L during the five years, and it has been increasing at a rate of 0.29% year(-1). Atmospheric N2O concentrations showed a strong seasonal fluctuation during these five years. The concentrations appeared to follow a downtrend from spring to autumn, and then increased in winter. Generally the highest concentrations occurred in spring. This trend was very similar to that observed at other global observation sites. The overall N2O concentration at the selected global sites showed an increasing annual trend, and the mean N2O concentration in the Northern Hemisphere was slightly higher than that in the Southern Hemisphere. Our result could be representative of atmospheric N2O background levels at the global scale. This study provided valuable data for atmospheric N2O concentrations in east Antarctica, which is important to study on the relationships between N2O emissions and climate change.

  10. Real time corrosion monitoring in atmosphere using automated battery driven corrosion loggers

    DEFF Research Database (Denmark)

    Prosek, T.; Kouril, M.; Hilbert, Lisbeth Rischel

    2008-01-01

    A logger enabling continuous measurement of corrosion rate of selected metals in indoor and outdoor atmospheres has been developed. Principle of the measurement method is based on the increasing electrical resistance of a measuring element made of the material concerned as its cross-sectional are...

  11. Biomagnetic monitoring of heavy metals contamination in deposited atmospheric dust, a case study from Isfahan, Iran.

    Science.gov (United States)

    Norouzi, Samira; Khademi, Hossein; Cano, Angel Faz; Acosta, Jose A

    2016-05-15

    Tree leaves are considered as one of the best biogenic dust collectors due to their ability to trap and retain particulate matter on their surfaces. In this study, the magnetic susceptibility (MS) and the concentration of selected heavy metals of plane tree (Platanus orientalis L.) leaves and deposited atmospheric dust, sampled by an indirect and a direct method, respectively, were determined to investigate the relationships between leaf magnetic parameters and the concentration of heavy metals in deposited atmospheric dust. The objective was to develop a biomagnetic method as an alternative to the common ones used for determining atmospheric heavy metal contaminations. Plane tree leaves were monthly sampled on the 19th of May to November, 2012 (T1-T7), for seven months from 21 different sites in the city of Isfahan, central Iran. Deposited atmospheric dust samples were also collected using flat glass surfaces from the same sites on the same dates, except for T1. MS (χlf, χhf) values in washed (WL) and unwashed leaves (UL) as well as Cu, Fe, Mn, Ni, Pb, and Zn concentrations in UL and deposited atmospheric dust samples were determined. The results showed that the MS content with a biogenic source was low with almost no significant change during the sampling period, while an increasing trend was observed in the MS content of UL samples due to the deposition of heavy metals and magnetic particles on leaf surfaces throughout the plant growth. The latter type of MS content could be reduced through washing off by rain. Most heavy metals examined, as well as the Tomlinson pollution load index (PLI) in UL, showed statistically significant correlations with MS values. The correlation between heavy metals content in atmospheric dust deposited on glass surfaces and leaf MS values was significant for Cu, Fe, Pb, and Zn. Moreover, the similarity observed between the spatial distribution maps of leaf MS and deposited atmospheric dust PLI provided convincing evidence regarding

  12. Standard practice for monitoring atmospheric SO2 using the sulfation plate technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This practice covers a weighted average effective SO2 level for a 30-day interval through the use of the sulfation plate method, a technique for estimating the effective SO2 content of the atmosphere, and especially with regard to the atmospheric corrosion of stationary structures or panels. This practice is aimed at determining SO2 levels rather than sulfuric acid aerosol or acid precipitation. 1.2 The results of this practice correlate approximately with volumetric SO2 concentrations, although the presence of dew or condensed moisture tends to enhance the capture of SO2 into the plate. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  13. Towards Solving the Global Climate Monitoring Problem for the Fundamental State of the Atmosphere with GNSS Radio Occultation

    Science.gov (United States)

    Kirchengast, G.; Schwaerz, M.; Schwarz, J.; Scherllin-Pirscher, B.; Pock, C.; Innerkofler, J.; Proschek, V.; Steiner, A. K.; Danzer, J.; Ladstaedter, F.; Foelsche, U.

    2015-12-01

    Monitoring the atmosphere to gain accurate and long-term stable records of essential climate variables (ECVs) such as temperature is the backbone of atmospheric and climate science. Earth observation from space is the key to obtain such data globally. Currently, however, not any atmospheric ECV record can serve as authoritative reference from weekly to decadal scales so that climate variability and change is not yet reliably monitored, despite of satellite data since the 1970s. We aim to solve this decades-long problem for the fundamental state of the atmosphere, the thermodynamic state of the gas as expressed by air density, pressure, temperature, and tropospheric water vapor, which are the fundamental ECVs for tracking climate change and in fact fundamental to all weather and climate processes. We base the solution on the unique SI-traceable data of the GNSS radio occultation (RO) observing system, available since 2001 and scheduled long-term into the future. We introduce a new system modeling and data analysis approach which, in contrast to current RO retrieval chains using classical data inversion, enables us to exploit the traceability to universal time (SI second) and to realize SI-traced ECV profiles, accounting also for relevant side influences, with unprecedented utility for climate monitoring and science. We work to establish such a trace first-time in form of the Reference Occultation Processing System rOPS, providing reference RO data for cal/val and climate applications. This rOPS development is a current cornerstone endeavor at the WEGC Graz over 2013 to 2016, supported also by colleagues from EUMETSAT, ECMWF, DMI Copenhagen, UCAR Boulder, JPL Pasadena, and others. The rOPS approach demands to process the full chain from the SI-tied raw data to the ECVs with integrated uncertainty propagation. We first briefly summarize the RO promise along the above lines and where we currently stand in quantifying RO accuracy and long-term stability. We then

  14. Modeling atmospheric transport of CO2 at High Resolution to estimate the potentialities of spaceborne observation to monitor anthropogenic emissions

    Science.gov (United States)

    Ciais, P.; Chimot, J.; Klonecki, A.; Prunet, P.; Vinuessa, J.; Nussli, C.; Breon, F.

    2010-12-01

    There is a crucial and urgent need to quantify and monitor anthropogenic fossil fuel emissions of CO2. Spaceborne measurements, such as those from GOSAT or the forthcoming OCO-2, or other space missions in preparation, could provide the necessary information, in particular over regions with few in-situ measurements of atmospheric concentration are too scarce. Contrarily to biogenic flux, anthropogenic emissions are highly heterogeneous in space with typical values that vary by several orders of magnitudes. A proper analysis of the impact of anthropogenic emissions on the atmospheric concentration of CO2 therefore requires a high spatial resolution, typically of a few km. Simulations of the transport of fossil CO2 plumes were performed with a resolution of 1 km over the main industrialized regions of France, and using other models of lower resolution to account for the influence of distant sources advected into the area of interest. The results clearly show the plumes from intense yet localized sources, such as urban areas or power plants, and how their structures vary with the meteorology (wind speed and direction). They also show that the plume from distant sources, such as the large emission from Northern Europe, may sometime mask the local plume, even from large cities like Paris or Lyon. These atmospheric transport simulations are then sampled according to cloud cover, spaceborne instrument sampling and typical errors, to analyze the information content of the remote sensing data and how they can improve the current knowledge on anthropogenic emissions.

  15. Atmospheric ammonia monitoring near Beijing National Stadium from July to October in 2008 by open-path TDLAS system

    Science.gov (United States)

    He, Ying; Zhang, Yujun; Liu, Wenqing; Kan, Ruifeng; Xia, Hui

    2009-07-01

    Gaseous ammonia is the most abundant alkaline trace gas in the atmosphere. As ammonia plays an important role in acid deposition and aerosol formation, it influences the regional air quality and atmospheric visibility. TDLAS (Tunable Diode Laser Absorption Spectroscopy)is a method to obtain the spectroscopy of single molecule absorption line in the characteristic absorption spectrum region as the characteristic of the distributed feed back (DFB) diode laser with narrow linewidth and tunability, which makes it possible to detect trace-gas qualitatively or quantificationally. The NH3 in-situ monitoring instrument based on TDLAS and long open path technology have been developed combining with wavelength modulation and harmonic detection techniques to obtain the necessary detection sensitivity. This instrument has been used to measure atmospheric NH3 concentration at an urban site near Beijing National Stadium from July to October in 2008, especially in the period of Beijing Olympics and Paralympics. The continuously monitoring results show that the atmospheric NH3 concentration variation has an obvious diurnal periodicity in the urban of Beijing. First of all, the general diurnal variation rule is the concentration decreased to the minimum in the daytime, and then increased to the maximum at night. Moreover, the NH3 peak concentration decreased obviously at the beginning of the Beijing Olympics then it kept descending during the Paralympics. The obtained maximum of NH3 is between 20.31μg/m3~ 48.54μg/m3 with the daily average concentration between 12.6μg/m3~27.5μg/m3. During these three months, Air Quality Assurance Scheme for the Olympics (AQASO) was implemented through the joint actions of Beijing Municipal Government and the five neighboring provinces/municipalities in north China. The measures such as auto restriction and plant ejection-decreasing are carried out in Beijing. In conclusion, the open-path TDLAS instrument is suitable for atmospheric trace

  16. Spacecraft Spin Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to correct unbalances of spacecraft by using dynamic measurement techniques and static/coupled measurements to provide products of...

  17. Development of an Implementation Plan for Atmospheric Carbon Monitoring in California

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Marc L.; Riley, William J.; Tonse, Shaheen

    2004-10-01

    This report describes the design of atmospheric CO{sub 2} concentration measurements that, in combination with other measurements and models, would be used to quantify regionally distributed CO{sub 2} exchanges from California's terrestrial ecosystems and CO{sub 2} emissions from fossil fuel combustion. Using models of net ecosystem CO{sub 2} exchange (NEE), fossil fuel CO{sub 2} emissions, and regional meteorology, we predict CO{sub 2} concentration ''signals'' in the atmosphere. The predictions of NEE exhibit spatial and temporal variations that are controlled by land cover and climate. Fossil fuel CO{sub 2} emissions from metropolitan areas are the strongest localized sources of CO{sub 2} while weaker but spatially extensive fossil emissions are present throughout the Central Valley. We subdivide the CO{sub 2} sources into four components: NEE inside and outside CA, and fossil fuel CO{sub 2} inside and outside CA. Maps of predicted atmospheric CO{sub 2} concentration signals from these four sources largely mirror the instantaneous emissions near strong sources but plumes of CO{sub 2} enriched or depleted air are predicted to advect far from their sources. We then identify a baseline set of observing stations from existing and possible future sites that could be used to characterize in-state and out-of-state ecosystem and fossil fuel contributions to atmospheric CO{sub 2} concentrations. For each of the stations we calculate mean midday concentration signals with standard deviation for each month and source. We also calculate the covariance of the signal due to NEE inside CA with each of the other signals to quantify how much of the signal from NEE inside CA might be readily separable from the other signals. On the basis of these predictions, we identify new observing stations and a measurement protocol that, in combination with existing stations, would provide data to estimate NEE within CA. Although beyond the scope of this project

  18. Monitoring of radiation in atmosphere, water and a food chain. Results in the Netherlands in 1991

    NARCIS (Netherlands)

    Kwakman PJM; Aldenkamp FJ; de Vries LJ; Drost RMS; Tijsmans MH; Koolwijk AC; Ockhuizen A

    1993-01-01

    This 1991 annual report presents the results of radioactivity measurements in biosphere samples taken in the Netherlands. The National Measurement Programme (NMP), considered essential for an adequate assessment of radioactivity in the biospere, includes the monitoring of air, deposition and surfac

  19. Laser technology to monitor atmospheric pollution. Tecnologia laser para medicion de la contaminacion atmosferica

    Energy Technology Data Exchange (ETDEWEB)

    Guerao, A.; Caceci, M.

    1993-01-01

    Air quality and pollution can be monitored in a reliable way using LIDAR. Light detection and measurement by using a Laser beam can identify gases, particles, smoke, water vapor and other contaminants. Radiance and directionality of the laser beam are useful for this application. Activities of CISE in this field are presented.

  20. Seasonal and diurnal variations of atmospheric mercury across the US determined from AMNet monitoring data

    Directory of Open Access Journals (Sweden)

    X. Lan

    2012-11-01

    Full Text Available Speciated atmospheric mercury observations collected over the period from 2008 to 2010 at the Environmental Protection Agency and National Atmospheric Deposition Program Atmospheric Mercury Network sites (AMNet were analyzed for its spatial, seasonal, and diurnal characteristics across the US. Median values of gaseous elemental mercury (GEM, gaseous oxidized mercury (GOM and particulate bound mercury (PBM at 11 different AMNet sites ranged from 148–226 ppqv (1.32–2.02 ng m−3, 0.05–1.4 ppqv (0.47–12.4 pg m−3 and 0.18–1.5 ppqv (1.61–13.7 pg m−3, respectively. Common characteristics of these sites were the similar median levels of GEM as well as its seasonality, with the highest mixing ratios occurring in winter and spring and the lowest in fall. However, discernible differences in monthly average GEM were as large as 30 ppqv, which may be caused by sporadic influence from local emission sources. The largest diurnal variation amplitude of GEM occurred in the summer. Seven rural sites displayed similar GEM summer diurnal patterns, in that the lowest levels appeared in the early morning, and then the GEM mixing ratio increased after sunrise and reached its maxima at noon or in the early afternoon. Unlike GEM, GOM exhibited higher mixing ratios in spring and summer. The largest diurnal variation amplitude of GOM occurred in spring for most AMNet sites. The GOM diurnal minima appeared before sunrise and maxima appeared in the afternoon. The increased GOM mixing ratio in the afternoon indicated a photochemically driven oxidation of GEM resulting in GOM formation. PBM exhibited diurnal fluctuations in summertime. The summertime PBM diurnal pattern displayed daily maxima in the early afternoon and lower mixing ratios at night, implying photochemical production of PBM in summer.

  1. Atmospheric CO{sub 2} concentrations the CSIRO (Australia) monitoring program from aircraft 1972 - 1981

    Energy Technology Data Exchange (ETDEWEB)

    Beardsmore, D.J.; Pearman, G.I. [Commonwealth Scientific Industrial Research Organization (CSIRO), Victoria (Australia). Division of Atmospheric Research

    1984-09-01

    Atmospheric CO{sub 2} concentrations were measured in the troposphere and lower stratosphere over the Australia-New Zealand region and as far south as Antarctica for the period 1972-1981. The samples were collected from aircraft over a large range of latitudes and altitudes. The sampling program has been based on the cooperation of the Australia Department of Transport, Quantas Airways, Trans Australia Airlines, the United States, New Zealand and Australian Air Forces and occasional chartering of light aircraft for special purposes.

  2. Monitoring of leaked CO2 through sediment, water column and atmosphere in sub-seabed CCS experiment

    Science.gov (United States)

    Shitashima, K.; Sakamoto, A.; Maea, Y.

    2013-12-01

    CO2 capture and storage in sub-seabed geological formations (sub-seabed CCS) is currently being studied as a feasible option to mitigate the accumulation of anthropogenic CO2 in the atmosphere. In implementing sub-seabed CCS, detecting and monitoring the impact of the sequestered CO2 on the ocean environment is highly important. The first controlled CO2 release experiment, entitled 'Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage (QICS)', took place in Ardmucknish Bay, Oban, in May-July 2012. We applied the in-situ pH/pCO2/ORP sensor to the QICS experiment for detection and monitoring of leaked CO2, and carried out several observations. The on-line sensor that was connected by 400m of RS422 cable was deployed close to the CO2 leakage (bubbling) point, and the fluctuations of pH, pCO2 and ORP were monitored in real-time in a observation van on land. Three sets of off-line sensors were also placed on seafloor in respective points (release point, and two low impacted regions at 25m and 75m distant) for three months. The long-term monitoring of pH in sediment at 50cm depth under the seafloor was conducted. The spear type electrode was stabbed into sediment by diver near the CO2 leakage point. Wide-area mapping surveys of pH, pCO2 and ORP in seawater around the leakage point were carried out by AUV (REMUS-100) that some chemical sensors were installed in. The AUV cruised along the grid line in two layers of 4m and 2m above the seafloor during both of periods of low tide and high tide. Atmospheric CO2 in sea surface above the leakage point was observed by the LI-COR CO2 Analyzer. The analyzer was attached to the bow of ship, and the ship navigated a wide-area along a grid observation line during both of periods of low tide and high tide.

  3. 基于加权信息熵的航天器姿态稳定自动监测%Automatic Monitoring of Spacecraft Attitude Stability Based on Weighted Information Entropy

    Institute of Scientific and Technical Information of China (English)

    张宽; 韩威华

    2016-01-01

    To monitor the attitude stability of the spacecraft and provide useful evidence for the flight control decision⁃making, a weighted entropy based approach for monitoring the spacecraft attitude stability was proposed. The entropy was used as the measure of the local time-domain complexity in the approach. The data of 17 attitude controls from the reentry flight mission for the 3rd phase of Chinese lunar exploration program were employed to test our approach. The experiment results proved the validity of the approach, the phenomenon that the pitch and yaw did not converge and still changed after the attitude adjustments was found, which was not monitored during the mission and further proved the importance and urgency of automatic monitoring and judgement for the space⁃craft attitude stability.%为监视航天器的姿态控制稳定度以为后续飞行控制决策提供依据,提出了一种基于加权信息熵的航天器姿态稳定监测方法,该方法使用加权信息熵计算航天器姿态局部时域内的非线性变化复杂度,进而量化评估航天器的姿态稳定性,可对航天器的姿态稳定进行自动辅助监视和判断。探月三期再入返回飞行试验任务期间的17次调姿数据验证了方法的有效性,并且发现了某次调姿后俯仰角和偏航角均未收敛和稳定,此现象在任务期间并未被测控人员监视发现,进一步证明亟需开展航天器姿态稳定自动辅助监视和判断的必要性。

  4. Three spacecraft observe Jupiter's glowing polar regions

    Science.gov (United States)

    1996-09-01

    The aurorae on Jupiter are like the Aurorae Borealis and Australis on the Earth, although visible only by ultraviolet light. They flicker in a similar way in response to variations in the solar wind of charged particles blowing from the Sun. While Galileo monitored the changing environment of particles and magnetism in Jupiter's vicinity, IUE recorded surprisingly large and rapid variations in the overall strength of the auroral activity. IUE's main 45-centimetre telescope did not supply images,but broke up the ultraviolet rays into spectra, like invisible rainbows, from which astrophysicists could deduce chemical compositions, motions and temperatures in the cosmic objects under examination. In the case of Jupiter's aurorae, the strongest emission came from activated hydrogen atoms at a wavelength of 1216 angstroms. The Hubble Space Telescope's contributions to the International Jupiter Watch included images showing variations in the form of the aurorae, and "close-up" spectra of parts of the auroral ovals. Astronomers will compare the flickering aurorae on Jupiter with concurrent monitoring of the Sun and the solar wind by the ESA-NASA SOHO spacecraft and several satellites of the Interagency Solar-Terrestrial Programme. It is notable that changes in auroral intensity by a factor of two or three occurred during the 1996 observational period, even though the Sun was in an exceptionally quiet phase, with very few sunspots. In principle, a watch on Jupiter's aurorae could become a valuable means of checking the long-range effects of solar activity, which also has important consequences for the Earth. The situation at Jupiter is quite different from the Earth's, with the moons strongly influencing the planet's space environment. But with Hubble busy with other work, any such Jupiter-monitoring programme will have to await a new ultraviolet space observatory. IUE observed Jupiter intensively in 1979-80 in conjunction with the visits of NASA's Voyager spacecraft, and

  5. How Enhancing Atmospheric Monitoring and Modelling can be Effective for the Stockholm Convention on POPs

    Directory of Open Access Journals (Sweden)

    Ramon Guardans

    2013-12-01

    Full Text Available The presence of toxic substances such as persistent organic pollutants (POPs in the environment, and in organisms including humans, is a serious public health and environmental problem, even at low levels and poses a challenging scientific problem. The Stockholm Convention on POPs (SC entered into force in 2004 and is a large international effort under the United Nations Environment Programme (UNEP to facilitate cooperation in monitoring, modeling and the design of effective and fair ways to deal with POPs globally. This paper is a contribution to the ongoing effectiveness evaluation (EE work aimed at the assessment and enhancement of the effectiveness of the actions undertaken under the SC. First we consider some aspects related to the monitoring of POPs in the environment and then briefly review modeling frameworks that have been used to simulate long range transport (LRT of POPs. In the final sections we describe the institutional arrangements providing the conditions for this work to unfold now and some suggestions for it in the future. A more effective use of existing monitoring data could be made if scientists who deposited them in publicly available and supervised sites were rewarded in academic and professional terms. We also suggest the development of multi-media, nested, Lagrangian models to improve the understanding of changes over time in the environment and individual organisms.

  6. Research on Spacecraft Illumination

    Directory of Open Access Journals (Sweden)

    Bo Cai

    2011-07-01

    Full Text Available Illumination analysis of spacecraft is very important. This paper firstly introduces the importance of spacecraft illumination analysis in aerospace fields and points out that illumination conditions will influence the design of shape of spacecraft body and the installation of spacecraft equipments. Then, it discusses two methods for analyzing spacecraft solar-panel shadow and illumination conditions: ray tracing illumination algorithm and polyhedral mesh contour edge projection algorithm and compares their efficiency and feasibility. Shadow area and solar area are computed of every cell on solar panels. We designed solar panel single-axis rotation experiment to validate the proposed algorithm. The experimental results show that contour edge projection algorithm has fine accuracy and costs less time. For detailed illumination information, we apply a practical segment clipping algorithm after some comparisons.

  7. Atmospheric metal pollution monitored by spherical moss bags: a case study of Armadale.

    Science.gov (United States)

    Gailey, F A; Lloyd, O L

    1986-01-01

    To supplement epidemiological investigations into the mortality from respiratory cancer in the small industrial town of Armadale, central Scotland, spherical moss bags were used to study the deposition of atmospheric metal pollution there during a period of 17 months. High concentrations of most metals were found in areas close to the local steel foundry. High concentrations of some metals were also found in the north/northeast of the town. Temporal variations in the metal deposition patterns during the survey-period were observed. By means of statistical analyses, those metals were indicated which were probably emitted from the steel foundry. The scientific and financial advantages of using this method of low technology sampling in epidemiological studies are discussed. PMID:3780627

  8. Aerogel Insulation for the Thermal Protection of Venus Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — One of NASA's primary goals for the next decade is the design, development and launch of a spacecraft aimed at the in-situ exploration of the deep atmosphere and...

  9. Aerogel Insulation for the Thermal Protection of Venus Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — One of NASA's primary goals for the next decade is the design, development and launch of a spacecraft aimed at the in-situ exploration of the deep atmosphere and...

  10. A Self-Regulating Freezable Heat Exchanger for Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A spacecraft thermal control system must keep the vehicle, avionics and atmosphere (if crewed) within a defined temperature range. Since water is non-toxic and good...

  11. Low Cost Open-Path Instrument for Monitoring Atmospheric Carbon Dioxide at Sequestration Sites

    Energy Technology Data Exchange (ETDEWEB)

    William Goddard

    2008-09-30

    In the past 48 months of the project, we have accomplished all objectives outlined in the proposal. In the first year, we demonstrated the technology for remote sensing on a bench top scale. The core electronics are designed and fabricated. We achieved results that will safely deliver the specifications outlined in the proposal. In the 2nd year, 2 major technical tasks outlined in the Statement of Objectives, i.e. Build a field test ready prototype of a long-range CO2 monitor, and characterize its performance in the short term and demonstrate that the monitor characteristics meet the goals set in the initial proposal, have been accomplished. We also conducted simulation work that defines the different deployment strategies for our sensors at sequestration sites. In the 3rd year, Specifications and Testing protocols have been developed for the CO2 monitor. 1% accuracy had been demonstrated in short period tests ({approx}1 hour). Unattended system operation and stability over a period of a week has been demonstrated with and without EDFA (laser power amplifier). The sensitivity of the instrument to CO2 leaks has been demonstrated. In the 4th no-cost extension year, we further field tested the system and the experience we accumulated give us a clear picture of what else are needed for final field deployment. These results have shown all the objectives of the project have been fulfilled. In July 2008, along with our commercial partner we won the DOE STTR phase I award to commercialize the instrument developed in this project - a testimony to the achievement of this research.

  12. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    Energy Technology Data Exchange (ETDEWEB)

    Tonneijck, A.E.G.; Berge, W.F. ten; Jansen, B.P

    2003-05-01

    Atmospheric ethylene from polyethylene manufacturing plants adversely affected the number of flowers and growth of field-grown marigold and petunia. - Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation and growth were severely reduced close to the emission sources and plant performance improved with increasing distance. Plants exposed near the border of the research area had more flowers than the unexposed control while their growth was normal. Measurements of ethylene concentrations at a border site revealed that the growing season mean was 61.5 {mu}g m{sup -3} in 1982 and 15.6 {mu}g m{sup -3} in 1983. In terms of number of flowers, petunia was more sensitive than marigold and adverse effects were observed within ca. 400 m distance from the sources for marigold and within ca. 460 m for petunia. The area at risk (ca. 870 m) for ethylene-induced growth reduction was also limited to the industrial zone. Plants were more sensitive to ethylene in terms of growth reduction than in terms of inhibition of flowering. In the Netherlands, maximum permissible levels of ethylene are currently based on information from laboratory and greenhouse studies. Our results indicate that these levels are rather conservative in protecting field-grown plants against ethylene-induced injury near polyethylene manufacturing plants.

  13. An online monitoring system for atmospheric nitrous acid (HONO) based on stripping coil and ion chromatography

    Institute of Scientific and Technical Information of China (English)

    Peng Cheng; Yafang Cheng; Keding Lu; Hang Su; Qiang Yang; Yikan Zou; Yanran Zhao

    2013-01-01

    A new instrument for measuring atmospheric nitrous acid (HONO) was developed,consisting of a double-wail glass stripping coil sampler coupled with ion chromatography (SC-IC).SC-IC is featured by small size (50 × 35 × 25 cm) and modular construction,including three independent parts:the sampling unit,the transfer and supporting unit,and the detection unit.High collection efficiency (> 99%) was achieved with 25 μmol/L Na2CO3 as absorption solution even in the presence of highly acidic compounds.This instrument has a detection limit of 8 pptv at 15 min time resolution,with a measurement uncertainty of 7%.Potentiai interferences from NOx,NO2+SO2,NO2+VOCs,HONO+O3,HNO3,peroxyacetyl nitrite (PAN) and particle nitrite were quantified in laboratory studies and were found to be insignificant under typical atmospheric conditions.Within the framework of the 3C-STAR project,inter-comparison between the SC-IC and LOPAP (long path liquid absorption photometer) was conducted at a rurai site in the Pearl River Delta.Good agreement was achieved between the two instruments over three weeks.Both instruments determined a clear diurnai profile of ambient HONO concentrations from 0.1 to 2.5 ppbv.However,deviations were found for low ambient HONO concentrations (i.e.<0.3 ppbv),which cannot be explained by previous investigated interference species.To accurately determine the HONO budget under illuminated conditions,more intercomparison of HONO measurement techniques is still needed in future studies,especiaily at low HONO concentrations.

  14. About the Big Graphs Arising when Forming the Diagnostic Models in a Reconfigurable Computing Field of Functional Monitoring and Diagnostics System of the Spacecraft Onboard Control Complex

    Directory of Open Access Journals (Sweden)

    L. V. Savkin

    2015-01-01

    Full Text Available One of the problems in implementation of the multipurpose complete systems based on the reconfigurable computing fields (RCF is the problem of optimum redistribution of logicalarithmetic resources in growing scope of functional tasks. Irrespective of complexity, all of them are transformed into an orgraph, which functional and topological structure is appropriately imposed on the RCF based, as a rule, on the field programmable gate array (FPGA.Due to limitation of the hardware configurations and functions realized by means of the switched logical blocks (SLB, the abovementioned problem becomes even more critical when there is a need, within the strictly allocated RCF fragment, to realize even more complex challenge in comparison with the problem which was solved during the previous computing step. In such cases it is possible to speak about graphs of big dimensions with respect to allocated RCF fragment.The article considers this problem through development of diagnostic algorithms to implement diagnostics and control of an onboard control complex of the spacecraft using RCF. It gives examples of big graphs arising with respect to allocated RCF fragment when forming the hardware levels of a diagnostic model, which, in this case, is any hardware-based algorithm of diagnostics in RCF.The article reviews examples of arising big graphs when forming the complicated diagnostic models due to drastic difference in formation of hardware levels on closely located RCF fragments. It also pays attention to big graphs emerging when the multichannel diagnostic models are formed.Three main ways to solve the problem of big graphs with respect to allocated RCF fragment are given. These are: splitting the graph into fragments, use of pop-up windows with relocating and memorizing intermediate values of functions of high hardware levels of diagnostic models, and deep adaptive update of diagnostic model.It is shown that the last of three ways is the most efficient

  15. Analysis system and remote monitoring of atmospheric discharges; Sistema de analisis y monitoreo remoto de descargas atmosfericas

    Energy Technology Data Exchange (ETDEWEB)

    Zabre Borgaro, Eric; Rodriguez Padilla, Ma. Consuelo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    A system for analysis and monitoring of atmospheric discharges (SAMDA (Sistema de Analisis y Monitoreo de Descargas Atmosfericas) (lightnings)) in an electronic device that subsequently transmits these data as automatic processing or by request of a user from a computer operating as a remote station, is described. Also, the characteristics of the SAMDA, its evolution, and the challenges encountered along the development of this project and comments on possible improvements to the equipment and data recordings of this nature, are described. [Espanol] Se presenta el sistema de analisis y monitoreo de descargas atmosfericas (SAMDA) utilizado en la deteccion y registro de descargas atmosfericas (rayos) en un equipo electronico que posteriormente transmite estos datos como procesamiento automatico o por peticion de un usuario desde una computadora, operando como estacion remota. Asimismo, se describen las caracteristicas del SAMDA, su evolucion, los retos encontrados a lo largo del desarrollo de este proyecto y comentarios sobre posibles mejoras a equipos y registros de datos de esta naturaleza.

  16. The monitoring of atmospheric mercury species in the Southern Indian Ocean at Amsterdam Island (38°S

    Directory of Open Access Journals (Sweden)

    Barret M.

    2013-04-01

    Full Text Available The role of oceans in the global cycle of mercury is still poorly characterized, mainly because of a lack a long-term data on atmospheric mercury concentrations in the remote Southern Ocean. In the frame of GMOS (Global Mercury Observation System, we present here the first results from a new monitoring station at Amsterdam Island in the Southern Indian Ocean. For the period January to April 2012, we recorded mean concentration of gaseous elemental mercury (GEM, reactive gaseous mercury (RGM and particulate-bounded mercury (PHg of 1.03 ng m−3, 0.37 and 0.34 pg m−3 respectively. While GEM concentrations showed little variations, RGM and PHg exhibited fast variations with alternation of value below the instrumental detection limit and maximum values up to 4 pg m−3.

  17. Comparative study of the suitability of two lichen species for trace element atmospheric monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Saiki, Mitiko; Alves, Edson R.; Genezini, Frederico A., E-mail: mitiko@ipen.br, E-mail: eralves@ipen.br, E-mail: fredzini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN-SP), Sao Paulo, SP (Brazil); Saldiva, Paulo H.N., E-mail: pepino@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina

    2013-07-01

    Lichens have been widely used in monitoring studies. Consequently, it is very useful to study the suitability of lichen species to monitor pollutants allowing in this way the best choice. The aim of this study was to compare the accumulation of trace elements by two epiphytic lichen species Canoparmelia texana (Tuck) Elix and Hale and Usnea amblyoclada (Mull. Arg.) Zahlbr. Five samples of each species were collected during the period from November 2010 in a same site far from downtown Sao Paulo city. Lichens collected from tree barks were cleaned, freeze-dried, ground and analyzed by neutron activation analysis. Aliquots of lichen samples and synthetic elemental standards were irradiated at the IEA-R1 nuclear research reactor. The induced gamma activities were measured using a hyperpure Ge detector coupled to a digital spectrum analyzer. Concentrations of As, Ba, Cd, Cr, Cs, Fe, Mg, Mn, Na, Rb, V and Zn were determined in both lichen species. The results demonstrated that both species can be used for evaluating air quality. The element concentrations showed difference between lichen species and also among their sampling periods. These differences may be attributed to the distinct mechanisms of element absorption by lichens as well as various other factors that affect their element accumulation. The comparative evaluation made calculating the ratios between C. texana species sample and that in Usnea amblyoclada for elemental concentrations indicated that, in general, foliose C. texana present similar or higher concentrations than those presented by fruticose Usnea. (author)

  18. Natural Radioactivity Accumulated in the Arctic from Long-range Atmospheric Transport - Observations in Canadian Monitoring Stations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Zhang, Weihua [Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa K1A 1C1 (Canada)

    2014-07-01

    In the environment, the main sources of naturally occurring radionuclides come from radionuclides in the uranium decay series. Activity concentrations of uranium decay series radionuclides may vary considerably from place to place depending on the geological characteristics at the location. Their releases to the atmosphere are mainly through radon ({sup 222}Rn), a radioactive noble gas occurring naturally as an indirect decay product of uranium in soils and rocks. Due to the abundance of uranium, radon continuously emanates from continental land masses. With radon as the main source of naturally occurring radioactivity in the environment, one would think that the Arctic should be an area of low background radiation, because a considerable area of the Arctic is covered by glaciers and permafrost, and radon emanation rate has been reported to be negligible from those glacier and permafrost areas. However, available data have shown the opposite. The elevated level of naturally occurring radioactivity in the Arctic is due to natural sources outside of the Arctic, mainly through long-range atmospheric transport of radon and radon progeny. In some cases, natural radioactivity can accumulate to relatively high levels and become a health concern or a limiting factor of country food consumption. By definition, contaminants are undesirable substances which can cause harm to the environment, the biota, and humans. We can call these naturally accumulating radiological burdens to the Arctic 'natural contaminants' to distinguish them from the traditional meaning of contamination, the 'artificial contaminants' which are attributable to industrial or man-made sources. This paper reviews information available in the literature, analyses long-term atmospheric monitoring data in the Canadian high Arctic, sub-Arctic and mid-latitude sites, and provides discussion on research needed to address questions, such as how heavily the Arctic has been impacted by the

  19. Spacecraft dielectric material properties and spacecraft charging

    Science.gov (United States)

    Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.

    1986-01-01

    The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.

  20. Magnetic Study on Environmental Samples from Guadalajara Mexico for Monitoring of Atmospheric Pollution

    Science.gov (United States)

    Aguilar, B.; Cejudo, R.; Bogalo, M. F.; Rosas-Elguera, J.; Quintana, P.; Bautista, F.; Gogichaishvili, A.; Morales, J.

    2013-05-01

    Guadalajara is the second bigger city in Mexico, catalogued as critical zone because of atmospheric pollution levels. The magnetic methodology has been largely used as an alternative way to evaluate the pollution levels as well as identify the critical points in a given area. In this work, results from chemical analyses and magnetic measurements are presented in order to show the correlation between magnetic signal and the pollution level. We analyzed three kinds of environmental samples: urban soils, urban dust and leaves from ficus benjamina. Samples were taken in 30 sites distributed along a main avenue and two secondary avenues, including three points with very poor traffic influence. We determined a ferromagnetic carrier in most of samples, magnetite probably, since the Tc calculated from the thermomagnetic curves is around 580 °C. The magnetic susceptibility (Xlf) as well as the Saturation Isothermal Remanent Magnetization (SIRM) correlate well with the heavy metals content, specially Pb in urban dusts. These results allowed us to identify the most affected points, by vehicular traffic and industrial emissions. Furthermore, the values obtained for these magnetic parameters are above of those found in other studies for polluted cities in Europe and Asia.

  1. Atmospheric air density analysis with Meteo-40S wind monitoring system

    Directory of Open Access Journals (Sweden)

    Zahariea Dănuţ

    2017-01-01

    Full Text Available In order to estimate the wind potential of wind turbine sites, the wind resource maps can be used for mean annual wind speed, wind speed frequency distribution and mean annual wind power density determination. The general evaluation of the wind resource and the wind turbine ratings are based on the standard air density measured at sea level and at 15°C, ρs=1.225 kg/m3. Based on the experimental data obtained for a continental climate specific location, this study will present the relative error between the standard air density and the density of the dry and the moist air. Considering a cold day, for example on Friday 10th February 2017, on 1-second measurement rate and 10-minute measuring interval starting at 16:20, the mean relative errors obtained are 10.4145% for dry air, and 10.3634% for moist air. Based on these results, a correction for temperature, atmospheric air pressure and relative humidity should be always considered for wind resource assessment, as well as for the predicting the wind turbines performance.

  2. Optical monitoring of CH3NH3PbI3 thin films upon atmospheric exposure

    Science.gov (United States)

    Ghimire, Kiran; Zhao, Dewei; Cimaroli, Alex; Ke, Weijun; Yan, Yanfa; Podraza, Nikolas J.

    2016-10-01

    CH3NH3PbI3 perovskite films of interest for photovoltaic (PV) devices have been prepared by (i) vapor deposition and (ii) solution processing. Complex dielectric function (ε  =  ε 1  +  iε 2) spectra and structural parameters of the films have been extracted using near infrared to ultraviolet spectroscopic ellipsometry. In situ real time spectroscopic ellipsometry (RTSE) over a 48 h period has been performed on vapor deposited CH3NH3PbI3 after the deposition in normal atmospheric laboratory ambient conditions. Analysis of RTSE data for vapor deposited CH3NH3PbI3 film prepared under un-optimized conditions identifies phase segregated PbI2 and CH3NH3I at the substrate/film interface and unreacted PbI2 and CH3NH3I on the film surface. This analysis also provides the time dependence of the effective thicknesses of perovskite film, unreacted components, and phase segregated layers to track CH3NH3PbI3 decomposition.

  3. Phase space representation of neutron monitor count rate and atmospheric electric field in relation to solar activity in cycles 21 and 22.

    Science.gov (United States)

    Silva, H G; Lopes, I

    Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.

  4. Quantitative Evaluation of an Air-monitoring Network Using Atmospheric Transport Modeling and Frequency of Detection Methods.

    Science.gov (United States)

    Rood, Arthur S; Sondrup, A Jeffrey; Ritter, Paul D

    2016-04-01

    A methodology has been developed to quantify the performance of an air-monitoring network in terms of frequency of detection. Frequency of detection is defined as the fraction of "events" that result in a detection at either a single sampler or network of samplers. An "event" is defined as a release to the atmosphere of a specified amount of activity over a finite duration that begins on a given day and hour of the year. The methodology uses an atmospheric transport model to predict air concentrations of radionuclides at the samplers for a given release time and duration. Another metric of interest determined by the methodology is called the network intensity, which is defined as the fraction of samplers in the network that have a positive detection for a given event. The frequency of detection methodology allows for evaluation of short-term releases that include effects of short-term variability in meteorological conditions. The methodology was tested using the U.S. Department of Energy Idaho National Laboratory Site ambient air-monitoring network consisting of 37 low-volume air samplers in 31 different locations covering a 17,630 km region. Releases from six major facilities distributed over an area of 1,435 km were modeled and included three stack sources and eight ground-level sources. A Lagrangian Puff air dispersion model (CALPUFF) was used to model atmospheric transport. The model was validated using historical Sb releases and measurements. Relevant 1-wk release quantities from each emission source were calculated based on a dose of 1.9×10 mSv at a public receptor (0.01 mSv assuming release persists over a year). Important radionuclides were Am, Cs, Pu, Pu, Sr, and tritium. Results show the detection frequency was over 97.5% for the entire network considering all sources and radionuclides. Network intensity results ranged from 3.75% to 62.7%. Evaluation of individual samplers indicated some samplers were poorly located and added little to the overall

  5. Characterizing dust aerosols in the atmospheric boundary layer over the deserts in Northwest China: monitoring network and field observation

    Science.gov (United States)

    He, Q.; Matimin, A.; Yang, X.

    2016-12-01

    TheTaklimakan, Gurbantunggut and BadainJaran Deserts with the total area of 43.8×104 km2 in Northwest China are the major dust emission sources in Central Asia. Understanding Central Asian dust emissions and the interaction with the atmospheric boundary layer has an important implication for regional and global climate and environment changes. In order to explore these scientific issues, a monitoring network of 63 sites was established over the vast deserts (Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert) in Northwest China for the comprehensive measurements of dust aerosol emission, transport and deposition as well as the atmospheric boundary layer including the meteorological parameters of boundary layer, surface radiation, surface heat fluxes, soil parameters, dust aerosol properties, water vapor profiles, and dust emission. Based on the monitoring network, the field experiments have been conducted to characterize dust aerosols and the atmospheric boundary layer over the deserts. The experiment observation indicated that depth of the convective boundary layer can reach 5000m on summer afternoons. In desert regions, the diurnal mean net radiation was effected significantly by dust weather, and sensible heat was much greater than latent heat accounting about 40-50% in the heat balance of desert. The surface soil and dust size distributions of Northwest China Deserts were obtained through widely collecting samples, results showed that the dominant dust particle size was PM100within 80m height, on average accounting for 60-80% of the samples, with 0.9-2.5% for PM0-2.5, 3.5-7.0% for PM0-10 and 5.0-14.0% for PM0-20. The time dust emission of Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert accounted for 0.48%, 7.3%×10-5and 1.9% of the total time within a year, and the threshold friction velocity for dust emission were 0.22-1.06m/s, 0.29-1.5m/s and 0.21-0.59m/s, respectively.

  6. Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses

    Directory of Open Access Journals (Sweden)

    A. Gobiet

    2007-02-01

    Full Text Available This study describes and evaluates a Global Navigation Satellite System (GNSS radio occultation (RO retrieval scheme particularly aimed at delivering bias-free atmospheric parameters for climate monitoring and research. The focus of the retrieval is on the sensible use of a priori information for careful high-altitude initialisation in order to maximise the usable altitude range. The RO retrieval scheme has been meanwhile applied to more than five years of data (September 2001 to November 2006 from the German CHAllenging Minisatellite Payload for geoscientific research (CHAMP satellite. In this study it was validated against various correlative datasets including the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS and the Global Ozone Monitoring for Occultation of Stars (GOMOS sensors on Envisat, five different atmospheric analyses, and the operational CHAMP retrieval product from GeoForschungsZentrum (GFZ Potsdam. In the global mean within 10 to 30 km altitude we find that the present validation observationally constrains the potential RO temperature bias to be <0.2 K. Latitudinally resolved analyses show biases to be observationally constrained to <0.2–0.5 K up to 35 km in most cases, and up to 30 km in any case, even if severely biased (about 10 K or more a priori information is used in the high altitude initialisation of the retrieval. No evidence is found for the 10–35 km altitude range of RO bias sources other than those potentially propagated downward from initialisation, indicating that the widely quoted RO promise of "unbiasedness and long-term stability due to intrinsic self-calibration" can indeed be realized given care in the data processing to strictly limit structural uncertainty. The results demonstrate that an adequate high-altitude initialisation technique is crucial for accurate stratospheric RO retrievals and that still common methods of initialising the involved hydrostatic integral with an upper boundary

  7. SWING-UAV: Small Whiskbroom Imager for atmospheric compositioN monitorinG from an UAV

    Science.gov (United States)

    Merlaud, A.; Constantin, D.; Van Roozendael, M.; Fayt, C.; Maes, J.; Mingireanu, F.; Voiculescu, M.; Murariu, G.; Georgescu, L. P.

    2012-12-01

    We present a new instrument, the Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING), dedicated to trace gases mapping at high spatial resolution from Unmanned Aerial Vehicles (UAVs). The system maps trace gases fields based on a compact ultra-violet visible spectrometer and a scanning mirror. The payload's weight, size and power consumption are respectively 920g, 27*12*12 cm3, and 6W. The custom-built UAV wingspan is 2.5m and can reach an altitude of 3km during 2 hours, flying at 60 km/h in preprogrammed tracks. Considering the 120° swath of the instrument, it is able to cover an area of 20*20 km2 in less than one hour. The spectra are analyzed using Differential Optical Absorption Spectroscopy (DOAS) and several species are detectable. Our primary objective is NO2, a major pollutant and a key species in tropospheric chemistry for which simulations show that a 200*200m ground resolution is possible in polluted zones. We show first measurements of NO2 in Belgium and Romania. Such measurements are complementary to ground-based instruments and, besides studying air quality and NOx sources, are valuable for satellite validation. Another promising application is monitoring of SO2 emissions from volcanoes.

  8. Toxic Volatile Organic Compounds (VOCs in the Atmospheric Environment: Regulatory Aspects and Monitoring in Japan and Korea

    Directory of Open Access Journals (Sweden)

    Wen-Tien Tsai

    2016-09-01

    Full Text Available In the past decades, hazardous air pollutants (HAPs, so-called air toxics or toxic air pollutants, have been detected in the atmospheric air at low concentration levels, causing public concern about the adverse effect of long-term exposure to HAPs on human health. Most HAPs belong to volatile organic compounds (VOCs. More seriously, most of them are known carcinogens or probably carcinogenic to humans. The objectives of this paper were to report the regulatory aspects and environmental monitoring management of toxic VOCs designated by Japan and Korea under the Air Pollution Control Act, and the Clean Air Conservation Act, respectively. It can be found that the environmental quality standards and environmental monitoring of priority VOCs (i.e., benzene, trichloroethylene, tetrachloroethylene, and dichloromethane have been set and taken by the state and local governments of Japan since the early 2000, but not completely established in Korea. On the other hand, the significant progress in reducing the emissions of some toxic VOCs, including acrylonitrile, benzene, 1,3-butadiene, 1,2-dichloroethane, dichloromethane, chloroform, tetrachloroethylene, and trichloroethylene in Japan was also described as a case study in the brief report paper.

  9. BOU: Development of a low-cost tethered balloon sensing system for monitoring the lower atmosphere

    Science.gov (United States)

    Picos, Rodrigo; Lopez-Grifol, Alvaro; Martinez-Villagrassa, Daniel; Simó, Gemma; Wenger, Burkhard; Dünnermann, Jens; Jiménez, Maria Antonia; Cuxart, Joan

    2016-04-01

    The study of the atmospheric boundary layer, the lowest part of the atmosphere, and the processes that occur therein often requires the observation of vertical profiles of the main meteorological variables, i.e. air temperature and humidity, wind vector and barometric pressure. In particular, when the interest is focused on the air-surface interactions, a high vertical resolution over the first 500 m is required for the observations to describe the physical processes that occur immediately above the surface. Typically, these needs are covered with the use of captive balloons, which are helium-filled balloons tethered to a winch on the ground and a sensor package suspended a short distance below the balloon. Since the commercial version of such instrumental platforms are scarce and expensive, a new low-cost device has been developed in the last years: BOU (tethered Balloon sonde OWL-UIB). In this paper, we focus on the sensor package and data acquisition system part, that is able to fulfill the low-cost requirements. The system uses a low-cost Arduino Mega board as the processor, and stores all the data in a SD card, though an RF connection is also possible but more unreliable. The system has been configured to sample temperature, humidity, air pressure, wind speed, having also a magnetometer and an accelerometer. Sampling time was 1 second, though it was possible to set it faster. It is worth mentioning that the system is easily reconfigurable, and more sensors can be added. The system is powered by a Polymer battery of 1800mA , allowing the system to run continously for more than 6 hours. The temperature is acquired using three different sensors (a HYT 271 calibrated sensor with an accuracy of ±0.2 °C, plus the internal temperature sensors of the wind and pressure sensors, with accuracies around ±0.5 °C). The humidity is also sensed using the calibrated HYT 271 sensor, which features an accuracy of ±1.8%. Air pressure is sensed using a BMP080 sensor, which

  10. Ionic liquids as passive monitors of an atmosphere rich in mercury

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.A. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico); Solis, C., E-mail: corina@fisica.unam.mx [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico); Andrade, E. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico); Mondragon, M.A. [Centro de Fisica Aplicada y Tecnologia Avanzada, Departamento de Nanotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 1-1010, Queretaro 76000 (Mexico); Isaac-Olive, K. [Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n, esq. Jesus Carranza, Toluca, 50120 Estado de Mexico (Mexico); Rocha, M.F. [ESIME Instituto Politecnico Nacional, ALM Zacatenco, 07738 Mexico D.F. (Mexico)

    2011-12-15

    An ionic liquid (IL) is a compound at dynamical equilibrium in which at any time more than 99.99% of it is shifted toward the ionic rather than the molecular species. ILs have raised considerable attention during the past few years due to their extremely low vapor pressure, good electrolytic properties and wide electrochemical window. Also, they remain liquid at a wide range of temperature. ILs are able to dissolve some non polar chemical species as well as some very polar ones. Their main applications have been so far in environmental chemistry and can be considered as environmental friendly solvents. Mercury is a naturally occurring element that is found in the atmosphere, generally present in three forms: elemental (Hg{sup 0}), oxidized, and particulate-bounded. It is a very toxic element and its assessment in the environment is highly desired, however due to its volatility is an element difficult to detect by conventional sampling methods. This paper presents the results of a research on mercury binding using ILs. The following ILs were tested: 1-butyl-3-methyl-imidazolium-hexafluorophosphate [BMIM][PF{sub 6}] and 1-butyl-3-methyl-imidazolium thiocyanate [BMIM] [SCN]. Known amounts of ILs were introduced, in the form of bulk or thin coating layer, to a 70 mL glass tube with a known amount of metallic Hg and sealed with a PTFE Registered-Sign cap. The concentration of Hg in the IL was measured after 12 weeks of exposure. Total Hg determination was performed by particle X-ray emission (PIXE). Changes in the spectroscopic properties due to the Hg binding were followed by Raman and infrared (IR) spectroscopy. The sorption efficiency for the ILs under different experimental conditions is discussed.

  11. Analysis of passive-sampler monitored atmospheric ammonia at 74 sites across southern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    X. H. Yao

    2013-08-01

    Full Text Available Weekly/biweekly concentrations of atmospheric NH3 were collected using passive samplers at 74 sites across southern Ontario, Canada during the period from June 2006 to March 2007 with tens of sites running as early as March 2006. The annual average of NH3 (AAN at all the sites across southwestern Ontario was over 1 µg m–3, a value that was recently proposed as the new critical level for protecting vegetation. High ANN values (3.6–6.1 µg m–3 were observed at eight sites located inside the intensive livestock production zones. The AAN values at the sites across southeastern Ontario were generally less than 1 µg m–3 and the values were less than 0.4 µg m–3 at non-agricultural sites. Regional transport from the southwest region to the southeast region was identified to be the main contributor to the observed NH3 at the southeastern non-agricultural sites. However, different transport mechanisms were proposed in different seasons. The transport of NH3 produced through bi-directional air-surface exchange along air mass trajectories was believed to be the main mechanism in the hot seasons while the transport of NH4NO3 produced at source locations followed by its evaporation at receptor sites was thought to be dominant in the cold seasons. A sharp increase in NH3 concentration was surprisingly observed at 20 out of the 74 sites during the coldest two weeks when ambient temperature was lower than −7 °C, and cannot be explained by known sources or with existing knowledge. Recently developed NH3 emission inventory for southern Ontario was also evaluated with the measurement data and emissions within two small zones were identified to be potentially underestimated.

  12. Monitoring of atmospheric ozone and nitrogen dioxide over the south of Portugal by ground-based and satellite observations.

    Science.gov (United States)

    Bortoli, Daniele; Silva, Ana Maria; Costa, Maria João; Domingues, Ana Filipa; Giovanelli, Giorgio

    2009-07-20

    The SPATRAM (Spectrometer for Atmospheric TRAcers Monitoring) instrument has been developed as a result of the collaboration between CGE-UE, ISAC-CNR and Italian National Agency for New Technologies, Energy and the Environment (ENEA). SPATRAM is a multi-purpose UV-Vis-scanning spectrometer (250 - 950 nm) and it is installed at the Observatory of the CGE, in Evora, since April 2004. A brief description of the instrument is given, highlighting the technological innovations with respect to the previous version of similar equipment. The need for such measurements automatically taken on a routine basis in south-western European regions, specifically in Portugal, has encouraged the development and installation of the equipment and constitutes a major driving force for the present work. The main features and some improvements introduced in the DOAS (Differential Optical Absorption Spectroscopy) algorithms are discussed. The results obtained applying DOAS methodology to the SPATRAM spectrometer measurements of diffused spectral sky radiation are presented in terms of diurnal and seasonal variations of nitrogen dioxide (NO(2)) and ozone (O(3)). NO(2) confirms the typical seasonal cycle reaching the maximum of (6.5 +/- 0.3) x 10(+15) molecules cm(-2) for the sunset values (PM), during the summer season, and the minimum of (1.55 +/- 0.07) x 10(+15) molecules cm(-2) for the sunrise values (AM) in winter. O(3) presents the maximum total column of (433 +/- 5) Dobson Unit (DU) in the spring season and the minimum of (284 +/- 3) DU during the fall period. The huge daily variations of the O(3) total column during the spring season are analyzed and discussed. The ground-based results obtained for NO(2) and O(3) column contents are compared with data from satellite-borne equipment (GOME - Global Ozone Monitoring Experiment; SCIAMACHY - Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY; TOMS - Total Ozone Monitoring Spectrometer) and it is shown that the two data

  13. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  14. Spacecraft Material Outgassing Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...

  15. UARS spacecraft recorder

    Science.gov (United States)

    1987-01-01

    The objective was the design, development, and fabrication of UARS spacecraft recorders. The UARS recorder is a tailored configuration of the RCA Standard Tape recorder STR-108. The specifications and requirements are reviewed.

  16. Design of the National Trends Network for monitoring the chemistry of atmospheric precipitation

    Science.gov (United States)

    Robertson, J.K.; Wilson, J.W.

    1985-01-01

    Long-term monitoring (10 years minimum) of the chemistry of wet deposition will be conducted at National Trends Network (NTN) sites across the United States. Precipitation samples will be collected at sites that represent broad regional characteristics. Design of the NTN considered four basic elements during construction of a model to distribute 50, 75, 100, 125 or 150 sites. The modeling oriented design was supplemented with guidance developed during the course of the site selection process. Ultimately, a network of 151 sites was proposed. The basic elements of the design are: (1) Assurance that all areas of the country are represented in the network on the basis of regional ecological properties (96 sites); (2) Placement of additional sites east of the Rocky Mountains to better define high deposition gradients (27 sites); (3) Placement of sites to assure that potentially sensitive regions are represented (15 sites); (4) Placement of sites to allow for other considerations, such as urban area effects (5 sites), intercomparison with Canada (3 sites), and apparent disparities in regional coverage (5 sites). Site selection stressed areas away from urban centers, large point sources, or ocean influences. Local factors, such as stable land ownership, nearby small emission sources (about 10 km), and close-by roads and fireplaces (about 0.5 km) were also considered. All proposed sites will be visited as part of the second phase of the study.

  17. Autonomy Architectures for a Constellation of Spacecraft

    Science.gov (United States)

    Barrett, Anthony

    2000-01-01

    example, one mission proposed to succeed DS3 would have 18 spacecraft flying in formation in order to detect earth-sized planets orbiting other stars. A proposed magnetospheric constellation would involve 5 to 500 spacecraft in Earth orbit to measure global phenomena within the magnetosphere. This work describes and compares three autonomy architectures for a system that continuously plans to control a fleet of spacecraft using collective mission goals instead of goals or command sequences for each spacecraft. A fleet of self-commanding spacecraft would autonomously coordinate itself to satisfy high level science and engineering goals in a changing partially-understood environment making feasible the operation of tens or even a hundred spacecraft (such as for interferometry or plasma physics missions). The easiest way to adapt autonomous spacecraft research to controlling constellations involves treating the constellation as a single spacecraft. Here one spacecraft directly controls the others as if they were connected. The controlling "master" spacecraft performs all autonomy reasoning, and the slaves only have real-time subsystems to execute the master's commands and transmit local telemetry/observations. The executive/diagnostics module starts actions and the master's real-time subsystem controls the action either locally or remotely through a slave. While the master/slave approach benefits from conceptual simplicity, it relies on an assumption that the master spacecraft's executive can continuously monitor the slaves' real-time subsystems, and this relies on high-bandwidth highly-reliable communications. Since unintended results occur fairly rarely, one way to relax the bandwidth requirements involves only monitoring unexpected events in spacecraft. Unfortunately, this disables the ability to monitor for unexpected events between spacecraft and leads to a host of coordination problems among the slaves. Also, failures in the communications system can result in losing

  18. Monitoring of atmospheric pollutants passive sampling for the protection of historic buildings and monuments

    Energy Technology Data Exchange (ETDEWEB)

    De Santis, F.; Fino, A.; Vazzana, C.; Allegrini, I. [Consiglio Nazionale delle Ricerche, Istituto Inquinamento Atmosferico, Rome (Italy)

    2001-12-01

    When considering the various possibilities to assess the effects of SO{sub 2} and NO{sub 2} on historic buildings and monuments, a distinction can be made according to the completeness of the scope of the assessment itself. A first approach can be limited to gathering data as they become available through the official bodies established under air quality legislation. This approach is based on a single point measurement where a general purpose monitoring station is located, often quite far from the monument to protect and often without investigating local and temporal variations. A more comprehensive assessment should include a generalisation that covers the territory. This can be made on the basis of the knowledge of the spatial distribution of concentrations and the knowledge of the causes of air pollution. Passive samplers allow the measurement of air quality in numerous sites and to assess the pollutant spatial distribution over a large area with a high resolution. As an application of the method, the spatial distribution of SO{sub 2} and NO{sub 2} in the city of Siracusa, Sicily, Italy, has been studied to identify areas of high deposition fluxes in relation to the protection of buildings and monuments of the historic centre. [Italian] E' noto che gli inquinanti presenti in aria, tra questi in particolare l'SO{sub 2} e l'NO{sub 2}, sono causa di danno sui monumenti e sulle opere d'arte. La valutazione dell'impatto di questi due inquinanti viene solitamente effettuata sulla base del monitoraggio eseguito secondo la legislazione vigente ma spesso lontano dal monumento da proteggere. Cio', evidentemente, non consente di valutare correttamente il grado di rischio al quale un monumento e' esposto poiche' non fornisce informazioni sulle variazioni spaziali e temporali dei due inquinanti in prossimita' del monumento stesso. Allo scopo di raccogliere quindi informazioni complete sulla distribuzione degli inquinanti, e

  19. IR heterodyne spectrometer MILAHI for continuous monitoring observatory of Martian and Venusian atmospheres at Mt. Haleakalā, Hawaii

    Science.gov (United States)

    Nakagawa, Hiromu; Aoki, Shohei; Sagawa, Hideo; Kasaba, Yasumasa; Murata, Isao; Sonnabend, Guido; Sornig, Manuela; Okano, Shoichi; Kuhn, Jeffrey R.; Ritter, Joseph M.; Kagitani, Masato; Sakanoi, Takeshi; Taguchi, Makoto; Takami, Kosuke

    2016-07-01

    A new Mid-Infrared Laser Heterodyne Instrument (MILAHI) with >106 resolving power at 7-12 μm was developed for continuous monitoring of planetary atmospheres by using dedicated ground-based telescopes for planetary science at Mt. Haleakalā, Hawaii. Room-temperature-type quantum cascade lasers (QCLs) that cover wavelength ranges of 7.69-7.73, 9.54-9.59, and 10.28-10.33 μm have been newly installed as local oscillators to allow observation of CO2, CH4, H2O2, H2O, and HDO. Modeling and predictions by radiative transfer code gave the following scientific capabilities and measurement sensitivities of the MILAHI. (1) Temperature profiles are achieved at altitudes of 65-90 km on Venus, and the ground surface to 30 km on Mars. (2) New wind profiles are provided at altitudes of 75-90 km on Venus, and 5-25 km on Mars. (3) Direct measurements of the mesospheric wind and temperature are obtained from the Doppler-shifted emission line at altitudes of 110 km on Venus and 75 km on Mars. (4) Detections of trace gases and isotopic ratios are performed without any ambiguity of the reproducing the terrestrial atmospheric absorptions in the observed wavelength range. A HDO measurement of twice the Vienna Standard Mean Ocean Water (VSMOW) can be obtained by 15-min integration, while H2O of 75 ppm is provided by 3.62-h integration. The detectability of the 100 ppb-CH4 on Mars corresponds to an integration time of 32 h.

  20. The New Horizons Spacecraft

    Science.gov (United States)

    Fountain, Glen H.; Kusnierkiewicz, David Y.; Hersman, Christopher B.; Herder, Timothy S.; Coughlin, Thomas B.; Gibson, William C.; Clancy, Deborah A.; Deboy, Christopher C.; Hill, T. Adrian; Kinnison, James D.; Mehoke, Douglas S.; Ottman, Geffrey K.; Rogers, Gabe D.; Stern, S. Alan; Stratton, James M.; Vernon, Steven R.; Williams, Stephen P.

    2008-10-01

    The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments designated by the science team to collect and return data from Pluto in 2015. The design meets the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO-OSS-01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one-way light time during the Pluto fly-by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a radioisotope thermoelectric generator (RTG) to supply electrical power. One RTG was available for use by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on approximately 200 W. The travel time to Pluto put additional demands on system reliability. Only after a flight time of approximately 10 years would the desired data be collected and returned to Earth. This represents the longest flight duration prior to the return of primary science data for any mission by NASA. The spacecraft system architecture provides sufficient redundancy to meet this requirement with a probability of mission success of greater than 0.85. The spacecraft is now on its way to Pluto, with an arrival date of 14 July 2015. Initial in-flight tests have verified that the spacecraft will meet the design requirements.

  1. Digital Measurement Analysis of Atmospheric Environmental Monitoring%大气环境监测的数字化测量分析

    Institute of Scientific and Technical Information of China (English)

    鄂晓晖

    2014-01-01

    With the rapid development of social economy ,the frequent occurrence of haze makes air quality getting worse .At-mospheric pollution has become an important issue of universal concern .Real-time monitoring of the atmospheric environment and strict measurements of atmospheric environmental changes is a necessary prerequisite for law enforcement and governance . In this paper ,the necessities of digital measurement of atmospheric environmental monitoring are analyzed and discussed ,giv-ing more effective way to control the quality of the environmental monitoring work and ensure the accuracy and reliability of monitoring data .%随着社会经济的快速发展,雾霾频繁发生,空气质量超标。大气环境污染已成为全民关注的重要问题。对大气环境进行实时监测,严格测量大气环境变化和质量,是大气环境执法和治理的必要前提。本文对大气环境监测的数字化测量的必要性进行分析讨论,更有效的对环境监测工作进行质量控制,保证监测数据的准确性和可靠性。

  2. Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM Data in Coastal Case 2 Waters

    Directory of Open Access Journals (Sweden)

    Sherwin Ladner

    2012-06-01

    Full Text Available The Ocean Color Monitor (OCM provides radiance measurements in eight visible and near-infrared bands, similar to the Sea-viewing Wide Field-of-View Sensor (SeaWiFS but with higher spatial resolution. For small- to moderate-sized coastal lakes and estuaries, where the 1 × 1 km spatial resolution of SeaWiFS is inadequate, the OCM provides a good alternative because of its higher spatial resolution (240 × 360 m and an exact repeat coverage of every two days. This paper describes a detailed step-by-step atmospheric correction procedure for OCM data applicable to coastal Case 2 waters. This development was necessary as accurate results could not be obtained for our Case 2 water study area in coastal Louisiana with OCM data by using existing atmospheric correction software packages. In addition, since OCM-retrieved radiances were abnormally low in the blue wavelength region, a vicarious calibration procedure was developed. The results of our combined vicarious calibration and atmospheric correction procedure for OCM data were compared with the results from the SeaWiFS Data Analysis System (SeaDAS software package outputs for SeaWiFS and OCM data. For Case 1 waters, our results matched closely with SeaDAS results. For Case 2 waters, our results demonstrated closure with in situ radiometric measurements, while SeaDAS produced negative normalized water leaving radiance (nLw and remote sensing reflectance (Rrs. In summary, our procedure resulted in valid nLw and Rrs values for Case 2 waters using OCM data, providing a reliable method for retrieving useful nLw and Rrs values which can be used to develop ocean color algorithms for in-water substances (e.g., pigments, suspended sediments, chromophoric dissolved organic matter, etc. at relatively high spatial resolution in regions where

  3. Cosmic dust detection by the Cluster spacecraft: First results

    Science.gov (United States)

    Vaverka, Jakub; De Spiegeleer, Alexandre; Hamrin, Maria; Kero, Johan; Mann, Ingrid; Norberg, Carol; Pellinen-Wannberg, Asta; Pitkänen, Timo

    2016-04-01

    There are several different techniques that are used to measure cosmic dust entering the Earth's atmosphere such as space-born dust detectors, meteor and HPLA radars, and optical methods. One complementary method could be to use electric field instruments initially designed to measure electric waves. A plasma cloud generated by a hypervelocity dust impact on a spacecraft body can be detected by the electric field instruments commonly operated on spacecraft. Since Earth-orbiting missions are generally not equipped with conventional dust detectors, the electric field instruments offer an alternative method to measure the Earth's dust environment. We present the first detection of dust impacts on one of the Earth-orbiting Cluster satellites with the Wideband Data Plasma Wave Receiver (WBD). We first describe the concept of dust impact ionization and of the impact detection. Based on these considerations the mass and the velocity of the impinging dust grains can be estimated from the amplitude of the Cluster voltage pulses. In the case of the Cluster instrument an automatic gain control adjusts the dynamic range of the recorded signals. Depending on the gain level the impact signal can both be affected by saturation or be too weak for analysis. We describe how this influences the duty cycle of the impact measurements. We finally discuss the suitability of this method for monitoring dust fluxes near Earth and compare it with other methods.

  4. Mechanical Design of Spacecraft

    Science.gov (United States)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  5. Intelligent spacecraft module

    Science.gov (United States)

    Oungrinis, Konstantinos-Alketas; Liapi, Marianthi; Kelesidi, Anna; Gargalis, Leonidas; Telo, Marinela; Ntzoufras, Sotiris; Paschidi, Mariana

    2014-12-01

    The paper presents the development of an on-going research project that focuses on a human-centered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail long-term environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people's bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system's operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaled-model on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture, the ISM research project explores the application of the necessary spatial arrangement and behavior for a user-centered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crew-members, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is

  6. Spacecraft Attitude Determination

    DEFF Research Database (Denmark)

    Bak, Thomas

    This thesis describes the development of an attitude determination system for spacecraft based only on magnetic field measurements. The need for such system is motivated by the increased demands for inexpensive, lightweight solutions for small spacecraft. These spacecraft demands full attitude...... determination based on simple, reliable sensors. Meeting these objectives with a single vector magnetometer is difficult and requires temporal fusion of data in order to avoid local observability problems. In order to guaranteed globally nonsingular solutions, quaternions are generally the preferred attitude...... is a detailed study of the influence of approximations in the modeling of the system. The quantitative effects of errors in the process and noise statistics are discussed in detail. The third contribution is the introduction of these methods to the attitude determination on-board the Ørsted satellite...

  7. Monitoring atmospheric pollutants in the biosphere reserve Wienerwald by a combined approach of biomonitoring methods and technical measurements.

    Science.gov (United States)

    Krommer, Viktoria; Zechmeister, Harald G; Roder, Ingrid; Scharf, Sigrid; Hanus-Illnar, Andrea

    2007-05-01

    In this study a combined approach of bioindication results correlated with an extensive set of data on air pollution and climate was used to assess the pollution status of the Man and Biosphere Reserve Wienerwald (Austria). Bryophytes served as impact indicators (via the Index of Atmospheric Purity-method IAP) at 30 sites as well as accumulation monitors for airborne trace elements (Al, Pb, V, S, Zn, Fe, Cu, Cr, Ni, Co, Mo, Cd, As, Sb and 16 EPA-PAHs) at 10 sites within the reserve. The results of these bioindication methods were subsequently correlated with further pollution (NO(2), SO(2) and dust) and climate data (precipitation, temperature and humidity). The findings obtained clearly indicate the following: Bryophyte distribution is solely influenced by the status of air quality, without interference by climatic or site-related factors, which is in contrast to several previous investigations. IAP-values correlated significantly with NO(2) (0.553; P=0.004), SO(2) winter values (0.511; P=0.013) and PM10 (dust) (0.561; P=0.013). The results obtained via chemical analyses revealed a strong correlation with data derived from the IAP methodology. In terms of the overall air quality within the biosphere reserve Wienerwald, the north-eastern part appears to be the most affected one with a most likely pollution contribution emitted by the capital city Vienna, agriculture and neighbouring countries.

  8. Pore pressure regime leading to shallow failures in a mountain slope: monitoring and interpretation by soil-atmosphere coupled model.

    Science.gov (United States)

    Vaunat, Jean; Hürlimann, Marcel; Luna, Boris

    2016-04-01

    The study deals with the onset of debris flows in the "El Rebaixader" basin, located in South Central Pyrenees. The initiation area of debris flows is located on a lateral moraine with a thickness of tens of meters, in which torrential processes and other shallow mass movements have generated a large scarp with steep slopes. To follow slope evolution towards shallow failure, different sensors have been installed to monitor meteorological data and hydraulic variables at shallow depths (positive and negative pore pressure, water content). Measurements are interpreted by means of a thermo-hydro-mechanical coupled Finite Element code provided with a specific boundary condition to model water mass and heat flux exchanged between the ground and the atmosphere, including infiltration, evaporation, sensible heat and solar radiation. Results evidence the different modes of pore regime variation imposed, on the one hand, by surface infiltration and evaporation and, on the other hand, by the settlement of a slope parallel flow in a loose layer at some decimetres depth. As a conclusion, the analysis highlights the strong dependency of slope stability to the water regime taking place in slightly more permeable horizons connected to the top of the catchment area rather than to surficial climatic input. On this basis, some keys about debris flow mitigation are finally put forward.

  9. Feasibility of desorption atmospheric pressure photoionization and desorption electrospray ionization mass spectrometry to monitor urinary steroid metabolites during pregnancy.

    Science.gov (United States)

    Vaikkinen, Anu; Rejšek, Jan; Vrkoslav, Vladimír; Kauppila, Tiina J; Cvačka, Josef; Kostiainen, Risto

    2015-06-23

    Steroids have important roles in the progress of pregnancy, and their study in maternal urine is a non-invasive method to monitor the steroid metabolome and its possible abnormalities. However, the current screening techniques of choice, namely immunoassays and gas and liquid chromatography-mass spectrometry, do not offer means for the rapid and non-targeted multi-analyte studies of large sample sets. In this study, we explore the feasibility of two ambient mass spectrometry methods in steroid fingerprinting. Urine samples from pregnant women were screened by desorption electrospray ionization (DESI) and desorption atmospheric pressure photoionization (DAPPI) Orbitrap high resolution mass spectrometry (HRMS). The urine samples were processed by solid phase extraction for the DESI measurements and by enzymatic hydrolysis and liquid-liquid-extraction for DAPPI. Consequently, steroid glucuronides and sulfates were detected by negative ion mode DESI-HRMS, and free steroids by positive ion mode DAPPI-HRMS. In DESI, signals of eleven steroid metabolite ions were found to increase as the pregnancy proceeded, and in DAPPI ten steroid ions showed at least an order of magnitude increase during pregnancy. In DESI, the increase was seen for ions corresponding to C18 and C21 steroid glucuronides, while DAPPI detected increased excretion of C19 and C21 steroids. Thus both techniques show promise for the steroid marker screening in pregnancy.

  10. Applicability of a microbial Time Temperature Indicator (TTI) for monitoring spoilage of modified atmosphere packed minced meat.

    Science.gov (United States)

    Vaikousi, Hariklia; Biliaderis, Costas G; Koutsoumanis, Konstantinos P

    2009-08-15

    The applicability of a microbial Time Temperature Indicator (TTI) prototype, based on the growth and metabolic activity of a Lactobacillus sakei strain developed in a previous study, in monitoring quality of modified atmosphere packed (MAP) minced beef was evaluated at conditions simulating the chill chain. At all storage temperatures examined (0, 5, 10, 15 degrees C), the results showed that lactic acid bacteria (LAB) were the dominant bacteria and can be used as a good spoilage index of MAP minced beef. The end of product's shelf life as revealed by the sensory evaluation coincided with a LAB population level of 7 log(10) CFU/g. For all temperatures tested, the growth of L. sakei in the TTI resembled closely the growth of LAB in the meat product, with similar temperature dependence of the micro(max) and thus similar activation energy values calculated as 111.90 and 106.90 kJ/mol, for the two systems, respectively. In addition, the end point of TTI colour change coincided with the time of sensory rejection point of the beef product during its storage under isothermal chilled temperature conditions. The estimated activation energy, E(alpha), values obtained for parameters related to the response of DeltaE (total colour change of the TTI) describing the kinetics of colour change of the TTI during isothermal storage (i.e. the maximum specific rate of DeltaEpsilon evolution curve, micro(DeltaEpsilon), and also the reciprocal of t(i), time at which half of the maximum DeltaEpsilon is reached), were 112.77 and 127.28 kJ/mol, respectively. Finally, the application of the microbial TTI in monitoring the quality deterioration of MAP minced beef due to spoilage was further evaluated under dynamic conditions of storage, using two separate low temperature periodic changing scenarios, resembling the actual conditions occurring in the distribution chill chain. The results showed that the end point of TTI, after storage at those fluctuating temperature conditions, was noted very

  11. LSA SAF Meteosat FRP Products: Part 2 – Evaluation and demonstration of use in the Copernicus Atmosphere Monitoring Service (CAMS

    Directory of Open Access Journals (Sweden)

    G. Roberts

    2015-06-01

    collected MODIS data, ranging from 35% over the Northern Africa region to 89% over the European region. High errors of active fire omission and FRP underestimation are found over Europe and South America, and result from SEVIRI's larger pixel area over these regions. An advantage of using FRP for characterising wildfire emissions is the ability to do so very frequently and in near real time (NRT. To illustrate the potential of this approach, wildfire fuel consumption rates derived from the SEVIRI FRP-PIXEL product are used to characterise smoke emissions of the 2007 Peloponnese wildfires within the European Centre for Medium-Range Weather Forecasting (ECMWF Integrated Forecasting System (IFS, as a demonstration of what can be achieved when using geostationary active fire data within the Copernicus Atmosphere Monitoring System (CAMS. Qualitative comparison of the modelled smoke plumes with MODIS optical imagery illustrates that the model captures the temporal and spatial dynamics of the plume very well, and that high temporal resolution emissions estimates such as those available from geostationary orbit are important for capturing the sub-daily variability in smoke plume parameters such as aerosol optical depth (AOD, which are increasingly less well resolved using daily or coarser temporal resolution emissions datasets. Quantitative comparison of modelled AOD with coincident MODIS and AERONET AOD indicates that the former is overestimated by ∼ 20–30%, but captures the observed AOD dynamics with a high degree of fidelity. The case study highlights the potential of using geostationary FRP data to drive fire emissions estimates for use within atmospheric transport models such as those currently implemented as part of the Monitoring Atmospheric Composition and Climate (MACC programme within the CAMS.

  12. LSA SAF Meteosat FRP Products: Part 2 - Evaluation and demonstration of use in the Copernicus Atmosphere Monitoring Service (CAMS)

    Science.gov (United States)

    Roberts, G.; Wooster, M. J.; Xu, W.; Freeborn, P. H.; Morcrette, J.-J.; Jones, L.; Benedetti, A.; Kaiser, J.

    2015-06-01

    data, ranging from 35% over the Northern Africa region to 89% over the European region. High errors of active fire omission and FRP underestimation are found over Europe and South America, and result from SEVIRI's larger pixel area over these regions. An advantage of using FRP for characterising wildfire emissions is the ability to do so very frequently and in near real time (NRT). To illustrate the potential of this approach, wildfire fuel consumption rates derived from the SEVIRI FRP-PIXEL product are used to characterise smoke emissions of the 2007 Peloponnese wildfires within the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS), as a demonstration of what can be achieved when using geostationary active fire data within the Copernicus Atmosphere Monitoring System (CAMS). Qualitative comparison of the modelled smoke plumes with MODIS optical imagery illustrates that the model captures the temporal and spatial dynamics of the plume very well, and that high temporal resolution emissions estimates such as those available from geostationary orbit are important for capturing the sub-daily variability in smoke plume parameters such as aerosol optical depth (AOD), which are increasingly less well resolved using daily or coarser temporal resolution emissions datasets. Quantitative comparison of modelled AOD with coincident MODIS and AERONET AOD indicates that the former is overestimated by ∼ 20-30%, but captures the observed AOD dynamics with a high degree of fidelity. The case study highlights the potential of using geostationary FRP data to drive fire emissions estimates for use within atmospheric transport models such as those currently implemented as part of the Monitoring Atmospheric Composition and Climate (MACC) programme within the CAMS.

  13. LSA SAF Meteosat FRP products - Part 2: Evaluation and demonstration for use in the Copernicus Atmosphere Monitoring Service (CAMS)

    Science.gov (United States)

    Roberts, G.; Wooster, M. J.; Xu, W.; Freeborn, P. H.; Morcrette, J.-J.; Jones, L.; Benedetti, A.; Jiangping, H.; Fisher, D.; Kaiser, J. W.

    2015-11-01

    data, ranging from 35 % over the Northern Africa region to 89 % over the European region. High errors of active fire omission and FRP underestimation are found over Europe and South America and result from SEVIRI's larger pixel area over these regions. An advantage of using FRP for characterising wildfire emissions is the ability to do so very frequently and in near-real time (NRT). To illustrate the potential of this approach, wildfire fuel consumption rates derived from the SEVIRI FRP-PIXEL product are used to characterise smoke emissions of the 2007 "mega-fire" event focused on Peloponnese (Greece) and used within the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS) as a demonstration of what can be achieved when using geostationary active fire data within the Copernicus Atmosphere Monitoring Service (CAMS). Qualitative comparison of the modelled smoke plumes with MODIS optical imagery illustrates that the model captures the temporal and spatial dynamics of the plume very well, and that high temporal resolution emissions estimates such as those available from a geostationary orbit are important for capturing the sub-daily variability in smoke plume parameters such as aerosol optical depth (AOD), which are increasingly less well resolved using daily or coarser temporal resolution emissions data sets. Quantitative comparison of modelled AOD with coincident MODIS and AERONET (Aerosol Robotic Network) AOD indicates that the former is overestimated by ~ 20-30 %, but captures the observed AOD dynamics with a high degree of fidelity. The case study highlights the potential of using geostationary FRP data to drive fire emissions estimates for use within atmospheric transport models such as those implemented in the Monitoring Atmospheric Composition and Climate (MACC) series of projects for the CAMS.

  14. Impact of atmospheric pollution inputs and climate change on dissolved inorganic carbon fluxes in karst aquifers: evidences from a 36 years past monitoring of karstic watersheds.

    Science.gov (United States)

    Binet, Stephane; Probst, Jean-Luc; Batiot-Guilhe, Christelle; Seidel, Jean-Luc; Emblanch, Christophe; Peyraube, Nicolas; Mangin, Alain; Bakalowicz, Michel; Probst, Anne

    2017-04-01

    Atmospheric pollution is known to modify the soil CO2 consumption associated with carbonate bedrock weathering. To evidence the long term feedbacks of atmospheric pollution and climate change on this chemical reaction, we investigated the inorganic carbon fluxes monitored weekly from 1979 to 2006 in a small forested karstic watershed in the Pyrénées Mountains, characterized by a large precipitation variability, a 0.025 °C air temperature increase per year and a low agricultural pressure. The yearly average concentrations of [Ca + Mg] and dissolved inorganic carbon increases of about 0.057 meq.L-1.yr-1 and the 0.1 meq.L-1.yr-1, respectively. The gap relative to the 1:2 relationship between [Ca + Mg] and HCO3 (in mmole. L-1), noted Delta-HCO3, was founded to be driven by the atmospheric pollution inputs, producing strong acids that inhibit the consumption of carbon from soil during the carbonate dissolution processes. In addition, atmospheric temperature increase is correlated with the [Ca +Mg] change, whereas the decrease of the atmospheric acid inputs observed since the seventies, is linked with a + 0.0022 meq.L-1.yr-1 increase in Delta-HCO3. Similar trends in Delta-HCO3 change were found over other karstic watersheds monitored more recently in the framework of the SNO KARST, one the observatory networks from the OZCAR Research Infrastructure, highlighting that Delta-HCO3 changes over time were partially controlled by atmospheric pollution inputs. The re-interpretation of hydrochemical databases using this Delta-HCO3 indicator enables to evaluate better the impact of atmospheric pollution load and climate change on surface waters. In an indirect way, the dephasing between atmospheric loads recorded in precipitation and Delta-HCO3 observed in groundwater could be a new tracer method to estimate groundwater residence times.

  15. Characterization of Xe-133 global atmospheric background: Implications for the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty

    Science.gov (United States)

    Achim, Pascal; Generoso, Sylvia; Morin, Mireille; Gross, Philippe; Le Petit, Gilbert; Moulin, Christophe

    2016-05-01

    Monitoring atmospheric concentrations of radioxenons is relevant to provide evidence of atmospheric or underground nuclear weapon tests. However, when the design of the International Monitoring Network (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) was set up, the impact of industrial releases was not perceived. It is now well known that industrial radioxenon signature can interfere with that of nuclear tests. Therefore, there is a crucial need to characterize atmospheric distributions of radioxenons from industrial sources—the so-called atmospheric background—in the frame of the CTBT. Two years of Xe-133 atmospheric background have been simulated using 2013 and 2014 meteorological data together with the most comprehensive emission inventory of radiopharmaceutical facilities and nuclear power plants to date. Annual average simulated activity concentrations vary from 0.01 mBq/m3 up to above 5 mBq/m3 nearby major sources. Average measured and simulated concentrations agree on most of the IMS stations, which indicates that the main sources during the time frame are properly captured. Xe-133 atmospheric background simulated at IMS stations turn out to be a complex combination of sources. Stations most impacted are in Europe and North America and can potentially detect Xe-133 every day. Predicted occurrences of detections of atmospheric Xe-133 show seasonal variations, more accentuated in the Northern Hemisphere, where the maximum occurs in winter. To our knowledge, this study presents the first global maps of Xe-133 atmospheric background from industrial sources based on two years of simulation and is a first attempt to analyze its composition in terms of origin at IMS stations.

  16. Revamping Spacecraft Operational Intelligence

    Science.gov (United States)

    Hwang, Victor

    2012-01-01

    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  17. The Glory Program: Global Science from a Unique Spacecraft Integration

    Science.gov (United States)

    Bajpayee Jaya; Durham, Darcie; Ichkawich, Thomas

    2006-01-01

    The Glory program is an Earth and Solar science mission designed to broaden science community knowledge of the environment. The causes and effects of global warming have become a concern in recent years and Glory aims to contribute to the knowledge base of the science community. Glory is designed for two functions: one is solar viewing to monitor the total solar irradiance and the other is observing the Earth s atmosphere for aerosol composition. The former is done with an active cavity radiometer, while the latter is accomplished with an aerosol polarimeter sensor to discern atmospheric particles. The Glory program is managed by NASA Goddard Space Flight Center (GSFC) with Orbital Sciences in Dulles, VA as the prime contractor for the spacecraft bus, mission operations, and ground system. This paper will describe some of the more unique features of the Glory program including the integration and testing of the satellite and instruments as well as the science data processing. The spacecraft integration and test approach requires extensive analysis and additional planning to ensure existing components are successfully functioning with the new Glory components. The science mission data analysis requires development of mission unique processing systems and algorithms. Science data analysis and distribution will utilize our national assets at the Goddard Institute for Space Studies (GISS) and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The Satellite was originally designed and built for the Vegetation Canopy Lidar (VCL) mission, which was terminated in the middle of integration and testing due to payload development issues. The bus was then placed in secure storage in 2001 and removed from an environmentally controlled container in late 2003 to be refurbished to meet the Glory program requirements. Functional testing of all the components was done as a system at the start of the program, very different from a traditional program

  18. The New Horizons Spacecraft

    CERN Document Server

    Fountain, Glen H; Hersman, Christopher B; Herder, Timothy S; Coughlin, Thomas B; Gibson, William C; Clancy, Deborah A; DeBoy, Christopher C; Hill, T Adrian; Kinnison, James D; Mehoke, Douglas S; Ottman, Geffrey K; Rogers, Gabe D; Stern, S Alan; Stratton, James M; Vernon, Steven R; Williams, Stephen P

    2007-01-01

    The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments that will collect and return data from Pluto in 2015. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration needed to reach the Pluto system prior to the year 2020. The spacecraft subsystems were designed to meet tight mass and power allocations, yet provide the necessary control and data handling finesse to support data collection and return when the one-way light time during the Pluto flyby is 4.5 hours. Missions to the outer solar system require a radioisotope thermoelectric generator (RTG) to supply electrical power, and a single RTG is used by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on less than 200 W....

  19. Single reusable spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — Design of a my single person reusable spacecraft. It can carry one person and it has to be dropped from an aircraft at an altitude of 40,000 - 45,000 feet. Can be...

  20. Supporting smarter, healthier and greener societies: the dawn of operational environmental information services Some examples from the Copernicus Atmosphere Monitoring Service (CAMS) programme in Europe

    Science.gov (United States)

    Peuch, V. H.

    2016-12-01

    Operational environmental services are a reality today, as exemplified by the Copernicus Atmospheric Monitoring Service in Europe. Air quality forecasts, information on the long-range transport of dust or of fire plumes or on greenhouse gas fluxes have become reliable enough to be considered by decision makers and to be communicated broadly -making our societies more informed about the changing environment and about the direct link between human activities, atmospheric composition, weather and climate. Many aspects of the value-adding information chains that have been built over the years share commonalities with Numerical Weather Prediction: global and regional numerical models, reflecting both the level of understanding of physical and chemical processes in the atmosphere and the contemporary computing capabilities, are used to blend observations from different in situ and, increasingly, Earth Observation sources. Significantly, the World Meteorological Organisation has recently added a new component to the Global Atmospheric Watch programme in the form of a Science Advisory Group on "Applications". The main objectives of this group are to develop a portfolio of products and services related to atmospheric composition and to demonstrate particularly the usefulness of exchanging chemical observational data in Near-Real-Time. Exchanging best practices worldwide and facilitating the set-up of new applications are also among the activities. Having operational applications does not imply that research efforts to improve environmental monitoring and forecasting services have become obsolete. Quite the contrary: feedbacks and increasingly demanding requirements from users are stimulating steady progress. The last part of the talk will support the idea that atmospheric compositions services are not only an application or an extension of weather services but contribute now also to the core of them. Atmospheric composition information has become indeed of high interest for

  1. Cameras Monitor Spacecraft Integrity to Prevent Failures

    Science.gov (United States)

    2014-01-01

    The Jet Propulsion Laboratory contracted Malin Space Science Systems Inc. to outfit Curiosity with four of its cameras using the latest commercial imaging technology. The company parlayed the knowledge gained under working with NASA to develop an off-the-shelf line of cameras, along with a digital video recorder, designed to help troubleshoot problems that may arise on satellites in space.

  2. Mobile means for the monitoring of atmospheric contamination in a reactor building; Moyens mobiles de surveillance de la contamination atmospherique en BR

    Energy Technology Data Exchange (ETDEWEB)

    Marques, S.; Lestang, M. [EDF/DPN/GPRE/IRP, 93 - Saint Denis (France)

    2009-07-01

    After having evoked the context and challenges of contamination monitoring when exploiting nuclear reactors, the authors discuss the representativeness of the atmospheric contamination measurement as it depends on the different physicochemical forms of radionuclides present in the circuits. They indicate the different gaseous or aerosol radioactive elements which are monitored within EDF installations. They discuss the incorporation of monitoring means at the installation design level, briefly present the use of beacons inside and outside the reactor building. They describe how monitoring is organized on the basis of alert threshold adjustments: an investigation threshold and an evacuation threshold. They discuss the beacon (or sensor) selection and indicate recommendations for their implementation for optimization purposes. They indicate where these beacons are installed and evoke the experimentation of networked mobile beacons with data remote transmission

  3. Introduction to the European Monitoring and Evaluation Programme (EMEP and observed atmospheric composition change during 1972–2009

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2012-06-01

    Full Text Available European scale harmonized monitoring of atmospheric composition was initiated in the early 1970s, and the activity has generated a comprehensive dataset (available at http://www.emep.int which allows the evaluation of regional and spatial trends of air pollution during a period of nearly 40 yr. Results from the monitoring made within EMEP, the European Monitoring and Evaluation Programme, show large reductions in ambient concentrations and deposition of sulphur species during the last decades. Reductions are in the order of 70–90% since the year 1980, and correspond well with reported emission changes. Also reduction in emissions of nitrogen oxides (NOx are reflected in the measurements, with an average decrease of nitrogen dioxide and nitrate in precipitation by about 23% and 25% respectively since 1990. Only minor reductions are however seen since the late 1990s. The concentrations of total nitrate in air have decreased on average only by 8% since 1990, and fewer sites show a significant trend. A majority of the EMEP sites show a decreasing trend in reduced nitrogen both in air and precipitation on the order of 25% since 1990. Deposition of base cations has decreased during the past 30 yr, and the pH in precipitation has increased across Europe. Large inter annual variations in the particulate matter mass concentrations reflect meteorological variability, but still there is a relatively clear overall decrease at several sites during the last decade. With few observations going back to the 1990s, the observed chemical composition is applied to document a change in particulate matter (PM mass even since 1980. These data indicate an overall reduction of about 5 μg m−3 from sulphate alone. Despite the significant reductions in sulphur emissions, sulphate still remains one of the single most important compounds contributing to regional scale aerosol mass concentration. Long-term ozone trends at EMEP sites show a mixed pattern. The year

  4. Introduction to the European Monitoring and Evaluation Programme (EMEP and observed atmospheric composition change during 1972–2009

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2012-01-01

    Full Text Available European scale harmonized monitoring of atmospheric composition was initiated in the early 1970ies, and the activity has generated a comprehensive dataset which allows to evaluate regional and spatial trends of air pollution during a period of nearly 40 yr. Results from the monitoring made within EMEP, the European Monitoring and Evaluation Programme, show large reductions in ambient concentrations and deposition of sulphur species during the last decades. Reductions are in the order of 70–90% since the year 1980, and correspond well with reported emission changes. Also reduction in emissions of nitrogen oxides (NOx are reflected in the measurements, with an average decrease of nitrogen dioxide and nitrate in precipitation by about 23% and 25% respectively since 1990. Only minor reductions are however seen since the late 1990ies. The concentrations of total nitrate in air have decreased on average only by 8% since 1990, and fewer sites show a significant trend. A majority of the EMEP sites show a decreasing trend in reduced nitrogen both in air and precipitation on the order of 25%. Deposition of base cations has decreased during the past 30 yr, and the pH in precipitation has increased across Europe. Large interannual variations in the particulate matter mass concentrations reflect meteorological variability, but still there is a relatively clear overall decrease at several sites during the last decade. With few observations going back to the 1990ies, the observed chemical composition is applied to document a change in particulate matter (PM mass even since 1980. These data indicate an overall reduction of about 5 μg m−3 from sulphate alone. Long-term ozone trends at EMEP sites show a mixed pattern. The year-to-year variability in ozone due to varying meteorology is substantial, making it hard to separate the trends caused by reduced emissions from other effects. For the Nordic countries the data indicate a slight reduction in the number

  5. Trajectory Design for the Phobos and Deimos & Mars Environment Spacecraft

    Science.gov (United States)

    Genova, Anthony L.; Korsmeyer, David J.; Loucks, Michel E.; Yang, Fan Yang; Lee, Pascal

    2016-01-01

    The presented trajectory design and analysis was performed for the Phobos and Deimos & Mars Environment (PADME) mission concept as part of a NASA proposal submission managed by NASA Ames Research Center in the 2014-2015 timeframe. The PADME spacecraft would be a derivative of the successfully flown Lunar Atmosphere & Dust Environment Explorer (LADEE) spacecraft. While LADEE was designed to enter low-lunar orbit, the PADME spacecraft would instead enter an elliptical Mars orbit of 2-week period. This Mars orbit would pass by Phobos near periapsis on successive orbits and then raise periapsis to yield close approaches of Deimos every orbit thereafter.

  6. Report of the Ad Hoc Committee on the assessment of models of a wake shield environment around various spacecraft, Universities Space Research Association

    Science.gov (United States)

    Wu, S. T.

    1979-01-01

    Models depicting the ambient atmosphere which can overtake the spacecraft vacuum shield are presented. The subject areas discussed are: possible changing effects on the wake shield environment; possible utilization of the induced environmental contamination monitor; present state of the knowledge of the parameters used to describe the intermolecular collisions; the possibility of using simple models to describe the wake shield environment; possible errors associated with using kinetic theory to calculate that part of the atmosphere overtaking the shield; and a general assessment of the Monte Carlo techniques used to calculate the shield environment.

  7. The MESSENGER Spacecraft

    Science.gov (United States)

    Leary, James C.; Conde, Richard F.; Dakermanji, George; Engelbrecht, Carl S.; Ercol, Carl J.; Fielhauer, Karl B.; Grant, David G.; Hartka, Theodore J.; Hill, Tracy A.; Jaskulek, Stephen E.; Mirantes, Mary A.; Mosher, Larry E.; Paul, Michael V.; Persons, David F.; Rodberg, Elliot H.; Srinivasan, Dipak K.; Vaughan, Robin M.; Wiley, Samuel R.

    2007-08-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was designed and constructed to withstand the harsh environments associated with achieving and operating in Mercury orbit. The system can be divided into eight subsystems: structures and mechanisms (e.g., the composite core structure, aluminum launch vehicle adapter, and deployables), propulsion (e.g., the state-of-the-art titanium fuel tanks, thruster modules, and associated plumbing), thermal (e.g., the ceramic-cloth sunshade, heaters, and radiators), power (e.g., solar arrays, battery, and controlling electronics), avionics (e.g., the processors, solid-state recorder, and data handling electronics), software (e.g., processor-supported code that performs commanding, data handling, and spacecraft control), guidance and control (e.g., attitude sensors including star cameras and Sun sensors integrated with controllers including reaction wheels), radio frequency telecommunications (e.g., the spacecraft antenna suites and supporting electronics), and payload (e.g., the science instruments and supporting processors). This system architecture went through an extensive (nearly four-year) development and testing effort that provided the team with confidence that all mission goals will be achieved.

  8. Guidance and control of swarms of spacecraft

    Science.gov (United States)

    Morgan, Daniel James

    There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms

  9. Spacecraft aerodynamics and trajectory simulation during aerobraking

    Institute of Scientific and Technical Information of China (English)

    Wen-pu ZHANG; Bo HAN; Cheng-yi ZHANG

    2010-01-01

    This paper uses a direct simulation Monte Carlo(DSMC)approach to simulate rarefied aerodynamic characteristics during the aerobraking process of the NASA Mars Global Surveyor(MGS)spacecraft.The research focuses on the flowfield and aerodynamic characteristics distribution under various free stream densities.The variation regularity of aerodynamic coefficients is analyzed.The paper also develops an aerodynamics-aeroheating-trajectory integrative simulation model to preliminarily calculate the aerobraking orbit transfer by combining the DSMC technique and the classical kinematics theory.The results show that the effect of the planetary atmospheric density,the spacecraft yaw,and the pitch attitudes on the spacecraft aerodynamics is significant.The numerical results are in good agreement with the existing results reported in the literature.The aerodynamics-aeroheating-trajectory integrative simulation model can simulate the orbit tran,sfer in the complete aerobraking mission.The current results of the spacecraft trajectory show that the aerobraking maneuvers have good performance of attitude control.

  10. Differential spacecraft charging on the geostationary operational environmental satellites

    Science.gov (United States)

    Farthing, W. H.; Brown, J. P.; Bryant, W. C.

    1982-01-01

    Subsystems aboard the Geostationary Operational Environmental Satellites 4 and 5 showed instances of anomalous changes in state corresponding to false commands. Evidence linking the anomalous changes to geomagnetic activity, and presumably static discharges generated by spacecraft differential charging induced by substorm particle injection events is presented. The anomalies are shown to be correlated with individual substorms as monitored by stations of the North American Magnetometer Chain. The relative frequency of the anomalies is shown to be a function of geomagnetic activity. Finally a least squares fit to the time delay between substorm initiation and spacecraft anomaly as a function of spacecraft local time is shown to be consistent with injected electron populations with energy in the range 10 keV to 15 keV, in agreement with present understanding of the spacecraft charging mechanism. The spacecraft elements responsible for the differential charging were not satisfactorily identified. That question is currently under investigation.

  11. Using Spacecraft in Climate and Natural Disasters Registration

    Science.gov (United States)

    Sokol, Galyna; Kotlov, Vladyslav; Khorischenko, Oleksandr; Davydova, Angelica; Heti, Kristina

    2017-04-01

    Since the beginning of the space age it become possible the global monitoring of the planet Earth's state. Since the second half of the 20th century there are observations of the atmosphere's state and the Earth's climate have been held by a spacecraft. Also become possible large-scale monitoring of climate change. An attempt was made to define the role of infrasound in the interaction between a space weather, climate and biosphere of the Earth using spacecraft sensors recording. Many countries are involving in the detection of earthquakes, predicting volcanic eruptions and floods and also the monitoring of irregular solar activity. Understanding this leads to the conclusion that international cooperation for the protection of humanity is not only a political priority in the international arena, but also a question of the quality of living standards of any state. Commonly known following monitoring systems: Disaster Monitoring Constellation (DMC), FUEGO program (Spain), Sentinel-Asia program (Japan) and International aerospace system for monitoring of global phenomena (MAKCM, Russia). The Disaster Monitoring Constellation for International Imaging (DMCii) consists of a number of remote sensing satellites constructed by Surrey Satellite Technology Ltd (SSTL) and operated for the Algerian, Nigerian, Turkish, British and Chinese governments by DMC International Imaging. The DMC has monitored the effects and aftermath of the Indian Ocean Tsunami (December 2004), Hurricane Katrina (August 2005), and many other floods, fires and disasters. The individual DMC satellites are: 1. First generation satellites (AlSAT-1 - Algeria, BilSAT - Turkey, NigeriaSAT-1 - Nigeria, UK-DMC - United Kingdom); 2. Second generation satellites (Beijing - China, UK-DMC 2 - United Kingdom, Deimos-1 - Spanish commercial, NigeriaSAT-2 and NigeriaSAT-X). The sun-synchronous orbits of these satellites are coordinated so that the satellites follow each other around an orbital plane, ascending north

  12. A Comparison of Photocatalytic Oxidation Reactor Performance for Spacecraft Cabin Trace Contaminant Control Applications

    Science.gov (United States)

    Perry, Jay L.; Frederick, Kenneth R.; Scott, Joseph P.; Reinermann, Dana N.

    2011-01-01

    Photocatalytic oxidation (PCO) is a maturing process technology that shows potential for spacecraft life support system application. Incorporating PCO into a spacecraft cabin atmosphere revitalization system requires an understanding of basic performance, particularly with regard to partial oxidation product production. Four PCO reactor design concepts have been evaluated for their effectiveness for mineralizing key trace volatile organic com-pounds (VOC) typically observed in crewed spacecraft cabin atmospheres. Mineralization efficiency and selectivity for partial oxidation products are compared for the reactor design concepts. The role of PCO in a spacecraft s life support system architecture is discussed.

  13. Conversion of an Alpha CAM Monitor of Victoreen calibrated of factory for plutonium in a measurement monitor of radon in the atmosphere; Conversion de un monitor Alpha CAM de la Victoreen calibrado de fabrica para plutonio en un monitor para medicion de radon en la atmosfera

    Energy Technology Data Exchange (ETDEWEB)

    Moreno y Moreno, A. [Departamento de Apoyo en Ciencias Aplicadas, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico)

    2004-07-01

    It is presented in this work the conversion of a monitor ALPHA CAM of the monitor Victoreen gauged of it manufactures for plutonium in a monitor for radon mensuration in the atmosphere. Those units in that the radon measures are expressed are: peak curies/unit of volume of air to sampling. This way one has to gauge and to supplement the software and the parts that the old one monitor for plutonium. It requires. This task implies: a) To calibrate and to determine the efficiency of the detector of accustomed to state of 1700 mm{sup 2} for alpha particles coming from the radioactive series of the radon. b) to connect in series and to calibrate a flow measurer of air in it lines with the detector. Measures are presented of the ambient air and other places of the the historical area of the city of Puebla obtained with the team Converted ALPHA-CAM. (Author)

  14. Potential Spacecraft-to-Spacecraft Radio Observations with EJSM: Wave of the Future? (Invited)

    Science.gov (United States)

    Marouf, E. A.; Tortora, P.; Asmar, S. W.; Folkner, W. M.; Hinson, D.; Iess, L.; Linscott, I. R.; Lorenz, R. D.; Mueller-Wodarg, I. C.

    2010-12-01

    Future active radio observations of planetary and satellite atmospheres and surfaces could significantly benefit form the presence of two or more spacecraft in orbit around a target object. Traditionally, radio occultation and bistatic surface scattering experiments have been conducted using a single spacecraft operating in the Downlink (DL) configuration, with the spacecraft transmitting and at least one Earth-based station receiving. The configuration has the advantage of using powerful ground-based receivers for down-conversion, digitization, and digital recording of large bandwidth data for later off-line processing and analysis. It has the disadvantage of an available free-space signal-to-noise ratio (SNR) limited by the relatively small carrier power (10-20 W) a spacecraft can practically transmit. Recent technological advances in designing small-mass and small-power spacecraft-based digital receivers capable of on-board signal processing could open the door for significant performance improvement compared with the DL configuration. For example, with two spacecraft in orbit instead of one, the smaller distance D between the two spacecraft compared with the distance to Earth can boost achievable free-space SNR by one to three orders of magnitude, depending on D. In addition, richer variability in observation geometry can be captured using spacecraft-to-spacecraft (SC-to-SC) radio occultations and surface scattering. By their nature, traditional DL occultations are confined to the morning and evening terminators. Availability of on-board processing capability also opens the door for conducting Uplink (UL) occultation and bistatic observations, where very large power (> 20 kW) can be transmitted from an Earth-based station, potentially boasting achievable free-space SNR by orders of magnitude, comparable to the SC-to-SC case and much higher than the DL case. The Europa Jupiter System Mission (EJSM) will likely be the first planetary mission to benefit from the

  15. Streamlined Modeling for Characterizing Spacecraft Anomalous Behavior

    Science.gov (United States)

    Klem, B.; Swann, D.

    2011-09-01

    Anomalous behavior of on-orbit spacecraft can often be detected using passive, remote sensors which measure electro-optical signatures that vary in time and spectral content. Analysts responsible for assessing spacecraft operational status and detecting detrimental anomalies using non-resolved imaging sensors are often presented with various sensing and identification issues. Modeling and measuring spacecraft self emission and reflected radiant intensity when the radiation patterns exhibit a time varying reflective glint superimposed on an underlying diffuse signal contribute to assessment of spacecraft behavior in two ways: (1) providing information on body component orientation and attitude; and, (2) detecting changes in surface material properties due to the space environment. Simple convex and cube-shaped spacecraft, designed to operate without protruding solar panel appendages, may require an enhanced level of preflight characterization to support interpretation of the various physical effects observed during on-orbit monitoring. This paper describes selected portions of the signature database generated using streamlined signature modeling and simulations of basic geometry shapes apparent to non-imaging sensors. With this database, summarization of key observable features for such shapes as spheres, cylinders, flat plates, cones, and cubes in specific spectral bands that include the visible, mid wave, and long wave infrared provide the analyst with input to the decision process algorithms contained in the overall sensing and identification architectures. The models typically utilize baseline materials such as Kapton, paints, aluminum surface end plates, and radiators, along with solar cell representations covering the cylindrical and side portions of the spacecraft. Multiple space and ground-based sensors are assumed to be located at key locations to describe the comprehensive multi-viewing aspect scenarios that can result in significant specular reflection

  16. Spacecraft Electrostatic Radiation Shielding

    Science.gov (United States)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  17. Environmental monitoring to the sources of atmospheric emission by the Trad-MCN bioassay and analysis of the accumulative potential for uranium and fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Alessandra C.F.E., E-mail: alessandra@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil). Div. de Monitoracao Ambiental; Ramos, Monique M.B., E-mail: monique@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil). Div. de Analise de Seguranca; Alves, Edenise S., E-mail: ealves@ibot.sp.gov.b [Instituto de Botanica de Sao Paulo, Sao Paulo, SP (Brazil). Secao de Anatomia

    2009-07-01

    The biomonitoring of the atmospheric contamination constitutes important procedure for adoption of environmental control measures. Biological assays have been employed to evaluate genotoxic agents in the atmosphere. The Tradescantia-micronucleus (Trad-MCN) assay has been extensively used in environmental monitoring owing to its efficiency in the detection of chromosomic damages in cytological preparations of easy execution. In this study we tested the viability of use of Trad-MCN with Tradescantia pallida cv. Purpurea for environmental monitoring in the Experimental Center Aramar (CEA), in Ipero - SP and its leaf accumulation capacity. The plants were exposed in situ, in flower-beds or flowerpots, established close to the sources of atmospheric emission. The bioassay was accomplished according to the usual protocol. The micronucleus frequencies were compared using the variance Kruskal-Wallis test. The obtained results indicated that the biomonitoring model adopted was not the ideal for the CEA, considering that the plant suffered the influence of climatic condition. However the plant showed to have accumulative potential for uranium. (author)

  18. Intensive monitoring of forest ecosystems in Europe; 2: atmospheric deposition and its impacts on soil solution chemistry

    NARCIS (Netherlands)

    Vries, de W.; Reinds, G.J.; Vel, E.M.

    2003-01-01

    In order to gain a better understanding of the effects of air pollution and other stress factors on forests, a Pan-European programme for intensive and continuous monitoring of forest ecosystems has been implemented in 1994. Results of this intensive monitoring programme presented in this paper are

  19. Monitoring middle-atmospheric dynamics using independent ground-based wind and temperature measurements at Reunion Island

    Science.gov (United States)

    Le Pichon, Alexis; Hauchecorne, Alain; Keckhut, Philippe; Khaykin, Sergey; Camas, Jean Pierre; Payen, Guillaume; Kämpfer, Niklaus; Rüfenacht, Rolf; Ceranna, Lars

    2016-04-01

    There are very few multi-instrumented sites in the tropics and particularly in the Southern Hemisphere. In these regions, developing atmospheric sounding methods in the middle and high-atmosphere provides valuable means to improve the physical representation of deep convection in atmospheric models (breaking of gravity waves, coupling between layers) and to better characterize large-scale atmospheric perturbations (cyclones, storms, tropical convection). The Maïdo observatory at Reunion Island (21°S, 55°E) offers trans-national access to host experiments or measurement campaigns for high resolution measurements of dynamic atmospheric processes in a wide range of altitude such as Rayleigh lidar, Doppler lidar, Modem radiosonde, or microwave Doppler spectro-radiometer (WIRA, operated by Institute of Applied Physics, University of Bern). Collocated to the existing instruments, a small aperture infrasound array (CEA) has been operating continuously since 2014. In the 0.1-1 Hz band, the coherent energy is dominated by microbarom signals resulting from the non-linear interaction of large swells systems which circulate along the Antarctic Circumpolar Current (ACC). The seasonal transition in the bearings along with the stratospheric general circulation between summer and winter is clearly noted. Interestingly, the semiannual oscillation (SAO) of the zonal stratospheric wind is well captured by infrasound measurements. It manifests by opposite ducts between 30 and 60 km that persist for several weeks during the equinox period. For the ARISE project (http://arise-project.eu/), this multi-technology site opens new perspectives to study the climatology of SAO as well as poorly resolved atmospheric disturbances of the tropical middle atmosphere where data coverage is sparse.

  20. A spatial framework for assessing current conditions and monitoring future change in the chemistry of the Antarctic atmosphere

    Directory of Open Access Journals (Sweden)

    D. A. Dixon

    2011-03-01

    , Pb, Bi, As, and Li are enriched across Antarctica relative to both ocean and upper crust elemental ratios. Global volcanic outgassing accounts for the majority of the Bi measured in East and West Antarctica and for a significant fraction of the Cd in East Antarctica. Nonetheless, global volcanic outgassing cannot account for the enriched values of Pb or As. Local volcanic outgassing from Mount Erebus may account for a significant fraction of the As and Cd in West Antarctica and for a significant fraction in East Antarctic glaze/dune areas. However, despite potential contributions from local and global volcanic sources, significant concentrations of Pb, Cd, and As remain across much of Antarctica.

    Most importantly, this study provides a baseline from which changes in the chemistry of the atmosphere over Antarctica can be monitored under expected warming scenarios and continued intensification of industrial activities in the Southern Hemisphere.

  1. Use of the lichen Xanthoria mandschurica in monitoring atmospheric elemental deposition in the Taihang Mountains, Hebei, China

    Science.gov (United States)

    Liu, Hua-Jie; Zhao, Liang-Cheng; Fang, Shi-Bo; Liu, Si-Wa; Hu, Jian-Sen; Wang, Lei; Liu, Xiao-Di; Wu, Qing-Feng

    2016-04-01

    Air pollution is a major concern in China. Lichens are a useful biomonitor for atmospheric elemental deposition but have rarely been used in North China. The aim of this study was to investigate the atmospheric depositions of 30 trace elements (Al, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, Sb, Sc, Sm, Sr, Tb, Th, Ti, Tl, V and Zn) in a region of the Taihang Mountains, Hebei Province, China using lichens as biomonitors. Epilithic foliose lichen Xanthoria mandschurica was sampled from 21 sites and analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The results show that 1) eight elements (Cd, Cr, Cu, Mo, P, Pb, Sb and Zn) are of atmospheric origin and are highly influenced by the atmospheric transportation from the North China Plain, as well as local mining activities, while 2) the remaining 22 elements are primarily of crustal origin, the concentration of which has been enhanced by local mining and quarrying activities. These results clearly validate the applicability of lichens in biomonitoring of atmospheric elemental deposition and demonstrate the spatial pattern for air pollution in the region.

  2. CAS Experiments Onboard Spacecraft Successful

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ The descent module of China's Shenzhou 3 spacecraft returned to Earth on April 1, 2002, one week after the spacecraft was launched at the Jiuquan Satellite Launching Center in Gansu Province. It was the third test flight of a prototype spacecraft expected to carry taikonauts (stemming from the Chinese words for outer space) into space in the near future since the first launch of the Shenzhou (Divine Vessel) series on November 20,1999.

  3. Large Scale Experiments on Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier

    2012-01-01

    ) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements...... validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being developed by an international topical team that is collaboratively defining the experiment requirements and performing supporting analysis, experimentation...

  4. ENVIRONMENTAL MONITORING USING LINDEN TREE LEAVES AS NATURAL TRAPS OF ATMOSPHERIC DEPOSITION: A PILOT STUDY IN TRANSILVANIA, ROMANIA

    Directory of Open Access Journals (Sweden)

    MIHÁLY BRAUN

    2007-12-01

    Full Text Available Atmospheric pollution caused by toxic elements is an emerging problem of concern. Tree leaves have been widely used as indicator of atmospheric pollutions and they are effective alternatives to the moreusual biomonitoring methods. Tree leaves can be used as natural traps of atmospheric deposition. Elemental composition of dust deposited onto leaf surfaces can be used to characterize the urban environment. A pilot survey including 16 Romanian settlements was carried out in order to evaluate the characteristics and sources of air pollutants. Tree leaves (Tilia tomentosa, Tilia cordata, Tilia platyphyllos were collected and used for the measurements. Elemental analyses were carried out by ICP-OES and ICP-MS. Principal component and discriminant analyses were used to characterizing and estimating the level of pollution. Settlements were grouped on the basis of discriminant function values. Multivariate comparison of chemical data ordered the settlements into 3 main groups, which showed a systematic geographic distribution.

  5. The Agia Marina Xyliatou Observatory: A remote supersite in Cyprus to monitor changes in the atmospheric composition of the Eastern Mediterranean and the Middle East

    Science.gov (United States)

    Sciare, Jean

    2016-04-01

    The Eastern Mediterranean and Middle East (EMME) region has been identified as one of the hot spot region in the world strongly influenced by climate changes impacts. This region is characterized by rapidly growing population with contrasting economic development, strong environmental gradients and climate extremes. However, long-term observations of the atmospheric constituents (gaseous and particulate) of the atmosphere at a remote site representative of EMME is still missing making difficult to assess current and future impacts on air quality, water resources and climate. In collaboration with the Department of Labour Inspection and in the frame of French research programs (ChArMEx and ENVI-Med "CyAr") and the EU H2020 "ACTRIS-2" (2015-2019) project, CyI and CNRS are putting unprecedented efforts to implement at a rural site of Cyprus (Agia Marina Xyliatou) a unique infrastructure to monitor key atmospheric species relevant to air quality and climate. A large set of real-time instrumentations is currently deployed to characterize reactive gases (incl. O3, CO, NOx, SO2, VOC), in-situ aerosol properties (mass, size distribution, light scatt./absorption/extinction coef. and chemistry) and as well as integrated optical properties (sunphotomer, solar flux). Through Transnational access (H2020 ACTRIS2), this station is offering to (non-)EU partners (Research, SMEs) a new atmospheric facility to monitor long range transported clean/polluted air masses from 3 different continents (Europe, Africa, Middle East) and investigate aerosol-cloud interactions through the use of UAV and a mountain site (Troodos, 1900m asl). We will present here an overview of this new research infrastructure and provide a first glance of key features observed from gas/aerosol measurements obtained in 2015

  6. Remote monitoring of 129I and 127I isotopes in the atmosphere using the laser-induced fluorescence method

    Science.gov (United States)

    Kireev, S. V.; Shnyrev, S. L.; Suganeev, S. V.

    2016-09-01

    This paper reports the experimental and calculation research of the development of the remote laser-induced fluorescence method for the detection of 129I and 127I molecular iodine isotopologues in atmospheric air in real time. As an excitation source we used a frequency-doubled neodymium laser (~532 nm). We estimated the sensitivity of 127I129I and 129I2 detection in the atmosphere. Detection sensitivity of molecular iodine is 4 · 1013 cm-3 for a sensing distance of 6 km.

  7. Operationally Responsive Spacecraft Subsystem Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Saber Astronautics proposes spacecraft subsystem control software which can autonomously reconfigure avionics for best performance during various mission conditions....

  8. Human Spacecraft Structures Internship

    Science.gov (United States)

    Bhakta, Kush

    2017-01-01

    DSG will be placed in halo orbit around themoon- Platform for international/commercialpartners to explore lunar surface- Testbed for technologies needed toexplore Mars• Habitat module used to house up to 4crew members aboard the DSG- Launched on EM-3- Placed inside SLS fairing Habitat Module - Task Habitat Finite Element Model Re-modeled entire structure in NX2) Used Beam and Shell elements torepresent the pressure vessel structure3) Created a point cloud of centers of massfor mass components- Can now inspect local moments andinertias for thrust ring application8/ Habitat Structure – Docking Analysis Problem: Artificial Gravity may be necessary forastronaut health in deep spaceGoal: develop concepts that show how artificialgravity might be incorporated into a spacecraft inthe near term Orion Window Radiant Heat Testing.

  9. Spacecraft rendezvous and docking

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1999-01-01

    The phenomenons and problems encountered when a rendezvous manoeuvre, and possible docking, of two spacecrafts has to be performed, have been the topic for numerous studies, and, details of a variety of scenarios has been analysed. So far, all solutions that has been brought into realization has...... been based entirely on direct human supervision and control. This paper describes a vision-based system and methodology, that autonomously generates accurate guidance information that may assist a human operator in performing the tasks associated with both the rendezvous and docking navigation...... relative pose information to assist the human operator during the docking phase. The closed loop and operator assistance performance of the system have been assessed using a test bench including human operator, navigation module and high fidelity visualization module. The tests performed verified...

  10. Monitoring air quality in Southeast Alaska’s National Parks and Forests: Linking atmospheric pollutants with ecological effects

    Science.gov (United States)

    D. Schirokauer; L. Geiser; A. Bytnerowicz; M. Fenn; K. Dillman

    2014-01-01

    Air quality and air quality related values are important resources to the National Park Service (NPS) units and Wilderness areas in northern Southeast Alaska. Air quality monitoring was prioritized as a high-priority Vital Sign at the Southeast Alaska Network’s (SEAN) Inventory and Monitoring Program’s terrestrial scoping workshop (Derr and Fastie 2006). Air quality...

  11. Successful large-scale use of CMOS devices on spacecraft traveling through intense radiation belts

    Science.gov (United States)

    Brucker, G. J.; Ohanian, R. S.; Stassinopoulos, E. G.

    1976-01-01

    This paper describes the environmental models of the radiation belts and computational techniques which have been developed for predicting the radiation hazards for spacecraft. These data and techniques are then applied to the Atmosphere Explorer 51 spacecraft to explain its successful survival for more than 18 months in a severe environment. In particular, the results of the analysis are used to explain the performance of some 2400 CMOS devices, and consequently, they demonstrate the reliability of this device technology in spacecraft systems.

  12. Rationale and Methods for Archival Sampling and Analysis of Atmospheric Trace Chemical Contaminants On Board Mir and Recommendations for the International Space Station

    Science.gov (United States)

    Perry, J. L.; James, J. T.; Cole, H. E.; Limero, T. F.; Beck, S. W.

    1997-01-01

    Collection and analysis of spacecraft cabin air samples are necessary to assess the cabin air quality with respect to crew health. Both toxicology and engineering disciplines work together to achieve an acceptably clean cabin atmosphere. Toxicology is concerned with limiting the risk to crew health from chemical sources, setting exposure limits, and analyzing air samples to determine how well these limits are met. Engineering provides the means for minimizing the contribution of the various contaminant generating sources by providing active contamination control equipment on board spacecraft and adhering to a rigorous material selection and control program during the design and construction of the spacecraft. A review of the rationale and objectives for sampling spacecraft cabin atmospheres is provided. The presently-available sampling equipment and methods are reviewed along with the analytical chemistry methods employed to determine trace contaminant concentrations. These methods are compared and assessed with respect to actual cabin air quality monitoring needs. Recommendations are presented with respect to the basic sampling program necessary to ensure an acceptably clean spacecraft cabin atmosphere. Also, rationale and recommendations for expanding the scope of the basic monitoring program are discussed.

  13. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (electronics, advanced manufacturing for lightweight structures, and innovative propulsion are making it possible to fly much more capable micro spacecraft for planetary exploration. While micro spacecraft, such as CubeSats, offer significant cost reductions with added capability from advancing technologies, the technical challenges for deep space missions are very different than for missions conducted in low Earth orbit. Micro spacecraft must be able to sustain a broad range of planetary environments (i.e., radiations, temperatures, limited power generation) and offer long-range telecommunication performance on a par with science needs. Other capabilities needed for planetary missions, such as fine attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  14. Atmospheric aerosol and gaseous pollutant concentrations in Bucharest area using first datasets from the city AQ monitoring network

    Science.gov (United States)

    Balaceanu, Cristina; Iorga, Gabriela

    2010-05-01

    City of Bucharest is the largest and most populated (about 2.8 million inhabitants) city in the Romanian Plain and encounters environmental problems and meteorology typical for several cities in southeastern Europe. City environment includes intense emissions arising from traffic (about 1 million cars per day), five thermo-electrical power-generation stations, that use both natural gas and oil derivatives for power generation and domestic heating, and from industrial sources (more than 800 small and medium plants). In the present work we performed an extensive analysis of the air pollution state for the Bucharest area (inside and outside the city) using filter measurement aerosol data PM10 and PM2.5. Data spanning over first year of continuous sampling (2005) were taken from the city Air Quality Monitoring Network, which consists of eight sampling stations: three industrial and two traffic, one EPA urban background, one suburban and one regional station located outside of Bucharest. The objective was to assess the PM10 recorded levels and their degree of compliance with the EU-legislated air quality standards and to provide a statistical investigation of the factors controlling seasonal and spatial variations of PM levels. PM10 relationships with other measured air pollutants (SO2, CO, NOx) and meteorological parameters (temperature, relative humidity, atmospheric pressure, wind velocity and direction) were investigated by statistical analysis. Back trajectory modeling and wind direction frequency distributions were used to identify the origin of the polluted air masses. Contribution of combustion (slopes) and non-combustion (intercepts) sources to PM10 recorded levels was quantified by linear analysis, for two seasonal periods: cold (15 October-14 April) and warm (15 April-14 October). PM10 and PM2.5 concentrations were compared with corresponding values in other European urban areas. Main conclusions are as follows: Traffic and industrial sites contribute to the

  15. ISO 14624 Series - Space Systems - Safety and Compatibility of Materials Flammability Assessment of Spacecraft Materials

    Science.gov (United States)

    Hirsch, David B.

    2007-01-01

    A viewgraph presentation on the flammability of spacecraft materials is shown. The topics include: 1) Spacecraft Fire Safety; 2) Materials Flammability Test; 3) Impetus for enhanced materials flammability characterization; 4) Exploration Atmosphere Working Group Recommendations; 5) Approach; and 6) Status of implementation

  16. Atmospheric carbon diooxide mixing ratios from the NOAA Climate Monitoring and Diagnostics Laboratory cooperative flask sampling network, 1967-1993

    Energy Technology Data Exchange (ETDEWEB)

    Conway, T.J.; Tans, P.P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States); BBoden, T.A. [Oak Ridge National Lab., TN (United States)

    1996-02-01

    This data report documents monthly atmospheric CO{sub 2} mixing ratios and measurements obtained by analyzing individual flask air samples for the NOAA/CMDL global cooperative flask sampling network. Measurements include land-based sampling sites and shipboard measurements covering 14 latitude bands in the Pacific Ocean and South China Sea. Analysis of the NOAA/CMDL flask CO{sub 2} database shows a long-term increase in atmospheric CO{sub 2} mixing ratios since the late 1960s. This report describes how the samples are collected and analyzed and how the data are processed, defines limitations, and restrictions of the data, describes the contents and format of the data files, and provides tabular listings of the monthly carbon dioxide records.

  17. Determination of the Characteristics of Ground-Based IR Spectral Instrumentation for Environmental Monitoring of the Atmosphere

    Science.gov (United States)

    Makarova, M. V.; Poberovskii, A. V.; Hase, F.; Timofeyev, Yu. M.; Imhasin, Kh. Kh.

    2016-07-01

    This is a study of the spectral characteristics of a ground-based spectral system consisting of an original system for tracking the sun developed at St. Petersburg State University and a Bruker IFS125HR Fourier spectrometer. The importance of accounting for the actual instrument function of the spectral system during processing of ground-based IR spectra of direct solar radiation is illustrated by the example of determining the overall abundance of methane in the atmosphere. Spectral intervals are proposed for taking spectra of direct solar radiation with an HBr cell, which yield information on the parameters of the ground-based system, while simultaneously checking the alignment of the system for each spectrum of the atmosphere.

  18. [Research on On-Line Calibration Based Photoacoustic Spectrometry System for Monitoring the Concentration of CO2 in Atmosphere].

    Science.gov (United States)

    Zhang, Jian-feng; Pan, Sun-qiang; Lin, Xiao-lu; Hu, Peng-bing; Chen, Zhe-min

    2016-01-01

    Resonate frequency and cell constant of photoacoustic spectrum system are usually calibrated by using standard gas in laboratory, whereas the resonate frequency and cell constant will be changed in-situ, leading to measurement accuracy errors, caused by uncertainties of standard gas, differences between standard and measured gas components and changes in environmental condition, such as temperature and humidity. As to overcome the above problems, we have proposed an on-line atmospheric oxygen-based calibration technology for photoacoustic spectrum system and used in measurement of concentration of carbon dioxide in atmosphere. As the concentration of atmospheric oxygen is kept as constant as 20.96%, the on-line calibration for the photoacoustic spectrum system can be realized by detecting the swept-frequency and peak signal at 763.73 nm. The cell of the PAS has a cavity with length of 100 mm and an inner diameter of 6 mm, and worked in a first longitudinal resonant mode. The influence of environmental temperature and humidity, gas components on the photoacoustic cell's performance has been theoretically analyzed, and meanwhile the resonant frequencies and cell constants were calibrated and acquired respectively using standard gas, indoor air and outdoor air. Compared with calibrated gas analyzer, concentration of carbon dioxide is more accurate by using the resonant frequency and cell constant calculated by oxygen in tested air, of which the relative error is less than 1%, much smaller than that calculated by the standard gas in laboratory. The innovation of this paper is that using atmospheric oxygen as photoacoustic spectrum system's calibration gas effectively reduces the error caused by using standard gas and environmental condition changes, and thus improves the on-line measuring accuracy and reliability of the photoacoustic spectrum system.

  19. In-situ monitoring of etching of bovine serum albumin using low-temperature atmospheric plasma jet

    Science.gov (United States)

    Kousal, J.; Shelemin, A.; Kylián, O.; Slavínská, D.; Biederman, H.

    2017-01-01

    Bio-decontamination of surfaces by means of atmospheric pressure plasma is nowadays extensively studied as it represents promising alternative to commonly used sterilization/decontamination techniques. The non-equilibrium atmospheric pressure plasmas were already reported to be highly effective in removal of a wide range of biological residual from surfaces. Nevertheless the kinetics of removal of biological contamination from surfaces is still not well understood as the majority of performed studies were based on ex-situ evaluation of etching rates, which did not allow investigating details of plasma action on biomolecules. This study therefore presents a real-time, in-situ ellipsometric characterization of removal of bovine serum albumin (BSA) from surfaces by low-temperature atmospheric plasma jet operated in argon. Non-linear and at shorter distances between treated samples and nozzle of the plasma jet also non-monotonic dependence of the removal rate on the treatment duration was observed. According to additional measurements focused on the determination of chemical changes of treated BSA as well as temperature measurements, the observed behavior is most likely connected with two opposing effects: the formation of a thin layer on the top of BSA deposit enriched in inorganic compounds, whose presence causes a gradual decrease of removal efficiency, and slight heating of BSA that facilitates its degradation and volatilization induced by chemically active radicals produced by the plasma.

  20. Tropical Controls on the CO2 Atmospheric Growth Rate 2010-2011 from the NASA Carbon Monitoring System Flux (CMS-Flux) Project

    Science.gov (United States)

    Bowman, K. W.; Liu, J.; Parazoo, N.; Lee, M.; Menemenlis, D.; Gierach, M. M.; Brix, H.; Gurney, K. R.; Collatz, G. J.; Bousserez, N.; Henze, D. K.

    2014-12-01

    Interannual variations in the atmospheric growth rate of CO2 have been attributed to the tropical regions and the controls are correlated with temperature anomalies. We investigate the spatial drivers of the atmospheric growth rate and the processes controlling them over the exceptional period of 2010-2011. This period was marked by a marked shift from an El Nino to La Nina period resulting in historically high sea surface temperature anomalies in the tropical Atlantic leading to serious droughts in the Amazon. However, in 2011, unusual precipitation in Australia was linked to gross primary productivity anomalies in semi-arid regions. We use satellite observations of CO2, CO, and solar induced fluorescence assimilated into the NASA Carbon Monitoring System Project (CMS-Flux) to attribute the atmospheric growth rate to global, spatially resolved fluxes. This system is based upon observationally-constrained "bottom-up" estimates from the Fossil Fuel Data Assimilation System (FFDAS), the ECCO2­-Darwin physical and biogeochemical adjoint ocean state estimation system, and CASA-GFED3 land-surface biogeochemical model. The system is used to compute regional tropical and extra-tropical fluxes and quantify the role of biomass burning and gross primary productivity in controlling those fluxes.

  1. Printed Spacecraft Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Holmans, Walter [Planetary Systems Corporation, Silver Springs, MD (United States); Dehoff, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly into a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.

  2. Analyzing Spacecraft Telecommunication Systems

    Science.gov (United States)

    Kordon, Mark; Hanks, David; Gladden, Roy; Wood, Eric

    2004-01-01

    Multi-Mission Telecom Analysis Tool (MMTAT) is a C-language computer program for analyzing proposed spacecraft telecommunication systems. MMTAT utilizes parameterized input and computational models that can be run on standard desktop computers to perform fast and accurate analyses of telecommunication links. MMTAT is easy to use and can easily be integrated with other software applications and run as part of almost any computational simulation. It is distributed as either a stand-alone application program with a graphical user interface or a linkable library with a well-defined set of application programming interface (API) calls. As a stand-alone program, MMTAT provides both textual and graphical output. The graphs make it possible to understand, quickly and easily, how telecommunication performance varies with variations in input parameters. A delimited text file that can be read by any spreadsheet program is generated at the end of each run. The API in the linkable-library form of MMTAT enables the user to control simulation software and to change parameters during a simulation run. Results can be retrieved either at the end of a run or by use of a function call at any time step.

  3. Modelling the long-term soil response to atmospheric deposition at intensively monitored forest plots in Europe

    NARCIS (Netherlands)

    Reinds, G.J.; Posch, M.; Vries, de W.

    2009-01-01

    The dynamic soil chemistry model SMART was applied to 121 intensive forest monitoring plots (mainly located in western and northern Europe) for which both element input (deposition) and element concentrations in the soil solution were available. After calibration of poorly known parameters, the mode

  4. A process for selecting ecological indicators for application in monitoring impacts to Air Quality Related Values (AQRVs) from atmospheric pollutants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.; Breckenridge, R.P.

    1997-01-01

    Section 160 of the Clean Air Act (CAA) calls for measures be taken {open_quotes}to preserve, protect, and enhance air quality in national parks, national wilderness areas, national monuments, national seashores, and other areas of special national or regional natural, recreational, scenic, or historic value.{close_quotes} Pursuant to this, stringent requirement have been established for {open_quotes}Class I{close_quotes} areas, which include most National Parks and Wilderness Areas. Federal Land Managers (FLMs) are charged with the task of carrying out these requirements through the identification of air quality related values (AQRVs) that are potentially at risk from atmospheric pollutants. This is a complex task, the success of which is dependent on the gathering of information on a wide variety of factors that contribute to the potential for impacting resources in Class I areas. Further complicating the issue is the diversity of ecological systems found in Class I areas. There is a critical need for the development of monitoring programs to assess the status of AQRVs in Class I areas with respect to impacts caused by atmospheric pollutants. These monitoring programs must be based on the measurement of a carefully selected suite of key physical, chemical, and biological parameters that serve as indicators of the status of the ecosystems found in Class I areas. Such programs must be both scientifically-based and cost-effective, and must provide the data necessary for FLMs to make objective, defensible decisions. This document summarizes a method for developing AQRV monitoring programs in Class I areas.

  5. A process for selecting ecological indicators for application in monitoring impacts to Air Quality Related Values (AQRVs) from atmospheric pollutants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.; Breckenridge, R.P.

    1997-01-01

    Section 160 of the Clean Air Act (CAA) calls for measures be taken {open_quotes}to preserve, protect, and enhance air quality in national parks, national wilderness areas, national monuments, national seashores, and other areas of special national or regional natural, recreational, scenic, or historic value.{close_quotes} Pursuant to this, stringent requirement have been established for {open_quotes}Class I{close_quotes} areas, which include most National Parks and Wilderness Areas. Federal Land Managers (FLMs) are charged with the task of carrying out these requirements through the identification of air quality related values (AQRVs) that are potentially at risk from atmospheric pollutants. This is a complex task, the success of which is dependent on the gathering of information on a wide variety of factors that contribute to the potential for impacting resources in Class I areas. Further complicating the issue is the diversity of ecological systems found in Class I areas. There is a critical need for the development of monitoring programs to assess the status of AQRVs in Class I areas with respect to impacts caused by atmospheric pollutants. These monitoring programs must be based on the measurement of a carefully selected suite of key physical, chemical, and biological parameters that serve as indicators of the status of the ecosystems found in Class I areas. Such programs must be both scientifically-based and cost-effective, and must provide the data necessary for FLMs to make objective, defensible decisions. This document summarizes a method for developing AQRV monitoring programs in Class I areas.

  6. Daily atmospheric radionuclide observations and health impact estimation before and after the Fukushima-Daiichi nuclear accident: Five-year trends by Canadian monitoring stations - Ten-year trends of atmospheric lead-210 and the correlation to atmospheric mercury in the Canadian Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weihua; Chen, Jing; Ungar, Kurt [Radiation Protection Bureau, Health Canada, 775 Brookfield Rd. Ottawa, K1A 1C1 (Canada)

    2014-07-01

    Mercury is a global threat to human and environmental health. Anthropogenic emissions of mercury have been larger than natural emissions since the start of the industrial age about 200 years ago. In the past decades, many studies have focused on monitoring and controlling anthropogenic emissions of mercury and their transport and transformation in the environment. In October 2013, the Minamata Convention on Mercury was formally adopted as international law. The new treaty aims to further cut mercury emissions and releases; it is the first global convention on environment and health. Coal burning for power generation and industrial use is one of the major sources of anthropogenic mercury emissions to the air. However, coal combustion processes produce significant quantities of dust containing not only mercury but also natural radionuclides that are released into the atmosphere. Like the case of mercury, those radionuclides can be transported over long distances, deposited on soil and oceans and accumulated in Arctic biota. Exposure to elevated levels of radiation is a health concern. This study analyses long-term trends of atmospheric lead-210 from Health Canada's radiological monitoring stations in the Arctic. Results are compared with ten-year records of atmospheric mercury reported by Environment Canada. A discussion is given on the correlation of long-range atmospheric transport of lead-210 and mercury from industrial sources, such as coal burning. It is expected that continuous decline of atmospheric mercury in the Arctic, especially with more and more countries signing the Minamata Convention, will result in a deceasing trend of atmospheric lead-210 from industrial sources as well. (authors)

  7. Minimum dV for Targeted Spacecraft Disposal

    Science.gov (United States)

    Bacon, John

    2017-01-01

    The density scale height of the Earth's atmosphere undergoes significant reduction in the final phases of a natural decay. It can be shown that for most realistic ballistic numbers, it is possible to exploit this effect to amplify available spacecraft dV by using it at the penultimate perigee to penetrate into higher drag regions at final apogee. The drag at this lower pass can more effectively propel a spacecraft towards the final target region than applying the same dV direct Hohmann transfer at that final apogee. This study analyzes the potential use of this effect-- in combination with small phasing burns--to calculate the absolute minimum delta-V that would be required to reliably guide a spacecraft to any specified safe unoccupied ocean region as a function of ballistic number, orbit inclination, and initial eccentricity. This calculation is made for controllable spacecraft in several orbit inclinations and eccentricities with arbitrary initial LAN and ArgP one week before final entry, under three-sigma atmospheric perturbations. The study analyzes the dV required under varying levels of final controllable altitude at which dV may be imparted, and various definitions of the length and location of a "safe" disposal area. The goal of such research is to improve public safety by creating assured safe disposal strategies for low-dV and/or low-thrust spacecraft that under more traditional strategies would need to be abandoned to a fully random decay.

  8. Analysis of a Kalman filter based method for on-line estimation of atmospheric dispersion parameters using radiation monitoring data

    DEFF Research Database (Denmark)

    Drews, Martin; Lauritzen, Bent; Madsen, Henrik

    2005-01-01

    parameters, and the observables are linked to the state variables through a static measurement equation. The method is analysed for three simple state space models using experimental data obtained at a nuclear research reactor. Compared to direct measurements of the atmospheric dispersion, the Kalman filter...... estimates are found to agree well with the measured parameters, provided that the radiation measurements are spread out in the cross-wind direction. For less optimal detector placement it proves difficult to distinguish variations in the source term and plume height; yet the Kalman filter yields consistent...... scheme are outlined, to account for realistic accident scenarios....

  9. Quantitative real-time monitoring of chemical reactions by autosampling flow injection analysis coupled with atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Zhu, Zhenqian; Bartmess, John E; McNally, Mary Ellen; Hoffman, Ron M; Cook, Kelsey D; Song, Liguo

    2012-09-04

    Although qualitative and/or semiquantitative real-time monitoring of chemical reactions have been reported with a few mass spectrometric approaches, to our knowledge, no quantitative mass spectrometric approach has been reported so far to have a calibration valid up to molar concentrations as required by process control. This is mostly due to the absence of a practical solution that could well address the sample overloading issue. In this study, a novel autosampling flow injection analysis coupled with an atmospheric pressure chemical ionization mass spectrometry (FIA/APCI-MS) system, consisting of a 1 μL automatic internal sample injector, a postinjection splitter with 1:10 splitting ratio, and a detached APCI source connected to the mass spectrometer using a 4.5 in. long, 0.042 in. inner diameter (ID) stainless-steel capillary, was thus introduced. Using this system together with an optional FIA solvent modifier, e.g., 0.05% (v/v) isopropylamine, a linear quantitative calibration up to molar concentration has been achieved with 3.4-7.2% relative standard deviations (RSDs) for 4 replicates. As a result, quantitative real-time monitoring of a model reaction was successfully performed at the 1.63 M level. It is expected that this novel autosampling FIA/APCI-MS system can be used in quantitative real-time monitoring of a wide range of reactions under diverse reaction conditions.

  10. Spacecraft Re-Entry Impact Point Targeting Using Aerodynamic Drag

    Science.gov (United States)

    Omar, Sanny R.; Bevilacqua, Riccardo

    2017-01-01

    The ability to re-enter the atmosphere at a desired location is important for spacecraft containing components that may survive re-entry. While impact point targeting has traditionally been initiated through impulsive burns with chemical thrusters on large vehicles such as the Space Shuttle, and the Soyuz and Apollo capsules, many small spacecraft do not host thrusters and require an alternative means of impact point targeting to ensure that falling debris do not cause harm to persons or property. This paper discusses the use of solely aerodynamic drag force to perform this targeting. It is shown that by deploying and retracting a drag device to vary the ballistic coefficient of the spacecraft, any desired longitude and latitude on the ground can be targeted provided that the maneuvering begins early enough and the latitude is less than the inclination of the orbit. An analytical solution based on perturbations from a numerically propagated trajectory is developed to map the initial state and ballistic coefficient profile of a spacecraft to its impact point. This allows the ballistic coefficient profile necessary to reach a given target point to be rapidly calculated, making it feasible to generate the guidance for the decay trajectory onboard the spacecraft. The ability to target an impact point using aerodynamic drag will enhance the capabilities of small spacecraft and will enable larger space vehicles containing thrusters to save fuel by more effectively leveraging the available aerodynamic drag.

  11. Spacecraft attitude dynamics and control

    Science.gov (United States)

    Chobotov, Vladimir A.

    This overview of spacecraft dynamics encompasses the fundamentals of kinematics, rigid-body dynamics, linear control theory, orbital environmental effects, and the stability of motion. The theoretical treatment of each issue is complemented by specific references to spacecraft control systems based on spin, dual-spin, three-axis-active, and reaction-wheel methodologies. Also examined are control-moment-gyro, gravity-gradient, and magnetic control systems with attention given to key issues such as nutation damping, separation dynamics of spinning bodies, and tethers. Environmental effects that impinge on the application of spacecraft-attitude dynamics are shown to be important, and consideration is given to gravitation, solar radiation, aerodynamics, and geomagnetics. The publication gives analytical methods for examining the practical implementation of the control techniques as they apply to spacecraft.

  12. Advanced Spacecraft Thermal Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft developers who spend millions to billions of dollars per unit and require 3 to 7 years to deploy, the LoadPath reduced-order (RO) modeling thermal...

  13. Aerospace Systems Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I STTR project will demonstrate the Aerospace System Monitor (ASM). This technology transforms the power distribution network in a spacecraft or aircraft...

  14. Lichens as an integrating tool for monitoring PAH atmospheric deposition: a comparison with soil, air and pine needles.

    Science.gov (United States)

    Augusto, Sofia; Máguas, Cristina; Matos, João; Pereira, Maria João; Branquinho, Cristina

    2010-02-01

    The aim of this study was to validate lichens as biomonitors of PAH atmospheric deposition; for that, an inter-comparison between the PAH profile and concentrations intercepted in lichens with those of air, soil and pine needles was performed. The study was conducted in a petro-industrial area and the results showed that PAH profiles in lichens were similar to those of the air and pine needles, but completely different from those of soils. Lichens accumulated higher PAH concentrations when compared to the other environmental compartments and its concentrations were significantly and linearly correlated with concentrations of PAHs in soil; we showed that a translation of the lichen PAHs concentrations into regulatory standards is possible, fulfilling one of the most important requirements of using lichens as biomonitors. With lichens we were then able to characterize the air PAHs profile of urban, petro-industrial and background areas.

  15. Ten years of elemental atmospheric metal fallout and Pb isotopic composition monitoring using lichens in north-eastern France

    Science.gov (United States)

    Cloquet, Christophe; Estrade, Nicolas

    2016-04-01

    We report on the chemical and Pb isotopic compositions of epiphytic lichens collected from small tree branches in the urban area of the city of Metz (NE France). Lichens were collected in five different years between 2001 and 2009. The data are first compared year to year in order to document any temporal changes and trends in metal atmospheric fallout. The area studied was then subdivided into different zones on the basis of land-use (urban, suburban, rural and industrial) in order to determine potential spatial gradients. The median concentrations and enrichment factors (EF, normalized to Al) of Pb and other metals (Cu, Zn, Cd, Ni, Cr, Hg, Fe) in lichens from the urban, suburban, and rural zones show no systematic variation between 2001 and 2008. However, the metal EFs show spatial variation and are generally highest in the urban area and lowest in the rural area. Lichens within the industrial zone (collected in 2009), which is dominated by steel industries, are richest in Al, Fe, Cr, Pb, and Zn. Although the Al concentration is high in these lichens, the EFs for the cited metals are several times higher than those measured in lichens from the other three zones. No significant differences were noted for Hg, Cd, Cu and or Ni. Lead isotopic compositions measured in lichens may be highly variable from year to year and from zone to zone. The variation is primarily interpreted to result from mixing between: (i) Pb added to gasoline (and recycled through re-emission of road dust in the atmosphere); (ii) regional industrial Pb from long-range transportation and/or mixed with urban Pb; and (iii) local industrial Pb. The median isotopic compositions of individual zones are distinct, suggesting variable mixing of these three sources. The annual variations show that 2001 was most affected by gasoline Pb, whereas 2003 and 2006 were more affected by the local steel industry.

  16. Ten years of elemental atmospheric metal fallout and Pb isotopic composition monitoring using lichens in northeastern France

    Science.gov (United States)

    Cloquet, Christophe; Estrade, Nicolas; Carignan, Jean

    2015-09-01

    We report on the chemical and Pb isotopic compositions of epiphytic lichens collected from small tree branches in the urban area of the city of Metz (NE France). Lichens were collected in five different years between 2001 and 2009. The data are first compared year to year in order to document any temporal change and trend in metal atmospheric fallout. The area studied was then subdivided into different zones on the basis of land use (urban, suburban, rural and industrial) in order to determine potential spatial gradients. The median concentrations and enrichment factors (EF, normalized to Al) of Pb and other metals (Cu, Zn, Cd, Ni, Cr, Hg, Fe) in lichens from the urban, suburban, and rural zones show no systematic variation between 2001 and 2008. However, the metal EFs show spatial variation and are generally highest in the urban area and lowest in the rural area. Lichens within the industrial zone (collected in 2009), which is dominated by steel industries, are richest in Al, Fe, Cr, Pb, and Zn. Although the Al concentration is high in these lichens, the EFs for the cited metals are several times higher than those measured in lichens from the other three zones. No significant differences were noted for Hg, Cd, Cu and or Ni. Pb isotopic compositions measured in lichens may be highly variable from year to year and from zone to zone. The variation is primarily interpreted to result from mixing between: (i) Pb added to gasoline (and recycled through re-emission of road dust in the atmosphere); (ii) regional industrial Pb from long-range transportation and/or mixed with urban Pb; and (iii) local industrial Pb. The median isotopic compositions of individual zones are distinct, suggesting variable mixing of these three sources. The annual variations show that 2001 was most affected by gasoline Pb, whereas 2003 and 2006 were more affected by the local steel industry.

  17. [Monitoring Atmospheric CO2 and delta(13)C (CO2) Background Levels at Shangdianzi Station in Beijing, China].

    Science.gov (United States)

    Xia, Ling-ju; Zhou, Ling-xi; Liu, Li-xin; Zhang, Gen

    2016-04-15

    The study presented time series of atmospheric CO2 concentrations from flask sampling at SDZ regional station in Beijing during 2007 and 2013, together with delta(13)CO2) values during 2009 and 2013. The "representative data" of CO2 and delta(13)C (CO2) were selected from the complete data for further analysis. Annual CO2 concentrations increased from 385.6 x 10(-6) in 2007 to 398.1 x 10(-6) in 2013, with an average growth rate of 2.0 x 10(-6) a(-1), while the delta(13)C values decreased from -8.38% per hundred in 2009 to -8.52% per hundred in 2013, with a mean growth rate of -0.03% per hundred x a(-1). The absolute increase of CO2 from 2007 to 2008 reached the lowest level during 2007 and 2013, possibly due to relatively less carbon emissions during the 2008 Olympic Games period. The peak-to-peak amplitudes of atmospheric CO2 and delta(13)C seasonal variations were 23. 9 x 10 -6 and 1. 03%o, respectively. The isotopic signatures of CO2 sources/sinks were also discussed in this study. The delta8 value for heating season I (Jan. 01-Mar. 14) was -21.30% per hundred, while -25.39% per hundred for heating season 11 (Nov. 15-Dec.31) , and for vegetative season (Mar. 15-Nov. 14) the delta(bio) value was estimated to be -21.28% per hundred, likely suggesting the significant impact of fossil fuel and corn straw combustions during winter heating season and biological activities during vegetative season.

  18. Chemiluminescent methods and instruments for monitoring of the atmosphere and satellite validation on board of research aircrafts and unmanned aerial vehicles

    Science.gov (United States)

    Sitnikov, Nikolay; Borisov, Yuriy; Akmulin, Dimitry; Chekulaev, Igor; Sitnikova, Vera; Ulanovsky, Alexey; Sokolov, Alexey

    The results of development of instruments based on heterophase chemiluminescence for measurements of space distribution of ozone and nitrogen oxides concentrations on board of research aircrafts and unmanned aerial vehicles carried out in Central Aerological Observatory are presented. Some results of atmospheric investigations on board of research aircrafts M55 “Geophysica” (Russia) and “Falcon” (Germany) carried out using developed instruments in frame of international projects are demonstrated. Small and low power instruments based on chemiluminescent principle for UAV are developed. The results of measurements on board of UAV are shown. The development can be used for satellite data validation, as well as operative environmental monitoring of contaminated areas in particular, chemical plants, natural and industrial disasters territories, areas and facilities for space purposes etc.

  19. Quantifying the Observability of CO2 Flux Uncertainty in Atmospheric CO2 Records Using Products from Nasa's Carbon Monitoring Flux Pilot Project

    Science.gov (United States)

    Ott, Lesley; Pawson, Steven; Collatz, Jim; Watson, Gregg; Menemenlis, Dimitris; Brix, Holger; Rousseaux, Cecile; Bowman, Kevin; Bowman, Kevin; Liu, Junjie; Eldering, Annmarie; Gunson, Michael; Kawa, Stephan R.

    2014-01-01

    NASAs Carbon Monitoring System (CMS) Flux Pilot Project (FPP) was designed to better understand contemporary carbon fluxes by bringing together state-of-the art models with remote sensing datasets. Here we report on simulations using NASAs Goddard Earth Observing System Model, version 5 (GEOS-5) which was used to evaluate the consistency of two different sets of observationally constrained land and ocean fluxes with atmospheric CO2 records. Despite the strong data constraint, the average difference in annual terrestrial biosphere flux between the two land (NASA Ames CASA and CASA-GFED) models is 1.7 Pg C for 2009-2010. Ocean models (NOBM and ECCO2-Darwin) differ by 35 in their global estimates of carbon flux with particularly strong disagreement in high latitudes. Based upon combinations of terrestrial and ocean fluxes, GEOS-5 reasonably simulated the seasonal cycle observed at northern hemisphere surface sites and by the Greenhouse gases Observing SATellite (GOSAT) while the model struggled to simulate the seasonal cycle at southern hemisphere surface locations. Though GEOS-5 was able to reasonably reproduce the patterns of XCO2 observed by GOSAT, it struggled to reproduce these aspects of AIRS observations. Despite large differences between land and ocean flux estimates, resulting differences in atmospheric mixing ratio were small, typically less than 5 ppmv at the surface and 3 ppmv in the XCO2 column. A statistical analysis based on the variability of observations shows that flux differences of these magnitudes are difficult to distinguish from natural variability, regardless of measurement platform.

  20. Simple instruments used in monitoring ionospheric perturbations and some observational results showing the ionospheric responses to the perturbations mainly from the lower atmosphere

    Science.gov (United States)

    Xiao, Zuo; Hao, Yongqiang; Zhang, Donghe; Xiao, Sai-Guan; Huang, Weiquan

    Ionospheric disturbances such as SID and acoustic gravity waves in different scales are well known and commonly discussed topics. Some simple ground equipment was designed and used for monitoring continuously the effects of these disturbances, especially, SWF, SFD. Besides SIDs, They also reflect clearly the acoustic gravity waves in different scale and Spread-F and these data are important supplementary to the traditional ionosonde records. It is of signifi-cance in understanding physical essentials of the ionospheric disturbances and applications in SID warning. In this paper, the designing of the instruments is given and results are discussed in detail. Some case studies were introduced as example which showed very clearly not only immediate effects of solar flare, but also the phenomena of ionospheric responses to large scale gravity waves from lower atmosphere such as typhoon, great earthquake and volcano erup-tion. Particularlyresults showed that acoustic gravity waves play significant role in seeding ionospheric Spread-F. These examples give evidence that lower atmospheric activities strongly influence the ionosphere.

  1. Impact of drought on the CO2 atmospheric growth rate 2010-2012 from the NASA Carbon Monitoring System Flux (CMS-Flux) Project

    Science.gov (United States)

    Bowman, K. W.; Liu, J.; Parazoo, N.; Jiang, Z.; Bloom, A. A.; Lee, M.; Menemenlis, D.; Gierach, M.; Collatz, G. J.; Gurney, K. R.

    2015-12-01

    The La Nina between 2011-2012 led to significant droughts in the US and Northeastern Brazil while the historic drought in Amazon in 2010 was caused in part by the historic central Pacific El Nino. In order to investigate the role of drought on the atmospheric CO2 growth rate, we use satellite observations of CO2 and CO to infer spatially resolved carbon fluxes and attribute those fluxes to combustion sources correlated with drought conditions. Solar induced fluorescence in turn is used to estimate the impact of drought on productivity and its relationship to total flux. Preliminary results indicate that carbon losses in Mexico are comparable to the total fossil fuel production for that region. These in turn played an important role in the acceleration of the atmospheric growth rate from 2011-2012. These results were enabled using the NASA Carbon Monitoring System Project (CMS-Flux), which is based upon a 4D-variational assimilation system that incorporates observationally-constrained "bottom-up" estimates from the Fossil Fuel Data Assimilation System (FFDAS), the ECCO2-­Darwin physical and biogeochemical adjoint ocean state estimation system, and CASA-GFED3 land-surface biogeochemical model.

  2. Review of NDE Methods for Detection and Monitoring of Atmospheric SCC in Welded Canisters for the Storage of Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pardini, Allan F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanson, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sorenson, Ken B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-01-14

    Dry cask storage systems (DCSSs) for used nuclear fuel (UNF) were originally envisioned for storage periods of short duration (~ a few decades). However, uncertainty challenges the opening of a permanent repository for UNF implying that UNF will need to remain in dry storage for much longer durations than originally envisioned (possibly for centuries). Thus, aging degradation of DCSSs becomes an issue that may not have been sufficiently considered in the design phase and that can challenge the efficacy of very long-term storage of UNF. A particular aging degradation concern is atmospheric stress corrosion cracking (SCC) of DCSSs located in marine environments. In this report, several nondestructive (NDE) methods are evaluated with respect to their potential for effective monitoring of atmospheric SCC in welded canisters of DCSSs. Several of the methods are selected for evaluation based on their usage for in-service inspection applications in the nuclear power industry. The technologies considered include bulk ultrasonic techniques, acoustic emission, visual techniques, eddy current, and guided ultrasonic waves.

  3. Monitoring of atmospheric nitrogen dioxide by long-path pulsed differential optical absorption spectroscopy using two different light paths.

    Science.gov (United States)

    Kambe, Yasuaki; Yoshii, Yotsumi; Takahashi, Kenshi; Tonokura, Kenichi

    2012-03-01

    Measurements of the local distribution of atmospheric nitrogen dioxide (NO(2)) by long-path pulsed differential optical absorption spectroscopy (LP-PDOAS) in Tokyo during August 2008 are presented. Two LP-PDOAS systems simultaneously measured average NO(2) temporal mixing ratios along two different paths from a single observation point. Two flashing aviation obstruction lights, located 7.0 km north and 6.3 km east from the observation point, were used as light sources, allowing spatiotemporal variations of NO(2) in Tokyo to be inferred. The LP-PDOAS data were compared with ground-based data measured using chemiluminescence. Surface wind data indicated that large inhomogeneities were present in the spatial NO(2) distributions under southerly wind conditions, while northerly wind conditions displayed greater homogeneity between the two systems. The higher correlation in the NO(2) mixing ratio between the two LP-PDOAS systems was observed under northerly wind conditions with a correlation factor R(2) = 0.88. We demonstrated that the combined deployment of two LP-PDOAS systems oriented in different directions provides detailed information on the spatial distribution of NO(2).

  4. Identifying the origin of atmospheric inputs of trace elements in the Prades Mountains (Catalonia) with bryophytes, lichens, and soil monitoring.

    Science.gov (United States)

    Achotegui-Castells, Ander; Sardans, Jordi; Ribas, Àngela; Peñuelas, Josep

    2013-01-01

    The biomonitors Hypnum cupressiforme and Xanthoria parietina were used to assess the deposition of trace elements and their possible origin in the Prades Mountains, a protected Mediterranean forest area of NE Spain with several pollution sources nearby. Al, As, Cd, Co, Cu, Cr, Ni, Pb, Sb, Ti, V, and Zn were determined in 16 locations within this protected area. Soil trace element concentrations were also ascertained to calculate enrichment factors (EF) and use them to distinguish airborne from soilborne trace element inputs. In addition, lichen richness was measured to further assess atmospheric pollution. EF demonstrated to be useful not only for the moss but also for the lichen. Cd, Cr, Cu, Ni, and Zn presented values higher than three in both biomonitors. These trace elements were also the main ones emitted by the potential sources of pollutants. The distance between sampling locations and potential pollution sources was correlated with the concentrations of Cu, Sb, and Zn in the moss and with Cr, Ni, and Sb in the lichen. Lichen richness was negatively correlated with lichen Cu, Pb, and V concentrations on dry weight basis. The study reflected the remarkable influence that the pollution sources have on the presence of trace elements and on lichen species community composition in this natural area. The study highlights the value of combining the use of biomonitors, enrichment factors, and lichen diversity for pollution assessment to reach a better overview of both trace elements' impact and the localization of their sources.

  5. Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities at surface monitoring sites

    Directory of Open Access Journals (Sweden)

    Y. Matsumi

    2010-04-01

    Full Text Available Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities were developed in two independent systems: one utilizing a grating-based desktop optical spectrum analyzer (OSA with a resolution enough to resolve rotational lines of CO2 and CH4 in the region of 1565–1585 and 1674–1682 nm, respectively; the other is an application of an optical fiber Fabry-Perot interferometer (FFPI to the CO2 column density. Direct sunlight was collimated via a small telescope installed on a portable sun tracker and then transmitted through an optical fiber into the OSA or the FFPI for optical analysis. The near infrared spectra of the OSA were retrieved by a least squares spectral fitting algorithm. The CO2 and CH4 column densities deduced were in excellent agreement with those measured by a Fourier transform spectrometer with high resolution. The rovibronic lines in the wavelength region of 1570–1575 nm were analyzed by the FFPI. The I0 and I values in the Beer-Lambert law equation to obtain CO2 column density were deduced by modulating temperature of the FFPI, which offered column CO2 with the statistical error less than 0.2% for six hours measurement.

  6. Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities at surface monitoring sites

    Directory of Open Access Journals (Sweden)

    I. Morino

    2010-08-01

    Full Text Available Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities were developed in two independent systems: one utilizing a grating-based desktop optical spectrum analyzer (OSA with a resolution enough to resolve rotational lines of CO2 and CH4 in the regions of 1565–1585 and 1674–1682 nm, respectively; the other is an application of an optical fiber Fabry-Perot interferometer (FFPI to obtain the CO2 column density. Direct sunlight was collimated via a small telescope installed on a portable sun tracker and then transmitted through an optical fiber into the OSA or the FFPI for optical analysis. The near infrared spectra of the OSA were retrieved by a least squares spectral fitting algorithm. The CO2 and CH4 column densities deduced were in excellent agreement with those measured by a Fourier transform spectrometer with high resolution. The rovibronic lines in the wavelength region of 1570–1575 nm were analyzed by the FFPI. The I0 and I values in the Beer-Lambert law equation to obtain CO2 column density were deduced by modulating temperature of the FFPI, which offered column CO2 with the statistical error less than 0.2% for six hours measurement.

  7. The Solar Extreme Ultraviolet Monitor for MAVEN

    Science.gov (United States)

    Eparvier, F. G.; Chamberlin, P. C.; Woods, T. N.; Thiemann, E. M. B.

    2015-12-01

    The Extreme Ultraviolet (EUV) monitor is an instrument on the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, designed to measure the variability of the solar soft x-rays and EUV irradiance at Mars. The solar output in this wavelength range is a primary energy input to the Mars atmosphere and a driver for the processes leading to atmospheric escape. The MAVEN EUV monitor consists of three broadband radiometers. The radiometers consist of silicon photodiodes with different bandpass-limiting filters for each channel. The filters for the radiometers are: Channel A: thin foil C/Al/Nb/C for 0.1-3 nm and 17-22 nm, Channel B: thin foil C/Al/Ti/C for 0.1-7 nm, and Channel C: interference filter for 121-122 nm. A fourth, covered photodiode is used to monitor variations in dark signal due to temperature and radiation background changes. The three science channels will monitor emissions from the highly variable corona and transition region of the solar atmosphere. The EUV monitor is mounted on the top deck of the MAVEN spacecraft and is pointed at the Sun for most of its orbit around Mars. The measurement cadence is 1-second. The broadband irradiances can be used to monitor the most rapid changes in solar irradiance due to flares. In combination with time-interpolated observations at Earth of slower varying solar spectral emissions, the broadband MAVEN EUV monitor measurements will also be used in a spectral irradiance model to generate the full EUV spectrum at Mars from 0 to 190 nm in 1-nm bins on a time cadence of 1-minute and daily averages.

  8. Spacecraft TT&C and information transmission theory and technologies

    CERN Document Server

    Liu, Jiaxing

    2015-01-01

    Spacecraft TT&C and Information Transmission Theory and Technologies introduces the basic theory of spacecraft TT&C (telemetry, track and command) and information transmission. Combining TT&C and information transmission, the book presents several technologies for continuous wave radar including measurements for range, range rate and angle, analog and digital information transmissions, telecommand, telemetry, remote sensing and spread spectrum TT&C. For special problems occurred in the channels for TT&C and information transmission, the book represents radio propagation features and its impact on orbit measurement accuracy, and the effects caused by rain attenuation, atmospheric attenuation and multi-path effect, and polarization composition technology. This book can benefit researchers and engineers in the field of spacecraft TT&C and communication systems. Liu Jiaxing is a professor at The 10th Institute of China Electronics Technology Group Corporation.

  9. Monitoring and modeling of water flow and solute transport in the soil-plant-atmosphere system of poplar trees to evaluate the effectiveness of phytoremediation techniques.

    Science.gov (United States)

    Palladino, Mario; Di Fiore, Paola; Speranza, Giuseppe; Sica, Benedetto; Romano, Nunzio

    2015-04-01

    This work is part of a series of studies being carried out within the EU-Life+ project ECOREMED (Implementation of eco-compatible protocols for agricultural soil remediation in Litorale Domizio-Agro Aversano NIPS). The project refers to Litorale Domitio-Agro Aversano that has been identified as National Interest Priority Site (NIPS) and includes some polluted agricultural land belonging to more than 61 municipalities in the Naples and Caserta provinces of the Campania Region. The major aim of the project is to define an operating protocol for agriculture-based bioremediation of contaminated agricultural soils, also including the use of plant extracting pollutants to be used as biomasses for renewable energy production. This contribution specifically address the question of evaluating the effectiveness of phytoremediation actions selected by the project in the pilot area of Trentola-Ducenta and will provide some preliminary results of monitoring and modeling activities. A physical and hydraulic characterization has been carried out in this area where poplar trees were planted. Monitoring of water flow, root water uptake and solute transport in the soil-plant-atmosphere is under way with reference to two trees using capacitance soil moisture and matric potential sensors located at three different soil depths, whereas plant water status and evapotranspiration fluxes are indirectly estimated using fast-responding stem dendrometers.

  10. Implementing a wind measurement Doppler Lidar based on a molecular iodine filter to monitor the atmospheric wind field over Beijing

    Science.gov (United States)

    Du, Li-fang; Yang, Guo-tao; Wang, Ji-hong; Yue, Chuan; Chen, Lin-xiang

    2017-02-01

    A wind measurement Doppler Lidar system was developed, in which injection seeded laser was used to generate narrow linewidth laser pulse. Frequency stabilization was achieved through absorption of iodine molecules. Commands that control the instrumental system were based on the PID algorithm and coded using VB language. The frequency of the seed laser was locked to iodine molecular absorption line 1109 which is close to the upper edge of the absorption range,with long-time (>4 h) frequency-locking accuracy being ≤0.5 MHz and long-time frequency stability being 3.55×10-9. Design the continuous light velocity measuring system, which concluded the cure about doppler frequency shift and actual speed of chopped wave plate, the velocity error is less than 0.4 m/s. The experiment showed that the stabilized frequency of the seed laser was different from the transmission frequency of the Lidar. And such frequency deviation is known as Chirp of the laser pulse. The real-time measured frequency difference of the continuous and pulsed lights was about 10 MHz, long-time stability deviation was around 5 MHz. When the temporal and spatial resolutions were respectively set to 100 s and 96 m, the wind velocity measurement error of the horizontal wind field at the attitude of 15-35 km was within ±5 m/s, the results showed that the wind measurement Doppler Lidar implemented in Yanqing, Beijing was capable of continuously detecting in the middle and low atmospheric wind field at nighttime. With further development of this technique, system measurement error could be lowered, and long-run routine observations are promising.

  11. Atmospheric Water Monitoring by Using Ground-Based GPS during Heavy Rains Produced by TPV and SWV

    Directory of Open Access Journals (Sweden)

    Guoping Li

    2013-01-01

    Full Text Available The time series of precipitable water (PW in 30 min intervals has been determined through experimentation and operational application of a ground-based global positioning system (GPS network in Chengdu Plain, which is used for precise and reliable meteorological research. This study is the first to apply PW to the southwest vortex (SWV and heavy rain events by using the data from an intensive SWV experiment conducted in summer 2010. The PW derived from the local ground-based GPS network was used in the monitoring and analysis of heavy rain caused by the SWV and the Tibetan Plateau vortex (TPV. Results indicate that an increase in GPS precipitable water (GPS-PW occurs prior to the development of the TPV and SWV; rainfall occurs mainly during high levels of GPS-PW. The evolution features of GPS-PW in rainfall process caused by different weather systems over the Tibetan Plateau (TP also differ. These results indicate the reference values for operational applications of GPS-PW data in short-term forecasting and nowcasting of high-impact weather in addition to further investigation of heavy rain caused by the TPV, SWV, and other severe weather systems over the TP.

  12. Microbiological burden on the surfaces of Explorer 33 spacecraft.

    Science.gov (United States)

    Powers, E M

    1967-09-01

    The Explorer XXXIII Spacecraft (Anchored Interplanetary Monitoring Platform, or AIMP) was decontaminated to prevent gross contamination of the moon with terrestrial microorganisms. Assay of the total spacecraft surface before and after decontamination showed that the decontamination procedure reduced the viable microbiological burden from 1.40 x 10(6) to 3.60 x 10(4). However, assembly of parts which were not decontaminated for engineering reasons or were not assembled under cleanroom conditions increased the viable microbial burden at the time of launch to 2.62 x 10(5).

  13. Probability Estimates of Solar Particle Event Doses During a Period of Low Sunspot Number for Thinly-Shielded Spacecraft and Short Duration Missions

    Science.gov (United States)

    Atwell, William; Tylka, Allan J.; Dietrich, William; Rojdev, Kristina; Matzkind, Courtney

    2016-01-01

    In an earlier paper (Atwell, et al., 2015), we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the sunspot number (SSN) was less than 30. These SPEs contain Ground Level Events (GLE), sub-GLEs, and sub-sub-GLEs (Tylka and Dietrich, 2009, Tylka and Dietrich, 2008, and Atwell, et al., 2008). GLEs are extremely energetic solar particle events having proton energies extending into the several GeV range and producing secondary particles in the atmosphere, mostly neutrons, observed with ground station neutron monitors. Sub-GLE events are less energetic, extending into the several hundred MeV range, but do not produce secondary atmospheric particles. Sub-sub GLEs are even less energetic with an observable increase in protons at energies greater than 30 MeV, but no observable proton flux above 300 MeV. In this paper, we consider those SPEs that occurred during 1973-2010 when the SSN was greater than 30 but less than 50. In addition, we provide probability estimates of absorbed dose based on mission duration with a 95% confidence level (CL). We also discuss the implications of these data and provide some recommendations that may be useful to spacecraft designers of these smaller spacecraft.

  14. Monitoring Depth of Shallow Atmospheric Boundary Layer to Complement LiDAR Measurements Affected by Partial Overlap

    Directory of Open Access Journals (Sweden)

    Sandip Pal

    2014-09-01

    Full Text Available There is compelling evidence that the incomplete laser beam receiver field-of-view overlap (i.e., partial overlap of ground-based vertically-pointing aerosol LiDAR restricts the observational range for detecting aerosol layer boundaries to a certain height above the LiDAR. This height varies from one to few hundreds of meters, depending on the transceiver geometry. The range, or height of full overlap, is defined as the minimum distance at which the laser beam is completely imaged onto the detector through the field stop in the receiver optics. Thus, the LiDAR signal below the height of full overlap remains erroneous. In effect, it is not possible to derive the atmospheric boundary layer (ABL top (zi below the height of full overlap using lidar measurements alone. This problem makes determination of the nocturnal zi almost impossible, as the nocturnal zi is often lower than the minimum possible retrieved height due to incomplete overlap of lidar. Detailed studies of the nocturnal boundary layer or of variability of low zi would require changes in the LiDAR configuration such that a complete transceiver overlap could be achieved at a much lower height. Otherwise, improvements in the system configuration or deployment (e.g., scanning LiDAR are needed. However, these improvements are challenging due to the instrument configuration and the need for Raman channel signal, eye-safe laser transmitter for scanning deployment, etc. This paper presents a brief review of some of the challenges and opportunities in overcoming the partial overlap of the LiDAR transceiver to determine zi below the height of full-overlap using complementary approaches to derive low zi. A comprehensive discussion focusing on four different techniques is presented. These are based on the combined (1 ceilometer and LiDAR; (2 tower-based trace gas (e.g., CO2 concentration profiles and LiDAR measurements; (3 222Rn budget approach and LiDAR-derived results; and (4 encroachment model

  15. Dynamic performance of an aero-assist spacecraft - AFE

    Science.gov (United States)

    Chang, Ho-Pen; French, Raymond A.

    1992-01-01

    Dynamic performance of the Aero-assist Flight Experiment (AFE) spacecraft was investigated using a high-fidelity 6-DOF simulation model. Baseline guidance logic, control logic, and a strapdown navigation system to be used on the AFE spacecraft are also modeled in the 6-DOF simulation. During the AFE mission, uncertainties in the environment and the spacecraft are described by an error space which includes both correlated and uncorrelated error sources. The principal error sources modeled in this study include navigation errors, initial state vector errors, atmospheric variations, aerodynamic uncertainties, center-of-gravity off-sets, and weight uncertainties. The impact of the perturbations on the spacecraft performance is investigated using Monte Carlo repetitive statistical techniques. During the Solid Rocket Motor (SRM) deorbit phase, a target flight path angle of -4.76 deg at entry interface (EI) offers very high probability of avoiding SRM casing skip-out from the atmosphere. Generally speaking, the baseline designs of the guidance, navigation, and control systems satisfy most of the science and mission requirements.

  16. Simulating Flexible-Spacecraft Dynamics and Control

    Science.gov (United States)

    Fedor, Joseph

    1987-01-01

    Versatile program applies to many types of spacecraft and dynamical problems. Flexible Spacecraft Dynamics and Control program (FSD) developed to aid in simulation of large class of flexible and rigid spacecraft. Extremely versatile and used in attitude dynamics and control analysis as well as in-orbit support of deployment and control of spacecraft. Applicable to inertially oriented spinning, Earth-oriented, or gravity-gradient-stabilized spacecraft. Written in FORTRAN 77.

  17. Monitoring dioxins and furans in the vicinity of an old municipal waste incinerator after pronounced reductions of the atmospheric emissions.

    Science.gov (United States)

    Domingo, Jose L; Bocio, Ana; Nadal, Marti; Schuhmacher, Marta; Llobet, Juan M

    2002-06-01

    In order to get an overall picture of the environmental impact of an old municipal solid waste incinerator (MSWI) from S. Adrià del Besòs (Barcelona, Catalonia, Spain), a monitoring program addressed at determining the levels of a number of pollutants in the vicinity of the facility was initiated in 1998. In March 1999, an adaptation was carried out due to EU legislation on pollutant emissions from the stack. As a result, emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) were notably reduced, and a significant (30%) decrease was found in the levels of PCDD/F in herbage samples collected in the vicinity of the MSWI. In March 2001, herbage samples were collected at the same sampling points and the PCDD/F levels measured again. The current PCDD/F concentrations range from 0.23 to 1.43 ng I-TEQ kg(-1) (dry matter), with median and mean values of 0.58 and 0.66 ng I-TEQ kg(-1) (dry matter), respectively, while in the 2000 survey the PCDD/F concentrations ranged from 0.22 to 1.20 ng I-TEQ kg(-1) (dry matter), with median and mean values of 0.57 and 0.61 ng I-TEQ kg(-1) (dry matter), respectively. Although the current PCDD/F concentrations in herbage samples are comparable to those found in recent surveys carried out in various places of Catalonia, an exhaustive evaluation of the data, including principal component analysis, indicates that other emission sources of PCDD/Fs also have a notable environmental impact on the area under direct influence of the MSWI.

  18. Spacecraft Design Thermal Control Subsystem

    Science.gov (United States)

    Miyake, Robert N.

    2003-01-01

    This slide presentation reviews the functions of the thermal control subsystem engineers in the design of spacecraft. The goal of the thermal control subsystem that will be used in a spacecraft is to maintain the temperature of all spacecraft components, subsystems, and all the flight systems within specified limits for all flight modes from launch to the end of the mission. For most thermal control subsystems the mass, power and control and sensing systems must be kept below 10% of the total flight system resources. This means that the thermal control engineer is involved in all other flight systems designs. The two concepts of thermal control, passive and active are reviewed and the use of thermal modeling tools are explained. The testing of the thermal control is also reviewed.

  19. Autonomous Spacecraft Navigation With Pulsars

    CERN Document Server

    Becker, Werner; Jessner, Axel

    2013-01-01

    An external reference system suitable for deep space navigation can be defined by fast spinning and strongly magnetized neutron stars, called pulsars. Their beamed periodic signals have timing stabilities comparable to atomic clocks and provide characteristic temporal signatures that can be used as natural navigation beacons, quite similar to the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location, the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. The unique properties of pulsars make clear already today that such a navigation system will have its application in future astronautics. In this paper we describe the basic principle of spacecraft navigation using pulsars and report on the current development status of this novel technology.

  20. Two year-long continuous monitoring of PM1 aerosol chemical composition at the Cyprus Atmospheric Observatory. Source apportionment of the Organic content and geographic origins.

    Science.gov (United States)

    Stavroulas, Iasonas; Pikridas, Michael; Oikonomou, Kostantina; Vasiliadou, Emily; Savvides, Chrysanthos; Vrekoussis, Mihalis; Mihalopoulos, Nikolaos; Gros, Valerie; Sciare, Jean

    2017-04-01

    Particulate matter with diameter smaller than 1{μ}m (PM1) induces direct and indirect effects on local and regional pollution, global climate and health. As of the beginning of 2015, the chemical composition of submicron aerosols, is continuously being monitored at the newly established Cyprus Atmospheric Observatory (CAO, http://www.cyi.ac.cy/index.php/cao.html), a national facility of the ACTRIS Research Infrastructure operated by The Cyprus Institute. Cyprus, an island located in the Eastern Mediterranean Middle East region and influenced by diverse air masses throughout the year, is ideal for monitoring photochemically aged aerosols and gaseous pollutants of both natural and anthropogenic origin. Furthermore this is a unique dataset for this area in such proximity to the Middle East, a poorly documented area in terms of atmospheric aerosol observations. An Aerodyne Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM) is currently deployed at the CAO premises (35.04N - 33.06E) situated at the rural area of Agia Marina Xyliatou on the foothill of mount Troodos at an elevation of 532m above sea level (asl). The ACSM delivers chemical composition of the major non-refractory aerosol (PM1) chemical constituents (organics, sulfate, nitrate, ammonium, chloride) with an effective (close to 100{%}) collection efficiency for particles in the diameter range of 65-700 nm at a 30 minute temporal resolution. Black Carbon (BC) was also monitored using both Magee Scientific AE-31 and AE-33 aethalometers. Quality control of the PM chemical dataset was conducted by comparison with chemical analysis performed on collocated 24-h filter samples (PM1) and comparison with 1-h PM2.5 derived from a Thermo Scientific TEOM (1400a) Monitor. Positive Matrix Factorization (PMF) was conducted and different organic aerosol factors were distinguished using the Igor based SoFi toolkit utilizing the ME-2 multilinear engine. Air mass origin was investigated for each measurement day using the

  1. Interplanetary spacecraft navigation using pulsars

    CERN Document Server

    Deng, X P; You, X P; Li, M T; Keith, M J; Shannon, R M; Coles, W; Manchester, R N; Zheng, J H; Yu, X Z; Gao, D; Wu, X; Chen, D

    2013-01-01

    We demonstrate how observations of pulsars can be used to help navigate a spacecraft travelling in the solar system. We make use of archival observations of millisecond pulsars from the Parkes radio telescope in order to demonstrate the effectiveness of the method and highlight issues, such as pulsar spin irregularities, which need to be accounted for. We show that observations of four millisecond pulsars every seven days using a realistic X-ray telescope on the spacecraft throughout a journey from Earth to Mars can lead to position determinations better than approx. 20km and velocity measurements with a precision of approx. 0.1m/s.

  2. The use of tropical bromeliads (Tillandsia spp. for monitoring atmospheric pollution in the town of Florence, Italy

    Directory of Open Access Journals (Sweden)

    Luigi Brighigna

    2002-06-01

    Full Text Available The results of an experiment with two species of epiphytic angiosperms (Tillandsia caput-medusae and T. bulbosa for monitoring polycyclic aromatic hydrocarbons (PAHs in the air of Florence, Italy, are presented. PAHs are compounds known to be dangerous because of their carcinogenic potential, and among cormophytes, tillands (monocotyledons equipped with peculiar, specialised, epidermal trichomes are considered promising for air pollution biomonitoring. PAHs data were obtained using GC/MS analysis of plant extracts. Analytical data indicated an increasing trend in time of PAHs bioaccumulation. This result was compared with instrumentally recorded parameters such as meteorological (rain and environmental ones (PM10, indicating that trichome-operated physical capture of aerial particles was prominent in PAHs bioaccumulation on tillands. SEM (scanning electron microscope observations confirmed the role of the trichomes. This work indicates that tillands are particularly useful, low-cost, biomonitoring organisms inside their area of distribution (all Latin American countries and southern USA where these plants are easily available, but also wherever the climate allows them to surviveSe presentan los resultados de un experimento con dos especies de angiospermas epífitas (Tillandsia caput-medusae y T. bulbosa para monitorear hidrocarbonos aromáticos policíclicos (PAHs en el aire de Florencia, Italia. Los PAHs son compuestos que se sabe son peligrosos por su potencial carcinogénico, y, entre las cormófitas, las tilandsias (monocotiledóneas equipadas con tricomas epidérmicos, especializados y peculiares son consideradas promisorias para el biomonitoreo de la contaminación del aire. Se obtuvieron datos de PAHs usando el análisis de GC/MS de extractos de plantas. Los datos analíticos indicaron una tendencia creciente de la bioacumulación de PAH’s en el tiempo. Este resultado se comparó con los parámetros registrados instrumentalmente como

  3. Low-Cost, Class D Testing of Spacecraft Photovoltaic Systems Can Reduce Risk

    Science.gov (United States)

    Forgione, Joshua B.; Kojima, Gilbert K.; Hanel, Robert; Mallinson, Mark V.

    2014-01-01

    The end-to-end verification of a spacecraft photovoltaic power generation system requires light! Specifically, the standard practice for doing so is the Large Area Pulsed Solar Simulation (LAPSS). A LAPSS test can characterize a photovoltaic system's efficiency via its response to rapidly applied impulses of simulated sunlight. However, a Class D program on a constrained budget and schedule may not have the resources to ship an entire satellite for a LAPSS test alone. Such was the case with the Lunar Atmospheric and Dust Environment Explorer (LADEE) program, which was also averse to the risk of hardware damage during shipment. When the Electrical Power System (EPS) team was denied a spacecraft-level LAPSS test, the lack of an end-to-end power generation test elevated to a project-level technical risk. The team pulled together very limited resources to not only eliminate the risk, but build a process to monitor the health of the system through mission operations. We discuss a process for performing a low-cost, end-to-end test of the LADEE photovoltaic system. The approach combines system-level functional test, panel-level performance results, and periodic inspection (and repair) up until launch. Following launch, mission operations tools are utilized to assess system performance based on a scant amount of data. The process starts in manufacturing at the subcontractor. The panel manufacturer provides functional test and LAPSS data on each individual panel. We apply an initial assumption that the per-panel performance is sufficient to meet the power generation requirements. The manufacturer's data is also carried as the performance allocation for each panel during EPS system modeling and initial mission operations. During integration and test, a high-power, professional theater lamp system provides simulated sunlight to each panel on the spacecraft, thereby permitting a true end-to-end system test. A passing test results in a step response to nearly full-rated current

  4. Gas flow analysis during thermal vacuum test of a spacecraft. [self contamination of IMP spacecraft

    Science.gov (United States)

    Scialdone, J. J.

    1974-01-01

    The self-contamination of the IMP-H spacecraft, while it was undergoing thermal and solar vacuum tests, has been investigated in conjunction with the outgassing evaluation and detection of molecular flow anomalies occurring in the test chamber. The pressures indicated by two tubulated ionization gauges were used to calculate flow kinetics in the vacuum chamber. The fluxes of emitted molecules and chamber wall reflected molecules were monitored during the entire test. Representative equations and graphs are presented. Test results indicate that from 3 to 9 of every 100 emitted molecules returned to the spacecraft surface; that self-contamination by noncondensable gases was more severe than that by condensable gases; and that outgassing of the spacecraft was approximately 1.18 x 0.01 g/s after 10 hours and 1.18 x 0.001 after 90 hours of vacuum exposure. Testing deficiencies have been identified, and the type and location of instruments required to measure the outgassing, the degree of contamination, and return flow are discussed.

  5. Monitoring and characterization of organic reactive species in the atmosphere: a tool for management of air quality; Monitoramento e caracterizacao de especies organicas reativas na atmosfera: uma ferramenta para gestao da qualidade do ar

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Andrea; Almeida, Jose Claudino; Loureiro, Luciana [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Monitoramento Atmosferico; Moreira, Lino [TRANSPETRO, Rio de Janeiro, RJ (Brazil); Grosjean, Daniel; Grosjean, Eric [DGA Inc., Ventura, CA (United States)

    2004-07-01

    The present paper briefly reports some monitoring campaigns carried out in Rio de Janeiro Metropolitan Area through 1999 a 2001, and presents some benchmarking with the study that took place in Porto Alegre from 1996 a 1999. These studies were developed through CENPES research projects, with partnership with local academy, international consultants, local environmental agencies and the environmental secretaries from the two cities. The main goal of both studies was to speciate and characterize the Volatile Organic Compounds (VOC's) present in the urban environments of both locations in order to assess the overall atmospheric reactivity and the ozone production potentials. Highest priority was given to the locations in which vehicular emissions played important role, once the core objective of both projects was to supply technical information on the atmospheric impact of motor fuels, with special emphasis on gasoline. With the continuation of Rio de Janeiro monitoring campaigns and the inclusion of Sao Paulo in the project as an additional monitoring area, the intention is to grant enough technical input and information to establish a data bank of ambient air concentrations of speciated reactive VOC's, fully customized to the Brazilian urban scenario, aiming to go farther in the realm of atmospheric chemistry and atmospheric reactivity. In essence, the effort devoted to raise local and experimental information on air quality and vehicle emissions aims to build sound scientific basis to technically support environmental management policies of best cost-effectiveness targeting secondary pollutants control in the urban atmospheres (author)

  6. Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) from an Unmanned Aerial Vehicle (UAV): Results from the 2014 AROMAT campaign

    Science.gov (United States)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Fayt, Caroline; Maes, Jeroen; Mingireanu, Florin; Mocanu, Ionut; Georgescu, Lucian; Van Roozendael, Michel

    2015-04-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is an instrument dedicated to atmospheric trace gas retrieval from an Unmanned Aerial Vehicle (UAV). The payload is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27x12x12 cm3, and 6 W. The custom-built 2.5 m flying wing UAV is electrically powered, has a typical airspeed of 100 km/h, and can operate at a maximum altitude of 3 km. Both the payload and the UAV were developed in the framework of a collaboration between the Belgian Institute for Space Aeronomy (BIRA-IASB) and the Dunarea de Jos University of Galati, Romania. We present here SWING-UAV test flights dedicated to NO2 measurements and performed in Romania on 10 and 11 September 2014, during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign. The UAV performed 5 flights in the vicinity of the large thermal power station of Turceni (44.67° N, 23.4° E). The UAV was operated in visual range during the campaign, up to 900 m AGL , downwind of the plant and crossing its exhaust plume. The spectra recorded on flight are analyzed with the Differential Optical Absorption Spectroscopy (DOAS) method. The retrieved NO2 Differential Slant Column Densities (DSCDs) are up to 1.5e17 molec/cm2 and reveal the horizontal gradients around the plant. The DSCDs are converted to vertical columns and compared with coincident car-based DOAS measurements. We also present the near-future perspective of the SWING-UAV observation system, which includes flights in 2015 above the Black Sea to quantify ship emissions, the addition of SO2 as a target species, and autopilot flights at higher altitudes to cover a typical satellite pixel extent (10x10 km2).

  7. 大气中NH3的光学监测技术研究进展%Advances in Optical Monitoring Techniques on Atmospheric Ammonia

    Institute of Scientific and Technical Information of China (English)

    王界; 谢品华; 司福祺; 李昂; 窦科; 徐晋; 秦敏; 吴丰成

    2012-01-01

    Ammonia, the third most important abundant nitrogen compound, is a primary alkaline gas in the atmosphere. As a neutralizer of acid pollutants, ammonia has been attracted research interest. The principle sources of NH, emission have been listed. Five Optical techniques of monitoring atmospheric NH3 currently were introduced in detail, including Photo-acoustic Spectroscopy ( PAS) , Quantum Cascade Stimulated Absorption Spectra ( QCLAS ) , Fourier Transform Infrared Spectroscopy (FTIR), Tunable Semiconductor Laser Absorption Spectrum (TDLAS) and UV Differential Optical Absorption Spectroscopy ( UV-DOAS) and at last, it revealed the advantages and disadvantages among the above 5 techniques, especially to their measurement difficulties for ammonia and application areas. The recent progresses, achievements and key results on the 5 field techniques in the past decade are also put forward.%NH3是大气中含量仅次于NO和N2的含氮化合物,也是大气中重要的碱性气体,作为酸性污染物的中和剂,NH3越来越受到人们的重视.文章介绍了大气NH3的主要农业和非农业排放来源,并详细介绍了近年来大气NH3的光谱测量技术(光声光谱技术,量子级联激光吸收光谱技术,傅里叶红外分析技术,可调谐半导体激光器吸收光谱技术以及紫外差分吸收光谱技术)及其进展,总结并分析了这些技术的技术要点、应用领域以及在最近10年对大气NH3的测量结果和研究热点.

  8. Improved instrumental line shape monitoring for the ground-based, high-resolution FTIR spectrometers of the Network for the Detection of Atmospheric Composition Change

    Directory of Open Access Journals (Sweden)

    F. Hase

    2012-03-01

    Full Text Available We propose an improved monitoring scheme for the instrumental line shape (ILS of high-resolution, ground-based FTIR (Fourier Transform InfraRed spectrometers used for chemical monitoring of the atmosphere by the Network for Detection of Atmospheric Composition Change (NDACC. Good ILS knowledge is required for the analysis of the recorded mid-infrared spectra. The new method applies a sequence of measurements using different gas cells instead of a single calibration cell. Three cells are used: cell C1 is a refillable cell offering 200 mm path length and equipped with a pressure gauge (filled with 100 Pa N2O, cells C2 and C3 are sealed cells offering 75 mm path length. C2 is filled with 5 Pa of pure N2O. Cell C3 is filled with 16 Pa N2O in 200 hPa technical air, so provides pressure-broadened N2O lines. We demonstrate that an ILS retrieval using C1 improves significantly the sensitivity of the ILS retrieval over the current calibration cells used in the network, because this cell provides narrow fully saturated N2O lines. The N2O columns derived from C2 and C3 allow the performance of a highly valuable closure experiment: adopting the ILS retrieved from C1, the N2O columns of C2 and C3 are derived. Because N2O is an inert gas, both columns should be constant on long timescales. Apparent changes in the columns would immediately attract attention and indicate either inconsistent ILS results or instrumental problems of other origin. Two different cells are applied for the closure experiment, because the NDACC spectrometers observe both stratospheric and tropospheric gases: C2 mimics signatures of stratospheric gases, whereas C3 mimics signatures of tropospheric gases.

  9. Mars Aeronomy Explorer (MAX): Study Employing Distributed Micro-Spacecraft

    Science.gov (United States)

    Shotwell, Robert F.; Gray, Andrew A.; Illsley, Peter M.; Johnson, M.; Sherwood, Robert L.; Vozoff, M.; Ziemer, John K.

    2005-01-01

    An overview of a Mars Aeronomy Explorer (MAX) mission design study performed at NASA's Jet Propulsion Laboratory is presented herein. The mission design consists of ten micro-spacecraft orbiters launched on a Delta IV to Mars polar orbit to determine the spatial, diurnal and seasonal variation of the constituents of the Martian upper atmosphere and ionosphere over the course of one Martian year. The spacecraft are designed to allow penetration of the upper atmosphere to at least 90 km. This property coupled with orbit precession will yield knowledge of the nature of the solar wind interaction with Mars, the influence of the Mars crustal magnetic field on ionospheric processes, and the measurement of present thermal and nonthermal escape rates of atmospheric constituents. The mission design incorporates alternative design paradigms that are more appropriate for-and in some cases motivate-distributed micro-spacecraft. These design paradigms are not defined by a simple set of rules, but rather a way of thinking about the function of instruments, mission reliability/risk, and cost in a systemic framework.

  10. Optimal Reorientation Of Spacecraft Orbit

    Directory of Open Access Journals (Sweden)

    Chelnokov Yuriy Nikolaevich

    2014-06-01

    Full Text Available The problem of optimal reorientation of the spacecraft orbit is considered. For solving the problem we used quaternion equations of motion written in rotating coordinate system. The use of quaternion variables makes this consideration more efficient. The problem of optimal control is solved on the basis of the maximum principle. An example of numerical solution of the problem is given.

  11. Spacecraft Modularity for Serviceable Satellites

    Science.gov (United States)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  12. Sensitive monitoring of volatile chemical warfare agents in air by atmospheric pressure chemical ionization mass spectrometry with counter-flow introduction.

    Science.gov (United States)

    Seto, Yasuo; Kanamori-Kataoka, Mieko; Tsuge, Koichiro; Ohsawa, Isaac; Iura, Kazumitsu; Itoi, Teruo; Sekiguchi, Hiroyuki; Matsushita, Koji; Yamashiro, Shigeharu; Sano, Yasuhiro; Sekiguchi, Hiroshi; Maruko, Hisashi; Takayama, Yasuo; Sekioka, Ryoji; Okumura, Akihiko; Takada, Yasuaki; Nagano, Hisashi; Waki, Izumi; Ezawa, Naoya; Tanimoto, Hiroyuki; Honjo, Shigeru; Fukano, Masumi; Okada, Hidehiro

    2013-03-05

    A new method for sensitively and selectively detecting chemical warfare agents (CWAs) in air was developed using counter-flow introduction atmospheric pressure chemical ionization mass spectrometry (MS). Four volatile and highly toxic CWAs were examined, including the nerve gases sarin and tabun, and the blister agents mustard gas (HD) and Lewisite 1 (L1). Soft ionization was performed using corona discharge to form reactant ions, and the ions were sent in the direction opposite to the airflow by an electric field to eliminate the interfering neutral molecules such as ozone and nitrogen oxide. This resulted in efficient ionization of the target CWAs, especially in the negative ionization mode. Quadrupole MS (QMS) and ion trap tandem MS (ITMS) instruments were developed and investigated, which were movable on the building floor. For sarin, tabun, and HD, the protonated molecular ions and their fragment ions were observed in the positive ion mode. For L1, the chloride adduct ions of L1 hydrolysis products were observed in negative ion mode. The limit of detection (LOD) values in real-time or for a 1 s measurement monitoring the characteristic ions were between 1 and 8 μg/m(3) in QMS instrument. Collision-induced fragmentation patterns for the CWAs were observed in an ITMS instrument, and optimized combinations of the parent and daughter ion pairs were selected to achieve real-time detection with LOD values of around 1 μg/m(3). This is a first demonstration of sensitive and specific real-time detection of both positively and negatively ionizable CWAs by MS instruments used for field monitoring.

  13. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  14. Propulsion Challenges for Small Spacecraft: 2005

    Institute of Scientific and Technical Information of China (English)

    Vadim Zakirov; LI Luming

    2006-01-01

    Small (<100 kg) spacecrafts are being developed in many countries but their propulsion systems still have many challenges. Although there is demand for small spacecraft propulsion, the number of missions at present is small due to several commercial and technical reasons. Poor performance of existing small spacecraft propulsion systems is one of the main reasons for the small number of missions. Several reasons are given for the poor performance of existing small spacecraft propulsion. Suggested improvements focus on small spacecraft and propulsion hardware mass optimization rather than on specific impulse enhancement. Propellantless propulsion systems are also recommended for small spacecraft interplanetary missions.

  15. Message Mode Operations for Spacecraft: A Proposal for Operating Spacecraft During Cruise and Mitigating the Network Loading Crunch

    Science.gov (United States)

    Greenberg, Ed; MacMedan, Marv; Kazz, Greg; Kallemeyn, Pieter

    2000-01-01

    The NASA Deep Space Network (DSN) is a world-class spacecraft tracking facility with stations located in Spain, Australia and USA, servicing Deep Space Missions of many space agencies. The current system of scheduling spacecraft during cruise for multiple 8 hour tracking sessions per week currently leads to an overcommitted DSN. Studies indicate that future projected mission demands upon the Network will only make the loading problem worse. Therefore, a more efficient scheduling of DSN resources is necessary in order to support the additional network loading envisioned in the next few years: The number of missions is projected to increase from 25 in 1998 to 34 by 2001. In fact given the challenge of the NASA administrator, Dan Goldin, of launching 12 spacecraft per year, the DSN would be tracking approximately 90 spacecraft by 2010. Currently a large amount of antenna time and network resources are subscribed by a project in order to have their mission supported during the cruise phase. The recently completed Mars Pathfinder mission was tracked 3 times a week (8 hours/day) during the majority of its cruise to Mars. This paper proposes an innovative approach called Message Mode Operations (MMO) for mitigating the Network loading problem while continuing to meet the tracking, reporting, time management, and scheduling requirements of these missions during Cruise while occupying very short tracking times. MMO satisfies these requirements by providing the following services: Spacecraft Health and Welfare Monitoring Service Command Delivery Service Adaptive Spacecraft Scheduling Service Orbit Determination Service Time Calibration Service Utilizing more efficient engineering telemetry summarization and filtering techniques on-board the spacecraft and collapsing the navigation requirements for Doppler and Range into shorter tracks, we believe spacecraft can be adequately serviced using short 10 to 30 minute tracking sessions. This claim assumes that certain changes would

  16. Radio wave phase scintillation and precision Doppler tracking of spacecraft

    Science.gov (United States)

    Armstrong, J. W.

    Phase scintillation caused by propagation through solar wind, ionospheric, and tropospheric irregularities is a noise process for many spacecraft radio science experiments. In precision Doppler tracking observations, scintillation can be the dominant noise process. Scintillation statistics are necessary for experiment planning and in design of signal processing procedures. Here high-precision tracking data taken with operational spacecraft (Mars Observer, Galileo, and Mars Global Surveyor) and ground systems are used to produce temporal statistics of tropospheric and plasma phase scintillation. The variance of Doppler frequency fluctuations is approximately decomposed into two propagation processes. The first, associated with distributed scattering along the sight line in the solar wind, has a smooth spectrum. The second, associated principally with localized tropospheric scattering for X-band experiments, has a marked autocorrelation peak at the two-way light time between the Earth and the spacecraft (thus a cosine-squared modulation of the fluctuation power spectrum). For X-band data taken in the antisolar hemisphere the average noise levels of this process are in good agreement with average tropospheric noise levels determined independently from water vapor radiometer observations and radio interferometic data. The variance of the process having a smooth spectrum is consistent with plasma noise levels determined independently from dual-frequency observations of the Viking spacecraft made at comparable Sun-Earth-spacecraft angles. The observations reported here are used to refine the propagation noise model for Doppler tracking of deep space probes. In particular, they can be used to predict propagation noise levels for high-precision X- and Ka-band tracking observations (e.g., atmosphere/ionosphere/ring occultations, celestial mechanics experiments, and gravitational wave experiments) to be done using the Cassini spacecraft.

  17. Service Oriented Spacecraft Modeling Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The I-Logix team proposes development of the Service Oriented Spacecraft Modeling Environment (SOSME) to allow faster and more effective spacecraft system design...

  18. Quick Spacecraft Thermal Analysis Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft design and development teams concerned with cost and schedule, the Quick Spacecraft Thermal Analysis Tool (QuickSTAT) is an innovative software suite...

  19. Meteoroids are Dangerous to Spacecraft

    Science.gov (United States)

    Moorhead, Althea V.

    2017-01-01

    Meteoroids put dents in Shuttle windows much like bouncing gravel puts dents in your car's windshield. However, meteoroids move at such high speeds that they can partly vaporize the surfaces they strike! A dust particle (smaller than a meteoroid) hit the STEREO spacecraft and produced this fountain of smaller particles. When a meteoroid breaks up, its "shrapnel" can also be dangerous. Even when meteoroids don't damage a spacecraft, they can cause problems. Here, a small meteoroid bumped a camera on the Lunar Reconnaissance Orbiter (LRO), causing wiggles in this scan of the lunar surface. Meteoroids and pieces of space junk create rough edges on the outside of the Space Station that can damage space suits. The astronauts' gloves had to be thickened to help prevent them from ripping.

  20. Attitude Fusion Techniques for Spacecraft

    DEFF Research Database (Denmark)

    Bjarnø, Jonas Bækby

    Spacecraft platform instability constitutes one of the most significant limiting factors in hyperacuity pointing and tracking applications, yet the demand for accurate, timely and reliable attitude information is ever increasing. The PhD research project described within this dissertation has...... served to investigate the solution space for augmenting the DTU μASC stellar reference sensor with a miniature Inertial Reference Unit (IRU), thereby obtaining improved bandwidth, accuracy and overall operational robustness of the fused instrument. Present day attitude determination requirements are met...... of the instrument, and affecting operations during agile and complex spacecraft attitude maneuvers. As such, there exists a theoretical foundation for augmenting the high frequency performance of the μASC instrument, by harnessing the complementary nature of optical stellar reference and inertial sensor technology...

  1. Spacecraft Tests of General Relativity

    Science.gov (United States)

    Anderson, John D.

    1997-01-01

    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  2. Flywheel energy storage for spacecraft

    Science.gov (United States)

    Gross, S.

    1984-01-01

    Flywheel energy storage systems have been studied to determine their potential for use in spacecraft. This system was found to be superior to alkaline secondary batteries and regenerative fuel cells in most of the areas that are important in spacecraft applications. Of special importance, relative to batteries, are lighter weight, longer cycle and operating life, and high efficiency which minimizes solar array size and the amount of orbital makeup fuel required. In addition, flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have the capability of generating extremely high power for short durations.

  3. Spacecraft Tests of General Relativity

    Science.gov (United States)

    Anderson, John D.

    1997-01-01

    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  4. Multiple spacecraft Michelson stellar interferometer

    Science.gov (United States)

    Stachnik, R. V.; Arnold, D.; Melroy, P.; Mccormack, E. F.; Gezari, D. Y.

    1984-01-01

    Results of an orbital analysis and performance assessment of SAMSI (Spacecraft Array for Michelson Spatial Interferometry) are presented. The device considered includes two one-meter telescopes in orbits which are identical except for slightly different inclinations; the telescopes achieve separations as large as 10 km and relay starlight to a central station which has a one-meter optical delay line in one interferometer arm. It is shown that a 1000-km altitude, zero mean inclination orbit affords natural scanning of the 10-km baseline with departures from optical pathlength equality which are well within the corrective capacity of the optical delay line. Electric propulsion is completely adequate to provide the required spacecraft motions, principally those needed for repointing. Resolution of 0.00001 arcsec and magnitude limits of 15 to 20 are achievable.

  5. Cassini's remote sensing pallet is mated to the spacecraft in the PHSF

    Science.gov (United States)

    1997-01-01

    The complete remote sensing pallet is lowered by technicians from the Jet Propulsion Laboratory (JPL) of the California Institute of Technology and mated at the interface with the Cassini spacecraft in the Payload Hazardous Servicing Facility at KSC in July. A four-year, close-up study of the Saturnian system, the Cassini mission is scheduled for launch from Cape Canaveral Air Station in October 1997. It will take seven years for the spacecraft to reach Saturn. Scientific instruments carried aboard the spacecraft will study Saturn's atmosphere, magnetic field, rings, and several moons. JPL is managing the Cassini project for NASA.

  6. Autonomous spacecraft rendezvous and docking

    Science.gov (United States)

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  7. Laser Diagnostics for Spacecraft Propulsion

    Science.gov (United States)

    2015-10-13

    AFTC/PA Clearance No. XXXX 8 Ion Engines & Hall Thrusters Operation Ion engines and Hall thrusters are electrostatic propulsion devices • Ion Engines... Hall thrusters are gridless electrostatic thrusters – Propellant ionized by electrons trapped in magnetic field – Ions accelerated by an electric field...Briefing Charts 3. DATES COVERED (From - To) 21 September 2015 – 13 October 2015 4. TITLE AND SUBTITLE Laser Diagnostics for Spacecraft Propulsion 5a

  8. Spacecraft Pointing and Position Control,

    Science.gov (United States)

    1981-11-01

    Automatic Control, Vol. AC-16, No. 6, December 1971. [8] HEIMBOLD, G. Dynamisches Modell eines dreiachsstabilisierten, geostation&- ren Satelliten mit...the error in the star and scanner slit normal orthogonality. This spacecraft attitude also provides intermittent updates for the gyro propagated...attitude determination has been designed and successfully implemented in various earth- orbiting satellites [Ref. 1-4]. It involves a star scanner

  9. Observation of 2.45 MeV neutrons correlated with natural atmospheric lightning discharges by Lead-Free Gulmarg Neutron Monitor

    Science.gov (United States)

    Ishtiaq, P. M.; Mufti, S.; Darzi, M. A.; Mir, T. A.; Shah, G. N.

    2016-01-01

    The first experimental evidence of detecting the neutrons correlated with the natural atmospheric lightning discharges (NALD) was obtained with Lead-Free Gulmarg Neutron Monitor (LFGNM) operating at High Altitude Research Laboratory, Gulmarg, Kashmir, India, and was reported in the year 1985. The neutron observations still continue with LFGNM. However, the current configuration of LFGNM is the upgraded version of the system used earlier to record neutron bursts (in the recording period of 320 μs in four successive electronic gates of 80 μs each) supposedly originating from an NALD. In the current system the neutron recording time period/interval has been extended to 1260 μs with 63 successive gates of 20 μs each. The system also simultaneously records the differential times—maximum up to 14—between the consecutive strokes of a multistroke lightning flash. The distance between an NALD channel and LFGNM setup is determined empirically by making use of the time delay (td)/time of flight (TOF) measurement of the first detected neutron subsequent to the sensing of the electrostatic field variation caused by the initiation of an NALD in the ambient atmosphere of the LFGNM setup. Assuming a priori incident energy as 2.45 MeV of the detected neutrons supposedly generated due to the fusion of deuterium ions in the lightning discharge channel leads to quantifying the neutron emission flux if the NALD channel distance with respect to the LFGNM setup is established. In this paper we discuss the experiment and the time profiles of several of a large number of the major neutron burst events recorded with LFGNM in association with NALDs. Moreover, a rare and an extraordinary neutron burst event, in terms of its associated "td/TOF" of first detected neutron after triggering, recorded by this system is specifically discussed. In this event, the recorded TOF of 14 μs of the escaping neutron detected by the system immediately after getting triggered by the NALD that struck a

  10. Energy Storage Flywheels on Spacecraft

    Science.gov (United States)

    Bartlett, Robert O.; Brown, Gary; Levinthal, Joel; Brodeur, Stephen (Technical Monitor)

    2002-01-01

    With advances in carbon composite material, magnetic bearings, microprocessors, and high-speed power switching devices, work has begun on a space qualifiable Energy Momentum Wheel (EMW). An EMW is a device that can be used on a satellite to store energy, like a chemical battery, and manage angular momentum, like a reaction wheel. These combined functions are achieved by the simultaneous and balanced operation of two or more energy storage flywheels. An energy storage flywheel typically consists of a carbon composite rotor driven by a brushless DC motor/generator. Each rotor has a relatively large angular moment of inertia and is suspended on magnetic bearings to minimize energy loss. The use of flywheel batteries on spacecraft will increase system efficiencies (mass and power), while reducing design-production time and life-cycle cost. This paper will present a discussion of flywheel battery design considerations and a simulation of spacecraft system performance utilizing four flywheel batteries to combine energy storage and momentum management for a typical LEO satellite. A proposed set of control laws and an engineering animation will also be presented. Once flight qualified and demonstrated, space flywheel batteries may alter the architecture of most medium and high-powered spacecraft.

  11. Instrumentation on commercial aircraft for monitoring the atmospheric composition on a global scale: the IAGOS system, technical overview of ozone and carbon monoxide measurements

    Directory of Open Access Journals (Sweden)

    Phillipe Nédélec

    2015-06-01

    Full Text Available This article presents the In-service Aircraft of a Global Observing System (IAGOS developed for operations on commercial long-range Airbus aircraft (A330/A340 for monitoring the atmospheric composition. IAGOS is the continuation of the former Measurement of OZone and water vapour on Airbus In-service airCraft (MOZAIC programme (1994–2014 with five aircraft operated by European airlines over 20 yr. MOZAIC has provided unique scientific database used worldwide by the scientific community. In continuation of MOZAIC, IAGOS aims to equip a fleet up to 20 aircraft around the world and for operations over decades. IAGOS started in July 2011 with the first instruments installed aboard a Lufthansa A340-300, and a total of six aircraft are already in operation. We present the technical aircraft system concept, with basic instruments for O3, CO, water vapour and clouds; and optional instruments for measuring either NOy, NOx, aerosols or CO2/CH4. In this article, we focus on the O3 and CO instrumentation while other measurements are or will be described in specific papers. O3 and CO are measured by optimised but well-known methods such as UV absorption and IR correlation, respectively. We describe the data processing/validation and the data quality control for O3 and CO. Using the first two overlapping years of MOZAIC/IAGOS, we conclude that IAGOS can be considered as the continuation of MOZAIC with the same data quality of O3 and CO measurements.

  12. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH+, MOH+, and MO2H+, respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH+ sharply decreased, that of MOH+ increased once and then decreased, and that of MO2H+ sharply increased until reaching a plateau. The signal intensity of MO2H+ at the plateau was 40 times higher than that of MH+ and 100 times higher than that of MOH+ in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO2H+ signal in the concentration range up to 60 μg/m3, which is high enough for hygiene management. In the low concentration range lower than 3 μg/m3, which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m3 vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  13. Three-year monitoring of atmospheric PCBs and PBDEs at the Chinese Great Wall Station, West Antarctica: Levels, chiral signature, environmental behaviors and source implication

    Science.gov (United States)

    Wang, Pu; Li, Yingming; Zhang, Qinghua; Yang, Qinghua; Zhang, Lin; Liu, Fubin; Fu, Jianjie; Meng, Wenying; Wang, Dou; Sun, Huizhong; Zheng, Shucheng; Hao, Yanfen; Liang, Yong; Jiang, Guibin

    2017-02-01

    A three-year monitoring campaign (Jan 2011-2014) of polychlorinated biphenyl (PCBs) and polybrominated diphenyl ethers (PBDEs) was conducted using a high-volume air sampler at the Chinese Great Wall Station in King George Island, West Antarctica. The results showed that the Σ20PCB and Σ27PBDE concentrations (gas + particle) were 5.87-72.7 pg m-3 and 0.60-16.1 pg m-3, respectively. The lighter congeners especially PCB-11 (a non-Aroclor congener) dominated Σ20PCBs, while BDE-209 made a significant contribution to Σ27PBDEs apart from the lighter congeners (e.g., BDE-28 and -17). The chiral signature indicated nonracemic residues of chiral PCBs in the samples, suggesting potential influence of the secondary source, i.e. air-seawater exchange, on the atropisomer composition of chiral PCBs in air. Lighter PCBs (excluding PCB-11) showed significant temperature dependence in 2011 and 2012, reflecting the influence of revolatilization emission from the local surface. However, the shallow slopes of the regression lines for gaseous concentrations of POPs against reciprocal temperature (1/T) suggested long-range atmospheric transport (LRAT) as an important pathway for both PCBs and PBDEs into the Antarctic environment. Furthermore, correlations and ratios between different signature congeners deriving from the technical formulations indicated a local source of Deca-BDE and photodegradation of higher brominated BDEs. The gas/particle partitioning of POPs was also evaluated and the newly developed steady-state-based model generally showed a better performance than the equilibrium-state-based model. However, the former still underestimated the partitioning of most PCBs (log KOA <11) in particle phase, implying that further optimization is necessary when using it for those compounds with lower log KOA.

  14. Comparison of precipitation chemistry measurements obtained by the Canadian Air and Precipitation Monitoring Network and National Atmospheric Deposition Program for the period 1995-2004

    Science.gov (United States)

    Wetherbee, Gregory A.; Shaw, Michael J.; Latysh, Natalie E.; Lehmann, Christopher M.B.; Rothert, Jane E.

    2010-01-01

    Precipitation chemistry and depth measurements obtained by the Canadian Air and Precipitation Monitoring Network (CAPMoN) and the US National Atmospheric Deposition Program/National Trends Network (NADP/NTN) were compared for the 10-year period 1995–2004. Colocated sets of CAPMoN and NADP instrumentation, consisting of precipitation collectors and rain gages, were operated simultaneously per standard protocols for each network at Sutton, Ontario and Frelighsburg, Ontario, Canada and at State College, PA, USA. CAPMoN samples were collected daily, and NADP samples were collected weekly, and samples were analyzed exclusively by each network’s laboratory for pH, H + , Ca2+  , Mg2+  , Na + , K + , NH+4 , Cl − , NO−3 , and SO2−4 . Weekly and annual precipitation-weighted mean concentrations for each network were compared. This study is a follow-up to an earlier internetwork comparison for the period 1986–1993, published by Alain Sirois, Robert Vet, and Dennis Lamb in 2000. Median weekly internetwork differences for 1995–2004 data were the same to slightly lower than for data for the previous study period (1986–1993) for all analytes except NO−3 , SO2−4 , and sample depth. A 1994 NADP sampling protocol change and a 1998 change in the types of filters used to process NADP samples reversed the previously identified negative bias in NADP data for hydrogen-ion and sodium concentrations. Statistically significant biases (α = 0.10) for sodium and hydrogen-ion concentrations observed in the 1986–1993 data were not significant for 1995–2004. Weekly CAPMoN measurements generally are higher than weekly NADP measurements due to differences in sample filtration and field instrumentation, not sample evaporation, contamination, or analytical laboratory differences.

  15. Orbit determination and orbit control for the Earth Observing System (EOS) AM spacecraft

    Science.gov (United States)

    Herberg, Joseph R.; Folta, David C.

    1993-01-01

    Future NASA Earth Observing System (EOS) Spacecraft will make measurements of the earth's clouds, oceans, atmosphere, land and radiation balance. These EOS Spacecraft will be part of the NASA Mission to Planet Earth. This paper specifically addresses the EOS AM Spacecraft, referred to as 'AM' because it has a sun-synchronous orbit with a 10:30 AM descending node. This paper describes the EOS AM Spacecraft mission orbit requirements, orbit determination, orbit control, and navigation system impact on earth based pointing. The EOS AM Spacecraft will be the first spacecraft to use the TDRSS Onboard Navigation System (TONS) as the primary means of navigation. TONS flight software will process one-way forward Doppler measurements taken during scheduled TDRSS contacts. An extended Kalman filter will estimate spacecraft position, velocity, drag coefficient correction, and ultrastable master oscillator frequency bias and drift. The TONS baseline algorithms, software, and hardware implementation are described in this paper. TONS integration into the EOS AM Spacecraft Guidance, Navigation, and Control (GN&C) System; TONS assisted onboard time maintenance; and the TONS Ground Support System (TGSS) are also addressed.

  16. Navigation between the planets. [Viking spacecraft flight to Mars

    Science.gov (United States)

    Melbourne, W. G.

    1976-01-01

    Recent advances in spacecraft tracking, chronometry, ephemerides, and orbit and trajectory determinations are reviewed. Improvements in timekeeping are reviewed, as well as precision distance and range measurements; orbit determinations, trajectory-correction maneuvers, flight path optimization, and information provided by rotation of the tracking station with the earth's surface. Doppler and tropospheric wave propagation effects are dealt with. Nongravitational perturbations (solar radiation pressure, release of gases from the spacecraft, stochastic unmodeled accelerations and sequential estimation to cope with them), the effect of the target planet's gravitational field upon close approach, and navigation problems in the outer reaches of the solar system (TV data telemetered back for inertial navigation) are covered. By-products of the research include: refined data on the mass of planets, on planetary mass distributions, planet configurations, on physical properties of the atmospheres and ionospheres of planets, and opportunities for refined tests of gravitation and relativity theories and models.

  17. Spaceborne infrared Fourier-transform spectrometers for temperature and humidity sounding of the Earth's atmosphere

    Science.gov (United States)

    Golovin, Yu. M.; Zavelevich, F. S.; Nikulin, A. G.; Kozlov, D. A.; Monakhov, D. O.; Kozlov, I. A.; Arkhipov, S. A.; Tselikov, V. A.; Romanovskii, A. S.

    2014-12-01

    A spaceborne Fourier-transform infrared (FTIR) spectrometer was designed for measuring the spectra of the outgoing Earth's atmosphere radiation and serves for providing for the needs of online meteorology and climatology with regard to obtaining the following kinds of data: vertical profiles of temperature and humidity profiles in the troposphere and the lower stratosphere, the general and altitudinal ozone distribution, concentrations of small gaseous constituents, temperature of the underlying surface, etc. At present, works are underway at the Keldysh Research Centre for creating IKFS-series FTIR spectrometers for satellites in Sun-synchronous orbits: the IKFS-2 instrument for the Meteor-M spacecraft no. 2 of the Meteor-3M space complex (developed and supplied for testing together with the spacecraft) and an advanced IKFS-3 instrument for the Meteor-MP fourth-generation hydrometeorological and oceanographic space complex for Earth monitoring (at the developmental stage). The composition, functional diagram, and technical specifications of the FTIR spectrometers are presented.

  18. Coffee-can-sized spacecraft

    Science.gov (United States)

    Jones, Ross M.

    1988-01-01

    The current status and potential scientific applications of intelligent 1-5-kg projectiles being developed by SDIO and DARPA for military missions are discussed. The importance of advanced microelectronics for such small spacecraft is stressed, and it is pointed out that both chemical rockets and EM launchers are currently under consideration for these lightweight exoatmospheric projectiles (LEAPs). Long-duration power supply is identified as the primary technological change required if LEAPs are to be used for interplanetary scientific missions, and the design concept of a solar-powered space-based railgun to accelerate LEAPs on such missions is considered.

  19. Advanced antennas for SAR spacecraft

    Science.gov (United States)

    Gail, William B.

    1993-01-01

    Single and multi-frequency antenna concepts were developed to evaluate the feasibility of building large aperture polarimetric synthetic aperture radar (SAR) systems to be launched in low cost vehicles such as the Delta 2. The antennas are 18.9 m long by 2.6 m wide (L-band) and achieve single polarization imaging to an incidence angle of 55 degrees and dual/quad imaging to 42 degrees. When combined with strawman spacecraft designs, both concepts meet the mass and volume constraints imposed by a Delta 2 launch.

  20. Multi-spacecraft Observations of the Martian Plasma Interaction

    Science.gov (United States)

    Brain, David; Luhmann, J.; Halekas, J.; Frahm, R.; Winningham, J.; Barabash, S.

    2006-09-01

    Two spacecraft with complementary instrumentation and orbits are currently making in situ measurements of the Martian plasma environment. Mars Global Surveyor (MGS) measures electrons and magnetic field from a 400 km circular mapping orbit with fixed local time. Mars Express (MEX) measures ions, electrons, and neutral particles from a precessing elliptical orbit. Each spacecraft's dataset has obvious strengths and shortcomings. Exploration of these two datasets in tandem provides an opportunity to increase our overall understanding of the Martian solar wind interaction and atmospheric escape. Close passes of spacecraft (conjunctions) are one particularly powerful means of increasing the utility of measurements, as evidenced by the Cluster mission. At Mars, conjunctions might be used to obtain more complete simultaneous and/or co-located plasma measurements, which can be used to study a variety of phenomena ranging from the motion and 3D shape of plasma boundaries to particle acceleration near crustal magnetic fields. We have identified 40 conjunctions (instances with spacecraft separation pass was 40 km. Conjunctions occur at mid-latitudes (when the surface-projected orbit tracks of the two spacecraft nearly overlap), and at the poles. We will present comparisons of MGS Magnetometer and Electron Reflectometer (MAG/ER) and MEX Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) data for these events, including intercomparison of MGS and MEX electron data, the addition of MGS magnetic field and MES ion data, and the inclusion of solar wind proxy information to establish context. Finally, we will present the results of a search for other useful configurations of MGS and MEX, including times when they are on the same flux tube, times when they pass through the same region of space separated by a delay, and times when they are on opposite sides of plasma boundaries.

  1. LCOGT Network observations of spacecraft target comets

    Science.gov (United States)

    Lister, Tim; Knight, Matthew M.; Snodgrass, Colin; Samarasinha, Nalin H.

    2015-01-01

    Las Cumbres Observatory Global Telescope (LCOGT) network currently has 12 telescopes at 6 locations in the northern and southern hemispheres with expansion plans for more. This network is versatile and can respond rapidly to target of opportunity events and also perform long term monitoring of slowly changing astronomical phenomena.We have been using the LCOGT Network to perform photometric monitoring of comet 67P/Churyumov-Gerasimenko to support the ESA Rosetta comet mission and of C/2013 A1 (Siding Spring) as part of the ground-based observation teams for these important comets. This broadband photometry will allow a vital link between the detailed in-situ measurements made by the spacecraft and the global properties of the coma, at a time when the comet is only visible for short periods from single sites. The science we can extract includes the rotational state of the nucleus, characterization of the nucleus' activity, gas and dust properties in the coma (e.g., outflow velocities), chemical origin of gas species in the coma, and temporal behavior of the coma structure when the comet is close to the sun. Comet Siding Spring is a dynamically new comet on its first approach to the Sun that will pass close to Mars, so we can directly sample the composition of an original unaltered remnant of the protoplanetary disc. We will also be making use of specialized comet filters available at LCOGT's 2-m Faulkes Telescope North (FTN) to obtain a unique data set on comet C/2013 A1 (Siding Spring), as part of a large worldwide campaign. As one of only two robotic telescope equipped with cometary narrowband filters in the Northern hemisphere and having the largest aperture plus a high quality site, FTN can provide critical regular monitoring that cannot be achieved by any other single facility in the campaign.

  2. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  3. Electrolysis Propulsion for Spacecraft Applications

    Science.gov (United States)

    deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.

    1997-01-01

    Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.

  4. First Spacecraft Orbit of Mercury

    Science.gov (United States)

    Showstack, Randy

    2011-03-01

    After a 7.9-billion-kilometer flight since its launch on 3 August 2004—which included flybys of Earth, Venus, and Mercury—NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft entered a planned, highly elliptical orbit around the closest planet to our Sun on 17 March. Engineers in the mission operations center at the Johns Hopkins University Applied Physics Laboratory (JHU/APL) in Laurel, Md., which manages the mission for NASA, received radiometric signals indicating a successful orbit insertion at 9:10 P.M. local time. "Tonight we will have orbited the fifth planet in the solar system. This is a major accomplishment," Ed Weiler, NASA assistant administrator for the Science Mission Directorate, said at a 17 March public forum at JHU/APL, noting that spacecraft have previously entered orbit around several other planets. "You only go into orbit for the first time around Mercury once in human history, and that is what was accomplished tonight."

  5. Comprehensive Retrieval of Spatio-temporal Variations in Atmospheric Radionuclides just after the Fukushima Accident by Analyzing Filter-tapes of Operational Air Pollution Monitoring Stations in Eastern Japan

    Science.gov (United States)

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Moriguchi, Yuichi; Nakajima, Teruyuki

    2016-04-01

    After the Fukushima Daiichi Nuclear Power Station (FD1NPS) accident on March 11, 2011, many datasets have been available of deposition density of radionuclides in soils in eastern Japan. By contrast, no time-series data of atmospheric radionuclides has been measured in the Fukushima prefecture (FP), although very limited data is available in the Tokyo metropolitan area (TMA) located more than 170 km southwest of the FD1NPS. As a result, atmospheric transport models simulating the atmospheric concentrations and surface deposition of radionuclides have large uncertainty, as well as the estimate of release rate of source terms and of internal exposure from inhalation. One year after the accident, we collected the used filter-tapes installed in Suspended Particulate Matter (SPM) monitors with beta-ray attenuation method operated by local governments in the air pollution monitoring network of eastern Japan. The SPM monitoring stations are mostly located in the urban and/or industrial area to measure the hourly mass concentration of SPM less than 10 μm in diameter for health effect due to atmospheric aerosols. By measuring radionuclides in SPM on the filter-tapes, we retrieved hourly atmospheric Cs-134 and Cs-137 concentrations during March 12-23, 2011, when atmospheric, aquatic, and terrestrial environments were seriously suffered in most of eastern Japan. Until now, we measured hourly radiocesium at around 100 SPM sites in the southern Tohoku region (ST) including the FP and in the TMA. By analysing the dataset, about 10 plumes/polluted air masses with Cs-137 concentrations higher than 10 Bq m-3 were found, and some plumes were newly detected in this study. And the spatio-temporal distributions of atmospheric Cs-137 were clearly shown for all the plumes. The east coast area of the FP where the FD1NPS was located in the centre was attacked several times by the plumes, and suffered the highest time-integrated Cs-137 concentration during the period among the ST and TMA

  6. Rapid Spacecraft Development: Results and Lessons Learned

    Science.gov (United States)

    Watson, William A.

    2002-01-01

    The Rapid Spacecraft Development Office (RSDO) at NASA's Goddard Space Flight Center is responsible for the management and direction of a dynamic and versatile program for the definition, competition, and acquisition of multiple indefinite delivery and indefinite quantity contracts - resulting in a catalog of spacecraft buses. Five spacecraft delivery orders have been placed by the RSDO and one spacecraft has been launched. Numerous concept and design studies have been performed, most with the intent of leading to a future spacecraft acquisition. A collection of results and lessons learned is recorded to highlight management techniques, methods and processes employed in the conduct of spacecraft acquisition. Topics include working relationships under fixed price delivery orders, price and value, risk management, contingency reserves, and information restrictions.

  7. Computer simulation of spacecraft/environment interaction.

    Science.gov (United States)

    Krupnikov, K K; Makletsov, A A; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-10-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991 1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  8. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  9. Multi-spacecraft observation of a magnetic cloud

    Science.gov (United States)

    de Lucas, A.; Dal Lago, A.; Schwenn, R.; Clua de Gonzalez, A. L.; Marsch, E.; Gonzalez, W. D.

    2009-12-01

    During the time operation of the Helios mission, from 1974 to 1986, a large number of magnetic clouds was identified by the magnetic field and solar wind sensors onboard the probes. Among these magnetic clouds, some of them were identified by at least two probes, provided that IMP-8 and ISEE-3 were monitoring the dayside magnetosphere. The magnetic cloud observed on from DOY 029 to DOY 030/1977 by Helios 1, Helios 2, and IMP-8 represents a potential multi-spacecraft observed magnetic cloud. Despite the interaction with the high-speed stream that compressed the magnetic cloud, the minimum variance analysis technique showed the same direction of rotation of the magnetic field inside the magnetic cloud. This helped to associate the observation of the magnetic cloud at multi-spacecraft.

  10. NEAR Shoemaker spacecraft mission operations

    Science.gov (United States)

    Holdridge, Mark E.

    2002-01-01

    On 12 February 2001, Near Earth Asteroid Rendezvous (NEAR) Shoemaker became the first spacecraft to land on a small body, 433 Eros. Prior to that historic event, NEAR was the first-ever orbital mission about an asteroid. The mission presented general challenges associated with other planetary space missions as well as challenges unique to an inaugural mission around a small body. The NEAR team performed this operations feat with processes and tools developed during the 4-year-long cruise to Eros. Adding to the success of this historic mission was the cooperation among the NEAR science, navigation, guidance and control, mission design, and software teams. With clearly defined team roles, overlaps in responsibilities were minimized, as were the associated costs. This article discusses the processes and systems developed at APL that enabled the success of NEAR mission operations.

  11. Spacecraft Water Exposure Guidelines (SWEGs)

    Science.gov (United States)

    James, John T.

    2008-01-01

    As the protection of crew health is a primary focus of the National Aeronautics and Space Administration, the Space and Life Sciences Directorate (SLSD) is vigilant in setting potable water limits for spaceflight that are health protective. Additional it is important that exposure limits not be set so stringently that water purification systems are unnecessarily over designed. With these considerations in mind, NASA has partnered with the National Research Council on Toxicology (NRCCOT) to develop spacecraft water exposure guidelines (SWEGs) for application in spaceflight systems. Based on documented guidance (NRC, 2000) NASA has established 28 SWEGs for chemical components that are particularly relevant to water systems on the International Space Station, the Shuttle and looking forward to Constellation.

  12. CE-318太阳光度计在大气环境监测中的应用%Application of CE-318 Sun Photometer in Atmospheric Environmental Monitoring

    Institute of Scientific and Technical Information of China (English)

    李礼; 余家燕; 杨灿; 唐晓

    2012-01-01

    CE-318 sun photometer plays an important role in atmospheric environmental monitoring and research by scanning the direct solar radiation and sky light automatically and the optical characteristics of atmospheric aerosol can be obtained through specific inversion calculation.The instrument structure,measuring work procedure and inversion algorithm of CE-318 sun photometer were introduced in this paper.The monitoring result of atmospheric angstrom wavelength index in 2010 Chongqing was briefly analyzed.%CE-318太阳光度计自动进行太阳直接辐射和天空光扫描探测,通过反演计算可获取大气气溶胶各种光学特性,在大气环境监测与研究领域发挥着重要作用。介绍了CE-318太阳光度计的仪器结构、测量工作程序和反演算法,并对2010年重庆城区大气Angstrom波长指数测量结果进行了简要分析。

  13. 苔藓监测空气重金属污染技术的研究进展%Research Advances in Bryophyte Monitoring Technology to Heavy Metal Pollution in the Atmosphere

    Institute of Scientific and Technical Information of China (English)

    王爱霞; 方炎明

    2011-01-01

    苔藓是最敏感的大气污染指示植物之一,利用其可识别污染源,揭示大气重金属沉降随时间的变化规律及污染的时空变化格局,进而评价某地区的环境状况.从国内外发展概况入手,综述苔藓植物对大气重金属污染指示作用的研究进展.%Bryophyte is a group of the most sensitive indicator plants for air pollution monitoring. The application of bryophyte could help identify the pollution sources, indicate the deposition role of heavy metal pollution in the atmosphere and reflect the temporal and spatial change of the heavy metal pollution in the atmosphere. Based on the generalization of relevant researches both at home and in the world, this article summarized the studies on the indicating function of bryophyte to monitor heavy metal pollution in the atmosphere.

  14. Precision ADCS of a spinning spacecraft for the Mars Aeronomy Explorer Mission

    Science.gov (United States)

    Mungas, Greg S.; Shotwell, Robert; Gray, Andrew

    2005-01-01

    This paper discusses a precision attitude and control technique for meeting these requirements utilizing a similar architecture that was adopted for the Laboratory of Atmospheric and Space Physics (LASP) SNOE (Student Nitrous Oxide Explorer) spinning spacecraft; SNOE has been operating with its ADCS architecture in low earth orbit (LEO) for over two years.

  15. Atmospheric measurements of CDDs, CDFs and coplanar PCBs in rural and remote locations of the United States in the year 2001 from the National Dioxin Air Monitoring Network (NDAMN)

    Energy Technology Data Exchange (ETDEWEB)

    Cleverly, D. [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency (United States); Winters, D. [Office of Prevention, Pesticides and Toxic Substances, U.S. Environmental Protection Agency, WA, DC (United States); Ferrario, J.; Dupuy, A.; Byrne, C. [Environmental Chemistry Lab., U.S. Environmental Protection Agency, Stennis Space Center, MS (United States); Riggs, K.; Hartford, P.; Joseph, D.; Wisbith, T. [Battelle Memorial Inst., Columbus, OH (United States)

    2004-09-15

    The U.S. EPA has established a National Dioxin Air Monitoring Network (NDAMN) to address three primary objectives: (1) to determine the atmospheric levels and occurrences of dioxin-like compounds in rural and agricultural areas where livestock, poultry and animal feed crops are grown; (2) to provide measurements of atmospheric levels of dioxin-like compounds in remote areas of the U.S.; and (3) to provide information regarding the long-range and transboundary transport of dioxin-like compounds in air over the United States. Figure 1 shows the locations of NDAMN sites. Previously EPA has reported on the preliminary results of monitoring at 9 rural locations from June1998 through December 19991, and calendar year 2000. The year 1999 measurement at the 9 rural stations indicated an annual mean TEQ{sub DF}-WHO{sub 98} air concentration of about 11.3 fg m{sup -3}. In the year 2000, the mean of 18 rural stations and 8 remote areas were 14.6 fg m{sup -3} and 2.0 fg m{sup -3}, respectively. Since this reporting, NDAMN has been extended to include additional stations. We are reporting the air monitoring results of NDAMN for calendar year 2001 at both rural and remote sites in the U.S. The rural sites are indicated as circles and remote sites are indicted as squares on Figure 1.

  16. Spacecraft electronics design for radiation tolerance

    Science.gov (United States)

    Rasmussen, Robert D.

    1988-01-01

    Current design practices are described and future trends in spacecraft electronics which are likely to alter traditional approaches are discussed. A summary of radiation effects and radiation tolerance requirements typically levied on spacecraft designs is provided. Methods of dealing with radiation and testability issues are considered.

  17. Wet oxidation of a spacecraft model waste

    Science.gov (United States)

    Johnson, C. C.; Wydeven, T.

    1985-01-01

    Wet oxidation was used to oxidize a spacecraft model waste under different oxidation conditions. The variables studied were pressure, temperature, duration of oxidation, and the use of one homogeneous and three heterogeneous catalysts. Emphasis is placed on the final oxidation state of carbon and nitrogen since these are the two major components of the spacecraft model waste and two important plant nutrients.

  18. Printable Spacecraft: Flexible Electronic Platforms for NASA Missions. Phase One

    Science.gov (United States)

    Short, Kendra (Principal Investigator); Van Buren, David (Principal Investigator)

    2012-01-01

    Atmospheric confetti. Inchworm crawlers. Blankets of ground penetrating radar. These are some of the unique mission concepts which could be enabled by a printable spacecraft. Printed electronics technology offers enormous potential to transform the way NASA builds spacecraft. A printed spacecraft's low mass, volume and cost offer dramatic potential impacts to many missions. Network missions could increase from a few discrete measurements to tens of thousands of platforms improving areal density and system reliability. Printed platforms could be added to any prime mission as a low-cost, minimum resource secondary payload to augment the science return. For a small fraction of the mass and cost of a traditional lander, a Europa flagship mission might carry experimental printed surface platforms. An Enceladus Explorer could carry feather-light printed platforms to release into volcanic plumes to measure composition and impact energies. The ability to print circuits directly onto a variety of surfaces, opens the possibility of multi-functional structures and membranes such as "smart" solar sails and balloons. The inherent flexibility of a printed platform allows for in-situ re-configurability for aerodynamic control or mobility. Engineering telemetry of wheel/soil interactions are possible with a conformal printed sensor tape fit around a rover wheel. Environmental time history within a sample return canister could be recorded with a printed sensor array that fits flush to the interior of the canister. Phase One of the NIAC task entitled "Printable Spacecraft" investigated the viability of printed electronics technologies for creating multi-functional spacecraft platforms. Mission concepts and architectures that could be enhanced or enabled with this technology were explored. This final report captures the results and conclusions of the Phase One study. First, the report presents the approach taken in conducting the study and a mapping of results against the proposed

  19. TTEthernet for Integrated Spacecraft Networks

    Science.gov (United States)

    Loveless, Andrew

    2015-01-01

    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network

  20. Spacecraft command and control using expert systems

    Science.gov (United States)

    Norcross, Scott; Grieser, William H.

    1994-11-01

    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  1. Spacecraft Power Source Installation at Launch Complex

    Science.gov (United States)

    Lytal, Paul; Hoffman, Pamela

    2010-01-01

    For certain space missions, an assembly must be integrated onto the spacecraft as late as possible in the launch vehicle processing flow. 12This late integration can be driven for a variety of reasons including thermal or hazardous materials constraints. This paper discusses the process of integrating an assembly onto a spacecraft as late as one week prior to the opening of the launch window. Consideration is given to achieving sufficient access for hardware integration, methods of remotely securing hardware to the spacecraft, maintaining spacecraft cleanliness throughout the integration process, and electrically integrating the component to the spacecraft. Specific examples are taken from the remote mechanical, electrical, and fluid cooling system integration of the power source onto the Mars Science Laboratory (MSL) Rover at the Atlas V Vertical Integration Facility (VIF) at Cape Canaveral Air Force Station, Florida.

  2. Spacecraft Dynamics and Control Program at AFRPL

    Science.gov (United States)

    Das, A.; Slimak, L. K. S.; Schloegel, W. T.

    1986-01-01

    A number of future DOD and NASA spacecraft such as the space based radar will be not only an order of magnitude larger in dimension than the current spacecraft, but will exhibit extreme structural flexibility with very low structural vibration frequencies. Another class of spacecraft (such as the space defense platforms) will combine large physical size with extremely precise pointing requirement. Such problems require a total departure from the traditional methods of modeling and control system design of spacecraft where structural flexibility is treated as a secondary effect. With these problems in mind, the Air Force Rocket Propulsion Laboratory (AFRPL) initiated research to develop dynamics and control technology so as to enable the future large space structures (LSS). AFRPL's effort in this area can be subdivided into the following three overlapping areas: (1) ground experiments, (2) spacecraft modeling and control, and (3) sensors and actuators. Both the in-house and contractual efforts of the AFRPL in LSS are summarized.

  3. Mass spectrometric characterization of the Rosetta Spacecraft contamination

    Science.gov (United States)

    Bieler, A.; Altwegg, K.; Balsiger, H.; Berthelier, J.-J.; Calmonte, U.; Combi, M.; De Keyser, J.; Fiethe, B.; Fuselier, S. A.; Gasc, S.; Gombosi, T.; Hansen, K. C.; Hässig, M.; Korth, A.; Le Roy, L.; Mall, U.; Rème, H.; Rubin, M.; Sémon, T.; Tenishev, V.; Tzou, C.-Y.; Waite, J. H.; Wurz, P.

    2016-09-01

    Mass spectrometers are valuable tools for the in situ characterization of gaseous exo- and atmospheres and have been operated at various bodies in space. Typical measurements derive the elemental composition, relative abundances, and isotopic ratios of the examined environment. To sample tenuous gas environments around comets, icy moons, and the exosphere of Mercury, efficient instrument designs with high sensitivity are mandatory while the contamination by the spacecraft and the sensor itself should be kept as low as possible. With the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA), designed to characterize the coma of comet 67P/Churyumov-Gerasimenko, we were able to quantify the effects of spacecraft contamination on such measurements. By means of 3D computational modeling of a helium leak in the thruster pressurization tubing that was detected during the cruise phase we examine the physics involved leading to the measurements of contamination. 3 types of contamination can be distinguished: i) Compounds from the decomposition of the spacecraft material. ii) Contamination from thruster firing during maneuvers. iii) Adsorption and desorption of the sampled environment on and from the spacecraft. We show that even after more than ten years in space the effects of i) are still detectable by ROSINA and impose an important constraint on the lower limit of gas number densities one can examine by means of mass spectrometry. Effects from ii) act on much shorter time scales and can be avoided or minimized by proper mission planning and data analysis afterwards. iii) is the most difficult effect to quantify as it changes over time and finally carries the fingerprint of the sampled environment which makes prior calibration not possible.

  4. Micro GC's for Contaminant Monitoring in Spacecraft Air Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on the successful separation of 20 compounds using a 1 m coated microcolumn in Phase I, we propose to design a new micro-gas chromatograph (microGC) system to...

  5. Novel Microfluidic Instrument for Spacecraft Environmental Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — HJ Science & Technology, Inc proposes to demonstrate the feasibility of an integrated "lab-on-a-chip" technology capable of in-situ, high throughput, and real...

  6. Real-time Multispecies Spacecraft Air Quality Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase I proposal seeks to develop an ultrasensitive, multispecies sensor system for use in determining the efficacy of air...

  7. Multifunctional Glow Discharge Analyzer for Spacecraft Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and Penn State University (PSU) propose to develop a highly sensitive spectrometer based on glow discharge emission for the...

  8. Power Replenishment Patch for Spacecraft Health Monitoring Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Metis Design Corporation (MDC) proposes the development of a strain-based power replenishment technology to harvest energy for recharging remote sensors. MDC has...

  9. Mosses as an integrating tool for monitoring PAH atmospheric deposition: comparison with total deposition and evaluation of bioconcentration factors. A year-long case-study.

    Science.gov (United States)

    Foan, Louise; Domercq, Maria; Bermejo, Raúl; Santamaría, Jesús Miguel; Simon, Valérie

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) atmospheric deposition was evaluated at a remote site in Northern Spain using moss biomonitoring with Hylocomium splendens (Hedw.) Schimp., and by measuring the total deposition fluxes of PAHs. The year-long study allowed seasonal variations of PAH content in mosses to be observed, and these followed a similar trend to those of PAH fluxes in total deposition. Generally, atmospheric deposition of PAHs is greater in winter than in summer, due to more PAH emissions from domestic heating, less photoreactivity of the compounds, and intense leaching of the atmosphere by wet deposition. However, fractionation of these molecules between the environmental compartments occurs: PAH fluxes in total deposition and PAH concentrations in mosses are correlated with their solubility (r=0.852, pPAH fluxes can be estimated with moss biomonitoring data if the bioconcentration or 'enriching' factors are known.

  10. Dynamics and control of underactuated multibody spacecraft

    Science.gov (United States)

    Cho, Sangbum

    In this dissertation, we develop equations of motion for a class of multibody spacecraft consisting of a rigid base body and multiple rigid appendages connected to the base body. There has been much prior research on this topic; however, much of this research is not appropriate for nonlinear control design purposes. The motion of a multibody spacecraft is described by the position and attitude of a base body in an inertial frame and by the relative position and attitude of the attached bodies with respect to the base body; these latter quantities define the shape of the multibody spacecraft. Our aim is to develop equations of motion that reveal important nonlinear coupling effects between the translation, rotation and shape dynamics, but are simple enough for control design purposes. A rotation matrix is used to represent the attitude of the spacecraft. This allows us to avoid complexity related to the use of parameter representations such as Euler angles. Hamilton's variational principle gives three sets of nonlinear equations of motion. The latter part of this dissertation presents results of control problems for several underactuated multibody spacecraft examples. These include spacecraft with an unactuated internal sliding mass, spacecraft with unactuated fuel slosh dynamics, tethered spacecraft with attachment point actuation and the triaxial attitude control testbed with two proof mass actuation devices. These examples illustrate important features related to the dynamics and control of various underactuated multibody spacecraft. Differences in geometries of the spacecraft and gravitational assumptions require adoption of different types of control schemes. We use the multibody equations in this dissertation to formulate control equations for the models and to construct feedback controllers that achieves asymptotic stability (or convergence) to the desired (relative) equilibrium manifolds. Computer simulations demonstrate the effectiveness of the controllers.

  11. MarcoPolo-R: Mission and Spacecraft Design

    Science.gov (United States)

    Peacocke, L.; Kemble, S.; Chapuy, M.; Scheer, H.

    2013-09-01

    asteroid properties and map the surface in detail. Five potential sampling sites will be selected and closely observed in a local characterisation phase, leading to a single preferred sampling site being identified. The baseline instruments are a Narrow Angle Camera, a Mid-Infrared Spectrometer, a Visible Near-Infrared Spectrometer, a Radio Science Experiment, and a Close-up Camera. For the sampling phase, the spacecraft will perform a touch-and-go manoeuvre. A boom with a sampling mechanism at the end will be deployed, and the spacecraft will descend using visual navigation to touch the asteroid for some seconds. The rotary brush sampling mechanism will be activated on touchdown to obtain a good quality sample comprising regolith dust and pebbles. Low touchdown velocities and collision avoidance are critical at this point to prevent damage to the spacecraft and solar arrays. The spacecraft will then move away, returning to a safe orbit, and the sample will be transferred to an Earth Re-entry Capsule. After a final post-sampling characterisation campaign, the spacecraft will perform the return transfer to Earth. The Earth Re-entry Capsule will be released to directly enter the Earth's atmosphere, and is designed to survive a hard landing with no parachute deceleration. Once recovered, the asteroid sample would be extracted in a sample curation facility in preparation for the full analysis campaign. This presentation will describe Astrium's MarcoPolo-R mission and spacecraft design, with a focus on the innovative aspects of the design.

  12. Simulation modeling of the spread of harmful emissions into the atmosphere on the basis of geographic information system (GIS) of monitoring environmental condition of a megalopolis

    Science.gov (United States)

    Bissarinova, Aigul; Mamyrova, Aisha; Tussupova, Bella; Balgabayeva, Lyazzat; Mamyrbayev, Orken

    2016-10-01

    In this paper, a methodology of geoinformation approach to mapping of atmospheric pollution of the air basin of Almaty city is developed. The proposed method of presenting data on pollution in form of an algorithm allows building a map of contamination of the surface layer of the atmosphere closest to the actually observed one. Designed object-oriented method of presentation of environmental pollution in the form of dynamic GIS models can be used when modeling the ecological status of any area, megalopolis, i.e. where spatial data, distributed in time, is used.

  13. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    Science.gov (United States)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  14. Data catalog series for space science and applications flight missions. Volume 1A: Brief descriptions of planetary and heliocentric spacecraft and investigations

    Science.gov (United States)

    Cameron, W. S. (Editor); Vostreys, R. W. (Editor)

    1982-01-01

    Planetary and heliocentric spacecraft, including planetary flybys and probes, are described. Imaging, particles and fields, ultraviolet, infrared, radio science and celestial mechanics, atmospheres, surface chemistry, biology, and polarization are discussed.

  15. Lightning detection in planetary atmospheres

    CERN Document Server

    Aplin, Karen L

    2016-01-01

    Lightning in planetary atmospheres is now a well-established concept. Here we discuss the available detection techniques for, and observations of, planetary lightning by spacecraft, planetary landers and, increasingly, sophisticated terrestrial radio telescopes. Future space missions carrying lightning-related instrumentation are also summarised, specifically the European ExoMars mission and Japanese Akatsuki mission to Venus, which could both yield lightning observations in 2016.

  16. Global precipitation measurement (GPM) mission core spacecraft systems engineering challenges

    Science.gov (United States)

    Bundas, David J.; O'Neill, Deborah; Rhee, Michael; Feild, Thomas; Meadows, Gary; Patterson, Peter

    2006-09-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  17. MOORE: A prototype expert system for diagnosing spacecraft problems

    Science.gov (United States)

    Howlin, Katherine; Weissert, Jerry; Krantz, Kerry

    1988-01-01

    MOORE is a rule-based, prototype expert system that assists in diagnosing operational Tracking and Data Relay Satellite (TDRS) problems. It is intended to assist spacecraft engineers at the TDRS ground terminal in trouble shooting problems that are not readily solved with routine procedures, and without expert counsel. An additional goal of the prototype system is to develop in-house expert system and knowledge engineering skills. The prototype system diagnoses antenna pointing and earth pointing problems that may occur within the TDRS Attitude Control System (ACS). Plans include expansion to fault isolation of problems in the most critical subsystems of the TDRS spacecraft. Long term benefits are anticipated with use of an expert system during future TDRS programs with increased mission support time, reduced problem solving time, and retained expert knowledge and experience. Phase 2 of the project is intended to provide NASA the necessary expertise and capability to define requirements, evaluate proposals, and monitor the development progress of a highly competent expert system for NASA's Tracking Data Relay Satellite. Phase 2 also envisions addressing two unexplored applications for expert systems, spacecraft integration and tests (I and T) and support to launch activities. The concept, goals, domain, tools, knowledge acquisition, developmental approach, and design of the expert system. It will explain how NASA obtained the knowledge and capability to develop the system in-house without assistance from outside consultants. Future plans will also be presented.

  18. Infrared tunable diode laser applications: (i) atmospheric pollutants monitoring (ii) gas phase kinetics of elementary reactions; Application des diodes laser infrarouge accordables a deux problematiques: (i) la metrologie de polluants (ii) la cinetique des reactions elementaires

    Energy Technology Data Exchange (ETDEWEB)

    Dusanter, S.

    2002-12-15

    Infrared Tunable Diode Laser Absorption Spectroscopy provides sensibility, selectivity and high temporal resolution. We have applied this technique to atmospheric trace pollutants monitoring and to gas phase kinetics of elementary reactions. For metrology, we have developed a novel and effective protocol: pressure increase measurements. It has been applied to monitoring nitrous oxide, formaldehyde, acetaldehyde and 1,3-butadiene, in air or car exhausts. This work represents a first step toward the elaboration of a compact and portable instrument. The kinetic setup, where reactions are initiated by laser photolysis, has been validated with the well-known reactions of formyl and hydroxymethyl radicals with oxygen. A preliminary study of the rate constant for the unimolecular decomposition of pivaloyl radical has been performed. (author)

  19. Contaminants in the Atmosphere

    DEFF Research Database (Denmark)

    Skov, H.; Bossi, R.; Wåhlin, P.

    This report presents the results of atmospheric monitoring in Nuuk, Greenland. A long series of heavy metals and persistent organic Pollutants (POPs) have been measured and model calculations have been carried out supporting the interpretation of the results. Financially, the Danish Environmental...... Protection Agency supported this work with means from the MIKA/DANCEA funds for Environmental Support to the Arctic Region and the work is part of the Danish contribution to Arctic Monitoring and Assessment Programme, AMAP...

  20. Contaminants in the Atmosphere

    DEFF Research Database (Denmark)

    Skov, H.; Bossi, R.; Wåhlin, P.

    This report presents the results of atmospheric monitoring in Nuuk, Greenland. A long series of heavy metals and persistent organic Pollutants (POPs) have been measured and model calculations have been carried out supporting the interpretation of the results. Financially, the Danish Environmental...... Protection Agency supported this work with means from the MIKA/DANCEA funds for Environmental Support to the Arctic Region and the work is part of the Danish contribution to Arctic Monitoring and Assessment Programme, AMAP...

  1. Ground-Based Microwave Monitoring of Middle-Atmosphere Ozone Above Peterhof and Tomsk During Stratospheric Warming in the Winter of 2013-2014

    Science.gov (United States)

    Bochkovsky, D. A.; Virolainen, Ya. A.; Kulikov, Yu. Yu.; Marichev, V. N.; Poberovsky, A. V.; Ryskin, V. G.; Timofeyev, Yu. M.

    2016-09-01

    We present the results of studying the dynamics of middle-atmosphere ozone above Peterhof (60°N, 30°E) and Tomsk (56°N, 85°E) during stratospheric warming in the winter of 2013-2014 by the radiophysical method. In the ground-based observations we used the same microwave ozone meters (operated at 110.8 GHz) and the same techniques both for measuring the radiation spectra of ozone molecules and estimation of the vertical distribution of ozone in the middle atmosphere. These results were compared with satellite data on the total ozone content TOC (OMI/Aura), altitude profiles of ozone and temperature in the layer 20-60 km (MLS/Aura), and also with the data on ozone content in the layer 25-60 km, which were obtained using a Bruker IFS-125HR infrared Fourier spectrometer in Peterhof. Significant variations in ozone, which were caused by a stratospheric warming of the minor type, were observed in the atmosphere above Peterhof at altitudes of 40 to 60 km. The duration of dynamic perturbations above Peterhof was 2.5 months. Dynamic processes associated with the horizontal transport of air masses, which had an impact on the vertical structure of ozone in the middle atmosphere, were also detected above Tomsk, but this effect was less dependent on the background temperature variations.

  2. 学术期刊在学风建设中的把关作用探析%On the Monitoring Function of Academic Periodicals in the Construction of Study Atmosphere

    Institute of Scientific and Technical Information of China (English)

    禤展图

    2015-01-01

    本文所论及的学风主要是指学术界的学术研究风气。目前,学术道德失范,价值观念趋向功利化,学风浮躁,低水平重复现象严重。可从以下途径来发挥学术期刊在学风建设中的把关作用:切实发挥学术期刊的学术评价功能;引导学风健康发展;规范稿件处理程序,杜绝学术不端行为;提高编辑、审稿人的学术评判能力,识破变相抄袭;学术期刊编辑部定期或不定期举办学风建设培训班;编辑要以良好的学术道德规范和学术规范影响作者。%The study atmosphere in this paper means the academic research atmosphere. At present, the aca-demic moral is in a state of anomie;values tend to utilitarianism;study atmosphere is of impetuous passion;and low-level publications are redundant. Academic periodicals should give full play to the academic monitoring function with such measures as playing the assessment function, guiding the healthy development of study atmo-sphere, formalizing editorial process of contributed papers, eliminating academic misconduct, improving editor and reviewer's ability of academic judgment and plagiarism detection, holding related training classes of study at-mosphere construction, and emphasizing the model function of editor’s good academic morality and academic norm.

  3. Properties of Martian winds as determined from trajectory modelling of jettisoned spacecraft parts

    Science.gov (United States)

    Paton, Mark; Harri, Ari-Matti; Savijärvi, Hannu

    2016-10-01

    Knowing the properties of the Martian winds, i.e. speed, direction and structure, is important for understanding the global circulation of the atmosphere, dust and water transport and planning the landing of spacecraft. Measurements of wind speed and direction on Mars have previously been limited to near-surface measurements made by landers, imaging of atmospheric features such as clouds and dust and while the lander is on the parachute. The understanding of the Martian environment could therefore benefit from more determinations of wind speed and direction.The distribution of spacecraft hardware, such as heat shields, parachutes, backshells and landers, on the surface of Mars have been imaged by the HiRISE imager on-board Mars Reconnaissance Orbiter. We analyse these images, and other known properties of a spacecraft's descent, to reconstruct the trajectories of the jettisoned spacecraft components and further constrain wind properties at various lander sites. Interestingly this approach may allow wind property assessments at the landing sites of failed landers assuming their hardware components can be correctly identified in images.We assess the vertical structure of the wind at selected landing sites of successful spacecraft missions to Mars by comparing our results to mesoscale (MLAM) and 1-D column models of the Martian atmosphere that have been jointly developed by FMI and the University of Helsinki. In addition we compare our wind property findings to published meteorological measurements and modelling. We discuss the implications of our results with respect to slope and crater circulations. The feasibility of imaging spacecraft hardware from orbit of the MetNet vehicle (metnet.fmi.fi) is assessed with space flight visualisation software.

  4. BPA genetic monitoring - BPA Genetic Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Initiated in 1989, this study monitors genetic changes associated with hatchery propagation in multiple Snake River sub-basins for Chinook salmon and steelhead. We...

  5. A Ross-Stirling spacecraft refrigerator

    Science.gov (United States)

    Walker, G.; Scott, M.; Zylstra, S.

    A spacecraft refrigerator was investigated capable of providing cooling for storage of food and biological samples in the temperature range 0-20 F with cooling capacity in the range of 1 to 2 kW, operating for long periods with great reliability. The system operated on the Stirling refrigeration cycle using the spacecraft life-support gases as the working fluid. A prototype spacecraft Stirling refrigerator was designed, built, and tested with air as the working fluid. The system performance was satisfactory, meeting the requirements specified above. Potential applications for the prototype unit are mentioned.

  6. The Exploration Atmospheres Working Group's Report on Space Radiation Shielding Materials

    Science.gov (United States)

    Barghouty, A. F.; Thibeault, S. A.

    2006-01-01

    This part of Exploration Atmospheres Working Group analyses focuses on the potential use of nonmetallic composites as the interior walls and structural elements exposed to the atmosphere of the spacecraft or habitat. The primary drive to consider nonmetallic, polymer-based composites as an alternative to aluminum structure is due to their superior radiation shielding properties. But as is shown in this analysis, these composites can also be made to combine superior mechanical properties with superior shielding properties. In addition, these composites can be made safe; i.e., with regard to flammability and toxicity, as well as "smart"; i.e., embedded with sensors for the continuous monitoring of material health and conditions. The analysis main conclusions are that (1) smart polymer-based composites are an enabling technology for safe and reliable exploration missions, and (2) an adaptive, synergetic systems approach is required to meet the missions requirements from structure, properties, and processes to crew health and protection for exploration missions.

  7. The Calern atmospheric turbulence station

    Science.gov (United States)

    Chabé, Julien; Ziad, Aziz; Fantéï-Caujolle, Yan; Aristidi, Éric; Renaud, Catherine; Blary, Flavien; Marjani, Mohammed

    2016-07-01

    From its long expertise in Atmospheric Optics, the Observatoire de la Côte d'Azur and the J.L. Lagrange Laboratory have equipped the Calern Observatory with a station of atmospheric turbulence measurement (CATS: Calern Atmospheric Turbulence Station). The CATS station is equipped with a set of complementary instruments for monitoring atmospheric turbulence parameters. These new-generation instruments are autonomous within original techniques for measuring optical turbulence since the first meters above the ground to the borders of the atmosphere. The CATS station is also a support for our training activities as part of our Masters MAUCA and OPTICS, through the organization of on-sky practical works.

  8. Lifetime predictions for the Solar Maximum Mission (SMM) and San Marco spacecraft

    Science.gov (United States)

    Smith, E. A.; Ward, D. T.; Schmitt, M. W.; Phenneger, M. C.; Vaughn, F. J.; Lupisella, M. L.

    1989-01-01

    Lifetime prediction techniques developed by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) are described. These techniques were developed to predict the Solar Maximum Mission (SMM) spacecraft orbit, which is decaying due to atmospheric drag, with reentry predicted to occur before the end of 1989. Lifetime predictions were also performed for the Long Duration Exposure Facility (LDEF), which was deployed on the 1984 SMM repair mission and is scheduled for retrieval on another Space Transportation System (STS) mission later this year. Concepts used in the lifetime predictions were tested on the San Marco spacecraft, which reentered the Earth's atmosphere on December 6, 1988. Ephemerides predicting the orbit evolution of the San Marco spacecraft until reentry were generated over the final 90 days of the mission when the altitude was less than 380 kilometers. The errors in the predicted ephemerides are due to errors in the prediction of atmospheric density variations over the lifetime of the satellite. To model the time dependence of the atmospheric densities, predictions of the solar flux at the 10.7-centimeter wavelength were used in conjunction with Harris-Priester (HP) atmospheric density tables. Orbital state vectors, together with the spacecraft mass and area, are used as input to the Goddard Trajectory Determination System (GTDS). Propagations proceed in monthly segments, with the nominal atmospheric drag model scaled for each month according to the predicted monthly average value of F10.7. Calibration propagations are performed over a period of known orbital decay to obtain the effective ballistic coefficient. Progagations using plus or minus 2 sigma solar flux predictions are also generated to estimate the despersion in expected reentry dates. Definitive orbits are compared with these predictions as time expases. As updated vectors are received, these are also propagated to reentryto continually update the lifetime predictions.

  9. Simultaneous monitoring of atmospheric methane and speciated non-methane hydrocarbon concentrations using Peltier effect sub-ambient pre-concentration and gas chromatography.

    Science.gov (United States)

    Harrison, D; Seakins, P W; Lewis, A C

    2000-02-01

    Sub-ambient trapping, used to pre-concentrate atmospheric samples for non-methane hydrocarbon (NMHC) analysis by gas chromatography, can also be used to measure ambient methane concentrations. Above a sample volume of 40 ml, a dynamic equilibrium is established between ambient and trapped methane allowing for simultaneous quantitative determinations of methane and NMHC. The temperature stability of the trap is critical for quantitative methane analysis and this can be achieved by Peltier effect cooling. Simultaneous measurements of methane and NMHC reduce the equipment required for field trips and can ease the interpretation and modelling of atmospheric data. The feasibility for deployment of the system in remote locations was demonstrated by running the apparatus virtually unattended for a 5-day period. The correlations between the concentrations of methane, ethane and ethene measured during this period are discussed.

  10. A chemometrics approach applied to Fourier transform infrared spectroscopy (FTIR) for monitoring the spoilage of fresh salmon (Salmo salar) stored under modified atmospheres.

    Science.gov (United States)

    Saraiva, C; Vasconcelos, H; de Almeida, José M M M

    2017-01-16

    The aim of this work was to investigate the potential of Fourier transform infrared spectroscopy (FTIR) to detect and predict the bacterial load of salmon fillets (Salmo salar) stored at 3, 8 and 30°C under three packaging conditions: air packaging (AP) and two modified atmospheres constituted by a mixture of 50%N2/40%CO2/10%O2 with lemon juice (MAPL) and without lemon juice (MAP). Fresh salmon samples were periodically examined for total viable counts (TVC), specific spoilage organisms (SSO) counts, pH, FTIR and sensory assessment of freshness. Principal components analysis (PCA) allowed identification of the wavenumbers potentially correlated with the spoilage process. Linear discriminant analysis (LDA) of infrared spectral data was performed to support sensory data and to accurately identify samples freshness. The effect of the packaging atmospheres was assessed by microbial enumeration and LDA was used to determine sample packaging from the measured infrared spectra. It was verified that modified atmospheres can decrease significantly the bacterial load of fresh salmon. Lemon juice combined with MAP showed a more pronounced delay in the growth of Brochothrix thermosphacta, Photobacterium phosphoreum, psychrotrophs and H2S producers. Partial least squares regression (PLS-R) allowed estimates of TVC and psychrotrophs, lactic acid bacteria, molds and yeasts, Brochothrix thermosphacta, Enterobacteriaceae, Pseudomonas spp. and H2S producer counts from the infrared spectral data. For TVC, the root mean square error of prediction (RMSEP) value was 0.78logcfug(-1) for an external set of samples. According to the results, FTIR can be used as a reliable, accurate and fast method for real time freshness evaluation of salmon fillets stored under different temperatures and packaging atmospheres.

  11. Monitoring System for Atmospheric Water Vapor with a Ground-Based Multi-Band Radiometer: Meteorological Application of Radio Astronomy Technologies

    Science.gov (United States)

    Nagasaki, T.; Araki, K.; Ishimoto, H.; Kominami, K.; Tajima, O.

    2016-08-01

    High-resolution estimation of thermodynamic properties in the atmosphere can help to predict and mitigate meteorological disasters, such as local heavy rainfall and tornadic storms. For the purposes of short-term forecasting and nowcasting of severe storms, we propose a novel ground-based measurement system, which observes the intensity of atmospheric radiation in the microwave range. Our multi-band receiver system is designed to identify a rapid increase in water vapor before clouds are generated. At frequencies between 20 and 30 GHz, our system simultaneously measures water vapor as a broad absorption peak at 22 GHz as well as cloud liquid water. Another band at 50-60 GHz provides supplementary information from oxygen radiation to give vertical profiles of physical temperature. For the construction of this cold receiver system, novel technologies originally developed for observations of cosmic microwave background radiation were applied. The input atmospheric signal is amplified by a cold low-noise amplifier maintained below 10 K, while the spectrum of this amplified signal is measured using a signal analyzer under ambient conditions. The cryostat also contains a cold black body at 40 K to act as a calibration signal. This calibration signal is transported to each of the receivers via a wire grid. We can select either the atmospheric signal or the calibration signal by changing the orientation of this wire. Each receiver can be calibrated using this setup. Our system is designed to be compact (<1 m3), with low power consumption (˜ 1.5 kW). Therefore, it is easy to deploy on top of high buildings, mountains, and ship decks.

  12. Hourly atmospheric concentrations of Cs-134 and Cs-137 at monitoring stations for suspended particulate matter in and south of Fukushima after the Fukushima Daiichi Nuclear Power Plant accident

    Science.gov (United States)

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2013-04-01

    No data has been found of continuous monitoring of radioactive materials in the atmosphere in Fukushima area after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident on March 11, 2011, although it greatly contributes to accurate evaluation of the internal exposure dose, to reconstruction of emission time series of released radionuclides, and to validation of numerical simulations by atmospheric transport models. Then, we have challenged to retrieve the radioactivity in atmospheric aerosols collected every hour on a filter tape of Suspended Particulate Matter (SPM) monitoring system with beta ray attenuation method used at air pollution monitoring stations in east Japan. A test measurement for hourly atmospheric concentrations of Cs-134 and Cs-137 was successfully performed with a Ge detector for the used filter tapes during March 15-23, 2011, at three stations in Fukushima City 60 km northwest of the FD1NPP and four stations in southwest Ibaraki prefecture more than 150 km southwest of the FD1NPP. The data in Fukushima City revealed high Cs-137 concentrations of 10-30 Bq m-3 from the evening of March 15 to the early morning of March 16, when a large amount of radioactive materials was simultaneously deposited on the land surface by precipitation according to the measurement of radiation dose rate. Higher Cs-137 concentrations of 10-50 Bq m-3 were also found from the afternoon of March 20 to the morning of March 21, and which could not be detected by the radiation dose rate due to no precipitation. In contrast, much higher concentrations with the maximum of 320 Bq m-3 in southwest Ibaraki than in Fukushima City were found on the morning of March 15 and 21 under strong temperature inversion near the surface. The polluted air masses with high radioactive materials were passed away within a few hours as a plume in southwest Ibaraki, while the high Cs-137 concentrations lasted for 10-16 hours in Fukushima City where the polluted air masses after their transport

  13. In-situ monitoring by Raman spectroscopy of the thermal doping of graphene and MoS2 in O2-controlled atmosphere

    Directory of Open Access Journals (Sweden)

    Aurora Piazza

    2017-02-01

    Full Text Available The effects of temperature and atmosphere (air and O2 on the doping of monolayers of graphene (Gr on SiO2 and Si substrates, and on the doping of MoS2 multilayer flakes transferred on the same substrates have been investigated. The investigations were carried out by in situ micro-Raman spectroscopy during thermal treatments up to 430 °C, and by atomic force microscopy (AFM. The spectral positions of the G and 2D Raman bands of Gr undergo only minor changes during treatment, while their amplitude and full width at half maximum (FWHM vary as a function of the temperature and the used atmosphere. The thermal treatments in oxygen atmosphere show, in addition to a thermal effect, an effect attributable to a p-type doping through oxygen. The thermal broadening of the line shape, found during thermal treatments by in situ Raman measurements, can be related to thermal phonon effects. The absence of a band shift results from the balance between a red shift due to thermal effects and a blue shift induced by doping. This shows the potential of in situ measurements to follow the doping kinetics. The treatment of MoS2 in O2 has evidenced a progressive erosion of the flakes without relevant spectral changes in their central zone during in situ measurements. The formation of MoO3 on the edges of the flakes is observed indicative of the oxygen-activated transformation.

  14. In-situ monitoring by Raman spectroscopy of the thermal doping of graphene and MoS2 in O2-controlled atmosphere

    Science.gov (United States)

    Piazza, Aurora; Giannazzo, Filippo; Buscarino, Gianpiero; Fisichella, Gabriele; Magna, Antonino La; Roccaforte, Fabrizio; Cannas, Marco; Gelardi, Franco Mario

    2017-01-01

    The effects of temperature and atmosphere (air and O2) on the doping of monolayers of graphene (Gr) on SiO2 and Si substrates, and on the doping of MoS2 multilayer flakes transferred on the same substrates have been investigated. The investigations were carried out by in situ micro-Raman spectroscopy during thermal treatments up to 430 °C, and by atomic force microscopy (AFM). The spectral positions of the G and 2D Raman bands of Gr undergo only minor changes during treatment, while their amplitude and full width at half maximum (FWHM) vary as a function of the temperature and the used atmosphere. The thermal treatments in oxygen atmosphere show, in addition to a thermal effect, an effect attributable to a p-type doping through oxygen. The thermal broadening of the line shape, found during thermal treatments by in situ Raman measurements, can be related to thermal phonon effects. The absence of a band shift results from the balance between a red shift due to thermal effects and a blue shift induced by doping. This shows the potential of in situ measurements to follow the doping kinetics. The treatment of MoS2 in O2 has evidenced a progressive erosion of the flakes without relevant spectral changes in their central zone during in situ measurements. The formation of MoO3 on the edges of the flakes is observed indicative of the oxygen-activated transformation. PMID:28326231

  15. Odor Control in Spacecraft Waste Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft and lunar bases generate a variety of wastes containing water, including food wastes, feces, and brines. Disposal of these wastes, as well as recovery of...

  16. A Sustainable Spacecraft Component Database Solution Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerous spacecraft component databases have been developed to support NASA, DoD, and contractor design centers and design tools. Despite the clear utility of...

  17. High Efficiency Synchronous Rectification in Spacecraft

    Science.gov (United States)

    Krauhamer, S.; Das, R.; Vorperian, V.; White, J.; Bennett, J.; Rogers, D.

    1993-01-01

    This paper examines the implementaion of MOSFETs as synchronous rectifiers which results in a substantial improvement in power processing efficency and therefore may result in significant reduction of spacecraft mass and volum for the same payload.

  18. A Framework for Designing Optimal Spacecraft Formations

    Science.gov (United States)

    2002-09-01

    3 1. Reference Frame ..................................................................................6 B. SOLVING OPTIMAL CONTROL PROBLEMS ........................................7...spacecraft state. Depending on the model, there may be additional variables in the state, but there will be a minimum of these six. B. SOLVING OPTIMAL CONTROL PROBLEMS Until

  19. Participation of women in spacecraft science teams

    Science.gov (United States)

    Rathbun, Julie

    2017-06-01

    There is an ongoing discussion about the participation of women in science and particularly astronomy. Demographic data from NASA's robotic planetary spacecraft missions show women scientists to be consistently under-represented.

  20. Spacecraft (Mobile Satellite) configuration design study

    Science.gov (United States)

    1985-01-01

    The relative costs to procure and operate a two-satellite mobile satellite system designed to operate either in the UHF band of the L Band, and with several antenna diameter options in each frequency band was investigated. As configured, the size of the spacecraft is limited to the current RCA Series 4000 Geosynchronous Communications Spacecraft bus, which spans the range from 4000 to 5800 pounds in the transfer orbit. The Series 4000 bus forms the basis around which the Mobile Satellite transponder and associated antennas were appended. Although the resultant configuration has little outward resemblance to the present Series 4000 microwave communications spacecraft, the structure, attitude control, thermal, power, and command and control subsystems of the Series 4000 spacecraft are all adapted to support the Mobile Satellite mission.

  1. Chaos in attitude dynamics of spacecraft

    CERN Document Server

    Liu, Yanzhu

    2013-01-01

    Attitude dynamics is the theoretical basis of attitude control of spacecrafts in aerospace engineering. With the development of nonlinear dynamics, chaos in spacecraft attitude dynamics has drawn great attention since the 1990's. The problem of the predictability and controllability of the chaotic attitude motion of a spacecraft has a practical significance in astronautic science. This book aims to summarize basic concepts, main approaches, and recent progress in this area. It focuses on the research work of the author and other Chinese scientists in this field, providing new methods and viewpoints in the investigation of spacecraft attitude motion, as well as new mathematical models, with definite engineering backgrounds, for further analysis. Professor Yanzhu Liu was the Director of the Institute of Engineering Mechanics, Shanghai Jiao Tong University, China. Dr. Liqun Chen is a Professor at the Department of Mechanics, Shanghai University, China.

  2. Mirage Fire Sensor for Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft fires create exception risks to crew members. There is usually no place to escape. Even small amounts of hardware damage can compromise a mission. The...

  3. Passive Wireless Sensors for Spacecraft Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New classes of sensors are needed on spacecraft that can be interrogated remotely using RF signals and respond with the sensor's identity as well as the...

  4. High Efficiency Synchronous Rectification in Spacecraft

    Science.gov (United States)

    Krauhamer, S.; Das, R.; Vorperian, V.; White, J.; Bennett, J.; Rogers, D.

    1993-01-01

    This paper examines the implementaion of MOSFETs as synchronous rectifiers which results in a substantial improvement in power processing efficency and therefore may result in significant reduction of spacecraft mass and volum for the same payload.

  5. Fermi FT2 Spacecraft Pointing Files

    Data.gov (United States)

    National Aeronautics and Space Administration — This utility permits you to download the most current version of the spacecraft (FT2) file predicting the LAT's pointing for a given mission week. The FT2 file is a...

  6. Global 4-D trajectory optimization for spacecraft

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Global 4-D trajectory(x,y,z,t)is optimized for a spacecraft,which is launched from the Earth to fly around the Sun,just as star-drift of 1437 asteroids in the solar system.The spacecraft trajectory is controlled by low thrust.The performance index of optimal trajectory is to maximize the rendezvous times with the intermediate asteroids,and also maximize the final mass.This paper provides a combined algorithm of global 4-D trajectory optimization.The algorithm is composed of dynamic programming and two-point-boundary algorithm based on optimal control theory.The best 4-D trajectory is obtained:the spacecraft flies passing 55 asteroids,and rendezvous with(following or passing again)asteroids for 454 days,and finally rendezvous with the asteroid 2005SN25 on the day 60521(MJD),the final mass of the spacecraft is 836.53 kg.

  7. Power requirements for commercial communications spacecraft

    Science.gov (United States)

    Billerbeck, W. J.

    1985-01-01

    Historical data on commercial spacecraft power systems are presented and their power requirements to the growth of satellite communications channel usage are related. Some approaches for estimating future power requirements of this class of spacecraft through the year 2000 are proposed. The key technology drivers in satellite power systems are addressed. Several technological trends in such systems are described, focusing on the most useful areas for research and development of major subsystems, including solar arrays, energy storage, and power electronics equipment.

  8. Nondestructive Evaluation of Aircraft and Spacecraft Wiring

    Science.gov (United States)

    White, John E.; Tucholski, Edward J.; Green, Robert E., Jr.

    2004-01-01

    Spacecraft, and especially aircraft, often fry well past their original design lives and, therefore, the need to develop nondestructive evaluation procedures for inspection of vital structures in these craft is extremely important. One of the more recent problems is the degradation of wiring and wiring insulation. The present paper describes several nondestructive characterization methods which afford the possibility to detect wiring and insulation degradation in-situ prior to major problems with the safety of aircraft and spacecraft.

  9. Vibration and acoustic testing of spacecraft

    Science.gov (United States)

    Scharton, T. D.

    2002-01-01

    Spacecraft are subjected to a variety of dynamics environments, which may include: quasi-static, vibration and acoustic loads at launch: pyrotechnic shocks generated by separation mechanisms; on orbit jitter; and sometimes, planetary landing loads. There is a trend in the aerospace industry to rely more on structural analyses and less on testing to simulate these environments, because dynamics testing of spacecraft is time consuming, risky and expensive.

  10. Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: A stand growth approach

    NARCIS (Netherlands)

    Solberg, S.; Dobbertin, M.; Reinds, G.J.; Andreassen, K.; Lange, H.; Garcia Fernandez, P.; Hildingsson, A.; Vries, de W.

    2009-01-01

    During the last 15 years a number of studies have shown increasing forest growth in central Europe, rather than a decline as was expected due to negative effects of air pollution. We have here used data from intensive monitoring plots spread over Europe for a five year period in order to examine the

  11. Mission Operations Centers (MOCs): Integrating key spacecraft ground data system components

    Science.gov (United States)

    Harbaugh, Randy; Szakal, Donna

    1994-11-01

    In an environment characterized by decreasing budgets, limited system development time, and user needs for increased capabilities, the Mission Operations Division (MOD) at the National Aeronautics and Space Administration Goddard Space Flight Center initiated a new, cost-effective concept in developing its spacecraft ground data systems: the Mission Operations Center (MOC). In the MOC approach, key components are integrated into a comprehensive and cohesive spacecraft planning, monitoring, command, and control system with a single, state-of-the-art graphical user interface. The MOD is currently implementing MOC's, which feature a common, reusable, and extendable system architecture, to support the X-Ray Timing Explorer (XTE), Tropical Rainfall Measuring Mission (TRMM), and Advanced Composition Explorer (ACE) missions. As a result of the MOC approach, mission operations are integrated, and users can, with a single system, perform real-time health and safety monitoring, real-time command and control, real-time attitude processing, real-time and predictive graphical spacecraft monitoring, trend analysis, mission planning and scheduling, command generation and management, network scheduling, guide star selection, and (using an expert system) spacecraft monitoring and fault isolation. The MOD is also implementing its test and training simulators under the new MOC management structure. This paper describes the MOC concept, the management approaches used in developing MOC systems, the technologies employed and the development process improvement initiatives applied in implementing MOC systems, and the expected benefits to both the user and the mission project in using the MOC approach.

  12. Chemical Pollution from Combustion of Modern Spacecraft Materials

    Science.gov (United States)

    Mudgett, Paul D.

    2013-01-01

    Fire is one of the most critical contingencies in spacecraft and any closed environment including submarines. Currently, NASA uses particle based technology to detect fires and hand-held combustion product monitors to track the clean-up and restoration of habitable cabin environment after the fire is extinguished. In the future, chemical detection could augment particle detection to eliminate frequent nuisance false alarms triggered by dust. In the interest of understanding combustion from both particulate and chemical generation, NASA Centers have been collaborating on combustion studies at White Sands Test Facility using modern spacecraft materials as fuels, and both old and new technology to measure the chemical and particulate products of combustion. The tests attempted to study smoldering pyrolysis at relatively low temperatures without ignition to flaming conditions. This paper will summarize the results of two 1-week long tests undertaken in 2012, focusing on the chemical products of combustion. The results confirm the key chemical products are carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen fluoride (HF) and hydrogen chloride (HCl), whose concentrations depend on the particular material and test conditions. For example, modern aerospace wire insulation produces significant concentration of HF, which persists in the test chamber longer than anticipated. These compounds are the analytical targets identified for the development of new tunable diode laser based hand-held monitors, to replace the aging electrochemical sensor based devices currently in use on the International Space Station.

  13. Attitude Estimation in Fractionated Spacecraft Cluster Systems

    Science.gov (United States)

    Hadaegh, Fred Y.; Blackmore, James C.

    2011-01-01

    An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.

  14. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; Toth, Balazs; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Jomaas, Grunde

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  15. Surface, Water and Air Biocharacterization - A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft Environment

    Science.gov (United States)

    Pierson, Duane L.; Ott, C. Mark; Cruz, Patricia; Buttner, Mark P.

    2009-01-01

    A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft (SWAB) will use advanced molecular techniques to comprehensively evaluate microbes on board the space station, including pathogens (organisms that may cause disease). It also will track changes in the microbial community as spacecraft visit the station and new station modules are added. This study will allow an assessment of the risk of microbes to the crew and the spacecraft. Research Summary: Previous microbial analysis of spacecraft only identify microorganisms that will grow in culture, omitting greater than 90% of all microorganisms including pathogens such as Legionella (the bacterium which causes Legionnaires' disease) and Cryptosporidium (a parasite common in contaminated water) The incidence of potent allergens, such as dust mites, has never been systematically studied in spacecraft environments and microbial toxins have not been previously monitored. This study will use modern molecular techniques to identify microorganisms and allergens. Direct sampling of the ISS allows identification of the microbial communities present, and determination of whether these change or mutate over time. SWAB complements the nominal ISS environmental monitoring by providing a comparison of analyses from current media-based and advanced molecular-based technologies.

  16. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...... localities of tensions between matter and the immaterial, the practical and the ideal, and subject and object. In the colloquial language there can, moreover, often seem to be something authentic or genuine about atmosphere, juxtaposing it to staging, which is implied to be something simulated or artificial....... This introduction seeks to outline how a number of scholars have addressed the relationship between staged atmospheres and experience, and thus highlight both the philosophical, social and political aspects of atmospheres...

  17. Aero-Assisted Spacecraft Missions Using Hypersonic Waverider Aeroshells

    Science.gov (United States)

    Knittel, Jeremy

    This work examines the use of high-lift, low drag vehicles which perform orbital transfers within a planet's atmosphere to reduce propulsive requirements. For the foreseeable future, spacecraft mission design will include the objective of limiting the mass of fuel required. One means of accomplishing this is using aerodynamics as a supplemental force, with what is termed an aero-assist maneuver. Further, the use of a lifting body enables a mission designer to explore candidate trajectory types wholly unavailable to non-lifting analogs. Examples include missions to outer planets by way of an aero-gravity assist, aero-assisted plane change, aero-capture, and steady atmospheric periapsis probing missions. Engineering level models are created in order to simulate both atmospheric and extra-atmospheric space flight. Each mission is parameterized using discrete variables which control multiple areas of design. This work combines the areas of hypersonic aerodynamics, re-entry aerothermodynamics, spacecraft orbital mechanics, and vehicle shape optimization. In particular, emphasis is given to the parametric design of vehicles known as "waveriders" which are inversely designed from known shock flowfields. An entirely novel means of generating a class of waveriders known as "starbodies" is presented. A complete analysis is performed of asymmetric starbody forms and compared to a better understood parameterization, "osculating cone" waveriders. This analysis includes characterization of stability behavior, a critical discipline within hypersonic flight. It is shown that asymmetric starbodies have significant stability improvement with only a 10% reduction in the lift-to-drag ratio. By combining the optimization of both the shape of the vehicle and the trajectory it flies, much is learned about the benefit that can be expected from lifting aero-assist missions. While previous studies have conceptually proven the viability, this work provides thorough quantification of the

  18. PCDD/F and WHO-PCB contamination in an industrialized area in Brazil. First results of atmospheric monitoring and the use of Tillandsia usneoides (L) as biomonitor

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, M. de S. [Dept. de Geoquimica, Univ. Federal Fluminense. Niteroi, RJ (Brazil); Waller, U.; Reifenhaeuser, W.; Koerner, W. [Bavarian Environmental Protection Agency, Augsburg (Germany); Torres, J.P.; Malm, O. [Inst. de Biofisica, CCS-UFRJ. Ilha do Fundao, RJ (Brazil)

    2004-09-15

    A major issue of concern in developing countries like Brazil is to conciliate increasing industrialization rates to secure health and environmental standards already required to promote the free market among countries. This was pointed out during the United Nations Conference on Environment and Development in Rio de Janeiro in 1992 (Agenda 21). There it became clear that Brazil needs to develop better methods and techniques for environmental monitoring in order to control pollution sources and promote sustainable development. Among dozens of different kinds of persistent organic pollutants, polychlorinated dibenzodioxins and dibenzofurans (PCDD/PCDF) and polychlorinated biphenyls (PCB) are a matter of great concern due to their persistence, bioaccumulation and toxicological properties. PCDD and PCDF are unwanted by-products from the combustion of organic material containing trace amounts of chlorine set free in both stationary thermal sources and diffuse fuel burning. They can also be present as unwanted by-products of various industrial and metallurgical processes and metal recycling and smelters. PCB are ubiquitous contaminants of the environment and can be produced during thermal processes. In spite of their high environmental persistence and relevance in human health concerns, legal aspects regarding maximum emission limits and control of these contaminants are absent in Brazil at present. Moreover, the absence of adequately equipped laboratories and human resources together with the high costs associated hampers the research and monitoring of these contaminants in Brazil. The present work is a first report of the monitoring of total deposition rates of PCDD/PCDF and PCB in Volta Redonda City, a highly industrialized area in Rio de Janeiro State. Simultaneously, the use of an endemic Bromeliad species, Tillandsia usneoides (L), an epiphytic bromeliad, as a possible bio-monitor for persistent organochlorine compounds was investigated.

  19. Enabling Advanced Automation in Spacecraft Operations with the Spacecraft Emergency Response System

    Science.gov (United States)

    Breed, Julie; Fox, Jeffrey A.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    True autonomy is the Holy Grail of spacecraft mission operations. The goal of launching a satellite and letting it manage itself throughout its useful life is a worthy one. With true autonomy, the cost of mission operations would be reduced to a negligible amount. Under full autonomy, any problems (no matter the severity or type) that may arise with the spacecraft would be handled without any human intervention via some combination of smart sensors, on-board intelligence, and/or smart automated ground system. Until the day that complete autonomy is practical and affordable to deploy, incremental steps of deploying ever-increasing levels of automation (computerization of once manual tasks) on the ground and on the spacecraft are gradually decreasing the cost of mission operations. For example, NASA's Goddard Space Flight Center (NASA-GSFC) has been flying spacecraft with low cost operations for several years. NASA-GSFC's SMEX (Small Explorer) and MIDEX (Middle Explorer) missions have effectively deployed significant amounts of automation to enable the missions to fly predominately in 'light-out' mode. Under light-out operations the ground system is run without human intervention. Various tools perform many of the tasks previously performed by the human operators. One of the major issues in reducing human staff in favor of automation is the perceived increased in risk of losing data, or even losing a spacecraft, because of anomalous conditions that may occur when there is no one in the control center. When things go wrong, missions deploying advanced automation need to be sure that anomalous conditions are detected and that key personal are notified in a timely manner so that on-call team members can react to those conditions. To ensure the health and safety of its lights-out missions, NASA-GSFC's Advanced Automation and Autonomy branch (Code 588) developed the Spacecraft Emergency Response System (SERS). The SERS is a Web-based collaborative environment that enables

  20. Global Monitoring of Atmospheric Trace Gases, Clouds and Aerosols from UV/vis/NIR Satellite Instruments: Currents Status and Near Future Perspectives

    Science.gov (United States)

    Wagner, T.; Beirle, S.; Deutschmann, T.; Frankenberg, C.; Grzegorski, M.; Khokhar, M. F.; Kühl, S.; Marbach, T.; Mies, K.; de Vries, M. Penning; Platt, U.; Pukite, J.; Sanghavi, S.

    2008-04-01

    A new generation of UV/vis/near-IR satellite instruments like GOME (since 1995), SCIAMACHY (since 2002), OMI (since 2004), and GOME-2 (since 2006) allows to measure several important stratospheric and tropospheric trace gases like O3, NO2, OClO, HCHO, SO2, BrO, and H2O as well as clouds and aerosols from space. Because of its extended spectral range, the SCIAMACHY instrument also allows the retrieval of Greenhouse gases (CO2, CH4) and CO in the near IR. Almost all of the tropospheric trace gases are observed by these instruments for the first time. From satellite data it is possible to investigate the temporal and spatial variation. Also different sources can be characterised and quantified. The derived global distributions can serve as input and for the validation of atmospheric models. Here we give an overview on the current status of these new instruments and data products and their recent applications to various atmospheric and oceanic phenomena.

  1. Functional Metagenomics of Spacecraft Assembly Cleanrooms: Presence of Virulence Factors Associated with Human Pathogens.

    Science.gov (United States)

    Bashir, Mina; Ahmed, Mahjabeen; Weinmaier, Thomas; Ciobanu, Doina; Ivanova, Natalia; Pieber, Thomas R; Vaishampayan, Parag A

    2016-01-01

    Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics' Multiple Testing Facility during DAWN, the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory's Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella

  2. Challenge of lightning detection with LAC on board Akatsuki spacecraft

    Science.gov (United States)

    Takahashi, Yukihiro; Sato, Mitsutero; Imai, Masataka; Yair, Yoav; Fischer, Georg; Aplin, Karen

    2016-04-01

    Even after extensive investigations with spacecraft and ground-based observations, there is still no consensus on the existence of lightning in Venus. It has been reported that the magnetometer on board Venus Express detected whistler mode waves whose source could be lightning discharge occurring well below the spacecraft. On the other hand, with an infrared sensor, VIRTIS of Venus Express, does not show the positive indication of lightning flashes. In order to identify the optical flashes caused by electrical discharge in the atmosphere of Venus, at least, with an optical intensity of 1/10 of the average lightning in the Earth, we built a high-speed optical detector, LAC (Lightning and Airglow Camera), on board Akatsuki spacecraft. The unique performance of the LAC compared to other instruments is the high-speed sampling rate at 32 us interval for all 32 pixels, enabling us to distinguish the optical lightning flash from other pulsing noises. Though, unfortunately, the first attempt of the insertion of Akatsuki into the orbit around Venus failed in December 2010, the second one carried out in December 7 in 2015 was quite successful. We checked out the condition of the LAC on January 5, 2016, and it is healthy as in 2010. Due to some elongated orbit than that planned originally, we have umbra for ~30 min to observe the lightning flash in the night side of Venus every ~10 days, starting on April 2016. Here we would report the instrumental status of LAC and the preliminary results of the first attempt to observe optical lightning emissions.

  3. Development of Large-Scale Spacecraft Fire Safety Experiments

    Science.gov (United States)

    Ruff, Gary A.; Urban, David; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; Toth, Balazs; Jomaas, Grunde

    2013-01-01

    The status is presented of a spacecraft fire safety research project that is under development to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. Future crewed missions are expected to be more complex and longer in duration than previous exploration missions outside of low-earth orbit. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this gap in knowledge, a project has been established under the NASA Advanced Exploration Systems Program under the Human Exploration and Operations Mission directorate with the goal of substantially advancing our understanding of the spacecraft fire safety risk. Associated with the project is an international topical team of fire experts from other space agencies who conduct research that is integrated into the overall experiment design. The experiments are under development to be conducted in an Orbital Science Corporation Cygnus vehicle after it has undocked from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the atmosphere. A computer modeling effort will complement the experimental effort. The international topical team is collaborating with the NASA team in the definition of the experiment requirements and performing supporting analysis, experimentation and technology development. The status of the overall experiment and the associated international technology development efforts are summarized.

  4. REQUIREMENTS FOR IMAGE QUALITY OF EMERGENCY SPACECRAFTS

    Directory of Open Access Journals (Sweden)

    A. I. Altukhov

    2015-05-01

    Full Text Available The paper deals with the method for formation of quality requirements to the images of emergency spacecrafts. The images are obtained by means of remote sensing of near-earth space orbital deployment in the visible range. of electromagnetic radiation. The method is based on a joint taking into account conditions of space survey, characteristics of surveillance equipment, main design features of the observed spacecrafts and orbital inspection tasks. Method. Quality score is the predicted linear resolution image that gives the possibility to create a complete view of pictorial properties of the space image obtained by electro-optical system from the observing satellite. Formulation of requirements to the numerical value of this indicator is proposed to perform based on the properties of remote sensing system, forming images in the conditions of outer space, and the properties of the observed emergency spacecraft: dimensions, platform construction of the satellite, on-board equipment placement. For method implementation the authors have developed a predictive model of requirements to a linear resolution for images of emergency spacecrafts, making it possible to select the intervals of space shooting and get the satellite images required for quality interpretation. Main results. To verify the proposed model functionality we have carried out calculations of the numerical values for the linear resolution of the image, ensuring the successful task of determining the gross structural damage of the spacecrafts and identifying changes in their spatial orientation. As input data were used with dimensions and geometric primitives corresponding to the shape of deemed inspected spacecrafts: Resurs-P", "Canopus-B", "Electro-L". Numerical values of the linear resolution images have been obtained, ensuring the successful task solution for determining the gross structural damage of spacecrafts.

  5. NASA's first in-space optical gyroscope: A technology experiment on the X ray Timing Explorer spacecraft

    Science.gov (United States)

    Unger, Glenn; Kaufman, David M.; Krainak, Michael; Sanders, Glenn; Taylor, Bill; Schulze, Norman R.

    1993-01-01

    A technology experiment on the X-ray Timing Explorer spacecraft to determine the feasibility of Interferometric Fiber Optic Gyroscopes for space flight navigation is described. The experiment consists of placing a medium grade fiber optic gyroscope in parallel with the spacecraft's inertial reference unit. The performance of the fiber optic gyroscope will be monitored and compared to the primary mechanical gyroscope's performance throughout the two-year mission life.

  6. Quality Control Method of Precipitation Monitoring in Atmospheric Environment%大气环境降水监测的质量控制方法

    Institute of Scientific and Technical Information of China (English)

    孙娟; 喻义勇; 柏松; 朱志锋

    2016-01-01

    根据《环境监测质量管理规定》、《江苏省环境监测质量管理实施细则》及环境监测技术规范的要求,探讨了降水监测采样、样品保存技术、实验室分析的质量控制方法。采用不同采样方法、不同采样器同时采集15场降水,其降雨量、电导率、pH值的比对监测结果合格率均大于90%。经试验,降水各组分有效保存时间不同,其中NO3–, NH4+为3 d;F–,Cl–,SO42–为14 d;K+,Na+,Ca2+,Mg2+为30 d。选择2家实验室对降水样品、空白样品、标准样品同时测试,结果显示,空白测定结果均低于方法检出限,标准曲线相关性系数r≥0.9990,测定结果的相对标准偏差为1.4%~5.9%(n=6),加标回收率为89.8%~106%,标准样品的分析结果均合格。该方法能保证降水监测结果准确、可靠,满足HJ/T 165–2004《酸沉降监测技术规范》的要求。%The quality control methods of precipitation monitoring sampling,sample preservationand laboratory analysis were discussed according to the environment monitoring technical specification and standard methods such as Environmental Monitoring Quality Management Regulations and Jiangsu Province Environmental Monitoring Quality Management Implementation Details. The qualified rate of detection of rainfall,conductivity and pH monitoring was higher than 90% in 15 precipitation samples by different sampling methods and equipments. The experimental results showed that the retention time were 3 d for nitrate and ammonium,14 d forfluoride,chloride and sulfate ions,30 d for the potassium, sodium,calcium and magnesium in precipitation sample. The comparison experiment was carried out in two laboratories. The blanks were below the method detection limits,standard curve correlation coefficients were not less than 0.999 0. The relative standard deviations of detection results were 1.4%–5.9% (n=6), the recoveries of the target were 89.8%–106%. The

  7. ANITA Air Monitoring on the International Space Station: Results Compared to Other Measurements

    Science.gov (United States)

    Honne, A.; Schumann-Olsen, H.; Kaspersen, K.; Limero, T.; Macatangay, A.; Mosebach, H.; Kampf, D.; Mudgett, P. D.; James, J. T.; Tan, G.; hide

    2009-01-01

    ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarizes the results of ANITA s air analyses with emphasis on comparisons to other measurements. The main basis of comparison is NASA s set of grab samples taken onboard the ISS and analysed on ground applying various GC-based (Gas Chromatography) systems.

  8. Spacecraft Architecture and well being

    Science.gov (United States)

    Ören, Ayşe

    2016-07-01

    As we embark on a journey for new homes in the new worlds to lay solid foundations, we should consider not only the survival of frontiers but also well-being of those to live in zero gravity. As a versatile science, architecture encompasses abstract human needs as well. On our new different direction in the course of the Homo sapiens evolution, we can do this with designs addressing both our needs and senses. Well-being of humans can be achieved by creating environments supporting the cognitive and social stages in the evolution process. Space stations are going through their own evolution process. Any step taken can serve as a reference for further attempts. When studying the history of architecture, window designing is discussed in a later phase, which is the case for building a spaceship as well. We lean on the places we live both physically and metaphorically. The feeling of belonging is essential here, entailing trans-humanism, which is significant since the environment therein is like a dress comfortable enough to fit in, meeting needs without any burden. Utilizing the advent of technology, we can create moods and atmospheres to regulate night and day cycles, thus we can turn claustrophobic places into cozy or dream-like places. Senses provoke a psychological sensation going beyond cultural codes as they are rooted within consciousness, which allows designers to create a mood within a space that tells a story and evokes an emotional impact. Color, amount of light, sound and odor are not superficial. As much as intangible, they are real and powerful tools with a physical presence. Tapping into induction, we can solve a whole system based on a part thereof. Therefore, fractal designs may not yield good results unless used correctly in terms of design although they are functional, which makes geometric arrangement critical.

  9. Spacecraft Architecture and environmental pshychology

    Science.gov (United States)

    Ören, Ayşe

    2016-07-01

    As we embark on a journey for new homes in the new worlds to lay solid foundations, we should consider not only the survival of frontiers but also well-being of those to live in zero gravity. As a versatile science, architecture encompasses abstract human needs as well. On our new different direction in the course of the Homo sapiens evolution, we can do this with designs addressing both our needs and senses. Well-being of humans can be achieved by creating environments supporting the cognitive and social stages in the evolution process. Space stations are going through their own evolution process. Any step taken can serve as a reference for further attempts. When studying the history of architecture, window designing is discussed in a later phase, which is the case for building a spaceship as well. We lean on the places we live both physically and metaphorically. The feeling of belonging is essential here, entailing trans-humanism, which is significant since the environment therein is like a dress comfortable enough to fit in, meeting needs without any burden. Utilizing the advent of technology, we can create moods and atmospheres to regulate night and day cycles, thus we can turn claustrophobic places into cozy or dream-like places. Senses provoke a psychological sensation going beyond cultural codes as they are rooted within consciousness, which allows designers to create a mood within a space that tells a story and evokes an emotional impact. Color, amount of light, sound and odor are not superficial. As much as intangible, they are real and powerful tools with a physical presence. Tapping into induction, we can solve a whole system based on a part thereof. Therefore, fractal designs may not yield good results unless used correctly in terms of design although they are functional, which makes geometric arrangement critical.

  10. Spacecraft Attitude Maneuver Planning Using Genetic Algorithms

    Science.gov (United States)

    Kornfeld, Richard P.

    2004-01-01

    A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This approach for attitude path planning makes full use of a priori constraint knowledge and is computationally tractable enough to be executed onboard a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used as is or as an initial solution to initialize additional deterministic optimization algorithms. A number of representative case examples for time-fixed and time-varying conditions yielded search times that are typically on the order of minutes, thus demonstrating the viability of this method. This approach is applicable to all deep space and planet Earth missions requiring greater spacecraft autonomy, and greatly facilitates navigation and science observation planning.

  11. New approaches to planetary exploration - Spacecraft and information systems design

    Science.gov (United States)

    Diaz, A. V.; Neugebauer, M.; Stuart, J.; Miller, R. B.

    1983-01-01

    Approaches are recommended for use by the NASA Solar System Exploration Committee (SSEC) in lowering the costs of planetary missions. The inclusion of off-the-shelf hardware, i.e., configurations currently in use for earth orbits and constructed on a nearly assembly-line basis, is suggested. Alterations would be necessary for the thermal control, power supply, telecommunications equipment, and attitude sensing in order to be serviceable as a planetary observer spacecraft. New technology can be developed only when cost reduction for the entire mission would be realized. The employment of lower-cost boost motors, or even integrated boost motors, for the transfer out of earth orbit is indicated, as is the development of instruments that do not redundantly gather the same data as previous planetary missions. Missions under consideration include a Mars geoscience climatology Orbiter, a lunar geoscience Orbiter, a near-earth asteroid rendezvous, a Mars aeronomy Orbiter, and a Venus atmospheric probe.

  12. Navigation strategy with the spacecraft communications blackout for Mars entry

    Science.gov (United States)

    Wang, Xichen; Xia, Yuanqing

    2015-02-01

    Future Mars missions require precision entry navigation capability, especially in the presence of communications blackout. On the mission of Mars Science Laboratory (MSL), there was a 70-s communications blackout period during atmospheric entry phase. In allusion to the spacecraft communications blackout encountered, this paper predicts an upper-bound for any possible blackout period firstly, improves the default integrated navigation measurements based on IMU and surface radiometric beacons, and proposes innovative attitude observation model based on IMU and range observation model based on orbiters finally. To verify the accuracy and effectiveness of the proposed observation models in the presence of communications blackout, unscented Kalman filter is utilized to demonstrate the navigation performance. The results show that navigation errors based on improved observation models proposed in this paper degrade an order of magnitude compared with the default observation models even if the communications blackout takes place, which satisfies the requirements of future Mars landing missions.

  13. Observations on degradation of UV systems on Nimbus spacecraft

    Science.gov (United States)

    Heath, D. F.; Heaney, J. B.

    1972-01-01

    Broad band photometer experiments in the 1200 to 3000 A have been operating on Nimbus 3 and 4 since April 1969 for the purpose of determining the nature of variations in the UV solar irradiance. An Ebert-Fastie double monochromator has been measuring the solar irradiance and earth radiance from 2500 to 3400 A for the determination of global atmospheric ozone distributions since April 1970. From prelaunch testing and an evaluation of the flight data it is concluded that the principal source of degradation is probably the spacecraft. The degradation produces a characteristic signal loss and change in angular response of the system which might be explained by micron sized droplets becoming a permanent residue under the influence of solar UV radiation.

  14. Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying

    Science.gov (United States)

    Calhoun, Philip C.; Novo-Gradac, Anne-Marie; Shah, Neerav

    2017-01-01

    Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m 500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as micro-thruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept.

  15. SkyProbe: Real-Time Precision Monitoring in the Optical of the Absolute Atmospheric Absorption on the Telescope Science and Calibration Fields

    Science.gov (United States)

    Cuillandre, J.-C.; Magnier, E.; Sabin, D.; Mahoney, B.

    2016-05-01

    Mauna Kea is known for its pristine seeing conditions but sky transparency can be an issue for science operations since at least 25% of the observable (i.e. open dome) nights are not photometric, an effect mostly due to high-altitude cirrus. Since 2001, the original single channel SkyProbe mounted in parallel on the Canada-France-Hawaii Telescope (CFHT) has gathered one V-band exposure every minute during each observing night using a small CCD camera offering a very wide field of view (35 sq. deg.) encompassing the region pointed by the telescope for science operations, and exposures long enough (40 seconds) to capture at least 100 stars of Hipparcos' Tycho catalog at high galactic latitudes (and up to 600 stars at low galactic latitudes). The measurement of the true atmospheric absorption is achieved within 2%, a key advantage over all-sky direct thermal infrared imaging detection of clouds. The absolute measurement of the true atmospheric absorption by clouds and particulates affecting the data being gathered by the telescope's main science instrument has proven crucial for decision making in the CFHT queued service observing (QSO) representing today all of the telescope time. Also, science exposures taken in non-photometric conditions are automatically registered for a new observation at a later date at 1/10th of the original exposure time in photometric conditions to ensure a proper final absolute photometric calibration. Photometric standards are observed only when conditions are reported as being perfectly stable by SkyProbe. The more recent dual color system (simultaneous B & V bands) will offer a better characterization of the sky properties above Mauna Kea and should enable a better detection of the thinnest cirrus (absorption down to 0.01 mag., or 1%).

  16. High-Fidelity Dynamic Modeling of Spacecraft in the Continuum--Rarefied Transition Regime

    Science.gov (United States)

    Turansky, Craig P.

    The state of the art of spacecraft rarefied aerodynamics seldom accounts for detailed rigid-body dynamics. In part because of computational constraints, simpler models based upon the ballistic and drag coefficients are employed. Of particular interest is the continuum-rarefied transition regime of Earth's thermosphere where gas dynamic simulation is difficult yet wherein many spacecraft operate. The feasibility of increasing the fidelity of modeling spacecraft dynamics is explored by coupling rarefied aerodynamics with rigid-body dynamics modeling similar to that traditionally used for aircraft in atmospheric flight. Presented is a framework of analysis and guiding principles which capitalize on the availability of increasing computational methods and resources. Aerodynamic force inputs for modeling spacecraft in two dimensions in a rarefied flow are provided by analytical equations in the free-molecular regime, and the direct simulation Monte Carlo method in the transition regime. The application of the direct simulation Monte Carlo method to this class of problems is examined in detail with a new code specifically designed for engineering-level rarefied aerodynamic analysis. Time-accurate simulations of two distinct geometries in low thermospheric flight and atmospheric entry are performed, demonstrating non-linear dynamics that cannot be predicted using simpler approaches. The results of this straightforward approach to the aero-orbital coupled-field problem highlight the possibilities for future improvements in drag prediction, control system design, and atmospheric science. Furthermore, a number of challenges for future work are identified in the hope of stimulating the development of a new subfield of spacecraft dynamics.

  17. Attitude coordination for spacecraft formation with multiple communication delays

    Directory of Open Access Journals (Sweden)

    Guo Yaohua

    2015-04-01

    Full Text Available Communication delays are inherently present in information exchange between spacecraft and have an effect on the control performance of spacecraft formation. In this work, attitude coordination control of spacecraft formation is addressed, which is in the presence of multiple communication delays between spacecraft. Virtual system-based approach is utilized in case that a constant reference attitude is available to only a part of the spacecraft. The feedback from the virtual systems to the spacecraft formation is introduced to maintain the formation. Using backstepping control method, input torque of each spacecraft is designed such that the attitude of each spacecraft converges asymptotically to the states of its corresponding virtual system. Furthermore, the backstepping technique and the Lyapunov–Krasovskii method contribute to the control law design when the reference attitude is time-varying and can be obtained by each spacecraft. Finally, effectiveness of the proposed methodology is illustrated by the numerical simulations of a spacecraft