WorldWideScience

Sample records for monitoring organization air

  1. Monitoring of trace organic air pollutants – a developing country perspective

    CSIR Research Space (South Africa)

    Forbes, PBC

    2008-09-01

    Full Text Available for domestic heating and cooking purposes in developing countries. This paper focuses on the current status of organic air pollutant monitoring in southern Africa, and discusses developments in this regard. Screening methods and monitoring of indicator...

  2. Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, K.J.; Jolley, J.G.

    1994-06-01

    This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and ancillary SUMMA{reg_sign} canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14, will be used to provide qualitative and quantitative volatile organic concentration data. The Open-Path Fourier Transform Infrared Spectroscopy will provide in situ, real time monitoring of volatile organic compound concentrations in the ambient air of the Waste Storage Facilities. To supplement the OP-FTIR data, air samples will be collected using SUMMA{reg_sign}, passivated, stainless steel canisters, following the EPA Method TO-14. These samples will be analyzed for volatile organic compounds with gas chromatograph/mass spectrometry analysis. The sampling strategy, procedures, and schedules are included in this monitoring plan. The development of this monitoring plan is driven by regulatory compliance to the Resource Conservation and Recovery Act, State of Idaho Toxic Air Pollutant increments, Occupational Safety and Health Administration. The various state and federal regulations address the characterization of the volatile organic compounds and the resultant ambient air emissions that may originate from facilities involved in industrial production and/or waste management activities.

  3. Toward the next generation of air quality monitoring: Persistent organic pollutants

    Science.gov (United States)

    Hung, Hayley; MacLeod, Matthew; Guardans, Ramon; Scheringer, Martin; Barra, Ricardo; Harner, Tom; Zhang, Gan

    2013-12-01

    Persistent Organic Pollutants (POPs) are global pollutants that can migrate over long distances and bioaccumulate through food webs, posing health risks to wildlife and humans. Multilateral environmental agreements, such as the Stockholm Convention on POPs, were enacted to identify POPs and establish the conditions to control their release, production and use. A Global Monitoring Plan was initiated under the Stockholm Convention calling for POP monitoring in air as a core medium; however long temporal trends (>10 years) of atmospheric POPs are only available at a few selected sites. Spatial coverage of air monitoring for POPs has recently significantly improved with the introduction and advancement of passive air samplers. Here, we review the status of air monitoring and modeling activities and note major uncertainties in data comparability, deficiencies of air monitoring and modeling in urban and alpine areas, and lack of emission inventories for most POPs. A vision for an internationally-integrated strategic monitoring plan is proposed which could provide consistent and comparable monitoring data for POPs supported and supplemented by global and regional transport models. Key recommendations include developing expertise in all aspects of air monitoring to ensure data comparability and consistency; partnering with existing air quality and meteorological networks to leverage synergies; facilitating data sharing with international data archives; and expanding spatial coverage with passive air samplers. Enhancing research on the stability of particle-bound chemicals is needed to assess exposure and deposition in urban areas, and to elucidate long-range transport. Conducting targeted measurement campaigns in specific source areas would enhance regional models which can be extrapolated to similar regions to estimate emissions. Ultimately, reverse-modeling combined with air measurements can be used to derive “emission” as an indicator to assess environmental

  4. [Techniques of on-line monitoring volatile organic compounds in ambient air with optical spectroscopy].

    Science.gov (United States)

    Du, Zhen-Hui; Zhai, Ya-Qiong; Li, Jin-Yi; Hu, Bo

    2009-12-01

    Volatile organic compounds (VOCs) are harmful gaseous pollutants in the ambient air. The techniques of on-line monitoring VOCs are very significant for environment protection. Until now, there is no single technology that can meet all the needs of monitoring various VOCs. The characteristics and present situation of several optical methods, which can be applied to on-line monitoring VOCs, including non dispersive infrared (NDIR), Fourier transform infrared (FTIR) spectroscopy, differential optical absorption spectroscopy (DOAS), and laser spectroscopy were reviewed. Comparison was completed between the national standard methods and spectroscopic method for measuring VOCs. The main analysis was focused on the status and trends of tuning diode laser absorption spectroscopy (TDLAS) technology.

  5. Air monitoring of volatile organic compounds at relevant receptors during hydraulic fracturing operations in Washington County, Pennsylvania.

    Science.gov (United States)

    Maskrey, Joshua R; Insley, Allison L; Hynds, Erin S; Panko, Julie M

    2016-07-01

    A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds.

  6. Temporal trends of Persistent Organic Pollutants (POPs) in arctic air: 20 years of monitoring under the Arctic Monitoring and Assessment Programme (AMAP).

    Science.gov (United States)

    Hung, Hayley; Katsoyiannis, Athanasios A; Brorström-Lundén, Eva; Olafsdottir, Kristin; Aas, Wenche; Breivik, Knut; Bohlin-Nizzetto, Pernilla; Sigurdsson, Arni; Hakola, Hannele; Bossi, Rossana; Skov, Henrik; Sverko, Ed; Barresi, Enzo; Fellin, Phil; Wilson, Simon

    2016-10-01

    Temporal trends of Persistent Organic Pollutants (POPs) measured in Arctic air are essential in understanding long-range transport to remote regions and to evaluate the effectiveness of national and international chemical control initiatives, such as the Stockholm Convention (SC) on POPs. Long-term air monitoring of POPs is conducted under the Arctic Monitoring and Assessment Programme (AMAP) at four Arctic stations: Alert, Canada; Stórhöfði, Iceland; Zeppelin, Svalbard; and Pallas, Finland, since the 1990s using high volume air samplers. Temporal trends observed for POPs in Arctic air are summarized in this study. Most POPs listed for control under the SC, e.g. polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and chlordanes, are declining slowly in Arctic air, reflecting the reduction of primary emissions during the last two decades and increasing importance of secondary emissions. Slow declining trends also signifies their persistence and slow degradation under the Arctic environment, such that they are still detectable after being banned for decades in many countries. Some POPs, e.g. hexachlorobenzene (HCB) and lighter PCBs, showed increasing trends at specific locations, which may be attributable to warming in the region and continued primary emissions at source. Polybrominated diphenyl ethers (PBDEs) do not decline in air at Canada's Alert station but are declining in European Arctic air, which may be due to influence of local sources at Alert and the much higher historical usage of PBDEs in North America. Arctic air samples are screened for chemicals of emerging concern to provide information regarding their environmental persistence (P) and long-range transport potential (LRTP), which are important criteria for classification as a POP under SC. The AMAP network provides consistent and comparable air monitoring data of POPs for trend development and acts as a bridge between national monitoring programs and SC's Global Monitoring

  7. AIR RADIOACTIVITY MONITOR

    Science.gov (United States)

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  8. Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality (LMP) network. The aim has been to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source...... apportionment, and to evaluate the chemical reactions and the dispersion of the pollutants in the atmosphere. In 2002 the air quality was measured in four Danish cities and at two background sites. NO2 and PM10 were at several stations found in concentrations above the new EU limit values, which the Member...

  9. Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality (LMP) network. The aim has been to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source...... apportionment, and to evaluate the chemical reactions and the dispersion of the pollutants in the atmosphere. In 2002 the air quality was measured in four Danish cities and at two background sites. NO2 and PM10 were at several stations found in concentrations above the new EU limit values, which the Member...

  10. Tribal Air Quality Monitoring.

    Science.gov (United States)

    Wall, Dennis

    2001-01-01

    The Institute for Tribal Environmental Professionals (ITEP) (Flagstaff, Arizona) provides training and support for tribal professionals in the technical job skills needed for air quality monitoring and other environmental management tasks. ITEP also arranges internships, job placements, and hands-on training opportunities and supports an…

  11. Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.

    The Danish Air Quality Monitoring Programme (LMP IV) has been revised in accordance with the Framework Directive and the first three daughter directives of SO2, NOx/NO2, PM10, lead, benzene, CO and ozone. PM10 samplers are under installation and the installation will be completed during 2002...

  12. Monitoring and analytics of semivolatile organic compounds (SVOCs) in indoor air.

    Science.gov (United States)

    Król, Sylwia; Zabiegała, Bożena; Namieśnik, Jacek

    2011-06-01

    This paper reviews literature information on the behaviour of semivolatile organic compounds (SVOCs) in the indoor environment, as well as the most likely emission sources. The consecutive stages of analytical procedures used for monitoring SVOCs in indoor environments are described. The most common approaches used for collecting samples from the gas and particulate phases are mentioned. The paper discusses and compares various types of sorbents and filters applied in dynamic, passive and denudational techniques, as well as the techniques used to liberate the SVOCs, including Soxhlet, sonication and microwave extraction. The main advantages and disadvantages of each technique are discussed, together with possible future trends. The approaches commonly used during the final determination step, such as gas chromatography and liquid chromatography, are presented together with their possible drawbacks, and ways of eliminating them are suggested. The review makes brief reference to the effects of human exposure to SVOCs in house dust and discusses the main aspects of the analytical procedures used to monitor the presence of SVOCs in this medium.

  13. Diagnostic Tools for the Monitoring and Organization of In-Situ Air Sparging Systems

    Science.gov (United States)

    1998-02-01

    Andrea Leeson, Rob Hinchee, Dave McWhorter, and Mike Marley for In Situ Air Sparging (IAS) project peer review. I would like to thank my fellow grad...the tank at the air inlet valve for sparging experiments. The compressor is a DeVilbiss Model F5020 with a 20 gallon air tank. An onboard pressure

  14. Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.

    The Danish Air Quality Monitoring Programme (LMP IV) has been revised in accordance with the Framework Directive and the first three daughter directives of SO2, NOx/NO2, PM10, lead, benzene, CO and ozone. PM10 samplers are under installation and the installation will be completed during 2002....... The PM10 results from 2000 are spares, only TSP are thus included in this report. The data sets for year 2000 is complete for many stations. The monitoring programme consists of 10 stations plus 2 extra stations under the Municipality of Copenhagen. The SO2 and lead levels are still decreasing and far...

  15. Monitoring organic nitrogen species in the UT/LS - a new system for analysis of CARIBIC whole air samples

    Science.gov (United States)

    Sauvage, Carina; Thorenz, Ute; Baker, Angela; Brenninkmeijer, Carl; Williams, Jonathan

    2014-05-01

    The CARIBIC project is a unique program for long term and global scale monitoring of the atmosphere (http://www.caribic-atmospheric.com). An instrument container is installed monthly into a civil aircraft operated by Lufthansa (Airbus A 340-600) and makes atmospheric observations en route from Frankfurt, Germany to various destinations around the globe. In four to six long distance flights at a cruising altitude of 10 to 12 km online measurements of various atmospheric tracers are performed during the flight as well as whole air samples are taken with two different sampling units (116 samples in both glass and stainless steel canisters). These samples are routinely analyzed for greenhouse gases, non-methane hydrocarbons (NMHC) and halogenated compounds. Nitrogen containing compounds play various important roles in the atmosphere. Alkyl nitrates (RONO2) are products of the reaction of NMHC with OH and other oxidants in the presence of NO. They can provide information on the oxidative history of an air mass. Moreover they influence photolchemical ozone formation and act as a transport mechanism for reactive nitrogen. Less reactive nitrogen containing species such as HCN and acetonitrile are important markers for biomass burning, while organic amines are involved in gas to particle partitioning. Finally N2O is a long lived nitrogen containing gas important for the Earth's radiative budget. Regular measurements of such nitrogen compounds would therefore be a significant contribution to the CARIBIC data set. Especially for high altitude samples, in which the mixing ratios of many species are expected to be in the low ppt range, a highly sensitive method for analysis is required. Therefore a new system for measurement of nitrogen compounds has been built up, comprising a gas chromatograph (GC) using a nitrogen chemiluminescence detector (NCD). An important advantage of the NCD is that it is selective for nitrogen and equimolar. The nitrogen compounds are sequentially pre

  16. Rapid Monitoring of Mercury in Air from an Organic Chemical Factory in China Using a Portable Mercury Analyzer

    Directory of Open Access Journals (Sweden)

    Akira Yasutake

    2011-01-01

    Full Text Available A chemical factory, using a production technology of acetaldehyde with mercury catalysis, was located southeast of Qingzhen City in Guizhou Province, China. Previous research showed heavy mercury pollution through an extensive downstream area. A current investigation of the mercury distribution in ambient air, soils, and plants suggests that mobile mercury species in soils created elevated mercury concentrations in ambient air and vegetation. Mercury concentrations of up to 600 ng/m3 in air over the contaminated area provided evidence of the mercury transformation to volatile Hg(0. Mercury analysis of soil and plant samples demonstrated that the mercury concentrations in soil with vaporized and plant-absorbable forms were higher in the southern area, which was closer to the factory. Our results suggest that air monitoring using a portable mercury analyzer can be a convenient and useful method for the rapid detection and mapping of mercury pollution in advanced field surveys.

  17. Sampling artifacts in active air sampling of semivolatile organic contaminants: Comparing theoretical and measured artifacts and evaluating implications for monitoring networks.

    Science.gov (United States)

    Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Prokeš, Roman; Kukučka, Petr; Klánová, Jana

    2016-10-01

    The effects of sampling artifacts are often not fully considered in the design of air monitoring with active air samplers. Semivolatile organic contaminants (SVOCs) are particularly vulnerable to a range of sampling artifacts because of their wide range of gas-particle partitioning and degradation rates, and these can lead to erroneous measurements of air concentrations and a lack of comparability between sites with different environmental and sampling conditions. This study used specially adapted filter-sorbent sampling trains in three types of active air samplers to investigate breakthrough of SVOCs, and the possibility of other sampling artifacts. Breakthrough volumes were experimentally determined for a range of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs) in sampling volumes from 300 to 10,000 m(3), and sampling durations of 1-7 days. In parallel, breakthrough was estimated based on theoretical sorbent-vapor pressure relationships. The comparison of measured and theoretical determinations of breakthrough demonstrated good agreement between experimental and estimated breakthrough volumes, and showed that theoretical breakthrough estimates should be used when developing air monitoring protocols. Significant breakthrough in active air samplers occurred for compounds with vapor pressure >0.5 Pa at volumes Sample volumes between 700 and 10,000 m(3) may lead to breakthrough for compounds with vapor pressures between 0.005 and 0.5 Pa. Breakthrough is largely driven by sample volume and compound volatility (therefore indirectly by temperature) and is independent of sampler type. The presence of significant breakthrough at "typical" sampling conditions is relevant for air monitoring networks, and may lead to under-reporting of more volatile SVOCs.

  18. Indoor air quality (IAQ) assessment in a multistorey shopping mall by high-spatial-resolution monitoring of volatile organic compounds (VOC).

    Science.gov (United States)

    Amodio, M; Dambruoso, P R; de Gennaro, Gianluigi; de Gennaro, L; Loiotile, A Demarinis; Marzocca, A; Stasi, F; Trizio, L; Tutino, M

    2014-12-01

    In order to assess indoor air quality (IAQ), two 1-week monitoring campaigns of volatile organic compounds (VOC) were performed in different areas of a multistorey shopping mall. High-spatial-resolution monitoring was conducted at 32 indoor sites located in two storehouses and in different departments of a supermarket. At the same time, VOC concentrations were monitored in the mall and parking lot area as well as outdoors. VOC were sampled at 48-h periods using diffusive samplers suitable for thermal desorption. The samples were then analyzed with gas chromatography-mass spectrometry (GC-MS). The data analysis and chromatic maps indicated that the two storehouses had the highest VOC concentrations consisting principally of terpenes. These higher TVOC concentrations could be a result of the low efficiency of the air exchange and intake systems, as well as the large quantity of articles stored in these small spaces. Instead, inside the supermarket, the food department was the most critical area for VOC concentrations. To identify potential emission sources in this department, a continuous VOC analyzer was used. The findings indicated that the highest total VOC concentrations were present during cleaning activities and that these activities were carried out frequently in the food department. The study highlights the importance of conducting both high-spatial-resolution monitoring and high-temporal-resolution monitoring. The former was able to identify critical issues in environments with a complex emission scenario while the latter was useful in interpreting the dynamics of each emission source.

  19. Participant-based monitoring of indoor and outdoor nitrogen dioxide, volatile organic compounds, and polycyclic aromatic hydrocarbons among MICA-Air households

    Science.gov (United States)

    Johnson, Markey M.; Williams, Ron; Fan, Zhihua; Lin, Lin; Hudgens, Edward; Gallagher, Jane; Vette, Alan; Neas, Lucas; Özkaynak, Halûk

    2010-12-01

    The Mechanistic Indicators of Childhood Asthma (MICA) study in Detroit, Michigan introduced a participant-based approach to reduce the resource burden associated with collection of indoor and outdoor residential air sampling data. A subset of participants designated as MICA-Air conducted indoor and outdoor residential sampling of nitrogen dioxide (NO 2), volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). This participant-based methodology was subsequently adapted for use in the Vanguard phase of the U.S. National Children's Study. The current paper examines residential indoor and outdoor concentrations of these pollutant species among health study participants in Detroit, Michigan. Pollutants measured under MICA-Air agreed well with other studies and continuous monitoring data collected in Detroit. For example, NO 2 and BTEX concentrations reported for other Detroit area monitoring were generally within 10-15% of indoor and outdoor concentrations measured in MICA-Air households. Outdoor NO 2 concentrations were typically higher than indoor NO 2 concentration among MICA-Air homes, with a median indoor/outdoor (I/O) ratio of 0.6 in homes that were not impacted by environmental tobacco smoke (ETS) during air sampling. Indoor concentrations generally exceeded outdoor concentrations for VOC and PAH species measured among non-ETS homes in the study. I/O ratios for BTEX species (benzene, toluene, ethylbenzene, and m/p- and o-xylene) ranged from 1.2 for benzene to 3.1 for toluene. Outdoor NO 2 concentrations were approximately 4.5 ppb higher on weekdays versus weekends. As expected, I/O ratios pollutants were generally higher for homes impacted by ETS. These findings suggest that participant-based air sampling can provide a cost-effective alternative to technician-based approaches for assessing indoor and outdoor residential air pollution in community health studies. We also introduced a technique for estimating daily concentrations at each

  20. Air Quality Monitoring and Sensor Technologies

    Science.gov (United States)

    EPA scientist Ron Williams presented on the features, examination, application, examples, and data quality of continuous monitoring study designs at EPA's Community Air Monitoring Training in July 2015.

  1. Air Quality Monitoring: Risk-Based Choices

    Science.gov (United States)

    James, John T.

    2009-01-01

    Air monitoring is secondary to rigid control of risks to air quality. Air quality monitoring requires us to target the credible residual risks. Constraints on monitoring devices are severe. Must transition from archival to real-time, on-board monitoring. Must provide data to crew in a way that they can interpret findings. Dust management and monitoring may be a major concern for exploration class missions.

  2. Measurement of polyurethane foam - air partition coefficients for semivolatile organic compounds as a function of temperature: Application to passive air sampler monitoring.

    Science.gov (United States)

    Francisco, Ana Paula; Harner, Tom; Eng, Anita

    2017-05-01

    Polyurethane foam - air partition coefficients (KPUF-air) for 9 polycyclic aromatic hydrocarbons (PAHs), 10 alkyl-substituted PAHs, 4 organochlorine pesticides (OCPs) and dibenzothiophene were measured as a function of temperature over the range 5 °C-35 °C, using a generator column approach. Enthalpies of PUF-to-air transfer (ΔHPUF-air, kJ/mol) were determined from the slopes of log KPUF-air versus 1000/T (K), and have an average value of 81.2 ± 7.03 kJ/mol. The log KPUF-air values at 22 °C ranged from 4.99 to 7.25. A relationship for log KPUF-air versus log KOA was shown to agree with a previous relationship based on only polychlorinated biphenyls (PCBs) and derived from long-term indoor uptake study experiments. The results also confirm that the existing KOA-based model for predicting log KPUF-air values is accurate. This new information is important in the derivation of uptake profiles and effective air sampling volumes for PUF disk samplers so that results can be reported in units of concentration in air. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Air Pollution Monitoring | Air Quality Planning & Standards ...

    Science.gov (United States)

    2016-06-08

    The basic mission of the Office of Air Quality Planning and Standards is to preserve and improve the quality of our nation's air. To accomplish this, OAQPS must be able to evaluate the status of the atmosphere as compared to clean air standards and historical information.

  4. Air Pollution Monitoring for Communities Fact Sheet

    Science.gov (United States)

    EPA through its Science to Achieve Results (STAR) grants program is providing funding to six institutions that will advance air monitoring technology while helping communities address unique air quality challenges.

  5. Community air monitoring and Village Green Project

    Science.gov (United States)

    Cost and logistics are practical issues that have historically constrained the number of locations where long-term, active air pollution measurement is possible. In addition, traditional air monitoring approaches are generally conducted by technical experts with limited engageme...

  6. Air Pollution Monitoring for Communities Grants

    Science.gov (United States)

    EPA, through its Science to Achieve Results (STAR) grants program is providing funding to six institutions that will advance air monitoring technology while helping communities address unique air quality challenges.

  7. Real-time monitoring of respiratory absorption factors of volatile organic compounds in ambient air by proton transfer reaction time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhonghui [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yanli [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Yan, Qiong [Department of Respiratory Diseases, Guangzhou No. 12 People' s Hospital, Guangzhou 510620 (China); Zhang, Zhou [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang, Xinming, E-mail: wangxm@gig.ac.cn [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2016-12-15

    Respiratory absorption factors (AFs) are essential parameters in the evaluation of human health risks from toxic volatile organic compounds (VOCs) in ambient air. A method for the real time monitoring of VOCs in inhaled and exhaled air by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) has been developed to permit the calculation of respiratory AFs of VOCs. Isoprene was found to be a better breath tracer than O{sub 2}, CO{sub 2}, humidity, or acetone for distinguishing between the expiratory and inspiratory phases, and a homemade online breath sampling device with a buffer tube was used to optimize signal peak shapes. Preliminary tests with seven subjects exposed to aromatic hydrocarbons in an indoor environment revealed mean respiratory AFs of 55.0%, 55.9%, and 66.9% for benzene, toluene, and C8-aromatics (ethylbenzene and xylenes), respectively. These AFs were lower than the values of 90% or 100% used in previous studies when assessing the health risks of inhalation exposure to hazardous VOCs. The mean respiratory AFs of benzene, toluene and C8-aromatics were 66.5%, 70.2% and 82.3% for the three female subjects; they were noticeably much higher than that of 46.4%, 45.2% and 55.3%, respectively, for the four male subjects.

  8. Microplasma Ionization of Volatile Organics for Improving Air/Water Monitoring Systems On-Board the International Space Station.

    Science.gov (United States)

    Bernier, Matthew C; Alberici, Rosana M; Keelor, Joel D; Dwivedi, Prabha; Zambrzycki, Stephen C; Wallace, William T; Gazda, Daniel B; Limero, Thomas F; Symonds, Josh M; Orlando, Thomas M; Macatangay, Ariel; Fernández, Facundo M

    2016-07-01

    Low molecular weight polar organics are commonly observed in spacecraft environments. Increasing concentrations of one or more of these contaminants can negatively impact Environmental Control and Life Support (ECLS) systems and/or the health of crew members, posing potential risks to the success of manned space missions. Ambient plasma ionization mass spectrometry (MS) is finding effective use as part of the analytical methodologies being tested for next-generation space module environmental analysis. However, ambient ionization methods employing atmospheric plasmas typically require relatively high operation voltages and power, thus limiting their applicability in combination with fieldable mass spectrometers. In this work, we investigate the use of a low power microplasma device in the microhollow cathode discharge (MHCD) configuration for the analysis of polar organics encountered in space missions. A metal-insulator-metal (MIM) structure with molybdenum foil disc electrodes and a mica insulator was used to form a 300 μm diameter plasma discharge cavity. We demonstrate the application of these MIM microplasmas as part of a versatile miniature ion source for the analysis of typical volatile contaminants found in the International Space Station (ISS) environment, highlighting their advantages as low cost and simple analytical devices. Graphical Abstract ᅟ.

  9. Microplasma Ionization of Volatile Organics for Improving Air/Water Monitoring Systems On-Board the International Space Station

    Science.gov (United States)

    Bernier, Matthew C.; Alberici, Rosana M.; Keelor, Joel D.; Dwivedi, Prabha; Zambrzycki, Stephen C.; Wallace, William T.; Gazda, Daniel B.; Limero, Thomas F.; Symonds, Josh M.; Orlando, Thomas M.; Macatangay, Ariel; Fernández, Facundo M.

    2016-07-01

    Low molecular weight polar organics are commonly observed in spacecraft environments. Increasing concentrations of one or more of these contaminants can negatively impact Environmental Control and Life Support (ECLS) systems and/or the health of crew members, posing potential risks to the success of manned space missions. Ambient plasma ionization mass spectrometry (MS) is finding effective use as part of the analytical methodologies being tested for next-generation space module environmental analysis. However, ambient ionization methods employing atmospheric plasmas typically require relatively high operation voltages and power, thus limiting their applicability in combination with fieldable mass spectrometers. In this work, we investigate the use of a low power microplasma device in the microhollow cathode discharge (MHCD) configuration for the analysis of polar organics encountered in space missions. A metal-insulator-metal (MIM) structure with molybdenum foil disc electrodes and a mica insulator was used to form a 300 μm diameter plasma discharge cavity. We demonstrate the application of these MIM microplasmas as part of a versatile miniature ion source for the analysis of typical volatile contaminants found in the International Space Station (ISS) environment, highlighting their advantages as low cost and simple analytical devices.

  10. Volunteers for Air Monitoring Project (VAMP).

    Science.gov (United States)

    Oak Ridge National Lab., TN.

    An education and communication project of the Environment and Technology Assessment Program, Oak Ridge National Laboratory, Tennessee, is described in this report. The project for monitoring air dustfall resulted in the largest citizen-scientist air monitoring effort in the history of our nation. Nearly 21,000 public secondary school students and…

  11. Air Quality Monitoring System and Benchmarking

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Nielsen, Per Sieverts

    2017-01-01

    Air quality monitoring has become an integral part of smart city solutions. This paper presents an air quality monitoring system based on Internet of Things (IoT) technologies, and establishes a cloud-based platform to address the challenges related to IoT data management and processing...

  12. Citizen Science Air Monitor (CSAM) Operating Procedures

    Science.gov (United States)

    The Citizen Science Air Monitor (CSAM) is an air monitoring system designed for measuring nitrogen dioxide (NO2) and particulate matter (PM) pollutants simultaneously. This self-contained system consists of a CairPol CairClip NO2 sensor, a Thermo Scientific personal DataRAM PM2.5...

  13. A survey of an air monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.B.

    1997-08-01

    The objective of this report is to compare personal air sampling data to stationary air sampling data and to bioassay data that was taken during the decontamination and decommissioning of sixty-one plutonium glove boxes at Argonne National Laboratory (ANL) in 1995. An air monitoring program administered at Argonne National Laboratory was assessed by comparing personal air sampler (PAS) data, stationary air sampler (SAS) data, and bioassay data. The study revealed that the PAS and SAS techniques were equivalent when averaged over all employees and all workdays, but the standard deviation was large. Also, large deviations were observed in individual samples. The correlation between individual PAS results and bioassay results was low. Personal air samplers and bioassay monitoring played complementary roles in assessing the workplace and estimating intakes. The PAS technique is adequate for detection and evaluation of contaminated atmospheres, whereas bioassay monitoring is better for determining individual intakes.

  14. Measurement results obtained from air quality monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Turzanski, P.K.; Beres, R. [Provincial Inspection of Environmental Protection, Cracow (Poland)

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracow area could be more intelligible.

  15. Monitoring Air Quality with Leaf Yeasts.

    Science.gov (United States)

    Richardson, D. H. S.; And Others

    1985-01-01

    Proposes that leaf yeast serve as quick, inexpensive, and effective techniques for monitoring air quality. Outlines procedures and provides suggestions for data analysis. Includes results from sample school groups who employed this technique. (ML)

  16. 2011 NATA - Air Toxics Monitors

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes annual (2005 - 2013) statistics of measured ambient air toxics concentrations (in micrograms per cubic meter) and associated risk estimates for...

  17. Air and radiation monitoring stations

    CERN Multimedia

    AUTHOR|(SzGeCERN)582709

    2015-01-01

    CERN has around 100 monitoring stations on and around its sites. New radiation measuring stations, capable of detecting even lower levels of radiation, were installed in 2014. Two members of HE-SEE group (Safety Engineering and Environment group) in front of one of the new monitoring stations.

  18. Integrated monitoring and assessment of air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, O.

    2009-09-15

    Improved quality, better understanding of processes and optimisation of allocated resources, these are the main advantages of applying Integrated Monitoring and Assessment (IMA) in air quality management. The IMA is defined as the combined use of measurements and model calculations. The use of IMA is demonstrated with examples with different aims: to obtain data for air pollution in urban streets, to assess human exposure to traffic air pollution, and to assess atmospheric deposition of nitrogen compounds to marine and terrestrial ecosystems. (author)

  19. The Danish Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.; Manscher, O. H.

    The Danish Air Quality Monitoring Programme (LMP) was started in 1982 as the first nation-wide urban air pollution monitoring programme in Denmark. The programme has been adjusted to the pollution pattern by two revisions. The present phase (LMP III) was started in 1992. This report presents...... Copenhagen the same program is con-ducted as at the street stations with the inclusion of O3. Only NO, NO2 and O3 are reported from the other rural site. Air quality limit values have been implemented in Den-mark for NO2, SO2, TSP in order to protect human health. All limit values are based on EU limit...

  20. Design and implementation air quality monitoring robot

    Science.gov (United States)

    Chen, Yuanhua; Li, Jie; Qi, Chunxue

    2017-01-01

    Robot applied in environmental protection can break through the limitations in working environment, scope and mode of the existing environmental monitoring and pollution abatement equipments, which undertake the innovation and improvement in the basin, atmosphere, emergency and pollution treatment facilities. Actually, the relevant technology is backward with limited research and investment. Though the device companies have achieved some results in the study on the water quality monitoring, pipeline monitoring and sewage disposal, this technological progress on the whole is still much slow, and the mature product has not been formed. As a result, the market urges a demand of a new type of device which is more suitable for environmental protection on the basis of robot successfully applied in other fields. This paper designs and realizes a tracked mobile robot of air quality monitoring, which can be used to monitor air quality for the pollution accident in industrial parks and regular management.

  1. Solar Powered Radioactive Air Monitoring Stations

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J. Matthew; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  2. The Danish Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.

    The Danish Air Quality Monitoring Programme (LMP) was started in 1982 as the first nation-wide urban air pollution monitoring programme in Denmark. The programme has been adjusted to the pollution pattern by two revisions. The present phase (LMP III) was started in 1992. From 2000 a new phase...... concentrations an increase was observed in 1999. This is probably mainly due to the meteorological conditions in 1999. The SO2 concentrations have been continuously decreasing since 1982. In 1999 they were only about 1/10 of the limit values. They are also far below the new values proposed by the EU commission...

  3. Spatial distribution of the persistent organic pollutants across the Tibetan Plateau and its linkage with the climate systems: a 5-year air monitoring study

    Science.gov (United States)

    Wang, Xiaoping; Ren, Jiao; Gong, Ping; Wang, Chuanfei; Xue, Yonggang; Yao, Tandong; Lohmann, Rainer

    2016-06-01

    The Tibetan Plateau (TP) has been contaminated by persistent organic pollutants (POPs), including legacy organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) through atmospheric transport. The exact source regions, transport pathways and time trends of POPs to the TP are not well understood. Here polystyrene-divinylbenzene copolymer resin (XAD)-based passive air samplers (PASs) were deployed at 16 Tibetan background sites from 2007 to 2012 to gain further insight into spatial patterns and temporal trends of OCPs and PCBs. The southeastern TP was characterized by dichlorodiphenyltrichloroethane (DDT)-related chemicals delivered by Indian monsoon air masses. The northern and northwestern TP displayed the greatest absolute concentration and relative abundance of hexachlorobenzene (HCB) in the atmosphere, caused by the westerly-driven European air masses. The interactions between the DDT polluted Indian monsoon air and the clean westerly winds formed a transition zone in central Tibet, where both DDT and HCB were the dominant chemicals. Based on 5 years of continuous sampling, our data indicated declining concentrations of HCB and hexachlorocyclohexanes (HCHs) across the Tibetan region. Inter-annual trends of DDT class chemicals, however, showed less variation during this 5-year sampling period, which may be due to the ongoing usage of DDT in India. This paper demonstrates the possibility of using POP fingerprints to investigate the climate interactions and the validity of using PAS to derive inter-annual atmospheric POP time trends.

  4. Air quality monitoring using mobile microscopy and machine learning

    KAUST Repository

    Wu, Yi-Chen

    2017-09-08

    Rapid, accurate and high-throughput sizing and quantification of particulate matter (PM) in air is crucial for monitoring and improving air quality. In fact, particles in air with a diameter of ≤2.5 μm have been classified as carcinogenic by the World Health Organization. Here we present a field-portable cost-effective platform for high-throughput quantification of particulate matter using computational lens-free microscopy and machine-learning. This platform, termed c-Air, is also integrated with a smartphone application for device control and display of results. This mobile device rapidly screens 6.5 L of air in 30 s and generates microscopic images of the aerosols in air. It provides statistics of the particle size and density distribution with a sizing accuracy of ~93%. We tested this mobile platform by measuring the air quality at different indoor and outdoor environments and measurement times, and compared our results to those of an Environmental Protection Agency–approved device based on beta-attenuation monitoring, which showed strong correlation to c-Air measurements. Furthermore, we used c-Air to map the air quality around Los Angeles International Airport (LAX) over 24 h to confirm that the impact of LAX on increased PM concentration was present even at >7 km away from the airport, especially along the direction of landing flights. With its machine-learning-based computational microscopy interface, c-Air can be adaptively tailored to detect specific particles in air, for example, various types of pollen and mold and provide a cost-effective mobile solution for highly accurate and distributed sensing of air quality.

  5. 淄博化工园区大气有机污染应急监测与管理对策%Research on Emergency Monitoring and Solutions for Air Organic Pollution in Zibo Chemical Zone

    Institute of Scientific and Technical Information of China (English)

    肖洋; 王新娟

    2014-01-01

    针对工业聚集区内多种恶臭混杂的情况,以淄博化工园区为例,研究了大气有机污染突发事件中有机物的应急监测方法,并提出了治理对策。利用便携式气相色谱-质谱联用仪,对重点企业事先监测,掌握各企业特征污染物,作为应急监测查找污染源头的依据;现场分析受污染空气中的化合物组成及浓度,通过查询、比对各企业特征污染物,确认责任排污企业。提出了末端监测处罚治理与对重点污染企业推行清洁生产相结合,应急监测与有机污染物在线监测相结合,建立企业污染源特征组分数据库,加强企业无组织排放监测与监管等治理大气有机污染的建议。%For a variety of mixed stench in one chemical industrial zone of Zibo city, the monitoring method for the organic compounds causing air organic pollution in polluted air was studied, and the corresponding solu-tions were also proposed.After the prior monitoring of key companies using portable GC-MS, the characterized pollutants for each company were mastered as the important basis for finding the pollution sources in emergency monitoring.The on-site determination of composition and concentration of the organic compounds in polluted air was carried out, and then the responsible polluters were confirmed by checking for the company characteristic pollutants.Finally, several suggestions were proposed including the combination of the monitoring sanctions con-trol and implementation of clean production to key polluting companies, the combination of emergency monitoring and online monitoring of organic pollutants, the establishment of corporate pollution characteristic component da-tabase, as well as the reinforced environmental monitoring and supervision of the unorganized emissions.

  6. Assessment of SRS ambient air monitoring network

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jannik, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-03

    Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, if any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the air monitoring stations had an efficiency of less than 10%, and detected releases during just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned

  7. 40 CFR Appendix A to Part 58 - Quality Assurance Requirements for SLAMS, SPMs and PSD Air Monitoring

    Science.gov (United States)

    2010-07-01

    ... Appendix A to Part 58—Quality Assurance Requirements for SLAMS, SPMs and PSD Air Monitoring 1. General... specifies the minimum quality system requirements applicable to SLAMS air monitoring data and PSD data for... of the air being measured. Monitoring organizations must develop quality assurance project...

  8. Citizen Science Opportunities for Monitoring Air Quality Fact Sheet

    Science.gov (United States)

    The Citizen Science Opportunities for Monitoring Air Quality fact sheet provides information on what citizen science is and the tools and resources available for citizen scientists interested in monitoring air quality.

  9. Air Quality System (AQS) Monitoring Network, EPA OAR OAQPS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains points which depict air quality monitors within EPA's Air Quality System (AQS) monitoring network. This dataset is updated weekly to...

  10. Using webcam for indoor air quality monitoring

    Science.gov (United States)

    Wong, C. J.; Teo, C. K.; MatJafri, M. Z.; Abdullah, K.; Lim, H. S.

    2009-05-01

    Nowadays application of webcam becomes more and more popular. Thus webcams are being developed to have better resolution but lower cost. This has motivated us to evaluate the suitability of using webcam for indoor air quality monitoring. This monitoring involved determining the concentration of particulate matter with diameter less than 10 micron (PM10). An algorithm was developed to convert multispectral image pixel values acquired from this camera into quantitative values of the concentrations of PM10. This algorithm was developed based on the regression analysis of relationship between the measured reflectance and the reflected components from a surface material and the ambient air. The computed PM10 values were compared to other standard values measured by a DustTrakTM meter. The correlation results showed that the newly develop algorithm produced a high degree of accuracy as indicated by high correlation coefficient (R2) and low root-mean-square-error (RMS). This has showed that Webcam can be used for indoor air quality monitoring.

  11. Toward the Next Generation of Air Quality Monitoring Indicators

    Science.gov (United States)

    Hsu, Angel; Reuben, Aaron; Shindell, Drew; deSherbinin, Alex; Levy, Marc

    2013-01-01

    This paper introduces an initiative to bridge the state of scientific knowledge on air pollution with the needs of policymakers and stakeholders to design the "next generation" of air quality indicators. As a first step this initiative assesses current monitoring and modeling associated with a number of important pollutants with an eye toward identifying knowledge gaps and scientific needs that are a barrier to reducing air pollution impacts on human and ecosystem health across the globe. Four outdoor air pollutants were considered e particulate matter, ozone, mercury, and Persistent Organic Pollutants (POPs) e because of their clear adverse impacts on human and ecosystem health and because of the availability of baseline data for assessment for each. While other papers appearing in this issue will address each pollutant separately, this paper serves as a summary of the initiative and presents recommendations for needed investments to provide improved measurement, monitoring, and modeling data for policyrelevant indicators. The ultimate goal of this effort is to enable enhanced public policy responses to air pollution by linking improved data and measurement methods to decision-making through the development of indicators that can allow policymakers to better understand the impacts of air pollution and, along with source attribution based on modeling and measurements, facilitate improved policies to solve it. The development of indicators represents a crucial next step in this process.

  12. 40 CFR 52.346 - Air quality monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Air quality monitoring requirements. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.346 Air quality monitoring... VIII Administrator, the State submitted a revised Air Quality Monitoring State Implementation Plan....

  13. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient...

  14. Monitoring and characterization of organic reactive species in the atmosphere: a tool for management of air quality; Monitoramento e caracterizacao de especies organicas reativas na atmosfera: uma ferramenta para gestao da qualidade do ar

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Andrea; Almeida, Jose Claudino; Loureiro, Luciana [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Monitoramento Atmosferico; Moreira, Lino [TRANSPETRO, Rio de Janeiro, RJ (Brazil); Grosjean, Daniel; Grosjean, Eric [DGA Inc., Ventura, CA (United States)

    2004-07-01

    The present paper briefly reports some monitoring campaigns carried out in Rio de Janeiro Metropolitan Area through 1999 a 2001, and presents some benchmarking with the study that took place in Porto Alegre from 1996 a 1999. These studies were developed through CENPES research projects, with partnership with local academy, international consultants, local environmental agencies and the environmental secretaries from the two cities. The main goal of both studies was to speciate and characterize the Volatile Organic Compounds (VOC's) present in the urban environments of both locations in order to assess the overall atmospheric reactivity and the ozone production potentials. Highest priority was given to the locations in which vehicular emissions played important role, once the core objective of both projects was to supply technical information on the atmospheric impact of motor fuels, with special emphasis on gasoline. With the continuation of Rio de Janeiro monitoring campaigns and the inclusion of Sao Paulo in the project as an additional monitoring area, the intention is to grant enough technical input and information to establish a data bank of ambient air concentrations of speciated reactive VOC's, fully customized to the Brazilian urban scenario, aiming to go farther in the realm of atmospheric chemistry and atmospheric reactivity. In essence, the effort devoted to raise local and experimental information on air quality and vehicle emissions aims to build sound scientific basis to technically support environmental management policies of best cost-effectiveness targeting secondary pollutants control in the urban atmospheres (author)

  15. Assessment of SRS ambient air monitoring network

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jannik, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-03

    Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, if any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the airmonitoring stations had an efficiency of less than 10%, and detected releases during just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned

  16. The TOMPs ambient air monitoring network - Continuous data on UK air quality for over 20 years.

    Science.gov (United States)

    Graf, Carola; Katsoyiannis, Athanasios; Jones, Kevin C; Sweetman, Andrew J

    2016-10-01

    Long-term air monitoring datasets are needed for persistent organic pollutants (POPs) to assess the effectiveness of source abatement measures and the factors controlling ambient levels. The Toxic Organic Micro Pollutants (TOMPs) Network, which has operated since 1991, collects ambient air samples at six sites across England and Scotland, using high-volume active air samplers. The network provides long-term ambient air trend data for a range of POPs at both urban and rural locations. Data from the network provides the UK Government, regulators and researchers with valuable information on emission/source controls and on the effectiveness of international chemicals regulation such as the Stockholm Convention and UN/ECE Protocol on POPs. The target chemicals of TOMPs have been polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and, since 2010, polybrominated diphenyl ethers (PBDEs). The continuous monitoring of these compounds demonstrates the constant decline in UK air concentrations over the last two decades, with average clearance rates for PCDD/Fs in urban locations of 5.1 years and for PCBs across all sites 6.6 years. No significant declines in rural locations for PCDD/Fs have been observed. There is a strong observable link between the declining ambient air concentrations and the emission reductions estimated in the annually produced National Atmospheric Emission Inventory (NAEI) dataset. These findings clearly demonstrate the unique strengths of long-term consistent datasets for the evaluation of the success of chemical regulation and control.

  17. Air Quality Monitoring and Forecasting in China

    Science.gov (United States)

    Mijling, Bas; van der A, Ronald; Wang, Pucai

    2010-05-01

    Within the ESA-MOST Dragon 2 Programme, the AMFIC project consists of an integrated system for monitoring and forecasting tropospheric pollutants over China. Satellite data, in situ measurements and chemical transport model results are used to generate consistent air quality information over China. The system includes a data archive of the recent years, near real time data, and air quality forecasts for several days ahead, which can be find on http://www.amfic.eu. Air pollutants covered are nitrogen dioxide, sulfur dioxide, formaldehyde, carbon monoxide, methane and aerosol. The AMFIC system has been used to evaluate the effect of the air quality measures which were taken by the Chinese authorities related to the Olympic Games and Paralympics in Beijing. Industrial activities and traffic in and around the city were reduced drastically to improve air quality. To compensate for the atypical meteorological conditions during the Olympic events, tropospheric NO2 column observations from GOME-2 and OMI are interpreted against simulations from the CHIMERE regional chemistry transport model. When compared with the pre-Olympic concentration levels, we find a NO2 reduction of 60% over Beijing and significant reductions in surrounding areas. After the Olympic period, NO2 concentrations slowly return to their pre-Olympic level. The satellite observations and model simulations of tropospheric NO2 column concentrations are also used to constrain NOx emissions over China by using data assimilation techniques. We will present the preliminary results of these efforts. The periodical update of the bottom-up emission inventory is expected to reveal emission trends and improve the air quality forecasts for China.

  18. Monitoring of environmental contaminants in air and precipitation, annual report 2014

    OpenAIRE

    Nizzetto, Pernilla Bohlin; Aas, Wenche; Warner, Nicholas Alexander

    2015-01-01

    This report presents results from 2014 for persistent organic pollutants (POPs) and heavy metals from the rural air- and precipitation chemistry monitoring network in Norway. These results are compared to previous years.

  19. THE ORGANIZATION OF AIR TRAFFIC PLANNING

    Directory of Open Access Journals (Sweden)

    A. N. Akimov

    2014-01-01

    Full Text Available The article considers the problem of civil aviation aircraft flights delays, because of the lack of efficiency of the air traffic planning. As a result, airports and airlines have financial losses. Analysis of delays at Moscow aerodromes, Tegel and Munich aerodromes are given. The principles of organization of air traffic planning system in the Russian Federation are described, as well as recommendations the use of which will improve the efficiency of the air traffic planning system in the Russian Federation.

  20. [Air quality monitoring on the International Space Station].

    Science.gov (United States)

    Pakhomova, A A; Mukhamedieva, L N; Mikos, K N

    2006-01-01

    Chemical contamination of air in space cabins occurs mainly due to permanent offgassing of equipment and materials, and leaks. Methods and means of qualitative and quantitative air monitoring on the ISS are powerful enough as for routine so emergency (e.g. local fire, toxic leak) air control. The ISS air quality has suited to the adopted standards and crew safety requirements. Yet, there is a broad field of action toward improvement of the space cabin air monitoring.

  1. 40 CFR 52.995 - Enhanced ambient air quality monitoring.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the...

  2. Cubesat Constellation Design for Air Traffic Monitoring

    Science.gov (United States)

    Nag, Sreeja; Rios, Joseph Lucio; Gerhardt, David; Pham, Camvu

    2015-01-01

    Suitably equipped global and local air traffic can be tracked. The tracking information may then be used for control from ground-based stations by receiving the Automatic Dependent Surveillance-Broadcast (ADS-B) signal. The ADS-B signal, emitted from the aircraft's Mode-S transponder, is currently tracked by terrestrial based receivers but not over remote oceans or sparsely populated regions such as Alaska or the Pacific Ocean. Lack of real-time aircraft time/location information in remote areas significantly hinders optimal planning and control because bigger "safety bubbles" (lateral and vertical separation) are required around the aircraft until they reach radar-controlled airspace. Moreover, it presents a search-and-rescue bottleneck. Aircraft in distress, e.g. Air France AF449 that crashed in 2009, take days to be located or cannot be located at all, e.g. Malaysia Airlines MH370 in 2014. In this paper, we describe a tool for designing a constellation of small satellites which demonstrates, through high-fidelity modeling based on simulated air traffic data, the value of space-based ADS-B monitoring and provides recommendations for cost-efficient deployment of a constellation of small satellites to increase safety and situational awareness in the currently poorly-served surveillance area of Alaska. Air traffic data has been obtained from the Future ATM Concepts Evaluation Tool (FACET), developed at NASA Ames Research Center, simulated over the Alaskan airspace over a period of one day. The simulation is driven by MATLAB with satellites propagated and coverage calculated using AGI's Satellite ToolKit(STK10).

  3. The role of Environmental Health System air quality monitors in Space Station Contingency Operations

    Science.gov (United States)

    Limero, Thomas F.; Wilson, Steve; Perlot, Susan; James, John

    1992-01-01

    This paper describes the Space Station Freedom (SSF) Environmental Health System's air-quality monitoring strategy and instrumentation. A two-tier system has been developed, consisting of first-alert instruments that warn the crew of airborne contamination and a volatile organic analyzer that can identify volatile organic contaminants in near-real time. The strategy for air quality monitoring on SSF is designed to provide early detection so that the contamination can be confined to one module and so that crew health and safety can be protected throughout the contingency event. The use of air-quality monitors in fixed and portable modes will be presented as a means of following the progress of decontamination efforts and ensuring acceptable air quality in a module after an incident. The technology of each instrument will be reviewed briefly; the main focus of this paper, however, will be the use of air-quality monitors before, during, and after contingency incidents.

  4. Monitoring activities in the Dutch National Air Quality Monitoring Network in 2000 and 2001

    NARCIS (Netherlands)

    Elzakker BG van; LLO

    2001-01-01

    The Dutch National Air Quality Monitoring Network (LML in Dutch) is one of the responsibilities of the Air Research Laboratory of the National Institute of Public Health and the Environment. The main objectives of the LML are to monitor ambient air quality, facilitate implementation of air quality

  5. Monitoring activities in the Dutch National Air Quality Monitoring Network in 2000 and 2001

    NARCIS (Netherlands)

    Elzakker BG van; LLO

    2001-01-01

    The Dutch National Air Quality Monitoring Network (LML in Dutch) is one of the responsibilities of the Air Research Laboratory of the National Institute of Public Health and the Environment. The main objectives of the LML are to monitor ambient air quality, facilitate implementation of air quality s

  6. Monitoring air pollution in the Bialowieza Forest

    Science.gov (United States)

    Malzahn, Elżbieta; Sondej, Izabela; Paluch, Rafał

    2016-04-01

    Air pollution, as sulfur dioxide(SO2) and nitrous oxides (NOx), affects forest health negatively and can initiate forest dieback. Long-term monitoring (since 1986) and analyses are conducted in the Bialowieza Forest due to the threat by abiotic, biotic and anthropogenic factors. This forest has a special and unique natural value, as confirmed by the various forms of protection of national and international rank. The main aim of monitoring is to determine the level and trends of deposition of air pollutants and their effects on selected forest stands and forest communities in the Bialowieza Forest. Concentration measurements of gaseous pollutants and the chemical composition of the precipitation are performed at seven points within the forest area (62 219 ha). Measurement gauges are measuring gaseous pollutants (SO2 and NOx) by the passive method and collecting precipitation at each point at a height of three meters. The period of measuring by the instruments is 30 days. All analyses are conducted according to the methodology of the European forest monitoring program in the certified Laboratory of Natural Environment Chemistry of the Polish Forest Research Institute (IBL). The concentration of pollutant gases (dry deposition) in the years 2002-2015 accounted for only 6-13% of the limit in Poland, as defined by the Polish Ministry of Environment, and are of no threat to the forest environment. Wet deposition of pollutants, which dependents directly from the amount of precipitation and its concentration of pollutants, varied strongly between different months and years. Total deposition (dry and wet) of sulfur (S) and nitrogen (N) was calculated for seasonal and annual periods. On an annual basis, wet deposition represented approximately 80% of the total deposition of S and N. Total deposition of S did not exceed the average deposition values for forests in north-eastern Europe (5-10 kg ha-1 year-1) at any of the seven measuring points. Total deposition of N did not

  7. Community air monitoring and the Village Green Project

    Science.gov (United States)

    Cost and logistics are practical issues that have historically constrained the number of locations where long-term, active air pollution measurement is possible. In addition, traditional air monitoring approaches are generally conducted by technical experts with limited engageme...

  8. Community air monitoring and the Village Green Project

    Science.gov (United States)

    Abstract: Cost and logistics are practical issues that have historically constrained the number of locations where long-term, active air pollution measurement is possible. In addition, traditional air monitoring approaches are generally conducted by technical experts with limite...

  9. Monitoring Air Quality from Space using AURA Data

    Science.gov (United States)

    Gleason, James F.; Chance, Kelly V.; Fishman, Jack; Torres, Omar; Veefkind, Pepijn

    2003-01-01

    Measurements from the Earth Observing System (EOS) AURA mission will provide a unique perspective on air quality monitoring. Ozone, nitrogen dioxide, formaldehyde and aerosols from the Ozone Monitoring Instrument (OMI) and carbon monoxide from the Tropospheric Emission Spectrometer (TES) will be simultaneously measured with the spatial resolution and coverage needed for improving our understanding of air quality. AURA data products useful for air quality monitoring will be given.

  10. DANIDA; Air Quality Monitoring Programme. Mission 2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivertsen, B.

    1996-06-01

    The report deals with the EIMP (Environmental Information and Monitoring Programme for the Arab Republic of Egypt). The programme is funded by Danida which is a cooperation project between Norway and Denmark. The programme covers the monitoring of air pollution, coastal water monitoring, and the monitoring of pollution sources and emissions. This report pays the attention to the Norwegian part of the programme executed by NILU (Norwegian Institute for Air Research) which covers the development air quality monitoring network. 14 refs., 51 figs., 18 tabs.

  11. The monitoring and analysis methods of volatile organic compounds in the ambient air%环境中挥发性有机物监测及分析方法

    Institute of Scientific and Technical Information of China (English)

    王丽琴; 李博伟; 黄宇; 何世恒; 薛永刚; 曹军骥

    2016-01-01

    挥发性有机物(VOCs)是一类重要的环境污染物,严重威胁着环境和人类健康。随着VOCs问题的日趋突出,关于VOCs监测技术的研究也越来越多,检测技术逐渐完善。本文对大气中VOCs的监测技术进行了详细的综述,重点介绍了气相色谱-质谱、高效液相色谱等离线检测方法和质子转移反应质谱法在线监测方法。此外,本文分析了各种采样方法及仪器检测技术的优势与不足,旨在为大气VOCs的监测与研究起到一定的指导作用。%Background, aim, scope Volatile organic compounds (VOCs) are a series of important pollutants which have strong impacts to environment and human health. They are the direct precursors of surface ozone and secondary organic aerosol from photochemical and atmospheric reactions. There is thus an urgent need for accurate and precise measurement of VOCs. This paper reviews and compares those updated VOCs monitoring technologies. Proper parameters and conditions for sample collections and analytical methods for the widely-used off-line and on-line measurements have been discussed and proposed. Materials and methods In this study, we reviewed the achievement on VOCs sampling and analysis based on researches published in the recent decades. Results Off-line monitoring requires collection of airs into a container (e.g., canister) or onto sampling matrix (i.e., absorbent), which could be divided into non-selective and selective collection. For the non-selective air sampling, stainless steel canister and polymer bags (e.g., Tedlar or Telfon) are widely used. Selective air collection allows the target compounds to be enriched onto the absorbent by either active sampling or passive diffusion. Absorbent tube is typical media which is more convenient to be carried and offers a lower cost than the canister or sampling bag methods. In addition, the tubes can be reused at least 100 times before the absorbent to be replaced. Instrumental

  12. Passive air sampling of persistent organic pollutants (POPs) and emerging compounds in Kolkata megacity and rural mangrove wetland Sundarban in India: An approach to regional monitoring.

    Science.gov (United States)

    Pozo, Karla; Sarkar, Santosh Kumar; Estellano, Victor H; Mitra, Soumita; Audi, Ondrej; Kukucka, Petr; Přibylová, Petra; Klánová, Jana; Corsolini, Simonetta

    2017-02-01

    Polyurethane foam (PUF) disk passive air samplers were deployed concurrently at five sites across Kolkata megacity and the rural mangrove wetland of Sundarban (UNESCO World Heritage Site) between January-March in 2014. Samples were analyzed for hexachlorocyclohexanes (HCHs), dichlorodiphenyltricholoroethanes (DDTs), polychlorinated biphenyls (PCBs) and, polybrominated diphenyl ethers (PBDEs) using gas chromatography and mass spectrometry (GC-MS). Derived air concentrations (pg/m(3)) for Kolkata ranged: for ∑α- and γ-HCH between 70 and 207 (114 ± 62), ∑6DDTs: 127-216 (161 ± 36), ∑7PCBs: 53-213 (141 ± 64), and ∑10PBDEs: 0.30-23 (11 ± 9). Low values for all the studied POPs were recorded in the remote area of the Sundarban site (with the exception of DDTs: o,p'-DDT and p,p'-DDT), where ∑4DDTs was 161 ± 36. In particular, the site of Ballygunge, located in the southern part of Kolkata, showed the highest level of all the metabolites/congeners of POPs, suggesting a potential hot spot of usage and emissions. From HCHs, α-/γ-HCH isomers ratio was low (0.67-1.96) indicating a possible sporadic source of lindane. γ-HCH dominated the HCH signal (at 3 sites) reflecting wide spread use of lindane both in Kolkata and the Sundarban region; however, isomeric composition in Kolkata also suggests potential technical HCHs use. Among DDT metabolites, both o,p'-DDT and p,p'-DDT shared the dominant percentages accounting for ∼26-46% of total DDTs followed by p,p'-DDE (∼12-19%). The PCB congener profile was dominated by tri- and tetra-Cl at the southern and eastern part of Kolkata. These results are one of the few contributions that reports air concentrations of POPs, concurrently, at urban and remote villages in India. These data are useful to assess atmospheric pollution levels and to motivate local and regional authorities to better understand the potential human exposure risk associated to urban areas in India.

  13. DANIDA; Air Quality Monitoring Programme. Mission 3 Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivertsen, B.; Marsteen, L.

    1996-12-31

    In the development of the Environmental Information and Monitoring Programme for the Arab Republic of Egypt (EIMP), NILU is responsible for the establishment of an air pollution monitoring system. This report summarizes the third mission to Egypt and includes meetings and site visit reports. Air quality sites in Alexandria are described and comments are given to earlier selected sites in Cairo

  14. Outdoor passive air monitoring of semi volatile organic compounds (SVOCs): a critical evaluation of performance and limitations of polyurethane foam (PUF) disks.

    Science.gov (United States)

    Bohlin, P; Audy, O; Škrdlíková, L; Kukučka, P; Přibylová, P; Prokeš, R; Vojta, Š; Klánová, J

    2014-03-01

    The most commonly used passive air sampler (PAS) (i.e. polyurethane foam (PUF) disk) is cheap, versatile, and capable of accumulating compounds present both in gas and particle phases. Its performance for particle associated compounds is however disputable. In this study, twelve sets of triplicate PUF-PAS were deployed outdoors for exposure periods of 1-12 weeks together with continuously operated active samplers, to characterize sampling efficiency and derive sampling rates (RS) for compounds belonging to 7 SVOC classes (including particle associated compounds). PUF-PAS efficiently and consistently sampled polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), and eight novel brominated flame retardant (nBFR) compounds. Low accuracy and lack of sensitivity was observed for most polychlorinated dibenzo-p-dioxins/furans PCDD/Fs and polybrominated diphenyl ethers (PBDEs) (under the conditions of this study), with the exception of some congeners which may be used as qualitative markers for their respective classes. Application of compound specific RS was found crucial for all compounds except PCBs. Sampling efficiency of the particle associated compounds was often low.

  15. Representativeness of air quality monitoring networks

    NARCIS (Netherlands)

    Duyzer, J.; Hout, D. van den; Zandveld, P.; Ratingen, S. van

    2015-01-01

    The suitability of European networks to check compliance with air quality standards and to assess exposure of the population was investigated. An air quality model (URBIS) was applied to estimate and compare the spatial distribution of the concentration of nitrogen dioxide (NO2) in ambient air in

  16. Current air quality analytics and monitoring: a review.

    Science.gov (United States)

    Marć, Mariusz; Tobiszewski, Marek; Zabiegała, Bożena; de la Guardia, Miguel; Namieśnik, Jacek

    2015-01-01

    This review summarizes the different tools and concepts that are commonly applied in air quality monitoring. The monitoring of atmosphere is extremely important as the air quality is an important problem for large communities. Main requirements for analytical devices used for monitoring include a long period of autonomic operation and portability. These instruments, however, are often characterized by poor analytical performance. Monitoring networks are the most common tools used for monitoring, so large-scale monitoring programmes are summarized here. Biomonitoring, as a cheap and convenient alternative to traditional sample collection, is becoming more and more popular, although its main drawback is the lack of standard procedures. Telemonitoring is another approach to air monitoring, which offers some interesting opportunities, such as ease of coverage of large or remote areas, constituting a complementary approach to traditional strategies; however, it requires huge costs.

  17. Air and biological monitoring of solvent exposure during graffiti removal.

    Science.gov (United States)

    Anundi, H; Langworth, S; Johanson, G; Lind, M L; Akesson, B; Friis, L; Itkes, N; Söderman, E; Jönsson, B A; Edling, C

    2000-11-01

    The principal aim of the study was to estimate the level of exposure to organic solvents of graffiti removers, and to identify the chemicals used in different cleaning agents. A secondary objective was to inform about the toxicity of various products and to optimise working procedures. Exposure to organic solvents was determined by active air sampling and biological monitoring among 38 graffiti removers during an 8-h work shift in the Stockholm underground system. The air samples and biological samples were analysed by gas chromatography. Exposure to organic solvents was also assessed by a questionnaire and interviews. Solvents identified were N-methylpyrrolidone (NMP), dipropylene glycol monomethyl ether (DPGME), propylene glycol monomethyl ether (PGME), diethylene glycol monoethyl ether (DEGEE), toluene, xylene, pseudocumene, hemimellitine, mesitylene, ethylbenzene, limonene, nonane, decane, undecane, hexandecane and gamma-butyrolactone. The 8-h average exposures [time-weighted average (TWA)] were below 20% of the Swedish permissible exposure limit value (PEL) for all solvents identified. In poorly ventilated spaces, e.g. in elevators etc., the short-term exposures exceeded occasionally the Swedish short-term exposure limit values (STEL). The blood and urine concentrations of NMP and its metabolites were low. Glycol ethers and their metabolites (2-methoxypropionic acid (MPA), ethoxy acetic acid (EAA), butoxy acetic acid (BAA), and 2-(2-methoxyethoxy) acetic acid (MEAA)) were found in low concentrations in urine. There were significant correlation between the concentrations of NMP in air and levels of NMP and its metabolites in blood and urine. The use of personal protective equipment, i.e. gloves and respirators, was generally high. Many different cleaning agents were used. The average exposure to solvents was low, but some working tasks included relatively high short-term exposure. To prevent adverse health effects, it is important to inform workers about the

  18. 77 FR 39959 - Draft Guidance To Implement Requirements for the Treatment of Air Quality Monitoring Data...

    Science.gov (United States)

    2012-07-06

    ... Air Quality Monitoring Data Influenced by Exceptional Events AGENCY: Environmental Protection Agency... for the Treatment of Air Quality Monitoring Data Influenced by Exceptional Events and associated... Treatment of Air Quality Monitoring Data Influenced by Exceptional Events and associated attachments and...

  19. CubeSat constellation design for air traffic monitoring

    Science.gov (United States)

    Nag, Sreeja; Rios, Joseph L.; Gerhardt, David; Pham, Camvu

    2016-11-01

    Suitably equipped global and local air traffic can be tracked. The tracking information may then be used for control from ground-based stations by receiving the Automatic Dependent Surveillance-Broadcast (ADS-B) signal. In this paper, we describe a tool for designing a constellation of small satellites which demonstrates, through high-fidelity modeling based on simulated air traffic data, the value of space-based ADS-B monitoring. It thereby provides recommendations for cost-efficient deployment of a constellation of small satellites to increase safety and situational awareness in the currently poorly-served surveillance area of Alaska. Air traffic data were obtained from NASA's Future ATM Concepts Evaluation Tool, for the Alaskan airspace over one day. The results presented were driven by MATLAB and the satellites propagated and coverage calculated using AGI's Satellite Tool. While Ad-hoc and precession spread constellations have been quantitatively evaluated, Walker constellations show the best performance in simulation. Sixteen satellites in two perpendicular orbital planes are shown to provide more than 99% coverage over representative Alaskan airspace and the maximum time gap where any airplane in Alaska is not covered is six minutes, therefore meeting the standard set by the International Civil Aviation Organization to monitor every airplane at least once every fifteen minutes. In spite of the risk of signal collision when multiple packets arrive at the satellite receiver, the proposed constellation shows 99% cumulative probability of reception within four minutes when the airplanes are transmitting every minute, and at 100% reception probability if transmitting every second. Data downlink can be performed using any of the three ground stations of NASA Earth Network in Alaska.

  20. Definition of air quality measurements for monitoring space shuttle launches

    Science.gov (United States)

    Thorpe, R. D.

    1978-01-01

    A description of a recommended air quality monitoring network to characterize the impact on ambient air quality in the Kennedy Space Center (KSC) (area) of space shuttle launch operations is given. Analysis of ground cloud processes and prevalent meteorological conditions indicates that transient HCl depositions can be a cause for concern. The system designed to monitor HCl employs an extensive network of inexpensive detectors combined with a central analysis device. An acid rain network is also recommended. A quantitative measure of projected minimal long-term impact involves the limited monitoring of NOx and particulates. All recommended monitoring is confined ti KSC property.

  1. Development of mobile air pollution monitoring system (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Kyu Seok; Kim, Dukh Yeon; Yang, Ki Ho; Lee, Jong Min; Yoon, S.; Rostov, A

    2001-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment and provide pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR(Light Detection And Ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The coal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols.

  2. Development of mobile air pollution monitoring system (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Kyu Seok; Kim, Dukh Yeon; Yang, Ki Ho; Lee, Jong Min; Yoon, S.; Rostov, A

    2001-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment and provide pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR(Light Detection And Ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The coal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols.

  3. Chemical gas sensors for car exhaust and cabin air monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kalman, E.-L.; Winquist, F. [Department of Physics and Measurement Technology, Laboratory of Applied Physics, Linkoeping University, Gothenburg (Sweden); Rudell, B. [Department of Occupational and Environmental Medicine, Centre of Public Health Sciences, Linkoeping, Gothenburg (Sweden); Loefvendahl, A. [Volvo Car Corporation, Gothenburg (Sweden); Wass, U. [Volvo Technological Development Corporation, Gothenburg (Sweden)

    2002-07-01

    A combination of charcoal and particle filters has previously been shown to reduce effectively the smell of diesel exhaust. In this paper it is shown that the smell of diesel exhaust can successfully be predicted by the concentration of total volatile organic compounds and the concentration of certain carbonyl compounds. Projection to latent structures was utilised for model building. An electronic nose consisting of MOFSET and MOS sensors could less successfully predict the smell, but identified the same filter combination as being most efficient. The car cabin during urban driving was also monitored, both by the means of MOFSET sensors and by chemiluminescence. The pollution level inside the car is shown to be elevated by about 30% compared to outside the car. A combination filter together with an air inlet sensor switch is shown to reduce the NO{sub x} levels inside te car by 30% compared to outside, with the ability to significantly decrease the peak levels. (author)

  4. Monitoring of the Atmosphere on the International Space Station with the Air Quality Monitor

    Science.gov (United States)

    Wallace William T.; Limero, Thomas F.; Loh, Leslie J.; Mudgett, Paul D.; Gazda, Daniel B.

    2017-01-01

    During the early years of human spaceflight, short duration missions allowed for monitoring of the spacecraft environment to be performed via archival sampling, in which samples were returned to Earth for analysis. With the construction of the International Space Station (ISS) and the accompanying extended mission durations, the need for enhanced, real-time monitors became apparent. The Volatile Organic Analyzer (VOA) operated on ISS for 7 years, where it assessed trace volatile organic compounds in the cabin air. The large and fixed-position VOA was eventually replaced with the smaller Air Quality Monitor (AQM). Since March 2013, the atmosphere of the U.S. Operating Segment (USOS) has been monitored in near real-time by a pair of AQMs. These devices consist of a gas chromatograph (GC) coupled with a differential mobility spectrometer (DMS) and currently target detection list of 22 compounds. These targets are of importance to both crew health and the Environmental Control and Life Support Systems (ECLSS) on ISS. Data is collected autonomously every 73 hours, though the units can be controlled remotely from mission control to collect data more frequently during contingency or troubleshooting operations. Due to a nominal three-year lifetime on-orbit, the initial units were replaced in February 2016. This paper will focus on the preparation and use of the AQMs over the past several years. A description of the technical aspects of the AQM will be followed by lessons learned from the deployment and operation of the first set of AQMs. These lessons were used to improve the already-excellent performance of the instruments prior to deployment of the replacement units. Data trending over the past several years of operation on ISS will also be discussed, including data obtained during a survey of the USOS modules. Finally, a description of AQM use for contingency and investigative studies will be presented.

  5. A Wireless Sensor Network Air Pollution Monitoring System

    CERN Document Server

    Khedo, Kavi K; Mungur, Avinash; Mauritius, University of; Mauritius,; 10.5121/ijwmn.2010.2203

    2010-01-01

    Sensor networks are currently an active research area mainly due to the potential of their applications. In this paper we investigate the use of Wireless Sensor Networks (WSN) for air pollution monitoring in Mauritius. With the fast growing industrial activities on the island, the problem of air pollution is becoming a major concern for the health of the population. We proposed an innovative system named Wireless Sensor Network Air Pollution Monitoring System (WAPMS) to monitor air pollution in Mauritius through the use of wireless sensors deployed in huge numbers around the island. The proposed system makes use of an Air Quality Index (AQI) which is presently not available in Mauritius. In order to improve the efficiency of WAPMS, we have designed and implemented a new data aggregation algorithm named Recursive Converging Quartiles (RCQ). The algorithm is used to merge data to eliminate duplicates, filter out invalid readings and summarise them into a simpler form which significantly reduce the amount of dat...

  6. WSN based indoor air quality monitoring in classrooms

    Science.gov (United States)

    Wang, S. K.; Chew, S. P.; Jusoh, M. T.; Khairunissa, A.; Leong, K. Y.; Azid, A. A.

    2017-03-01

    Indoor air quality monitoring is essential as the human health is directly affected by indoor air quality. This paper presents the investigations of the impact of undergraduate students' concentration during lecture due to the indoor air quality in classroom. Three environmental parameters such as temperature, relative humidity and concentration of carbon dioxide are measured using wireless sensor network based air quality monitoring system. This simple yet reliable system is incorporated with DHT-11 and MG-811 sensors. Two classrooms were selected to install the monitoring system. The level of indoor air quality were measured and students' concentration was assessed using intelligent test during normal lecturing section. The test showed significant correlation between the collected environmental parameters and the students' level of performances in their study.

  7. Micro GC's for Contaminant Monitoring in Spacecraft Air Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to create new gas chromatographs (GCs) for contaminant monitoring in spacecraft air that do not require any reagents or special...

  8. Characteristics and applications of small, portable gaseous air pollution monitors.

    Science.gov (United States)

    McKercher, Grant R; Salmond, Jennifer A; Vanos, Jennifer K

    2017-04-01

    Traditional approaches for measuring air quality based on fixed measurements are inadequate for personal exposure monitoring. To combat this issue, the use of small, portable gas-sensing air pollution monitoring technologies is increasing, with researchers and individuals employing portable and mobile methods to obtain more spatially and temporally representative air pollution data. However, many commercially available options are built for various applications and based on different technologies, assumptions, and limitations. A review of the monitor characteristics of small, gaseous monitors is missing from current scientific literature. A state-of-the-art review of small, portable monitors that measure ambient gaseous outdoor pollutants was developed to address broad trends during the last 5-10 years, and to help future experimenters interested in studying gaseous air pollutants choose monitors appropriate for their application and sampling needs. Trends in small, portable gaseous air pollution monitor uses and technologies were first identified and discussed in a review of literature. Next, searches of online databases were performed for articles containing specific information related to performance, characteristics, and use of such monitors that measure one or more of three criteria gaseous air pollutants: ozone, nitrogen dioxide, and carbon monoxide. All data were summarized into reference tables for comparison between applications, physical features, sensing capabilities, and costs of the devices. Recent portable monitoring trends are strongly related to associated applications and audiences. Fundamental research requires monitors with the best individual performance, and thus the highest cost technology. Monitor networking favors real-time capabilities and moderate cost for greater reproduction. Citizen science and crowdsourcing applications allow for lower-cost components; however important strengths and limitations for each application must be addressed

  9. DANIDA; Air Quality Monitoring Programme. Mission 4 Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivertsen, B.

    1997-12-31

    In the development of the Environmental Information and Monitoring Programme for the Arab Republic of Egypt (EIMP), NILU is responsible for the establishment of an air pollution monitoring system. This report summarizes the fourth mission to Egypt, including planning of the second phase meetings and site visits. Additional air quality sites in Cairo have been described. A project group meeting and a visit to Egypt Meteorological Service have been reported

  10. Optical Monitor for Major Air Constituents Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The well-being of the crew on manned missions depends critical on the composition of the habitat air. Oxygen, carbon dioxide and water vapor are the most important...

  11. Organic compounds as indicators of air pollution

    DEFF Research Database (Denmark)

    Mølhave, Lars

    2003-01-01

    The most important indoor air pollutants have already been addressedwith individual national guidelines or recommendations. However, an interna-tional set of guidelines or recommendations for indoor air quality (IAQ) isneeded for these pollutants based on general and uniform rules for setting...... suchstandards. A major research need exist on the less adverse pollutants beforerecommendations or guidelines can be established. In the interim period a pre-caution principle should lead to an ALARA principle for these secondary cau-salities. It should be noted that volatile organic compound (VOC......) is an indicatorfor the presence of VOC indoors. The TVOC indicator can be used in relation toexposure characterization and source identification but for VOCs only, not as anindictor of other pollutants and their health effects. In risk assessment the TVOCindicator can only be used as a screening tool and only...

  12. Organic compounds as indicators of air pollution

    DEFF Research Database (Denmark)

    Mølhave, Lars

    2003-01-01

    The most important indoor air pollutants have already been addressedwith individual national guidelines or recommendations. However, an interna-tional set of guidelines or recommendations for indoor air quality (IAQ) isneeded for these pollutants based on general and uniform rules for setting...... suchstandards. A major research need exist on the less adverse pollutants beforerecommendations or guidelines can be established. In the interim period a pre-caution principle should lead to an ALARA principle for these secondary cau-salities. It should be noted that volatile organic compound (VOC......) is an indicatorfor the presence of VOC indoors. The TVOC indicator can be used in relation toexposure characterization and source identification but for VOCs only, not as anindictor of other pollutants and their health effects. In risk assessment the TVOCindicator can only be used as a screening tool and only...

  13. Water management in capillary gas chromatographic air monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J.F.; Tippler, A.; Seeley, I. [Perkin-Elmer Corp., Wilton, CT (United States)

    1995-12-31

    Determining the identity and quantities of volatile organic compounds in air samples at trace levels often requires large sample sizes to achieve part-per-billion (ppb) detection levels. Given the volatile nature of many of low molecular weight chemical species, some form of cooling or adsorbent trapping of the organics is required. Unfortunately, cooling air samples below ambient temperature causes large amounts of water to be removed along with the organics. This paper investigates the magnitude of the problem and examines various alternatives for managing trapped water. The application of some of these techniques is demonstrated in a method for determining volatile polar and non-polar compounds in ambient air.

  14. GENASIS national and international monitoring networks for persistent organic pollutants

    Science.gov (United States)

    Brabec, Karel; Dušek, Ladislav; Holoubek, Ivan; Hřebíček, Jiří; Kubásek, Miroslav; Urbánek, Jaroslav

    2010-05-01

    Persistent organic pollutants (POPs) remain in the centre of scientific attention due to their slow rates of degradation, their toxicity, and potential for both long-range transport and bioaccumulation in living organisms. This group of compounds covers large number of various chemicals from industrial products, such as polychlorinated biphenyls, etc. The GENASIS (Global Environmental Assessment and Information System) information system utilizes data from national and international monitoring networks to obtain as-complete-as-possible set of information and a representative picture of environmental contamination by persistent organic pollutants (POPs). There are data from two main datasets on POPs monitoring: 1.Integrated monitoring of POPs in Košetice Observatory (Czech Republic) which is a long term background site of the European Monitoring and Evaluation Programme (EMEP) for the Central Europe; the data reveals long term trends of POPs in all environmental matrices. The Observatory is the only one in Europe where POPs have been monitored not only in ambient air, but also in wet atmospheric deposition, surface waters, sediments, soil, mosses and needles (integrated monitoring). Consistent data since the year 1996 are available, earlier data (up to 1998) are burdened by high variability and high detection limits. 2.MONET network is ambient air monitoring activities in the Central and Eastern European region (CEEC), Central Asia, Africa and Pacific Islands driven by RECETOX as the Regional Centre of the Stockholm Convention for the region of Central and Eastern Europe under the common name of the MONET networks (MONitoring NETwork). For many of the participating countries these activities generated first data on the atmospheric levels of POPs. The MONET network uses new technologies of air passive sampling, which was developed, tested, and calibrated by RECETOX in cooperation with Environment Canada and Lancaster University, and was originally launched as a

  15. Derivation of continuous air monitor equations for DAC and DAC-h.

    Science.gov (United States)

    Justus, Alan L

    2010-05-01

    Equations are derived that provide the numerical algorithms necessary for the calculations of both concentration (such as #DAC) and exposure (such as #DAC-h) within continuous air monitors (CAMs) employing collection media. Both calculations utilize measured counts over certain CAM counting intervals. The relationship to similar, although oft misinterpreted, equations given in International Organization for Standardization Standard 11929-5:2005 is detailed.

  16. Technology of Measuring equipment for Air Pollution. Development of Mobile Air Pollution monitoring system (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Ky Seok; Rhee, Young Joo; Kim, Duck Hyun; Yang, Ki Ho; Lee, Jong Min; Cha, Byung Heon; Lee, Kang Soo

    1999-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment process and provides pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR (Light detection and ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The goal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols.

  17. Monitoring Indoor Air Quality for Enhanced Occupational Health.

    Science.gov (United States)

    Pitarma, Rui; Marques, Gonçalo; Ferreira, Bárbara Roque

    2017-02-01

    Indoor environments are characterized by several pollutant sources. Because people spend more than 90% of their time in indoor environments, several studies have pointed out the impact of indoor air quality on the etiopathogenesis of a wide number of non-specific symptoms which characterizes the "Sick Building Syndrome", involving the skin, the upper and lower respiratory tract, the eyes and the nervous system, as well as many building related diseases. Thus, indoor air quality (IAQ) is recognized as an important factor to be controlled for the occupants' health and comfort. The majority of the monitoring systems presently available is very expensive and only allow to collect random samples. This work describes the system (iAQ), a low-cost indoor air quality monitoring wireless sensor network system, developed using Arduino, XBee modules and micro sensors, for storage and availability of monitoring data on a web portal in real time. Five micro sensors of environmental parameters (air temperature, humidity, carbon monoxide, carbon dioxide and luminosity) were used. Other sensors can be added for monitoring specific pollutants. The results reveal that the system can provide an effective indoor air quality assessment to prevent exposure risk. In fact, the indoor air quality may be extremely different compared to what is expected for a quality living environment. Systems like this would have benefit as public health interventions to reduce the burden of symptoms and diseases related to "sick buildings".

  18. Systems Health Monitoring — From Ground to Air — The Aerospace Challenges

    Science.gov (United States)

    Austin, Mary

    2007-03-01

    The aerospace industry and the government are significantly investing in jet engine systems health monitoring. Government organizations such as the Air Force, Navy, Army, National Labs and NASA are investing in the development of state aware sensing for health monitoring of jet engines such as the Joint Strike Fighter, F119 and F100's. This paper will discuss on-going work in systems health monitoring for jet engines. Topics will include a general discussion of the approaches to engine structural health monitoring and the prognosis of engine component life. Real-world implementation challenges on the ground and in the air will be reviewed. The talk will conclude with a prediction of where engine health monitoring will be in twenty years.

  19. The Danish Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.

    will be started including i.a. measurements of PM10 and Benzene at several locations. The present report describes the results from 1999 and updates the trends from the start of the programme in 1982. Measurements are performed at twin sites in the cities of Copenhagen, Odense and Aalborg. One of the sites...... continuously in order to improve the knowledge about the NO, NO2 and O3 problem complex. At the rural site outside Copenhagen the same program is conducted as at the street stations with the inclusion of O3. Only NO, NO2 and O3 are reported from the other rural site. Air quality limit values have been...

  20. Noncontact Monitoring of Respiration by Dynamic Air-Pressure Sensor.

    Science.gov (United States)

    Takarada, Tohru; Asada, Tetsunosuke; Sumi, Yoshihisa; Higuchi, Yoshinori

    2015-01-01

    We have previously reported that a dynamic air-pressure sensor system allows respiratory status to be visually monitored for patients in minimally clothed condition. The dynamic air-pressure sensor measures vital information using changes in air pressure. To utilize this device in the field, we must clarify the influence of clothing conditions on measurement. The present study evaluated use of the dynamic air-pressure sensor system as a respiratory monitor that can reliably detect change in breathing patterns irrespective of clothing. Twelve healthy volunteers reclined on a dental chair positioned horizontally with the sensor pad for measuring air-pressure signals corresponding to respiration placed on the seat back of the dental chair in the central lumbar region. Respiratory measurements were taken under 2 conditions: (a) thinly clothed (subject lying directly on the sensor pad); and (b) thickly clothed (subject lying on the sensor pad covered with a pressure-reducing sheet). Air-pressure signals were recorded and time integration values for air pressure during each expiration were calculated. This information was compared with expiratory tidal volume measured simultaneously by a respirometer connected to the subject via face mask. The dynamic air-pressure sensor was able to receive the signal corresponding to respiration regardless of clothing conditions. A strong correlation was identified between expiratory tidal volume and time integration values for air pressure during each expiration for all subjects under both clothing conditions (0.840-0.988 for the thinly clothed condition and 0.867-0.992 for the thickly clothed condition). These results show that the dynamic air-pressure sensor is useful for monitoring respiratory physiology irrespective of clothing.

  1. 77 FR 60985 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent Methods

    Science.gov (United States)

    2012-10-05

    ... AGENCY Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent... methods for monitoring ambient air quality. SUMMARY: Notice is hereby given that the Environmental... in the ambient air. FOR FURTHER INFORMATION CONTACT: Robert Vanderpool, Human Exposure...

  2. The Danish air quality monitoring programme. Annual Summary for 2006

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, K.; Ellemann, T.; Brandt, J.; Christensen, Jesper; Ketzel, M.

    2007-06-15

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality Monitoring (LMP) network. The aim has been to monitor the levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the concentration trends, to perform source apportionment, and to evaluate the chemical reactions and the dispersion of the pollutants in the atmosphere. In 2006 the air quality was measured in four Danish cities and at two background sites. Besides this model calculations were carried out to supplement the measurements. NO{sub 2} and PM{sub 10} were at several stations found in concentrations above EU limit values, which the Member States have to comply 2005 and in 2010. While the concentrations for most other pollutants have been strongly decreasing since 1982, only a minor decrease has been observed for NO{sub 2} and O{sub 3}. (au)

  3. Use Of The Operational Air Quality Monitor (AQM) For In-Flight Water Testing Project

    Science.gov (United States)

    Macatangay, Ariel

    2014-01-01

    A primary requirement for manned spaceflight is Environmental Health which ensures air and water contaminants, acoustic profiles, microbial flora, and radiation exposures within the cabin are maintained to levels needed for crew health and for vehicle system functionality. The reliance on ground analyses of returned samples is a limitation in the current environmental monitoring strategy that will prevent future Exploration missions beyond low-Earth orbit. This proposal attempts to address this shortcoming by advancing in-flight analyses of water and air. Ground analysis of in-flight, air and water samples typically employ vapor-phase analysis by gas chromatography-mass spectrometry (GC-MS) to identify and quantify organic compounds present in the samples. We envision the use of newly-developed direct ionization approaches as the most viable avenue leading towards an integrated analytical platform for the monitoring of water, air, and, potentially bio-samples in the cabin environment. Development of an in-flight instrument capable of analyzing air and water samples would be the logical next step to meeting the environmental monitoring needs of Exploration missions. Currently, the Air Quality Monitor (AQM) on-board ISS provides this specific information for a number of target compounds in the air. However, there is a significant subset of common target compounds between air and water. Naturally, the following question arises, "Can the AQM be used for both air and water quality monitoring?" Previous directorate-level IR&D funding led to the development of a water sample introduction method for mass spectrometry using electrothermal vaporization (ETV). This project will focus on the integration of the ETV with a ground-based AQM. The capabilities of this integrated platform will be evaluated using a subset of toxicologically important compounds.

  4. Ambient Air Monitoring for Sulfur Compounds

    Science.gov (United States)

    Forrest, Joseph; Newman, Leonard

    1973-01-01

    A literature review of analytical techniques available for the study of compounds at low concentrations points up some of the areas where further research is needed. Compounds reviewed are sulfur dioxide, sulfuric acid, ammonium sulfate and bisulfate, metal sulfates, hydrogen sulfide, and organic sulfides. (BL)

  5. Air Monitoring of Emissions from the Fukushima Daiichi Reactor

    Energy Technology Data Exchange (ETDEWEB)

    McNaughton, Michael [Los Alamos National Laboratory; Allen, Shannon P. [Los Alamos National Laboratory; Archuleta, Debra C. [Los Alamos National Laboratory; Brock, Burgandy [Los Alamos National Laboratory; Coronado, Melissa A. [Los Alamos National Laboratory; Dewart, Jean M. [Los Alamos National Laboratory; Eisele, William F. Jr. [Los Alamos National Laboratory; Fuehne, David P. [Los Alamos National Laboratory; Gadd, Milan S. [Los Alamos National Laboratory; Green, Andrew A. [Los Alamos National Laboratory; Lujan, Joan J. [Los Alamos National Laboratory; MacDonell, Carolyn [Los Alamos National Laboratory; Whicker, Jeffrey J. [Los Alamos National Laboratory

    2012-06-12

    In response to the disasters in Japan on March 11, 2011, and the subsequent emissions from Fukushima-Daiichi, we monitored the air near Los Alamos using four air-monitoring systems: the standard AIRNET samplers, the standard rad-NESHAP samplers, the NEWNET system, and high-volume air samplers. Each of these systems has advantages and disadvantages. In combination, they provide a comprehensive set of measurements of airborne radionuclides near Los Alamos during the weeks following March 11. We report air-monitoring measurements of the fission products released from the Fukushima-Daiichi nuclear-power-plant accident in 2011. Clear gamma-spectrometry peaks were observed from Cs-134, Cs-136, Cs-137, I-131, I132, Te-132, and Te-129m. These data, together with measurements of other radionuclides, are adequate for an assessment and assure us that radionuclides from Fukushima Daiichi did not present a threat to human health at or near Los Alamos. The data demonstrate the capabilities of the Los Alamos air-monitoring systems.

  6. Air compressor multi-pattern smart monitor

    Science.gov (United States)

    Zhao, Qiancheng; Qin, Yejun; Dai, Juchuan; Huang, Geng

    2011-12-01

    The device is controlled by TMS320F2812 microprocessor. It mainly includes signal acquisition circuit, keyboard circuit, Chinese / English LCD display circuit, the calendar clock circuits, alarm circuits, relay output circuit, communications interface circuits, DI / DO circuit, power circuit and CPU circuit and so on. In addition, the device integrates a sensor transmission circuit, so it can directly connect with temperature pressure sensors to achieve high-precision measurement and monitoring. According to needs of users, it can work in different modes without the additional controller respectively. The equipment can communicate with each other by CAN bus or RS485. It mainly can realize the control and analysis of equipment status, failure predication and diagnosis, information management, etc.

  7. Air quality monitoring in NIS (SERBIA) and health impact assessment.

    Science.gov (United States)

    Nikic, Dragana; Bogdanovic, Dragan; Nikolic, Maja; Stankovic, Aleksandra; Zivkovic, Nenad; Djordjevic, Amelija

    2009-11-01

    The aim of this study is to indicate the significance of air quality monitoring and to determine the air quality fields for the assessment of air pollution health effects, with special attention to risk population. Radial basis function network was used for air quality index mapping. Between 1991 and 2005, on the territory of Nis, several epidemiological studies were performed on risk groups (pre-school children, school children, pregnant women and persons older than 65). The total number of subjects was 5837. The exposed group comprised individuals living in the areas with unhealthy AQI, while the control group comprised individuals living in city areas with good or moderate AQI. It was determined that even relatively low levels of air pollution had impact on respiratory system and the occurrence of anaemia, allergy and skin symptoms.

  8. Kuwaiti oil fires — Air quality monitoring

    Science.gov (United States)

    Amin, Mohamed B.; Husain, Tahir

    Just before the Gulf War was concluded in early March 1991, more than 700 wells in Kuwaiti oil fields were set on fire. About 6 million barrels per day of oil were lost in flames and a large number of pools and lakes were formed. Burning wells in Kuwait emitted several thousand tons of gases such as sulfur dioxide, carbon monoxide, hydrogen sulfide, carbon dioxide, and the oxides of nitrogen, as well as particulate matter, on a daily basis containing partially burned hydrocarbons and metals, all of which were potential for affecting human health and vegetation growth. This paper summarizes the real-time measurements of various gaseous pollutants in the Eastern Province of Saudi Arabia in Dhahran, Abqaiq, Rahimah, Jubail and Tanajib. The statistics on monthly variation of gaseous pollutants showed that pollution concentration in general was high in May 1991. The levels of typical pollutants such as sulfur dioxide (SO 2), carbon monoxide (CO) and nitrogen dioxide (NO 2) in the ambient air were much lower than the permissible limits defined in the Meteorology and Environmental Protection Agency (MEPA) standards. The pollutants measured during the Kuwaiti Oil Fires were compared with the corresponding values measured in the previous year. The comparison shows that although the concentration of gaseous pollutants were within the MEPA limits, during the period of oil well fires, the concentration level increased persistently which might have been harmful for human health. The harmful effects of the major pollutants on human health and vegetation are also briefly discussed in the paper.

  9. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    Science.gov (United States)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1998-01-01

    Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).

  10. A Wireless Sensor Network Air Pollution Monitoring System

    Directory of Open Access Journals (Sweden)

    Kavi K. Khedo

    2010-05-01

    Full Text Available Sensor networks are currently an active research area mainly due to the potential of their applications. Inthis paper we investigate the use of Wireless Sensor Networks (WSN for air pollution monitoring inMauritius. With the fast growing industrial activities on the island, the problem of air pollution isbecoming a major concern for the health of the population. We proposed an innovative system namedWireless Sensor Network Air Pollution Monitoring System (WAPMS to monitor air pollution inMauritius through the use of wireless sensors deployed in huge numbers around the island. The proposedsystem makes use of an Air Quality Index (AQI which is presently not available in Mauritius. In order toimprove the efficiency of WAPMS, we have designed and implemented a new data aggregation algorithmnamed Recursive Converging Quartiles (RCQ. The algorithm is used to merge data to eliminateduplicates, filter out invalid readings and summarise them into a simpler form which significantly reducethe amount of data to be transmitted to the sink and thus saving energy. For better power management weused a hierarchical routing protocol in WAPMS and caused the motes to sleep during idle time.

  11. The Danish air quality monitoring programme. Annual summary for 2008

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, K.; Ellemann, T.; Brandt, J.; Christensen, Jesper; Ketzel, M.; Solvang Jensen, S.

    2010-06-15

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality Monitoring (LMP) network. The aim has been to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source apportionment, and to evaluate the chemical reactions and the dispersion of the pollutants in the atmosphere. In 2007 the air quality was measured in four Danish cities and at two background sites. Model calculations were also carried out to supplement the measurements. At several stations NO{sub 2} and PM{sub 10} were found in concentrations above EU limit values, which the Member States have to comply with in 2005 and 2010. The concentrations for most pollutants have been strongly decreasing since 1982, however, only a slight decrease has been observed for NO{sub 2} and O{sub 3}. (author)

  12. The Danish air quality monitoring programme. Annual Summary for 2007

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, K.; Ellemann, T.; Brandt, J.; Christensen, Jesper; Ketzel, M.; Solvang Jensen, S.

    2008-07-15

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality Monitoring (LMP) network. The aim has been to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source apportionment, and to evaluate the chemical reactions and the dispersion of the pollutants in the atmosphere. In 2007 the air quality was measured in four Danish cities and at two background sites. Model calculations were also carried out to supplement the measurements. At several stations NO{sub 2} and PM{sub 10} were found in concentrations above EU limit values, which the Member States have to comply with in 2005 and 2010. The concentrations for most pollutants have been strongly decreasing since 1982, however, only a slight decrease has been observed for NO{sub 2} and O{sub 3}. (au)

  13. 40 CFR 61.184 - Ambient air monitoring for inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Ambient air monitoring for inorganic....184 Ambient air monitoring for inorganic arsenic. (a) The owner or operator of each source to which... arsenic concentrations in the ambient air. (b) The ambient air monitors shall be located at sites...

  14. Participatory Patterns in an International Air Quality Monitoring Initiative

    CERN Document Server

    Sîrbu, Alina; Caminiti, Saverio; De Baets, Bernard; Elen, Bart; Francis, Louise; Gravino, Pietro; Hotho, Andreas; Ingarra, Stefano; Loreto, Vittorio; Molino, Andrea; Mueller, Juergen; Peters, Jan; Ricchiuti, Ferdinando; Saracino, Fabio; Servedio, Vito D P; Stumme, Gerd; Theunis, Jan; Tria, Francesca; Bossche, Joris Van den

    2015-01-01

    The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights int...

  15. Sable Island air monitoring program report: 2003-2006

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, David; Inkpen, Tracey; Hingston, Michael; Keast, Stephanie; McPherson, Johnny; Worthy, Doug; Forbes, Gerry [Air Quality Sciences, Meteorological Service of Canada, Atlantic Region Environment Canada (Canada)

    2010-06-15

    Sable Island is an island situated in the Atlantic which receives pollutant flows from the Great Lakes and the United States Eastern Seaboard. The Sable Island air monitoring station was set up by the Environmental Studies Research Funds and its partners to monitor the concentration of nitrogen oxides (NOx), sulphur oxides (SO2), hydrogen sulphide (H2S), fine particulate matter (PM2.5) and ozone (O3). This paper presents the results of the first 4 years of operation of the station. It was found that concentrations of PM2.5 and ozone exceeded desirable levels on several occasions while concentrations of NOx, SO2 and H2S recorded were much below maximum acceptable levels. In addition it was found that the episodes of elevated pollutant levels were due to transboundary flows from onshore. The Sable Island air monitoring project showed good results in its first 4 years of operation and the project partners are considering extending the program.

  16. Comparison of exposure estimation methods for air pollutants: ambient monitoring data and regional air quality simulation.

    Science.gov (United States)

    Bravo, Mercedes A; Fuentes, Montserrat; Zhang, Yang; Burr, Michael J; Bell, Michelle L

    2012-07-01

    Air quality modeling could potentially improve exposure estimates for use in epidemiological studies. We investigated this application of air quality modeling by estimating location-specific (point) and spatially-aggregated (county level) exposure concentrations of particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM(2.5)) and ozone (O(3)) for the eastern U.S. in 2002 using the Community Multi-scale Air Quality (CMAQ) modeling system and a traditional approach using ambient monitors. The monitoring approach produced estimates for 370 and 454 counties for PM(2.5) and O(3), respectively. Modeled estimates included 1861 counties, covering 50% more population. The population uncovered by monitors differed from those near monitors (e.g., urbanicity, race, education, age, unemployment, income, modeled pollutant levels). CMAQ overestimated O(3) (annual normalized mean bias=4.30%), while modeled PM(2.5) had an annual normalized mean bias of -2.09%, although bias varied seasonally, from 32% in November to -27% in July. Epidemiology may benefit from air quality modeling, with improved spatial and temporal resolution and the ability to study populations far from monitors that may differ from those near monitors. However, model performance varied by measure of performance, season, and location. Thus, the appropriateness of using such modeled exposures in health studies depends on the pollutant and metric of concern, acceptable level of uncertainty, population of interest, study design, and other factors.

  17. Development and validation of a method for air-quality and nuisance odors monitoring of volatile organic compounds using multi-sorbent adsorption and gas chromatography/mass spectrometry thermal desorption system.

    Science.gov (United States)

    Ribes, Alejandra; Carrera, Guillem; Gallego, Eva; Roca, Xavier; Berenguer, M A José; Guardino, Xavier

    2007-01-26

    An analytical method based on thermal desorption (TD) coupled to gas chromatography (GC) and mass spectrometry detection (MS) has been developed and validated for the determination of a wide range of odor nuisance and air-quality volatile organic compounds (VOC) in air. New generation isocyanates, isocyanato- and isothiocyanatocyclohexane, have been included for the first time as target compounds due to their high occurrence in air samples. A dynamic air sampling method to trap gas and vapor on multi-sorbent tubes using portable pump equipment has been also developed. Sorbent tubes were filled with Carbotrap (70mg), Carbopack X (100mg) and Carboxen-569 (90mg). Validation of the TD-GC-MS method showed good selectivity, sensibility and precision according to Compendium Method TO-17 (US Environment Protection Agency) criteria. Limits of detection (signal-to-noise=3, ng in tube) ranges were 0.004-0.03ng (alcanes), 0.001-0.1ng (aromatics), 0.03-14ng (aldehydes), 0.003-7ng (alcohols), 0.003-0.04ng (chlorides), 0.02-0.5ng (esters), 0.002-0.1ng (ketones), 0.01-0.53ng (terpenes), 14-97ng (amides), 0.2-10ng (isocyanates) and 0.001ng (carbon disulfide). The linear dynamic range was over 3-5 orders of magnitude, depending of the VOC. TD-GC-MS analysis was reproducible, with relative standard deviation (n=5) within 20%. VOCs breakthrough examination showed no significant losses when about 2000ng standard was prepared. In order to evaluate the performance of the developed method on real samples, several industrial and urban air samples were analysed. VOCs were found to be stable on the sorbent tubes for at least 1 week when stored at 4 degrees C.

  18. 40 CFR Appendix C to Part 58 - Ambient Air Quality Monitoring Methodology

    Science.gov (United States)

    2010-07-01

    ... Methodology C Appendix C to Part 58 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Quality Monitoring Methodology 1.0 Purpose 2.0 SLAMS Ambient Air Monitoring Stations 3.0 NCore Ambient Air... alternative SO2, CO, NO2, O3, PM2.5, or PM10−2.5 monitoring methodologies are proposed for monitors not...

  19. SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus

    2016-04-01

    Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the

  20. A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction.

    Science.gov (United States)

    Yang, Zhongshan; Wang, Jian

    2017-10-01

    Air pollution in many countries is worsening with industrialization and urbanization, resulting in climate change and affecting people's health, thus, making the work of policymakers more difficult. It is therefore both urgent and necessary to establish amore scientific air quality monitoring and early warning system to evaluate the degree of air pollution objectively, and predict pollutant concentrations accurately. However, the integration of air quality assessment and air pollutant concentration prediction to establish an air quality system is not common. In this paper, we propose a new air quality monitoring and early warning system, including an assessment module and forecasting module. In the air quality assessment module, fuzzy comprehensive evaluation is used to determine the main pollutants and evaluate the degree of air pollution more scientifically. In the air pollutant concentration prediction module, a novel hybridization model combining complementary ensemble empirical mode decomposition, a modified cuckoo search and differential evolution algorithm, and an Elman neural network, is proposed to improve the forecasting accuracy of six main air pollutant concentrations. To verify the effectiveness of this system, pollutant data for two cities in China are used. The result of the fuzzy comprehensive evaluation shows that the major air pollutants in Xi'an and Jinan are PM10 and PM2.5 respectively, and that the air quality of Xi'an is better than that of Jinan. The forecasting results indicate that the proposed hybrid model is remarkably superior to all benchmark models on account of its higher prediction accuracy and stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Heart-rate monitoring by air pressure and causal analysis

    Science.gov (United States)

    Tsuchiya, Naoki; Nakajima, Hiroshi; Hata, Yutaka

    2011-06-01

    Among lots of vital signals, heart-rate (HR) is an important index for diagnose human's health condition. For instance, HR provides an early stage of cardiac disease, autonomic nerve behavior, and so forth. However, currently, HR is measured only in medical checkups and clinical diagnosis during the rested state by using electrocardiograph (ECG). Thus, some serious cardiac events in daily life could be lost. Therefore, a continuous HR monitoring during 24 hours is desired. Considering the use in daily life, the monitoring should be noninvasive and low intrusive. Thus, in this paper, an HR monitoring in sleep by using air pressure sensors is proposed. The HR monitoring is realized by employing the causal analysis among air pressure and HR. The causality is described by employing fuzzy logic. According to the experiment on 7 males at age 22-25 (23 on average), the correlation coefficient against ECG is 0.73-0.97 (0.85 on average). In addition, the cause-effect structure for HR monitoring is arranged by employing causal decomposition, and the arranged causality is applied to HR monitoring in a setting posture. According to the additional experiment on 6 males, the correlation coefficient is 0.66-0.86 (0.76 on average). Therefore, the proposed method is suggested to have enough accuracy and robustness for some daily use cases.

  2. Enhanced data validation strategy of air quality monitoring network.

    Science.gov (United States)

    Harkat, Mohamed-Faouzi; Mansouri, Majdi; Nounou, Mohamed; Nounou, Hazem

    2017-10-05

    Quick validation and detection of faults in measured air quality data is a crucial step towards achieving the objectives of air quality networks. Therefore, the objectives of this paper are threefold: (i) to develop a modeling technique that can be used to predict the normal behavior of air quality variables and help provide accurate reference for monitoring purposes; (ii) to develop fault detection method that can effectively and quickly detect any anomalies in measured air quality data. For this purpose, a new fault detection method that is based on the combination of generalized likelihood ratio test (GLRT) and exponentially weighted moving average (EWMA) will be developed. GLRT is a well-known statistical fault detection method that relies on maximizing the detection probability for a given false alarm rate. In this paper, we propose to develop GLRT-based EWMA fault detection method that will be able to detect the changes in the values of certain air quality variables; (iii) to develop fault isolation and identification method that allows defining the fault source(s) in order to properly apply appropriate corrective actions. In this paper, reconstruction approach that is based on Midpoint-Radii Principal Component Analysis (MRPCA) model will be developed to handle the types of data and models associated with air quality monitoring networks. All air quality modeling, fault detection, fault isolation and reconstruction methods developed in this paper will be validated using real air quality data (such as particulate matter, ozone, nitrogen and carbon oxides measurement). Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Measurement of oxygen transfer from air into organic solvents

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Mayr, Torsten; Hobisch, Mathias

    2016-01-01

    applications). Subsequently, we measured the oxygen transfer rates from air into these organic solvents. Conclusion The measurement of oxygen transfer rates from air into organic solvents using the dynamic method was established using the solvent resistant optical sensor. The feasibility of online oxygen...... biological reactions require the supply of oxygen, most normally from air. However, reliable on-line measurements of oxygen concentration in organic solvents (and hence oxygen transfer rates from air to the solvent) has to date proven impossible due limitations in the current analytical methods. Results...

  4. Journal Article: the National Dioxin Air Monitoring Network ...

    Science.gov (United States)

    In June, 1998, the U.S. EPA established the National Dioxin Air Monitoring Network (NDAMN). The primary goal of NDAMN is determine the temporal and geographical variability of atmospheric CDDs, CDFs, and coplanar PCBs at rural and nonimpacted locations throughout the United States. Currently operating at 32 sampling stations, NDAMN has three primary purposes: (1) to determine the atmospheric levels and occurrences of dioxin-like compounds in rural and agricultural areas where livestock, poultry and animal feed crops are grown; (2) to provide measurements of atmospheric levels of dioxin-like compounds in different geographic regions of the U.S.; and (3) to provide information regarding the long-range transport of dioxin-like compounds in air over the U.S. At Dioxin 2000, we reported on the preliminary results of monitoring at 9 rural locations from June 1998 through June 1999. By the end of 1999, NDAMN had expanded to 21 sampling stations. Then, at Dioxin 2001, we reported the results of the first 18 months of operation of NDAMN at 15 rural and 6 National Park stations in the United States. The following is intended to be an update to this national monitoring effort. We are reporting the air monitoring results of 17 rural and 8 National Park NDAMN stations operational over 4 sampling moments during calendar year 2000. Two stations located in suburban Washington DC and San Francisco, CA are more urban in character and serve as an indicator of CDD/F and cop

  5. Dynamic Monitoring of Cleanroom Fallout Using an Air Particle Counter

    Science.gov (United States)

    Perry, Radford

    2011-01-01

    The particle fallout limitations and periodic allocations for the James Webb Space Telescope are very stringent. Standard prediction methods are complicated by non-linearity and monitoring methods that are insufficiently responsive. A method for dynamically predicting the particle fallout in a cleanroom using air particle counter data was determined by numerical correlation. This method provides a simple linear correlation to both time and air quality, which can be monitored in real time. The summation of effects provides the program better understanding of the cleanliness and assists in the planning of future activities. Definition of fallout rates within a cleanroom during assembly and integration of contamination-sensitive hardware, such as the James Webb Space Telescope, is essential for budgeting purposes. Balancing the activity levels for assembly and test with the particle accumulation rate is paramount. The current approach to predicting particle fallout in a cleanroom assumes a constant air quality based on the rated class of a cleanroom, with adjustments for projected work or exposure times. Actual cleanroom class can also depend on the number of personnel present and the type of activities. A linear correlation of air quality and normalized particle fallout was determined numerically. An air particle counter (standard cleanroom equipment) can be used to monitor the air quality on a real-time basis and determine the "class" of the cleanroom (per FED-STD-209 or ISO-14644). The correlation function provides an area coverage coefficient per class-hour of exposure. The prediction of particle accumulations provides scheduling inputs for activity levels and cleanroom class requirements.

  6. SNRB{trademark} air toxics monitoring. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Babcock & Wilcox (B&W) is currently conducting a project under the DOE`s Clean Coal Technology (CCT II) Program to demonstrate its SO{sub x}NO{sub x}-Rox Box{trademark} (SNRB{trademark}) process in a 5 MWe Field Demonstration Unit at Ohio Edison`s R. E. Burger Plant near Shadyside, Ohio. The objective of the SNRB{trademark} Air Toxics Monitoring Project was to provide data on SNRB{trademark} air toxics emissions control performance to B&W and to add to the DOE/EPRI/EPA data base by quantifying the flow rates of selected hazardous substances (or air toxics) in all of the major input and output streams of the SNRB{trademark} process as well as the power plant. Work under the project included the collection and analysis of representative samples of all major input and output streams of the SNRB{trademark} demonstration unit and the power plant, and the subsequent laboratory analysis of these samples to determine the partitioning of the hazardous substances between the various process streams. Material balances for selected air toxics were subsequently calculated around the SNRB{trademark} and host boiler systems, including the removal efficiencies across each of the major air pollution control devices. This report presents results of the SNRB{trademark} Air Toxics Monitoring Project. In addition to the Introduction, a brief description of the test site, including the Boiler No. 8 and the SNRB{trademark} process, is included in Section H. The concentrations of air toxic emissions are presented in Section II according to compound class. Material balances are included in Section IV for three major systems: boiler, electrostatic precipitator, and SNRB{trademark}. Emission factors and removal efficiencies are also presented according to compound class in Sections V and VI, respectively. A data evaluation is provided in Section VII.

  7. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    Directory of Open Access Journals (Sweden)

    Jianping Yao

    2011-03-01

    Full Text Available Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided.

  8. Water management in capillary gas chromatographic air monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Tipler, A. [Perkin Elmer Corp., Norwalk, CT (United States). Fresh Aire Lab.

    1994-12-31

    Capillary gas chromatography is an excellent technique for the speciated quantitation of low-level volatile organic compounds (VOCs) in ambient air. Although GC detectors have excellent sensitivity, some sample pre-concentration will be necessary to enable detection of VOCs at sub-ppb levels. This process normally employs a cooled and/or adsorbent trap to retain the analytes from a large volume of sample air. For very volatile VOCs, a very retentive trap is used and this may also retain water present as vapor in the sample. This trapped water causes significant problems with the chromatography and detector operation and methods must be sought to remove it or eliminate its effects. This paper investigates the magnitude of the problem and examines the various alternatives for managing the trapped water. The application of some of these techniques is demonstrated in a method for the determination of volatile polar and non-polar toxic organic compounds in ambient air.

  9. AMCO Off-Site Air Monitoring Polygons, Oakland CA, 2017, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This feature class was developed to support the AMCO Chemical Superfund Site air monitoring process and depicts a single polygon layer, Off-Site Air Monitors,...

  10. Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors.

    Science.gov (United States)

    Gerdol, Renato; Marchesini, Roberta; Iacumin, Paola; Brancaleoni, Lisa

    2014-08-01

    Monitoring air quality by using living organisms as biomonitors has received increasing attention in recent years. However, rather few studies were based on the concomitant use of passive biomonitoring (based on the different sensitivity of living organisms to air pollution) and active biomonitoring (based on their capacity to accumulate pollutants in the tissues). We carried out a repeated survey of an urban area in Northern Italy, with the objective of comparing temporal trends of different kinds of air pollutants with bioindication (passive biomonitoring) and bioaccumulation (active biomonitoring) techniques. During a five-year interval, temporal patterns of moss metal concentrations underwent significant changes probably due to intercurring variations in the importance of different pollution sources. Nitrogen (N) concentration in moss tissues also decreased and was paralleled by increasing diversity of epiphytic lichens. Increasing δ(15)N in moss tissues suggested a higher contribution of oxidized N species compared with reduced N species.

  11. James Bay air quality study : report on the results of field monitoring in 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-02-08

    An air quality study in James Bay was conducted, in order to establish general levels of pollutants in outdoor air in the James Bay area of Victoria, British Columbia. The primary sources of air pollution in the area include light duty and heavy duty vehicle traffic, helicopters, floatplanes, and marine vessels such as cruise ships, passenger ferries, commercial fishing and whale watching boats, and recreation motorboats. Air quality monitoring represented the first phase of the project. The second phase involved a detailed pollutant dispersion model including all emission sources. This report described the use of sampling equipment and the measurement of nitric oxide, nitrogen dioxide, sulfur dioxide, fine particulate matter and contributing sources, and volatile organic compounds, specifically benzene, toluene, ethylbenzene/xylene and naphthalene. Supporting data, including traffic counts, wind speed and direction, precipitation, and cruise ship schedules were collected to assist in the interpretation of the field monitoring results. For each of these pollutants, the report provided responses to several questions, such as defining each pollutant; describing the sources of each pollutant in the James Bay neighbourhood; presenting the results of the field monitoring; discussing the limitations of the monitoring equipment and sampling design; interpreting the results; comparing monitored levels to those measured at other times or locations; and comparing monitored levels to air quality standards or guidelines. Conclusions about each pollutant were presented. It was concluded that phase 2 pollutant dispersion modelling should include estimates of 1-hour, 24-hour, and seasonal average pollutant levels at varying elevations above ground level, with a focus on residential apartment buildings in the study area. 5 tabs., 52 figs., 7 appendices.

  12. The Danish air quality monitoring programme. Annual summary for 2011

    Energy Technology Data Exchange (ETDEWEB)

    Ellemann, T.; Klenoe Noejgaard, J.; Nordstroem, C.; Brandt, J.; Christensen, Jesper; Ketzel, M.; Solvang Jensen, S.

    2012-10-15

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality Monitoring network. The aim is to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source apportionment, and to understand the governing processes that determine the level of air pollution in Denmark. In 2011 the air quality was measured in four Danish cities and at two background sites. In addition model calculations were carried out to supplement the measurements. At one street station (H.C. Andersens Boulevard) in Copenhagen NO{sub 2} was found in concentrations above EU limit values while NO{sub 2} levels in Odense, Aarhus and Aalborg were below the limit value. Model calculations indicate exceedances of NO{sub 2} limit values at several streets in Copenhagen. Annual averages of PM{sub 10} and PM{sub 2.5} were below limit values at all stations. However, concentrations levels in Copenhagen exceeded the daily limit value for PM{sub 10}. Winter salting of roads was one of the main reasons for this exceedance. The concentrations for most pollutants have been strongly decreasing during the last decades, however, only a slight decrease has been observed for NO{sub 2} and O{sub 3}. (Author)

  13. Urgent problems of improving background air pollution monitoring systems.

    Science.gov (United States)

    Berlyand, M E; Volberg, N S; Lavrinenko, R F; Rusina, E N

    1988-01-01

    For more than 12 years, systematic observations of background air pollution have been carried out in accordance with the WMO Programme using the network of USSR stations located in sparsely populated settlements and in a number of neighbouring cities. The parameters involved include spectral radiation measurements, determination of chemical composition of precipitation and the concentrations of a number of atmospheric pollutants. Analysis of the data obtained allows conclusions to be drawn on the capabilities of the current system and to evaluate methods of improving it.In order to further improve the monitoring system, it is recommended that the system should perform the same observations on air pollution and precipitation as carried out by other international and national programs, and also to create centralized laboratories to deal with the analysis of samples from these monitoring stations. Additionally, solid sorbents are emerging as an effective means of sampling certain air pollutants. They may be sent by post, they increase the accuracy of measurements and allow air sampling intervals of up to 7-10 days, thus synchronizing this period with the interval of precipitation sampling.

  14. The Danish air quality monitoring programme. Annual summary for 2012

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Klenoe Noejgaard, J.; Nordstroem, C.; Brandt, J.; Christensen, Jesper; Ketzel, M.; Jansen, S.; Massling, A.; Solvang Jensen, S.

    2013-10-15

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality Monitoring network. The aim is to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source apportionment, and to understand the governing processes that determine the level of air pollution in Denmark. In 2012 the air quality was measured in four Danish cities and at two background sites. In addition model calculations were carried out to supplement the measurements. At one street station (H.C. Andersens Boulevard) in Copenhagen NO{sub 2} was found in concentrations above EU limit values while NO{sub 2} levels in Odense, Aarhus and Aalborg were below the limit value. Model calculations indicate exceedances of NO{sub 2} limit values at several streets in Copenhagen. Annual averages of PM{sub 10} and PM{sub 2.5} were below limit values at all stations. The concentrations for most pollutants have been decreasing during the last decades. (Author)

  15. Development of air sampling strategies for monitoring common air pollutants in a mission area at Camp Victoria in Kosovo--stationary vs. personal monitoring.

    Science.gov (United States)

    Wingfors, Håkan; Hägglund, Lars; Magnusson, Roger; Höjer, Karin

    2009-06-01

    It can be problematic to collect representative samples in the occupational environment of deployed soldiers using personal samplers. In this study, several air sampling strategies were examined to identify the most efficient method for collecting air samples that were representative of the soldiers' exposure profiles at the Swedish KFOR Camp Victoria outside Pristina, Kosovo. Stationary monitoring was performed during two 5-day sampling campaigns, one in summer and one in winter. The acquired data were related to measurements obtained by personal monitoring of three and four subgroups, respectively. Patrolling soldiers, mechanics, and indoor workers were selected to represent groups with different exposure profiles, and the particles, metals associated with particles, nitrogen dioxide, sulfur dioxide, polycyclic aromatic hydrocarbons, aldehydes, and volatile organic compounds that they were exposed to were measured. Generally, low concentrations of the analytes were found in both sampling periods, but the variability was greater in the winter campaign. Samples collected by stationary samplers captured most of the variation in the personnel's exposure, according to principal component analysis (PCA). However, the results also indicate that personal exposure to most potential pollutants would be underestimated if a single outdoor station was used to monitor them. Nevertheless, combined data from stations located outdoors and in relevant microenvironments (workshop, office, and guard station) provided substantially better representation. Thus, it may be possible to obtain monitoring data without using personal samplers in these inherently problematic situations.

  16. Operational Use of the Air Quality Monitor on ISS and Potential for Air Quality Monitoring Onboard Submarines

    Science.gov (United States)

    Limero, Thomas; Jones, Jared; Wallace, William; Mudgett, Paul

    2015-01-01

    The air quality monitor (AQM) began operations on the International Space Station (ISS) in March 2013 and was validated for operational use in January 2014. The AQM is a gas chromatograph-differential mobility spectrometer that currently monitors 22 target compounds in the ISS atmosphere. Data are collected twice per week, although data collection can be more frequent in contingency situations. In its second year, the AQM has provided data to decision-makers on several ISS contaminant related issues in both air and water. AQM has been used in strictly air incidents, such as a potential ammonia leak, and to investigate air contaminants affecting the water processing (excess ethanol). In the latter case data from water monitors and AQM were compared to understand the issue with the water processor. Additionally, the AQM has been moved to different ISS modules to determine whether air is sufficiently mixed between modules so that a central LAB module location is representative of the entire ISS atmosphere. Historic data on the ISS atmosphere in different modules from archival samples (ground lab analysis) suggest that the atmosphere is usually homogenous. This presentation will briefly describe the technical aspects of the AQM operations and summarize the validation results. The main focus of the presentation will be to discuss the results from the AQM survey of the ISS modules and to show how the AQM data has contributed to an understanding of environmental issues that have arisen on ISS. Presentation of a potential ammonia leak (indicated by an alarm) in 2015 will illustrate the use and value of the AQM in such situations.

  17. Nonradioactive Ambient Air Monitoring at Los Alamos National Laboratory 2001--2002

    Energy Technology Data Exchange (ETDEWEB)

    E. Gladney; J.Dewart, C.Eberhart; J.Lochamy

    2004-09-01

    During the spring of 2000, the Cerro Grande forest fire reached Los Alamos National Laboratory (LANL) and ignited both above-ground vegetation and disposed materials in several landfills. During and after the fire, there was concern about the potential human health impacts from chemicals emitted by the combustion of these Laboratory materials. Consequently, short-term, intensive air-monitoring studies were performed during and shortly after the fire. Unlike the radiological data from many years of AIRNET sampling, LANL did not have an adequate database of nonradiological species under baseline conditions with which to compare data collected during the fire. Therefore, during 2001 the Meteorology and Air Quality Group designed and implemented a new air-monitoring program, entitled NonRadNET, to provide nonradiological background data under normal conditions. The objectives of NonRadNET were to: (1) develop the capability for collecting nonradiological air-monitoring data, (2) conduct monitoring to develop a database of typical background levels of selected nonradiological species in the communities nearest the Laboratory, and (3) determine LANL's potential contribution to nonradiological air pollution in the surrounding communities. NonRadNET ended in late December 2002 with five quarters of data. The purpose of this paper is to organize and describe the NonRadNET data collected over 2001-2002 to use as baseline data, either for monitoring during a fire, some other abnormal event, or routine use. To achieve that purpose, in this paper we will: (1) document the NonRadNET program procedures, methods, and quality management, (2) describe the usual origins and uses of the species measured, (3) compare the species measured to LANL and other area emissions, (4) present the five quarters of data, (5) compare the data to known typical environmental values, and (6) evaluate the data against exposure standards.

  18. Objective classification of air quality monitoring sites over Europe

    Science.gov (United States)

    Joly, Mathieu; Peuch, Vincent-Henri

    2012-02-01

    The observation sites that make up air quality monitoring networks can have very different characteristics (topography, climatology, distance to emission sources, etc), which are partially described in the meta-information provided with data sets. At the scale of Europe, the description of the sites depends on the institute(s) in charge of the air quality monitoring in each country, and is based on specific criteria that can be sometimes rather subjective. The purpose of this study is to build an objective, homogeneous, and pollutant-specific classification of European air quality monitoring sites, primarily for the purpose of model verification and chemical data assimilation. Most studies that tackled this issue so far were based on limited data sets, and often took into account additional external data such as population density, emission estimates, or land cover maps. The present study demonstrates the feasibility of a classification only based on the past time series of measured pollutants. The underlying idea is that the true fingerprint of a given monitoring site lies within its past observation values. On each site to be categorized, eight indicators are defined to characterize each pollutant time series (O 3, NO 2, NO, SO 2, or PM 10) of the European AirBase and the French BDQA (Base de Données de Qualité de l'Air) reference sets of validated data over the period 2002-2009. A Linear Discriminant Analysis is used to best discriminate the rural and urban sites. After projection on the Fisher axis, ten classes are finally determined on the basis of fixed thresholds, for each molecule. The method is validated by cross-validation and by direct comparison with the existing meta-data. The link between the classes obtained and the meta-data is strongest with NO, NO 2, and PM 10. Across Europe, the classification exhibits interesting large-scale features: some contrasts between different regions depend on the pollutant considered. Comparing the classes obtained

  19. Participatory Patterns in an International Air Quality Monitoring Initiative.

    Science.gov (United States)

    Sîrbu, Alina; Becker, Martin; Caminiti, Saverio; De Baets, Bernard; Elen, Bart; Francis, Louise; Gravino, Pietro; Hotho, Andreas; Ingarra, Stefano; Loreto, Vittorio; Molino, Andrea; Mueller, Juergen; Peters, Jan; Ricchiuti, Ferdinando; Saracino, Fabio; Servedio, Vito D P; Stumme, Gerd; Theunis, Jan; Tria, Francesca; Van den Bossche, Joris

    2015-01-01

    The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution.

  20. Monitoring air quality in mountains: Designing an effective network

    Science.gov (United States)

    Peterson, D.L.

    2000-01-01

    A quantitatively robust yet parsimonious air-quality monitoring network in mountainous regions requires special attention to relevant spatial and temporal scales of measurement and inference. The design of monitoring networks should focus on the objectives required by public agencies, namely: 1) determine if some threshold has been exceeded (e.g., for regulatory purposes), and 2) identify spatial patterns and temporal trends (e.g., to protect natural resources). A short-term, multi-scale assessment to quantify spatial variability in air quality is a valuable asset in designing a network, in conjunction with an evaluation of existing data and simulation-model output. A recent assessment in Washington state (USA) quantified spatial variability in tropospheric ozone distribution ranging from a single watershed to the western third of the state. Spatial and temporal coherence in ozone exposure modified by predictable elevational relationships ( 1.3 ppbv ozone per 100 m elevation gain) extends from urban areas to the crest of the Cascade Range. This suggests that a sparse network of permanent analyzers is sufficient at all spatial scales, with the option of periodic intensive measurements to validate network design. It is imperative that agencies cooperate in the design of monitoring networks in mountainous regions to optimize data collection and financial efficiencies.

  1. Participatory Patterns in an International Air Quality Monitoring Initiative.

    Directory of Open Access Journals (Sweden)

    Alina Sîrbu

    Full Text Available The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance and globally (e.g., climate change, resource use. Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach. This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution.

  2. Total volatile organic compounds (TVOC) in indoor air quality investigations

    DEFF Research Database (Denmark)

    Mølhave, L.; Clausen, Geo; Berglund, B.

    1997-01-01

    The amount of volatile organic compounds (VOCs) in indoor air, usually called TVOC (total volatile organic compounds), has been measured using different definitions and techniques which yield different results. This report recommends a definition of TVOC referring to a specified range of VOCs...... for characterizing indoor pollution and for improving source control as required from the points of view of health, comfort, energy efficiency and sustainability. (C) Indoor Air (1997)....

  3. Biomonitoring of air pollution by organic compounds in the city of Graz and the industrial area of Leoben-Donawitz

    Energy Technology Data Exchange (ETDEWEB)

    Maier, W. [TUeV Sueddeutschland, Stuttgart (Germany). Bau und Betrieb Umwelt Service; Pirker, D.; Pongratz, T.; Schopper, A. [Amt der Steiermaerkischen Landesregierung, Graz (Austria). Fachabteilung 1a; Waikinat, I. [TUeV Sueddeutschland, Muenchen (Germany). Bau und Betrieb

    2002-07-01

    The air pollution of some persistent organic compounds (PAH, PCB, PCDD/F) was measured in two regions of Styria/Austria, Graz and Leoben, by biomonitoring methods. These measurements were carried out in addition to the air quality monitoring network, the monitoring of airborne dust, contaminated with dioxines and furanes and the contamination of soil. Urban emissions (traffic, domestic heating) of air pollutants dominate the pollution level in Graz. Emissions of iron and steel industry are responsible for problems in air quality in Leoben-Donawitz. (orig.)

  4. Community air monitoring and the Village Green Project ...

    Science.gov (United States)

    Cost and logistics are practical issues that have historically constrained the number of locations where long-term, active air pollution measurement is possible. In addition, traditional air monitoring approaches are generally conducted by technical experts with limited engagement with community members. EPA’s Village Green Project (VGP) is a prototype technology designed to add value to a community environment – VGP is a park bench equipped with air and meteorological instruments that measure ozone, fine particles, wind, temperature, and humidity at a one-minute time resolution, with the open-source Arduino microprocessor operating as the system controller. The data are streamed wirelessly to a database, passed through automatic diagnostic quality checks, and then made publically available on an engaging website. The station was designed to minimize power use; it consumes an estimated 15W and operates entirely on solar power, is engineered to run for several days with minimal solar radiation, and is capable of automatically shutting down components of the system to conserve power and restarting when power availability increases. Situated outside a public library in Durham, North Carolina, VGP has also been a gathering location for air quality experts to engage with community members. During the time span of June, 2013 through January, 2014, the station collected about 3500 hours of ozone and PM2.5 data, with over 90% up-time operating only on solar po

  5. Quality screening for air quality monitoring data in China.

    Science.gov (United States)

    Liu, Jianzheng; Li, Weifeng; Li, Jie

    2016-09-01

    Particulate matter data obtained from the national air quality monitoring network in China has become an essential and critical data source for many current and forthcoming studies as well as the formulation and implementation of air pollution regulatory policies on particulate matter (PM2.5 and PM10). However, the quality control of this data is dubitable and can affect many future studies and policies. This study identifies and elucidates two significant quality control issues with the data. They are PM2.5 levels exceeding concurrent co-located PM10 levels and the registration of same concentrations for consecutive hours at some stations. Future studies utilizing particulate matter data need to acknowledge and address these issues to ensure accurate and reliable results.

  6. Locating air quality monitoring station using wind impact area diagram.

    Science.gov (United States)

    George, K V; Verma, P; Devotta, S

    2008-10-01

    In this study a new methodology is suggested to approximate the impact area downwind of an air pollution source, where air quality monitoring can be carried out to capture the maximum pollutant concentration. Hourly wind speed for a given month is grouped in to different wind speed ranges and the distance of pollutant travel is approximated from the average wind speed of that wind speed range. Since change in wind direction causes the impact distance to rotate, its rotation is approximated by the SD of wind direction change. Using this approach, area or region down wind of a source is determined and plotted. The pattern of monthly change of wind is better represented by the new type of diagram as compared to the wind rose diagram.

  7. Organizational Structures and Data Use in Volunteer Monitoring Organizations (VMOs)

    Science.gov (United States)

    Laird, Shelby Gull; Nelson, Stacy A. C.; Stubbs, Harriett S.; James, April L.; Menius, Erika

    2012-01-01

    Complex environmental problems call for unique solutions to monitoring efforts alongside developing a more environmentally literate citizenry. Community-based monitoring (CBM) through the use of volunteer monitoring organizations helps to provide a part of the solution, particularly when CBM groups work with research scientists or government…

  8. Organizational Structures and Data Use in Volunteer Monitoring Organizations (VMOs)

    Science.gov (United States)

    Laird, Shelby Gull; Nelson, Stacy A. C.; Stubbs, Harriett S.; James, April L.; Menius, Erika

    2012-01-01

    Complex environmental problems call for unique solutions to monitoring efforts alongside developing a more environmentally literate citizenry. Community-based monitoring (CBM) through the use of volunteer monitoring organizations helps to provide a part of the solution, particularly when CBM groups work with research scientists or government…

  9. Real-time expert system monitors complex air regs

    Energy Technology Data Exchange (ETDEWEB)

    Hasbach, A.

    1995-07-01

    The South Coast Air Quality Management District (SCAQMD) in southern California monitors NO{sub x} emissions in real time from a total of 60 boilers at the area`s five electric utilities. SCAQMD accomplishes this with an application developed using G2, an expert system from Gensym Corp., Cambridge, Mass., interfaced to monitoring equipment at each remote facility. In 1991, the SCAQMD board passed Rule 1135 requiring monitoring of nitrogen oxide (NO{sub x}) emissions from electric-power generating systems. The rule requires utilities to transmit boiler emissions data in near real-time to SCAQMD. Each utility had to install a continuous emission monitoring system (CEMS) to measure emissions from each boiler and a remote terminal unit (RTU) to telecommunicate emissions data to SCAQMD. The CEMS acquires data from sensing devices for each boiler. The RTU collects the data, performs calculations, and transmits formatted information to the Central Station Compliance Advisory Expert System at SCAQMD. This information includes NO{sub x} emissions, power generation, fuel usage, stack gas flow and equipment status.

  10. Rapid Analysis, Self-Calibrating Array for Air Monitoring

    Science.gov (United States)

    Homer, Margie L.; Shevade, Abhijit V.; Lara, Liana; Huerta, Ramon; Vergara, Alexander; Muezzinoglua, Mehmet K.

    2012-01-01

    Human space missions have critical needs for monitoring and control for life support systems. These systems have monitoring needs that include feedback for closed loop processes and quality control for environmental factors. Sensors and monitoring technologies assure that the air environment and water supply for the astronaut crew habitat fall within acceptable limits, and that the life support system is functioning properly and efficiently. The longer the flight duration and the more distant the destination, the more critical it becomes to have carefully monitored and automated control systems for life support. Past experiments with the JPL ENose have demonstrated a lifetime of the sensor array, with the software, of around 18 months. The lifetime of the calibration, for some analytes, was as long as 24 months. We are working on a sensor array and new algorithms that will include sensor response time in the analysis. The preliminary array analysis for two analytes shows that the analysis time, of an event, can be dropped from 45 minutes to less than10 minutes and array training time can be cut substantially. We will describe the lifetime testing of an array and show lifetime data on individual sensors. This progress will lead to more rapid identification of analytes, and faster training time of the array.

  11. Agent Behaviour Monitoring in Virtual Organizations

    NARCIS (Netherlands)

    Shadi, M.; Afsarmanesh, H.; Dastani, M.M.

    2013-01-01

    Nowadays to capture an emerging opportunity, when beyond the abilities of single organizations, increasingly results the formation of a Virtual Organization (VO). Typically, the VO consists of a group of independent, autonomous, and heterogeneous entities that constitute agents agreeing to

  12. Microbial air monitoring in the operating theatres of Salam Center for Cardiac Surgery in Khartoum (Sudan

    Directory of Open Access Journals (Sweden)

    Margherita Scapaticci

    2012-06-01

    Full Text Available The seriousness of postoperative infections and the increased susceptibility of patients undergoing cardiac surgery increase the demand for the operating theatre (OT asepsis to prevent bacterial infections. In fact, the organisms carried by the air reach the wound after having sedimented onto sterile field. The air represents a critical point for quality control of air filtration systems, for sanitization procedures and for the evolution of hygienic features of the OT environment.Aim of the study is to evaluate the prevalence of microorganisms found in the operating rooms (OR air monitoring in the Salam Center for Cardiac Surgery of Khartoum (Sudan between July 2008 and March 2009.The specimens were collected every month in two different times: “OR at rest” (after sanitization and “OR operational”, using sedimentation method (Fisher 1972. Results showed that each sample collected at rest had IMA (index of microbial air contamination < 5CFU/plt, whereas the bacterial growth was between 25 and 50 CFU/plt when the samples had been collected in the same places during operating activities.This indicate the effectiveness of sanitization procedures and confirm that people working in OT are an important source of bacteria causing postoperative infections. Coagulase negative Staphylococci, Gram negative bacillus and Staphylococcus aureus spp. were the predominant organisms isolated.

  13. Detection of volatile organic peroxides in indoor air.

    Science.gov (United States)

    Hong, J; Maguhn, J; Freitag, D; Kettrup, A

    2001-12-01

    A supercritical fluid extraction cell filled with adsorbent (Carbotrap and Carbotrap C) was used directly as a sampling tube to enrich volatile organic compounds in air. After sampling, the analytes were extracted by supercritical fluid CO2 with methanol as modifier. Collected organic peroxides were then determined by a RP-HPLC method developed and validated previously using post-column derivatization and fluorescence detection. Some volatile organic peroxides were found in indoor air in a new car and a newly decorated kitchen in the lower microg m(-3) range. tert-Butyl perbenzoate, di-tert-butyl peroxide, and tert-butylcumyl peroxide could be identified.

  14. Monitoring of volatile and non-volatile urban air genotoxins using bacteria, human cells and plants.

    Science.gov (United States)

    Ceretti, E; Zani, C; Zerbini, I; Viola, G; Moretti, M; Villarini, M; Dominici, L; Monarca, S; Feretti, D

    2015-02-01

    Urban air contains many mutagenic pollutants. This research aimed to investigate the presence of mutagens in the air by short-term mutagenicity tests using bacteria, human cells and plants. Inflorescences of Tradescantia were exposed to air in situ for 6h, once a month from January to May, to monitor volatile compounds and micronuclei frequency was computed. On the same days PM10 was collected continuously for 24h. Half of each filter was extracted with organic solvents and studied by means of the Ames test, using Salmonella typhimurium TA98 and TA100 strains, and the comet assay on human leukocytes. A quarter of each filter was extracted with distilled water in which Tradescantia was exposed. PM10 concentration was particularly high in the winter season (> 50 μg/m(3)). In situ exposure of inflorescences to urban air induced a significant increase in micronuclei frequency at all the sites considered, but only in January (p urban air were able to induce genetic mutations in S. typhimurium TA98 strain (± S9), but not in TA100 strain, with a revertants/plate number nine times higher than the negative control. Comet assay showed that winter extracts were more toxic and genotoxic than spring extracts. All the mutagenicity tests performed confirmed that urban air in North Italy in winter contains both volatile and non-volatile genotoxic substances able to induce genetic damage in bacteria, human cells and plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. OMI air-quality monitoring over the Middle East

    Science.gov (United States)

    Barkley, Michael P.; González Abad, Gonzalo; Kurosu, Thomas P.; Spurr, Robert; Torbatian, Sara; Lerot, Christophe

    2017-04-01

    Using Ozone Monitoring Instrument (OMI) trace gas vertical column observations of nitrogen dioxide (NO2), formaldehyde (HCHO), sulfur dioxide (SO2), and glyoxal (CHOCHO), we have conducted a robust and detailed time series analysis to assess changes in local air quality for over 1000 locations (focussing on urban, oil refinery, oil port, and power plant targets) over the Middle East for 2005-2014. Apart from NO2, which is highest over urban locations, average tropospheric column levels of these trace gases are highest over oil ports and refineries. The highest average pollution levels over urban settlements are typically in Bahrain, Kuwait, Qatar, and the United Arab Emirates. We detect 278 statistically significant and real linear NO2 trends in total. Over urban areas NO2 increased by up to 12 % yr-1, with only two locations showing a decreasing trend. Over oil refineries, oil ports, and power plants, NO2 increased by about 2-9 % yr-1. For HCHO, 70 significant and real trends were detected, with HCHO increasing by 2-7 % yr-1 over urban settlements and power plants and by about 2-4 % yr-1 over refineries and oil ports. Very few SO2 trends were detected, which varied in direction and magnitude (23 increasing and 9 decreasing). Apart from two locations where CHOCHO is decreasing, we find that glyoxal tropospheric column levels are not changing over the Middle East. Hence, for many locations in the Middle East, OMI observes a degradation in air quality over 2005-2014. This study therefore demonstrates the capability of OMI to generate long-term air-quality monitoring at local scales over this region.

  16. 77 FR 55832 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of a New Equivalent Method

    Science.gov (United States)

    2012-09-11

    ... AGENCY Ambient Air Monitoring Reference and Equivalent Methods: Designation of a New Equivalent Method... monitoring ambient air quality. SUMMARY: Notice is hereby given that the Environmental Protection Agency (EPA... concentrations of PM 2.5 in the ambient air. FOR FURTHER INFORMATION CONTACT: Robert Vanderpool, Human...

  17. Monitoring medical herbs in organic farming

    OpenAIRE

    ČASTA, Jiří

    2012-01-01

    Importance of utilization of medical plants in human nutrition and treatment is embedded in our minds. Growing of medical plants is the suitable supplement of an organic farm. The aim of the thesis was to evaluate the situation in the growing of medical plants in the organic farming in the Czech Republic. About 18 main medical plant species is grown on 500 ha in organic farming in the Czech Republic. The growing is concentrated in the South Moravia. The organic production is mainly processed ...

  18. Preparation of the NASA Air Quality Monitor for a U.S. Navy Submarine Sea Trial

    Science.gov (United States)

    Limero, Thomas; Wallace, William T.; Manney, Joshua A.; Smith, Matthew J.; O'Connor, Sara Jane; Mudgett, Paul D.

    2017-01-01

    For the past 4 years, the Air Quality Monitor (AQM) has been the operational instrument for measuring trace volatile organic compounds on the International Space Station (ISS). The key components of the AQM are the inlet preconcentrator, the gas chromatograph (GC), and the differential mobility spectrometer. Onboard the ISS are two AQMs with different GC columns that detect and quantify 22 compounds. The AQM data contributes valuable information to the assessment of air quality aboard ISS for each crew increment. The US Navy is looking to update its submarine air monitoring suite of instruments and the success of the AQM on ISS has led to a jointly planned submarine sea trial of a NASA AQM. In addition to the AQM, the Navy is also interested in the Multi-Gas Monitor (MGM), which measures major constituent gases (oxygen, carbon dioxide, water vapor, and ammonia). A separate paper will present the MGM sea trial preparation and the analysis of most recent ISS data. A prototype AQM, which is virtually identical to the operational AQM, has been readied for the sea trial. Only one AQM will be deployed during the sea trial, but this is sufficient for NASA purposes and to detect the compounds of interest to the US Navy for this trial. The data from the sea trial will be compared to data from archival samples collected before, during, and after the trial period. This paper will start with a brief history of past collaborations between NASA and the U.S. and U.K. navies for trials of air monitoring equipment. An overview of the AQM technology and protocols for the submarine trial will be presented. The majority of the presentation will focus on the AQM preparation and a summary of available data from the trial.

  19. 40 CFR Appendix D to Part 58 - Network Design Criteria for Ambient Air Quality Monitoring

    Science.gov (United States)

    2010-07-01

    ... forecasts and public advisories. (b) Support compliance with ambient air quality standards and emissions... trends in air pollution abatement control measures' impact on improving air quality. In monitoring... development work. 1.1.1In order to support the air quality management work indicated in the three basic...

  20. Use of the Operational Air Quality Monitor (AQM) for In-Flight Water Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Currently, the Air Quality Monitor (AQM) on-board ISS provides specific information for a number of target compounds in the air. However, there is a significant...

  1. US EPA Base Study Standard Operating Procedure for Continuous Monitoring of Outdoor Air

    Science.gov (United States)

    The procedure described is intended for monitoring continuously and simultaneously outdoor air quality parameters that are most commonly associated with indoor air quality: the concentrations of carbon dioxide (CO2) and carbon monoxide (CO), temperature, nd relative humidity (RH).

  2. Air quality nearby road traffic tunnel portals: BTEX monitoring

    Institute of Scientific and Technical Information of China (English)

    Fabio Murena

    2007-01-01

    A monitoring campaign of BTEX (benzene, toluene, ethylbenzene, o- m- and p-xylene) was carried out nearby two tunnel portals in the urban area of Naples with the aim to verify air quality in this kind of urban sites. Sampling was carried out using the active adsorption technique. Sampling time was 1 h. Ambient temperature and traffic flow measurements were carried out during each sampling operation. The results indicate that average benzene concentrations at both sites exceed the limit value of 10 μg/Nm3 established by the European Community (EC) (Dir. 2000/69). Concentration levels of other BTEX are relatively high as well. A correlation between BTEX concentration and two wheeler vehicle flow was observed.

  3. Wireless sensor networks for indoor air quality monitoring.

    Science.gov (United States)

    Yu, Tsang-Chu; Lin, Chung-Chih; Chen, Chun-Chang; Lee, Wei-Lun; Lee, Ren-Guey; Tseng, Chao-Heng; Liu, Shi-Ping

    2013-02-01

    The purpose of this study is to build an indoor air quality monitoring system based on wireless sensor networks (WSNs) technology. The main functions of the system include (1) remote parameter adjustment and firmware update mechanism for the sensors to enhance the flexibility and convenience of the system, (2) sensor nodes are designed by referring to the IEEE 1451.4 standard. This way, sensor nodes can automatically adjust and be plug and play, and (3) calibration method to strength the measurement value's sensitivity and accuracy. The experimental results show that transmission speed improves 30% than Trickle, transmission volume reduced to 42% of the original volume, updating task in 5*5 network topology can be executed 1.79 times and power consumption reduced to 30%. When baseline drifts, we can use the firmware update mechanism to adjust the reference value. The way can reduce error percentage from 15% to 7%. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Air quality nearby road traffic tunnel portals: BTEX monitoring.

    Science.gov (United States)

    Murena, Fabio

    2007-01-01

    A monitoring campaign of BTEX (benzene, toluene, ethylbenzene, o- m- and p-xylene) was carried out nearby two tunnel portals in the urban area of Naples with the aim to verify air quality in this kind of urban sites. Sampling was carried out using the active adsorption technique. Sampling time was 1 h. Ambient temperature and traffic flow measurements were carried out during each sampling operation. The results indicate that average benzene concentrations at both sites exceed the limit value of 10 microg/Nm3 established by the European Community (EC) (Dir. 2000/69). Concentration levels of other BTEX are relatively high as well. A correlation between BTEX concentration and two wheeler vehicle flow was observed.

  5. Monitoring Air Quality over China: Evaluation of the modeling system of the PANDA project

    Science.gov (United States)

    Bouarar, Idir; Katinka Petersen, Anna; Brasseur, Guy; Granier, Claire; Xie, Ying; Wang, Xuemei; Fan, Qi; Wang, Lili

    2015-04-01

    Air pollution has become a pressing problem in Asia and specifically in China due to rapid increase in anthropogenic emissions related to growth of China's economic activity and increasing demand for energy in the past decade. Observed levels of particulate matter and ozone regularly exceed World Health Organization (WHO) air quality guidelines in many parts of the country leading to increased risk of respiratory illnesses and other health problems. The EU-funded project PANDA aims to establish a team of European and Chinese scientists to monitor air pollution over China and elaborate air quality indicators in support of European and Chinese policies. PANDA combines state-of-the-art air pollution modeling with space and surface observations of chemical species to improve methods for monitoring air quality. The modeling system of the PANDA project follows a downscaling approach: global models such as MOZART and MACC system provide initial and boundary conditions to regional WRF-Chem and EMEP simulations over East Asia. WRF-Chem simulations at higher resolution (e.g. 20km) are then performed over a smaller domain covering East China and initial and boundary conditions from this run are used to perform simulations at a finer resolution (e.g. 5km) over specific megacities like Shanghai. Here we present results of model simulations for January and July 2010 performed during the first year of the project. We show an intercomparison of the global (MACC, EMEP) and regional (WRF-Chem) simulations and a comprehensive evaluation with satellite measurements (NO2, CO) and in-situ data (O3, CO, NOx, PM10 and PM2.5) at several surface stations. Using the WRF-Chem model, we demonstrate that model performance is influenced not only by the resolution (e.g. 60km, 20km) but also the emission inventories used (MACCity, HTAPv2), their resolution and diurnal variation, and the choice of initial and boundary conditions (e.g. MOZART, MACC analysis).

  6. Evaluation of a Possibility to Identify Port Pollutants Trace in Klaipeda City Air Pollution Monitoring Stations

    OpenAIRE

    Prof. dr. habil. Vytautas SMAILYS; Renata Strazdauskienė; Kristina Bereišienė

    2009-01-01

    Attempts are made to determine whether it is possible to identify fractions of air pollutants emitted in Klaipeda port in the data recorded in the city air monitoring station. Two components, SO2 and NOx , controlled aboard ship since 2006 were chosen for evaluation. To determine the port influence, a due account was taken of the location of monitoring stations. For this purpose the sectors where port pollutants could enter the samplers of air monitoring stations were identified. For the asse...

  7. DEVELOPMENT ANALYZERS TRANSACTIONS IN MONITORING THE BUSINESS ACTIVITIES OF ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    L. E. Sovik

    2013-01-01

    Full Text Available In the article there are marked the features and prerequisites of implementation in food production technologies devoted to monitor business activity in the realtime. The methodical approach to the development of analyzers transactional business processes of the organization is offered, monitoring scheme for one of the basic types of business events in the procurement process is constructed.

  8. Monitoring air quality in the Valley of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    La Cuadra Sanches, O.A. de (Grupo Crasa, S.A., Mexico City (Mexico))

    1994-01-01

    Mexico City is one of the most densely populated areas of the world, with more than 15 million inhabitants. Approximately 3 million vehicles and 30,000 industries in region emit about 4.5 million tons of contaminants into the atmosphere annually, most of which is generated by cars, buses, taxis and trucks. Industries nestled in the Valley of Mexico produce large quantities of particulate, due to lack of air filters, scrubbers and collection systems. This lack of proper pollution control equipment provokes already-elevated levels of sulfur dioxide from the approximately 110,000 public service and transport vehicles that run on heavy diesel fuel. High SO[sub 2] concentrations ally with industrial hydrocarbons and steam emissions which, in sunlight, produce dangerous levels of ozone. To formulate preventive and corrective measures, and keep the public informed, air contamination levels are monitored. A program containing 100 action items -- including driving restrictions, and industrial facility audits and closures -- has been instituted to mitigate and reverse environmental deterioration.

  9. Journal Article: EPA's National Dioxin Air Monitoring Network ...

    Science.gov (United States)

    The U.S. Environmental Protection Agency (U.S. EPA) established the National Dioxin Air Monitoring Network (NDAMN) in June of 1998, and operated it until November of 2004. The objective of NDAMN was to determine background air concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (dl-PCBs). NDAMN started with 10 sampling sites, adding more over time until the final count of 34 sites was reached by the beginning of 2003. Samples were taken quarterly, and the final sample count was 685. All samples were measured for 17 PCDD/PCDF congeners, 8 PCDD/PCDF homologue groups, and 7 dl-PCBs (note: 5 additional dl-PCBs were added for samples starting in the summer of 2002; 317 samples had measurements of 12 dl-PCBs). The overall average total toxic equivalent (TEQ) concentration in the United States was 11.2 fg TEQ m−3 with dl-PCBs contributing 0.8 fg TEQ m−3 (7%) to this total. The archetype dioxin and furan background air congener profile was seen in the survey averages and in most individual samples. This archetype profile is characterized by low and similar concentrations for tetra – through hexa PCDD/PCDF congeners, with elevations in four congeners – a hepta dioxin and furan congener, and both octa congeners. Sites were generally categorized as urban (4 sites), rural (23 sites), or remote (7 sites). The average TEQ concentrations over all sites and samples within these cat

  10. 75 FR 18782 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Alternate Monitoring...

    Science.gov (United States)

    2010-04-13

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Indiana; Alternate Monitoring Requirements for Indianapolis Power and Light--Harding Street Station AGENCY: Environmental... State Implementation Plan alternative monitoring requirements for Indianapolis Power and Light...

  11. Monitoring of long-range transported air pollutants, Annual report for 2011; Overvaaking av langtransportert forurenset luft og nedboer. Atmosfaeriske tilfoersler, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Aas, Wenche; Solberg, Sverre; Manoe, Stein; Yttri, Karl Espen

    2012-07-01

    This report presents the 2011 monitoring results from the rural air- and precipitation chemistry monitoring network in Norway. In 2011, main components in precipitation were measured at 15 sites. Trace elements were determined at four sites. Air concentrations of sulphur and nitrogen compounds were measured at six sites, and ozone concentrations at eight sites. Persistent organic pollutants and heavy metals in air are determined at three sites. Measurements of PM10 and PM2.5 mass are also determined at three sites, including measurements of organic and elemental carbon (OC and EC). An overview of the measurement programme is given in Appendix B2. (Author)

  12. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring.

    Science.gov (United States)

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K K; Luk, Connie W Y; Ning, Zhi

    2016-02-05

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring.

  13. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Li Sun

    2016-02-01

    Full Text Available This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO and nitrogen dioxide (NO2 pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring.

  14. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    Science.gov (United States)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  15. Participatory Air Monitoring in the Midst of Uncertainty: Residents’ Experiences with the Speck Sensor

    Directory of Open Access Journals (Sweden)

    Jacob Robert Matz

    2017-09-01

    Full Text Available How do participants engage in at-home air monitoring in the midst of uncertain exposures to airborne emissions associated with unconventional natural gas development (UNGD activities? We investigate residents’ experiences with the “Speck” particulate matter sensor with an emerging environmental health resource center called the Southwest Pennsylvania Environmental Health Project (EHP. In response to the gaps in knowledge about the health impacts of UNGD and the growth citizen science tools, participatory environmental monitoring (PEM projects have taken off in shale gas communities. Using interview and survey data from residents, advocates, and activists we show that residents use the Speck as: 1 “environmental health thermometers” to make real time decisions based on readings; 2 real-time tools of exposure-validation to immediately validate or invalidate suspicions of exposure; 3 “epistemic objects” or tools manipulated in exploratory ways to understand their efficacy in monitoring UNGD; and 4 passively by those who chose to rarely interact with the monitors and rather waited for overall analysis of results. While PEM’s have been critiqued for potentially passing the burden of monitoring onto communities, our research shows PEM, when connected with research and public health organizations like EHP, can both empower individuals by increasing their perceived and actual agency and build collective knowledge by producing novel scientific findings. The modes of participation identified here each imply individual and community-level outcomes. When connected with an organization like EHP, Speck monitoring enabled participating individual the latitude to develop their own research and make immediate use of the data, while also creating data useful for aggregated scientific analyses that provoke new questions about the health risks associated with UNGD.

  16. Problems of correlation of global and local monitoring of air pollution.

    Science.gov (United States)

    Berlyand, M E; Volberg, N S; Lavrinenko, R F; Rusina, E N

    1982-12-01

    (1) The Air Polluttion Monitoring System has got a significant development of late, which is in direct relation with a considerable extention and improvement of the observation network in cities and industrial areas, with creation of a new network for assessing regional and global background of the atmosphere pollution, as well as with the wide involvement of meteorologists to monitoring organization. (2) While developing a new global monitoring system, it is necessary to take into account its relationship with the local monitoring within the region of air pollution sources, i.e. at the \\lsimpact\\rs level. The need in such an account is dictated first of all by the physics of pollutant spreading that states: changes in air pollution over large territories must be in a certain agreement with greater changes in the vicinity of emission sources. Methods applied in the global and local monitoring have also a number of common peculiarities. White organizing regional network for observations of the background pollution of the atmosphere twin stations (one of the pair of stations located outside the city boundaries in a small community, and the other, in the nearest city with the population of 200-400 thousand inhabitants) were established in the U.S.S.R. and in a number of socialist countries in Europe. (3) Implementation of the twin-station principles in the U.S.S.R. has contributed to data interpretation and representativity assessment as well as to correction of the station location. Observation results from the Soviet background stations and those abroad have been compared by now according to a number of indices. (4) The correlation of monitoring systems of various scales tells positively both on mutual improvement and completion of observational methods. The methods of obtaining integral characteristics of air pollution were used for the global monitoring, in particular spectral actinometric observations and chemical analysis of the precipitation composition. Now

  17. What is in my air? Feds facilitating citizen science in the EPA Next Generation Air Monitoring Program

    Science.gov (United States)

    French, R. A.; Preuss, P.

    2013-12-01

    Recent advances in the development of small-scale and inexpensive air pollutant sensors, coupled with the ubiquitous use of wireless and mobile technology, will transform the field of air quality monitoring. For the first time, the general public may purchase air monitors, which can measure their personal exposure to NOx, Ozone, black carbon, and VOCs for a few hundred dollars. Concerned citizens may now gather the data for themselves to answer questions such as, ';what am I breathing?' and ';is my air clean?' The research and policy community will have access to real-time air quality data collected at the local and regional scale, making targeted protection of environmental health possible. With these benefits come many questions from citizen scientists, policymakers, and researchers. These include, what is the quality of the data? How will the public interpret data from the air sensors and are there guidelines to interpret that data? How do you know if the air sensor is trustworthy? Recognizing that this revolution in air quality monitoring will proceed regardless of the involvement of the government, the Innovation Team at the EPA Office of Research and Development, in partnership with the Office of Enforcement and Compliance Assistance and the Office of Air and Radiation, seized the opportunity to ensure that users of next generation air sensors can realize the full potential benefits of these innovative technologies. These efforts include releasing an EPA Draft Roadmap for Next Generation Air Monitoring, testing air sensors under laboratory and field conditions, field demonstrations of new air sensor technology for the public, and building a community of air sensor developers, researchers, local, state and federal officials, and community members through workshops and a website. This presentation will review the status of those programs, highlighting the particular programs of interest to citizen scientists. The Next Generation Air Monitoring program may serve

  18. Towards development of a deposition monitoring network for air pollution of Europe

    NARCIS (Netherlands)

    Erisman JW; Mennen MG; Fowler D; Flechard CR; Spindler G; Gruner A; Duyzer JH; Ruigrok W; Wyers GP; LLO; TNO; ECN; ITE (Engeland); IFT (Duitsland)

    1996-01-01

    In January 1993 within the framework of the LIFE programme a project was financed which aim was to develop a deposition monitoring method for air pollution of Europe. This method should be used to extend existing European monitoring networks of air concentrations to provide deposition inputs on an e

  19. 78 FR 67360 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Five New Equivalent Methods

    Science.gov (United States)

    2013-11-12

    ... AGENCY Ambient Air Monitoring Reference and Equivalent Methods: Designation of Five New Equivalent... of the designation of five new equivalent methods for monitoring ambient air quality. SUMMARY: Notice... measuring concentrations of PM 10-2.5 , two for measuring PM 2.5, and one for measuring NO 2 in the...

  20. 75 FR 45627 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-08-03

    ... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air quality. SUMMARY: Notice is hereby...

  1. 75 FR 30022 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-05-28

    ... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air quality. SUMMARY: Notice is hereby...

  2. 76 FR 15974 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2011-03-22

    ... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of Four New Equivalent Methods AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of four new equivalent methods for monitoring ambient air quality. SUMMARY: Notice is hereby...

  3. 75 FR 9894 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-03-04

    ... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air quality. SUMMARY: Notice is hereby...

  4. 75 FR 22126 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-04-27

    ... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air quality. SUMMARY: Notice is hereby...

  5. Performance Evaluation of Industrial Hygiene Air Monitoring Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Maughan, A D.; Glissmeyer, John A.; Birnbaum, Jerome C.

    2004-12-10

    Tests were performed to evaluate the accuracy, precision and response time of certain commercially available handheld toxic gas monitors. The tests were conducted by PNNL in the Chemical Chamber Test Facility for CH2MHill Hanford Company. The instruments were tested with a set of dilute test gases including ammonia, nitrous oxide, and a mixture of organic vapors (acetone, benzene, ethanol, hexane, toluene and xylene). The certified gases were diluted to concentrations that may be encountered in the outdoor environment above the underground tank farms containing radioactive waste at the U.S. Department of Energy's Hanford site, near Richland, Washington. The challenge concentrations are near the lower limits of instrument sensitivity and response time. The performance test simulations were designed to look at how the instruments respond to changes in test gas concentrations that are similar to field conditions.

  6. Low concentrations of persistent organic pollutants (POPs) in air at Cape Verde.

    Science.gov (United States)

    Nøst, Therese Haugdahl; Halse, Anne Karine; Schlabach, Martin; Bäcklund, Are; Eckhardt, Sabine; Breivik, Knut

    2017-08-26

    Ambient air is a core medium for monitoring of persistent organic pollutants (POPs) under the Stockholm Convention and is used in studies of global transports of POPs and their atmospheric sources and source regions. Still, data based on active air sampling remain scarce in many regions. The primary objectives of this study were to (i) monitor concentrations of selected POPs in air outside West Africa, and (ii) to evaluate potential atmospheric processes and source regions affecting measured concentrations. For this purpose, an active high-volume air sampler was installed on the Cape Verde Atmospheric Observatory at Cape Verde outside the coast of West Africa. Sampling commenced in May 2012 and 43 samples (24h sampling) were collected until June 2013. The samples were analyzed for selected polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB) and chlordanes. The concentrations of these POPs at Cape Verde were generally low and comparable to remote sites in the Arctic for several compounds. Seasonal trends varied between compounds and concentrations exhibited strong temperature dependence for chlordanes. Our results indicate net volatilization from the Atlantic Ocean north of Cape Verde as sources of these POPs. Air mass back trajectories demonstrated that air masses measured at Cape Verde were generally transported from the Atlantic Ocean or the North African continent. Overall, the low concentrations in air at Cape Verde were likely explained by absence of major emissions in areas from which the air masses originated combined with depletion during long-range atmospheric transport due to enhanced degradation under tropical conditions (high temperatures and concentrations of hydroxyl radicals). Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. Plant monitoring of air quality around waste incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Tonneijck, A.E.G.; Dijk, C.J. van; Dueck, T.A. [Plant Research International, Wageningen (Niger). Dept. of Crop and Production Ecology

    2002-07-01

    Since the early 1990's, three new waste incineration plants have come into operation in agricultural regions in The Netherlands. Multi-year standardised biomonitoring programmes around these incinerators were set up to determine the absence of adverse effects on quality of crop produce due to the incineration of waste. Depending on time of year, plants of kale (Brassica oleracea) and spinach (Spinacia oleracea) were cultivated for use as accumulators of cadmium (Cd), mercury (Hg) and polycyclic aromatic hydrocarbons (PAHs). Trends in fluoride contents were followed by sampling field-grown pasture grass. Cow milk was sampled to determine the concentrations of dioxins. Plants of gladiola (Gladiolus gandavensis) were used for the assessment of visible injury by ambient fluoride in one programme only. The results of many years of biomonitoring showed that the emissions of the waste incinerators did not affect the quality of crop produce and cow milk. Concentrations of the various components in these products were generally similar to background levels and did not exceed standards for maximum allowable concentrations. On one occasion, concentrations of PAHs in spinach were clearly enhanced due to the use of wood-preserving compounds at a barn close to the monitoring site. This incident reveals that our biomonitoring projects are an appropriate tool to detect changes in air quality. (orig.)

  8. Using Unmanned Air Systems to Monitor Methane in the Atmosphere

    Science.gov (United States)

    Clow, Jacqueline; Smith, Jeremy Christopher

    2016-01-01

    Methane is likely to be an important contributor to global warming, and our current knowledge of its sources, distributions, and transport is insufficient. It is estimated that there could be from 7.5 to 400 billion tons carbon-equivalent of methane in the arctic region, a broad range that is indicative of the uncertainty within the Earth Science community. Unmanned Air Systems (UASs) are often used for combat or surveillance by the military, but they also have been used for Earth Science field missions. In this study, we will analyze the utility of the NASA Global Hawk and the Aurora Flight Sciences Orion UASs compared to the manned DC-8 aircraft for conducting a methane monitoring mission. The mission will focus on the measurement of methane along the boundaries of Arctic permafrost thaw and melting glaciers. The use of Long Endurance UAS brings a new range of possibilities including the ability to obtain long- term and persistent observations and to significantly augment methane measurements/retrievals collected by satellite. Furthermore, we discuss the future of long endurance UAS and their potential for science applications in the next twenty to twenty-five years.

  9. Technologies for air quality monitoring; Tecnologias para el monitoreo de calidad del aire

    Energy Technology Data Exchange (ETDEWEB)

    Muriel, Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    There are various measuring principles and systems whose usage is delimited by the type of contaminant to be measured. The author of this paper presents a revision of the different applications, measuring principles, systems, costs and selection of the equipment utilized for the measuring and monitoring the atmospheric emissions. The case of the pollutants emitted to the air by the Power Plants in analyzed [Espanol] Existen diversos principios y sistemas de medicion cuyo uso estara delimitado por el tipo de contaminante a medir. El autor de esta ponencia presenta una revision de las diferentes aplicaciones, principios de medicion, sistemas, costos y seleccion de los equipos utilizados en la medicion y monitoreo de emisiones atmosfericas. Se analiza el caso de los contaminantes emitidos a la atmosfera en las centrales termoelectricas

  10. Dynamic Radioactive Source for Evaluating and Demonstrating Time-dependent Performance of Continuous Air Monitors.

    Science.gov (United States)

    McLean, Thomas D; Moore, Murray E; Justus, Alan L; Hudston, Jonathan A; Barbé, Benoît

    2016-11-01

    Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. The Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached to the watch's minute hand, and as it rotates, more of the underlying source is revealed. The measured alpha activity increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. Data obtained using the Dynamic Radioactive Source has been used to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.

  11. Air pollution due to traffic, air quality monitoring along three sections of National Highway N-5, Pakistan.

    Science.gov (United States)

    Ali, Mahboob; Athar, Makshoof

    2008-01-01

    Transportation system has contributed significantly to the development of human civilization; on the other hand it has an enormous impact on the ambient air quality in several ways. In this paper the air and noise pollution at selected sites along three sections of National Highway was monitored. Pakistan National Highway Authority has started a Highway Improvement program for rehabilitations and maintenance of National highways to improve the traffic flows, and would ultimately improve the air quality along highways. The ambient air quality and noise level was monitored at nine different locations along these sections of highways to quantify the air pollution. The duration of monitoring at individual location was 72 h. The most of the sampling points were near the urban or village population, schools or hospitals, in order to quantify the air pollution at most affected locations along these roads. A database consisting of information regarding the source of emission, local metrology and air quality may be created to assess the profile of air quality in the area.

  12. Performance assessment of air quality monitoring networks using principal component analysis and cluster analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Zhen [Department of Building and Construction, City University of Hong Kong (China); He, Hong-Di [Department of Building and Construction, City University of Hong Kong (China); Logistics Research Center, Shanghai Maritime University, Shanghai (China); Dong, Li-yun [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai (China)

    2011-03-15

    This study aims to evaluate the performance of two statistical methods, principal component analysis and cluster analysis, for the management of air quality monitoring network of Hong Kong and the reduction of associated expenses. The specific objectives include: (i) to identify city areas with similar air pollution behavior; and (ii) to locate emission sources. The statistical methods were applied to the mass concentrations of sulphur dioxide (SO{sub 2}), respirable suspended particulates (RSP) and nitrogen dioxide (NO{sub 2}), collected in monitoring network of Hong Kong from January 2001 to December 2007. The results demonstrate that, for each pollutant, the monitoring stations are grouped into different classes based on their air pollution behaviors. The monitoring stations located in nearby area are characterized by the same specific air pollution characteristics and suggested with an effective management of air quality monitoring system. The redundant equipments should be transferred to other monitoring stations for allowing further enlargement of the monitored area. Additionally, the existence of different air pollution behaviors in the monitoring network is explained by the variability of wind directions across the region. The results imply that the air quality problem in Hong Kong is not only a local problem mainly from street-level pollutions, but also a region problem from the Pearl River Delta region. (author)

  13. Overview of ambient air quality monitoring in South Africa

    CSIR Research Space (South Africa)

    Naidoo, M

    2006-10-01

    Full Text Available Air quality data is currently collected, processed and archived by a number of independent institutes. No collaboration exists between these organisations and there is no provincial or national air quality data information system or archive...

  14. Monitoring and analysis of air emissions based on condition models derived from process history

    Directory of Open Access Journals (Sweden)

    M. Liukkonen

    2016-12-01

    Full Text Available Evaluation of online information on operating conditions is necessary when reducing air emissions in energy plants. In this respect, automated monitoring and control are of primary concern, particularly in biomass combustion. As monitoring of emissions in power plants is ever more challenging because of low-grade fuels and fuel mixtures, new monitoring applications are needed to extract essential information from the large amount of measurement data. The management of emissions in energy boilers lacks economically efficient, fast, and competent computational systems that could support decision-making regarding the improvement of emission efficiency. In this paper, a novel emission monitoring platform based on the self-organizing map method is presented. The system is capable, not only of visualizing the prevailing status of the process and detecting problem situations (i.e. increased emission release rates, but also of analyzing these situations automatically and presenting factors potentially affecting them. The system is demonstrated using measurement data from an industrial circulating fluidized bed boiler fired by forest residue as the primary fuel and coal as the supporting fuel.

  15. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?

    Science.gov (United States)

    Castell, Nuria; Dauge, Franck R; Schneider, Philipp; Vogt, Matthias; Lerner, Uri; Fishbain, Barak; Broday, David; Bartonova, Alena

    2017-02-01

    The emergence of low-cost, user-friendly and very compact air pollution platforms enable observations at high spatial resolution in near-real-time and provide new opportunities to simultaneously enhance existing monitoring systems, as well as engage citizens in active environmental monitoring. This provides a whole new set of capabilities in the assessment of human exposure to air pollution. However, the data generated by these platforms are often of questionable quality. We have conducted an exhaustive evaluation of 24 identical units of a commercial low-cost sensor platform against CEN (European Standardization Organization) reference analyzers, evaluating their measurement capability over time and a range of environmental conditions. Our results show that their performance varies spatially and temporally, as it depends on the atmospheric composition and the meteorological conditions. Our results show that the performance varies from unit to unit, which makes it necessary to examine the data quality of each node before its use. In general, guidance is lacking on how to test such sensor nodes and ensure adequate performance prior to marketing these platforms. We have implemented and tested diverse metrics in order to assess if the sensor can be employed for applications that require high accuracy (i.e., to meet the Data Quality Objectives defined in air quality legislation, epidemiological studies) or lower accuracy (i.e., to represent the pollution level on a coarse scale, for purposes such as awareness raising). Data quality is a pertinent concern, especially in citizen science applications, where citizens are collecting and interpreting the data. In general, while low-cost platforms present low accuracy for regulatory or health purposes they can provide relative and aggregated information about the observed air quality.

  16. Experiences of air quality monitoring in northern Italy

    Energy Technology Data Exchange (ETDEWEB)

    Fumagalli, I.; Mignanego, L.; Sormani, L. [European Commision - Joint Research Centre, Ispra (Italy)]|[PHYTOS snc, Biassono (Italy)]|[Terra Viva, Vigevano (Italy)

    2002-07-01

    Air quality biomonitoring plays an important role in the assessment of air pollution levels and their impact on vegetation. Following observations of constantly high air pollutant levels in the Po Valley, CESI (former ENEL-Research) has been developing several specific research projects since 1986, in order to increase the knowledge about air quality biomonitoring. Four relevant experiences made in the past fifteen years are reported. (orig.)

  17. A Monitoring of Air Pollutants (CO, SO2 and NO in Ambient Air Near an Industrial Area

    Directory of Open Access Journals (Sweden)

    Radin Mohamed Radin Maya Saphira

    2016-01-01

    Full Text Available A monitoring assessment was carried out to measure the concentration of air pollutants in ambient air in the university campus, which is located adjacent to the industrial area. The air pollutants were monitored for CO (Carbon monoxide, SO2 (Sulfur dioxide and NO (Nitrous oxide at the three sampling points, with distance reference based from the industrial area. Air pollutant gases were sampled from the I-Brid Toxic Gases Analyzer with the sampling hour referred to the Recommended Malaysian Air Quality Guidelines (RMAQG during October 2013 to Jun 2014. Meteorological data was collected from the E-Sampler device for 24 hours. It was found that the CO concentrations were fall within the RMAQG at all stations monitored. The SO2 concentration was high at Station 3 (Material lab, with 0.66 ppm which was exceeded the RMAQG of 0.13 ppm. All three stations recorded high concentration of NO, which the peak concentration occurred at the afternoon sampling. The nearest Station 3 (Material lab has recorded the highest level of NO, SO2 and CO compared to the other stations. The monitoring data has contributed some highlights to the authority and awareness about possible long risk effect of the air pollutants at the case study.

  18. Modeling short-term variability of semivolatile organic chemicals in air at a local scale: an integrated modeling approach.

    Science.gov (United States)

    Morselli, Melissa; Ghirardello, Davide; Semplice, Matteo; Di Guardo, Antonio

    2011-05-01

    Monitoring campaigns from different locations have recently shown how air concentrations of persistent semivolatile contaminants such as polychlorinated biphenyls (PCBs) often exhibit short-term (less than 24 h) variations. The observed patterns have been ascribed to different factors, such as temperature-mediated air-surface exchange and variability of planetary boundary layer (PBL) height and dynamics. Here, we present a new modeling approach developed in order to investigate the short-term variability in air concentrations of organic pollutants at a local scale. A new dynamic multimedia box model is supplied by a meteorological preprocessor (AERMET) with hourly values of air compartment height and wind speed. The resulting model is tested against an existing dataset of PCB air concentrations measured in Zurich, Switzerland. Results show the importance of such modeling approach in elucidating the short- and long-term behavior of semivolatile contaminants in the air/soil system.

  19. Preliminary monitoring of faecal indicator organisms of surface water ...

    African Journals Online (AJOL)

    Preliminary monitoring of faecal indicator organisms of surface water: A case study ... in Mvudi River used as a source of domestic water for people who live around it. ... of Water Affairs and Forestry of South Africa (DWAF) and the World Health ...

  20. Evaluation of the Air Quality Monitor's Performance on the International Space Station

    Science.gov (United States)

    Limero, Thomas; Reese, Eric; Ballard, Ken; Durham, Tamara

    2010-01-01

    The Air Quality Monitor (AQM) was flown to the International Space Station (ISS) as an experiment to evaluate its potential to replace the aging Volatile Organic Analyzer (VOA), which ceased operations in August 2009. The AQM (Figure 1) is a small gas chromatography/differential mobility spectrometer (GC/DMS) manufactured by Sionex. Data was presented at last year s ISIMS conference that detailed the preparation of the AQM for flight, including instrument calibration. Furthermore, initial AQM data was compared to VOA results from simultaneous runs of the two instruments. Although comparison with VOA data provided a measure of confidence in the AQM performance, it is the comparison with results from simultaneously acquired air samples (grab sample containers-GSCs) that will define the success (or failure) of the AQM performance. This paper will update the progress in the AQM investigation by comparing AQM data to results from the analyses of GSC samples, returned from ISS. Additionally, a couple of example will illustrate the AQM s ability to detect disruptions in the spacecraft s air quality. Discussion will also focus upon a few unexpected issues that have arisen and how these will be a addressed in the final operational unit now being built.

  1. Passive air sampler as a tool for long-term air pollution monitoring: Part 1. Performance assessment for seasonal and spatial variations.

    Science.gov (United States)

    Klánová, Jana; Kohoutek, Jirí; Hamplová, Lenka; Urbanová, Petra; Holoubek, Ivan

    2006-11-01

    The potential of passive air sampling devices (polyurethane foam disks) to assess the influence of local sources on the quality of the surrounding environment was investigated. DEZA Valasske Mezirici, a coal tar and mixed tar oils processing plant, and Spolana Neratovice, a chemical factory with the history of high production of organochlorinated pesticides (OCPs), were selected as the point sources of PAHs, and OCPs, respectively. Levels of PCBs, OCPs and PAHs were determined for all sampling sites and sampling periods. The study brought useful data about the air concentrations of POPs in the investigated regions. More important, it provided information on the transport and fate of POPs in the vicinity of local sources of contamination useful for the estimation of their influence. Very good capability of passive samplers to reflect temporal and spatial fluctuation in concentrations of persistent organic pollutants in the ambient air was confirmed which makes them applicable for monitoring on the local scale.

  2. Passive air sampler as a tool for long-term air pollution monitoring: Part 1. Performance assessment for seasonal and spatial variations

    Energy Technology Data Exchange (ETDEWEB)

    Klanova, J.; Kohoutek, J.; Hamplova, L.; Urbanova, P.; Holoubek, I. [Masaryk University, Brno (Czech Republic)

    2006-11-15

    The potential of passive air sampling devices (polyurethane foam disks) to assess the influence of local sources on the quality of the surrounding environment was investigated. DEZA Valasske Mezirici, a coal tar and mixed tar oils processing plant, and Spolana Neratovice, a chemical factory with the history of high production of organochlorinated pesticides (OCPs), were selected as the point sources of PAHs, and OCPs, respectively. Levels of PCBs, OCPs and PAHs were determined for all sampling sites and sampling periods. The study brought useful data about the air concentrations of POPs in the investigated regions. More important, it provided information on the transport and fate of POPs in the vicinity of local sources of contamination useful for the estimation of their influence. Very good capability of passive samplers to reflect temporal and spatial fluctuation in concentrations of persistent organic pollutants in the ambient air was confirmed which makes them applicable for monitoring on the local scale.

  3. Monitoring of Air Polution by Using Fuzzy Logic

    OpenAIRE

    Dr. Gopal Upadhyaya,; Mr. Nilesh Dashore

    2010-01-01

    The Air Quality Index is a simple and generalized way to describe the air quality in China, Hong Kong, Malaysia and now in India. Indian Air Quality Index (IND-AQI) is mainly a health related index with the descriptor words: “Good (0- 100)”, “Moderate (101-200 )”, “Poor (201-300)”, “Very Poor (301-400)”, “Severe (401-500)”. State Environment Protection Agency (SEPA ) is responsible for measuring the level of air pollution in China . In China the AQI is based on the level of 5 atmospheric poll...

  4. Off-site air monitoring following methyl bromide chamber and building fumigations and evaluation of the ISCST air dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Barry, T.; Swgawa, R.; Wofford, P. [Cal EPA, Sacramento, CA (United States)] [and others

    1995-12-31

    The Department of Pesticide Regulation`s preliminary risk characterization of methyl bromide indicated an inadequate margin of safety for several exposure scenarios. Characterization of the air concentrations associated with common methyl bromide use patterns was necessary to determine specific scenarios that result in an unacceptable margin of safety. Field monitoring data were used in conjunction with the Industrial Source Complex, Short Tenn (ISCST) air dispersion model to characterize air concentrations associated with various types of methyl bromide applications. Chamber and building fumigations were monitored and modelled. For each fumigation the emission rates, chamber or building specifications and on-site meteorological data were input into the ISCST model. The model predicted concentrations were compared to measured air concentrations. The concentrations predicted by the ISCST model reflect both the pattern and magnitude of the measured concentrations. Required buffer zones were calculated using the ISCST output.

  5. Mobile Air Monitoring: Measuring Change in Air Quality in the City of Hamilton, 2005-2010

    Science.gov (United States)

    Adams, Matthew D.; DeLuca, Patrick F.; Corr, Denis; Kanaroglou, Pavlos S.

    2012-01-01

    This paper examines the change in air pollutant concentrations between 2005 and 2010 occurring in the City of Hamilton, Ontario, Canada. After analysis of stationary air pollutant concentration data, we analyze mobile air pollutant concentration data. Air pollutants included in the analysis are CO, PM[subscript 2.5], SO[subscript 2], NO,…

  6. Air-drying kinetics affect yeast membrane organization and survival.

    Science.gov (United States)

    Lemetais, Guillaume; Dupont, Sébastien; Beney, Laurent; Gervais, Patrick

    2012-10-01

    The plasma membrane (PM) is a key structure for the survival of cells during dehydration. In this study, we focused on the concomitant changes in survival and in the lateral organization of the PM in yeast strains during desiccation, a natural or technological environmental perturbation that involves transition from a liquid to a solid medium. To evaluate the role of the PM in survival during air-drying, a wild-type yeast strain and an osmotically fragile mutant (erg6Δ) were used. The lateral organization of the PM (microdomain distribution) was observed using a fluorescent marker related to a specific green fluorescent protein-labeled membrane protein (Sur7-GFP) after progressive or rapid desiccation. We also evaluated yeast behavior during a model dehydration experiment performed in liquid medium (osmotic stress). For both strains, we observed similar behavior after osmotic and desiccation stresses. In particular, the same lethal magnitude of dehydration and the same lethal kinetic effect were found for both dehydration methods. Thus, yeast survival after progressive air-drying was related to PM reorganization, suggesting the positive contribution of passive lateral rearrangements of the membrane components. This study also showed that the use of glycerol solutions is an efficient means to simulate air-drying desiccation.

  7. Speckle-correlation monitoring of the microhemodynamics of internal organs

    Science.gov (United States)

    Zimnyakov, D. A.; Khmara, M. B.; Vilensky, M. A.; Kozlov, V. V.; Sadovoĭ, A. V.; Gorfinkel, I. V.; Zdrajevsky, R. A.; Isaeva, A. A.

    2009-12-01

    The results of preliminary experimental studies of the possibility of monitoring blood microcirculation in surface layers of internal organs of laboratory animals in the course of laparotomy using full-field speckle correlometry are presented. The transmission of laser radiation to the probed part of the organ and the delivery of scattered speckle-modulated radiation to the detector (a CMOS camera) are performed using a fiberoptic endoscopic system. In the course of experiments, the microhemodynamics of the intestine, liver, spleen, kidneys, and pancreas in rat in a normal state and under induced ischemia and peritonitis, as well as under the action of drugs with clearly pronounced vasodilative effects (lidocaine, papaverine), is studied. The problems and prospects of speckle-correlation monitoring of the microhemodynamics of internal organs under laboratory and clinical conditions are discussed.

  8. Quasi Real Time Data Analysis for Air Quality Monitoring with an Electronic Nose

    Science.gov (United States)

    Zhou, Hanying; Shevade, Abhijit V.; Pelletier, Christine C.; Homer, Margie L.; Ryan, M. Amy

    2006-01-01

    Cabin Air Quality Monitoring: A) Functions; 1) Incident monitor for targeted contaminants exceeding targeted concentrations. Identify and quantify. 2) Monitor for presence of compounds associated with fires or overheating electronics. 3) Monitor clean-up process. B) Characteristics; 1) Low mass, low power device. 2) Requires little crew time for maintenance and calibration. 3) Detects, identifies and quantifies selected chemical species at or below 24 hour SMAC.

  9. Degradation of air polluted by organic compounds; Degradacion de aire contaminado por compuestos organicos

    Energy Technology Data Exchange (ETDEWEB)

    Santoyo O, E.L.; Lizama S, B.E. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, 56000 Toluca (Mexico); Vazquez A, O.; Luna C, P.C.; Arredondo H, S. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    According to the Mexican standard NOM-010-STPS-1994 it has been established concentrations of maximum permissible levels in workable air for styrene in the range 420-1710 mg/m{sup 3} and for xylene between 218-870 mg/m{sup 3}. In this work it is studied a biological treatment (bio filtration) for air polluted by xylene and styrene where the microorganisms are adhered at synthetic fiber, these degrade to the organic compounds that across in gaseous state and they are mineralized toward CO{sub 2} and H{sub 2}O. The characteristics of temperature, p H, concentration of organic compound and mineral parameters, as well as, the biomass quantity have been optimized for that bio filters efficiency were greater than those reported in other works. (Author)

  10. Lipids and Molecular Tools as Biomarkers in Monitoring Air Sparging Bioremediation Processes

    Science.gov (United States)

    Heipieper, Hermann J.; Fischer, Janett

    2010-05-01

    The fluctuation of membrane lipids offers a promising tool as biomarkers for the analysis of microbial population changes as well as for the physiological status of micro-organisms. The investigation of changes in lipid composition is of common use for the assessment of physiological conditions in pure cultures. However, as lipid composition does not show drastic diversity among living organisms the use of lipids as biomarkers in mixed cultures and environmental samples has certain limitations. Therefore, special marker phospholipid fatty acids as well as modern statistical analysis of the results are necessary to receive certain information about the qualitative and quantitative changes of e.g. a soil microflora due to a contamination with organic compounds and its bioremediation. The use of lipids as biomarker in monitoring bioremediation are shown at the Hradčany site, a former Russian air force base in the Czech Republic that operated until 1990. In this time in an area of 32 ha soil and groundwater were contaminated with kerosene and BTEX compounds in an amount of 7,150 tons. This highly contaminated site is treated with the so-called air sparging method to clean-up the contamination by aerobic biodegradation. The results of PLFA analysis demonstrated a community shift to a gram-negative bacterial biomass with time. The results, including a principal component analysis (PCA) of the obtained fatty acid profiles, showed that the air sparging leads to substantial differences in microbial communities depending on the contamination levels and length of treatment, respectively. Obviously, the length of air sparging treatment controlling the BTEX concentration in soils causes temporal changes of bacterial community and adaptations of its respective members. This work was supported by the project BIOTOOL (Contract No. 003998) of the European Commission within its Sixth Framework Programme. Kabelitz N., Machackova J., Imfeld G., Brennerova M., Pieper D.H., Heipieper H

  11. Aerophagia : Excessive Air Swallowing Demonstrated by Esophageal Impedance Monitoring

    NARCIS (Netherlands)

    Hemmink, Gerrit J. M.; Weusten, Bas L. A. M.; Bredenoord, Albert J.; Timmer, Robin; Smout, Andre J. P. M.

    2009-01-01

    BACKGROUND & AIMS: Patients with aerophagia suffer from the presence of an excessive volume of intestinal gas, which is thought to result from excessive air ingestion. However, this has not been shown thus far. The aim of this study was therefore to assess swallowing and air swallowing frequencies i

  12. Toward the next generation of air quality monitoring: Mercury

    Science.gov (United States)

    Pirrone, Nicola; Aas, Wenche; Cinnirella, Sergio; Ebinghaus, Ralf; Hedgecock, Ian M.; Pacyna, Jozef; Sprovieri, Francesca; Sunderland, Elsie M.

    2013-12-01

    understanding the link between the magnitude of mercury emissions and the concentrations found in the fish that we consume. For air quality monitoring, priorities include expanding the existing data collection network and widening the scope of atmospheric mercury measurements (elemental, oxidised, and particulate species as well as mercury in precipitation). Presently, the only accurate indicators of mercury impacts on human and biological health are methylmercury concentrations in biota. However, recent advances in analytical techniques (stable mercury isotopes) and integrated modelling tools are allowing greater understanding of the relationship between atmospheric deposition, concentrations in water, methylation and uptake by biota. This article recommends an expansion of the current atmospheric monitoring network and the establishment of new coordinated measurements of total mercury and methylmercury concentrations in seawater and concurrent concentrations and trends in marine fish.

  13. Construction and application of an intelligent air quality monitoring system for healthcare environment.

    Science.gov (United States)

    Yang, Chao-Tung; Liao, Chi-Jui; Liu, Jung-Chun; Den, Walter; Chou, Ying-Chyi; Tsai, Jaw-Ji

    2014-02-01

    Indoor air quality monitoring in healthcare environment has become a critical part of hospital management and policy. Manual air sampling and analysis are cost-inhibitive and do not provide real-time air quality data and response measures. In this month-long study over 14 sampling locations in a public hospital in Taiwan, we observed a positive correlation between CO(2) concentration and population, total bacteria, and particulate matter concentrations, thus monitoring CO(2) concentration as a general indicator for air quality could be a viable option. Consequently, an intelligent environmental monitoring system consisting of a CO(2)/temperature/humidity sensor, a digital plug, and a ZigBee Router and Coordinator was developed and tested. The system also included a backend server that received and analyzed data, as well as activating ventilation and air purifiers when CO(2) concentration exceeded a pre-set value. Alert messages can also be delivered to offsite users through mobile devices.

  14. ANITA Air Monitoring on the International Space Station: Results Compared to Other Measurements

    Science.gov (United States)

    Honne, A.; Schumann-Olsen, H.; Kaspersen, K.; Limero, T.; Macatangay, A.; Mosebach, H.; Kampf, D.; Mudgett, P. D.; James, J. T.; Tan, G.; hide

    2009-01-01

    ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarizes the results of ANITA s air analyses with emphasis on comparisons to other measurements. The main basis of comparison is NASA s set of grab samples taken onboard the ISS and analysed on ground applying various GC-based (Gas Chromatography) systems.

  15. TECHNOLOGY EVALUATION REPORT CEREX ENVIRONMENTAL SERVICES UV HOUND POINT SAMPLE AIR MONITOR

    Science.gov (United States)

    The USEPA's National Homeland Security Research Center (NHSRC) Technology Testing and Evaluation Program (TTEP) is carrying out performance tests on homeland security technologies. Under TTEP, Battelle evaluated the performance of the Cerex UV Hound point sample air monitor in de...

  16. Portable RF-Sensor System for the Monitoring of Air Pollution and Water Contamination

    Directory of Open Access Journals (Sweden)

    Joonhee Kang

    2012-01-01

    Full Text Available Monitoring air pollution including the contents of VOC, O3, NO2, and dusts has attracted a lot of interest in addition to the monitoring of water contamination because it affects directly to the quality of living conditions. Most of the current air pollution monitoring stations use the expensive and bulky instruments and are only installed in the very limited area. To bring the information of the air and water quality to the public in real time, it is important to construct portable monitoring systems and distribute them close to our everyday living places. In this work, we have constructed a low-cost portable RF sensor system by using 400 MHz transceiver to achieve this goal. Accuracy of the measurement was comparable to the ones used in the expensive and bulky commercial air pollution forecast systems.

  17. US Navy Submarine Sea Trial of the NASA Air Quality Monitor

    Science.gov (United States)

    Limero, Thomas; Wallace, William T.; Manney, Joshua A.; Mudgett, Paul D.

    2017-01-01

    For the past four years, the Air Quality Monitor (AQM) has been the operational instrument for measuring trace volatile organic compounds on the International Space Station (ISS). The key components of the AQM are the inlet preconcentrator, the gas chromatograph (GC), and the differential mobility spectrometer. Most importantly, the AQM operates at atmospheric pressure and uses air as the GC carrier gas, which translates into a small reliable instrument. Onboard ISS there are two AQMs, with different GC columns that detect and quantify 22 compounds. The AQM data contributes valuable information to the assessment of air quality aboard ISS for each crew increment. The U.S. Navy is looking to update its submarine air monitoring suite of instruments, and the success of the AQM on ISS has led to a jointly planned submarine sea trial of a NASA AQM. In addition to the AQM, the Navy is also interested in the Multi-Gas Monitor (MGM), which was successfully flown on ISS as a technology demonstration to measure major constituent gases (oxygen, carbon dioxide, water vapor, and ammonia). A separate paper will present the MGM sea trial results. A prototype AQM, which is virtually identical to the operational AQM, has been readied for the sea trial. Only one AQM will be deployed during the sea trial, but it is sufficient to detect the compounds of interest to the Navy for the purposes of this trial. A significant benefit of the AQM is that runs can be scripted for pre-determined intervals and no crew intervention is required. The data from the sea trial will be compared to archival samples collected prior to and during the trial period. This paper will give a brief overview of the AQM technology and protocols for the submarine trial. After a quick review of the AQM preparation, the main focus of the paper will be on the results of the submarine trial. Of particular interest will be the comparison of the contaminants found in the ISS and submarine atmospheres, as both represent

  18. Road traffic pollution monitoring and modelling tools and the UK national air quality strategy.

    OpenAIRE

    Marsden, G.R.; Bell, M.C.

    2001-01-01

    This paper provides an assessment of the tools required to fulfil the air quality management role now expected of local authorities within the UK. The use of a range of pollution monitoring tools in assessing air quality is discussed and illustrated with evidence from a number of previous studies of urban background and roadside pollution monitoring in Leicester. A number of approaches to pollution modelling currently available for deployment are examined. Subsequently, the modelling and moni...

  19. Real-time Multispecies Spacecraft Air Quality Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase I proposal seeks to develop an ultrasensitive, multispecies sensor system for use in determining the efficacy of air...

  20. Trace Contaminant Monitor for Air in Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A need exists for analyzers that can measure trace contaminants in air on board spacecraft. Toxic gas buildup can endanger the crew particularly during long...

  1. A computerized system to monitor resilience indicators in organizations.

    Science.gov (United States)

    de Carvalho, Paulo Victor Rodrigues; de Souza, Alan Pinheiro; Gomes, Jose Orlando

    2012-01-01

    The concepts developed by resilience engineering allow the understanding and monitoring the functioning of organizations and, particularly, to map the role of human activities, in success or in failure, enabling a better comprehension about how people make decisions in unexpected situations. The capture of information about human activities in the various organization levels gives managers a deeper real-time understanding of what is influencing the people performance, providing awareness of the factors that influence positively or negatively the organizational goals initially projected. The monitoring is important because the correct functioning of complex systems depends on the knowledge that people have to perform their activities and how the system environment provides tools that actually support the human performance. Therefore, organizations should look forward through precursors in operating signals to identify possible problems or solutions in the structure of tasks and activities, safety, quality, schedule, rework, and maintenance. We apply the concepts of resilience engineering to understand the organization by the analysis of cognitive tasks and activities. The aim is the development of a computerized system to monitor human activities to produce indicators to access system resilience. The validation of the approach was made in a real organization and the results show the successful applicability of the system. Based on findings obtained after the experiment of the system in a real organization, and managers and workers opinions, it was possible to show that the use of system provided an anticipated (real-time) perception about how activities are effectively being performed, allowing managers and workers to make decisions more consistent with daily problems, and also to anticipate solutions to cope with unexpected situations.

  2. A Study on the Use of a Statistical Analysis Model to Monitor Air Pollution Status in an Air Quality Total Quantity Control District

    OpenAIRE

    Shu-Lung Kuo; Edward Ming-Yang Wu

    2013-01-01

    The air quality in Taiwan, at present, is determined by a pollution standard index (PSI) that is applied to areas of possible serious air pollution and Air Quality Total Quantity Control Districts (AQTQCD). Many studies, both in Taiwan and in other countries have examined the characteristics and levels of air pollution with PSI. This study uses air quality data collected from eight automatic air quality monitoring stations in an AQTQCD in central Taiwan and discusses the correlation between a...

  3. Air nicotine monitoring for second hand smoke exposure in public places in India

    Directory of Open Access Journals (Sweden)

    Jagdish Kaur

    2011-01-01

    Full Text Available Background: Air nicotine monitoring is an established method of measuring exposure to second hand smoke (SHS. Not much research has been done in India to measure air nicotine for the purpose of studying exposure to SHS. It is a risk factor and many diseases are known to occur among non smokers if they are exposed to second hand smoke. Objective: To conduct monitoring of air nicotine for second hand smoke exposure in public places across major cities in India. Materials and Methods: A cross sectional survey was conducted across four cities across the country, using passive air monitoring. The buildings included hospitals, secondary schools, Governmental offices, bars and restaurants. The buildings were selected through convenience sampling method keeping in view specific sentinel locations of interest. Result: The presence of air nicotine was recorded in most of the buildings under the study, which included government buildings, hospitals, schools, restaurants and entertainment venues (bars in all four cities under the study. The highest median levels of air nicotine were found in entertainment venues and restaurants in cities. Conclusion: The presence of air nicotine in indoor public places indicates weak implementation of existing smoke free law in India. The findings of this study provide a baseline characterization of exposure to SHS in public places in India, which could be used to promote clean indoor air policies and programs and monitor and evaluate the progress and future smoke-free initiatives in India.

  4. TEE monitoring for RA-horizontal paradoxical arterial air embolism during sitting-position surgery

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A 36-year-old woman suffered meningioma in her right cerebellopontine angle.Air embolisms often complicate sitting-position surgeries.Because TEE guides the localization of central venous catheters and promptly locates air embolisms promptly enough for effective treatment,TEE is an effective monitoring method for sitting-position surgeries.

  5. Journal Article: EPA's National Dioxin Air Monitoring Network (Ndamn): Design, Implementation, and Final Results

    Science.gov (United States)

    The U.S. Environmental Protection Agency (U.S. EPA) established the National Dioxin Air Monitoring Network (NDAMN) in June of 1998, and operated it until November of 2004. The objective of NDAMN was to determine background air concentrations of polychlorinated dibenzo-p-dioxins (...

  6. Performance Evaluation of a Low-Cost, Real-Time Community Air Monitoring Station

    Science.gov (United States)

    The US EPA’s Village Green Project (VGP) is an example of using innovative technology to enable community-level low-cost real-time air pollution measurements. The VGP is an air monitoring system configured as a park bench located outside of a public library in Durham, NC. It co...

  7. Community Air Sensor Network (CAIRSENSE) Project: Lower Cost, Continuous Ambient Monitoring Methods

    Science.gov (United States)

    Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of numerous sensors across a small geographic area would have potential benefits to supplement existing monitoring networks and ...

  8. Some considerations on noise monitoring for air handling equipments

    Science.gov (United States)

    Bujoreanu, C.; Benchea, M.

    2017-02-01

    The HVAC (Heating, Ventilating and Air Conditioning) beneficiaries are in particular annoyed by the noise generated from the radiant unit and the air circulating ducts, since they are located inside the rooms and buildings. The comparatively experimental results highlight the relations between the air flow, pressure, power-charging and the sound level. The measurements are carried out at different fan’s speeds, ranging the power-charge from 30-100% while the duct air flow is slowly adjusted from full open to full closed, between 0-500 Pa. Third-octave band analysis of random noise of the handling units is realized in an anechoic room, using the measurement procedures that agrees the requirements of the ISO 3744:2011 and ISO 5136:2010 standards. For an accurate design of the HVAC system, the designer needs to know not only the sound power of the radiant unit, but also from all of the air paths, since the sound travels along with the conditioned air. The experimental methodology used in the paper is of real interest for the HVAC manufacturers, in order to rate the sound level of their products and to improve the noise attenuation.

  9. Monitoring and prediction of air polution from traffic in the urban environment

    OpenAIRE

    Reynolds, Shirley Anne

    1996-01-01

    Traffic-related air pollution is now a major concern. The Rio Earth Summit and the Government's commitment to Agenda 21 has led to Local Authorities taking responsibility to manage the growing number of vehicles and to reduce the impact of traffic on the environment. There is an urgent need to effectively monitor urban air quality at reasonable cost and to develop long and short term air pollution prediction models. The aim of the research described was to investigate relationships betw...

  10. 75 FR 18757 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Alternate Monitoring...

    Science.gov (United States)

    2010-04-13

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Indiana; Alternate Monitoring Requirements for Indianapolis Power and Light--Harding Street Station AGENCY: Environmental... approve as ] a revision to its State Implementation Plan (SIP) alternative monitoring requirements for...

  11. Air pollution and climate change effects on health of the Ukrainian forests: monitoring and evalution

    Science.gov (United States)

    Igor F. Buksha; Valentina L. Meshkova; Oleg M. Radchenko; Alexander S. Sidorov

    1998-01-01

    Forests in the Ukraine are affected by environmental pollution, intensive forestry practice, and recreational uses. These factors make them sensitive to impacts of climate change. Since 1989 Ukraine has participated in the International Cooperative Program on Assessment and Monitoring of Air Pollution Effects on Forests (ICP-Forests). A network of monitoring plots has...

  12. Elektronische monitoring van luchtwassers op veehouderijbedrijven = Automated process monitoring and data logging of air scrubbers at animal houses

    NARCIS (Netherlands)

    Melse, R.W.; Franssen, J.C.T.J.

    2010-01-01

    At 6 animal houses air scrubbers equipped with an automated process monitoring and data logging system were tested. The measured values were successfully stored but the measured values, especially the pH and EC of the recirculation water, appeared not to be correct at all times.

  13. AirSWOT: An Airborne Platform for Surface Water Monitoring

    Science.gov (United States)

    Rodriguez, E.; Moller, D.; Smith, L. C.; Pavelsky, T. M.; Alsdorf, D. E.

    2010-12-01

    The SWOT mission, expected to launch in 2020, will provide global measurements of surface water extent and elevation from which storage change and discharge can be derived. SWOT-like measurements are not routinely used by the hydrology community, and their optimal use and associated errors are areas of active research. The purpose of AirSWOT, a system that has been proposed to NASA’s Instrument Incubator Program, is to provide SWOT-like measurements to the hydrology and ocean community to be used to advance the understanding and use of SWOT data in the pre-launch phase. In the post-launch phase, AirSWOT will be used as the SWOT calibration/validation platform. The AirSWOT payload will consist of Kaspar, a multi-beam Ka-band radar interferometer able to produce elevations over a 5 km swath with centimetric precision. The absolute elevation accuracy of the AirSWOT system will be achieved with a combination of high precision Inertial Motion Units (IMUs), ground calibration points, and advanced calibration techniques utilizing a priori knowledge. It is expected that the accuracy of AirSWOT will exceed or match SWOT’s accuracy requirements. In addition to elevation measurements, the AirSWOT payload will include a near-infrared camera able to provide coincident high-resolution optical imagery of the water bodies imaged by the radar. In its initial hydrology deployments, AirSWOT will investigate four field sites: the Ohio-Mississippi confluence, the lower Atchafalaya River on the Mississippi River Delta, the Yukon River basin near Fairbanks, and the Sacramento River, California. The Ohio-Mississippi confluence is targeted for its large discharge, modest slope, and control structures that modulate Ohio but not Mississippi River slopes and elevations. The lower Atchafalaya River includes low slopes, wetlands with differing vegetation types, and some open lakes. Vegetation includes Cyprus forests, floating macrophytes, and grass marshes, all of which impact radar returns

  14. Data Quality Objectives Summary Report Supporting Radiological Air Surveillance Monitoring for the INL Site

    Energy Technology Data Exchange (ETDEWEB)

    Haney, Thomas Jay [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    This report documents the Data Quality Objectives (DQOs) developed for the Idaho National Laboratory (INL) Site ambient air surveillance program. The development of the DQOs was based on the seven-step process recommended “for systematic planning to generate performance and acceptance criteria for collecting environmental data” (EPA 2006). The process helped to determine the type, quantity, and quality of data needed to meet current regulatory requirements and to follow U.S. Department of Energy guidance for environmental surveillance air monitoring design. It also considered the current air monitoring program that has existed at INL Site since the 1950s. The development of the DQOs involved the application of the atmospheric dispersion model CALPUFF to identify likely contamination dispersion patterns at and around the INL Site using site-specific meteorological data. Model simulations were used to quantitatively assess the probable frequency of detection of airborne radionuclides released by INL Site facilities using existing and proposed air monitors.

  15. Use of multi-objective air pollution monitoring sites and online air pollution monitoring system for total health risk assessment in Hyderabad, India.

    Science.gov (United States)

    Anjaneyulu, Y; Jayakumar, I; Hima Bindu, V; Sagareswar, G; Mukunda Rao, P V; Rambabu, N; Ramani, K V

    2005-08-01

    A consensus has been emerging among public health experts in developing countries that air pollution, even at current ambient levels, aggravates respiratory and cardiovascular diseases and leads to premature mortality. Recent studies have also presented well-founded theories concerning the biological mechanisms involved and the groups of people that are probably more susceptible to health effects caused or exacerbated by inhalation of ambient particulate matter (PM.). On the basis of prognostic studies carried out in Center for Environment, JNT University, Hyderabad "it has been estimated that in Hyderabad some 1,700 to 3,000 people per year die prematurely as a result of inhaling PM". These figures reflect only the effects of acute exposure to air pollution. If the long-term effects of chronic exposure are taken into account, 10,000-15,000 people a year could die prematurely in Hyderabad. This estimate of the chronic effects is based on other studies, which are not completely comparable with the Hyderabad situation. While the study designs and analyses in these other studies may indeed be different or irrelevant to Hyderabad, the fact they were carried out in other countries is irrelevant. Taking into account these considerations, a model for total health risk assessment for the city of Hyderabad, and its state of Andhra Pradesh in India has been developed using a multi-objective air pollution monitoring network and online and real time air pollution monitoring stations. For the model studies a number of potential monitoring sites were screened for general and site-specific criteria in a geographic information system (GIS) environment that may, on a local basis, affect the representativeness of the data collected. Local features that may affect either the chemical or meteorological parameters are evaluated to assure a minimum of interference. Finally, for monitoring air pollution, an online and real-time monitoring system was designed using advanced

  16. Use of Multi-Objective Air Pollution Monitoring Sites and Online Air Pollution Monitoring System for Total Health Risk Assessment in Hyderabad, India

    Directory of Open Access Journals (Sweden)

    K. V. Ramani

    2005-08-01

    Full Text Available A consensus has been emerging among public health experts in developing countries that air pollution, even at current ambient levels, aggravates respiratory and cardiovascular diseases and leads to premature mortality. Recent studies have also presented well-founded theories concerning the biological mechanisms involved and the groups of people that are probably more susceptible to health effects caused or exacerbated by inhalation of ambient particulate matter (PM.. On the basis of prognostic studies carried out in Center for Environment, JNT University, Hyderabad “it has been estimated that in Hyderabad some 1,700 to 3,000 people per year die prematurely as a result of inhaling PM”. These figures reflect only the effects of acute exposure to air pollution. If the long-term effects of chronic exposure are taken into account, 10,000–15,000 people a year could die prematurely in Hyderabad. This estimate of the chronic effects is based on other studies, which are not completely comparable with the Hyderabad situation. While the study designs and analyses in these other studies may indeed be different or irrelevant to Hyderabad, the fact they were carried out in other countries is irrelevant. Taking into account these considerations, a model for total health risk assessment for the city of Hyderabad, and its state of Andhra Pradesh in India has been developed using a multi-objective air pollution monitoring network and online and real time air pollution monitoring stations. For the model studies a number of potential monitoring sites were screened for general and site-specific criteria in a geographic information system (GIS environment that may, on a local basis, affect the representativeness of the data collected. Local features that may affect either the chemical or meteorological parameters are evaluated to assure a minimum of interference. Finally, for monitoring air pollution, an online and real

  17. On the system of monitoring ambient air quality in relation to the health of the population of the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Kazmarova, H. [National Inst. of Public Health, Prague (Czech Republic)

    1995-12-31

    In 1991 the Government of the Czech republic in Ruling No 369 approved a draft of a system for monitoring the health of the population in relation to the environment on the basis of a need to obtain purposefully targeted information for an appropriate policy for the protection of health and the environment. The aim of monitoring does not and cannot consist of determining the cause and effect relationship between the health status and pollutants. The system of monitoring is an open and comprehensive system of the continual collection, processing and evaluation of data concerned with the load on the organism and damage to human health in relation to environmental pollution. Air pollution and health are one of the six subsystems realised in the whole system (beside drinking water, noise, food, biomarkers, and demographic and health statistics). The aim of the monitoring is to obtain a data base that shall serve three main purposes: (1) Description of the status of health of the population and characteristics of the ambient air, (2) Evaluation of the trend of each index, (3) Assessment and evaluation of the risk to health of the parameters under study. Thirty cities and towns were selected in the Czech Republic for the realisation of the monitoring system. (author)

  18. Research Update: Electrical monitoring of cysts using organic electrochemical transistors

    Energy Technology Data Exchange (ETDEWEB)

    Huerta, M.; Rivnay, J.; Ramuz, M.; Hama, A.; Owens, R. M. [Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne (France)

    2015-03-01

    Organotypic three-dimensional (3D) cell culture models have the potential to act as surrogate tissues in vitro, both for basic research and for drug discovery/toxicology. 3D cultures maintain not only 3D architecture but also cell-cell and cell extracellular matrix interactions, particularly when grown in cysts or spheroids. Characterization of cell cultures grown in 3D formats, however, provides a significant challenge for cell biologists due to the incompatibility of these structures with commonly found optical or electronic monitoring systems. Electronic impedance spectroscopy is a cell culture monitoring technique with great potential; however, it has not been possible to integrate 3D cultures with commercially available systems to date. Cyst-like 3D cultures are particularly challenging due to their small size and difficulty in manipulation. Herein, we demonstrate isolation of cyst-like 3D cultures by capillarity and subsequent integration with the organic electrochemical transistor for monitoring the integrity of these structures. We show not only that this versatile device can be adapted to the cyst format for measuring resistance and, therefore, the quality of the cysts, but also can be used for quantitative monitoring of the effect of toxic compounds on cells in a 3D format. The ability to quantitatively predict effects of drugs on 3D cultures in vitro has large future potential for the fields of drug discovery and toxicology.

  19. Research Update: Electrical monitoring of cysts using organic electrochemical transistors

    Directory of Open Access Journals (Sweden)

    M. Huerta

    2015-03-01

    Full Text Available Organotypic three-dimensional (3D cell culture models have the potential to act as surrogate tissues in vitro, both for basic research and for drug discovery/toxicology. 3D cultures maintain not only 3D architecture but also cell-cell and cell extracellular matrix interactions, particularly when grown in cysts or spheroids. Characterization of cell cultures grown in 3D formats, however, provides a significant challenge for cell biologists due to the incompatibility of these structures with commonly found optical or electronic monitoring systems. Electronic impedance spectroscopy is a cell culture monitoring technique with great potential; however, it has not been possible to integrate 3D cultures with commercially available systems to date. Cyst-like 3D cultures are particularly challenging due to their small size and difficulty in manipulation. Herein, we demonstrate isolation of cyst-like 3D cultures by capillarity and subsequent integration with the organic electrochemical transistor for monitoring the integrity of these structures. We show not only that this versatile device can be adapted to the cyst format for measuring resistance and, therefore, the quality of the cysts, but also can be used for quantitative monitoring of the effect of toxic compounds on cells in a 3D format. The ability to quantitatively predict effects of drugs on 3D cultures in vitro has large future potential for the fields of drug discovery and toxicology.

  20. Monitoring the levels of toxic air pollutants in the ambient air of ...

    African Journals Online (AJOL)

    user

    Urban air pollution is an environmental problem in developing countries. The sources of urban air pollution emanate mostly from ... with the goal of examining the health effects associated ... characterized by extended sunshine, dust-loaded trade wind ... central business district of Freetown, characterized by offices, retail.

  1. Dynamic behavior of semivolatile organic compounds in indoor air

    Energy Technology Data Exchange (ETDEWEB)

    Loy, Michael David Van [Univ. of California, Berkeley, CA (United States)

    1998-12-09

    Exposures to a wide range of air pollutants are often dominated by those occurring in buildings because of three factors: 1) most people spend a large fraction of their time indoors, 2) many pollutants have strong indoor sources, and 3) the dilution volume in buildings is generally several orders of magnitude smaller than that of an urban airshed. Semivolatile organic compounds (SVOCS) are emitted by numerous indoor sources, including tobacco combustion, cooking, carpets, paints, resins, and glues, so indoor gasphase concentrations of these compounds are likely to be elevated relative to ambient levels. The rates of uptake and release of reversibly sorbing SVOCS by indoor materials directly affect both peak concentrations and persistence of the pollutants indoors after source elimination. Thus, accurate predictions of SVOC dynamics in indoor air require an understanding of contaminant sorption on surface materials such as carpet and wallboard. The dynamic behaviors of gas-phase nicotine and phenanthrene were investigated in a 20 ms stainless steel chamber containing carpet and painted wallboard. Each compound was studied independently, first in the empty chamber, then with each sorbent individually, and finally with both sorbents in the chamber.

  2. The Satellite based Monitoring Initiative for Regional Air quality (SAMIRA): Project summary and first results

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nemuc, Anca; Stachlewska, Iwona; Zehner, Claus

    2017-04-01

    We present a summary and some first results of a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellite instruments, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. The primary goal of SAMIRA is to demonstrate the usefulness of existing and future satellite products of air quality for improving monitoring and mapping of air pollution at the regional scale. A total of six core activities are being carried out in order to achieve this goal: Firstly, the project is developing and optimizing algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of Meteosat Second Generation. As a second activity, SAMIRA aims to derive particulate matter (PM2.5) estimates from AOD data by developing robust algorithms for AOD-to-PM conversion with the support from model- and Lidar data. In a third activity, we evaluate the added value of satellite products of atmospheric composition for operational European-scale air quality mapping using geostatistics and auxiliary datasets. The additional benefit of satellite-based monitoring over existing monitoring techniques (in situ, models) is tested by combining these datasets using geostatistical methods and demonstrated for nitrogen dioxide (NO2), sulphur dioxide (SO2), and aerosol optical depth/particulate matter. As a fourth activity, the project is developing novel algorithms for downscaling coarse

  3. TH-C-17A-09: Direct Visualization and Monitoring of Medical Radiation Beams in Air

    Energy Technology Data Exchange (ETDEWEB)

    Fahimian, B; Ceballos, A; Turkcan, S; Kapp, D; Pratx, G [Stanford University, Stanford, CA (United States)

    2014-06-15

    Purpose: Radiation therapy errors are rare but potentially catastrophic. Recent fatal incidents could have been avoided by utilizing real-time methods of monitoring delivery of radiation during treatment. However, few existing methods are practical enough to be used routinely. The study presents the first experimental demonstration of a novel non-perturbing method of monitoring radiation therapy through the phenomena of air scintillation. Methods: Monitoring of radiation delivery was devised by leveraging the phenomena of nitrogen excitation in air by ionizing radiation. The excitation induced weak luminescence in the 300–400 nm range, a process called air scintillation. An electron-multiplication charge-coupled device camera (f/0.95 lens; 440 nm shortpass) was set-up in a clinical treatment vault and was used to capture air scintillation images of kilovoltage and megavoltage beams. Monte Carlo simulations were performed to determine the correlation of radiation dose to air scintillation. Results: Megavoltage beams from a Varian Clinac 21EX and kilovoltage beams from an orthovoltage unit (50 kVp, 30 mA) were visualized with a relatively short exposure time (10 s). Cherenkov luminescence produced in a plastic transparent phantom did not interfere with detection of air scintillation. The image intensity displayed an inverse intensity falloff (r{sup 2} = 0.89) along the central axis and was proportional to dose rate (r{sup 2} = 0.9998). As beam energy increased, the divergence of the imaged beam decreased. Last, air scintillation was visualized during a simulated total skin irradiation electron treatment. Conclusion: Air scintillation can be clinically detected to monitor a radiation beam in an inexpensive and non-perturbing manner. This new method is advantageous in monitoring for gross delivery and uniquely capable of wide area in a single acquisition, such as the case for online verification of total body / skin / lymphoid irradiation treatments.

  4. Approach to predict partitioning of organic compounds from air into airborne particulate

    Institute of Scientific and Technical Information of China (English)

    SUN Cong; FENG Liu

    2005-01-01

    Based on the theoretical linear solvation energy relationship and quantum chemical descriptors computed by AM1 Hamiltonian, a new approach was developed to predict the partitioning of some organic compounds between the airborne particulate and air. It could be successfully used to study the partitioning of organic compounds from air into airborne particulate, and evaluate the potential risk of organic compounds.

  5. Indoor Air Quality in Schools (IAQ): The Importance of Monitoring Carbon Dioxide Levels.

    Science.gov (United States)

    Sundersingh, David; Bearg, David W.

    This article highlights indoor air quality and exposure to pollutants at school. Typical air pollutants within schools include environmental tobacco smoke, formaldehyde, volatile organic compounds, nitrogen oxides, carbon monoxide, carbon dioxide, allergens, pathogens, radon, pesticides, lead, and dust. Inadequate ventilation, inefficient…

  6. Environmental Monitoring, Air Quality - MO 2011 Air Quality Standards Nonattainment Areas (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — The St. Louis air quality nonattainment areas geospatial data layer contains regions representing the geographic extent of areas that are estimated to be out of...

  7. Air Sensor Kit Performance Testing and Pollutant Mapping Supports Community Air Monitoring Project

    Science.gov (United States)

    EPA is collaborating on a research project with the South Coast Air Quality Management District in Diamond Bar, Calif. to gain an enhanced understanding of fine particulate matter (PM2.5) and ozone concentrations across the study area.

  8. 76 FR 54462 - Notification of a Public Teleconference; Clean Air Scientific Advisory Committee; Air Monitoring...

    Science.gov (United States)

    2011-09-01

    ... required to consider traffic volumes, fleet mix, roadway design, traffic congestion patterns, local terrain... Committee (CASAC) to provide advice on EPA's draft Near-Road NO 2 Monitoring Technical Assistance Document... http://www.epa.gov/casac . Any inquiry regarding EPA's draft Near-Road NO 2 Monitoring...

  9. Organic electronics based pressure sensor towards intracranial pressure monitoring

    Science.gov (United States)

    Rai, Pratyush; Varadan, Vijay K.

    2010-04-01

    The intra-cranial space, which houses the brain, contains cerebrospinal fluid (CSF) that acts as a fluid suspension medium for the brain. The CSF is always in circulation, is secreted in the cranium and is drained out through ducts called epidural veins. The venous drainage system has inherent resistance to the flow. Pressure is developed inside the cranium, which is similar to a rigid compartment. Normally a pressure of 5-15 mm Hg, in excess of atmospheric pressure, is observed at different locations inside the cranium. Increase in Intra-Cranial Pressure (ICP) can be caused by change in CSF volume caused by cerebral tumors, meningitis, by edema of a head injury or diseases related to cerebral atrophy. Hence, efficient ways of monitoring ICP need to be developed. A sensor system and monitoring scheme has been discussed here. The system architecture consists of a membrane less piezoelectric pressure sensitive element, organic thin film transistor (OTFT) based signal transduction, and signal telemetry. The components were fabricated on flexible substrate and have been assembled using flip-chip packaging technology. Material science and fabrication processes, subjective to the device performance, have been discussed. Capability of the device in detecting pressure variation, within the ICP pressure range, is investigated and applicability of measurement scheme to medical conditions has been argued for. Also, applications of such a sensor-OTFT assembly for logic sensor switching and patient specific-secure monitoring system have been discussed.

  10. The monitoring of organic waste pollution in the sibelis river

    Science.gov (United States)

    Huda, Thorikul; Jannah, Wirdatul

    2017-03-01

    Has conducted monitoring of organic waste pollution in the River Sibelis of Tegal City of Central Java. Organic wastes that pollute River Sibelis can degrade the quality of well water along the river. Monitoring carried out in the upstream and downstream by chemical oxygen demand (COD) and biochemical oxygen demand (BOD) parameters. COD test methods by titration and the results are used to determine the test sample comparison with the volume of diluent required for analysts BOD. COD test results on the upstream and downstream Sibelis River respectively 58.13 mg/L and 73.97 mg / L so that the ratio of the test sample with diluent volume for BOD analysis is 20: 280 (Sawyer, 1978). BOD test principle is based on the reduction of dissolved oxygen zero day (DO0) and five days (DO5). The result of observation BOD samples at upstream and downstream Sibelis Rivers are 10.7212 mg / L and 5.3792 mg / L respectively. Quality control of BOD testing conducted with measurement accuracy and precision and obtained result are 85.36% and 0.27% respectively. The result of uncertainty measurement for BOD testing at upstream and downstream are ±0.4469 mg/L and ±0.22188 mg/L.

  11. An Air-Ground Wireless Sensor Network for Crop Monitoring

    Directory of Open Access Journals (Sweden)

    Claudio Rossi

    2011-06-01

    Full Text Available This paper presents a collaborative system made up of a Wireless Sensor Network (WSN and an aerial robot, which is applied to real-time frost monitoring in vineyards. The core feature of our system is a dynamic mobile node carried by an aerial robot, which ensures communication between sparse clusters located at fragmented parcels and a base station. This system overcomes some limitations of the wireless networks in areas with such characteristics. The use of a dedicated communication channel enables data routing to/from unlimited distances.

  12. European experience on air and water pollution control: monitoring network and warning station

    Energy Technology Data Exchange (ETDEWEB)

    Aflalo, Sergio S. [Groupe Environnement S.A., Poissy (France)

    1993-12-31

    After a review of the energy consumption and pollutants emitted in the European Community, especially those concerning the `green house effect`, the author proceeded a summary of the actual legislation and Europeans directives, and also, the Best Available Technology for reducing air pollution is discussed. Original Air Quality monitoring networks performed by Environnement SA are described including measurements obtained around Paris and other areas of France. 7 refs., 11 figs.

  13. Semipermeable membrane devices in monitoring of organic pollutants in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Sabaliunas, D.

    1999-03-01

    Semipermeable membrane devices (SPMDs) are passive samplers capable of concentrating hydrophobic chemicals from water, sediments, soil and air. They consist of layflat polymeric membrane such as polyethylene containing a thin film of synthetic lipid such as triolein. The transport of hydrophobic chemicals through the membrane into the lipid is governed by the process of passive diffusion. Therefore, SPMDs sample chemicals in a way similar to organisms. This thesis deals with the application of SPMDs in the monitoring of concentrations and effects of organic pollutants in the aquatic environment. SPMDs were exposed to various pesticides (organochlorines, synthetic pyrethroids, dinitroanilines, amides) in laboratory flow-through experiments to study the uptake kinetics of organic chemicals from water. To compare the uptake of model compounds by SPMDs and aquatic organisms, the membrane samplers were exposed to chemicals side-by-side with bivalves. Mixtures of chemicals accumulated by SPMDs and mussels were tested in standard toxicity and genotoxicity assays (Microtox, Mutatox, invertebrate toxicity tests, the Ames test, sister chromatid exchange test). These studies showed that the uptake pattern of organic compounds by SPMDs and aquatic organisms was similar, and the passive samplers accumulated levels of chemicals sufficient for standard bioassays. To further validate the method, SPMDs were deployed in a number of polluted water sources in Lithuania. Bioassay-directed fractionation and chemical analytical methods were used to identify pollutants sampled (PAHs, PCBs, organochlorines) and their effects were evaluated in bioassays. SPMDs proved to be useful tools in monitoring of organic pollutants under the field conditions. Criteria for bioassays to be integrated with the SPMD technique were defined based on the results of these studies. Some important factors in the integration of SPMDs and bioassays (toxicity of SPMD-inherent oleic and sediment

  14. Monitoring air quality in Southeast Alaska’s National Parks and Forests: Linking atmospheric pollutants with ecological effects

    Science.gov (United States)

    D. Schirokauer; L. Geiser; A. Bytnerowicz; M. Fenn; K. Dillman

    2014-01-01

    Air quality and air quality related values are important resources to the National Park Service (NPS) units and Wilderness areas in northern Southeast Alaska. Air quality monitoring was prioritized as a high-priority Vital Sign at the Southeast Alaska Network’s (SEAN) Inventory and Monitoring Program’s terrestrial scoping workshop (Derr and Fastie 2006). Air quality...

  15. Citizen participatory dioxin monitoring campaign by pine needles as biomonitor of ambient air dioxin pollution

    Energy Technology Data Exchange (ETDEWEB)

    Komichi, I.; Takatori, A. [Environmental Research Institute Inc., Tokyo (Japan); Aoyama, T. [Musashi Institute of Technology, Yokohama (Japan). Faculty of Environment and Informations; Vrzic, B. [Maxxam Analytics Inc. HRMS Laboratory, Waterloo, ON (Canada)

    2004-09-15

    The needle-type leaves of Japanese black pine trees (hereafter abbreviated as pine needles) have been used as an effective bio-monitor of ambient air pollution. Miyata Laboratory of Setsunan University has reported that the pine needles accumulate PCDDs and PCDFs (hereafter abbreviated as D/F) through photosynthesis and respiration during their lifetime. On the basis of this study, we have revealed the correlation between ambient air and pine needle concentrations to be estimated at or near 1:10 by analyzing long term continuous ambient dioxin monitoring data and that of pine needles sampled from the same area as ambient air in the Kanagawa Prefecture in 1999. Since then, the citizen groups of each local area all over Japan have started monitoring the ambient air dioxin concentration levels by using pine needles. Samples analyzed during these 5 years totaled more than 650 throughout Japan. The results of these citizen participatory environmental monitoring activities are the tremendous effects achieved in reducing the dioxin levels. This occurs through observation of the dioxin emission sources such as Municipal Solid Waste Incineration Plants as well as the Industrial Waste Incineration plants, which exist in numbers exceeding several thousands in Japan. This short paper will present the results of 56 municipalities of western Japan where ambient air dioxin levels have improved steadily against local averages during these 5 years.

  16. Ambient air monitoring plan for Ciudad Acuna and Piedra Negras, Coahuila, Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Winberry, J.; Henning, L.; Crume, R.

    1998-01-01

    The Cities of Ciudad Acuna and Piedras Negras and the State of Coahuila in Mexico are interested in improving ambient air quality monitoring capabilities in the two cities through the establishment of a network of ambient air monitors. The purpose of the network is to characterize population exposure to potentially harmful air contaminants, possibly including sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), ozone (O{sub 3}), carbon monoxide (CO), total suspended particulate matter (TSP), particulate matter with aerodynamic diameter less than 100 micrometers PM-10, and lead. This report presents the results of an evaluation of existing air quality monitoring equipment and facilities in Ciudad Acuna and Piedras Negras. Additionally, the report presents recommendations for developing an air quality monitoring network for PM-10, SO{sub 2}, lead, and ozone in these cities, using a combination of both new and existing equipment. The human resources currently available and ultimately needed to operate and maintain the network are also discussed.

  17. Air pollution prevention manual on emission monitoring. 2. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-08-15

    The Manual on Emission Monitoring covers the need for information about the national practice in the field of emission control at plants, requiring official approval. The legal bases for discontinuous and continuous measurements for emission control at plants, requiring official approval, are treated. Thereby also the European environmental legislation is considered. The publication procedure for testing institutes, which execute such measurements, is described. The execution of discontinuous emission measurements (course of the measurement and measurement requests) and for continuous emission measurement (suitability test, installation, maintenance, functional test and calibration of the automated measuring system) including the evaluation and documentation of the measured values is described. The procedure of remote emission monitoring is explained. The most important measuring procedures (continuous and discontinuous) are reported. The guide also includes an up-to-date list of tested and appropriate measurement devices. Such tested measuring devices are described by their manufacturers. Indications are given as to how the devices function together with their technical data (e. g. parameters from the suitability test). (orig.)

  18. Transboundary Air Pollution over the Central Himalayas: Monitoring network and Preliminary Results

    Science.gov (United States)

    Zhang, Qianggong; Kang, Shichang

    2016-04-01

    The Himalayas, stretching over 3000 kms along west-east, separates South Asia continent and the Tibetan Plateau with its extreme high altitudes. The South Asia is being increasingly recognized to be among the hotspots of air pollution, posing multi-effects on regional climate and environment. Recent monitoring and projection have indicated an accelerated decrease of glacier and increasing glacier runoff in the Himalayas, and a remarkable phenomenon has been recognized in the Himalayas that long-range transport atmospheric pollutants (e.g., black carbon and dust) deposited on glacier surface can promote glacier melt, and in turns, may liberate historical contaminant legacy in glaciers into downward ecosystems. To understand the air pollution variation and how they can infiltrate the Himalayas and beyond, we started to operate a coordinated atmospheric pollution monitoring network composing 11 sites with 5 in Nepal and 6 in Tibet since April 2013. Atmospheric total suspended particles ( TSP air mass trajectories suggested that the transboundary air pollution over the Himalayas is episodic and is likely concentrated in pre-monsoon seasons. Our results emphasis the potential transport and impact of air pollution from South Asia to Himalayas and further inland Tibetan Plateau. The monitoring network will be continuously operated to provide basis for defining the transboundary air pollution and their impact on the environments and ecosystems over the Himalayas and the Tibetan Plateau.

  19. Ambient air quality monitoring at Universiti Tunku Abdul Rahman (UTAR) Kampar campus

    Science.gov (United States)

    Jie, Lim Jun; Xinxin, Guo; Ke, Wang

    2017-04-01

    Air Pollutant includes any substance in solid, liquid or gaseous form present in the atmosphere in concentrations which may tend to be injurious to all living creatures, property and environment. In this study, automatic continuous monitoring station was used to monitor concentration of carbon monoxide (CO), non-methane hydrocarbon (NMHC), and carbon dioxide (CO2) in the ambient air of Kampar Campus, Universiti Tunku Abdul Rahman. High-volume air sampler was also used to monitor the concentration of PM2.5 and the collected PM2.5 was further analysed for the heavy metal concentration such as Zinc (Zn), Cadmium (Cd), Copper (Cu), Arsenic (As), Aluminium (Al), and Lead (Pb) in PM2.5 using inductively coupled plasma-mass spectrometer (ICP-MS). The overall ambient air quality in the campus area is consider unhealthy as the non-methane hydrocarbon (NMHC) and carbon dioxide (CO2) average concentration obtained were far exceeding the recommended limit concentration set by United States Environmental Protection Agency (USEPA). Meteorological data was found that it does not show much relationship with the air quality data in this study. The concentration of Zn and Al were found the dominant heavy metal in the ambient air. The enrichment factor analysis also shows that the heavy metals contained in PM2.5 mainly origin from the natural source except for the Zn which it is highly contaminated by human activities.

  20. Correlations between short-term mobile monitoring and long-term passive sampler measurements of traffic-related air pollution.

    Science.gov (United States)

    Riley, Erin A; Schaal, LaNae; Sasakura, Miyoko; Crampton, Robert; Gould, Timothy R; Hartin, Kris; Sheppard, Lianne; Larson, Timothy; Simpson, Christopher D; Yost, Michael G

    2016-05-01

    Mobile monitoring has provided a means for broad spatial measurements of air pollutants that are otherwise impractical to measure with multiple fixed site sampling strategies. However, the larger the mobile monitoring route the less temporally dense measurements become, which may limit the usefulness of short-term mobile monitoring for applications that require long-term averages. To investigate the stationarity of short-term mobile monitoring measurements, we calculated long term medians derived from a mobile monitoring campaign that also employed 2-week integrated passive sampler detectors (PSD) for NOx, Ozone, and nine volatile organic compounds at 43 intersections distributed across the entire city of Baltimore, MD. This is one of the largest mobile monitoring campaigns in terms of spatial extent undertaken at this time. The mobile platform made repeat measurements every third day at each intersection for 6-10 minutes at a resolution of 10 s. In two-week periods in both summer and winter seasons, each site was visited 3-4 times, and a temporal adjustment was applied to each dataset. We present the correlations between eight species measured using mobile monitoring and the 2-week PSD data and observe correlations between mobile NOx measurements and PSD NOx measurements in both summer and winter (Pearson's r = 0.84 and 0.48, respectively). The summer season exhibited the strongest correlations between multiple pollutants, whereas the winter had comparatively few statistically significant correlations. In the summer CO was correlated with PSD pentanes (r = 0.81), and PSD NOx was correlated with mobile measurements of black carbon (r = 0.83), two ultrafine particle count measures (r =0.8), and intermodal (1-3 μm) particle counts (r = 0.73). Principal Component Analysis of the combined PSD and mobile monitoring data revealed multipollutant features consistent with light duty vehicle traffic, diesel exhaust and crankcase blow by. These features were more consistent

  1. Role of monitoring network in the control management of air quality. An industrial case history

    Energy Technology Data Exchange (ETDEWEB)

    Zerbo, G. [Catania Univ. (Italy). Inst. of Merceology; Fabiano, B.; Ferraiolo, A.; Solisio, C.; Ruaro, R.

    1995-12-31

    Air quality control by a system of monitoring station is indispensable for the environmental protection. Moreover, a monitoring network have not to be only a mere data collection a good air quality control is possible only if the network management allows to prevent unacceptable pollutants level. In other terms, elaboration and interpretation data are fundamental in order to make monitoring system really able for regulations of corrective measures as, for example, the reduction of local emissions. The case of monitoring network run from the Industrial Society CIPA of Siracusa (Italy) is discussed. The management of the data obtained from a continuous survey allows to keep pollutants level below the current limits set down by the Italian law. Furthermore, elaboration of the data allows useful evaluations about atmospheric dispersion phenomena. (author)

  2. Sophisticated Clean Air Strategies Required to Mitigate Against Particulate Organic Pollution

    Science.gov (United States)

    Grigas, T.; Ovadnevaite, J.; Ceburnis, D.; Moran, E.; McGovern, F. M.; Jennings, S. G.; O’Dowd, C.

    2017-01-01

    Since the 1980’s, measures mitigating the impact of transboundary air pollution have been implemented successfully as evidenced in the 1980–2014 record of atmospheric sulphur pollution over the NE-Atlantic, a key region for monitoring background northern-hemisphere pollution levels. The record reveals a 72–79% reduction in annual-average airborne sulphur pollution (SO4 and SO2, respectively) over the 35-year period. The NE-Atlantic, as observed from the Mace Head research station on the Irish coast, can be considered clean for 64% of the time during which sulphate dominates PM1 levels, contributing 42% of the mass, and for the remainder of the time, under polluted conditions, a carbonaceous (organic matter and Black Carbon) aerosol prevails, contributing 60% to 90% of the PM1 mass and exhibiting a trend whereby its contribution increases with increasing pollution levels. The carbonaceous aerosol is known to be diverse in source and nature and requires sophisticated air pollution policies underpinned by sophisticated characterisation and source apportionment capabilities to inform selective emissions-reduction strategies. Inauspiciously, however, this carbonaceous concoction is not measured in regulatory Air Quality networks. PMID:28303958

  3. Sophisticated Clean Air Strategies Required to Mitigate Against Particulate Organic Pollution

    Science.gov (United States)

    Grigas, T.; Ovadnevaite, J.; Ceburnis, D.; Moran, E.; McGovern, F. M.; Jennings, S. G.; O’Dowd, C.

    2017-03-01

    Since the 1980’s, measures mitigating the impact of transboundary air pollution have been implemented successfully as evidenced in the 1980–2014 record of atmospheric sulphur pollution over the NE-Atlantic, a key region for monitoring background northern-hemisphere pollution levels. The record reveals a 72–79% reduction in annual-average airborne sulphur pollution (SO4 and SO2, respectively) over the 35-year period. The NE-Atlantic, as observed from the Mace Head research station on the Irish coast, can be considered clean for 64% of the time during which sulphate dominates PM1 levels, contributing 42% of the mass, and for the remainder of the time, under polluted conditions, a carbonaceous (organic matter and Black Carbon) aerosol prevails, contributing 60% to 90% of the PM1 mass and exhibiting a trend whereby its contribution increases with increasing pollution levels. The carbonaceous aerosol is known to be diverse in source and nature and requires sophisticated air pollution policies underpinned by sophisticated characterisation and source apportionment capabilities to inform selective emissions-reduction strategies. Inauspiciously, however, this carbonaceous concoction is not measured in regulatory Air Quality networks.

  4. Health assessment, review and response to James Bay phase III air quality monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Stanwick, R. [Vancouver Island Health Authority, Victoria, BC (Canada)

    2010-06-10

    An increase in cruise ship traffic has been observed and Victoria's harbour becomes a busy place when cruise ship traffic is combined with commercial, pleasure boat traffic and air traffic. Data provided by air quality monitoring surveys in the James Bay community during the summer months indicate that SO2 emissions sometimes exceed international guidelines. The James Bay Neighbourhood Association is concerned about air pollution in Victoria's harbour. Occasionally, the SO2 emissions reach elevated levels that can have an impact on health and could alter the quality of life and well-being of the population.

  5. Radioactivity monitoring in environmental water and air around QNPP

    Institute of Scientific and Technical Information of China (English)

    XIANG Yuanyi; WANG Kan; ZHANG Yu; CAO Zhonggang; YE Jida; WANG Hongfeng

    2007-01-01

    Results of environmental radioactivity monitoring around Qinshan Nuclear Power Plant (QNPP) are reported in this paper. From 1992 to 2005, concentrations of 90Sr, 137Cs and 3H in terrestrial freshwater are (4.4±1.7) mBq·L-1, (0.3±0.1) mBq·L-1 and (1.6±0.5) Bq·L-1, respectively, and (2.8±2.4) Bq·L-1 of 3H in rainwater. Concentrations of 90Sr, 137Cs and 3H in the seawater samples collected from sea area nearby QNPP are (5.4±4.1) mBq·L-1,(0.7±0.2) mBq·L-1 and (1.0±0.5) Bq·L-1, respectively. Concentrations of 90Sr, 137Cs and 3H in the total waste water discharged from NPP-I are (4.0±1.8) m Bq·L-1, (1.0±0.5) mBq·L-1 and (2.8±2.2) Bq·L-1, respectively, and (1.4±0.4)Bq·L-1 of 3H in seawater sampled from No.1 outlet. Atomspheric 3H concentration in 1993 ~ 2005 at two monitoring sites is (78.9±96.3) and (64.2±40.2) mBq·m-3, respectively, with an increasing trend after 2003. Atmospheric 14C concentrations at the two sites are in the same levels as the background and data of the reference site.

  6. Air Pollution Monitoring Design for Epidemiological Application in a Densely Populated City.

    Science.gov (United States)

    Min, Kyung-Duk; Kwon, Ho-Jang; Kim, KyooSang; Kim, Sun-Young

    2017-06-25

    Introduction: Many studies have reported the association between air pollution and human health based on regulatory air pollution monitoring data. However, because regulatory monitoring networks were not designed for epidemiological studies, the collected data may not provide sufficient spatial contrasts for assessing such associations. Our goal was to develop a monitoring design supplementary to the regulatory monitoring network in Seoul, Korea. This design focused on the selection of 20 new monitoring sites to represent the variability in PM2.5 across people's residences for cohort studies. Methods: We obtained hourly measurements of PM2.5 at 37 regulatory monitoring sites in 2010 in Seoul, and computed the annual average at each site. We also computed 313 geographic variables representing various pollution sources at the regulatory monitoring sites, 31,097 children's homes from the Atopy Free School survey, and 412 community service centers in Seoul. These three types of locations represented current, subject, and candidate locations. Using the regulatory monitoring data, we performed forward variable selection and chose five variables most related to PM2.5. Then, k-means clustering was applied to categorize all locations into several groups representing a diversity in the spatial variability of the five selected variables. Finally, we computed the proportion of current to subject location in each cluster, and randomly selected new monitoring sites from candidate sites in the cluster with the minimum proportion until 20 sites were selected. Results: The five selected geographic variables were related to traffic or urbanicity with a cross-validated R² value of 0.69. Clustering analysis categorized all locations into nine clusters. Finally, one to eight new monitoring sites were selected from five clusters. Discussion: The proposed monitoring design will help future studies determine the locations of new monitoring sites representing spatial variability across

  7. Air Pollution Monitoring and Control System for Subway Stations Using Environmental Sensors

    Directory of Open Access Journals (Sweden)

    Gyu-Sik Kim

    2016-01-01

    Full Text Available The metropolitan city of Seoul uses more energy than any other area in South Korea due to its high population density. It also has high emissions of air pollutants. Since an individual usually spends most of his/her working hours indoors, the ambient air quality refers to indoor air quality. In particular, PM10 concentration in the underground areas should be monitored to preserve the health of commuters in the subway system. Seoul Metro and Seoul Metropolitan Rapid Transit Corporation measure several air pollutants regularly. In this study, the accuracy of an instrument for PM measurement using the light scattering method was improved with the help of a linear regression analysis technique to continuously measure the PM10 concentrations in subway stations. In addition, an air quality monitoring system based on environmental sensors was implemented to display and record the data of PM10, CO2, temperature, and humidity. Through experimental studies, we found that ventilation fans could improve air quality and decrease PM10 concentrations in the tunnels effectively by increasing the air flow rate.

  8. EPA, San Diego County Air District to Unveil Air Monitor in San Ysidro

    Science.gov (United States)

    LOS ANGELES - On Tuesday, U.S. EPA Regional Administrator Jared Blumenfeld, along with representatives from the San Diego County Air Pollution Control District (SDAPCD), U.S. Customs and Border Protection and the U.S. General Services Administration, will

  9. STRESS IN THE AIR: INHALED POLLUTANTS AND MULTI-ORGAN IMPAIRMENT

    Science.gov (United States)

    Air pollution has been blamed for nearly 7 million premature deaths worldwide. For decades, the research on how air pollution impacts human health has centered on cardiopulmonary consequences. However, more recently it is clearly evident that air pollution affects every organ in ...

  10. FINAL REPORT: MEMBRANE-MEDIATED EXTRACTION AND BIODEGRADATION OF VOLATILE ORGANIC COMPOUNDS FROM AIR

    Science.gov (United States)

    The report describes feasibility tests of a two-step strategy for air pollution control applicable to exhaust air contaminated with volatile organic compounds (VOCs) from painting aircraft. In the first step, the VOC-contaminated air passes over coated, polypropylene, hollow-fibe...

  11. Wavelets-based clustering of air quality monitoring sites.

    Science.gov (United States)

    Gouveia, Sónia; Scotto, Manuel G; Monteiro, Alexandra; Alonso, Andres M

    2015-11-01

    This paper aims at providing a variance/covariance profile of a set of 36 monitoring stations measuring ozone (O3) and nitrogen dioxide (NO2) hourly concentrations, collected over the period 2005-2013, in Portugal mainland. The resulting individual profiles are embedded in a wavelet decomposition-based clustering algorithm in order to identify groups of stations exhibiting similar profiles. The results of the cluster analysis identify three groups of stations, namely urban, suburban/urban/rural, and a third group containing all but one rural stations. The results clearly indicate a geographical pattern among urban stations, distinguishing those located in Lisbon area from those located in Oporto/North. Furthermore, for urban stations, intra-diurnal and daily time scales exhibit the highest variance. This is due to the more relevant chemical activity occurring in high NO2 emissions areas which are responsible for high variability on daily profiles. These chemical processes also explain the reason for NO2 and O3 being highly negatively cross-correlated in suburban and urban sites as compared with rural stations. Finally, the clustering analysis also identifies sites which need revision concerning classification according to environment/influence type.

  12. Toxic Volatile Organic Compounds (VOCs in the Atmospheric Environment: Regulatory Aspects and Monitoring in Japan and Korea

    Directory of Open Access Journals (Sweden)

    Wen-Tien Tsai

    2016-09-01

    Full Text Available In the past decades, hazardous air pollutants (HAPs, so-called air toxics or toxic air pollutants, have been detected in the atmospheric air at low concentration levels, causing public concern about the adverse effect of long-term exposure to HAPs on human health. Most HAPs belong to volatile organic compounds (VOCs. More seriously, most of them are known carcinogens or probably carcinogenic to humans. The objectives of this paper were to report the regulatory aspects and environmental monitoring management of toxic VOCs designated by Japan and Korea under the Air Pollution Control Act, and the Clean Air Conservation Act, respectively. It can be found that the environmental quality standards and environmental monitoring of priority VOCs (i.e., benzene, trichloroethylene, tetrachloroethylene, and dichloromethane have been set and taken by the state and local governments of Japan since the early 2000, but not completely established in Korea. On the other hand, the significant progress in reducing the emissions of some toxic VOCs, including acrylonitrile, benzene, 1,3-butadiene, 1,2-dichloroethane, dichloromethane, chloroform, tetrachloroethylene, and trichloroethylene in Japan was also described as a case study in the brief report paper.

  13. Applications of MODIS satellite data and products for monitoring air quality in the state of Texas

    Science.gov (United States)

    Hutchison, Keith D.

    The Center for Space Research (CSR), in conjunction with the Monitoring Operations Division (MOD) of the Texas Commission on Environmental Quality (TCEQ), is evaluating the use of remotely sensed satellite data to assist in monitoring and predicting air quality in Texas. The challenges of meeting air quality standards established by the US Environmental Protection Agency (US EPA) are impacted by the transport of pollution into Texas that originates from outside our borders and are cumulative with those generated by local sources. In an attempt to quantify the concentrations of all pollution sources, MOD has installed ground-based monitoring stations in rural regions along the Texas geographic boundaries including the Gulf coast, as well as urban regions that are the predominant sources of domestic pollution. However, analysis of time-lapse GOES satellite imagery at MOD, clearly demonstrates the shortcomings of using only ground-based observations for monitoring air quality across Texas. These shortcomings include the vastness of State borders, that can only be monitored with a large number of ground-based sensors, and gradients in pollution concentration that depend upon the location of the point source, the meteorology governing its transport to Texas, and its diffusion across the region. With the launch of NASA's MODerate resolution Imaging Spectroradiometer (MODIS), the transport of aerosol-borne pollutants can now be monitored over land and ocean surfaces. Thus, CSR and MOD personnel have applied MODIS data to several classes of pollution that routinely impact Texas air quality. Results demonstrate MODIS data and products can detect and track the migration of pollutants. This paper presents one case study in which continental haze from the northeast moved into the region and subsequently required health advisories to be issued for 150 counties in Texas. It is concluded that MODIS provides the basis for developing advanced data products that will, when used in

  14. Characterization of a New Continuous Air Monitoring System For the University of Massachusetts Lowell Research Reactor

    Science.gov (United States)

    Alqahtani, Mohammad Saad

    A continuous air monitor (CAM) is a critical piece of equipment to support radiation safety in nuclear facilities where the generation of airborne radioactivity is a possibility for either normal operations or accident scenarios. The University of Massachusetts Lowell Research Reactor is planning to install a new CAM system manufactured by Canberra Industries for monitoring airborne radioactive particulates. In this study, the new CAM was evaluated to determine 1) baseline response, 2) response to high exposure rates, 3) appropriate background compensation, 4) detection limits, and 5) alarm settings. The results of this study will help to properly integrate the new CAM into the reactor radiation monitoring system.

  15. A low-cost sensing system for cooperative air quality monitoring in urban areas.

    Science.gov (United States)

    Brienza, Simone; Galli, Andrea; Anastasi, Giuseppe; Bruschi, Paolo

    2015-05-26

    Air quality in urban areas is a very important topic as it closely affects the health of citizens. Recent studies highlight that the exposure to polluted air can increase the incidence of diseases and deteriorate the quality of life. Hence, it is necessary to develop tools for real-time air quality monitoring, so as to allow appropriate and timely decisions. In this paper, we present uSense, a low-cost cooperative monitoring tool that allows knowing, in real-time, the concentrations of polluting gases in various areas of the city. Specifically, users monitor the areas of their interest by deploying low-cost and low-power sensor nodes. In addition, they can share the collected data following a social networking approach. uSense has been tested through an in-field experimentation performed in different areas of a city. The obtained results are in line with those provided by the local environmental control authority and show that uSense can be profitably used for air quality monitoring.

  16. A Low-Cost Sensing System for Cooperative Air Quality Monitoring in Urban Areas

    Directory of Open Access Journals (Sweden)

    Simone Brienza

    2015-05-01

    Full Text Available Air quality in urban areas is a very important topic as it closely affects the health of citizens. Recent studies highlight that the exposure to polluted air can increase the incidence of diseases and deteriorate the quality of life. Hence, it is necessary to develop tools for real-time air quality monitoring, so as to allow appropriate and timely decisions. In this paper, we present uSense, a low-cost cooperative monitoring tool that allows knowing, in real-time, the concentrations of polluting gases in various areas of the city. Specifically, users monitor the areas of their interest by deploying low-cost and low-power sensor nodes. In addition, they can share the collected data following a social networking approach. uSense has been tested through an in-field experimentation performed in different areas of a city. The obtained results are in line with those provided by the local environmental control authority and show that uSense can be profitably used for air quality monitoring.

  17. Episodic Impacts from California Wildfires Identified in Las Vegas Near-Road Air Quality Monitoring

    Science.gov (United States)

    Air pollutant concentrations near major highways are usually attributed to a combination of nearby traffic emissions and regional background, and generally presumed to be additive in nature. During a recent year-long near-road monitoring study conducted in Las Vegas, NV, a substa...

  18. Monitoring and assessment of regional air quality in China using space observations (Marco Polo)

    NARCIS (Netherlands)

    Ronald, A. van der; Timmermans, R.; Bai, J.; Zhang, Q.; Wal, L. van der

    2013-01-01

    In this paper we will present the FP7-project 'MarcoPolo'. The main objective of MarcoPolo is to improve air quality monitoring, modelling and forecasting over China using satellite data. During the project a new emission inventory will be constructed by combining Chinese and European expertise. It

  19. Towards development of a deposition monitoring network for air pollution of Europe

    NARCIS (Netherlands)

    Erisman JW; Mennen MG; Fowler D; Flechard CR; Spindler G; Gruner A; Duyzer JH; Ruigrok W; Wyers GP; LLO; TNO; ECN; ITE (Engeland); IFT (Duitsland)

    1996-01-01

    In 1993 werd vanuit het LIFE project van de Europese Commissie DG XI het project 'Towards the development of a deposition monitoring network for air pollution of Europe' gefinancierd. Het doel van dit project was het ontwikkelen en implementeren van een depositiemonitoring-methode voor

  20. U.S. EPA's National Dioxin Air Monitoring Network: Analytical Issues

    Science.gov (United States)

    The U.S. EPA has established a National Dioxin Air Monitoring Network (NDAMN) to determine the temporal and geographical variability of atmospheric chlorinated dibenzo-p-dioxins (CDDs), furans (CDFs), and coplanar polychlorinated biphenyls (PCBs) at rural and non-impacted locatio...

  1. Monitoring and assessment of regional air quality in China using space observations (Marco Polo)

    NARCIS (Netherlands)

    Ronald, A. van der; Timmermans, R.; Bai, J.; Zhang, Q.; Wal, L. van der

    2013-01-01

    In this paper we will present the FP7-project 'MarcoPolo'. The main objective of MarcoPolo is to improve air quality monitoring, modelling and forecasting over China using satellite data. During the project a new emission inventory will be constructed by combining Chinese and European expertise. It

  2. 75 FR 51039 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-08-18

    ...: Designation of Two New Equivalent Methods AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of two new equivalent methods for monitoring ambient air quality. SUMMARY: Notice is hereby given that the Environmental Protection Agency (EPA) has designated, in accordance with 40 CFR Part 53, two...

  3. A monitoring device for pressurised-air-driven diaphragm-based artificial heart assist devices

    NARCIS (Netherlands)

    Hoeben, F.P.; Mul, de F.F.M.; Stokkink, H.S.D.; Koelink, M.H.; Greve, J.

    1992-01-01

    A non-invasive device has been developed to monitor the diaphragm position and the blood flow in artificial heart assist devices equipped with a pressurised-air-driven diaphragm. Light scattering from the diaphragm is used as a mechanism for measuring. Information about the position of several point

  4. 76 FR 62402 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2011-10-07

    ... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods; Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the..., Research Triangle Park, North Carolina 27711. Designation of this new equivalent method is intended...

  5. A Citizen Science and Government Collaboration: Developing Tools to Facilitate Community Air Monitoring

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) is actively involved in supporting citizen science projects and providing communities with information and assistance for conducting their own air pollution monitoring. As part of a Regional Applied Research Effort (RARE) project, EP...

  6. Concentrations of persistent organic pollutants in ambient air in Durban, South Africa

    CSIR Research Space (South Africa)

    Batterman, S

    2007-01-01

    Full Text Available This paper reports on an extensive ambient air quality monitoring program in Durban (eThekwini Municipality), South Africa, on Africa’s southeast coast. Following a multi stakeholder process coordinated by the Municipality Metropolitan Health...

  7. Air quality management in the WHO European Region--results of a quality assurance and control programme on air quality monitoring (1994-2004).

    Science.gov (United States)

    Mücke, Hans-Guido

    2008-07-01

    Since the last decade the WHO Collaborating Centre for Air Quality Management and Air Pollution Control, Berlin, Germany, operates a quality assurance and control (QA/QC) programme on air quality monitoring in the WHO European Region. As main activity Intercomparison workshops have been established for air monitoring network laboratories on a regular basis to harmonise air quality measurements, analysis and calibration techniques. 36 air hygiene laboratories of public health and environmental institutions of 24 countries participated in twelve Intercomparisons between 1994 and 2004. The majority was carried out for NO, NO(2), SO(2) and O(3). The results were predominantly satisfactory for automatic methods. The results of manual methods were mainly in a good, and for several concentration levels partly very good accordance with the data obtained by the monitors.

  8. A method for targeting air samplers for facility monitoring in an urban environment

    Science.gov (United States)

    Bieringer, Paul E.; Longmore, Scott; Bieberbach, George; Rodriguez, Luna M.; Copeland, Jeff; Hannan, John

    2013-12-01

    There are a variety of applications that require the use of comprehensive specification of the weather conditions combined with an analysis that uses detailed modeling and simulation. The combination of these two elements can make it difficult to achieve the desired level of fidelity in a logistically feasible way. An example of this type of application is the deployment of surface-based sensors/samplers, which is a common practice for emission, and air quality monitoring purposes where the proper selection of sites for the measurement equipment is critical to an accurate characterization of the emissions. This is particularly true in urban environments where the limited availability of suitable sites and the non-intuitive dispersion patterns associated with the wind flow around the buildings and through the urban canyons make site selection difficult. This article demonstrates an improved methodology for optimally locating for air quality monitoring equipment within this complex and challenging environment. The methodology involves a) the utilization of a longer climatological record of meteorological observations or gridded reanalysis products to better represent the full range of representative meteorological conditions; b) reduction of the full climatological record into a subset of characteristic meteorological patterns and associated frequencies of occurrence, utilizing a multi-dimensional feature extraction and classification technique known as a Self Organizing Map (SOM); c) downscaling and diagnosis of the urban area building-aware wind flow fields for each characteristic meteorological pattern; d) atmospheric transport and dispersion (AT&D) simulations for each downscaled meteorological pattern, utilizing a building aware Lagrangian particle dispersion model; and finally e) the combination of predicted downwind concentrations/dosages for each meteorological pattern with their associated frequency of occurrence are used to generate Probability of Detection

  9. Quantification Method for Electrolytic Sensors in Long-Term Monitoring of Ambient Air Quality.

    Science.gov (United States)

    Masson, Nicholas; Piedrahita, Ricardo; Hannigan, Michael

    2015-10-27

    Traditional air quality monitoring relies on point measurements from a small number of high-end devices. The recent growth in low-cost air sensing technology stands to revolutionize the way in which air quality data are collected and utilized. While several technologies have emerged in the field of low-cost monitoring, all suffer from similar challenges in data quality. One technology that shows particular promise is that of electrolytic (also known as amperometric) sensors. These sensors produce an electric current in response to target pollutants. This work addresses the development of practical models for understanding and quantifying the signal response of electrolytic sensors. Such models compensate for confounding effects on the sensor response, such as ambient temperature and humidity, and address other issues that affect the usability of low-cost sensors, such as sensor drift and inter-sensor variability.

  10. Environmental continuous air monitor inlet with combined preseparator and virtual impactor

    Science.gov (United States)

    Rodgers, John C.

    2007-06-19

    An inlet for an environmental air monitor is described wherein a pre-separator interfaces with ambient environment air and removes debris and insects commonly associated with high wind outdoors and a deflector plate in communication with incoming air from the pre-separator stage, that directs the air radially and downward uniformly into a plurality of accelerator jets located in a manifold of a virtual impactor, the manifold being cylindrical and having a top, a base, and a wall, with the plurality of accelerator jets being located in the top of the manifold and receiving the directed air and accelerating directed air, thereby creating jets of air penetrating into the manifold, where a major flow is deflected to the walls of the manifold and extracted through ports in the walls. A plurality of receiver nozzles are located in the base of the manifold coaxial with the accelerator jets, and a plurality of matching flow restrictor elements are located in the plurality of receiver nozzles for balancing and equalizing the total minor flow among all the plurality of receiver nozzles, through which a lower, fractional flow extracts large particle constituents of the air for collection on a sample filter after passing through the plurality of receiver nozzles and the plurality of matching flow restrictor elements.

  11. Design of a small personal air monitor and its application in aircraft.

    Science.gov (United States)

    van Netten, Chris

    2009-01-15

    A small air sampling system using standard air filter sampling technology has been used to monitor the air in aircraft. The device is a small ABS constructed cylinder 5 cm in diameter and 9 cm tall and can be operated by non technical individuals at an instant notice. It is completely self contained with a 4 AAA cell power supply, DC motor, a centrifugal fan, and accommodates standard 37 mm filters and backup pads. The monitor is totally enclosed and pre assembled in the laboratory. A 45 degrees twist of the cap switches on the motor and simultaneously opens up the intake ports and exhaust ports allowing air to pass through the filter. A reverse 45 degrees twist of the cap switches off the motor and closes all intake and exhaust ports, completely enclosing the filter. The whole monitor is returned to the laboratory by standard mail for analysis and reassembly for future use. The sampler has been tested for electromagnetic interference and has been approved for use in aircraft during all phases of flight. A set of samples taken by a BAe-146-300 crew member during two flights in the same aircraft and analyzed by GC-MS, indicated exposure to tricresyl phosphate (TCP) levels ranging from 31 to 83 nanograms/m(3) (detection limit <4.5 nanograms/m(3)). The latter elevated level was associated with the use of the auxiliary power unit (APU) in the aircraft. It was concluded that the air sampler was capable of monitoring air concentrations of TCP isomers in aircraft above 4.5 nanogram/m(3).

  12. The meteorological monitoring system for the Kennedy Space Center/Cape Canaveral Air Station

    Science.gov (United States)

    Dianic, Allan V.

    1994-01-01

    The Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS) are involved in many weather-sensitive operations. Manned and unmanned vehicle launches, which occur several times each year, are obvious example of operations whose success and safety are dependent upon favorable meteorological conditions. Other operations involving NASA, Air Force, and contractor personnel, including daily operations to maintain facilities, refurbish launch structures, prepare vehicles for launch, and handle hazardous materials, are less publicized but are no less weather-sensitive. The Meteorological Monitoring System (MMS) is a computer network which acquires, processes, disseminates, and monitors near real-time and forecast meteorological information to assist operational personnel and weather forecasters with the task of minimizing the risk to personnel, materials, and the surrounding population. CLIPS has been integrated into the MMS to provide quality control analysis and data monitoring. This paper describes aspects of the MMS relevant to CLIPS including requirements, actual implementation details, and results of performance testing.

  13. Air Pollution and Preterm Birth in the U.S. State of Georgia (2002–2006): Associations with Concentrations of 11 Ambient Air Pollutants Estimated by Combining Community Multiscale Air Quality Model (CMAQ) Simulations with Stationary Monitor Measurements

    Science.gov (United States)

    Hao, Hua; Chang, Howard H.; Holmes, Heather A.; Mulholland, James A.; Klein, Mitch; Darrow, Lyndsey A.; Strickland, Matthew J.

    2015-01-01

    Background: Previous epidemiologic studies suggest associations between preterm birth and ambient air pollution. Objective: We investigated associations between 11 ambient air pollutants, estimated by combining Community Multiscale Air Quality model (CMAQ) simulations with measurements from stationary monitors, and risk of preterm birth (Darrow LA, Strickland MJ. 2016. Air pollution and preterm birth in the U.S. state of Georgia (2002–2006): associations with concentrations of 11 ambient air pollutants estimated by combining Community Multiscale Air Quality Model (CMAQ) simulations with stationary monitor measurements. Environ Health Perspect 124:875–880; http://dx.doi.org/10.1289/ehp.1409651 PMID:26485731

  14. High-Density, High-Resolution, Low-Cost Air Quality Sensor Networks for Urban Air Monitoring

    Science.gov (United States)

    Mead, M. I.; Popoola, O. A.; Stewart, G.; Bright, V.; Kaye, P.; Saffell, J.

    2012-12-01

    Monitoring air quality in highly granular environments such as urban areas which are spatially heterogeneous with variable emission sources, measurements need to be made at appropriate spatial and temporal scales. Current routine air quality monitoring networks generally are either composed of sparse expensive installations (incorporating e.g. chemiluminescence instruments) or higher density low time resolution systems (e.g. NO2 diffusion tubes). Either approach may not accurately capture important effects such as pollutant "hot spots" or adequately capture spatial (or temporal) variability. As a result, analysis based on data from traditional low spatial resolution networks, such as personal exposure, may be inaccurate. In this paper we present details of a sophisticated, low-cost, multi species (gas phase, speciated PM, meteorology) air quality measurement network methodology incorporating GPS and GPRS which has been developed for high resolution air quality measurements in urban areas. Sensor networks developed in the Centre for Atmospheric Science (University of Cambridge) incorporated electrochemical gas sensors configured for use in urban air quality studies operating at parts-per-billion (ppb) levels. It has been demonstrated that these sensors can be used to measure key air quality gases such as CO, NO and NO2 at the low ppb mixing ratios present in the urban environment (estimated detection limits work, a state of the art multi species instrument package for deployment in scalable sensor networks has been developed which has general applicability. This is currently being employed as part of a major 3 year UK program at London Heathrow airport (the Sensor Networks for Air Quality (SNAQ) Heathrow project). The main project outcome is the creation of a calibrated, high spatial and temporal resolution data set for O3, NO, NO2, SO2, CO, CO2, VOCstotal, size-speciated PM, temperature, relative humidity, wind speed and direction. The network incorporates existing

  15. Data Report for Monitoring at Six West Virginia Marcellus Shale Development Sites using NETL’s Mobile Air Monitoring Laboratory (July–November 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Pekney, Natalie J. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Reeder, Matthew [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Indiana Univ., Bloomington, IN (United Stat; Veloski, Garret A. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Diehl, J. Rodney [Indiana Univ., Bloomington, IN (United States)

    2016-06-16

    The West Virginia Department of Environmental Protection’s Office of Oil and Gas was directed according to the Natural Gas Horizontal Well Control Act of December 14, 2011 (West Virginia Code §22-6A) to conduct studies of horizontal well drilling activities related to air quality. The planned study, “Noise, Light, Dust, Volatile Organic Compounds Related to Well Location Restrictions,” required determination of the effectiveness of a 625 ft minimum set-back from the center of the pad of a horizontal well drilling site to the nearest occupied dwelling. An investigation was conducted at seven drilling sites by West Virginia University (WVU) and the National Energy Technology Laboratory (NETL) to collect data on dust, hydrocarbon compounds and on noise, radiation, and light levels. NETL’s role in this study was to collect measurements of ambient pollutant concentrations at six of the seven selected sites using NETL’s Mobile Air Monitoring Laboratory. The trailer-based laboratory was situated a distance of 492–1,312 ft from each well pad, on which activities included well pad construction, vertical drilling, horizontal drilling, hydraulic fracturing, and flaring, with the objective of evaluating the air quality impact of each activity for 1–4 weeks per site. Measured pollutants included volatile organic compounds (VOCs), coarse and fine particulate matter (PM10 and PM2.5, respectively), ozone, methane (CH4), carbon dioxide (CO2), carbon isotopes of CH4 and CO2, organic carbon (OC), elemental carbon (EC), oxides of nitrogen (NOx), and sulfur dioxide (SO2).

  16. Monitoring of air pollution; Surveillance de la pollution de l'air

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-12-01

    In the Paris area, the annual average contents continue to decrease for the sulfur dioxide, the particulates, the carbon monoxide and the lead that respect the national and european air quality criteria. The annual average in benzene continues to decrease but the quality objective is always exceeded for five years. No particular trend appears for the nitrogen dioxide, even if 1998 was less polluted than the previous years. The quality objectives are always exceeded for this pollutant on every traffic stations and on 40% of urban stations. A light trend to decrease for nitrogen oxides and a trend to increase for ozone in the city of Paris. (N.C.)

  17. REAL-TIME EMISSION CHARACTERIZATION OF ORGANIC AIR TOXIC POLLUTANTS DURING STEADY STATE AND TRANSIENT OPERATION OF A MEDIUM DUTY DIESEL ENGINE

    Science.gov (United States)

    An on-line monitoring method, jet resonance-enhanced multi-photon ionization (REMPI) with time-of-flight mass spectrometry (TOFMS) was used to measure emissions of organic air toxics from a medium-duty (60 kW)diesel generator during transient and steady state operations. Emission...

  18. Ambient air quality monitoring during the H1N1 influence period in Pune (India).

    Science.gov (United States)

    Pathak, M; Deshpande, A; Mirashe, P K; Sorte, R B; Ojha, A

    2010-10-01

    Ambient air quality in an urban area is directly linked with activity level in the city including transport, business and industrial activities. Maharashtra Pollution Control Board (MPCB) has established an ambient air quality network in the city including state-of-the-art continuous air quality monitoring stations which indicate short duration air quality variations for criteria and non-criteria pollutants. The influence of H1N1 outbreak in Pune hitting its worst pandemic condition, led the civic authorities to implement stringent isolation measures including closure of schools, colleges, business malls, cinema halls, etc. Additionally, the fear of such a pandemic brought the city to a stand still. It was therefore necessary to assess the impacts of such activity level on ambient air quality in the city. It has been observed that such events have positive impacts on air quality of the city. There was a decrease in PM concentration almost to the tune of 30 to 40% if the impacts of precipitation, i.e. seasonal variations, are taken into account. Similarly, the non criteria pollutants too showed a marked but unusual decrease in their concentrations in this ever growing city. The influence of these in turn led to lowered concentrations of secondary pollutants, i.e. O3. Overall, the ambient air quality of Pune was found to be improved during the study period.

  19. Personal Air Pollution Exposure Monitoring using Low Cost Sensors in Chennai City

    Science.gov (United States)

    Reddy Yasa, Pavan; Shiva, Nagendra S. N.

    2016-04-01

    Air quality in many cities is deteriorating due to rapid urbanization and motorization. In the past, most of the health impacts studies in the urban areas have considered stationary air quality monitoring station data for health impact assessment. Since, there exist a spatial and temporal variation of air quality because of rapid change in land use pattern and complex interaction between emission sources and meteorological conditions, the human exposure assessment using stationary data may not provide realistic information. In such cases low cost sensors monitoring is viable in providing both spatial and temporal variations of air pollutant concentrations. In the present study an attempt has been made to use low cost sensor for monitoring the personal exposure to the two criteria pollutants CO and PM2.5 at 3 different locations of Chennai city. Maximum and minimum concentrations of CO and PM2.5 were found to be 5.4ppm, 0.8ppm and 534.8μg/m3, 1.9μg/m3 respectively. Results showed high concentrations near the intersection and low concentrations in the straight road.

  20. Chemiresistor microsensors for in-situ monitoring of volatile organic compounds : final LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Michael Loren; Hughes, Robert Clark; Kooser, Ara S.; McGrath, Lucas K.; Ho, Clifford Kuofei; Wright, Jerome L.; Davis, Chad Edward

    2003-09-01

    This report provides a summary of the three-year LDRD (Laboratory Directed Research and Development) project aimed at developing microchemical sensors for continuous, in-situ monitoring of volatile organic compounds. A chemiresistor sensor array was integrated with a unique, waterproof housing that allows the sensors to be operated in a variety of media including air, soil, and water. Numerous tests were performed to evaluate and improve the sensitivity, stability, and discriminatory capabilities of the chemiresistors. Field tests were conducted in California, Nevada, and New Mexico to further test and develop the sensors in actual environments within integrated monitoring systems. The field tests addressed issues regarding data acquisition, telemetry, power requirements, data processing, and other engineering requirements. Significant advances were made in the areas of polymer optimization, packaging, data analysis, discrimination, design, and information dissemination (e.g., real-time web posting of data; see www.sandia.gov/sensor). This project has stimulated significant interest among commercial and academic institutions. A CRADA (Cooperative Research and Development Agreement) was initiated in FY03 to investigate manufacturing methods, and a Work for Others contract was established between Sandia and Edwards Air Force Base for FY02-FY04. Funding was also obtained from DOE as part of their Advanced Monitoring Systems Initiative program from FY01 to FY03, and a DOE EMSP contract was awarded jointly to Sandia and INEEL for FY04-FY06. Contracts were also established for collaborative research with Brigham Young University to further evaluate, understand, and improve the performance of the chemiresistor sensors.

  1. End-user perspective of low-cost sensors for outdoor air pollution monitoring.

    Science.gov (United States)

    Rai, Aakash C; Kumar, Prashant; Pilla, Francesco; Skouloudis, Andreas N; Di Sabatino, Silvana; Ratti, Carlo; Yasar, Ansar; Rickerby, David

    2017-12-31

    Low-cost sensor technology can potentially revolutionise the area of air pollution monitoring by providing high-density spatiotemporal pollution data. Such data can be utilised for supplementing traditional pollution monitoring, improving exposure estimates, and raising community awareness about air pollution. However, data quality remains a major concern that hinders the widespread adoption of low-cost sensor technology. Unreliable data may mislead unsuspecting users and potentially lead to alarming consequences such as reporting acceptable air pollutant levels when they are above the limits deemed safe for human health. This article provides scientific guidance to the end-users for effectively deploying low-cost sensors for monitoring air pollution and people's exposure, while ensuring reasonable data quality. We review the performance characteristics of several low-cost particle and gas monitoring sensors and provide recommendations to end-users for making proper sensor selection by summarizing the capabilities and limitations of such sensors. The challenges, best practices, and future outlook for effectively deploying low-cost sensors, and maintaining data quality are also discussed. For data quality assurance, a two-stage sensor calibration process is recommended, which includes laboratory calibration under controlled conditions by the manufacturer supplemented with routine calibration checks performed by the end-user under final deployment conditions. For large sensor networks where routine calibration checks are impractical, statistical techniques for data quality assurance should be utilised. Further advancements and adoption of sophisticated mathematical and statistical techniques for sensor calibration, fault detection, and data quality assurance can indeed help to realise the promised benefits of a low-cost air pollution sensor network. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    Science.gov (United States)

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  3. Developing a feeling for error: Practices of monitoring and modelling air pollution data

    Directory of Open Access Journals (Sweden)

    Emma Garnett

    2016-08-01

    Full Text Available This paper is based on ethnographic research of data practices in a public health project called Weather Health and Air Pollution. (All names are pseudonyms. I examine two different kinds of practices that make air pollution data, focusing on how they relate to particular modes of sensing and articulating air pollution. I begin by describing the interstitial spaces involved in making measurements of air pollution at monitoring sites and in the running of a computer simulation. Specifically, I attend to a shared dimension of these practices, the checking of a numerical reading for error. Checking a measurement for error is routine practice and a fundamental component of making data, yet these are also moments of interpretation, where the form and meaning of numbers are ambiguous. Through two case studies of modelling and monitoring data practices, I show that making a ‘good’ (error free measurement requires developing a feeling for the instrument–air pollution interaction in terms of the intended functionality of the measurements made. These affective dimensions of practice are useful analytically, making explicit the interaction of standardised ways of knowing and embodied skill in stabilising data. I suggest that environmental data practices can be studied through researchers’ materialisation of error, which complicate normative accounts of Big Data and highlight the non-linear and entangled relations that are at work in the making of stable, accurate data.

  4. Determination of Radon concentration in air using scinti-cell radon monitor

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Taeko [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst; Morishima, Hiroshige; Arai, Naoki; Shiraishi, Masatoshi; Shigehara, Makiko [Dept. of Nuclear Engineering, School of Science and Technology, Kinki Univ., Higashi-Osaka, Osaka(Japan); Mifune, Masaaki

    2000-01-01

    This study is carried out the methodology characteristics of {sup 222}Rn (Radon) concentration in air using the scinti-cell radon monitor (Trace environmental level detector (PMT-TEL) and Lucas cell (300 A), Pylon Co. and the determination of Radon concentrations in air on Misasa spa area in Tottori pref. and Ikeda spa in Shimane pref. on November 1995 and 1996. We have reached to the following results; (1) Minimum detectable Radon concentrations in air using the scinti-cell monitor are 7.6 Bq/m{sup 3} with 23% of accuracy (relative standard deviation) on the grab sampling of Lucas cell and 0.58 Bq/m{sup 3} with that of 17% on the continuous measuring of PMT-TEL, when it measured after 3.5 hours on the air sampling to determine the mean radon concentrations. The radon concentrations by the PMT-TEL method is about ten times more detectable than those by Lucas cell, that the former is the most sensitive among the detectors used on this research and is able to detect low level environmental concentrations, particularly outdoor and the later is valuable to use conveniently and portably on grab spot sampling of high level radon concentrations indoor air. (2) On the comparison of characteristics on spot monitoring of radon in air, a pico-rad method is suitable for the determination of the mean concentration for continuous sampling period by PMT-TEL and Lucas cell 300 A, and the variation of radon concentration can be observed on elapse of time course. (author)

  5. A critical review of reported air concentrations of organic compounds in aircraft cabins.

    Science.gov (United States)

    Nagda, N L; Rector, H E

    2003-09-01

    This paper presents a review and assessment of aircraft cabin air quality studies with measured levels of volatile and semivolatile organic compounds (VOCs and SVOCs). VOC and SVOC concentrations reported for aircraft cabins are compared with those reported for residential and office buildings and for passenger compartments of other types of transportation. An assessment of measurement technologies and quality assurance procedures is included. The six studies reviewed in the paper range in coverage from two to about 30 flights per study. None of the monitored flights included any unusual or episodic events that could affect cabin air quality. Most studies have used scientifically sound methods for measurements. Study results indicate that under routine aircraft operations, contaminant levels in aircraft cabins are similar to those in residential and office buildings, with two exceptions: (1). levels of ethanol and acetone, indicators of bioeffluents and chemicals from consumer products are higher in aircraft than in home or office environments, and (2). levels of certain chlorinated hydrocarbons and fuel-related contaminants are higher in residential/office buildings than in aircraft. Similarly, ethanol and acetone levels are higher in aircraft than in other transportation modes but the levels of some pollutants, such as m-/p-xylenes, tend to be lower in aircraft.

  6. Assessing seasonal and spatial trends of persistent organic pollutants (POPs) in Indian agricultural regions using PUF disk passive air samplers

    Energy Technology Data Exchange (ETDEWEB)

    Pozo, Karla [Atmospheric Science and Technology Directorate, Environment Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4 (Canada); Environmental Science Department, University of Siena, Via Mattioli 4, 53100 Siena (Italy); Harner, Tom, E-mail: tom.harner@ec.gc.c [Atmospheric Science and Technology Directorate, Environment Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4 (Canada); Lee, Sum Chi [Atmospheric Science and Technology Directorate, Environment Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4 (Canada); Sinha, Ravindra K. [Centre for Environmental Science, School of Earth Biological and Environmental Sciences, Central University of Bihar, Patna (India); Sengupta, B. [Central Pollution Control Board, Parivesh Bhavan, East Arjun Nagar, Delhi (India); Loewen, Mark [Freshwater Institute, Department of Fisheries and Oceans, Winnipeg, Manitoba (Canada); Geethalakshmi, V. [Department of Agricultural Meteorology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu (India); Kannan, Kurunthachalam [Wadsworth Center, New York State Department of Health and Department of Environmental Health Sciences, State University of New York at Albany, New York (United States); Volpi, Valerio [Environmental Science Department, University of Siena, Via Mattioli 4, 53100 Siena (Italy)

    2011-02-15

    The first survey of persistent organic pollutant (POP) concentrations in air across several Indian agricultural regions was conducted in 2006-2007. Passive samplers comprising polyurethane foam (PUF) disks were deployed on a quarterly basis at seven stations in agricultural regions, one urban site and one background site. The project was conducted as a sub-project of the Global Atmospheric Passive Sampling (GAPS) Network. In addition to revealing new information on air concentrations of several organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), the study has demonstrated the feasibility of conducting regional-scale monitoring for POPs in India using PUF disk samplers. The following analytes were detected with relatively high concentrations in air (mean for 2006 and 2007, pg/m{sup 3}): {alpha}- and {gamma}-hexachlorocyclohexane (HCH) (292 and 812, respectively); endosulfan I and II (2770 and 902, respectively); p,p'-DDE and p,p'-DDT (247 and 931, respectively); and for the sum of 48 PCBs, 12,100 (including a site with extremely high air concentrations in 2007) and 972 (when excluding data for this site). - New data on air concentrations of POPs across Indian agricultural regions is generated using cost-effective passive air samplers.

  7. Monitoring of Microscopic Filamentous Fungi in Indoor Air of Transplant Unit.

    Science.gov (United States)

    Holý, Ondřej; Matoušková, Ivanka; Kubátová, Alena; Hamal, Petr; Svobodová, Lucie; Jurásková, Eva; Raida, Luděk

    2015-12-01

    The aim of the study was to control the microbial contamination of indoor air monitored monthly at the Transplant Unit of the University Hospital Olomouc from August 2010 to July 2011. The unit is equipped with a three-stage air filtration system with HEPA filters. The MAS-100 air sampler (Merck, GER) was used. Twenty locations were singled out for the purposes of collecting a total of 720 samplings of the indoor air. Swabs of the HVAC diffusers at the sampling locations were always carried out after the sampling of the indoor air. In total, 480 samples of the indoor air were taken for Sabouraud chloramphenicol agar. In 11 cases (2.29%) the cultivation verified the presence of microscopic filamentous fungi. Only two cases involved the sanitary facilities of a patient isolation box; the other positive findings were from the facilities. The most frequent established genus was Aspergillus spp. (4x), followed by Trichoderma spp. (2x) and Penicillium spp. (2x), Paecilomyces spp., Eurotium spp., and Chrysonilia spp. (1x each). In 2 cases the cultivation established sterile aerial mycelium, unfortunately no further identification was possible. A total of 726 swabs of HVAC diffusers were collected (2 positive-0.28%). The study results demonstrated the efficacy of the HVAC equipment. With the continuing increase in the number of severely immunocompromised patients, hospitals are faced with the growing problem of invasive aspergillosis and other opportunistic infections. Preventive monitoring of microbial air contaminants is of major importance for the control of invasive aspergillosis. Copyright© by the National Institute of Public Health, Prague 2015.

  8. GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data

    Science.gov (United States)

    Righini, G.; Cappelletti, A.; Ciucci, A.; Cremona, G.; Piersanti, A.; Vitali, L.; Ciancarella, L.

    2014-11-01

    Spatial representativeness of air quality monitoring stations is a critical parameter when choosing location of sites and assessing effects on population to long term exposure to air pollution. According to literature, the spatial representativeness of a monitoring site is related to the variability of pollutants concentrations around the site. As the spatial distribution of primary pollutants concentration is strongly correlated to the allocation of corresponding emissions, in this work a methodology is presented to preliminarily assess spatial representativeness of a monitoring site by analysing the spatial variation of emissions around it. An analysis of horizontal variability of several pollutants emissions was carried out by means of Geographic Information System using a neighbourhood statistic function; the rationale is that if the variability of emissions around a site is low, the spatial representativeness of this site is high consequently. The methodology was applied to detect spatial representativeness of selected Italian monitoring stations, located in Northern and Central Italy and classified as urban background or rural background. Spatialized emission data produced by the national air quality model MINNI, covering entire Italian territory at spatial resolution of 4 × 4 km2, were processed and analysed. The methodology has shown significant capability for quick detection of areas with highest emission variability. This approach could be useful to plan new monitoring networks and to approximately estimate horizontal spatial representativeness of existing monitoring sites. Major constraints arise from the limited spatial resolution of the analysis, controlled by the resolution of the emission input data, cell size of 4 × 4 km2, and from the applicability to primary pollutants only.

  9. Beam-loss monitoring system with free-air ionization chambers

    Science.gov (United States)

    Nakagawa, H.; Shibata, S.; Hiramatsu, S.; Uchino, K.; Takashima, T.

    1980-08-01

    A monitoring system for proton beam losses was installed in the proton synchrotron at the National Laboratory for High Energy Physics in Japan (KEK). The system consists of 56 air ionization chambers (AIC) for radiation detectors, 56 integrators, 56 variable gain amplifiers, two multiplexers, a computer interface circuit, a manual controller and a high tension power supply. The characteristics of the AIC, time resolution, radiation measurement upper limit saturation, kinetic energy dependence of the sensitivity, chamber activation effect, the beam loss detection system and the results of observations with the monitoring system are described.

  10. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    Science.gov (United States)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Minton, John M.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    Real-time environmental monitoring on ISS is necessary to provide data in a timely fashion and to help ensure astronaut health. Current real-time water TOC monitoring provides high-quality trending information, but compound-specific data is needed. The combination of ETV with the AQM showed that compounds of interest could be liberated from water and analyzed in the same manner as air sampling. Calibration of the AQM using water samples allowed for the quantitative analysis of ISS archival samples. Some calibration issues remain, but the excellent accuracy of DMSD indicates that ETV holds promise for as a sample introduction method for water analysis in spaceflight.

  11. Improving Air Force Command and Control Through Enhanced Agile Combat Support Planning, Execution, Monitoring, and Control Processes

    Science.gov (United States)

    2012-01-01

    assess, plan, execute [ MAPE ] model) are an integral part of Air Force enterprise and joint command and control capability. In the revised copy of Air...operations. 2 Similar in construct, the Air Force uses the MAPE model when discussing ACS processes. 3 In the revised copy of AFDD 1, dated November 12, 2010...MAJCOM major command xliv Improving Air Force C2 Through Enhanced Agile Combat Support Processes MAJCOM/CC commander, major command MAPE monitor, assess

  12. Air Pollution Monitoring and Mining Based on Sensor Grid in London

    Directory of Open Access Journals (Sweden)

    John Hassard

    2008-06-01

    Full Text Available In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a twolayer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.

  13. 78 FR 11119 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of trans

    Science.gov (United States)

    2013-02-15

    ... AGENCY 40 CFR Part 51 RIN 2060-AQ38 Air Quality: Revision to Definition of Volatile Organic Compounds...: Proposed rule. SUMMARY: The EPA is proposing to revise the definition of volatile organic compounds (VOCs..., Reporting and recordkeeping requirements, Volatile organic compounds. Dated: February 4, 2013. Lisa...

  14. Temperature Difference Between the Air and Organs of Rice Plant and Its Relation to Spikelet Fertility

    Institute of Scientific and Technical Information of China (English)

    YAN Chuan; DING Yan-feng; LIU Zheng-hui; WANG Qiang-sheng; LI Gang-hua; HE Ying; WANG Shao-hua

    2008-01-01

    Based on the experiment of measuring panicles and leaves, air temperature, and humidity above the canopy of rice cultivars after heading in 2005 and 2006, we investigated the temperature difference (TD) between the air and organs of rice plant and its relationship with spikelet fertility. The results showed that TDs between the air and organs of rice varied with air temperature, air humidity, and plant type. For similar air humidity, TDs were lower at the air temperature of 28.5℃ than at higher temperature of 35.5℃, whereas for the same air temperature, the TDs decreased as the air humidity increased. TDs were also affected by plant type of the cultivars. Erect panicle cultivars showed higher TDs than those with droopy panicles under similar climatic conditions, and cultivars with panicles above flag leaf (PAFL) had higher TDs than those with panicles below the flag leaf (PBFL). Cultivars grown in a location with lower air humidity and higher temperature, such as Taoyuan, China, had higher spikelet fertility than those in higher humidity under the similar air temperature during the grain filling stage. This is partially attributed to the larger TDs under the lower humidity. Row-spacing and the ratio of basal-tillering to panicle-spikelet fertilizer showed a significant influence on TD and subsequently on spikelet fertility, suggesting the possibility of increasing spikelet fertility by agronomic management.

  15. Tracking hazardous air pollutants from a refinery fire by applying on-line and off-line air monitoring and back trajectory modeling.

    Science.gov (United States)

    Shie, Ruei-Hao; Chan, Chang-Chuan

    2013-10-15

    The air monitors used by most regulatory authorities are designed to track the daily emissions of conventional pollutants and are not well suited for measuring hazardous air pollutants that are released from accidents such as refinery fires. By applying a wide variety of air-monitoring systems, including on-line Fourier transform infrared spectroscopy, gas chromatography with a flame ionization detector, and off-line gas chromatography-mass spectrometry for measuring hazardous air pollutants during and after a fire at a petrochemical complex in central Taiwan on May 12, 2011, we were able to detect significantly higher levels of combustion-related gaseous and particulate pollutants, refinery-related hydrocarbons, and chlorinated hydrocarbons, such as 1,2-dichloroethane, vinyl chloride monomer, and dichloromethane, inside the complex and 10 km downwind from the fire than those measured during the normal operation periods. Both back trajectories and dispersion models further confirmed that high levels of hazardous air pollutants in the neighboring communities were carried by air mass flown from the 22 plants that were shut down by the fire. This study demonstrates that hazardous air pollutants from industrial accidents can successfully be identified and traced back to their emission sources by applying a timely and comprehensive air-monitoring campaign and back trajectory air flow models.

  16. Transformation of Air Quality Monitor Data from the International Space Station into Toxicological Effect Groups

    Science.gov (United States)

    James, John T.; Zalesak, Selina M.

    2011-01-01

    The primary reason for monitoring air quality aboard the International Space Station (ISS) is to determine whether air pollutants have collectively reached a concentration where the crew could experience adverse health effects. These effects could be near-real-time (e.g. headache, respiratory irritation) or occur late in the mission or even years later (e.g. cancer, liver toxicity). Secondary purposes for monitoring include discovery that a potentially harmful compound has leaked into the atmosphere or that air revitalization system performance has diminished. Typical ISS atmospheric trace pollutants consist of alcohols, aldehydes, aromatic compounds, halo-carbons, siloxanes, and silanols. Rarely, sulfur-containing compounds and alkanes are found at trace levels. Spacecraft Maximum Allowable Concentrations (SMACs) have been set in cooperation with a subcommittee of the National Research Council Committee on Toxicology. For each compound and time of exposure, the limiting adverse effect(s) has been identified. By factoring the analytical data from the Air Quality Monitor (AQM), which is in use as a prototype instrument aboard the ISS, through the array of compounds and SMACs, the risk of 16 specific adverse effects can be estimated. Within each adverse-effect group, we have used an additive model proportioned to each applicable 180-day SMAC to estimate risk. In the recent past this conversion has been performed using archival data, which can be delayed for months after an air sample is taken because it must be returned to earth for analysis. But with the AQM gathering in situ data each week, NASA is in a position to follow toxic-effect groups and correlate these with any reported crew symptoms. The AQM data are supplemented with data from real-time CO2 instruments aboard the ISS and from archival measurements of formaldehyde, which the AQM cannot detect.

  17. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the PNNL Site

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J. Matthew; Meier, Kirsten M.; Snyder, Sandra F.; Fritz, Brad G.; Poston, Theodore M.; Antonio, Ernest J.

    2012-11-12

    Pacific Northwest National Laboratory (PNNL) is in the process of developing a radiological air monitoring program for the PNNL Site that is distinct from that of the nearby Hanford Site. The original DQO (PNNL-19427) considered radiological emissions at the PNNL Site from Physical Sciences Facility (PSF) major emissions units. This first revision considers PNNL Site changes subsequent to the implementation of the original DQO. A team was established to determine how the PNNL Site changes would continue to meet federal regulations and address guidelines developed to monitor air emissions and estimate offsite impacts of radioactive material operations. The result is an updated program to monitor the impact to the public from the PNNL Site. The team used the emission unit operation parameters and local meteorological data as well as information from the PSF Potential-to-Emit documentation and Notices of Construction submitted to the Washington State Department of Health (WDOH). The locations where environmental monitoring stations would most successfully characterize the maximum offsite impacts of PNNL Site emissions from the three PSF buildings with major emission units were determined from these data. Three monitoring station locations were determined during the original revision of this document. This first revision considers expanded Department of Energy operations south of the PNNL Site and relocation of the two offsite, northern monitoring stations to sites near the PNNL Site fenceline. Inclusion of the southern facilities resulted in the proposal for a fourth monitoring station in the southern region. The southern expansion added two minor emission unit facilities and one diffuse emission unit facility. Relocation of the two northern stations was possible due to the use of solar power, rather than the previous limitation of the need for access to AC power, at these more remote locations. Addendum A contains all the changes brought about by the revision 1

  18. Rancang Bangun Sistem Monitoring Ketinggian Permukaan Air Menggunakan Mikrokontroler ATMEGA328P Berbasis Web Service

    Directory of Open Access Journals (Sweden)

    Rausan Fikri

    2015-11-01

    Full Text Available Telah dilakukan pembuatan alat sistem monitoring ketinggian permukaan air dengan menggunakan mikrokontroler ATmega328P berbasis web service. Sistem perangkat secara garis besar terdiri atas mikrokontroler ATmega328P, sensor ultrasonik HC-SR04, sensor suhu dan kelembaban  DHT-11, modul bluetooth HC-05 dan modul ethernet ENC28J60. Sistem juga dilengkapi dengan panel surya dan baterai berkapasitas 35Ah sebagai sumber energi listrik.  Setelah dilakukan pengujian, alat ini memiliki keakuratan rata-rata sebesar 96,48% dalam menentukan ketinggian permukaan air. Hasil dari pengukuran dapat diakses secara online dan realtime pada sebuah halaman web yang ditampilkan dalam bentuk grafik dan tabel. Ketinggian maksimum yang dapat diukur alat ini sebesar 2,5 m dengan rentang waktu pengukuran setiap 10 menit. Alat ini bisa digunakan untuk mengukur ketinggian permukaan air.

  19. Respirable particulate monitoring with remote sensors. (Public health ecology: Air pollution)

    Science.gov (United States)

    Severs, R. K.

    1974-01-01

    The feasibility of monitoring atmospheric aerosols in the respirable range from air or space platforms was studied. Secondary reflectance targets were located in the industrial area and near Galveston Bay. Multichannel remote sensor data were utilized to calculate the aerosol extinction coefficient and thus determine the aerosol size distribution. Houston Texas air sampling network high volume data were utilized to generate computer isopleth maps of suspended particulates and to establish the mass loading of the atmosphere. In addition, a five channel nephelometer and a multistage particulate air sampler were used to collect data. The extinction coefficient determined from remote sensor data proved more representative of wide areal phenomena than that calculated from on site measurements. It was also demonstrated that a significant reduction in the standard deviation of the extinction coefficient could be achieved by reducing the bandwidths used in remote sensor.

  20. Low-cost monitoring of Campylobacter in poultry houses by air sampling and quantitative PCR.

    Science.gov (United States)

    Søndergaard, M S R; Josefsen, M H; Löfström, C; Christensen, L S; Wieczorek, K; Osek, J; Hoorfar, J

    2014-02-01

    The present study describes the evaluation of a method for the quantification of Campylobacter by air sampling in poultry houses. Sampling was carried out in conventional chicken houses in Poland, in addition to a preliminary sampling in Denmark. Each measurement consisted of three air samples, two standard boot swab fecal samples, and one airborne particle count. Sampling was conducted over an 8-week period in three flocks, assessing the presence and levels of Campylobacter in boot swabs and air samples using quantitative real-time PCR. The detection limit for air sampling was approximately 100 Campylobacter cell equivalents (CCE)/m3. Airborne particle counts were used to analyze the size distribution of airborne particles (0.3 to 10 μm) in the chicken houses in relation to the level of airborne Campylobacter. No correlation was found. Using air sampling, Campylobacter was detected in the flocks right away, while boot swab samples were positive after 2 weeks. All samples collected were positive for Campylobacter from week 2 through the rest of the rearing period for both sampling techniques, although levels 1- to 2-log CCE higher were found with air sampling. At week 8, the levels were approximately 10(4) and 10(5) CCE per sample for boot swabs and air, respectively. In conclusion, using air samples combined with quantitative real-time PCR, Campylobacter contamination could be detected earlier than by boot swabs and was found to be a more convenient technique for monitoring and/or to obtain enumeration data useful for quantitative risk assessment of Campylobacter.

  1. Development and field validation of a community-engaged particulate matter air quality monitoring network in imperial, CA.

    Science.gov (United States)

    Carvlin, Graeme N; Lugo, Humberto; Olmedo, Luis; Bejarano, Ester; Wilkie, Alexa; Meltzer, Dan; Wong, Michelle; King, Galatea; Northcross, Amanda; Jerrett, Michael; English, Paul B; Hammond, Donald; Seto, Edmund

    2017-08-22

    The Imperial County Community Air Monitoring Network was developed as part of a community-engaged research study to provide real-time particulate matter (PM) air quality information at a high spatial resolution in Imperial County, California. The network augmented the few existing regulatory monitors and increased monitoring near susceptible populations. Monitors were both calibrated and field validated, a key component of evaluating the quality of the data produced by the community-monitoring network. This paper examines the performance of a customized version of the low-cost Dylos optical particle counter used in the community air monitors compared to both PM2.5 and PM10 federal equivalent method (FEM) beta-attenuation monitors (BAMs) and federal reference method (FRM) gravimetric filters at a collocation site in the study area. A conversion equation was developed that estimates particle mass concentrations from the native Dylos particle counts taking into account relative humidity. The R(2) for converted hourly averaged Dylos mass measurements and a PM2.5 BAM was 0.79 and PM10 BAM was 0.78. The performance of the conversion equation was evaluated at six other sites with collocated PM2.5 environmental beta-attenuation monitors (EBAMs) located throughout Imperial County. The agreement of the Dylos with the EBAMs was moderate to high (R(2) 0.35-0.81). Implications The performance of low-cost air quality sensors in community networks is currently not well documented. This paper provides a methodology for quantifying the performance of a next generation Dylos PM sensor used in the Imperial County Community Air Monitoring Network. This air quality network provides data at a much finer spatial and temporal resolution than has previously been possible with government monitoring efforts. Once calibrated and validated, these high-resolution data may provide more information on susceptible populations, assist in the identification of air pollution hotspots, and increase

  2. Tracking hazardous air pollutants from a refinery fire by applying on-line and off-line air monitoring and back trajectory modeling

    Energy Technology Data Exchange (ETDEWEB)

    Shie, Ruei-Hao [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taiwan (China); Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China); Chan, Chang-Chuan, E-mail: ccchan@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taiwan (China)

    2013-10-15

    Highlights: • An industrial fire can emit hazardous air pollutants into the surrounding areas. • Both on- and off-line monitoring are needed to study air pollution from fires. • Back trajectory and dispersion modeling can trace emission sources of fire-related pollution. -- Abstract: The air monitors used by most regulatory authorities are designed to track the daily emissions of conventional pollutants and are not well suited for measuring hazardous air pollutants that are released from accidents such as refinery fires. By applying a wide variety of air-monitoring systems, including on-line Fourier transform infrared spectroscopy, gas chromatography with a flame ionization detector, and off-line gas chromatography–mass spectrometry for measuring hazardous air pollutants during and after a fire at a petrochemical complex in central Taiwan on May 12, 2011, we were able to detect significantly higher levels of combustion-related gaseous and particulate pollutants, refinery-related hydrocarbons, and chlorinated hydrocarbons, such as 1,2-dichloroethane, vinyl chloride monomer, and dichloromethane, inside the complex and 10 km downwind from the fire than those measured during the normal operation periods. Both back trajectories and dispersion models further confirmed that high levels of hazardous air pollutants in the neighboring communities were carried by air mass flown from the 22 plants that were shut down by the fire. This study demonstrates that hazardous air pollutants from industrial accidents can successfully be identified and traced back to their emission sources by applying a timely and comprehensive air-monitoring campaign and back trajectory air flow models.

  3. Can ornamental potted plants remove volatile organic compounds from indoor air? - a review

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit; Christensen, Jan H.; Thomsen, Jane Dyrhauge;

    2014-01-01

    Volatile organic compounds (VOCs) are found in indoor air, and many of these can affect human health (e.g. formaldehyde and benzene are carcinogenic). Plants affect the levels of VOCs in indoor environments, thus they represent a potential green solution for improving indoor air quality...

  4. Predicting partitioning of volatile organic compounds from air into plant cuticular matrix by quantum chemical descriptors

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on theoretical linear solvation energy relationship and quantum chemical descriptors computed by AM1 Hamiltonian, a new model is developed to predict the partitioning of some volatile organic compounds between the plant cuticular matrix and air.

  5. Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies.

    Science.gov (United States)

    Maruo, Yasuko Yamada; Nakamura, Jiro

    2011-09-30

    We have developed a portable device for formaldehyde monitoring with both high sensitivity and high temporal resolution, and carried out indoor air formaldehyde concentration analysis. The absorbance difference of the sensor element was measured in the monitoring device at regular intervals of, for example, one hour or 30 min, and the result was converted into the formaldehyde concentration. This was possible because we found that the lutidine derivative that was formed as a yellow product of the reaction between 1-phenyl-1,3-butandione and formaldehyde was stable in porous glass for at least six months. We estimated the reaction rate and to be 0.049 min(-1) and the reaction occurred quickly enough for us to monitor hourly changes in the formaldehyde concentration. The detection limit was 5 μg m(-3) h. We achieved hourly formaldehyde monitoring using the developed device under several indoor conditions, and estimated the air exchange rate and formaldehyde adsorption rate, which we adopted as a new term in the mass balance equation for formaldehyde, in one office.

  6. Laser system for remote sensing monitoring of air pollution and quality control of the atmosphere

    Directory of Open Access Journals (Sweden)

    Belić Ilija

    2012-01-01

    Full Text Available Monitoring of the atmosphere and determination of the types and amounts of pollutants is becoming more important issue in complex and global monitoring of the environment. On the geocomponent and geocomplex level problem of monitoring the environment is attracting the attention of the scientific experts of different profiles (chemists, physicists, geographers, biologists, meteorologists, both in the national and international projects. Because of the general characteristics of the Earth's atmosphere (Dynamically Ballanced Instability DBI and the potential contribution to climate change solutions air-pollution monitoring has become particularly important field of environmental research. Control of aerosol distribution over Europe is enabled by EARLINET systems (European Aerosol Lidar NETwork. Serbia’s inclusion into these European courses needs development of the device, the standardization of methods and direct activity in determining the type, quantity and location of aerosol. This paper is analyzing the first step in the study of air-pollution, which is consisted of the realization of a functional model of LIDAR remote sensing devices for the large particle pollutants.

  7. Using Social Media to Detect Outdoor Air Pollution and Monitor Air Quality Index (AQI: A Geo-Targeted Spatiotemporal Analysis Framework with Sina Weibo (Chinese Twitter.

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    Full Text Available Outdoor air pollution is a serious problem in many developing countries today. This study focuses on monitoring the dynamic changes of air quality effectively in large cities by analyzing the spatiotemporal trends in geo-targeted social media messages with comprehensive big data filtering procedures. We introduce a new social media analytic framework to (1 investigate the relationship between air pollution topics posted in Sina Weibo (Chinese Twitter and the daily Air Quality Index (AQI published by China's Ministry of Environmental Protection; and (2 monitor the dynamics of air quality index by using social media messages. Correlation analysis was used to compare the connections between discussion trends in social media messages and the temporal changes in the AQI during 2012. We categorized relevant messages into three types, retweets, mobile app messages, and original individual messages finding that original individual messages had the highest correlation to the Air Quality Index. Based on this correlation analysis, individual messages were used to monitor the AQI in 2013. Our study indicates that the filtered social media messages are strongly correlated to the AQI and can be used to monitor the air quality dynamics to some extent.

  8. Using Social Media to Detect Outdoor Air Pollution and Monitor Air Quality Index (AQI): A Geo-Targeted Spatiotemporal Analysis Framework with Sina Weibo (Chinese Twitter).

    Science.gov (United States)

    Jiang, Wei; Wang, Yandong; Tsou, Ming-Hsiang; Fu, Xiaokang

    2015-01-01

    Outdoor air pollution is a serious problem in many developing countries today. This study focuses on monitoring the dynamic changes of air quality effectively in large cities by analyzing the spatiotemporal trends in geo-targeted social media messages with comprehensive big data filtering procedures. We introduce a new social media analytic framework to (1) investigate the relationship between air pollution topics posted in Sina Weibo (Chinese Twitter) and the daily Air Quality Index (AQI) published by China's Ministry of Environmental Protection; and (2) monitor the dynamics of air quality index by using social media messages. Correlation analysis was used to compare the connections between discussion trends in social media messages and the temporal changes in the AQI during 2012. We categorized relevant messages into three types, retweets, mobile app messages, and original individual messages finding that original individual messages had the highest correlation to the Air Quality Index. Based on this correlation analysis, individual messages were used to monitor the AQI in 2013. Our study indicates that the filtered social media messages are strongly correlated to the AQI and can be used to monitor the air quality dynamics to some extent.

  9. Plant leaves as indoor air passive samplers for volatile organic compounds (VOCs).

    Science.gov (United States)

    Wetzel, Todd A; Doucette, William J

    2015-03-01

    Volatile organic compounds (VOCs) enter indoor environments through internal and external sources. Indoor air concentrations of VOCs vary greatly but are generally higher than outdoors. Plants have been promoted as indoor air purifiers for decades, but reports of their effectiveness differ. However, while air-purifying applications may be questionable, the waxy cuticle coating on leaves may provide a simple, cost-effective approach to sampling indoor air for VOCs. To investigate the potential use of plants as indoor air VOC samplers, a static headspace approach was used to examine the relationship between leaf and air concentrations, leaf lipid contents and octanol-air partition coefficients (Koa) for six VOCs and four plant species. The relationship between leaf and air concentrations was further examined in an actual residence after the introduction of several chlorinated VOC emission sources. Leaf-air concentration factors (LACFs), calculated from linear regressions of the laboratory headspace data, were found to increase as the solvent extractable leaf lipid content and Koa value of the VOC increased. In the studies conducted in the residence, leaf concentrations paralleled the changing air concentrations, indicating a relatively rapid air to leaf VOC exchange. Overall, the data from the laboratory and residential studies illustrate the potential for plant leaves to be used as cost effective, real-time indoor air VOC samplers.

  10. Air Force Nuclear Enterprise Organization: A Case Study

    Science.gov (United States)

    2016-09-15

    34Organization Design: Fashion or Fit?" Harvard Business Review . January 1981. https://hbr.org/1981/01/organization-design-fashion-or-fit (accessed... Business Review , 1999: 1-10. Sugiharto, Totok. "Process-Based Organizations: Structure and Integration." Jarkata Post. February 18, 2009. http...organizational structure. Viewing the enterprise organizationally allows the application of organizational theory and commercial business models

  11. Opportunistic mobile air pollution monitoring: A case study with city wardens in Antwerp

    Science.gov (United States)

    Van den Bossche, Joris; Theunis, Jan; Elen, Bart; Peters, Jan; Botteldooren, Dick; De Baets, Bernard

    2016-09-01

    The goal of this paper is to explore the potential of opportunistic mobile monitoring to map the exposure to air pollution in the urban environment at a high spatial resolution. Opportunistic mobile monitoring makes use of existing mobile infrastructure or people's common daily routines to move measurement devices around. Opportunistic mobile monitoring can also play a crucial role in participatory monitoring campaigns as a typical way to gather data. A case study to measure black carbon was set up in Antwerp, Belgium, with the collaboration of city employees (city wardens). The Antwerp city wardens are outdoors for a large part of the day on surveillance tours by bicycle or on foot, and gathered a total of 393 h of measurements. The data collection is unstructured both in space and time, leading to sampling bias. A temporal adjustment can only partly counteract this bias. Although a high spatial coverage was obtained, there is still a rather large uncertainty on the average concentration levels at a spatial resolution of 50 m due to a limited number of measurements and sampling bias. Despite of this uncertainty, large spatial patterns within the city are clearly captured. This study illustrates the potential of campaigns with unstructured opportunistic mobile monitoring, including participatory monitoring campaigns. The results demonstrate that such an approach can indeed be used to identify broad spatial trends over a wider area, enabling applications including hotspot identification, personal exposure studies, regression mapping, etc. But, they also emphasize the need for repeated measurements and careful processing and interpretation of the data.

  12. OMI, TROPOMI, TROPOLITE: towards 1 x 1 km2 Air Quality and Emission monitoring

    Science.gov (United States)

    Levelt, Pieternel; Veefkind, Pepijn; Apituley, Arnoud; Vlemmix, Tim; Court, Andy; de Goeij, Bryan

    2017-04-01

    The Ozone Monitoring Instrument (OMI), launched on board of NASA's EOS-Aura spacecraft on July 15, 2004, provides unique contributions to air quality monitoring from Space. The combination of urban scale resolution (13 x 24 km2 in nadir) and daily global coverage proved to be key features for the air quality community. The OMI data is currently used operationally for improving the air quality forecasts, for inverting high-resolution emission maps, UV forecast and volcanic plume warning systems for aviation. Due to its 12 year decade long continuous operation OMI provides the longest NO2 and SO2 record from space, which is essential to understand the changes to emissions globally. In 2017 Tropospheric Monitoring Instrument (TROPOMI), will be launched on board ESA's Sentinel 5 Precursor satellite. TROPOMI will have a spatial resolution of 7x7 km2 in nadir; a more than 6 times improvement over OMI. The high spatial resolution serves two goals: (1) emissions sources can be detected with even better accuracy and (2) the number of cloud-free ground pixels will increase substantially. TROPOMI will continue OMI's ozone and air quality trace gas records. Added to that TROPOMI will measure the O2 A band for better cloud detection, as well as CO and the second most important greenhouse gas CH4. TROPOMI will therefore be an important satellite mission for the EU Copernicus atmosphere service and will be followed by ESA's sentinel 4 and 5 satellites. In the coming decades air pollution in megacities will continue to be a major area of concern and the need for timely, high resolution information on emissions will increase, preferably to a level where sources can be isolated on the level. TROPOLITE can be viewed as an add-on to the Copernicus suite of atmospheric satellite instruments, adding high-resolution potential to the Copernicus backbone. An overview of air quality applications, emission inventories, and trend analyses will be given, based on the excellent OMI data record

  13. Site location optimization of regional air quality monitoring network in China: methodology and case study.

    Science.gov (United States)

    Zheng, Junyu; Feng, Xiaoqiong; Liu, Panwei; Zhong, Liuju; Lai, Senchao

    2011-11-01

    Regional air quality monitoring networks (RAQMN) are urgently needed in China due to increasing regional air pollution in city clusters, arising from rapid economic development in recent decades. This paper proposes a methodological framework for site location optimization in designing a RAQMN adapting to air quality management practice in China. The framework utilizes synthetic assessment concentrations developed from simulated data from a regional air quality model in order to simplify the optimal process and to reduce costs. On the basis of analyzing various constraints such as cost and budget, terrain conditions, administrative district, population density and spatial coverage, the framework takes the maximum approximate degree as an optimization objective to achieve site location optimization of a RAQMN. An expert judgment approach was incorporated into the framework to help adjust initial optimization results in order to make the network more practical and representative. A case study was used to demonstrate the application of the framework, indicating that it is feasible to conduct site optimization for a RAQMN design in China. The effects of different combinations of primary and secondary pollutants on site location optimization were investigated. It is suggested that the network design considering both primary and secondary pollutants could better represent regional pollution characteristics and more extensively reflect temporal and spatial variations of regional air quality. The work shown in this study can be used as a reference to guide site location optimization of a RAQMN design in China or other regions of the world.

  14. Microbiological monitoring of air quality in a university canteen: an 11-year report.

    Science.gov (United States)

    Osimani, A; Aquilanti, L; Tavoletti, S; Clementi, F

    2013-06-01

    Over the past decade, an increased tendency to consume meals at dining facilities outside the home has been highlighted; moreover, meals supplied in food businesses have been involved in many foodborne disease outbreaks. Therefore, microbial air contamination in food processing facilities could be a concern and an increase of microbial loads could represent a risk factor, especially for the potential contamination of foods due to undesirable spoiling and pathogenic bacteria. In this paper, the results of an 11-year microbiological monitoring of air quality in a university canteen are reported. The study, which started in the year 2000, was performed within a hazard analysis and critical control point (HACCP) plan implementation of a canteen that produces about 1,000 meals a day in order to verify the effectiveness of corrective actions on the indoor air quality. The primary food preparation room, the kitchen, and three cold rooms underwent air sampling by using a calibrated impaction sampler. Our investigation detected a general and progressive improvement in the air quality of the canteen since the beginning of the study, thus suggesting the appropriateness of the corrective action undertaken during the HACCP implementation program.

  15. Measurement of oxygen transfer from air into organic solvents

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Mayr, Torsten; Hobisch, Mathias;

    2016-01-01

    Background:The use of non-aqueous organic media is becoming increasingly important in many biotechnological applications in order to achieve process intensification. Such media can be used for example to directly extract poorly water-soluble toxic products from fermentations. Likewise many...... measurements in organic solvents has also been demonstrated, paving the way for new opportunities in process control....

  16. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models.

    Science.gov (United States)

    Adams, Matthew D; Kanaroglou, Pavlos S

    2016-03-01

    Air pollution poses health concerns at the global scale. The challenge of managing air pollution is significant because of the many air pollutants, insufficient funds for monitoring and abatement programs, and political and social challenges in defining policy to limit emissions. Some governments provide citizens with air pollution health risk information to allow them to limit their exposure. However, many regions still have insufficient air pollution monitoring networks to provide real-time mapping. Where available, these risk mapping systems either provide absolute concentration data or the concentrations are used to derive an Air Quality Index, which provides the air pollution risk for a mix of air pollutants with a single value. When risk information is presented as a single value for an entire region it does not inform on the spatial variation within the region. Without an understanding of the local variation residents can only make a partially informed decision when choosing daily activities. The single value is typically provided because of a limited number of active monitoring units in the area. In our work, we overcome this issue by leveraging mobile air pollution monitoring techniques, meteorological information and land use information to map real-time air pollution health risks. We propose an approach that can provide improved health risk information to the public by applying neural network models within a framework that is inspired by land use regression. Mobile air pollution monitoring campaigns were conducted across Hamilton from 2005 to 2013. These mobile air pollution data were modelled with a number of predictor variables that included information on the surrounding land use characteristics, the meteorological conditions, air pollution concentrations from fixed location monitors, and traffic information during the time of collection. Fine particulate matter and nitrogen dioxide were both modelled. During the model fitting process we reserved

  17. Using indoor air quality monitoring in 6 counties to change policy in North Carolina.

    Science.gov (United States)

    Proescholdbell, Scott; Steiner, Julea; Goldstein, Adam O; Malek, Sally Herndon

    2009-07-01

    Indoor air quality monitoring has become a valuable tool for states wanting to assess levels of particulate matter before and after smoke-free policies are implemented. However, many states face barriers in passing comprehensive smoke-free legislation, making such study comparisons unlikely. We used indoor air monitoring data to educate decision makers about the value of comprehensive smoke-free laws in a state with strong historical ties to tobacco. We trained teams in 6 counties in North Carolina to monitor air quality in hospitality venues with 1 of 3 possible smoking policy designations: 1) smoke-free, 2) separate smoking and nonsmoking sections (mixed), or 3) smoking allowed in all areas. Teams monitored 152 venues for respirable suspended particles that were less than 2.5 microm in diameter and collected information on venue characteristics. The data were combined and analyzed by venue policy and by county. Our findings were presented to key decision makers, and we then collected information on media publicity about these analyses. Overall, smoke-free venues had the lowest particulate matter levels (15 microg/m3), well below established Environmental Protection Agency standards. Venues with mixed policies and venues that permitted smoking in all areas had particulate matter levels that are considered unhealthy by Environmental Protection Agency standards. The media coverage of our findings included newspaper, radio, and television reports. Findings were also discussed with local health directors, state legislators, and public health advocates. Study data have been used to quantify particulate matter levels, raise awareness about the dangers of secondhand smoke, build support for evidence-based policies, and promote smoke-free policies among policy makers. The next task is to turn this effort into meaningful policy change that will protect everyone from the harms of secondhand smoke.

  18. The deployment of carbon monoxide wireless sensor network (CO-WSN) for ambient air monitoring.

    Science.gov (United States)

    Chaiwatpongsakorn, Chaichana; Lu, Mingming; Keener, Tim C; Khang, Soon-Jai

    2014-06-16

    Wireless sensor networks are becoming increasingly important as an alternative solution for environment monitoring because they can reduce cost and complexity. Also, they can improve reliability and data availability in places where traditional monitoring methods are difficult to site. In this study, a carbon monoxide wireless sensor network (CO-WSN) was developed to measure carbon monoxide concentrations at a major traffic intersection near the University of Cincinnati main campus. The system has been deployed over two weeks during Fall 2010, and Summer 2011-2012, traffic data was also recorded by using a manual traffic counter and a video camcorder to characterize vehicles at the intersection 24 h, particularly, during the morning and evening peak hour periods. According to the field test results, the 1 hr-average CO concentrations were found to range from 0.1-1.0 ppm which is lower than the National Ambient Air Quality Standards (NAAQS) 35 ppm on a one-hour averaging period. During rush hour periods, the traffic volume at the intersection varied from 2,067 to 3,076 vehicles per hour with 97% being passenger vehicles. Furthermore, the traffic volume based on a 1-h average showed good correlation (R2 = 0.87) with the 1-h average CO-WSN concentrations for morning and evening peak time periods whereas CO-WSN results provided a moderate correlation (R2 = 0.42) with 24 hours traffic volume due to fluctuated changes of meteorological conditions. It is concluded that the performance and the reliability of wireless ambient air monitoring networks can be used as an alternative method for real time air monitoring.

  19. A Next Generation Air Monitor: Combining Orion and ISS Requirements for a Common Major Constituent Analyzer

    Science.gov (United States)

    Burchfield, David E.; Tissandier, Michael; Niu, William Hsein-Chi; Lewis, John F.

    2013-01-01

    The Major Constituent Analyzer (MCA) is a mass spectrometer-based instrument designed to provide critical monitoring of six major atmospheric constituents; nitrogen, oxygen, hydrogen, carbon dioxide, methane, and water vapor on-board the International Space Station. The analyzer has been an integral part of the Environmental Control and Life Support System (ECLSS) since the station went on-line. The Orion Air Monitor (OAM) was derived from the MCA and heavily optimized for reduced mass, lower power, faster water vapor response, and maintenance-free operation. The resulting OAM is approximately the size of the analyzer portion of the MCA, orbital-replacement unit 02 (ORU 02), while incorporating the functions of three other modules: Data Processing and Communication (ORU 01), Verification Gas Assembly (ORU 08), and Low Voltage Power Supply (ORU 04). The overlap in MCA and OAM requirements makes it possible to derive a common Air Monitor design that spans both applications while minimally impacting the weight and power limits imposed by the Multipurpose Crew Vehicle (MPCV). Benefits to ISS include the retirement of ORUs 01, 04, and 08, reducing up-mass and eliminating EEE parts obsolescence issues through the extended ISS mission phases. Benefits to MPCV and future deployed habitats under the Constellation program include greater interchangeability across ECLSS subsystems. This paper discusses the results of the requirements development study, where a superset of ISS and Orion air monitoring requirements were distilled; evaluated against increases in OAM functionality, mass, and power; and traded-off where possible using simple operating mode modifications. A system architecture and preliminary design addressing the common requirements will be presented.

  20. Analysis and evolution of air quality monitoring networks using combined statistical information indexes

    Directory of Open Access Journals (Sweden)

    Axel Osses

    2013-10-01

    Full Text Available In this work, we present combined statistical indexes for evaluating air quality monitoring networks based on concepts derived from the information theory and Kullback–Liebler divergence. More precisely, we introduce: (1 the standard measure of complementary mutual information or ‘specificity’ index; (2 a new measure of information gain or ‘representativity’ index; (3 the information gaps associated with the evolution of a network and (4 the normalised information distance used in clustering analysis. All these information concepts are illustrated by applying them to 14 yr of data collected by the air quality monitoring network in Santiago de Chile (33.5 S, 70.5 W, 500 m a.s.l.. We find that downtown stations, located in a relatively flat area of the Santiago basin, generally show high ‘representativity’ and low ‘specificity’, whereas the contrary is found for a station located in a canyon to the east of the basin, consistently with known emission and circulation patterns of Santiago. We also show interesting applications of information gain to the analysis of the evolution of a network, where the choice of background information is also discussed, and of mutual information distance to the classifications of stations. Our analyses show that information as those presented here should of course be used in a complementary way when addressing the analysis of an air quality network for planning and evaluation purposes.

  1. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, W.T.; Walker, B.A.

    1996-01-01

    Alpha continuous air monitors (CAMs) will be used at the Waste Isolation Pilot Plant (WIPP) to measure airborne transuranic radioactivity that might be present in air exhaust or in work-place areas. WIPP CAMs are important to health and safety because they are used to alert workers to airborne radioactivity, to actuate air-effluent filtration systems, and to detect airborne radioactivity so that the radioactivity can be confined in a limited area. In 1993, the Environmental Evaluation Group (EEG) reported that CAM operational performance was affected by salt aerosol, and subsequently, the WIPP CAM design and usage were modified. In this report, operational data and current theories on aerosol collection were reviewed to determine CAM quantitative performance limitations. Since 1993, the overall CAM performance appears to have improved, but anomalous alpha spectra are present when sampling-filter salt deposits are at normal to high levels. This report shows that sampling-filter salt deposits directly affect radon-thoron daughter alpha spectra and overall monitor efficiency. Previously it was assumed that aerosol was mechanically collected on the surface of CAM sampling filters, but this review suggests that electrostatic and other particle collection mechanisms are more important than previously thought. The mechanism of sampling-filter particle collection is critical to measurement of acute releases of radioactivity. 41 refs.

  2. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  3. Categorisation of air quality monitoring stations by evaluation of PM(10) variability.

    Science.gov (United States)

    Barrero, M A; Orza, J A G; Cabello, M; Cantón, L

    2015-08-15

    Air Quality Monitoring Networks (AQMNs) are composed by a number of stations, which are typically classified as urban, suburban or rural, and background, industrial or traffic, depending on the location and the influence of the immediate surroundings. These categories are not necessarily homogeneous and distinct from one another, regarding the levels of the monitored pollutants. A classification providing groups with these features is of interest for air quality management and research purposes, and therefore, other classification criteria should be explored. In this work, the variations of PM10 concentrations in 43 stations in the AQMN of the Basque Country in the period 2005-2012 have been studied to group them according to common characteristics. The characteristic variations in time are synthesised by the autocorrelation function (ACF), with both daily and hourly data, and by the average diurnal evolution pattern of the normalised concentrations on a seasonal basis (Evol-P). A methodology based on k-means clustering of these features is proposed. Each classification gives a different piece of information that has been phenomenologically related with specific dispersion and emission dynamics. The classification based on Evol-Ps is found to be the most influential one when comparing PM10 levels between groups. A combination of these categorisations provides 5 groups with significantly different levels of PM10, improving the discrimination of the conventional classification. Our results indicate that the time series of the pollutant concentrations contain enough information to provide an objective classification of the monitoring stations in an AQMN.

  4. Using UAV-Based Systems to Monitor Air Pollution in Areas with Poor Accessibility

    Directory of Open Access Journals (Sweden)

    Oscar Alvear

    2017-01-01

    Full Text Available Air pollution monitoring has recently become an issue of utmost importance in our society. Despite the fact that crowdsensing approaches could be an adequate solution for urban areas, they cannot be implemented in rural environments. Instead, deploying a fleet of UAVs could be considered an acceptable alternative. Embracing this approach, this paper proposes the use of UAVs equipped with off-the-shelf sensors to perform air pollution monitoring tasks. These UAVs are guided by our proposed Pollution-driven UAV Control (PdUC algorithm, which is based on a chemotaxis metaheuristic and a local particle swarm optimization strategy. Together, they allow automatically performing the monitoring of a specified area using UAVs. Experimental results show that, when using PdUC, an implicit priority guides the construction of pollution maps by focusing on areas where the pollutants’ concentration is higher. This way, accurate maps can be constructed in a faster manner when compared to other strategies. The PdUC scheme is compared against various standard mobility models through simulation, showing that it achieves better performance. In particular, it is able to find the most polluted areas with more accuracy and provides a higher coverage within the time bounds defined by the UAV flight time.

  5. The JPL Electronic Nose: Monitoring Air in the US Lab on the International Space Station

    Science.gov (United States)

    Ryan, M. A.; Manatt, K. S.; Gluck, S.; Shevade, A. V.; Kisor, A. K.; Zhou, H.; Lara, L. M.; Homer, M. L.

    2010-01-01

    An electronic nose with a sensor array of 32 conductometric sensors has been developed at the Jet Propulsion Laboratory (JPL) to monitor breathing air in spacecraft habitat. The Third Generation ENose is designed to operate in the environment of the US Lab on the International Space Station (ISS). It detects a selected group of analytes at target concentrations in the ppm regime at an environmental temperature range of 18 - 30 oC, relative humidity from 25 - 75% and pressure from 530 to 760 torr. The monitoring targets are anomalous events such as leaks and spills of solvents, coolants or other fluids. The JPL ENose operated as a technology demonstration for seven months in the U.S. Laboratory Destiny during 2008-2009. Analysis of ENose monitoring data shows that there was regular, periodic rise and fall of humidity and occasional releases of Freon 218 (perfluoropropane), formaldehyde, methanol and ethanol. There were also several events of unknown origin, half of them from the same source. Each event lasted from 20 to 100 minutes, consistent with the air replacement time in the US Lab.

  6. Degradation of volatile organic compounds in a non-thermal plasma air purifier.

    Science.gov (United States)

    Schmid, Stefan; Jecklin, Matthias C; Zenobi, Renato

    2010-03-01

    The degradation of volatile organic compounds in a commercially available non-thermal plasma based air purifying system was investigated. Several studies exist that interrogate the degradation of VOCs in closed air systems using a non-thermal plasma combined with a heterogeneous catalyst. For the first time, however, our study was performed under realistic conditions (normal indoor air, 297.5K and 12.5 g m(-3) water content) on an open system, in the absence of an auxiliary catalyst, and using standard operating air flow rates (up to 320 L min(-1)). Cyclohexene, benzene, toluene, ethylbenzene and the xylene isomers were nebulized and guided through the plasma air purifier. The degradation products were trapped by activated charcoal tubes or silica gel tubes, and analyzed using gas chromatography mass spectrometry. Degradation efficiencies of 11+/-1.6% for cyclohexene, air purifier.

  7. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; McCurdy, Greg [DRI; Etyemezian, Vicken [DRI; Miller, Julianne J [DRI

    2014-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  8. Tonopah Test Range Air Monitoring. CY2014 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikoloch, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); Chapman, Jenny [Desert Research Inst. (DRI), Las Vegas, NV (United States); Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Etyemezian, Vicken [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2015-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2014 monitoring are: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2014 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations; (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. Differences in the observed dust concentrations are likely the result of differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  9. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A...

  10. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a)...

  11. 75 FR 8246 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Science.gov (United States)

    2010-02-24

    ... economically significant regulatory action based on health or safety risks subject to Executive Order 13045 (62... 1: Applicability, Section 2: Automobile and light duty truck coating regulations, Section 5: Paper... Organic Compound Rules, Rule 18: Synthetic Organic Chemical Manufacturing Industry Air Oxidation...

  12. Lidar Monitoring of Mexico City's Atmosphere During High Air Pollution Episodes

    Science.gov (United States)

    Quick, C. R., Jr.; Archuleta, F. L.; Hof, D. E.; Karl, R. R., Jr.; Tiee, J. J., Jr.; Eichinger, W. E.; Holtkamp, D. B.; Tellier, L.

    1992-01-01

    Over the last two decades, Mexico City, like many large industrial and populous urban areas, has developed a serious air pollution problem, especially during the winter months when there are frequent temperature inversions and weak winds. The deteriorating air quality is the result of several factors. The basin within which Mexico City lies in Mexico's center of political, administrative and economic activity, generating 34 percent of the gross domestic product and 42 percent of the industrial revenue, and supporting a population which is rapidly approaching the 20 million mark. The basin is surrounded by mountains on three sides which end up preventing rapid dispersal of pollutants. Emissions from the transportation fleet (more than 3 million vehicles) are one of the primary pollution sources, and most are uncontrolled. Catalytic converters are just now working their way into the fleet. The Mexico City Air Quality Research Initiative in an international collaboration project between the Los Alamos National Laboratory and the Mexican Petroleum Institute are dedicated to the investigation of the air quality problem in Mexico City. The main objective of the project is to identify and assess the cost and benefits of major options being proposed to improve the air quality. The project is organized into three main activity areas: (1) modeling and simulation; (2) characterization and measurements; and (3) strategic evaluation.

  13. The contribution of marine organics to the air quality of the western United States

    Directory of Open Access Journals (Sweden)

    B. Gantt

    2010-08-01

    Full Text Available The contribution of marine organic emissions to the air quality in coastal areas of the western United States is studied using the latest version of the US Environmental Protection Agency (EPA regional-scale Community Multiscale Air Quality (CMAQv4.7 modeling system. Emissions of marine isoprene, monoterpenes, and primary organic matter (POM from the ocean are implemented into the model to provide a comprehensive view of the connection between ocean biology and atmospheric chemistry and air pollution. Model simulations show that marine organics can increase the concentration of PM2.5 by 0.1–0.3 μg m−3 (up to 5% in some coastal cities such as San Francisco, CA. This increase in the PM2.5 concentration is primarily attributed to the POM emissions, with small contributions from the marine isoprene and monoterpenes. When marine organic emissions are included, organic carbon (OC concentrations over the remote ocean are increased by up to 50% (25% in coastal areas, values consistent with recent observational findings. This study is the first to quantify the air quality impacts from marine POM and monoterpenes for the United States, and it highlights the need for inclusion of marine organic emissions in air quality models.

  14. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    Science.gov (United States)

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning.

  15. Characterizing the Air Temperature Drop in Mediterranean Courtyards from Monitoring Campaigns

    Directory of Open Access Journals (Sweden)

    Enrique Ángel Rodríguez Jara

    2017-08-01

    Full Text Available As microclimate modifiers, courtyards may be a good passive strategy for enhancing thermal comfort and reducing the energy demands of buildings. Thus, it is necessary to be able to quantify their tempering effect in dominant summer climates. This is frequently done using calculation methods based on CFD, but these have the drawback of their high computational cost and complexity, so their use is limited to advanced users with a high level of knowledge. Thus, an alternative is required based on a simplified method that can explain and predict the air temperature drop in courtyards. This would be extremely useful for professionals looking for the optimal design of this kind of space through energy assessment programs integrating these methods. This study proposes a simplified method of characterization that aims to identify the functional dependencies of the decrease in air temperatures in courtyards, and so to predict the air temperature inside them from that outside, if available. From the results of several experimental campaigns, three variables have been identified that characterize the decrease in the air temperature in courtyards, all of which depend on the confinement factor of the courtyard. Finally, the proposed predictive method was validated by means of an additional monitoring campaign. The results show a good fit of the calculated values to the measured ones, R2 being equal to 0.98.

  16. Biological monitoring: lichens as bioindicators of air pollution assessment--a review.

    Science.gov (United States)

    Conti, M E; Cecchetti, G

    2001-01-01

    Often as part of environmental impact studies and, above all, to obtain authorisations in accordance with prescriptions from the Ministry for the Environment (Italy), surveys and controls that use biological indicators are required. This is because such indicators are valid instruments for evaluating the quality of the air ensuing from the subject (often an industrial plant) of the Environmental Impact Assessment (EIA). In this context, this paper aims to analyse some of the theoretical aspects of biological monitoring and to provide a progress report on the use of lichens as bioindicators of air quality, with a particular eye to the situation in Italy. The object of this paper is that of pointing out the most important lines in the current state of knowledge in this field, evaluating the methodological applications and their advantages/disadvantages with respect to traditional surveying methods.

  17. [Spatial representativeness of monitoring stations for air quality in Florence (Tuscany Region, Central Italy) according to ARPAT e LaMMA. Critical observations].

    Science.gov (United States)

    Grechi, Daniele

    2016-01-01

    On March 2015, the Environmental Protection Agency of Tuscany Region (Central Italy) and the Laboratory of monitoring and environmental modelling published a Report on spatial representativeness of monitoring stations for Tuscan air quality, where they supported the decommissioning of modelling stations located in the Florentine Plain. The stations of Signa, Scandicci, and Firenze-Bassi, located in a further South area, were considered representative Believing that air quality of the Plain could be evaluated by these stations is a stretch. In this text the author show the inconsistency of the conclusion of the Report through correlation graphs comparing daily means of PM10 detected in the disposed stations and in the active ones, showing relevant differences between the reported values and the days when the limits are exceeded. The discrepancy is due to the fact that uncertainty of theoretical estimates is greater than the differences recorded by the stations considered as a reference and the areas they may represent. The area of the Plain has a population of 150,000 individuals and it is subject to a heavy environmental pression, which will change for the urban works planned for the coming years. The population's legitimate request for the analytical monitoring of air pollution could be met through the organization of participated monitoring based on the use of low-cost innovative tools.

  18. Environmental and biological monitoring of arsenic in outdoor workers exposed to urban air pollutants.

    Science.gov (United States)

    Ciarrocca, Manuela; Tomei, Gianfranco; Palermo, Paola; Caciari, Tiziana; Cetica, Carlotta; Fiaschetti, Maria; Gioffrè, Pier Agostino; Tasciotti, Zaira; Tomei, Francesco; Sancini, Angela

    2012-11-01

    The aim of this study is to evaluate personal exposure to As in urban air in two groups of outdoor workers (traffic policemen and police drivers) of a big Italian city through: (a) environmental monitoring of As obtained by personal samples and (b) biological monitoring of total urinary As. The possible influence of smoking habit on urinary As was evaluated. We studied 122 male subjects, all Municipal Police employees: 84 traffic policemen and 38 police drivers exposed to urban pollutants. Personal exposure to As in air was significantly higher in traffic policemen than in police drivers (p=0.03). Mean age, length of service, alcohol drinking habit, number of cigarettes smoked/day and BMI were comparable between the groups of subjects studied. All subjects were working in the same urban area where they had lived for at least 5 yrs. Dietary habits and consumption of water from the water supply and/or mineral water were similar in traffic policemen and in police drivers. The values of total urinary As were significantly higher in traffic policemen (smokers and non smokers) than in police drivers (smokers and non smokers) (p=0.02). In the subgroup of non-smokers the values of total urinary As were significantly higher in traffic policemen than in police drivers (p=0.03). In traffic policemen and in police drivers total urinary As values were significantly correlated to the values of As in air (respectively r=0.9 and r=0.8, pstudying the exposure to As in outdoor workers occupationally exposed to urban pollutants, such as traffic policemen and police drivers. Personal exposure to As in the air, as well as the urinary excretion of As, is significantly higher in traffic policemen compared to drivers. These results can provide information about exposure to As in streets and in car for other categories of outdoor workers similarly exposed.

  19. Measurement of oxygen transfer from air into organic solvents

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Mayr, Torsten; Hobisch, Mathias;

    2016-01-01

    For the first time, we demonstrate on-line oxygen measurements in non-aqueous media using a novel optical sensor. The sensor was used to measure oxygen concentration in various organic solvents including toluene, THF, isooctane, DMF, heptane and hexane (which have all been shown suitable for several biological...

  20. Method of monitoring photoactive organic molecules in-situ during gas-phase deposition of the photoactive organic molecules

    Science.gov (United States)

    Forrest, Stephen R.; Vartanian, Garen; Rolin, Cedric

    2015-06-23

    A method for in-situ monitoring of gas-phase photoactive organic molecules in real time while depositing a film of the photoactive organic molecules on a substrate in a processing chamber for depositing the film includes irradiating the gas-phase photoactive organic molecules in the processing chamber with a radiation from a radiation source in-situ while depositing the film of the one or more organic materials and measuring the intensity of the resulting photoluminescence emission from the organic material. One or more processing parameters associated with the deposition process can be determined from the photoluminescence intensity data in real time providing useful feedback on the deposition process.

  1. Residual oil monitoring in pressurised air with SnO2-based gas sensors

    OpenAIRE

    Papamichail, Nikos

    2004-01-01

    The doctoral thesis at hand describes the investigations undertaken in order to develop a newly invented procedure for the monitoring of residual oil in pressurised air. The problem of this application lies on the one hand in the state of aggregation of the oil, most of it is liquid and forms aerosols, and on the other hand in the general challenge to measure a small concentration in a changing matrix by means of unspecific sensors. The oil origins from the compressors, which typically us...

  2. System monitoring feedback in cinemas and harvesting energy of the air conditioning condenser

    Science.gov (United States)

    Pop, P. P.; Pop-Vadean, A.; Barz, C.; Latinovic, T.; Chiver, O.

    2017-05-01

    Our article monitors the degree of emotional involvement of the audience in the action film in theaters by measuring the concentration of CO2. The software performs data processing obtained dispersion sensors and displays data during the film. The software will also trigger the start of the air conditioning condenser where we can get harvesting energy by installing a piezoelectric device. Useful energy can be recovered from various waste produced in cinema. The time lag between actions and changes in environmental systems determines that decisions made now will affect subsequent generations and the future of our environment.

  3. Molecular markers and sentinel organisms for environmental monitoring

    Directory of Open Access Journals (Sweden)

    Graczyk T.K.

    2008-09-01

    Full Text Available Molecular methods are useful for both to monitor anthropogenic viral, bacterial, and protozoan enteropathogens, and to track pathogen specific markers in a complex environment in order to reveal sources of these pathogens. Molecular genetic markers for fecal viruses, bacteria, and protozoans hold promise for monitoring environmental pollution and water quality. The demand for microbiologically safe waters grows exponentially due to the global demographic rise of the human population. Economically important shellfish, such as oysters, which are harvested commercially and preferentially consumed raw can be of public health importance if contaminated with human waterborne pathogens. However, feral molluscan shellfish which do not have an apparent economic value serve as indicators in monitoring aquatic environments for pollution with human waterborne pathogens and for sanitary assessment of water quality. Current technology allows for multiplexed species-specific identification, genotyping, enumeration, viability assessment, and source-tracking of human enteropathogens which considerably enhances the pathogen source-tracking efforts.

  4. Speciation of volatile organic compound emissions for regional air quality modeling of particulate matter and ozone

    Science.gov (United States)

    Makar, P. A.; Moran, M. D.; Scholtz, M. T.; Taylor, A.

    2003-01-01

    A new classification scheme for the speciation of organic compound emissions for use in air quality models is described. The scheme uses 81 organic compound classes to preserve both net gas-phase reactivity and particulate matter (PM) formation potential. Chemical structure, vapor pressure, hydroxyl radical (OH) reactivity, freezing point/boiling point, and solubility data were used to create the 81 compound classes. Volatile, semivolatile, and nonvolatile organic compounds are included. The new classification scheme has been used in conjunction with the Canadian Emissions Processing System (CEPS) to process 1990 gas-phase and particle-phase organic compound emissions data for summer and winter conditions for a domain covering much of eastern North America. A simple postprocessing model was used to analyze the speciated organic emissions in terms of both gas-phase reactivity and potential to form organic PM. Previously unresolved compound classes that may have a significant impact on ozone formation include biogenic high-reactivity esters and internal C6-8 alkene-alcohols and anthropogenic ethanol and propanol. Organic radical production associated with anthropogenic organic compound emissions may be 1 or more orders of magnitude more important than biogenic-associated production in northern United States and Canadian cities, and a factor of 3 more important in southern U.S. cities. Previously unresolved organic compound classes such as low vapour pressure PAHs, anthropogenic diacids, dialkyl phthalates, and high carbon number alkanes may have a significant impact on organic particle formation. Primary organic particles (poorly characterized in national emissions databases) dominate total organic particle concentrations, followed by secondary formation and primary gas-particle partitioning. The influence of the assumed initial aerosol water concentration on subsequent thermodynamic calculations suggests that hydrophobic and hydrophilic compounds may form external

  5. Satellite Remote Sensing Atmospheric Compositions and their Application in Air Quality Monitoring in China

    Science.gov (United States)

    Zhang, P.; Zhang, X. Y.; Bai, W. G.; Wang, W. H.; Huang, F. X.; Li, X. J.; Sun, L.; Wang, G.; Qi, J.; Qiu, H.; Zhang, Y.; van der A, R. J.; Mijling, B.

    2013-01-01

    This paper summarizes the achievements related to atmospheric compositions remote sensing from the bilateral cooperation under the framework of MOST-ESA Dragon Programme. The algorithms to retrieve Aerosol, ozone amount and profile, NO2, SO2, CH4, CO2, etc. have been developed since 2004. Such algorithms are used to process FY-3 series (Chinese second generation polar orbit satellites) observation and ground based FTIR observation. The results are validated with in-situ measurements. Aerosol, total ozone amount shows the very good consistent with the ground measurements. The temporal and spatial characteristics of the important atmospheric compositions, such as aerosol, O3, NO2, SO2, CH4, CO etc., have been analysed from satellite derived products. These works demonstrate the satellite’s capacity on atmospheric composition monitoring, as well as the possible application in the air quality monitoring and climate change research.

  6. Monitoring of Plant Light/Dark Cycles Using Air-coupled Ultrasonic Spectroscopy

    Science.gov (United States)

    Fariñas, M. D.; Sancho-Knapik, D.; Peguero-Pina, J.; Gil-Pelegrín, E.; Álvarez-Arenas, T. E. G.

    This work presents the application of a technique based on the excitation, sensing and spectral analysis of leaves thickness resonances using air-coupled and wide-band ultrasound to monitor variations in leaves properties due to the plant response along light/dark cycles. The main features of these resonances are determined by the tautness of the cells walls in such a way that small modifications produced by variations in the transpiration rate, stomata aperture or water potential have a direct effect on the thickness resonances that can be measured in a completely non-invasive and contactless way. Results show that it is possible to monitor leaves changes due to variations in light intensity along the diurnal cycle, moreover, the technique reveals differences in the leaf response for different species and also within the same species but for specimens grown under different conditions that present different cell structures at the tissue level.

  7. Tonopah Test Range Air Monitoring: CY2015 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikolich, George [Nevada University, Reno, NV (United States). Desert Research Inst.; Shadel, Craig [Nevada University, Reno, NV (United States). Desert Research Inst.; Chapman, Jenny [Nevada University, Reno, NV (United States). Desert Research Inst.; McCurdy, Greg [Nevada University, Reno, NV (United States). Desert Research Inst.; Etyemezian, Vicken [Nevada University, Reno, NV (United States). Desert Research Inst.; Miller, Julianne J. [Nevada University, Reno, NV (United States). Desert Research Inst.; Mizell, Steve [Nevada University, Reno, NV (United States). Desert Research Inst.

    2016-09-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites.

  8. BAQMAP. Air Quality Monitoring and Surveillance Program for Botswana. Mission 1 Report 4-22 November 1996

    Energy Technology Data Exchange (ETDEWEB)

    Bekkestad, T.; Dreiem, R.; Hermansen, O.; Knudsen, S.

    1996-12-31

    This report is concerned with the start of a joint project between the authorities in Botswana and Norway on the development of an air pollution monitoring and surveillance program for Botswana. NILU will provide assistance in the fields of (1) Siting and establishment of an air pollution monitoring network, (2) Laboratory techniques, methods and routines, (3) Quality control and quality assurance procedures, (4) Emission data bases, (5) Statistical data analysis and reporting, (6) Atmospheric dispersion model estimates for air quality planning and assessment analysis. This is the report of the Norwegian team after their first visit to Botswana. 1 ref., 13 figs., 35 tabs.

  9. Continuous multichannel monitoring of cave air carbon dioxide using a pumped non-dispersive infrared analyser

    Science.gov (United States)

    Mattey, D.

    2012-04-01

    The concentration of CO2 in cave air is one of the main controls on the rate of degassing of dripwater and on the kinetics of calcite precipitation forming speleothem deposits. Measurements of cave air CO2reveal great complexity in the spatial distribution among interconnected cave chambers and temporal changes on synoptic to seasonal time scales. The rock of Gibraltar hosts a large number of caves distributed over a 300 meter range in altitude and monthly sampling and analysis of air and water combined with continuous logging of temperature, humidity and drip discharge rates since 2004 reveals the importance of density-driven seasonal ventilation which drives large-scale advection of CO2-rich air though the cave systems. Since 2008 we have deployed automatic CO2 monitoring systems that regularly sample cave air from up to 8 locations distributed laterally and vertically in St Michaels Cave located near the top of the rock at 275m asl and Ragged Staff Cave located in the heart of the rock near sea level. The logging system is controlled by a Campbell Scientific CR1000 programmable datalogger which controls an 8 port manifold connected to sampling lines leading to different parts of the cave over a distance of up to 250 meters. The manifold is pumped at a rate of 5l per minute drawing air through 6mm or 8mm id polythene tubing via a 1m Nafion loop to reduce humidity to local ambient conditions. The outlet of the primary pump leads to an open split which is sampled by a second low flow pump which delivers air at 100ml/minute to a Licor 820 CO2 analyser. The software selects the port to be sampled, flushes the line for 2 minutes and CO2 analysed as a set of 5 measurements averaged over 10 second intervals. The system then switches to the next port and when complete shuts down to conserve power after using 20 watts over a 30 minute period of analysis. In the absence of local mains power (eg from the show cave lighting system) two 12v car batteries will power the system

  10. Tonopah Test Range Air Monitoring: CY2015 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikolich, George [Nevada University, Reno, NV (United States). Desert Research Inst.; Shadel, Craig [Nevada University, Reno, NV (United States). Desert Research Inst.; Chapman, Jenny [Nevada University, Reno, NV (United States). Desert Research Inst.; McCurdy, Greg [Nevada University, Reno, NV (United States). Desert Research Inst.; Etyemezian, Vicken [Nevada University, Reno, NV (United States). Desert Research Inst.; Miller, Julianne J. [Nevada University, Reno, NV (United States). Desert Research Inst.; Mizell, Steve [Nevada University, Reno, NV (United States). Desert Research Inst.

    2016-09-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites. Radionuclide assessment of airborne particulates in 2015 found the gross alpha and gross beta values of dust collected from the filters at the monitoring stations are consistent with background conditions. The meteorological and particle monitoring indicate that conditions for wind-borne contaminant movement exist at the Clean Slate sites and that, although the transport of radionuclide-contaminated soil by suspension has not been detected, movement by saltation is occurring.

  11. Speciation of organic aerosols in the Saharan Air Layer and in the free troposphere westerlies

    Directory of Open Access Journals (Sweden)

    M. I. García

    2017-07-01

    Full Text Available We focused this research on the composition of the organic aerosols transported in the two main airflows of the subtropical North Atlantic free troposphere: (i the Saharan Air Layer – the warm, dry and dusty airstream that expands from North Africa to the Americas at subtropical and tropical latitudes – and (ii the westerlies, which flow from North America over the North Atlantic at mid- and subtropical latitudes. We determined the inorganic compounds (secondary inorganic species and elemental composition, elemental carbon and the organic fraction (bulk organic carbon and organic speciation present in the aerosol collected at Izaña Observatory,  ∼  2400 m a.s.l. on the island of Tenerife. The concentrations of all inorganic and almost all organic compounds were higher in the Saharan Air Layer than in the westerlies, with bulk organic matter concentrations within the range 0.02–4.0 µg m−3. In the Saharan Air Layer, the total aerosol population was by far dominated by dust (93 % of bulk mass, which was mixed with secondary inorganic pollutants ( <  5 % and organic matter ( ∼  1.5 %. The chemical speciation of the organic aerosols (levoglucosan, dicarboxylic acids, saccharides, n-alkanes, hopanes, polycyclic aromatic hydrocarbons and those formed after oxidation of α-pinene and isoprene, determined by gas chromatography coupled with mass spectrometry accounted for 15 % of the bulk organic matter (determined by the thermo-optical transmission technique; the most abundant organic compounds were saccharides (associated with surface soils, secondary organic aerosols linked to oxidation of biogenic isoprene (SOA ISO and dicarboxylic acids (linked to several primary sources and SOA. When the Saharan Air Layer shifted southward, Izaña was within the westerlies stream and organic matter accounted for  ∼  28 % of the bulk mass of aerosols. In the westerlies, the organic aerosol species determined

  12. Workforce Diversity: Monitoring Employment Trends in Public Organizations.

    Science.gov (United States)

    Guajardo, Salomon A.

    1999-01-01

    Presents the use of research designs that can be used by human resource specialists to evaluate and monitor work force diversity and minority employment. Compares results of Repeated Measure Analyses of Variance with One Within-subjects Factor design with Repeated Measure Analyses of Variance with One Within-subjects Factor by job category. (JOW)

  13. Comparison of NASA OMI and MLS Ozone Products with US Forest Service Ground-based Ozone Monitoring Data for US Forest Service Air Quality / Forest Management Decision Support

    Science.gov (United States)

    Barrett, S.; Brooks, A.; Moussa, Y.; Spencer, T.; Thompson, J.

    2013-12-01

    Tropospheric ozone, formed when nitrogen oxides (NOx) and volatile organic compounds (VOCs) react with sunlight, is a significant threat to the health of US National Forests. Approximately one third of ozone is absorbed by plants during the uptake of carbon dioxide. This increases the vegetation's susceptibility to drought, beetle infestation, and wildfire. Currently the US Forest Service has ground monitoring stations sparsely located across the country. This project looks specifically at the area surrounding several Class I Wilderness Areas in the Appalachian region. These areas are the highest priority for protection from air pollutants. The Forest Service must interpolate ozone concentrations for areas between these monitoring stations. Class I Wilderness Areas are designated by the Forest Service and are defined as a total 5000 acres or greater when the Clean Air Act was passed in 1977. This Act mandated that the EPA create national ambient air quality standards (NAAQS) for six major air pollutants including ground-level ozone. This project assessed the feasibility of incorporating NASA ozone data into Forest Service ozone monitoring in an effort to enhance the accuracy and precision of ozone exposure measurements in Class I Wilderness Areas and other federally managed lands in order to aid in complying with the Clean Air Act of 1977. This was accomplished by establishing a method of comparison between a preliminary data product produced at the Goddard Space Flight Center that uses OMI/MLS data to derive global tropospheric ozone measurements and Forest Service ozone monitoring station measurements. Once a methodology for comparison was established, statistical comparisons of these data were performed to assess the quantitative differences.

  14. Elemental analysis of tree leaves by total reflection X-ray fluorescence: New approaches for air quality monitoring.

    Science.gov (United States)

    Bilo, Fabjola; Borgese, Laura; Dalipi, Rogerta; Zacco, Annalisa; Federici, Stefania; Masperi, Matteo; Leonesio, Paolo; Bontempi, Elza; Depero, Laura E

    2017-03-22

    This work shows that total reflection X-ray fluorescence (TXRF) is a fast, easy and successful tool to determine the presence of potentially toxic elements in atmospheric aerosols precipitations on tree leaves. Leaves are collected in eleven parks of different geographical areas of the Brescia city, Northern Italy, for environmental monitoring purposes. Two sample preparation procedures are considered: microwave acid digestion and the novel SMART STORE method for direct analysis. The latter consists in sandwiching a portion of the leaf between two organic foils, metals free, to save it from contamination and material loss. Mass composition of macro, micro and trace elements is calculated for digested samples, while relative elemental amount are obtained from direct analysis. Washed and unwashed leaves have a different composition in terms of trace elements. Differentiation occurs according to Fe, Pb and Cu contributions, considered as most representative of air depositions, and probably related to anthropogenic sources. Direct analysis is more representative of the composition of air precipitations. Advantages and drawbacks of the presented methods of sample preparation and TXRF analysis are discussed. Results demonstrate that TXRF allows to perform accurate and precise quantitative analysis of digested samples. In addition, direct analysis of leaves may be used as a fast and simple method for screening in the nanograms range.

  15. Fungal monitoring of the indoor air of the Museo de La Plata Herbarium, Argentina.

    Science.gov (United States)

    Mallo, Andrea C; Elíades, Lorena A; Nitiu, Daniela S; Saparrat, Mario C N

    Biological agents, such as fungal spores in the air in places where scientific collections are stored, can attack and deteriorate them. The aim of this study was to gather information on the indoor air quality of the Herbarium of Vascular Plants of the Museo de Ciencias Naturales de La Plata, Argentina, in relation to fungal propagules and inert particles. This study was made using a volumetric system and two complementary sampling methods: (1) a non-viable method for direct evaluation, and (2) a viable method by culture for viable fungal propagules. The non-viable method led to ten spore morphotypes being found from related fungal sources. A total of 4401.88spores/m(3) and 32135.18 inert suspended particles/m(3) were recorded. The viable method led to the finding of nine fungal taxa as viable spores that mostly belonged to anamorphic forms of Ascomycota, although the pigmented yeast Rhodotorula F.C. Harrison (Basidiomycota) was also found. A total count of 40,500fungal CFU/m(3) air was estimated for all the sites sampled. Both the non-viable and viable sampling methods were necessary to monitor the bio-aerosol load in the La Plata Herbarium. The indoor air of this institution seems to be reasonably adequate for the conservation of vascular plants due to the low indoor/outdoor index, low concentrations of air spores, and/or lack of indicators of moisture problems. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Environmental Monitoring, Air Quality, Ambient air monitoring sites are geographic point locations with monitoring equipment, and possibly meteorological instruments, that monitor outdoor, near ground level criteria pollutant concentrations., Published in 2011, 1:24000 (1in=2000ft) scale, Florida Department of Environmental Protection.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Environmental Monitoring, Air Quality dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Field Survey/GPS information as of...

  17. Volatile organic compounds in the air of Izmir, Turkey

    Science.gov (United States)

    Muezzinoglu, Aysen; Odabasi, Mustafa; Onat, Levent

    A sampling program was conducted to determine the ambient VOC levels in the city of Izmir, Turkey during daytime and overnight periods between mid-August and mid-September 1998. Sampling sites were selected at high-density traffic roads and junctions far from stationary VOC sources. Samples were analyzed for benzene, toluene, m, p-xylene and o-xylene (BTX), alkylbenzenes (ethylbenzene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene), n-hexane and, n-heptane. Results were compared with similar data from other cities around the world and for probable health dangers and sources of the compounds. Results of this study indicated that Izmir has rather high ambient BTX concentrations compared to many polluted cities in the world. Toluene was the most abundant VOC in Izmir air and was followed by xylenes, benzene and alkylbenzenes, respectively. All were strongly dependent on the expected daily variations of traffic flow in the city. The concentrations of other VOCs correlated well with benzene concentration at most sampling sites, excluding Gumuldur station indicating that ambient VOC levels were mainly affected by motor vehicle emissions. The toluene-to-benzene ratios for urban and non-urban sites were in good agreement with previously reported values, indicating a good relationship between the motor vehicle emissions and ambient VOC levels.

  18. Air leak: An unusual manifestation of organizing pneumonia secondary to bleomycin

    Science.gov (United States)

    Namitha, R; Nimisha, KP; Yusuf, Nasser; Rauf, CP

    2017-01-01

    Organizing pneumonia (OP) is a less common interstitial lung disease with varying clinical picture. The development of pulmonary air leak in a case of OP is an extremely rare complication. Here, we report the case of a 46-year-old female with carcinoma ovary, postchemotherapy who developed respiratory distress with pneumomediastinum, and subcutaneous emphysema. Lung biopsy showed evidence of OP. This turned out to be a rare case of OP, secondary to bleomycin chemotherapy, presenting with pulmonary air leak. PMID:28360468

  19. Monitoring and Modelling the Trends of Primary and Secondary Air Pollution Precursors: The Case of the State of Kuwait

    Directory of Open Access Journals (Sweden)

    S. M. Al-Salem

    2010-01-01

    Full Text Available Since the beginning of the industrial revolution, processes of different scales have contributed greatly to the pollution and waste load on the environment. More specifically, airborne pollutants associated with chemical processes have contributed greatly on the ecosystem and populations health. In this communication, we review recent activities and trends of primary and secondary air pollutants in the state of Kuwait, a country associated with petroleum, petrochemical, and other industrial pollution. Trends of pollutants and impact on human health have been studied and categorized based on recent literature. More attention was paid to areas known to researchers as either precursor sensitive (i.e., nitrogen oxides (NOx, volatile organic compounds (VOCs or adjacent to upstream- or downstream-related activities. Environmental monitoring and modelling techniques relevant to this study are also reviewed. Two case studies that link recent data with models associated with industrial sectors are also demonstrated, focusing mainly on chemical mass balance (CMB and Gaussian line source modelling. It is concluded that a number of the monitoring stations and regulations placed by the Kuwait Environment Public Authority (KUEPA need up-to-date revisions and better network placement, in agreement with previous findings.

  20. Morus nigra plant leaves as biomonitor for elemental air pollution monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Daud, M.; Khalid, N.; Waheed, S.; Wasim, M.; Arif, M.; Zaidi, J.H. [Pakistan Institute of Nuclear Science and Technology, Islamabad (Pakistan). Chemistry Div.

    2011-07-01

    The present paper deals with the determination of 36 elements in 120 leaf samples of Morus nigra plant to assess their potential as biomonitor for elemental air pollution monitoring. The elemental quantification was made by employing Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectrometric (AAS) techniques. The leaf samples were collected in spring, summer and winter seasons from various sites in Islamabad with different types of anthropogenic activities as well as from a reference site with minimum of such activities. Twenty four soil samples from the respective sites were also analyzed. The reliability of the adopted procedures was established by analyzing the certified reference materials, i.e., citrus leaves-1572 and soil-7, from NIST and IAEA, respectively, under identical experimental conditions and comparing the results obtained with the certified values which are in quite good agreement with each other. The enrichment values and Pollution Load Index (PLI) of the determined elements were computed and discussed accordingly. The elemental translocation from soil to roots, stem and leaves has also been studied by analyzing these parts of the same plant. The results indicated that the leaves of Morus nigra plant have promising potential to monitor the extent of air pollution in the vicinity of industrial as well as in high traffic areas. (orig.)

  1. Surface air concentration and deposition of lead-210 in French Guiana: two years of continuous monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Melieres, Marie-Antoinette E-mail: melieres@glaciog.ujf-grenoble.fr; Pourchet, Michel; Richard, Sandrine

    2003-07-01

    To make up for the lack of data on {sup 210}Pb aerosol deposition in tropical regions and to use this radionuclide as an aerosol tracer,a monitoring station was run for two years at Petit-Saut, French Guiana. Lead-210 concentration in air at ground level was monitored continuously together with atmospheric total deposition. The air concentration has a mean value of 0.23{+-}0.02 mBq m{sup -3} during both wet and dry seasons, and it is only weakly affected by the precipitation mechanism. This result was unexpected in a wet tropical region, with a high precipitation rate. In contrast, deposition clearly correlates with precipitation for low/moderate rainfall (<15 cm per 15-day), while this correlation is masked by strong fluctuations at high rainfall. The estimated mean annual deposition over the last ten years is 163{+-}75 Bq m{sup -2} y{sup -1}. This provides a procedure fo estimating this mean flux at other sites in French Guiana.

  2. International Diffusion of Open Path FTIR Technology and Air Monitoring Methods: Taiwan (Republic of China).

    Science.gov (United States)

    Giese-Bogdan, Stefan It; Levine, Steven P

    1996-08-01

    International cooperation and diffusion of environmental technologies is a central goal of the U.S. EPA Environmental Technology Initiative, and is of great interest to many countries. One objective is to exchange knowledge and skills concerning new monitoring technologies. In this case, the technology was open path Fourier Transform Infrared Spectrometry (op-FTIR). Taiwan is a high-technology, newly industrialized country. Because of air pollution problems, it is interested in obtaining skills, knowledge, and instrumentation for monitoring air pollutants. In April 1994, the Industrial Technology Research Institute, Center for Industrial Safety and Health Technology (ITRI/CISH) in Hsinchu, Taiwan, requested intensive training in op-FTIR. Training was held between September 30,1994 and October 29,1994. During the stay, the instructor provided intensive training on op-FTIR theory as well as an introduction to available instrumentation and software. The training concluded with a field demonstration of the instrumentation in a manufacturing facility. This report gives an overview of the training methods, structure, and materials in the op-FTIR training course. It will also address various problems encountered while teaching this course. In addition, the potential use for this technology in industry as well as by the Taiwanese government will be explained.

  3. Certified reference materials for organic contaminants for use in monitoring of the aquatic environment

    NARCIS (Netherlands)

    Boer, de J.; McGovern, E.

    2001-01-01

    Over the last three decades organic contaminants have been of increasing importance in environmental monitoring. Dioxins, furans, polychlorinated biphenyls and organochlorine pesticides have determined the environmental research agenda. This has led to an increasing demand for certified reference

  4. ABOUT THE ORGANIZATION OF THE LEGAL FOUNDATIONS OF THE NEW EDITION OF THE UKRAINIAN AIR CODE

    Directory of Open Access Journals (Sweden)

    R. T. Baran

    2009-06-01

    Full Text Available The authors’ own scientific and practical approaches to the issuing of the clauses of new Air Code of Ukraine are proposed. There are presented the conceptual basics of organization and legal regulation of the legislative instructions, which especially concern to the chapters regarding regulation of the conditions and order of use of the air space of Ukraine, organizational and economic aspects of activities of airports etc. The models of structuring the organizational subsystems for the commercial and state sectors of the air space and the forms of the organizationalandmanagerial structures, managerial methods and economical airport systems are also proposed.

  5. Quantitative Assessment of Detection Frequency for the INL Ambient Air Monitoring Network

    Energy Technology Data Exchange (ETDEWEB)

    Sondrup, A. Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rood, Arthur S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    A quantitative assessment of the Idaho National Laboratory (INL) air monitoring network was performed using frequency of detection as the performance metric. The INL air monitoring network consists of 37 low-volume air samplers in 31 different locations. Twenty of the samplers are located on INL (onsite) and 17 are located off INL (offsite). Detection frequencies were calculated using both BEA and ESER laboratory minimum detectable activity (MDA) levels. The CALPUFF Lagrangian puff dispersion model, coupled with 1 year of meteorological data, was used to calculate time-integrated concentrations at sampler locations for a 1-hour release of unit activity (1 Ci) for every hour of the year. The unit-activity time-integrated concentration (TICu) values were calculated at all samplers for releases from eight INL facilities. The TICu values were then scaled and integrated for a given release quantity and release duration. All facilities modeled a ground-level release emanating either from the center of the facility or at a point where significant emissions are possible. In addition to ground-level releases, three existing stacks at the Advanced Test Reactor Complex, Idaho Nuclear Technology and Engineering Center, and Material and Fuels Complex were also modeled. Meteorological data from the 35 stations comprising the INL Mesonet network, data from the Idaho Falls Regional airport, upper air data from the Boise airport, and three-dimensional gridded data from the weather research forecasting model were used for modeling. Three representative radionuclides identified as key radionuclides in INL’s annual National Emission Standards for Hazardous Air Pollutants evaluations were considered for the frequency of detection analysis: Cs-137 (beta-gamma emitter), Pu-239 (alpha emitter), and Sr-90 (beta emitter). Source-specific release quantities were calculated for each radionuclide, such that the maximum inhalation dose at any publicly accessible sampler or the National

  6. Monitoring and verifying changes of organic carbon in soil

    Science.gov (United States)

    Post, W.M.; Izaurralde, R. C.; Mann, L. K.; Bliss, Norman B.

    2001-01-01

    Changes in soil and vegetation management can impact strongly on the rates of carbon (C) accumulation and loss in soil, even over short periods of time. Detecting the effects of such changes in accumulation and loss rates on the amount of C stored in soil presents many challenges. Consideration of the temporal and spatial heterogeneity of soil properties, general environmental conditions, and management history is essential when designing methods for monitoring and projecting changes in soil C stocks. Several approaches and tools will be required to develop reliable estimates of changes in soil C at scales ranging from the individual experimental plot to whole regional and national inventories. In this paper we present an overview of soil properties and processes that must be considered. We classify the methods for determining soil C changes as direct or indirect. Direct methods include field and laboratory measurements of total C, various physical and chemical fractions, and C isotopes. A promising direct method is eddy covariance measurement of CO2 fluxes. Indirect methods include simple and stratified accounting, use of environmental and topographic relationships, and modeling approaches. We present a conceptual plan for monitoring soil C changes at regional scales that can be readily implemented. Finally, we anticipate significant improvements in soil C monitoring with the advent of instruments capable of direct and precise measurements in the field as well as methods for interpreting and extrapolating spatial and temporal information.

  7. Feasibility of poplar foliages as bio-monitors for organochlorine pesticides in air

    Institute of Scientific and Technical Information of China (English)

    DAI TianYou; ZHU XiaoHua; WANG Wei; MENG Wei; YU YunJiang; LI FaSheng; YANG YongLiang; LIU Feng

    2009-01-01

    The feasibility of poplar (P. tomentosa) foliages as passive biomonitors for organochlorine pesticides In air was explored. The accumulation patterns of poplar foliages for HCHs, DDTs and HCB were similar, the amount of HCHs, DDTs and HCB increased with foliage growth in spring, and decreased thereafter. There was no obvious distinction in the accumulation styles between the adult leaf and the leaf-litter. This accumulation pattern is likely related to the growing process of the poplar foliage, and was ob-served for the first time in our work, giving an evidence for the "bud burst effect" in plants. The tech-nical HCH and DDT were used largely in history and not used in recent years, but there was a little usage of lindane and new input of o,p'DDT in recent years, and dicofol usage may be the main source of o,p'-DDT. Concentrations of HCHs, DDTs and HCB in poplar foliages were similar to those in pine needles at the corresponding period, and there is a positive strong correlation between OCP concen-tration data of two kinds of trees. It presents no difference in the accumulation style between two kinds of trees. The level of OCPs in the poplar foliage reflected the pollution status of OCPs in air. The result of this work showed that the poplar foliage can be used as the bio-monitor of OCPs in air.

  8. Pt-TiO2/MWCNTs Hybrid Composites for Monitoring Low Hydrogen Concentrations in Air

    Directory of Open Access Journals (Sweden)

    Stefano Trocino

    2012-09-01

    Full Text Available Hydrogen is a valuable fuel for the next energy scenario. Unfortunately, hydrogen is highly flammable at concentrations higher than 4% in air. This aspect makes the monitoring of H2 leaks an essential issue for safety reasons, especially in the transportation field. In this paper, nanocomposites based on Pt-doped TiO2/multiwalled carbon nanotubes (MWCNTs have been introduced as sensitive materials for H2 at low temperatures. Pt-TiO2/MWNTs nanocomposites with different composition have been prepared by a simple wet chemical procedure and their morphological, microstructural and electrical properties were investigated. Resistive thick-film devices have been fabricated printing the hybrid nanocomposites on alumina substrates provided with Pt interdigitated electrodes. Electrical tests in air have shown that embedding MWCNTs in the TiO2 matrix modify markedly the electrical conductivity, providing a means to decrease the resistance of the sensing layer. Pt acts as a catalytic additive. Pt-TiO2/MWNTs-based sensors were found to be sensitive to hydrogen at concentrations between 0.5 and 3% in air, satisfying the requisites for practical applications in hydrogen leak detection devices.

  9. Could gingko foliage serve as a bio-monitor for organochlorine pesticides in air?

    Institute of Scientific and Technical Information of China (English)

    DAI TianYou; ZHU XiaoHua; MENG Wei; YU YunJiang; WANG Wei; LI FaSheng; LIU Feng; YANG YongLiang; WU DaNian

    2008-01-01

    The feasibility of gingko (Gingo Biloba) foliage as a passive bio-monitor for organochlorine pesticides in air was explored. The accumulation patterns of hexachlorocyclohexanes (HCHs), dichlorodiphenyl-trichloroethanes (DDTs) and hexachlorobenzene (HCB) in gingko foliage were similar; the amounts of HCHs, DDTs and HCB increased with foliage growth in spring and decreased thereafter. This accumu-lation pattern is likely related to the growing process of the gingko foliage, which was observed for the first time in our work, giving a piece of evidence for the "bud burst effect" in plants. Compared with those in pine needles in 1980's, the residual levels of HCHs and DDTs have declined obviously in Bei-jing, indicating that the ban on the production and use of organochlorine pesticides (OCPs) in our country is effective; however, the amount of HCB has increased, indicating great progress of chemical industry in Beijing. The analysis for the source of OCPs in the gingko foliage showed that the technical HCHs and DDTs were used largely in history, but were not used in recent years. A little lidane has been used and there was a new input of o,p'-DDT in recent years; dicofol usage may be the main source of o,p'-DDT. Concentrations of HCHs, DDTs and HCB in gingko foliages were similar to those in pine nee-dles in the corresponding period and there is a strong positive correlation between the OCPs concen-tration data obtained from these two kinds of trees. It presents no difference in the accumulation style between these two kinds of trees. The level of OCPs in the gingko foliage reflects the pollution status of OCP in air. The result of this work shows that the gingko foliage can be used as a bio-monitor of OCPs in air.

  10. Air-Sense: indoor environment monitoring evaluation system based on ZigBee network

    Science.gov (United States)

    Huang, Yang; Hu, Liang; Yang, Disheng; Liu, Hengchang

    2017-08-01

    In the modern life, people spend most of their time indoors. However, indoor environmental quality problems have always been affecting people’s social activities. In general, indoor environmental quality is also related to our indoor activities. Since most of the organic irritants and volatile gases are colorless, odorless and too tiny to be seen, because we have been unconsciously overlooked indoor environment quality. Consequently, our body suffer a great health problem. In this work, we propose Air-Sense system which utilizes the platform of ZigBee Network to collect and detect the real-time indoor environment quality. What’s more, Air-Sense system can also provide data analysis, and visualizing the results of the indoor environment to the user.

  11. Sensory and Physiological Effects on Humans of Combined Exposures to Air Temperatures and Volatile Organic Compounds

    DEFF Research Database (Denmark)

    Mølhave, Lars; Liu, Zunyong; Jørgensen, Anne Hempel

    1993-01-01

    Ten healthy humans were exposed to combinations of volatile organic compounds (VOCs) and air temperature (0 mg/m3 and 10 mg/m3 of a mixture of 22 volatile organic compounds and 18, 22 and 26° C). Previously demonstrated effects of VOCs and thermal exposures were replicated. For the first time nasal...... cross-sectional areas and nasal volumes, as measured by acoustic rhinometry, were shown to decrease with decreasing temperature and increasing VOC exposure. Temperature and pollutant exposures affected air quality, the need for more ventilation, skin humidity on the forehead, sweating, acute sensory...

  12. Air pollutant monitoring for the East Bay Children's Respiratory Health Study

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Hotchi, Toshifumi; Hodgson, Alfred T.

    2002-11-01

    This report describes the methodology and presents the summary results of the air pollutant monitoring program conducted by Lawrence Berkeley National Laboratory in support of the East Bay Children's Respiratory Health Study. The full study is examining the effects of chronic exposure to traffic-related pollutants on respiratory health among 3rd and 4th grade children attending ten neighborhood elementary schools in the San Francisco East Bay Area (Hayward, San Leandro and Oakland, CA). The demographically similar schools are located at varying distances from the I-880 and CA-92 freeways. Several schools were selected because they are located within 300 m in the predominant downwind direction (east) from either of the freeways. Measurements of multiple pollutants were made outdoors at the schools over 1-2 week intervals for 14 weeks in spring and eight weeks in fall 2001 using a custom-designed and validated package of commercially available monitoring equipment. Particulate matter was sampled over all hours (24 h per day) or during schools hours only with battery-operated programmable pumps and inlet devices for PM{sub 10} and PM{sub 2.5}. These pumps were modified to allow for up to 10 days of continuous operation. Fine particle mass and black carbon (BC) were determined from the collected filters. Nitrogen oxides (NO{sub x} and NO{sub 2}) were measured with passive samplers. Carbon monoxide (CO) was measured continuously with an electrochemical sensor. Gasoline-related volatile organic compounds (VOCs) were measured with passive samplers during three 4-week intervals in spring 2001 and two 4-week periods in early 2002. All samplers were deployed in a metal cabinet located outside at each school. Ranges of study average pollutant concentrations (all-hours) at the ten individual schools were: NO{sub x}, 33-68 ppb; NO{sub 2}, 19-31 ppb; PM{sub 10} mass, 27-32 {micro}g/m{sup 3}; PM{sub 2.5} mass, 12-15 {micro}g/m{sup 3}; and BC associated with PM{sub 2.5}, 0

  13. Expanding NevCAN capabilities: monitoring cold air drainage flow along a narrow wash within a Montane to PJ ecotone

    Science.gov (United States)

    Bird, B. M.; Devitt, D.

    2012-12-01

    Cold air drainage flows are a naturally occurring physical process of mountain systems. Plant communities that exist in cold air drainage basins respond to these localized cold air trends, and have been shown to be decoupled from larger global climate weather systems. The assumption that air temperature decreases with altitude is violated within these systems and climate model results based on this assumption would ultimately be inaccurate. In arid regions, high radiation loads lead to significant long wave radiation being emitted from the ground later in the day. As incoming radiation ceases, the surface very quickly loses energy through radiative processes, leading to surface inversions and enhanced cold air drainage opportunities. This study is being conducted in the Mojave desert on Sheep Mountain located between sites 3 and 4 of the NSF EPSCoR network. Monitoring of cold air drainage was initiated in September of 2011within a narrow ravine located between the 2164 and 2350 meter elevation. We have installed 25 towers (5 towers per location situated at the central low point in a ravine and at equal distances up the sides of the ravine on both the N and S facing slopes) to assess air temperatures from 0.1 meters to a height of 3 meters at 25m intervals. Our goal is to better understand the connection between cold air movement and plant physiological response. The species monitored in this study include: Pinus ponderosa (common name: Ponderosa Pine), Pinus pinyon (Pinyon Pine), Juniperus osteosperma (Utah juniper), Cercocarpus intricatus (Mountain Mahogany) and Symphoricarpos (snowberry). Hourly air temperature measurements within the wash are being captured from 100 ibuttons placed within PVC solar radiation shields. We are also developing a modeling approach to assess the three dimensional movement of cold air over time by incorporating wind vectors captured from 5 2D sonic anemometers. Wind velocities will be paired with air temperatures to better understand

  14. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring

    Directory of Open Access Journals (Sweden)

    R. Piedrahita

    2014-03-01

    Full Text Available Advances in embedded systems and low-cost gas sensors are enabling a new wave of low cost air quality monitoring tools. Our team has been engaged in the development of low-cost wearable air quality monitors (M-Pods using the Arduino platform. The M-Pods use commercially available metal oxide semiconductor (MOx sensors to measure CO, O3, NO2, and total VOCs, and NDIR sensors to measure CO2. MOx sensors are low in cost and show high sensitivity near ambient levels; however they display non-linear output signals and have cross sensitivity effects. Thus, a quantification system was developed to convert the MOx sensor signals into concentrations. Two deployments were conducted at a regulatory monitoring station in Denver, Colorado. M-Pod concentrations were determined using laboratory calibration techniques and co-location calibrations, in which we place the M-Pods near regulatory monitors to then derive calibration function coefficients using the regulatory monitors as the standard. The form of the calibration function was derived based on laboratory experiments. We discuss various techniques used to estimate measurement uncertainties. A separate user study was also conducted to assess personal exposure and M-Pod reliability. In this study, 10 M-Pods were calibrated via co-location multiple times over 4 weeks and sensor drift was analyzed with the result being a calibration function that included drift. We found that co-location calibrations perform better than laboratory calibrations. Lab calibrations suffer from bias and difficulty in covering the necessary parameter space. During co-location calibrations, median standard errors ranged between 4.0–6.1 ppb for O3, 6.4–8.4 ppb for NO2, 0.28–0.44 ppm for CO, and 16.8 ppm for CO2. Median signal to noise (S/N ratios for the M-Pod sensors were higher for M-Pods than the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO, 1.1 compared to 10.0; and for CO2, 42

  15. Satellite and in-situ monitoring of urban air pollution in relation with children's asthma

    Science.gov (United States)

    Dida, Mariana R.; Zoran, Maria A.

    2013-10-01

    Urban air pollution and especially aerosols have significant negative health effects on urban population, of which children are most exposed for the rapid increase of asthma disease. An allergic reaction to different allergens is a major contributor to asthma in urban children, but new research suggests that the allergies are just one part of a more complex story. Very early exposure to certain components of air pollution can increase the risk of developing of different allergies by age 7. The epidemiological research on the mutagenic effects of airborne particulate matter pointed their capability to reach deep lung regions, being vehicles of toxic substances. The current study presents a spatio-temporal analysis of the aerosol concentrations in relation with meteorological parameters in two size fractions (PM10 and PM2.5) and possible health effects in Bucharest metropolitan area. Both in-situ monitoring data as well as MODIS Terra/Aqua time-series satellite data of particle matter PM2.5 and PM10 concentrations have been used to qualitatively assess distribution of aerosols in the greater metropolitan are of Bucharest comparative with some other little towns in Romania during 2010- 2011 period. It was found that PM2.5 and PM10 aerosols exhibit their highest concentration mostly in the central part of the towns, mainly due to road traffic as well as in the industrialized parts outside of city's centre. Pediatric asthma can be managed through medications prescribed by a healthcare provider, but the most important aspect is to avoid urban locations with high air pollution concentrations of air particles and allergens.

  16. 2000 annual report of the air pollution monitoring network; Jahresbericht 2000 des Messnetzes

    Energy Technology Data Exchange (ETDEWEB)

    Beilke, S.; Uhse, K. (comps.)

    2001-11-01

    In this report the results of the air pollution monitoring network of the Federal Environmental Agency (FEA) are presented for the year 2000. The results are interpreted and compared with measurements carried out in previous years. The network consists of 23 stations situated in rural areas. As the data set was thoroughly quality controlled reliable statements on long-term trends of air pollutants can be made. In general air quality in Germany has considerably improved over the last decades especially in the years after 1990. As an example, lowest concentrations of SO{sub 2} and total particulate matter were observed in 2000 since the beginning of measurements in the late 1960s and early 1970s. Other examples for an improvement of air quality are the increase of rainwater pH from 4.2 - 4.3 to 4.8 - 5.0 between 1982 and 2000 and a decline of ozone peak concentrations over the last decade. In contrast to ozone peak values mean concentrations have slightly increased during this period. (orig.) [German] Das Umweltbundesamt betreibt ein bundesweites Messnetz, das heute aus insgesamt 23 in laendlichen Regionen gelegenen Stationen besteht. Im vorliegenden Jahresbericht 2000 werden die Ergebnisse aus dem UBA-Messnetz fuer das Jahr 2000 vorgestellt, interpretiert und mit den Ergebnissen aus frueheren Jahren verglichen. Die Messdaten sind in sich homogen und wurden einer eingehenden Qualitaetspruefung unterzogen. Zusammenfassend zeigen die Messungen, dass sich die grossraeumige Luftqualitaet in Deutschland waehrend der letzten Jahrzehnte, insbesondere nach 1990, erheblich verbessert hat. So wurden beispielsweise im Jahre 2000 die niedrigsten SO{sub 2}- und Schwebstaubkonzentrationen im UBA-Messnetz seit Beginn der Messungen Ende der 60er und Anfang der 70er Jahre gemessen. Erfreulich ist auch die deutliche Abnahme des Saeuregehaltes im Regen in den vergangenen 2 Jahrzehnten sowie der Rueckgang der Ozonspitzenkonzentrationen waehrend der letzten 10 Jahre. Dagegen haben die

  17. Cytotoxic and Inflammatory Potential of Air Samples from Occupational Settings with Exposure to Organic Dust

    Directory of Open Access Journals (Sweden)

    Susana Viegas

    2017-03-01

    Full Text Available Organic dust and related microbial exposures are the main inducers of several respiratory symptoms. Occupational exposure to organic dust is very common and has been reported in diverse settings. In vitro tests using relevant cell cultures can be very useful for characterizing the toxicity of complex mixtures present in the air of occupational environments such as organic dust. In this study, the cell viability and the inflammatory response, as measured by the production of pro-inflammatory cytokines tumor necrosis factor-α (TNFα and interleukin-1 β (IL-1β, were determined in human macrophages derived from THP-1 monocytic cells. These cells were exposed to air samples from five occupational settings known to possess high levels of contamination of organic dust: poultry and swine feed industries, waste sorting, poultry production and slaughterhouses. Additionally, fungi and particle contamination of those settings was studied to better characterize the organic dust composition. All air samples collected from the assessed workplaces caused both cytotoxic and pro-inflammatory effects. The highest responses were observed in the feed industry, particularly in swine feed production. This study emphasizes the importance of measuring the organic dust/mixture effects in occupational settings and suggests that differences in the organic dust content may result in differences in health effects for exposed workers.

  18. Solid-Sorbent Air Sampler

    Science.gov (United States)

    Galen, T. J.

    1986-01-01

    Portable unit takes eight 24-hour samples. Volatile organic compounds in air collected for analysis by portable, self-contained sampling apparatus. Sampled air drawn through sorbent material, commercial porous polymer of 2, 3-diphenyl-p-phenylene oxide. High-boiling-point organic compounds adsorbed onto polymer, while low-boiling-point organics pass through and returned to atmosphere. Sampler includes eight sample tubes filled with polymeric sorbent. Organic compounds in atmosphere absorbed when air pumped through sorbent. Designed for checking air in spacecraft, sampler adaptable to other applications as leak detection, gas-mixture analysis, and ambient-air monitoring.

  19. Monitoring of PCDDs, PCDFs, DLPCBs and PAHs in marine organisms from the coastal areas of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Moon, H.B.; Choi, H.G.; Lee, S.J.; Kim, S.S.; Choi, M. [National Fisheries Research and Development Institute, Busan (Korea); Ok, G. [Pukyong National Univ., Busan (Korea)

    2004-09-15

    Monitoring of toxic organic contaminants is the fundamental work to study ecotoxicology. Bioaccumulative monitoring essentially can provide comprehensive information on the average variation in time and space of the concentrations of contaminants in the marine aquatic environments, assessing the extents and toxic effects of persistent organic chemicals for the coastal marine ecosystems. A large variety of organic chemicals, primarily anthropogenic pollutants, are transported into coastal marine ecosystems through various routes. Marine organisms may be exposed to toxic organic contaminants by contact with contaminated seawater and sediments, either on the seabed or through suspended sediments, or by ingestion of contaminated prey. Due to low water soulubility and high octanol/water partition coefficients (Kow) in seawater, these chemicals can retain and concentrate in fatty tissues of these marine organisms such as migrate into fish, shellfish and invertebrates. In aquatic systems, the highly lipophilic and hydrophobic organic pollutants tend to bioconcentrate from water to aquatic animal and then biomagnify up through the multistep food chain. Hence, these organisms reflect the pollution extent of persistent toxic organic pollutants and some species are used as bio-indicators at different environmental conditions and foodweb. Although several toxic microcontaminants have previously been determined in some locations for marine organisms from the Korean coastal environments, there are few reported data on levels of PCDDs/DFs, DLPCBs and PAHs in marine organisms, particularly shellfish, from the Korean coastal ecosystems. In this study, we planned to monitor the dioxins and dioxin-like contaminants pollution in marine environment of Korea.

  20. Water- and Air-Quality Monitoring of the Sweetwater Reservoir Watershed, San Diego County, California-Phase One Results, Continued, 1999-2001

    Science.gov (United States)

    Mendez, Gregory O.; Foreman, William T.; Sidhu, Jagdeep S.; Majewski, Michael S.

    2007-01-01

    In 1998, the U.S. Geological Survey, in cooperation with the Sweetwater Authority, began a study to assess the overall health of the Sweetwater watershed with respect to chemical contamination. The study included regular sampling of air and water at Sweetwater Reservoir for chemical contaminants, including volatile organic compounds, polycyclic aromatic hydrocarbons, pesticides, and major and trace elements. Background water samples were collected at Loveland Reservoir for volatile organic compounds and pesticides. The purpose of this study was to monitor changes in contaminant composition and concentration in the air and water resulting from the construction and operation of State Route 125 near Sweetwater Reservoir. To accomplish this, the study was divided into two phases. Phase One sampling was designed to establish baseline conditions for target compounds in terms of detection frequency and concentration in air and water. Phase Two sampling is planned to continue at the established monitoring sites during and after construction of State Route 125 to assess the chemical impact this roadway alignment project may have on the water quality in the reservoir. In addition to the ongoing data collection, several special studies were initiated to assess the occurrence of specific chemicals of concern, such as low-use pesticides, trace metals, and wastewater compounds. This report describes the study design, and the sampling and analytical methods, and presents the results for the second and third years of the study (October 1999 to September 2001). Data collected during the first year of sampling (October 1998 to September 1999) were published in 2002.

  1. Discontinuous and Continuous Indoor Air Quality Monitoring in Homes with Fireplaces or Wood Stoves as Heating System.

    Science.gov (United States)

    de Gennaro, Gianluigi; Dambruoso, Paolo Rosario; Di Gilio, Alessia; Di Palma, Valerio; Marzocca, Annalisa; Tutino, Maria

    2015-12-24

    Around 50% of the world's population, particularly in developing countries, uses biomass as one of the most common fuels. Biomass combustion releases a considerable amount of various incomplete combustion products, including particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). The paper presents the results of Indoor Air Quality (IAQ) measurements in six houses equipped with wood burning stoves or fireplaces as heating systems. The houses were monitored for 48-h periods in order to collect PM10 samples and measure PAH concentrations. The average, the maximum and the lowest values of the 12-h PM10 concentration were 68.6 μg/m³, 350.7 μg/m³ and 16.8 μg/m³ respectively. The average benzo[a]pyrene 12-h concentration was 9.4 ng/m³, while the maximum and the minimum values were 24.0 ng/m³ and 1.5 ng/m³, respectively. Continuous monitoring of PM10, PAHs, Ultra Fine Particle (UFP) and Total Volatile Organic Compounds (TVOC) was performed in order to study the progress of pollution phenomena due to biomass burning, their trends and contributions to IAQ. The results show a great heterogeneity of impacts on IAQ in terms of magnitude and behavior of the considered pollutants' concentrations. This variability is determined by not only different combustion technologies or biomass quality, but overall by different ignition mode, feeding and flame management, which can also be different for the same house. Moreover, room dimensions and ventilation were significant factors for pollution dispersion. The increase of PM10, UFP and PAH concentrations, during lighting, was always detected and relevant. Continuous monitoring allowed singling out contributions of other domestic sources of considered pollutants such as cooking and cigarettes. Cooking contribution produced an impact on IAQ in same cases higher than that of the biomass heating system.

  2. Discontinuous and Continuous Indoor Air Quality Monitoring in Homes with Fireplaces or Wood Stoves as Heating System

    Directory of Open Access Journals (Sweden)

    Gianluigi de Gennaro

    2015-12-01

    Full Text Available Around 50% of the world’s population, particularly in developing countries, uses biomass as one of the most common fuels. Biomass combustion releases a considerable amount of various incomplete combustion products, including particulate matter (PM and polycyclic aromatic hydrocarbons (PAHs. The paper presents the results of Indoor Air Quality (IAQ measurements in six houses equipped with wood burning stoves or fireplaces as heating systems. The houses were monitored for 48-h periods in order to collect PM10 samples and measure PAH concentrations. The average, the maximum and the lowest values of the 12-h PM10 concentration were 68.6 μg/m3, 350.7 μg/m3 and 16.8 μg/m3 respectively. The average benzo[a]pyrene 12-h concentration was 9.4 ng/m3, while the maximum and the minimum values were 24.0 ng/m3 and 1.5 ng/m3, respectively. Continuous monitoring of PM10, PAHs, Ultra Fine Particle (UFP and Total Volatile Organic Compounds (TVOC was performed in order to study the progress of pollution phenomena due to biomass burning, their trends and contributions to IAQ. The results show a great heterogeneity of impacts on IAQ in terms of magnitude and behavior of the considered pollutants’ concentrations. This variability is determined by not only different combustion technologies or biomass quality, but overall by different ignition mode, feeding and flame management, which can also be different for the same house. Moreover, room dimensions and ventilation were significant factors for pollution dispersion. The increase of PM10, UFP and PAH concentrations, during lighting, was always detected and relevant. Continuous monitoring allowed singling out contributions of other domestic sources of considered pollutants such as cooking and cigarettes. Cooking contribution produced an impact on IAQ in same cases higher than that of the biomass heating system.

  3. AEROCAN, the Canadian sub-network of AERONET: Aerosol monitoring and air quality applications

    Science.gov (United States)

    Sioris, Christopher E.; Abboud, Ihab; Fioletov, Vitali E.; McLinden, Chris A.

    2017-10-01

    Previous studies have demonstrated the utility of AERONET (Aerosol Robotic Network) aerosol optical depth (AOD) data for monitoring the spatial variability of particulate matter (PM) in relatively polluted regions of the globe. AEROCAN, a Canadian sub-network of AERONET, was established 20 years ago and currently consists of twenty sites across the country. In this study, we examine whether the AEROCAN sunphotometer data provide evidence of anthropogenic contributions to ambient particulate matter concentrations in relatively clean Canadian locations. The similar weekly cycle of AOD and PM2.5 over Toronto provides insight into the impact of local pollution on observed AODs. High temporal correlations (up to r = 0.78) between daily mean AOD (or its fine-mode component) and PM2.5 are found at southern Ontario AEROCAN sites during May-August, implying that the variability in the aerosol load resides primarily in the boundary layer and that sunphotometers capture day-to-day PM2.5 variations at moderately polluted sites. The sensitivity of AEROCAN AOD data to anthropogenic surface-level aerosol enhancements is demonstrated using boundary-layer wind information for sites near sources of aerosol or its precursors. An advantage of AEROCAN relative to the Canadian in-situ National Air Pollution Surveillance (NAPS) network is the ability to detect free tropospheric aerosol enhancements, which can be large in the case of lofted forest fire smoke or desert dust. These aerosol plumes eventually descend to the surface, sometimes in populated areas, exacerbating air quality. In cases of large AOD (≥0.4), AEROCAN data are also useful in characterizing the aerosol type. The AEROCAN network includes three sites in the high Arctic, a region not sampled by the NAPS PM2.5 monitoring network. These polar sites show the importance of long-range transport and meteorology in the Arctic haze phenomenon. Also, AEROCAN sunphotometers are, by design and due to regular maintenance, the most

  4. Evaluation of gas-particle partitioning in a regional air quality model for organic pollutants

    Science.gov (United States)

    Efstathiou, Christos I.; Matejovičová, Jana; Bieser, Johannes; Lammel, Gerhard

    2016-12-01

    Persistent organic pollutants (POPs) are of considerable concern due to their well-recognized toxicity and their potential to bioaccumulate and engage in long-range transport. These compounds are semi-volatile and, therefore, create a partition between vapour and condensed phases in the atmosphere, while both phases can undergo chemical reactions. This work describes the extension of the Community Multiscale Air Quality (CMAQ) modelling system to POPs with a focus on establishing an adaptable framework that accounts for gaseous chemistry, heterogeneous reactions, and gas-particle partitioning (GPP). The effect of GPP is assessed by implementing a set of independent parameterizations within the CMAQ aerosol module, including the Junge-Pankow (JP) adsorption model, the Harner-Bidleman (HB) organic matter (OM) absorption model, and the dual Dachs-Eisenreich (DE) black carbon (BC) adsorption and OM absorption model. Use of these descriptors in a modified version of CMAQ for benzo[a]pyrene (BaP) results in different fate and transport patterns as demonstrated by regional-scale simulations performed for a European domain during 2006. The dual DE model predicted 24.1 % higher average domain concentrations compared to the HB model, which was in turn predicting 119.2 % higher levels compared to the baseline JP model. Evaluation with measurements from the European Monitoring and Evaluation Programme (EMEP) reveals the capability of the more extensive DE model to better capture the ambient levels and seasonal behaviour of BaP. It is found that the heterogeneous reaction of BaP with O3 may decrease its atmospheric lifetime by 25.2 % (domain and annual average) and near-ground concentrations by 18.8 %. Marginally better model performance was found for one of the six EMEP stations (Košetice) when heterogeneous BaP reactivity was included. Further analysis shows that, for the rest of the EMEP locations, the model continues to underestimate BaP levels, an observation that can be

  5. Portable and low-cost sensors in monitoring air qualities in China

    Science.gov (United States)

    Ouyang, Bin; Popoola, Lekan; Jones, Roderic; Li, Chunlin; Chen, Jianmin

    2016-04-01

    The fast dynamics and the associated high spatial variability of the atmosphere calls for monitoring techniques that are robust, portable, low-power and ideally cheap (which thus allows for easy deployment and little maintenance needs over long measurement period), yet still offering sufficient sensitivity for measuring typical air pollutants at their ambient levels. We have over years developed a measuring suite (SNAQ box, Sensor Network for Air Quality), which weighs ~2.5 kg and has dimension of 30 cm (L)*20 cm (W)* 15 cm (H), and is capable of measuring wind speed and direction, relative humidity, gas species CO, NO, NO2, O3, SO2 (all based on electrochemical sensors), CO2 (based on NDIR, non-dispersive infrared) and total VOCs (based on PID, photoionization detector), and size-speciated particles (based on optical counting method with cut-off in size at 0.34 microns). Two of these boxes have been deployed in China during the 2015 Yangtze River campaign led by Fudan University, China during 22nd/Nov and 05th/Dec. One of the two boxes was mounted on a monitoring ship that sailed along the river aiming at capturing primarily emissions from ships, and the other was carried by a van that drove on roads but followed the track of the ship during the same period. Preliminary analysis of the data revealed that measurements were successful on both platforms for most of the targeted species with essentially no need of personnel interference during the entire campaign. Emission ratio of CO against NOx, or that of CO/NOx against CO2, for different dominating emission sources (vehicles vs. ships), can be readily quantified. Ongoing analysis includes correlating the measured pollution levels with different source profiles as well as meteorology conditions and understanding the background aerosol size profiles. We conclude that this technique provides a viable solution not only for routine point measurements of air quality in China, but also as construction unit for building

  6. Monitoring of heavy metal concentrations in home outdoor air using moss bags

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, Marcela, E-mail: arivera@creal.ca [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); Universitat Pompeu Fabra, Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain); Zechmeister, Harald [University of Vienna, Faculty of Life Sciences, Vienna (Austria); Medina-Ramon, Mercedes; Basagana, Xavier [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain); Foraster, Maria [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); Universitat Pompeu Fabra, Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain); Bouso, Laura [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain); Moreno, Teresa [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona (Spain); Solanas, Pascual; Ramos, Rafael [Research Unit, Family Medicine, Girona, Jordi Gol Institute for Primary Care Research (IDIAP Jordi Gol), Catalan Institute of Health, Catalunya (Spain); Department of Medical Sciences, School of Medicine, University of Girona (Spain); Koellensperger, Gunda [University of Natural Resources and Applied Life Sciences, Vienna (Austria); Deltell, Alexandre [Polytechnic School, GREFEMA, University of Girona (Spain); Vizcaya, David [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); Universitat Pompeu Fabra, Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain)

    2011-04-15

    One monitoring station is insufficient to characterize the high spatial variation of traffic-related heavy metals within cities. We tested moss bags (Hylocomium splendens), deployed in a dense network, for the monitoring of metals in outdoor air and characterized metals' long-term spatial distribution and its determinants in Girona, Spain. Mosses were exposed outside 23 homes for two months; NO{sub 2} was monitored for comparison. Metals were not highly correlated with NO{sub 2} and showed higher spatial variation than NO{sub 2}. Regression models explained 61-85% of Cu, Cr, Mo, Pb, Sb, Sn, and Zn and 72% of NO{sub 2} variability. Metals were strongly associated with the number of bus lines in the nearest street. Heavy metals are an alternative traffic-marker to NO{sub 2} given their toxicological relevance, stronger association with local traffic and higher spatial variability. Monitoring heavy metals with mosses is appealing, particularly for long-term exposure assessment, as mosses can remain on site many months without maintenance. - Research highlights: > Moss bags can be used to measure the metal's long-term spatial distribution within cities. > Heavy metals in mosses are not highly correlated with ambient NO{sub 2} concentrations. > Heavy metals show higher spatial variation and association with traffic than NO{sub 2}. > Bus lines in the nearest street explain 75-85% of Mo, Cr, Sb, Sn and Cu variability. > Moss bags are useful for long-term at home exposure assessment in epidemiological studies. - The long-term spatial distribution of heavy metals, measured with moss bags, is mainly determined by proximity to bus lines.

  7. Spatially Resolved Monitoring of Drying of Hierarchical Porous Organic Networks.

    Science.gov (United States)

    Velasco, Manuel Isaac; Silletta, Emilia V; Gomez, Cesar G; Strumia, Miriam C; Stapf, Siegfried; Monti, Gustavo Alberto; Mattea, Carlos; Acosta, Rodolfo H

    2016-03-01

    Evaporation kinetics of water confined in hierarchal polymeric porous media is studied by low field nuclear magnetic resonance (NMR). Systems synthesized with various degrees of cross-linker density render networks with similar pore sizes but different response when soaked with water. Polymeric networks with low percentage of cross-linker can undergo swelling, which affects the porosity as well as the drying kinetics. The drying process is monitored macroscopically by single-sided NMR, with spatial resolution of 100 μm, while microscopic information is obtained by measurements of spin-spin relaxation times (T2). Transition from a funicular to a pendular regime, where hydraulic connectivity is lost and the capillary flow cannot compensate for the surface evaporation, can be observed from inspection of the water content in different sample layers. Relaxation measurements indicate that even when the larger pore structures are depleted of water, capillary flow occurs through smaller voids.

  8. Indoor weather related to the energy consumption of air conditioned classroom: Monitoring system for energy efficient building plan

    Science.gov (United States)

    Rattanongphisat, W.; Suwannakom, A.; Harfield, A.

    2016-08-01

    The current research aims to investigate the relation of indoor weather to energy consumption of air conditioned classroom by design and construct the indoor weather and energy monitoring systems. In this research, a combined temperature and humidity sensor in conjunction with a microcontroller was constructed for the indoor weather monitoring system. The wire sensor network for the temperature-humidity sensor nodes is the Controller Area Network (CAN). Another part is using a nonintrusive method where a wireless current transformer sending the signal to the data collection box then transmitted by the radio frequency to the computer where the Ethernet application software was installed for the energy monitoring system. The results show that the setting air temperature, outdoor ambient temperature and operating time impact to the energy consumption of the air conditioned classroom.

  9. Long-term monitoring of persistent organic pollutants (POPs at the Norwegian Troll station in Dronning Maud Land, Antarctica

    Directory of Open Access Journals (Sweden)

    R. Kallenborn

    2013-07-01

    Full Text Available A first long-term monitoring of selected persistent organic pollutants (POPs in Antarctic air has been conducted at the Norwegian research station Troll (Dronning Maud Land. As target contaminants 32 PCB congeners, α- and γ-hexachlorocyclohexane (HCH, trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB were selected. The monitoring program with weekly samples taken during the period 2007–2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar to observations for Arctic samples, HCB is the predominant POP compound, with levels of around 22 pg m−3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART.

  10. Long-term monitoring of persistent organic pollutants (POPs) at the Norwegian Troll station in Dronning Maud Land, Antarctica

    Science.gov (United States)

    Kallenborn, R.; Breivik, K.; Eckhardt, S.; Lunder, C. R.; Manø, S.; Schlabach, M.; Stohl, A.

    2013-07-01

    A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, α- and γ-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007-2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar to observations for Arctic samples, HCB is the predominant POP compound, with levels of around 22 pg m-3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART).

  11. Unencapsulated Air-stable Organic Field Effect Transistor by All Solution Processes for Low Power Vapor Sensing

    Science.gov (United States)

    Feng, Linrun; Tang, Wei; Zhao, Jiaqing; Yang, Ruozhang; Hu, Wei; Li, Qiaofeng; Wang, Ruolin; Guo, Xiaojun

    2016-02-01

    With its excellent mechanical flexibility, low-cost and low-temperature processing, the solution processed organic field-effect transistor (OFET) is a promising platform technology for developing ubiquitous sensor applications in digital health, environment monitoring and Internet of Things. However, a contradiction between achieving low voltage operation and having stable performance severely hinder the technology to become commercially viable. This work shows that, by reducing the sub-gap density of states (DOS) at the channel for low operation voltage and using a proper low-k non-polar polymer dielectric layer, such an issue can be addressed. Stable electrical properties after either being placed for weeks or continuously prolonged bias stressing for hours in ambient air are achieved for all solution processed unencapsulated OFETs with the channel being exposed to the ambient air for analyte detection. The fabricated device presents a steep subthreshold swing less than 100 mV/decade, and an ON/OFF ratio of 106 at a voltage swing of 3 V. The low voltage and stable operation allows the sensor made of the OFET to be incorporated into a battery-powered electronic system for continuously reliable sensing of ammonia vapor in ambient air with very small power consumption of about 50 nW.

  12. Lessons from a 5 yr citizen-science monitoring program, Mountain Watch, to engage hikers in air quality/visibility and plant phenology monitoring in the mountains

    Science.gov (United States)

    Murray, G.; Weihrauch, D.; Kimball, K.; McDonough, C.

    2010-12-01

    The AMC’s citizen scientist monitoring program, Mountain Watch, engages hikers in observational monitoring while recreating in the northern Appalachian Mountains. The program uses two monitoring activities:1) tracking the phenology of 11 mountain flowers species, and 2) the visitors real world perception of on-mountain visibility and its ‘quality’ with proximate monitored air quality parameters. The Mountain Watch program objectives are a) to engage and educate the public through hands-on monitoring, b) to motivate the participant to take further action towards environmental stewardship, and c) to provide supplemental data to AMC’s ongoing science-based research to further our understanding of the impact of human activity on mountain ecosystems. The Mountain Watch plant monitoring includes recording the time and location of alpine and forest plants flowering and other phenological phases using AMC field guides and datasheets. In the White Mountains of New Hampshire concurrent meteorological data, including soil temperature, is paired with the phenology observations as part of AMC’s research to develop spatial and temporal phenology models with air and soil temperature for northeastern mountains. Mountain Watch’s visibility monitoring program has hikers record visual range and rate the view at select vistas in comparison to a clear day view photo guide when visiting AMC’s backcountry huts. The results are compared to proximate air quality measurements, which assists in determining how White Mountain National Forest air quality related values and natural resources management objectives are being met. Since 2006 the Mountain Watch program has received over 3,500 citizen datasheets for plant reproductive phenology and visibility monitoring. We estimate that we have reached more than 15,000 hikers through our facility based education programming focused on air quality and phenology and field monitoring hikes. While we consider this good success in engaging

  13. Electrospun Polyurethane Fibers for Absorption of Volatile Organic Compounds from Air

    NARCIS (Netherlands)

    Scholten, E.; Bromberg, L.; Rutledge, G.C.; Hatton, T.A.

    2011-01-01

    Electrospun polyurethane fibers for removal of volatile organic compounds (VOC) from air with rapid VOC absorption and desorption have been developed. Polyurethanes based on 4,4-methylenebis(phenylisocyanate) (MDI) and aliphatic isophorone diisocyanate as the hard segments and butanediol and

  14. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1993-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  15. Enhancing organic matter removal in desalination pretreatment systems by application of dissolved air flotation

    DEFF Research Database (Denmark)

    Shutova, Yulia; Karna, Barun Lal; Hambly, Adam C.

    2016-01-01

    Membrane fouling in reverse osmosis (RO) systems caused by organic matter (OM) remains a significant operational issue during desalination. Dissolved air flotation (DAF) has recently received attention as a pre-treatment option for seawater OM removal; however, only a limited number of studies have...

  16. Electrospun Polyurethane Fibers for Absorption of Volatile Organic Compounds from Air

    NARCIS (Netherlands)

    Scholten, E.; Bromberg, L.; Rutledge, G.C.; Hatton, T.A.

    2011-01-01

    Electrospun polyurethane fibers for removal of volatile organic compounds (VOC) from air with rapid VOC absorption and desorption have been developed. Polyurethanes based on 4,4-methylenebis(phenylisocyanate) (MDI) and aliphatic isophorone diisocyanate as the hard segments and butanediol and tetrame

  17. Experiments probing the influence of air exchange rates on secondary organic aerosols derived from indoor chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Shields, H.C.

    2003-01-01

    Reactions between ozone and terpenes have been shown to increase the concentrations of submicron particles in indoor settings. The present study was designed to examine the influence of air exchange rates on the concentrations of these secondary organic aerosols as well as on the evolution...

  18. COST ANALYSIS OF ACTIVATED CARBON VERSUS PHOTOCATALYTIC OXIDATION FOR REMOVING ORGANIC COMPOUNDS FROM INDOOR AIR

    Science.gov (United States)

    A cost comparison has been conducted of 1 m3/s indoor air cleaners using granular activated carbon (GAC) vs. photocatalytic oxidation (PCO) for treating a steady-state inlet volatile organic compound (VOC) concentration of 0.3 mg/m3. The commercial GAC unit was costed assuming t...

  19. Air-stable complementary-like circuits based on organic ambipolar transistors

    NARCIS (Netherlands)

    Anthopoulos, Thomas D.; Setayesh, Sepas; Smits, Edsger; Colle, Michael; Cantatore, Eugenio; de Boer, Bert; Blom, Paul W. M.; de Leeuw, Dago M.; Cölle, Michael

    2006-01-01

    Air stable complementary-like circuits, such as voltage inverters (see figure) and ring oscillators, are fabricated using ambipolar organic transistors based on a nickel dithiolene derivative. In addition to the complementary-like character of the circuits, the technology is very simple and fully co

  20. Development of the colorimetric sensor array for detection of explosives and volatile organic compounds in air

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Alstrøm, Tommy Sonne; Johnsen, C

    2010-01-01

    In the framework of the research project 'Xsense' at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT and TNT, and identification of volatile organic compounds in the presence of water vapor in air...

  1. COMPENDIUM OF METHODS FOR THE DETERMINATION OF TOXIC ORGANIC COMPOUNDS IN AMBIENT AIR--SECOND EDITION

    Science.gov (United States)

    This Second Edition of the Compendium has been prepared to provide regional, state and local environmental regulatory agencies with step-by-step sampling and analysis procedures for the determination of selected toxic organic pollutants in ambient air. It is designed to assist t...

  2. Dominant Mutations in the Autoimmune Regulator AIRE Are Associated with Common Organ-Specific Autoimmune Diseases.

    Science.gov (United States)

    Oftedal, Bergithe E; Hellesen, Alexander; Erichsen, Martina M; Bratland, Eirik; Vardi, Ayelet; Perheentupa, Jaakko; Kemp, E Helen; Fiskerstrand, Torunn; Viken, Marte K; Weetman, Anthony P; Fleishman, Sarel J; Banka, Siddharth; Newman, William G; Sewell, W A C; Sozaeva, Leila S; Zayats, Tetyana; Haugarvoll, Kristoffer; Orlova, Elizaveta M; Haavik, Jan; Johansson, Stefan; Knappskog, Per M; Løvås, Kristian; Wolff, Anette S B; Abramson, Jakub; Husebye, Eystein S

    2015-06-16

    The autoimmune regulator (AIRE) gene is crucial for establishing central immunological tolerance and preventing autoimmunity. Mutations in AIRE cause a rare autosomal-recessive disease, autoimmune polyendocrine syndrome type 1 (APS-1), distinguished by multi-organ autoimmunity. We have identified multiple cases and families with mono-allelic mutations in the first plant homeodomain (PHD1) zinc finger of AIRE that followed dominant inheritance, typically characterized by later onset, milder phenotypes, and reduced penetrance compared to classical APS-1. These missense PHD1 mutations suppressed gene expression driven by wild-type AIRE in a dominant-negative manner, unlike CARD or truncated AIRE mutants that lacked such dominant capacity. Exome array analysis revealed that the PHD1 dominant mutants were found with relatively high frequency (>0.0008) in mixed populations. Our results provide insight into the molecular action of AIRE and demonstrate that disease-causing mutations in the AIRE locus are more common than previously appreciated and cause more variable autoimmune phenotypes. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. APPLICATION OF ARTIFICIAL NEURAL NETWORKS FOR PREDICTION OF AIR POLLUTION LEVELS IN ENVIRONMENTAL MONITORING

    Directory of Open Access Journals (Sweden)

    Małgorzata Pawul

    2016-09-01

    Full Text Available Recently, a lot of attention was paid to the improvement of methods which are used to air quality forecasting. Artificial neural networks can be applied to model these problems. Their advantage is that they can solve the problem in the conditions of incomplete information, without the knowledge of the analytical relationship between the input and output data. In this paper we applied artificial neural networks to predict the PM 10 concentrations as factors determining the occurrence of smog phenomena. To create these networks we used meteorological data and concentrations of PM 10. The data were recorded in 2014 and 2015 at three measuring stations operating in Krakow under the State Environmental Monitoring. The best results were obtained by three-layer perceptron with back-propagation algorithm. The neural networks received a good fit in all cases.

  4. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, W.T.; Walker, B.A. [Environmental Evaluation Group, Albuquerque, NM (United States)

    1997-08-01

    Waste Isolation Pilot Plant (WIPP) alpha continuous air monitor (CAM) performance was evaluated to determine if CAMs could detect accidental releases of transuranic radioactivity from the underground repository. Anomalous alpha spectra and poor background subtraction were observed and attributed to salt deposits on the CAM sampling filters. Microscopic examination of salt laden sampling filters revealed that aerosol particles were forming dendritic structures on the surface of the sampling filters. Alpha CAM detection efficiency decreased exponentially as salt deposits increased on the sampling filters, suggesting that sampling-filter salt was performing like a fibrous filter rather than a membrane filter. Aerosol particles appeared to penetrate the sampling-filter salt deposits and alpha particle energy was reduced. These findings indicate that alpha CAMs may not be able to detect acute releases of radioactivity, and consequently CAMs are not used as part of the WIPP dynamic confinement system. 12 refs., 12 figs., 1 tab.

  5. A Study on the Potential Applications of Satellite Data in Air Quality Monitoring and Forecasting

    Science.gov (United States)

    Li, Can; Hsu, N. Christina; Tsay, Si-Chee

    2011-01-01

    In this study we explore the potential applications of MODIS (Moderate Resolution Imaging Spectroradiometer) -like satellite sensors in air quality research for some Asian regions. The MODIS aerosol optical thickness (AOT), NCEP global reanalysis meteorological data, and daily surface PM(sub 10) concentrations over China and Thailand from 2001 to 2009 were analyzed using simple and multiple regression models. The AOT-PM(sub 10) correlation demonstrates substantial seasonal and regional difference, likely reflecting variations in aerosol composition and atmospheric conditions, Meteorological factors, particularly relative humidity, were found to influence the AOT-PM(sub 10) relationship. Their inclusion in regression models leads to more accurate assessment of PM(sub 10) from space borne observations. We further introduced a simple method for employing the satellite data to empirically forecast surface particulate pollution, In general, AOT from the previous day (day 0) is used as a predicator variable, along with the forecasted meteorology for the following day (day 1), to predict the PM(sub 10) level for day 1. The contribution of regional transport is represented by backward trajectories combined with AOT. This method was evaluated through PM(sub 10) hindcasts for 2008-2009, using ohservations from 2005 to 2007 as a training data set to obtain model coefficients. For five big Chinese cities, over 50% of the hindcasts have percentage error less than or equal to 30%. Similar performance was achieved for cities in northern Thailand. The MODIS AOT data are responsible for at least part of the demonstrated forecasting skill. This method can be easily adapted for other regions, but is probably most useful for those having sparse ground monitoring networks or no access to sophisticated deterministic models. We also highlight several existing issues, including some inherent to a regression-based approach as exemplified by a case study for Beijing, Further studies will be

  6. Fine Resolution Air Quality Monitoring from a Small Satellite: CHRIS/PROBA

    Directory of Open Access Journals (Sweden)

    Man Sing Wong

    2008-11-01

    Full Text Available Current remote sensing techniques fail to address the task of air quality monitoring over complex regions where multiple pollution sources produce high spatial variability. This is due to a lack of suitable satellite-sensor combinations and appropriate aerosol optical thickness (AOT retrieval algorithms. The new generation of small satellites, with their lower costs and greater flexibility has the potential to address this problem, with customised platform-sensor combinations dedicated to monitoring single complex regions or mega-cities. This paper demonstrates the ability of the European Space Agency’s small satellite sensor CHRIS/PROBA to provide reliable AOT estimates at a spatially detailed level over Hong Kong, using a modified version of the dense dark vegetation (DDV algorithm devised for MODIS. Since CHRIS has no middle-IR band such as the MODIS 2,100 nm band which is transparent to fine aerosols, the longest waveband of CHRIS, the 1,019 nm band was used to approximate surface reflectance, by the subtraction of an offset derived from synchronous field reflectance spectra. Aerosol reflectance in the blue and red bands was then obtained from the strong empirical relationship observed between the CHRIS 1,019 nm, and the blue and red bands respectively. AOT retrievals for three different dates were shown to be reliable, when compared with AERONET and Microtops II sunphotometers, and a Lidar, as well as air quality data at ground stations. The AOT images exhibited considerable spatial variability over the 11 x 11km image area and were able to indicate both local and long distance sources.

  7. A Humidity Sensing Organic-Inorganic Composite for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Khasan S. Karimov

    2013-03-01

    Full Text Available In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O-based humidity sensor. Silver thin films (thickness ~200 nm were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.

  8. Mutual Information in the Air Quality Monitoring Network of Bogota - Colombia

    Science.gov (United States)

    Guerrero, O. J.; Jimenez-Pizarro, R.

    2012-12-01

    Large urban areas in the developing world are characterized by high population density and a great variety of activities responsible for emission of trace gases and particulate matter to the atmosphere. In general, these pollutants are unevenly distributed over cities according to the location of sources, meteorological variability and geographical features. Urban air quality monitoring networks are primarily designed to protect public health. The meteorological and air quality information gathered by monitoring networks can also be used to understand pollutant sources, sinks, and dispersion processes and to assess the spatial coverage of the network itself. Several statistical and numerical simulation methods allow for the identification of the domain that influences observations at each of the stations, i.e, the zone and respective population truly covered by the measurements. We focused on Bogota, Colombia, a dense city of approximately 9.6 million inhabitants in its metropolitan area. We analyzed the measurements obtained by the Bogotá Air Quality Monitoring Network (RMCAB) between the years 1997 and 2010 for TSP, PM10, CO, NOx and O3. RMCAB is composed of 16 stations, 13 of which are fixed and measure both atmospheric pollutants and meteorological variables. The method applied consisted of a statistical approach based on the mutual information that each station shares with its complement, i.e. the set formed by the other stations of the network. In order to improve our understanding and interpretation of the results, virtual data created for selected receptors along a simple modeled Gaussian plume spreading throughout Bogotá was analyzed. In this Gaussian model, we accounted for the prevailing weather conditions of this city and for different emission features under which the pollutants are emitted. The spatial location of the monitoring stations and emission sources, and the quality of the measurements are relevant factors when assessing the mutual

  9. Lichens and moss as bioindicators and bioaccumulators in air pollution monitoring.

    Science.gov (United States)

    Palmieri, F; Neri, R; Benco, C; Serracca, L

    1997-01-01

    In this study, we review research conducted in the La Spezia district during 1989, 1992, and 1994, using lichens and moss as indicators of air pollution. SO2 pollution was examined by means of an Index of Atmospheric Purity (IAP) based on the frequency of epiphytic lichen within a sampling grid. Metal deposits were estimated using the lichen Parmelia caperata and the moss Hypnum cupressiforme as bioaccumulators. IAP maps show progressive air quality improvement from 1989 to 1994. This trend correlates to a decrease in SO2 emissions during recent years that is attributed to the use of methane for residential heating and the closing of a coal-fired power plant. Metal contamination maps show that the most polluted area is now in the southeastern part of the gulf. The pattern of pollution coincides with the location of the chief pollution sources in the area. From 1989 to 1994, the metal concentrations in lichens decreased, but metal deposits in the southeastern area were cause for concern. High concentrations of lead in the area are related to emissions from a waste incinerator and a plant that produces lead oxide. Epidemiological investigations reveal that the area population has the highest levels of lead in their blood. The use of bioindicators and bioaccumulators permits long-term and large-scale monitoring of environmental pollutant levels in full agreement with traditional methods.

  10. An isotopic dilution approach for 1,3-butadiene tailpipe emissions and ambient air monitoring.

    Science.gov (United States)

    Riservato, Manuela; Rolla, Antonio; Davoli, Enrico

    2004-01-01

    An isotopic dilution approach for 1,3-butadiene analysis in gaseous samples is presented. The methodology is based on active sampling on sorbent tubes and subsequent analysis by thermal desorption into a gas chromatography/mass spectrometry system. By adding a perdeuterated internal standard onto the sorbent tubes before sampling, and using mass spectrometric detection, the methodology gives high accuracy for this unstable analyte. The method has been used to monitor 1,3-butadiene ambient air concentrations in a residential area in proximity to a heavy-traffic roadway over a one-week period, for comparison with other traffic-related pollutants analysed by standard procedures. It has also been used to determine tailpipe emissions of two vehicles by standard emission testing procedures in a dynamometer. These vehicles were chosen as examples of low- and high-end emission rate vehicles, i.e., an old no-catalytic converter Otto engine and a new direct-injection diesel engine with catalytic converter. Exhaust gas emissions were 0.052 and 35.85 mg/km, reflecting differences in fuel, engine design, age, and presence (or not) of a catalytic abatement system. The ambient air results showed a weekly average concentration of 1,3-butadiene of 0.53 microg/m(3).

  11. Long-term monitoring of persistent organic pollutants (POPs at the Norwegian Troll station in Dronning Maud Land, Antarctica

    Directory of Open Access Journals (Sweden)

    R. Kallenborn

    2013-03-01

    Full Text Available A first long-term monitoring of selected persistent organic pollutants (POPs in Antarctic air has been conducted at the Norwegian Research station Troll (Dronning Maud Land. As target contaminants 32 PCB congeners, a- and g-hexachlorocyclohexane (HCH, trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB were selected. The monitoring program with weekly samples taken during the period 2007–2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar as observed for Arctic samples, HCB is the predominant POP compound with levels of around 22 pg m−3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART. The POP levels determined in Troll air were compared with 1 concentrations found in earlier measurement campaigns at other Antarctic research stations from the past 18 yr. Except for HCB for which similar concentration distributions were observed in all sampling campaigns, concentrations in the recent Troll samples were lower than in samples collected during the early 1990s. These concentration reductions are obviously a direct consequence of international regulations restricting the usage of POP-like chemicals on a worldwide scale.

  12. Establishing an air pollution monitoring network for intra-urban population exposure assessment : a location-allocation approach

    Energy Technology Data Exchange (ETDEWEB)

    Kanaroglou, P.S. [McMaster Univ., Hamilton, ON (Canada). School of Geography and Geology; Jerrett, M.; Beckerman, B.; Arain, M.A. [McMaster Univ., Hamilton, ON (Canada). School of Geography and Geology]|[McMaster Univ., Hamilton, ON (Canada). McMaster Inst. of Environment and Health; Morrison, J. [Carleton Univ., Ottawa, ON (Canada). School of Computer Science; Gilbert, N.L. [Health Canada, Ottawa, ON (Canada). Air Health Effects Div; Brook, J.R. [Meteorological Service of Canada, Toronto, ON (Canada)

    2004-10-01

    A study was conducted to assess the relation between traffic-generated air pollution and health reactions ranging from childhood asthma to mortality from lung cancer. In particular, it developed a formal method of optimally locating a dense network of air pollution monitoring stations in order to derive an exposure assessment model based on the data obtained from the monitoring stations and related land use, population and biophysical information. The method for determining the locations of 100 nitrogen dioxide monitors in Toronto, Ontario focused on land use, transportation infrastructure and the distribution of at-risk populations. The exposure assessment produced reasonable estimates at the intra-urban scale. This method for locating air pollution monitors effectively maximizes sampling coverage in relation to important socio-demographic characteristics and likely pollution variability. The location-allocation approach integrates many variables into the demand surface to reconfigure a monitoring network and is especially useful for measuring traffic pollutants with fine-scale spatial variability. The method also shows great promise for improving the assessment of exposure to ambient air pollution in epidemiologic studies. 19 refs., 3 tabs., 4 figs.

  13. Design of a DCS Based Model for Continuous Leakage Monitoring System of Rotary Air Preheater of a Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Madan BHOWMICK

    2011-01-01

    Full Text Available The leakage in rotary air preheater makes a considerable contribution to the reduced overall efficiency of fossil-fuel-fired thermal power plants and increase the effect on environment. Since it is normal phenomenon, continuous monitoring of leakage is generally omitted in most power plants. But for accurate analysis of the operation of the thermal power plant, this leakage monitoring plays a vital role. In the present paper, design of a DCS based model for continuous leakages monitoring of rotary air preheater has been described. In the proposed model, the existing DCS based instrumentation system has been modified and online leakage monitoring system has been developed. This model has been installed in a captive power plant with high capacity boilers and very much satisfactory operation of this system has been observed. The observed online data along with their analysis results are presented in this paper.

  14. Measuring of urban ultrafine aerosol as a part of regular air pollution monitoring activities

    Science.gov (United States)

    Hejkrlík, Libor; Plachá, Helena

    2015-04-01

    Number size distribution of UFP has been measured since June 2012 to present time (end of 2014) at a background urban site in Northern Bohemia in the frame of UltraSchwarz Project. The project sustainability guarantees at least five years further measuring thus this highly specific activity already becomes part of existing air pollution monitoring system of Czech Hydrometeorological Institute. Number concentrations of UFP were measured by SMPS in a diameter range of 10 to 800 nm in 7 channels with time resolution of 10 minutes. For the purposes of this study the data were re-arranged into series of one-hour means in three size categories: nucleation mode (10-30 nm), Aitken mode (30-100 nm) and accumulation mode (100-800 nm). At the same measuring site 7 other air pollutants (PM1-BC, NO, NOX, NO2, O3, PM10 and SO2) were measured with identical time resolution. The successive daily courses of submicron particles in three size modes as well as of seven other ambient air pollutants were drawn in the form of 3D surface diagrams expressing different behavior of specific substances in the course of 26 months of continuous measuring campaign, allowing for analysis of both diurnal and seasonal changes. The three modes of UFP manifest diverse pictures, the nucleation mode is apparent mainly during warm seasons, the particles in Aitken mode behave rather indifferently to the period of the year and the accumulation mode has close relationship to coarse particles. Month by month correlation analysis indicate that nucleation mode nanoparticles are positively correlated especially with increasing O3 and SO2 concentration and that there exists connection between Aitken and accumulation modes and nitrogen oxides. In order to better understand fine time patterns we plan to calculate moving correlation indices over shorter time periods. Good idea would also be to make use of large database of data from nearby stations of CHMI to analyze the role of meteorological conditions.

  15. Relationships between Organizational Commitment, Core Job Characteristics, and Organizational Citizenship Behaviors in United States Air Force Organizations

    Science.gov (United States)

    2006-06-01

    fact, former Secretary of the Air Force James Roche made retaining Air Force personnel the Air Force’s number one priority and made the retention of...could therefore be used to redesign health organizations in Malaysia to promote commitment (Pearson & Chong, 1997). Although feedback was found not

  16. Source Characterization of Volatile Organic Compounds Affecting the Air Quality in a Coastal Urban Area of South Texas

    Directory of Open Access Journals (Sweden)

    Kuruvilla John

    2008-09-01

    Full Text Available Selected Volatile Organic Compounds (VOC emitted from various anthropogenic sources including industries and motor vehicles act as primary precursors of ozone, while some VOC are classified as air toxic compounds. Significantly large VOC emission sources impact the air quality in Corpus Christi, Texas. This urban area is located in a semi-arid region of South Texas and is home to several large petrochemical refineries and industrial facilities along a busy ship-channel. The Texas Commission on Environmental Quality has setup two continuous ambient monitoring stations (CAMS 633 and 634 along the ship channel to monitor VOC concentrations in the urban atmosphere. The hourly concentrations of 46 VOC compounds were acquired from TCEQ for a comprehensive source apportionment study. The primary objective of this study was to identify and quantify the sources affecting the ambient air quality within this urban airshed. Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS was applied to the dataset. PCA identified five possible sources accounting for 69% of the total variance affecting the VOC levels measured at CAMS 633 and six possible sources affecting CAMS 634 accounting for 75% of the total variance. APCS identified natural gas emissions to be the major source contributor at CAMS 633 and it accounted for 70% of the measured VOC concentrations. The other major sources identified at CAMS 633 included flare emissions (12%, fugitive gasoline emissions (9%, refinery operations (7%, and vehicle exhaust (2%. At CAMS 634, natural gas sources were identified as the major source category contributing to 31% of the observed VOC. The other sources affecting this site included: refinery operations (24%, flare emissions (22%, secondary industrial processes (12%, fugitive gasoline emissions (8% and vehicle exhaust (3%.

  17. Characterization of polymer coated glass as a passive air sampler for persistent organic pollutants.

    Science.gov (United States)

    Harner, Tom; Farrar, Nick J; Shoeib, Mahiba; Jones, Kevin C; Gobas, Frank A P C

    2003-06-01

    The use of thin-film polymer-coated glass surfaces or POGs as passive air samplers was investigated during an uptake experiment in an indoor environment with high levels of gas-phase polychlorinated biphenyls (PCBs). POGs consisted of a micron thick layer of ethylene vinyl acetate (EVA) coated onto glass cylinders. The uptake was initially linear with time and governed by the air-side mass transfer coefficient and surface area of the sampler. This was followed by a curvilinear region and finally a constant phase when equilibrium was established between air and EVA. The high surface area-to-volume ratio of the POGs allowed rapid equilibrium with gas-phase PCBs; equilibration times were on the order of hours for the low molecular weight congeners. The equilibrium concentration was dependent on the EVA-air partition coefficient, K(EVA-A), which was shown to be very well correlated to the octanol-air partition coefficient, K(OA). When POGs of varying thickness were equilibrated with air, the amount of PCB accumulated increased with increasing thickness of the EVA, indicating that uptake was by absorption into the entire polymer matrix. A wind field of 4 m s(-1) resulted in an increased uptake rate by a factor of approximately six compared to uptake in relatively still air. This wind speed effect was diminished, however, when POGs were housed in deployment chambers consisting of inverted stainless steel bowls. Relationships based on the air-side mass transfer coefficient and K(EVA-A) were developed for PCBs that describe the entire uptake profile and allow air concentrations to be determined from the amount of chemical accumulated in the POG. It is believed that these relationships are also valid when POGs are used to detect other classes of persistent organic pollutants.

  18. Self-organizing strategy design and validation for integrated air-ground detection swarm

    Institute of Scientific and Technical Information of China (English)

    Meiyan An; Zhaokui Wang; Yulin Zhang

    2016-01-01

    A self-organized integrated air-ground detection swarm is tentatively applied to achieve reentry vehicle landing detection, such as searching and rescuing a manned spaceship. The detec-tion swarm consists of multiple unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs). The UAVs can access a detected object quickly for high mobility, while the UGVs can comprehensively investigate the object due to the variety of car-ried equipment. In addition, the integrated air-ground detection swarm is capable of detecting from the ground and the air si-multaneously. To accomplish the coordination of the UGVs and UAVs, they are al regarded as individuals of the artificial swarm. Those individuals make control decisions independently of others based on the self-organizing strategy. The overal requirements for the detection swarm are analyzed, and the theoretical model of the self-organizing strategy based on a combined individual and environmental virtual function is established. The numerical in-vestigation proves that the self-organizing strategy is suitable and scalable to control the detection swarm. To further inspect the en-gineering reliability, an experiment set is established in laboratory, and the experimental demonstration shows that the self-organizing strategy drives the detection swarm forming a close range and mul-tiangular surveil ance configuration of a landing spot.

  19. Compressed air energy storage monitoring to support refrigerated mined rock cavern technology.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Moo Yul; Bauer, Stephen J.

    2004-06-01

    This document is the final report for the Compressed Air Energy Storage Monitoring to Support Refrigerated-Mined Rock Cavern Technology (CAES Monitoring to Support RMRCT) (DE-FC26-01NT40868) project to have been conducted by CAES Development Co., along with Sandia National Laboratories. This document provides a final report covering tasks 1.0 and subtasks 2.1, 2.2, and 2.5 of task 2.0 of the Statement of Project Objectives and constitutes the final project deliverable. The proposed work was to have provided physical measurements and analyses of large-scale rock mass response to pressure cycling. The goal was to develop proof-of-concept data for a previously developed and DOE sponsored technology (RMRCT or Refrigerated-Mined Rock Cavern Technology). In the RMRCT concept, a room and pillar mine developed in rock serves as a pressure vessel. That vessel will need to contain pressure of about 1370 psi (and cycle down to 300 psi). The measurements gathered in this study would have provided a means to determine directly rock mass response during cyclic loading on the same scale, under similar pressure conditions. The CAES project has been delayed due to national economic unrest in the energy sector.

  20. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring

    Science.gov (United States)

    Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R. P.; Lv, Q.; Hannigan, M.; Shang, L.

    2014-10-01

    Advances in embedded systems and low-cost gas sensors are enabling a new wave of low-cost air quality monitoring tools. Our team has been engaged in the development of low-cost, wearable, air quality monitors (M-Pods) using the Arduino platform. These M-Pods house two types of sensors - commercially available metal oxide semiconductor (MOx) sensors used to measure CO, O3, NO2, and total VOCs, and NDIR sensors used to measure CO2. The MOx sensors are low in cost and show high sensitivity near ambient levels; however they display non-linear output signals and have cross-sensitivity effects. Thus, a quantification system was developed to convert the MOx sensor signals into concentrations. We conducted two types of validation studies - first, deployments at a regulatory monitoring station in Denver, Colorado, and second, a user study. In the two deployments (at the regulatory monitoring station), M-Pod concentrations were determined using collocation calibrations and laboratory calibration techniques. M-Pods were placed near regulatory monitors to derive calibration function coefficients using the regulatory monitors as the standard. The form of the calibration function was derived based on laboratory experiments. We discuss various techniques used to estimate measurement uncertainties. The deployments revealed that collocation calibrations provide more accurate concentration estimates than laboratory calibrations. During collocation calibrations, median standard errors ranged between 4.0-6.1 ppb for O3, 6.4-8.4 ppb for NO2, 0.28-0.44 ppm for CO, and 16.8 ppm for CO2. Median signal to noise (S / N) ratios for the M-Pod sensors were higher than the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO, 1.1 compared to 10.0; and for CO2, 42.2 compared to 300-500. By contrast, lab calibrations added bias and made it difficult to cover the necessary range of environmental conditions to obtain a good calibration. A separate user study

  1. LYN- and AIRE-mediated tolerance checkpoint defects synergize to trigger organ-specific autoimmunity.

    Science.gov (United States)

    Proekt, Irina; Miller, Corey N; Jeanne, Marion; Fasano, Kayla J; Moon, James J; Lowell, Clifford A; Gould, Douglas B; Anderson, Mark S; DeFranco, Anthony L

    2016-10-03

    Studies of the genetic factors associated with human autoimmune disease suggest a multigenic origin of susceptibility; however, how these factors interact and through which tolerance pathways they operate generally remain to be defined. One key checkpoint occurs through the activity of the autoimmune regulator AIRE, which promotes central T cell tolerance. Recent reports have described a variety of dominant-negative AIRE mutations that likely contribute to human autoimmunity to a greater extent than previously thought. In families with these mutations, the penetrance of autoimmunity is incomplete, suggesting that other checkpoints play a role in preventing autoimmunity. Here, we tested whether a defect in LYN, an inhibitory protein tyrosine kinase that is implicated in systemic autoimmunity, could combine with an Aire mutation to provoke organ-specific autoimmunity. Indeed, mice with a dominant-negative allele of Aire and deficiency in LYN spontaneously developed organ-specific autoimmunity in the eye. We further determined that a small pool of retinal protein-specific T cells escaped thymic deletion as a result of the hypomorphic Aire function and that these cells also escaped peripheral tolerance in the presence of LYN-deficient dendritic cells, leading to highly destructive autoimmune attack. These findings demonstrate how 2 distinct tolerance pathways can synergize to unleash autoimmunity and have implications for the genetic susceptibility of autoimmune disease.

  2. Electro-scrubbing volatile organic carbons in the air stream with a gas diffusion electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yang Ji, E-mail: yangji@ecust.edu.cn [School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu Kaichen; Jia Jinping; Cao Limei [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-04-15

    It is demonstrated that exposing the VOC air streams to the electro-scrubbing reactor with a gas diffusion electrode leads to an efficient removal of organics. The importance order of the influence factors on the electro-scrubbing reactor performance is: conductivity, voltage and air stream flow-rate. The effective conductivity and high voltages generally are beneficial to the removal process and the air flow-rate is not a significant factor compared with the other two, indicating that the reactor might have a consistently satisfying performance within a wide range of gas volumetric load. The mass transfer of both organics and oxygen in the reactor is estimated by mathematical model, and the calculation determines the concentration boundary conditions for the 2-ethoxyethyl acetate removal: if the 2-ethoxyethyl acetate concentration in the inflow air stream holds C{sub G,i} {<=} 0.7198 % , the removal in the electro-scrubbing reactor is electrochemical reaction controlled; if C{sub G,i} > 0.7198 % , the controlling step will be the oxygen mass transfer from the air to the liquid in the electro-scrubbing reactor. The Apparent Current Efficiency of the electro-scrubbing reactor was also determined using COD data, which is significantly higher than some commercial metal oxide electrodes, showing that the reactor is energy efficient and has the promise for the future scale-up.

  3. Reflectance spectroscopy: a novel approach to better understand and monitor the impact of air pollution on Mediterranean plants.

    Science.gov (United States)

    Cotrozzi, Lorenzo; Townsend, Philip A; Pellegrini, Elisa; Nali, Cristina; Couture, John J

    2017-07-11

    The Mediterranean basin can be considered a hot spot not only in terms of climate change (CC) but also for air quality. Assessing the impact of CC and air pollution on ecosystem functions is a challenging task, and adequate monitoring techniques are needed. This paper summarizes the present knowledge on the use of reflectance spectroscopy for the evaluation of the effects of air pollution on plants. First, the history of this technique is outlined. Next, we describe the vegetation reflectance spectrum, how it can be scaled from leaf to landscape levels, what information it contains, and how it can be exploited to understand plant and ecosystem functions. Finally, we review the literature concerning this topic, with special attention to Mediterranean air pollutants, showing the increasing interest in this technique. The ability of spectroscopy to detect the influence of air pollution on plant function of all major and minor Mediterranean pollutants has been evaluated, and ozone and its interaction with other gases (carbon dioxide, nitrogen oxides, and sulfur dioxide) have been the most studied. In the recent years, novel air pollutants, such as particulate matter, nitrogen deposition, and heavy metals, have drawn attention. Although various vegetation types have been studied, few of these species are representative of the Mediterranean environment. Thus, major emphasis should be placed on using vegetation spectroscopy for better understanding and monitoring the impact of air pollution on Mediterranean plants in the CC era.

  4. Improving Capacity to Monitor and Support Sustainability of Mental Health Peer-Run Organizations

    Science.gov (United States)

    Ostrow, Laysha; Leaf, Philip J.

    2014-01-01

    Peer-run mental health organizations are managed and staffed by people with lived experience of the mental health system. These understudied organizations are increasingly recognized as an important component of the behavioral health care and social support systems. This Open Forum describes the National Survey of Peer-Run Organizations, which was conducted in 2012 to gather information about peer-run organizations and programs, organizational operations, policy perspectives, and service systems. A total of 895 entities were identified and contacted as potential peer-run organizations. Information was obtained for 715 (80%) entities, and 380 of the 715 responding entities met the criteria for a peer-run organization. Implementation of the Affordable Care Act may entail benefits and unintended consequences for peer-run organizations. It is essential that we understand this population of organizations and continue to monitor changes associated with policies intended to provide better access to care that promotes wellness and recovery. PMID:24492900

  5. Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation

    Directory of Open Access Journals (Sweden)

    Mingming Luan

    2017-02-01

    Full Text Available Wet air oxidation (WAO is one of the most economical and environmentally-friendly advanced oxidation processes. It makes a promising technology for the treatment of refractory organic pollutants in industrial wastewaters. In wet air oxidation aqueous waste is oxidized in the liquid phase at high temperatures (125–320 °C and pressures (0.5–20 MPa in the presence of an oxygen-containing gas (usually air. The advantages of the process include low operating costs and minimal air pollution discharges. The present review is concerned about the literature published in the treatment of refractory organic pollutants in industrial wastewaters, such as dyes. Phenolics were taken as model pollutants in most cases. Reports on effect of treatment for the WAO of refractory organic pollutants in industrial wastewaters are reviewed, such as emulsified wastewater, TNT red water, etc. Discussions are also made on the mechanism and kinetics of WAO and main technical parameters influencing WAO. Finally, development direction of WAO is summed up.

  6. Project 57 Air Monitoring Report: October 1, 2013, through December 31, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Nikolich, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Reno, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2016-02-01

    assessment of gross alpha and gross beta radioactivity and for determination of gamma-emitting radionuclides. Annual average gross alpha values at the Project 57 monitoring stations are in the same range as the highest two values reported for the CEMP stations surrounding the NTTR. Annual average gross beta values at the Project 57 monitoring stations are slightly higher than the lowest value reported for the CEMP stations surrounding the NTTR. Gamma spectroscopy analyses on samples collected from the Project 57 stations identified only naturally occurring radionuclides. No manmade radionuclides were detected. Thermoluminescent dosimeters (TLDs) indicated that the average annual radioactivity dose at the monitoring stations is higher than the dose determined at surrounding CEMP stations but approximately half of the estimated national average dose received by the general public as a result of exposure to natural sources. The TLDs at the Project 57 monitoring stations are exposed to both natural sources (terrestrial and cosmic) and radioactive releases from the Project 57 contamination area. These comparisons show that the gross alpha, gross beta, and gamma spectroscopy levels at the Project 57 monitoring stations are similar to levels observed at the CEMP stations but that the average annual dose rate is higher than at the CEMP stations. Winds in excess of approximately 15 mph begin to generate dust movement by saltation (migration of sand at the ground surface) or direct suspension in the air. Saltated sand, PM10 (inhalable) dust, and PM2.5 (fine particulate dust) exhibit an approximately exponential increase with increasing wind speed. The greatest concentrations of dust occur for winds exceeding 20 mph. During the reporting period, winds in excess of 20 mph occurred approximately 1.6 percent of the time. Preliminary assessment of individual wind events suggests that dust generation is highly variable likely because of the influence of other meteorological and

  7. Project 57 Air Monitoring Report: October 1, 2013, through December 31, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Nikolich, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Reno, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2016-02-01

    assessment of gross alpha and gross beta radioactivity and for determination of gamma-emitting radionuclides. Annual average gross alpha values at the Project 57 monitoring stations are in the same range as the highest two values reported for the CEMP stations surrounding the NTTR. Annual average gross beta values at the Project 57 monitoring stations are slightly higher than the lowest value reported for the CEMP stations surrounding the NTTR. Gamma spectroscopy analyses on samples collected from the Project 57 stations identified only naturally occurring radionuclides. No manmade radionuclides were detected. Thermoluminescent dosimeters (TLDs) indicated that the average annual radioactivity dose at the monitoring stations is higher than the dose determined at surrounding CEMP stations but approximately half of the estimated national average dose received by the general public as a result of exposure to natural sources. The TLDs at the Project 57 monitoring stations are exposed to both natural sources (terrestrial and cosmic) and radioactive releases from the Project 57 contamination area. These comparisons show that the gross alpha, gross beta, and gamma spectroscopy levels at the Project 57 monitoring stations are similar to levels observed at the CEMP stations but that the average annual dose rate is higher than at the CEMP stations. Winds in excess of approximately 15 mph begin to generate dust movement by saltation (migration of sand at the ground surface) or direct suspension in the air. Saltated sand, PM10 (inhalable) dust, and PM2.5 (fine particulate dust) exhibit an approximately exponential increase with increasing wind speed. The greatest concentrations of dust occur for winds exceeding 20 mph. During the reporting period, winds in excess of 20 mph occurred approximately 1.6 percent of the time. Preliminary assessment of individual wind events suggests that dust generation is highly variable likely because of the influence of other meteorological and

  8. Impact of air pressure on volatile organic compound emissions from a carpet

    Institute of Scientific and Technical Information of China (English)

    高鹏; 邓琴琴; LIN; Chao-hsin; 杨旭东

    2009-01-01

    The measurement of volatile organic compound (VOC) emissions from materials is normally conducted under standard environmental conditions, i.e., (23±1) ℃ temperature, (50±5)% relative humidity, and 0.1 MPa pressure. In order to define VOC emissions in non-standard environmental conditions, it is necessary to study the impact of key environmental parameters on emissions. This paper evaluates the impact of air pressure on VOC emissions from an aircraft carpet. The correlation between air pressure and VOC diffusion coefficient is derived, and the emission model is applied to studying the VOC emissions under pressure conditions of less than 0.1 MPa.

  9. Aquatic organism passage at road-stream crossings—synthesis and guidelines for effectiveness monitoring

    Science.gov (United States)

    Hoffman, Robert L.; Dunham, Jason B.; Hansen, Bruce P.

    2012-01-01

    Restoration and maintenance of passage for aquatic organisms at road-stream crossings represents a major management priority, involving an investment of hundreds of millions of dollars (for example, U.S. Government Accounting Office, 2001). In recent years, passage at hundreds of crossings has been restored, primarily by replacing barrier road culverts with bridges or stream simulation culverts designed to pass all species and all life stages of aquatic life and simulate natural hydro-geomorphic processes (U.S. Forest Service, 2008). The current situation has motivated two general questions: 1. Are current design standards for stream simulation culverts adequately re-establishing passage for aquatic biota? and 2. How do we monitor and evaluate effectiveness of passage restoration? To address the latter question, a national workshop was held in March 2010, in Portland, Oregon. The workshop included experts on aquatic organism passage from across the nation (see table of participants, APPENDIX) who addressed four classes of methods for monitoring effectiveness of aquatic organism passage—individual movement, occupancy, demography, and genetics. This report has been written, in part, for field biologists who will be undertaking and evaluating the effectiveness of aquatic organism passage restoration projects at road-stream crossings. The report outlines basic methods for evaluating road-stream crossing passage impairment and restoration and discusses under what circumstances and conditions each method will be useful; what questions each method can potentially answer; how to design and implement an evaluation study; and points out the fundamental reality that most evaluation projects will require special funding and partnerships among researchers and resource managers. The report is organized into the following sections, which can be read independently: 1. Historical context: In this section, we provide a brief history of events leading up to the present situation

  10. [Comparison of Monitoring Methods of Organic Carbon and Element Carbon in Atmospheric Fine Particles].

    Science.gov (United States)

    Pang, Bo; Ji, Dong-sheng; Liu, Zi-rui; Zhu, Bin; Wang, Yue-si

    2016-04-15

    Accurate measurement of organic carbon (OC) and elemental carbon (EC) in atmospheric fine particulate is an important scientific basis for studying the formation and source apportionment of carbonaceous aerosol. The selection of different analysis programs will lead to difference in the OC and EC concentrations, and further result in the misjudgment of the results. The OC and EC concentrations observed using three temperature protocols including RT-Quartz ( R) , NIOSH 5040 (N) and Fast-TC (F) were compared and analyzed in combination with the degree of air pollution in Beijing. The results showed that there was no significant difference in the TC (TC = OC + EC), OC and EC concentrations observed using R, N and F protocols and certain deviation was found among the TC (TC = OC + EC) , OC and EC concentrations. For TC, the results observed using R protocol were 5% lower than those using N protocol; hut 1% higher than those using F protocol. For OC, the results obtained using R were 9% lower than those using N protocol and 1% higher than those using F protocol. For EC, the results obtained using R were 20% higher than those using N protocol and 11% lower than those using F protocol. The variation coefficients for TC, OC and EC obtained based on R protocol were less than the other two temperature protocols under different air quality degrees. The slopes of regression curves of TC, OC and EC between on-line analysis using R protocol and off-line analysis were 1.21,1. 14 and 1.35, respectively. The correlation coefficients of TC, OC and EC were 0.99, 0.99 and 0.98, respectively. In contrast with the Black carbon ( BC) concentrations monitored by multi-angle absorption spectrophotometer (MAAP), the EC concentrations measured by on-line OC/EC analyzer using R protocol were obviously lower. When the BC concentrations were less than or equal to 8 gg*m3, the EC/BC ratio was 0.39. While the EC/BC ratio was 0.88, when the BC concentrations were greater than 8 ggm3. The variation

  11. Air monitoring activities of the U.S. Environmental Protection Agency/Environmental Response Team during the September 11, 2001 terrorist attacks

    Energy Technology Data Exchange (ETDEWEB)

    Turpin, R.; Mickunas, D.; Campagna, P.; Burchette, S. [U.S. Environmental Protection Agency, Environmental Response Team, Edison, NJ (United States)

    2002-07-01

    The Environmental Response Team (ERT) of the United States Environmental Protection Agency (USEPA) conducted air monitoring activities during the September 11, 2001 attack on the World Trade Center in New York City. This paper describes ERT's response actions and analytical support. It covers ERT activities from the morning of September 11 to October 17, 2001 when ERT was alerted of anthrax activities in Washington, DC and Boca Raton, Florida. ERT members provided technical support regarding respirator/personnel protective equipment selection, decontamination and health and safety protocols. In the first few weeks, ERT was also providing analytical laboratory support to the EPA, the Occupational Safety and Health Administration, the National Institute for Occupational Safety and Health, and the New York City Department of Health. ERT also provided on-site gas chromatography-mass spectrometry analysis via the Trace Atmospheric Gas Analyzer (TAGA) bus, providing real-time direct readings to the EPA and the New York Fire Department. Site boundary air monitoring stations were maintained until early November at which point the EPA Region 2 took over all monitoring responsibilities. Air sampling efforts were initially directed at worker health and safety and the surrounding environments. Air sampling was conducted for asbestos, acid gases, heavy metals, phosgene, mercury, dioxins/furans, volatile organic compounds, and polychlorinated biphenyls. The sampling activities were later expanded to include chlorine, hydrogen chloride, sulfur dioxide, and hydrogen cyanide. Site assessment is still ongoing. What began as a typical emergency response air sampling effort soon became a huge air monitoring effort with the original six stations expanded to more than 20. ERT made every effort to collect, analyze, quality assure and transfer data for posting on publicly accessible website within less than 24 hours. It was noted that one of the lessons learned from the disaster is

  12. Design of a mobile laboratory for ventilation studies and indoor air pollution monitoring. [Residences and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Berk, J.V.; Hollowell, C.D.; Lin, C.I.; Pepper, J.H.

    1978-04-01

    A mobile laboratory for research and development studies of ventilation requirements and energy utilization in residential and commercial buildings was designed and fabricated. The mobile laboratory contains sampling, calibrating, and monitoring systems to measure the concentration of CO, CO/sub 2/, NO, NO/sub 2/, NO/sub x/, O/sub 3/, and SO/sub 2/, and infiltration rates can be monitored continuously using a tracer gas system in which the tracer is injected into the room, mixed with room air, and monitored.

  13. Water- and Air-Quality Monitoring of Sweetwater Reservoir Watershed, San Diego County, California - Phase One Results Continued, 2001-2003

    Science.gov (United States)

    Mendez, Gregory O.; Foreman, William T.; Morita, Andrew; Majewski, Michael S.

    2008-01-01

    In 1998, the U.S. Geological Survey, in cooperation with the Sweetwater Authority, began a study to monitor water, air, and sediment at the Sweetwater and Loveland Reservoirs in San Diego County, California. The study includes regular sampling of water and air at Sweetwater Reservoir for chemical constituents, including volatile organic compounds (VOC), polynuclear aromatic hydrocarbons (PAH), pesticides, and major and trace elements. The purpose of this study is to monitor changes in contaminant composition and concentration during the construction and operation of State Route 125. To accomplish this, the study was divided into two phases. Phase One sampling (water years 1998-2004) determined baseline conditions for the detection frequency and the concentrations of target compounds in air and water. Phase Two sampling (starting water year 2005) continues at selected monitoring sites during and after construction of State Route 125 to assess the chemical impact this roadway alignment may have on water quality in the reservoir. Water samples were collected for VOCs and pesticides at Loveland Reservoir during Phase One and will be collected during Phase Two for comparison purposes. Air samples collected to monitor changes in VOCs, PAHs, and pesticides were analyzed by adapting methods used to analyze water samples. Bed-sediment samples have been and will be collected three times during the study; at the beginning of Phase One, at the start of Phase Two, and near the end of the study. In addition to the ongoing data collection, several special studies were initiated to assess the occurrence of specific chemicals of concern, such as trace metals, anthropogenic indicator compounds, and pharmaceuticals. This report describes the study design, and the sampling and analytical methods, and presents data from water and air samples collected during the fourth and fifth years of Phase One of the study (October 2001 to September 2003). Data collected during the first three

  14. Studying the fate of non-volatile organic compounds in a commercial plasma air purifier

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Stefan [ETH Zürich, Department of Chemistry and Applied Biosciences, CH-8093 Zürich (Switzerland); Seiler, Cornelia; Gerecke, Andreas C. [Swiss Federal Laboratories for Material Science and Technology (EMPA), CH-8600 Dübendorf (Switzerland); Hächler, Herbert [University of Zürich, Institute for Food Safety and Hygiene, National Centre for Enteropathogenic Bacteria and Listeria (NENT), CH-8057 Zürich (Switzerland); Hilbi, Hubert [Ludwig-Maximilians-Universität München Max von Pettenkofer-Institut, D-80336 München (Germany); Frey, Joachim [University of Bern, Institute for Veterinary Bacteriology, CH-3001 Bern (Switzerland); Weidmann, Simon; Meier, Lukas; Berchtold, Christian [ETH Zürich, Department of Chemistry and Applied Biosciences, CH-8093 Zürich (Switzerland); Zenobi, Renato, E-mail: zenobi@org.chem.ethz.ch [ETH Zürich, Department of Chemistry and Applied Biosciences, CH-8093 Zürich (Switzerland)

    2013-07-15

    Highlights: • Degradation of environmental toxins, a protein, and bioparticles were studied. • A commercial air purifier based on a cold plasma was used. • Passage through the device reduced the concentration of the compounds/particles. • Deposition inside the plasma air purifier was the main removal process. -- Abstract: Degradation of non-volatile organic compounds–environmental toxins (methyltriclosane and phenanthrene), bovine serum albumin, as well as bioparticles (Legionella pneumophila, Bacillus subtilis, and Bacillus anthracis)–in a commercially available plasma air purifier based on a cold plasma was studied in detail, focusing on its efficiency and on the resulting degradation products. This system is capable of handling air flow velocities of up to 3.0 m s{sup −1} (3200 L min{sup −1}), much higher than other plasma-based reactors described in the literature, which generally are limited to air flow rates below 10 L min{sup −1}. Mass balance studies consistently indicated a reduction in concentration of the compounds/particles after passage through the plasma air purifier, 31% for phenanthrene, 17% for methyltriclosane, and 80% for bovine serum albumin. L. pneumophila did not survive passage through the plasma air purifier, and cell counts of aerosolized spores of B. subtilis and B. anthracis were reduced by 26- and 15-fold, depending on whether it was run at 10 Hz or 50 Hz, respectively. However rather than chemical degradation, deposition on the inner surfaces of the plasma air purifier occured. Our interpretation is that putative “degradation” efficiencies were largely due to electrostatic precipitation rather than to decomposition into smaller molecules.

  15. The usefulness of air quality monitoring and air quality impact studies before the introduction of reformulated gasolines in developing countries. Mexico City, a real case study

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, H.A.; Torres, R.J. [Universidad Nacional Autonoma de Mexico (Mexico). Section de Contaminacion Ambiental

    2000-07-01

    Urban air pollution is a major environmental problem in several developing countries in the world. This phenomenon seems to be related to the growth of both the urban population in large cities and the number of old and poorly maintained car fleets. The expected rise of population in the next century in countries which suffer from lack of capital for air pollution control, means that there is a great potential for the worsening of the air quality. The worldwide promote policy to phase out lead in gasolines has not proved to be an adequate option in improving the environmental quality. Mexico City Metropolitan Area (MCMA) represents a case in which the introduction of reformulated gasolines in an old car fleet has resulted in the reduction of the airborne lead levels but has worsened the ozone concentration of its urban atmosphere. This paper critically analyzes the chronological evolution of the ozone air pollution problem in MCMA after the successive occurrence of several changes in the formulation of low leaded and unleaded gasolines. It also presents evidences of the usefulness potential of air quality monitoring activities and air quality impact studies on the definition of realistic fuel reformulation policies of developing countries. (author)

  16. Modification and calibration of a passive air sampler for monitoring vapor and particulate phase brominated flame retardants in indoor air: application to car interiors.

    Science.gov (United States)

    Abdallah, Mohamed Abou-Elwafa; Harrad, Stuart

    2010-04-15

    A passive air sampler was modified to monitor both vapor and particulate phase brominated flame retardants (BFRs) in indoor air using polyurethane foam disks and glass fiber filters (GFF). Significant correlation (p GFF was investigated using environmental scanning electron microscopy which revealed gravitational deposition of particles as the main mechanism involved. The developed sampler was applied to monitor BFR concentrations in 21 cars. Average concentrations of SigmaHBCDs, TBBP-A, and Sigmatetra-deca BDEs were 400, 3, and 2200 pg m(-3) in cabins and 400, 1, and 1600 pg m(-3) in trunks. No significant differences (p < 0.05) were observed between levels of SigmaHBCDs and Sigmatrito hexa- BDEs in cabins and trunks. However, TBBP-A, BDE-209, and SigmaPBDEs concentrations were significantly higher in vehicle cabins.

  17. Ambient air monitoring during the 2011 Las Conchas wildland fire near Los Alamos, U.S.A.

    Energy Technology Data Exchange (ETDEWEB)

    Green, Andrew A. [Los Alamos National Laboratory; Schlemann, Shea A. [Los Alamos Technical Associates; Young, Daniel L. [Los Alamos National Laboratory

    2012-08-31

    Air monitoring data collected during the Las Conchas fire near the Los Alamos National Laboratory during 2011 are presented. Data included are for selected radionuclides and selected metals found in particulate matter. None of these analytes were seen at levels which exceeded any state or federal standards.

  18. Laboratory and field based evaluation of chromatography related performance of the Monitor for Aerosols and Gases in Ambient Air (MARGA)

    Science.gov (United States)

    The Monitor for AeRosols and GAses in ambient air (MARGA) is an on-line ion-chromatography-based instrument designed for speciation of the inorganic gas and aerosol ammonium-nitrate-sulfate system. Previous work to characterize the performance of the MARGA has been primarily base...

  19. Detection of Campylobacter Bacteria in Air Samples for Continuous Real-Time Monitoring of Campylobacter Colonization in Broiler Flocks

    DEFF Research Database (Denmark)

    Olsen, Katja Nyholm; Lund, Marianne; Skov, J.

    2009-01-01

    Improved monitoring tools are important for the control of Campylobacter bacteria in broiler production. In this study, we compare the sensitivities of detection of Campylobacter by PCR with feces, dust, and air samples during the lifetimes of broilers in two poultry houses and conclude that the ...

  20. Secondary organic aerosol formation from photo-oxidation of toluene with NOx and SO2: Chamber simulation with purified air versus urban ambient air as matrix

    Science.gov (United States)

    Deng, Wei; Liu, Tengyu; Zhang, Yanli; Situ, Shuping; Hu, Qihou; He, Quanfu; Zhang, Zhou; Lü, Sujun; Bi, Xinhui; Wang, Xuemei; Boreave, Antoinette; George, Christian; Ding, Xiang; Wang, Xinming

    2017-02-01

    Chamber studies on the formation of secondary aerosols are mostly performed with purified air as matrix, it is of wide concern in what extent they might be different from the situations in ambient air, where a variety of gaseous and particulate components preexist. Here we compared the photo-oxidation of "toluene + NOx + SO2" combinations in a smog chamber in real urban ambient air matrix with that in purified air matrix. The secondary organic aerosols (SOA) mass concentrations and yields from toluene in the ambient air matrix, after subtracted ambient air background primary and secondary organic aerosols, were 9.0-34.0 and 5.6-12.9 times, respectively, greater than those in purified air matrix. Both homogeneous and heterogeneous oxidation of SO2 were enhanced in ambient air matrix experiments with observed 2.0-7.5 times higher SO2 degradation rates and 2.6-6.8 times faster sulfate formation than that in purified air matrix, resulting in higher in-situ particle acidity and consequently promoting acid-catalyzed SOA formation. In the ambient air experiments although averaged OH radical levels were elevated probably due to heterogeneous formation of OH on particle surface and/or ozonolysis of alkenes, non-OH oxidation pathways of SO2 became even more dominating. Under the same organic aerosol mass concentration, the SOA yields of toluene in purified air matrix experiments matched very well with the two-product model curve by Ng et al. (2007), yet the yields in ambient air on average was over two times larger. The results however were much near the best fit curve by Hildebrandt et al. (2009) with the volatility basis set (VBS) approach.

  1. The Wireless Environment Monitoring Alarm System Based on Self-organizing Network

    Directory of Open Access Journals (Sweden)

    Zhang Huawei

    2016-01-01

    Full Text Available Under complicated conditions, it is necessary for environmental monitoring to design a wireless monitoring alarm system which can replace the wired system or as a supplement. The system discussed here bases on ARM7 microprocessor named LPC1114 and transceiver module named CC2530. With ZigBee, CSM/GPRS, this system uses multiple sensors to self-organized form a data acquisition and monitoring network system with variety of sensors fusion in the region. The system has some characteristics such as quick, convenient and accurate. Combining with the GSM SMS or GPRS alarm, the system can accurately and reliably monitor temperature, humidity and other environmental factors, and realize remote monitoring in large area and the complicated environment. Thus, this system has high practical value.

  2. The Organization of the Internal Irradiation Monitoring System in Conditions of Nonstandard Radionuclide Intakes

    Science.gov (United States)

    Ovchinnikov, A. V.; Izmestyev, K. M.; Demyanyuk, D. G.; Krivoshein, D. D.; Poluektov, S. Yu

    2016-06-01

    Scientific knowledge presently available in the area of monitoring the internal radiation due to nonstandard radionuclide intakes gives no way of identifying the location and nature of intakes in a reasonably accurate and expeditious manner. Both theoretical models and practical methods of personnel internal radiation screening exhibit the lack of research. To this end, the present paper deals with the experience gained by the SGChE in the monitoring of the nonstandard radionuclide penetration into internals and tissues of the personnel. It provides recommendations for the organization and implementation of such monitoring procedures, and describes the practical method for the vulnerary intake containment.

  3. Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Pahranagat National Wildlife Refuge, Lincoln County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. Englebrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2008-08-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Pahranagat NWR, Beatty, Rachel, Caliente, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data on completion of the site's sampling program.

  4. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Pahranagat National Wildlife Refuge, Lincoln County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2009-04-02

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Pahranagat NWR, Beatty, Rachel, Caliente, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data on completion of the site's sampling program.

  5. Volatile organic compounds in indoor air: A review ofconcentrations measured in North America since 1990

    Energy Technology Data Exchange (ETDEWEB)

    ATHodgson@lbl.gov

    2003-04-01

    Central tendency and upper limit concentrations of volatile organic compounds (VOCs) measured in indoor air are summarized and reviewed. Data were obtained from published cross-sectional studies of residential and office buildings conducted in North America from 1990through the present. VOC concentrations in existing residences reported in 12 studies comprise the majority of the data set. Central tendency and maximum concentrations are compared between new and existing residences and between existing residences and office buildings. Historical changes in indoor VOC concentrations since the Clean Air Act Amendments of 1990 are explored by comparing the current data set with two published reviews of previous data obtained primarily in the 1980s. These historical comparisons suggest average indoor concentrations of some toxic air contaminants, such as 1,1,1-trichloroethane have decreased.

  6. Polar organic chemical integrative sampler (POCIS): application for monitoring organic micropollutants in wastewater effluent and surface water.

    Science.gov (United States)

    Miège, Cécile; Budzinski, Hélène; Jacquet, Romain; Soulier, Coralie; Pelte, Thomas; Coquery, Marina

    2012-02-01

    In this paper, we discuss the advantages and drawbacks of POCIS (Polar Organic Chemical Integrative Sampler) for the evaluation of river water quality downstream of wastewater treatment plants. POCIS proved well adapted to sampling alkylphenols and several pharmaceuticals. Concentration factors and the decrease in limits of quantification, compared to grab water sample analyses, were significant except for hormones, β-blockers and bronchodilators. Promising preliminary results obtained in situ on deuterated atenolol used as a performance reference compound need to be confirmed in-lab. This work confirms that POCIS is a valuable tool for monitoring hydrophilic organic molecules in river and wastewaters.

  7. Satellite Air Quality Monitoring Before, During and After the Beijing 2008 Olympics and Paralympics

    Science.gov (United States)

    Witte, J. C.; Schoeberl, M. R.; Krotkov, N. A.; Pickering, K. E.; Streets, D. G.; Gleason, J. F.; Gille, J. C.

    2009-12-01

    In 2001, Beijing, China was awarded the hosting rights to the 2008 Olympic and Paralympic Games. Since then, the government has gradually implemented pollution emission control strategies to improve Beijing's air quality in preparation for both games. Long-term industrial and short-term vehicle emission controls have also been enforced upwind of Beijing's neighboring provinces to the south and west. This region is characterized by numerous heavy-polluting industries whose emissions are typically transported towards Beijing, significantly impacting the city's air quality. We examine the efficacy of these emission control measures on tropospheric NO2, SO2, and CO pollution using satellite data from Aura's Ozone Monitoring Instrument (OMI) and Terra's Measurements Of Pollution In The Troposphere (MOPITT) from 2004 to the present. During both games, held in August and September 2008, OMI and MOPITT measured significant decreases in all three tracer gases compared to the past three years: NO2 (-43%), SO2 (-13%), and CO (-12%). This decrease in CO and SO2 over northeastern China continues through 2009, reflecting the longer-term nature of emission controls on heavily polluting industries. The global recession is also a likely contributor, as factories have shut down or slowed production due to the decrease in demand for manufactured goods. The tropospheric NO2 column over Beijing returned to typical monthly mean values when controls on vehicle emissions were lifted by the end of September 2008. However, we observe a slight NO2 decrease at the beginning of 2009 relative to 2008 suggesting a decrease in the contribution of industrial emissions of NOx to the overall NO2 column.

  8. In situ ellipsometry — A powerful tool for monitoring alkali doping of organic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Haidu, F.; Ludemann, M.; Schäfer, P.; Gordan, O.D., E-mail: ovidiu.gordan@physik.tu-chemnitz.de; Zahn, D.R.T.

    2014-11-28

    The changes of the optical properties of several organic thin films induced by potassium doping were monitored using in situ spectroscopic ellipsometry. The samples were prepared in a high vacuum chamber by organic molecular deposition. Then, potassium (K) was evaporated by passing current through K getters. The three different organic molecules used, show very distinct and different spectral behaviour upon doping. While for Tris-(8-hydroxyquinoline)-aluminium(III) and N,N′-Di-[(1-naphthyl)-N,N′-diphenyl]-(1,1′-biphenyl)-4,4′-diamine only small shifts of the spectral features were noticed, Manganese Phthalocyanine revealed significant changes of the optical properties induced by the K doping. This work indicates that the K doping process can have a dramatic effect on the electronic and the optical properties of the organic molecules, but the effect on the optical spectra remains specific for each organic molecule used, and cannot be easily predicted. - Highlights: • Monitoring organic film growth and doping with in situ spectroscopic ellipsometry • K doped organic thin films • Optical properties of organic thin films change by K doping. • The changes in the optical spectra remain specific for each organic molecule used.

  9. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    KAUST Repository

    Andersen, Myrrha E.

    2016-10-19

    Pulverized bituminous coal was burned in a 10. W externally heated entrained flow furnace under air-combustion and three oxy-combustion inlet oxygen conditions (28, 32, and 36%). Experiments were designed to produce flames with practically relevant stoichiometric ratios (SR. =1.2-1.4) and constant residence times (2.3. s). Size-classified fly ash samples were collected, and measurements focused on the soot, elemental carbon (EC), and organic carbon (OC) composition of the total and ultrafine (<0.6. μm) fly ash. Results indicate that although the total fly ash carbon, as measured by loss on ignition, was always acceptably low (<2%) with all three oxy-combustion conditions lower than air-combustion, the ultrafine fly ash for both air-fired and oxy-fired combustion conditions consists primarily of carbonaceous material (50-95%). Carbonaceous components on particles <0.6. μm measured by a thermal optical method showed that large fractions (52-93%) consisted of OC rather than EC, as expected. This observation was supported by thermogravimetric analysis indicating that for the air, 28% oxy, and 32% oxy conditions, 14-71% of this material may be OC volatilizing between 100. C and 550. C with the remaining 29-86% being EC/soot. However, for the 36% oxy condition, OC may comprise over 90% of the ultrafine carbon with a much smaller EC/soot contribution. These data were interpreted by considering the effects of oxy-combustion on flame attachment, ignition delay, and soot oxidation of a bituminous coal, and the effects of these processes on OC and EC emissions. Flame aerodynamics and inlet oxidant composition may influence emissions of organic hazardous air pollutants (HAPs) from a bituminous coal. During oxy-coal combustion, judicious control of inlet oxygen concentration and placement may be used to minimize organic HAP and soot emissions.

  10. New principle of organization of working process of air conditioning systems at railway and sea transport

    Directory of Open Access Journals (Sweden)

    Andrey KRAJNIUK

    2008-01-01

    Full Text Available An indispensable component of ensuring safe control of railway and sea transport in conditions of hot climate is maintenance of comfortable temperature of air in control cabins and living spaces. Now the interest is restored to use the Air Refrigerating Plants (ARP as they have a wide potential of low-temperature cooling without use of ozone-destructive cooling agents prohibited by decision of the Montreal meeting. At the same time, air conditioning installations on the basis of turbo-expanders have low refrigerating factor, they are very expensive in manufacturing and require a high level of maintenance service.Alternative trend of perfection of air refrigeration units is connected with a new principle of organization of working process, based on the use as expander and compressor of aggregates of cascade exchanger of pressure (CPE. Besides of unsurpassed efficiency of exchange processes, CPE is characterized by simplicity of design and high reliability, including, due to low frequency of rotation (2000-3000 min-1 with practically absence of consumption of mechanical energy on the drive of the rotor. The attractive aspect of application of equipment of conditioning with CPE is the opportunity of organization of working process only due to thermal energy including the utilization in the heat-power installation of transport vehicle.

  11. Transboundary Secondary Organic Aerosol in the Urban Air of Fukuoka, Japan

    CERN Document Server

    Irei, Satoshi; Hara, Keiichiro; Hayashi, Masahiko

    2016-01-01

    Studies providing quantitative information regarding secondary organic aerosol (SOA), the least understood subject in atmospheric chemistry, are important to evaluating secondary transboundary pollution. To obtain quantitative information of long-range transported SOA in the air of Fukuoka, we conducted simultaneous field studies during December 2010 and March 2012 at a rural site in northern Kyushu and at an urban site in Fukuoka City. During the studies, we collected airborne particulate matter (PM) on filters and extracted the low-volatile water soluble organic carbon (LV-WSOC) component, which is possibly dominated by SOA, from the filter samples and analyzed it to determine the carbon concentration and stable carbon isotope ratio. Under the assumption that the LV-WSOC at Fukuoka had both transboundary and local origins, we then applied end-member mixing analysis (EMMA) to the stable carbon isotope ratio data from both sites to estimate the fraction of LV-WSOCs from these origins in the Fukuoka air. Indep...

  12. Prediction of air to liver partition coefficient for volatile organic compounds using QSAR approaches.

    Science.gov (United States)

    Dashtbozorgi, Zahra; Golmohammadi, Hassan

    2010-06-01

    In this work a quantitative structure-activity relationship (QSAR) technique was developed to investigate the air to liver partition coefficient (log Kliver) for volatile organic compounds (VOCs). Suitable set of molecular descriptors was calculated and the important descriptors were selected by GA-PLS methods. These variables were served as inputs to generate neural networks. After optimization and training of the networks, they were used for the calculation of log Kliver for the validation set. The root mean square errors for the neural network calculated log Kliver of training, test, and validation sets are 0.100, 0.091, and 0.112, respectively. Results obtained reveal the reliability and good predictivity of neural network for the prediction of air to liver partition coefficient for volatile organic compounds.

  13. Characterization of organic air emissions from the Certification and Segregation Building and Air Support Weather Shield II at the Radioactive Waste Management Complex

    Energy Technology Data Exchange (ETDEWEB)

    Shoop, D.S.; Jackson, J.M.; Jolley, J.G.; Izbicki, K.J.

    1994-12-01

    During the latter part of Fiscal Year (FY-92), a task was initiated to characterize the organic air emissions from the Certification and Segregation (C and S) Building [Waste Management Facility (WMF) 612] and the Air Support Weather Shield II (ASWS II or ASB II) (WMF 711) at the Radioactive Waste Management Complex (RWMC). The purpose of this task, titled the RWMC Organic Air Emissions Evaluation Task, was to identify and quantify the volatile organic compounds (VOCS) present in the ambient air in these two facilities and to estimate the organic air emissions. The VOCs were identified and quantified by implementing a dual method approach using two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and SUMMA canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14. The data gathered were used in conjunction with the building`s ventilation rate to calculate an estimated organic air emissions rate. This report presents the data gathered during the performance of this task and relates the data to the relevant regulatory requirements.

  14. 40 CFR Table A-1 to Subpart A of... - Summary of Applicable Requirements for Reference and Equivalent Methods for Air Monitoring of...

    Science.gov (United States)

    2010-07-01

    ... Reference and Equivalent Methods for Air Monitoring of Criteria Pollutants A Table A-1 to Subpart A of Part...) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS General Provisions Pt. 53, Subpt. A, Table A-1 Table A-1 to Subpart A of Part 53—Summary of Applicable Requirements for Reference and...

  15. Self-Organized Filaments in Dielectric Barrier Discharge in Air at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    DONG Li-Fang; LI Xue-Chen; YINZeng-Qian; QIAN Sheng-Fa; OUYANG Ji-Ting; WANG Long

    2001-01-01

    The self-organized filament pattern created by dielectric barrier discharges in air at atmospheric pressure is investigated experimentally. The density and dimension of filament are analysed quantitatively. The experimental results show that the distance between neighbouring filaments decreases with the increased applied voltage or with the decreased width of the gas gap. Also, the diameter of the filament decreases with the increased applied voltages or with the decreased width of the gas gap.

  16. Voltage and Thermally Driven Roll-to-Roll Organic Printed Transistor Made in Ambient Air Conditions

    DEFF Research Database (Denmark)

    Pastorelli, Francesco

    of the organic semiconductor poly3hexylthiophene and the dielectric material polyvinylphenol before the gate was applied by screen printing. All the processing was realized in ambient air on a PET flexible substrate. We explore the footprint and the practically accessible geometry of such devices with a special......Resume: Organic thin film transistors offer great potential for use in flexible electronics. Much of this potential lies in the solution processability of the organic polymers enabling both roll coating and printing on flexible substrates and thus greatly reducing the material and fabrication costs....... We present flexible organic power transistors prepared by fast (20 m min−1) roll-to-roll flexographic printing of the drain and source electrode structures, with an interspace below 50 um, directly on polyester foil[1]. The devices have top gate architecture and were completed by slotdie coating...

  17. A computationally-efficient secondary organic aerosol module for three-dimensional air quality models

    Science.gov (United States)

    Liu, P.; Zhang, Y.

    2008-07-01

    Accurately simulating secondary organic aerosols (SOA) in three-dimensional (3-D) air quality models is challenging due to the complexity of the physics and chemistry involved and the high computational demand required. A computationally-efficient yet accurate SOA module is necessary in 3-D applications for long-term simulations and real-time air quality forecasting. A coupled gas and aerosol box model (i.e., 0-D CMAQ-MADRID 2) is used to optimize relevant processes in order to develop such a SOA module. Solving the partitioning equations for condensable volatile organic compounds (VOCs) and calculating their activity coefficients in the multicomponent mixtures are identified to be the most computationally-expensive processes. The two processes can be speeded up by relaxing the error tolerance levels and reducing the maximum number of iterations of the numerical solver for the partitioning equations for organic species; conditionally activating organic-inorganic interactions; and parameterizing the calculation of activity coefficients for organic mixtures in the hydrophilic module. The optimal speed-up method can reduce the total CPU cost by up to a factor of 31.4 from benchmark under the rural conditions with 2 ppb isoprene and by factors of 10 71 under various test conditions with 2 10 ppb isoprene and >40% relative humidity while maintaining ±15% deviation. These speed-up methods are applicable to other SOA modules that are based on partitioning theories.

  18. The role of volatile organic compounds in the assessment of indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Ingegerd [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemistry and Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine

    1999-07-01

    The main aim of this thesis is to assess and evaluate the relevance of air pollutants, especially volatile organic compounds (VOC), for indoor air quality (IAQ) in non industrial environments. Another attempt is to find out whether indoor-air VOC may be linked to human health and sensory effects. The experiments included the development of a method to sample and analyze VOC in indoor air (adsorptive sampling/ gas chromatographic separation/mass spectrometric identification) as well as the application of this method in studies of adsorption/desorption of VOC in building materials and ventilation systems, and the occurrence and behavior of VOC in healthy and sick buildings. The method developed is well suited for indoor air VOC analysis, especially for the fine division in temporal intervals needed for the assessment of VOC in occupied rooms. The empirical results show that there is a continuous interplay, regarding VOC and semi volatile organic compounds (SVOC), between indoor materials and indoor air, between ventilation components and supply air, as well as among indoor materials. The results also show that there is an accumulation indoors of outdoor compounds, that are brought indoors by ventilation supply or by materials, such as clothes. Comparatively new statistical pattern analyses were applied to data obtained from indoor air VOC analyses in different locations in a sick and a healthy preschool. The results indicate that this approach may offer an opportunity to distinguish among different buildings and among different locations within buildings with regard to the indoor air composition of VOC. Although promising, further studies of the link between chemical pattern and sensory effects are needed. In a psychophysical experiment, it was shown that formaldehyde at the very low concentrations typical for indoor-air VOC could reliably be scaled with regard to perceived intensity and sensory detection thresholds be determined. Two methods of formaldehyde

  19. Quantifying human exposure to air pollution - moving from static monitoring to spatio-temporally resolved personal exposure assessment

    DEFF Research Database (Denmark)

    Steinle, Susanne; Reis, Stefan; Sabel, Clive E

    2013-01-01

    results from multifaceted relationships and interactions between environmental and human systems, adding complexity to the assessment process. Traditionally, approaches to quantify human exposure have relied on pollutant concentrations from fixed air quality network sites and static population...... distributions. New developments in sensor technology now enable us to monitor personal exposure to air pollutants directly while people are moving through their activity spaces and varying concentration fields. The literature review on which this paper is based on reflects recent developments in the assessment...... for the integrated assessment of human exposure to air pollutants taking into account latest technological capabilities and contextual information. Highlights ? We review and discuss recent developments and advances of research into personal exposure to air pollution. ? We emphasise the importance of personal...

  20. Organic liquid scintillation detector shape and volume impact on radiation portal monitors

    Science.gov (United States)

    Paff, Marc G.; Clarke, Shaun D.; Pozzi, Sara A.

    2016-07-01

    We have developed and tested a radiation portal monitor using organic liquid scintillation detectors. In order to optimize our system designs, neutron measurements were carried out with three organic liquid scintillation detectors of different shapes and sizes, along with a 3He radiation portal monitor (RPM) as a reference. The three liquids tested were a 7.62 cm diameter by 7.62 cm length cylindrical active volume organic liquid scintillation detector, a 12.7 cm diameter by 12.7 cm length cylindrical active volume organic liquid scintillation detector, and a 25 cm by 25 cm by 10 cm "paddle" shaped organic liquid scintillation detector. Background and Cf-252 neutron measurements were recorded to allow for a comparison of neutron intrinsic efficiencies as well as receiver operating characteristics (ROC) curves between detectors. The 12.7 cm diameter cylindrical active volume organic liquid scintillation detector exhibited the highest intrinsic neutron efficiency (54%) of all three liquid scintillators. An ROC curve analysis for a heavily moderated Cf-252 measurement showed that using the 12.7 cm diameter by 12.7 cm length cylindrical active volume Eljen EJ309 organic liquid scintillation detector would result in the fewest needed detector units in order to achieve a near 100% positive neutron alarm rate while maintaining a better than 1 in 10,000 false alarm rate on natural neutron background. A small number of organic liquid scintillation detectors could therefore be a valid alternative to 3He in some RPM applications.

  1. Monitoring trace metals in urban aerosols from Buenos Aires city. Determination by plasma-based techniques.

    Science.gov (United States)

    Smichowski, Patricia; Gómez, Dario R; Dawidowski, Laura E; Giné, María Fernanda; Bellato, Ana Claudia Sánchez; Reich, Silvia L

    2004-04-01

    A study was undertaken, within the framework of a 3 years national project, to assess the content of 13 elements in airborne particulate matter collected in representative zones of the metropolitan area of Buenos Aires. The sampling strategy followed consisted in collecting simultaneously 67 samples of PM10 particulate matter in 9 sampling sites covering an area of about 30 km2 during one week. The collection was performed on ash-free fibre-glass filters using high volume samplers. A combination of aqua regia and perchloric acid was used for leaching metals from filters. Key elements, namely Al, Ca, Cu, Fe, Mn, Mo, Ni, Pb, S, Sb, Sn, Zn and Zr, were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) at micro g g(-1) and ng g(-1) levels. Analyte concentration varied from 130 ng g(-1)(Mo) to over 30%(Ca). Multivariate statistical analysis was performed on the data set including the measured elemental compositions for the monitored period. The atmospheric concentration found for Pb confirms the decreasing levels of this element since the introduction of unleaded gasoline in 1995: 88 ng m(-3)(2001) gas imply low emissions of this element from combustion activities. To the best of our knowledge, S concentrations are reported for the first time for this city.

  2. Chicago Clean Air, Clean Water Project: Environmental Monitoring for a Healthy, Sustainable Urban Future

    Energy Technology Data Exchange (ETDEWEB)

    none, none; Tuchman, Nancy [Institute of Environmental Sustainability (IES), Chicago, IL (United States)

    2015-11-11

    The U.S. Department of Energy awarded Loyola University Chicago and the Institute of Environmental Sustainability (IES) $486,000.00 for the proposal entitled “Chicago clean air, clean water project: Environmental monitoring for a healthy, sustainable urban future.” The project supported the purchase of analytical instruments for the development of an environmental analytical laboratory. The analytical laboratory is designed to support the testing of field water and soil samples for nutrients, industrial pollutants, heavy metals, and agricultural toxins, with special emphasis on testing Chicago regional soils and water affected by coal-based industry. Since the award was made in 2010, the IES has been launched (fall 2013), and the IES acquired a new state-of-the-art research and education facility on Loyola University Chicago’s Lakeshore campus. Two labs were included in the research and education facility. The second floor lab is the Ecology Laboratory where lab experiments and analyses are conducted on soil, plant, and water samples. The third floor lab is the Environmental Toxicology Lab where lab experiments on environmental toxins are conducted, as well as analytical tests conducted on water, soil, and plants. On the south end of the Environmental Toxicology Lab is the analytical instrumentation collection purchased from the present DOE grant, which is overseen by a full time Analytical Chemist (hired January 2016), who maintains the instruments, conducts analyses on samples, and helps to train faculty and undergraduate and graduate student researchers.

  3. Association between air pollution and hospital admission: Case study at three monitoring stations in Malaysia

    Science.gov (United States)

    Zahari, Marina; Zin@Ibrahim, Wan Zawiah Wan; Ismail, Noriszura; Ni, Tan Hui

    2014-06-01

    The relationships between the exposure of pollutants towards hospitalized admission and mortality have been identified in several studies on Asian cities such as Taipei, Bangkok and Tokyo. In Malaysia, evidence on the health risks associated with exposure to pollutants is limited. In this study, daily time-series data were analysed to estimate risks of cardiovascular and respiratory hospitalized admissions associated with particulate matter ≤ 10 μm (PM10), carbon monoxide (CO), nitrogen dioxide, sulphur dioxide, and ozone concentrations in Klang Valley during 2004-2009. Daily counts of hospital admissions for cardiovascular and respiratory outcomes were obtained from eleven hospitals while pollutants data were taken from several air quality monitoring stations located nearest to the hospitals. These data were fitted with Generalised Additive Poisson regression models. Additionally, temperature, humidity, and time data were also included to allow for potential effect of weather and time-varying influences on hospital admissions. CO showed the most significant (P risk of admission per 10 ug/m3 increment in PM10. Exposure to CO and PM10 increases the risk of hospitalization for cardiovascular and respiratory illnesses in Klang Valley, Malaysia.

  4. CMOS Amperometric ADC With High Sensitivity, Dynamic Range and Power Efficiency for Air Quality Monitoring.

    Science.gov (United States)

    Li, Haitao; Boling, C Sam; Mason, Andrew J

    2016-08-01

    Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental Σ∆ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations.

  5. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor

    Science.gov (United States)

    Paff, Marc Gerrit; Di Fulvio, Angela; Clarke, Shaun D.; Pozzi, Sara A.

    2017-03-01

    We have developed an algorithm for on-the-fly radionuclide identification for radiation portal monitors using organic scintillation detectors. The algorithm was demonstrated on experimental data acquired with our pedestrian portal monitor on moving special nuclear material and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental data also included common medical isotopes. The algorithm takes the power spectral density of the cumulative distribution function of the measured pulse height distributions and matches these to reference spectra using a spectral angle mapper. F-score analysis showed that the new algorithm exhibited significant performance improvements over previously implemented radionuclide identification algorithms for organic scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive material. Portal monitor operators could instead focus on the rare but potentially high impact incidents of nuclear and radiological material smuggling detection for which portal monitors are intended.

  6. Indicator Organisms: Learner's Guide for a Critical Path in Water Quality Monitoring.

    Science.gov (United States)

    Glazer, Richard B.; And Others

    This learner's guide on indicator organisms is derived from a water monitoring curriculum developed at Ulster County Community College. There are 37 modules in this guide; each is introduced with a statement of purpose and then broken down into units of instruction. These units contain an objective, learning conditions, and a performance level.…

  7. Monitoring Scientific Developments from a Dynamic Perspective: Self-Organized Structuring To Map Neural Network Research.

    Science.gov (United States)

    Noyons, E. C. M.; van Raan, A. F. J.

    1998-01-01

    Using bibliometric mapping techniques, authors developed a methodology of self-organized structuring of scientific fields which was applied to neural network research. Explores the evolution of a data generated field structure by monitoring the interrelationships between subfields, the internal structure of subfields, and the dynamic features of…

  8. Design and implementation of monitoring and evaluation of healthcare organization management

    Science.gov (United States)

    Charalampos, Platis; Emmanouil, Zoulias; Dimitrios, Iracleous; Lappa, Evaggelia

    2017-09-01

    The management of a healthcare organization is monitored using a suitably designed questionnaire to 271 nurses operating in Greek hospital. The data are fed to an automatic data mining system to obtain a suitable series of models to analyse, visualise and study the obtained information. Hidden patterns, correlations and interdependencies are investigated and the results are analytically presented.

  9. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings.

    Science.gov (United States)

    Kumar, Prashant; Skouloudis, Andreas N; Bell, Margaret; Viana, Mar; Carotta, M Cristina; Biskos, George; Morawska, Lidia

    2016-08-01

    Household air pollution is ranked the 9(th) largest Global Burden of Disease risk (Forouzanfar et al., The Lancet 2015). People, particularly urban dwellers, typically spend over 90% of their daily time indoors, where levels of air pollution often surpass those of outdoor environments. Indoor air quality (IAQ) standards and approaches for assessment and control of indoor air require measurements of pollutant concentrations and thermal comfort using conventional instruments. However, the outcomes of such measurements are usually averages over long integrated time periods, which become available after the exposure has already occurred. Moreover, conventional monitoring is generally incapable of addressing temporal and spatial heterogeneity of indoor air pollution, or providing information on peak exposures that occur when specific indoor sources are in operation. This article provides a review of new air pollution sensing methods to determine IAQ and discusses how real-time sensing could bring a paradigm shift in controlling the concentration of key air pollutants in billions of urban houses worldwide. We also show that besides the opportunities, challenges still remain in terms of maturing technologies, or data mining and their interpretation. Moreover, we discuss further research and essential development needed to close gaps between what is available today and needed tomorrow. In particular, we demonstrate that awareness of IAQ risks and availability of appropriate regulation are lagging behind the technologies.

  10. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01

    In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station

  11. Added value of stress related gene inductions in HepG2 cells as effect measurement in monitoring of air pollution

    Science.gov (United States)

    Nobels, Ingrid; Vanparys, Caroline; Van den Heuvel, Rosette; Vercauteren, Jordy; Blust, Ronny

    2012-08-01

    In this study we studied the effects of particulate matter samples (PM) through gene expression analysis in a routine air quality monitoring campaign by the Flemish Environment Agency (VMM, Belgium). We selected a human hepatoma (HepG2) multiple endpoint reporter assay for targeted stress related endpoint screening. Organic extracts of air samples (total suspended particles, TSP) were collected during one year in an industrial, urban and background location in Flanders, Belgium. Simultaneously, meteorological conditions (temperature, wind speed and precipitation) and particulate matter size ≤ 10 μM (PM10), organic (OC), elemental (EC) and total (TC) carbon were monitored and air samples were collected for chemical analysis (11 PAHs). Correlations between the induction of the different stress genes and the chemical pollutants were analysed. Exposure of HepG2 cells to daily air equivalents (20 m3) of organic TSP extracts revealed the dominant induction of the xenobiotic response element (Xre) and phase I (Cyp1A1) and phase II (GstYa) biotransformation enzymes. Additional effects were the induction of c-Fos, a proto-oncogen and Gadd45, a marker for cell cycle disturbance and responsive to genotoxic compounds. Inductions of other relevant pathways, such as sequestration of heavy metals, retinoids response, protein misfolding and increased cAMP levels were measured occasionally. A significant correlation was found between the genes Cyp1A1 (a typical marker for presence of PAHs and dioxin like compounds), c-Fos, Gadd45, (responsive to DNA damaging compounds) and the amount of PM10 and elemental carbon (EC) whereas no correlation was found between these genes and total PAHs content. This may suggest that the observed induction of Cyp1A1 and DNA damage related genes was provoked (partially) by other particle bound compounds (e.g. pesticides, PCBs, brominated flame retardants, dioxins, …), than PAHs. The contribution of particle bound compounds, other than PAHs might

  12. National-Scale Air Quality Data Assessment: Initial Findings from the Near-Road NO2 Monitoring Program

    Science.gov (United States)

    DeWinter, J. L.

    2015-12-01

    In 2010, the U.S. Environmental Protection Agency (EPA) revised the National Ambient Air Quality Standards (NAAQS) for nitrogen dioxide (NO2) to include a primary health-based standard for hourly NO2. NO2 is a reactive gas that is emitted from motor vehicles, such as cars, trucks, and off-road equipment, as well as non-mobile sources, and is known to adversely affect human respiratory health. In conjunction with the NAAQS revision, EPA has mandated air quality monitoring next to selected major roadways throughout the United States that are in large urban areas where peak hourly NO2 concentrations are expected. Monitoring began in phases during 2012-2015 and included nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matter smaller than 2.5 microns (PM2.5) at 40 monitoring sites nationwide. We conducted a national-scale review of near-road air pollutant concentrations, identified areas where high concentrations of NO2, PM2.5, and CO occurred, and evaluated how concentrations varied by factors such as location, distance to roadway, fleet mix characteristics, and traffic volume. We present the findings from our national near-road data assessment for the 2014 monitoring year.

  13. Air Pollution Sensors: Highlights from an EPA Workshop on the Evolution and Revolution in Low-Cost Participatory Air Monitoring

    Science.gov (United States)

    This article summarizes the findings from the EPA's Apps and Sensors for Air Pollution Workshop that was held March 26-27 of 2012. The workshop brought together researchers, developers, and community-based groups who have been working with sensors and apps in a variety of settin...

  14. European intercomparison workshops on air quality monitoring. Vol. 4. Measuring NO, NO{sub 2}, O{sub 3} and SO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Muecke, H.G.; Kollar, M. [Umweltbundesamt, Berlin (Germany). WHO-Zentrum zur Ueberwachung der Luftguete und Bekaempfung der Luftverschmutzung; Kratz, M.; Medem, A.; Rudolf, W.; Stummer, V.; Sukale, G. [Umweltbundesamt, Langen (Germany). UBA Pilotstation

    2000-07-01

    This report presents the results of two European Intercomparison Workshops on Air Quality Monitoring (NO, NO{sub 2}, O{sub 3}, and SO{sub 2}). The Workshops were a contribution to continuing quality assurance and quality control activities on air quality monitoring for Member States of the WHO European Region. Fourteen institutes mainly from Central and Eastern Europe used the opportunity to compare their measurement methods (15 manual methods and 24 monitors) and standards. (orig.)

  15. Organics in the atmosphere: From air pollution to biogeochemical cycles and climate (Vilhelm Bjerknes Medal)

    Science.gov (United States)

    Kanakidou, Maria

    2016-04-01

    Organics are key players in the biosphere-atmosphere-climate interactions. They have also a significant anthropogenic component due to primary emissions or interactions with pollution. The organic pool in the atmosphere is a complex mixture of compounds of variable reactivity and properties, variable content in C, H, O, N and other elements depending on their origin and their history in the atmosphere. Multiphase atmospheric chemistry is known to produce organic acids with high oxygen content, like oxalic acid. This water soluble organic bi-acid is used as indicator for cloud processing and can form complexes with atmospheric Iron, affecting Iron solubility. Organics are also carriers of other nutrients like nitrogen and phosphorus. They also interact with solar radiation and with atmospheric water impacting on climate. In line with this vision for the role of organics in the atmosphere, we present results from a global 3-dimensional chemistry-transport model on the role of gaseous and particulate organics in atmospheric chemistry, accounting for multiphase chemistry and aerosol ageing in the atmosphere as well as nutrients emissions, atmospheric transport and deposition. Historical simulations and projections highlight the human impact on air quality and atmospheric deposition to the oceans. The results are put in the context of climate change. Uncertainties and implications of our findings for biogeochemical and climate modeling are discussed.

  16. 77 FR 16981 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of a Group of Four...

    Science.gov (United States)

    2012-03-23

    ... AGENCY 40 CFR Part 51 RIN 2060-AO17 Air Quality: Revision to Definition of Volatile Organic Compounds... organic compounds (VOCs) for purposes of preparing State Implementation Plans (SIPs) to attain the... VOCs that can be released into the atmosphere. VOCs are those organic compounds of carbon which...

  17. 78 FR 62451 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of 2,3,3,3...

    Science.gov (United States)

    2013-10-22

    ... AGENCY 40 CFR Part 51 RIN 2060-AR70 Air Quality: Revision to Definition of Volatile Organic Compounds.... SUMMARY: The EPA is taking final action to revise the regulatory definition of volatile organic compounds... those organic compounds of carbon that form ozone through atmospheric photochemical reactions....

  18. Field Assessment of the Village Green Project: An Autonomous Community Air Quality Monitoring System

    Science.gov (United States)

    Recent findings on air pollution levels in communities motivate new technologies to assess air pollution at finer spatial scale. The Village Green Project (VGP) is a novel approach using commercially-available technology for long-term community environments air pollution measure...

  19. Continental background in oceanic air masses and marine emission of Volatile Organic Compounds in Drake Passage

    Science.gov (United States)

    Colomb, Aurélie; Paris, Rodolphe; Losno, Rémi; Desboeufs, Karine; Provost, Christine

    2010-05-01

    In Drake Passage, continental air masses are mixed with pure oceanic air masses, and are evolving through the circumpolar atmospheric circulation. The most probable origin of continental air is Australia and Patagonia. Atmospheric dust content and deposition rate is quite unknown in Austral region. Long term evolution of continental air over the ocean is only poorly known, even if the oceanic surface is more than 80% of the Southern Hemisphere. Recent field experiments have shown large differences between estimated and measured dust or deposition. Dust particles can be carried up from the sources into the atmosphere for long range transport. Then, dust is deposited into the ocean surface. Dust deposition can bring micro-nutrients to the marine biota as trace metals and metalloids. During transport, some trace gases are oxidized depending on their lifetimes. It is therefore possible to calculate the photochemical age of the air masses, with some tracers of the long range transport and some tracers of sources origin. The Southern Ocean is poorly characterized in term of organic compounds and trace gases. Numerous experiments have shown that marine biology, such as phytoplankton can emit volatile organic compounds (VOC) but few shipborne measurements have been performed to determine potential source or sink of selected species. Especially in austral region, recent campaigns (MANCHOT in Indian Austral Ocean in December 2004 (Colomb et al, 2009); OOMPH between Cape Town and Punta Arenas in January 2007) have shown the impact of oceanic emission on the local and global atmospheric chemistry. During the ANT XXV-4 cruise on board the Polarstern in 2009, from Punta Arenas through Drake passage to Antarctic Peninsula, 165 air samples and 25 aerosol samples were collected, distributed all along the track. Additionally we took 4 rain samples to estimate the wet deposition. All the samples were taken at the front of the crow deck. Particles size and distribution and ozone

  20. Accuracy and reliability of Chile's National Air Quality Information System for measuring particulate matter: Beta attenuation monitoring issue.

    Science.gov (United States)

    Toro A, Richard; Campos, Claudia; Molina, Carolina; Morales S, Raul G E; Leiva-Guzmán, Manuel A

    2015-09-01

    A critical analysis of Chile's National Air Quality Information System (NAQIS) is presented, focusing on particulate matter (PM) measurement. This paper examines the complexity, availability and reliability of monitoring station information, the implementation of control systems, the quality assurance protocols of the monitoring station data and the reliability of the measurement systems in areas highly polluted by particulate matter. From information available on the NAQIS website, it is possible to confirm that the PM2.5 (PM10) data available on the site correspond to 30.8% (69.2%) of the total information available from the monitoring stations. There is a lack of information regarding the measurement systems used to quantify air pollutants, most of the available data registers contain gaps, almost all of the information is categorized as "preliminary information" and neither standard operating procedures (operational and validation) nor assurance audits or quality control of the measurements are reported. In contrast, events that cause saturation of the monitoring detectors located in northern and southern Chile have been observed using beta attenuation monitoring. In these cases, it can only be concluded that the PM content is equal to or greater than the saturation concentration registered by the monitors and that the air quality indexes obtained from these measurements are underestimated. This occurrence has been observed in 12 (20) public and private stations where PM2.5 (PM10) is measured. The shortcomings of the NAQIS data have important repercussions for the conclusions obtained from the data and for how the data are used. However, these issues represent opportunities for improving the system to widen its use, incorporate comparison protocols between equipment, install new stations and standardize the control system and quality assurance.