WorldWideScience

Sample records for monitor vapor tracer

  1. Tracer verification and monitoring of containment systems (II)

    International Nuclear Information System (INIS)

    Williams, C.V.; Dunn, S.D.; Lowry, W.E.

    1997-01-01

    A tracer verification and monitoring system, SEAtrace trademark, has been designed and field tested which uses gas tracers to evaluate, verify, and monitor the integrity of subsurface barriers. This is accomplished using an automatic, rugged, autonomous monitoring system combined with an inverse optimization code. A gaseous tracer is injected inside the barrier and an array of wells outside the barrier are monitored. When the tracer gas is detected, a global optimization code is used to calculate the leak parameters, including leak size, location, and when the leak began. The multipoint monitoring system operates in real-time, can be used to measure both the tracer gas and soil vapor contaminants, and is capable of unattended operation for long periods of time (months). The global optimization code searches multi-dimensional open-quotes spaceclose quotes to find the best fit for all of the input parameters. These parameters include tracer gas concentration histories from multiple monitoring points, medium properties, barrier location, and the source concentration. SEAtrace trademark does not attempt to model all of the nuances associated with multi-phase, multi-component flow, but rather, the inverse code uses a simplistic forward model which can provide results which are reasonably accurate. The system has calculated leak locations to within 0.5 meters and leak radii to within 0.12 meters

  2. Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Numerous studies suggest that local feedback of surface evaporation on precipitation, or recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view of the inherent limitations of diagnostic recycling calculations. The current study describes a calculation of the amount of local and remote geographic sources of surface evaporation for precipitation, based on the implementation of three-dimensional constituent tracers of regional water vapor sources (termed water vapor tracers, WVT) in a general circulation model. The major limitation on the accuracy of the recycling estimates is the veracity of the numerically simulated hydrological cycle, though we note that this approach can also be implemented within the context of a data assimilation system. In the WVT approach, each tracer is associated with an evaporative source region for a prognostic three-dimensional variable that represents a partial amount of the total atmospheric water vapor. The physical processes that act on a WVT are determined in proportion to those that act on the model's prognostic water vapor. In this way, the local and remote sources of water for precipitation can be predicted within the model simulation, and can be validated against the model's prognostic water vapor. As a demonstration of the method, the regional hydrologic cycles for North America and India are evaluated for six summers (June, July and August) of model simulation. More than 50% of the precipitation in the Midwestern United States came from continental regional sources, and the local source was the largest of the regional tracers (14%). The Gulf of Mexico and Atlantic regions contributed 18% of the water for Midwestern precipitation, but further analysis suggests that the greater region of the Tropical Atlantic Ocean may also contribute significantly. In most North American continental regions, the local source of precipitation is

  3. Tracer verification and monitoring of containment systems

    International Nuclear Information System (INIS)

    Lowry, W.; Dunn, S.D.; Williams, C.

    1996-01-01

    In-situ barrier emplacement techniques and materials for the containment of high-risk contaminants in soils are currently being developed by the Department of Energy (DOE). Because of their relatively high cost, the barriers are intended to be used in cases where the risk is too great to remove the contaminants, the contaminants are too difficult to remove with current technologies, or the potential for movement of the contaminants to the water table is so high that immediate action needs to be taken to reduce health risks. Consequently, barriers are primarily intended for use in high-risk sites where few viable alternatives exist to stop the movement of contaminants in the near term. Assessing the integrity of the barrier once it is emplaced, and during its anticipated life, is a very difficult but necessary requirement. Existing surface-based and borehole geophysical techniques do not provide the degree of resolution required to assure the formation of an integral in-situ barrier. Science and Engineering Associates, Inc., (SEA) and Sandia National Laboratories (SNL) are developing a quantitative subsurface barrier assessment system using gaseous tracers. Called SEAtrace trademark, this system integrates an autonomous, multipoint soil vapor sampling and analysis system with a global optimization modeling methodology to pinpoint leak sources and sizes in real time. SEAtrace trademark is applicable to impermeable barrier emplacements above the water table, providing a conservative assessment of barrier integrity after emplacement, as well as a long term integrity monitoring function. The SEAtrace trademark system is being developed under funding by the DOE-EM Subsurface Contaminant Focus Area

  4. Development and Validation of Water Vapor Tracers as Diagnostics for the Atmospheric Hydrologic Cycle

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. The formulation of the sources and sinks of tracer water is generally proportional to the prognostic water vapor variable. Because all water has been accounted for in tracers, the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The tracers have been implemented in a GEOS General Circulation Model (GCM) simulation consisting of several summer periods to determine the source regions of precipitation for the United States and India. The recycling of water and interannual variability of the sources of water will be examined. Potential uses in GCM sensitivity studies, predictability studies and data assimilation will be discussed.

  5. The ATLAS DDM Tracer monitoring framework

    International Nuclear Information System (INIS)

    Zang Dongsong; Garonne, Vincent; Barisits, Martin; Lassnig, Mario; Andrew Stewart, Graeme; Molfetas, Angelos; Beermann, Thomas

    2012-01-01

    The DDM Tracer monitoring framework is aimed to trace and monitor the ATLAS file operations on the Worldwide LHC Computing Grid. The volume of traces has increased significantly since the framework was put in production in 2009. Now there are about 5 million trace messages every day and peaks can be near 250Hz, with peak rates continuing to climb, which gives the current structure a big challenge. Analysis of large datasets based on on-demand queries to the relational database management system (RDBMS), i.e. Oracle, can be problematic, and have a significant effect on the database's performance. Consequently, We have investigated some new high availability technologies like messaging infrastructure, specifically ActiveMQ, and key-value stores. The advantages of key value store technology are that they are distributed and have high scalability; also their write performances are usually much better than RDBMS, all of which are very useful for the Tracer monitoring framework. Indexes and distributed counters have been also tested to improve query performance and provided almost real time results. In this paper, the design principles, architecture and main characteristics of Tracer monitoring framework will be described and examples of its usage will be presented.

  6. Application of tracer gas studies in the optimal design of soil vapor extraction systems

    International Nuclear Information System (INIS)

    Marley, M.C.; Cody, R.J.; Polonsky, J.D.; Woodward, D.D.; Buterbaugh, G.J.

    1992-01-01

    In the design of an optimal, cost effective vapor extraction system (VE) for the remediation of volatile organic compounds (VOCs), it is necessary to account for heterogeneities in the vadose zone. In some cases, such as those found in relatively homogeneous sands, heterogeneities can be neglected as induced air flow through the subsurface can be considered uniform. The subsurface conditions encountered at many sites (soil/bedrock interfaces, fractured bedrock) will result in preferential subsurface-air flow pathways during the operation of the VES. The use of analytical and numerical compressible fluid flow models calibrated and verified from parameter evaluation tests can be utilized to determine vadose zone permeability tensors in heterogeneous stratifications and can be used to project optimal, full scale VES performance. Model-derived estimations of the effect of uniform and/or preferential air flow pathways on subsurface induced air flow velocities can be enhanced, confirmed utilizing tracer gas studies. A vadose zone tracer gas study entails the injection of an easily detected, preferably inert gas into differing locations within the vadose zone at distances away from the VES extraction well. The VES extraction well is monitored for the detection of the gas. This is an effective field methodology to qualify and quantify the subsurface air flow pathways. It is imperative to gain an understanding of the dynamics of the air flow in the soils and lithologies of each individual site, and design quick and effective methodologies for the characterization of the subsurface to streamline remediation costs and system operations. This paper focuses on the use of compressible fluid flow models and tracer gas studies in the enhancement of the design of vapor extraction systems

  7. The ATLAS DDM Tracer monitoring framework

    CERN Document Server

    ZANG, D; The ATLAS collaboration; BARISITS, M; LASSNIG, M; Andrew STEWART, G; MOLFETAS, A; BEERMANN, T

    2012-01-01

    The DDM Tracer Service is aimed to trace and monitor the atlas file operations on the Worldwide LHC Computing Grid. The volume of traces has increased significantly since the service started in 2009. Now there are about ~5 million trace messages every day and peaks of greater than 250Hz, with peak rates continuing to climb, which gives the current service structure a big challenge. Analysis of large datasets based on on-demand queries to the relational database management system (RDBMS), i.e. Oracle, can be problematic, and have a significant effect on the database's performance. Consequently, We have investigated some new high availability technologies like messaging infrastructure, specifically ActiveMQ, and key-value stores. The advantages of key value store technology are that they are distributed and have high scalability; also their write performances are usually much better than RDBMS, all of which are very useful for the Tracer service. Indexes and distributed counters have been also tested to improve...

  8. Tracer monitoring of enhanced oil recovery projects

    Directory of Open Access Journals (Sweden)

    Kleven R.

    2013-05-01

    Full Text Available In enhanced oil recovery (EOR, chemicals are injected into the oil reservoir, either to increase macroscopic sweep efficiency, or to reduce remaining oil saturation in swept zones. Tracers can be used to identify reservoirs that are specifically suited for EOR operations. Injection of a selection of partitioning tracers, combined with frequent sample analysis of produced fluids, provides information suited for estimation of residual oil saturation. Tracers can also be used to evaluate and optimize the application of EOR chemicals in the reservoir. Suitable tracers will follow the EOR chemicals and assist in evaluation of retention, degradation or trapping. In addition to field applications, tracers also have a large potential as a tool to perform mechanistic studies of EOR chemicals in laboratory experiments. By labelling EOR chemicals with radioactive isotopes of elements such as H, C and S, detailed studies of transport mechanisms can be carried out. Co-injection of labelled compounds in dynamic flooding experiments in porous media will give information about retention or separation of the unique compounds constituting the chemical formulation. Separation of such compounds may be detrimental to obtaining the EOR effect expected. The paper gives new information of specific methods, and discusses current status for use of tracers in EOR operations.

  9. TRACER-II: a complete computational model for mixing and propagation of vapor explosions

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K.H. [School of Mechanical Engineering, Korea Maritime Univ., Pusan (Korea, Republic of); Park, I.G.; Park, G.C.

    1998-01-01

    A vapor explosion is a physical process in which very rapid energy transfer occurs between a hot liquid and a volatile, colder liquid when the two liquids come into a sudden contact. For the analyses of potential impacts from such explosive events, a computer program, TRACER-II, has been developed, which contains a complete description of mixing and propagation phases of vapor explosions. The model consists of fuel, fragmented fuel (debris), coolant liquid, and coolant vapor in two-dimensional Eulerian coordinates. The set of governing equations are solved numerically using finite difference method. The results of this numerical simulation of vapor explosions are discussed in comparison with the recent experimental data of FARO and KROTOS tests. When compared to some selected FARO and KROTOS data, the fuel-coolant mixing and explosion propagation behavior agree reasonably with the data, although the results are yet sensitive primarily to the melt breakup and fragmentation modeling. (author)

  10. Tritium-gas/water-vapor monitor. Tests and evaluation

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1982-07-01

    A tritium gas/water-vapor monitor was designed and built by the Health Physics Group at the Los Alamos National Laboratory. In its prototype configuration, the monitor took the shape of two separate instruments: a (total) tritium monitor and a water-vapor monitor. Both instruments were tested and evaluated. The tests of the (total) tritium monitor, basically an improved version of the standard flow-through ion-chamber instrument, are briefly reported here and more completely elsewhere. The tests of the water-vapor monitor indicated that the novel approach used to condense water vapor for scintillation counting has a number of serious drawbacks and that further development of the instrument is unwarranted

  11. A monitoring system of radioactive tracers in hydroponic solution for research on plant physiology

    International Nuclear Information System (INIS)

    Suzui, N.; Kawachi, N.; Ishioka, N.; Fujimaki, S.; Yamaguchi, M.

    2009-01-01

    The mechanism of nutrient uptake in plants has received considerable attention in the field of plant science. Here we describe the development of a new monitoring system of radioactive tracers in hydroponic solution, which enables the noninvasive measurement of radioactive tracer uptake by an intact plant. In addition, we incorporated a weighing instrument into this system in order to simultaneously monitor water uptake by the same plant. For an evaluation of this monitoring system, we conducted a tracer experiment with a rice plant and a positron-emitting radioactive tracer, and successfully obtained continuous data for the amounts of radioactive tracer and water taken up by the intact plant over 36 h. (authors)

  12. A monitoring system of radioactive tracers in hydroponic solution for research on plant physiology

    Energy Technology Data Exchange (ETDEWEB)

    Suzui, N.; Kawachi, N.; Ishioka, N.; Fujimaki, S. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Yamaguchi, M. [Takasaki Advanced Radiation Research Institute, Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan)

    2009-07-01

    The mechanism of nutrient uptake in plants has received considerable attention in the field of plant science. Here we describe the development of a new monitoring system of radioactive tracers in hydroponic solution, which enables the noninvasive measurement of radioactive tracer uptake by an intact plant. In addition, we incorporated a weighing instrument into this system in order to simultaneously monitor water uptake by the same plant. For an evaluation of this monitoring system, we conducted a tracer experiment with a rice plant and a positron-emitting radioactive tracer, and successfully obtained continuous data for the amounts of radioactive tracer and water taken up by the intact plant over 36 h. (authors)

  13. Techniques for the generation and monitoring of vapors

    International Nuclear Information System (INIS)

    Nelson, G.O.

    1981-01-01

    Controlled test atmospheres can be produced using a variety of techniques. Gases are usually generated by using flow dilution methods while vapors are produced by using solvent injection and vaporization, saturation, permeation and diffusion techniques. The resulting gas mixtures can be monitored and measured using flame ionization, photoionization, electrochemical and infrared analytical systems. An ideal system for the production of controlled test atmospheres would not only be able to generate controlled test atmospheres, but also monitor all pertinent environmental parameters, such as temperature, humidity, and air flow

  14. Uptake of vaporized molybdenum and cesium tracers by molten oxide mixtures as function of free oxygen ion activity

    International Nuclear Information System (INIS)

    Carmon, B.

    1975-11-01

    Molten mixtures of oxides containing Ca, Fe, Al, Na and Si were exposed to vaporized Mo-99 and Cs-137 tracers at 1100 and 1300 deg C. Uptake values at 1300 deg C were extrapolated to short heating times. The obtained ''attachment coefficients'' for that temperature are shown to have the relationship (Mo) approximately equal to (Cs)sup(-1/2). The chemical composition of the melts and their oxygen to metal ratio found to affect the uptake of both tracers. This is associated with the cationic field strengths and the free oxygen ion activities in the mixtures. Molybdenum and cesium apparently behave like glass-network forming and glass-network modifying species, respectively. (author)

  15. Estimation of Recharge from Long-Term Monitoring of Saline Tracer Transport Using Electrical Resistivity Tomography

    DEFF Research Database (Denmark)

    Haarder, Eline Bojsen; Jensen, Karsten Høgh; Binley, Andrew

    2015-01-01

    The movement of a saline tracer added to the soil surface was monitored in the unsaturated zone using cross-borehole electrical resistivity tomography (ERT) and subjected to natural rainfall conditions. The ERT data were inverted and corrected for subsurface temperature changes, and spatial moment...... methods. In September 2011, a saline tracer was added across a 142-m2 area at the surface at an application rate mimicking natural infiltration. The movement of the saline tracer front was monitored using cross-borehole electrical resistivity tomography (ERT); data were collected on a daily to weekly...

  16. Monitoring tropospheric water vapor changes using radiosonde data

    International Nuclear Information System (INIS)

    Elliott, W.P.; Smith, M.E.; Angell, J.K.

    1990-01-01

    Significant increases in the water vapor content of the troposphere are expected to accompany temperature increases due to rising concentrations of the greenhouse gases. Thus it is important to follow changes in water vapor over time. There are a number of difficulties in developing a homogeneous data set, however, because of changes in radiosonde instrumentation and reporting practices. The authors report here on preliminary attempts to establish indices of water vapor which can be monitored. The precipitable water between the surface and 500 mb is the first candidate. They describe their method for calculating this quantity from radiosonde data for a network very similar to the network Angell uses for detecting temperature trends. Preliminary results suggest that the noise level is low enough to detect trends in water vapor at the individual stations. While a slight increase in global water vapor is hinted at in the data, and the data suggest there may have been a net transfer of water from the Southern Hemisphere to the Northern Hemisphere, these conclusions are tentative. The authors also discuss the future course of this investigation

  17. A field portable mass spectrometer for monitoring organic vapors.

    Science.gov (United States)

    Meier, R W

    1978-03-01

    A portable mass spectrometer has been designed and built under the sponsorship of the US Army for the purpose of monitoring low concentrations of specified organics in the ambient atmosphere. The goals of the development were discrimination, sensitivity, portability, simplicity of operation, economy and convenience. These objectives were met in a system consisting of a computer operated mass spectrometer with a Llewellyn membrane separator inlet system housed in two 26 x 18 x 9 inch aluminum cases with a total weight less than 150 pounds. This system has shown the capability for field detection of hundreds of specific organic vapors at the parts per billion level in the ambient and workplace environments.

  18. Stable isotope tracers of water vapor sources in the Atacama Desert, Northern Chile: a pilot study on the Chajnantor Plateau

    Science.gov (United States)

    Samuels, K. E.; Galewsky, J.; Sharp, Z. D.; Rella, C.; Ward, D.

    2010-12-01

    concentrations and corresponding δD values on the Plateau, however, water vapor concentrations generally increase after sunrise and reach their maxima in the evening. Temperatures on the Plateau were consistently around 0 degrees C during the pilot study with dewpoint temperatures around -20 degrees C and specific humidity ranging from 0.20 to 2.0 g/kg. Within this range of specific humidity, the Rayleigh fractionation model predicts δD values between -570‰ and -300‰. Preliminary results from this pilot study show that δD values are more enriched than predicted by a Rayleigh fractionation curve for water originating at the ocean and moving inland to an elevation of 5000 m. Instead, δD for water vapor on the Chajnantor Plateau falls along a mixing curve between upper- and lower-troposphere sources. Long term monitoring is necessary to understand the complex interplay between atmospheric and oceanic processes combined with topography responsible for the both water vapor concentrations and δD values observed on the Chajnantor Plateau.

  19. TECHNOLOGY OF RADIATION MONITORING: TRACERS-INDICATORS OF DANGEROUS NATURAL AND TECHNOGENIC PHENOMENA

    Directory of Open Access Journals (Sweden)

    V. S. Yakovleva

    2016-11-01

    Full Text Available The analysis of results of experimental investigation concerning the influence of natural and technogenic events on radioactive gas and aerosols dynamics as well as structure and dynamics of different types of ionizing radiation in soil and ground atmosphere was performed. The results of the analysis were used to carry out of classification of revealed radiation tracersindicators of dangerous natural and technogenic phenomena. The algorithm of monitoring of optimum set of radiation tracers-indicators, which are measured simultaneously, of dangerous phenomena was developed. This algorithm uses the “2+1” rule for determining the optimum set of radiation tracers-indicators.

  20. Comparison of sensor characteristics of three real-time monitors for organic vapors.

    Science.gov (United States)

    Hori, Hajime; Ishimatsu, Sumiyo; Fueta, Yukiko; Hinoue, Mitsuo; Ishidao, Toru

    2015-01-01

    Sensor characteristics and performance of three real-time monitors for volatile organic compounds (VOC monitor) equipped with a photo ionization detector (PID), a sensor using the interference enhanced reflection (IER) method and a semiconductor gas sensor were investigated for 52 organic solvent vapors designated as class 1 and class 2 of organic solvents by the Ordinance of Organic Solvent Poisoning Prevention in Japan. Test vapors were prepared by injecting each liquid solvent into a 50 l Tedlar® bag and perfectly vaporizing it. The vapor concentration was from one-tenth to twice the administrative control level for all solvents. The vapor concentration was measured with the monitors and a gas chromatograph equipped with a flame ionization detector simultaneously, and the values were compared. The monitor with the PID sensor could measure many organic vapors, but it could not detect some vapors with high ionization potential. The IER sensor could also detect many vapors, but a linear response was not obtained for some vapors. A semiconductor sensor could detect methanol that could not be detected by PID and IER sensors. Working environment measurement of organic vapors by real-time monitors may be possible, but sensor characteristics and their limitations should be known.

  1. Automatic monitoring of radial injection tracer tests using a novel multi-electrode resistivity system

    International Nuclear Information System (INIS)

    Ward, R.S.; Sen, M.A.; Williams, G.M.; Jackson, P.D.

    1990-01-01

    A radial injection tracer test has been carried out in an unconfined fluvial sand and gravel aquifer underlain by low permeability clay. Sodium chloride has been used as an electrolyte tracer and breakthrough has been monitored using a newly developed automatic resistivity system (RESCAN) incorporating six fully penetrating resistivity probes each having 80 electrodes spaced at 5 cm intervals along their length. Each electrode is individually addressable under computer control to either carry current or measure potential. Any four electrodes can be selected in the traditional Wenner configuration to measure formation resistivity. Rapid measurement of changes in resistivity allows a very detailed picture of tracer migration to be obtained. The resistivity probes were placed at 1 and 2 m radii from the central fully-screened tracer injection well along three limbs at 120 degrees. Resistivity measurements were compared with adjacent multi-level samplers. An 8 x 8 m grid of 140 surface electrodes centred on the central well was also installed. The resistivity profiles measured prior to tracer injection were used to infer lithology, particularly layering. Detailed breakthrough curves were obtained at 77 positions along each of the six probes and compared with adjacent multi-level sampler breakthrough curves. The results showed that the aquifer was extremely heterogeneous even on this small scale. Because the system operates automatically without the need to extract and analyse large numbers of water samples, it opens up the possibility of carrying out lots of small scale injection tests within a larger domain likely to be invaded by a tracer or pollution plume. Such detailed information for determining aquifer properties can provide the data set necessary for characterisation of the aquifer to predict dispersion parameters appropriate to the large scale. (Author) (6 refs., 9 figs., 2 tabs.)

  2. High-resolution Electrical Resistivity Tomography monitoring of a tracer test in a confined aquifer

    Science.gov (United States)

    Wilkinson, P. B.; Meldrum, P. I.; Kuras, O.; Chambers, J. E.; Holyoake, S. J.; Ogilvy, R. D.

    2010-04-01

    A permanent geoelectrical subsurface imaging system has been installed at a contaminated land site to monitor changes in groundwater quality after the completion of a remediation programme. Since the resistivities of earth materials are sensitive to the presence of contaminants and their break-down products, 4-dimensional resistivity imaging can act as a surrogate monitoring technology for tracking and visualising changes in contaminant concentrations at much higher spatial and temporal resolution than manual intrusive investigations. The test site, a municipal car park built on a former gasworks, had been polluted by a range of polycyclic aromatic hydrocarbons and dissolved phase contaminants. It was designated statutory contaminated land under Part IIA of the UK Environmental Protection Act due to the risk of polluting an underlying minor aquifer. Resistivity monitoring zones were established on the boundaries of the site by installing vertical electrode arrays in purpose-drilled boreholes. After a year of monitoring data had been collected, a tracer test was performed to investigate groundwater flow velocity and to demonstrate rapid volumetric monitoring of natural attenuation processes. A saline tracer was injected into the confined aquifer, and its motion and evolution were visualised directly in high-resolution tomographic images in near real-time. Breakthrough curves were calculated from independent resistivity measurements, and the estimated seepage velocities from the monitoring images and the breakthrough curves were found to be in good agreement with each other and with estimates based on the piezometric gradient and assumed material parameters.

  3. Study with liquid and steam tracers at the Tejamaniles area, Los Azufres, Mich., geothermal field; Estudio con trazadores de liquido y vapor en el area Tejamaniles del campo geotermico de Los Azufres, Mich.

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, Eduardo R. [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Cuernavaca, Morelos (Mexico)]. E-mail: iglesias@iie.org.mx; Flores Armenta, Magaly [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico); Torres, Rodolfo J. [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Cuernavaca, Morelos (Mexico); Ramirez Montes, Miguel [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico); Reyes Picasso, Neftali [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Cuernavaca, Morelos (Mexico); Reyes Delgado, Lisette [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)

    2011-01-15

    The Mexican Federal Commission for Electricity injects brines produced by nearby geothermal wells into well Az-08, located in the Tejamaniles area, in the southwestern portion of Los Azufres, Mich., geothermal field. The main goals of this study are to determine whether or not the injected fluid recharges nine producing wells in the area, and if so, to estimate the fraction of the injected fluid recharging each producing well. Five of the selected wells produce mixes of liquid and steam and the rest produce only steam. For this reason, we designed this study with simultaneous injections of liquid- and steam-tracers. The nine selected producing wells detected the steam-tracer, and the five wells producing mixes detected the liquid-phase tracer. The residence curves of both tracers present a series of peaks reflecting the known fractured nature of the reservoir. The results show the feeding areas of the nine selected wells are recharged by the fluid injected into well Az-08. When this paper was written, the arrival of steam-tracers in all wells was completed, but the wells producing mixes of liquid and steam continued to record the arrival of the liquid-tracer. Until 407 days after injecting the tracer, the total percentage recovery of liquid phase tracer in the five wells producing mixes of liquid and steam was 3.5032%. The arrival of the steam tracer ended in all nine wells 205 days after the tracer was injected, with an overall recovery rate of 2.1553 x 10-2%. The recovery rates imply the recharge rates of the monitored wells by the injector Az-08 are modest, but it appears the amounts of the recovered liquid-phase tracer will increase significantly. The modest recovery rates suggest most of the fluid injected into the well Az-08 disperses in the reservoir, contributing to recharge and maintaining the pressure. Results reveal that: (i) the injected fluid is heated at depths from 700 to over 1000 m, where it boils and rises to reach the feeding areas of the

  4. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    International Nuclear Information System (INIS)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T.

    1994-10-01

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of uranium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed

  5. 3D Electrical resistivity tomography monitoring of an artificial tracer injected within the hyporheic zone

    Science.gov (United States)

    Houzé, Clémence; Pessel, Marc; Durand, Veronique

    2016-04-01

    Due to the high complexity level of hyporheic flow paths, hydrological and biogeochemical processes which occur in this mixing place are not fully understood yet. Some previous studies made in flumes show that hyporheic flow is strongly connected to the streambed morphology and sediment heterogeneity . There is still a lack of practical field experiment considering a natural environment and representation of natural streambed heterogeneities will be always limited in laboratories. The purpose of this project is to propose an innovative method using 3D Electrical Resistivity Tomography (ERT) monitoring of an artificial tracer injection directly within the streambed sediments in order to visualize the water pathways within the hyporheic zone. Field experiment on a small stream was conducted using a plastic tube as an injection piezometer and home-made electrodes strips arranged in a rectangular form made of 180 electrodes (15 strips of 12 electrodes each). The injection of tracer (NaCl) lasted approximatively 90 minutes, and 24h monitoring with increasing step times was performed. The physical properties of the water are controlled by CTD probes installed upstream and downstream within the river. Inverse time-lapse tomographs show development and persistence of a conductive water plume around the injection point. Due to the low hydraulic conductivity of streambed sediments (clay and overlying loess), the tracer movement is barely visible, as it dilutes gradually in the pore water. Impact of boundary conditions on inversion results can lead to significant differences on images, especially in the shallow part of the profiles. Preferential paths of transport are not highlighted here, but this experiment allows to follow spatially and temporarily the evolution of the tracer in a complex natural environment .

  6. Characterization and monitoring of total organic chloride vapors

    International Nuclear Information System (INIS)

    Anheier, N.C. Jr.; Evans, J.C. Jr.; Olsen, K.B.

    1992-07-01

    Chemical sensors are being developed intermediate highly selective and broadly selective methods. PNL is developing an optical-emission based TOCl (total organic chlorinated compounds) sensor (Halosnif) which is capable of measuring TOCl in real time on an extracted gas sample over a wide linear dynamic range. Halosnif employs an atomic emission sensor that is broadly selective for any moderately volatile organic hclorinated vapor but does not distinguish between classes of chlorinated compounds. A rf-induced He plasma is used to excite the chlorine atoms, causing light emission at 837.6 nm. The sensitivity ranges from 1-2 ppM up to at least 10,000 ppM. Field tests were conducted at Tinker AFB in areas of high TCE contamination, in two boreholes at Savannah River, and at Hanford CCl 4 vapor extraction system. This sensor is briefly compared with acoustic wave sensors being developed by SNL (PAWS). 4 figs

  7. Smart home design for electronic devices monitoring based wireless gateway network using cisco packet tracer

    Science.gov (United States)

    Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut

    2018-04-01

    In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.

  8. Real-time monitoring of atom vapor concentration with laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Fan Fengying; Gao Peng; Jiang Tao

    2012-01-01

    The technology of laser absorption spectroscopy was used for real-time monitoring of gadolinium atom vapor concentration measurement and the solid state laser pumped ring dye laser was used as optical source. The optical fiber was taken to improve the stability of laser transmission. The multi-pass absorption technology combined with reference optical signal avoided the influence of laser power fluctuation. The experiment result shows that the system based on this detection method has a standard error of 4%. It is proved that the monitoring system provides reliable data for atom vapor laser isotope separation process and the separation efficiency can be improved. (authors)

  9. Using laser absorption spectroscopy to monitor composition and physical properties of metal vapors

    International Nuclear Information System (INIS)

    Berzins, L.V.

    1993-01-01

    The Atomic Vapor Laser Isotope Separation (AVLIS) program has been using laser absorption spectroscopy to monitor vapor densities for over 15 years. Laser absorption spectroscopy has proven itself to be an accurate and reliable method to monitor both density and composition. During this time the diagnostic has moved from a research tool toward a robust component of a process control system. The hardware used for this diagnostic is discussed elsewhere at this symposium. This paper describes how the laser absorption spectroscopy diagnostic is used as a component of a process control system as well as supplying detailed measurements on vapor densities, composition, flow velocity, internal and kinetic temperatures, and constituent distributions. Examples will be drawn from the uranium AVLIS program. In addition potential applications such as composition control in the production of metal matrix composites or aircraft alloys will be discussed

  10. Capillary-discharge-based portable detector for chemical vapor monitoring

    International Nuclear Information System (INIS)

    Duan Yixiang; Su Yongxuan; Jin Zhe

    2003-01-01

    Conventional portable instruments for sensing chemical vapors have certain limitations for on-site use. In this article, we develop a genuinely portable detector that is sensitive, powerful, rugged, of simple design, and with very low power needs. Such a detector is based on a dry-cell battery-powered, capillary-discharge-based, microplasma source with optical emission detection. The microscale plasma source has very special features such as low thermal temperature and very low power needs. These features make it possible for the plasma source to be powered with a small dry-cell battery. A specially designed discharge chamber with minielectrodes can be configured to enhance the plasma stability and the system performance. A very small amount of inert gas can be used as sample carrier and plasma supporting gas. Inert gases possess high excitation potentials and produce high-energy metastable particles in the plasma. These particles provide sufficient energy to excite chemical species through Penning ionization and/or energy transfer from metastable species. A molecular emission spectrum can be collected with a palm-sized spectrometer through a collimated optical fiber. The spectrum can be displayed on a notebook computer. With this design and arrangement, the new detector provides high sensitivity for organic chemical species. The advantages and features of the newly developed detector include high sensitivity, simple structure, low cost, universal response, very low power consumption, compact volume with field portable capability, and ease of operation

  11. Results of vapor space monitoring of flammable gas Watch List tanks

    International Nuclear Information System (INIS)

    Wilkins, N.E.

    1997-01-01

    This report documents the measurement of headspace gas concentrations and monitoring results from the Hanford tanks that have continuous flammable gas monitoring. The systems used to monitor the tanks are Standard Hydrogen Monitoring Systems. Further characterization of the tank off-gases was done with Gas Characterization Systems and vapor grab samples. The background concentrations of all tanks are below the action level of 6250 ppm. Other information which can be derived from the measurements (such as generation rate, release rate, and ventilation rate) is also discussed

  12. Results of Vapor Space Monitoring of Flammable Gas Watch List Tanks

    Energy Technology Data Exchange (ETDEWEB)

    MCCAIN, D.J.

    2000-09-27

    This report documents the measurement of headspace gas concentrations and monitoring results from the Hanford tanks that have continuous flammable gas monitoring. The systems used to monitor the tanks are Standard Hydrogen Monitoring Systems. Further characterization of the tank off-gases was done with Gas Characterization systems and vapor grab samples. The background concentrations of all tanks are below the action level of 6250 ppm. Other information which can be derived from the measurements (such as generation rate, released rate, and ventilation rate) is also discussed.

  13. Monitoring of water movement in paddy field's soil using a bromide tracer

    International Nuclear Information System (INIS)

    Asiah Ahmad; Kouichi Yuita

    1994-01-01

    Water movement in soils at the lower course and the middle course of Sakawa River's paddy field was monitored over an 8 week period using a bromide tracer. The water of soil samples taken one day after bromide application contained high concentrations of bromide at 50 to 60 cm soil depth at lower course. The bromide was concentrated promarily within 20 to 80 cm depth. No downward movement below 80 cm depth was detected six weeks afetr the application. This might indicate the high water table of this area. On the other hand, bromide concentrations were high at 50 cm depth in water of the soils sample taken one day after application from the middle course of Sakawa River plot. However, the concentrations were nearly at background level in all samples taken from the middle course of sakawa River 3 weeks after application. The evidence from bromide's movement shows that water readily penetrate the soils at the middle course of Sakawa River. The downward movement was faster compared to that at lower course

  14. Seasonal movement change of sediments using RFID tracer monitoring in composite gravel beach, west coast of Korea

    Science.gov (United States)

    Han, M.; Yu, J.; Yang, D. Y.; Kim, J. W.

    2017-12-01

    The purpose of this study is to investigate seasonal movement patterns of gravel movements on the west coast of Korean peninsula. This study aims improve understanding of the process of coastal sediments movement and contribute to coastal erosion management. The study site is Taean Bangpo Beach, which is characterized by its macro tide and composite gravel beach (CGB). In this study, we carried out a radio frequency identifier (RFID) tracer movement monitoring experiment. Four hundred tracers, similar in size and shape to beach sediment, were inserted into the beach in February and December 2015. From the results, it was confirmed that generally, gravel moved southward in the winter and northward in the summer. It was also confirmed that the gravel moved long distances in the summer and winter, but much shorter distances in the spring. At the end of the results, it is confirmed that the tracer recovery rate in summer is lower than in winter. Bangpo Beach was influenced by strong wind and wave energy driven by the East Asian winter monsoon, and by normal tidal energy during the other seasons. It means that seasonal variation of gravel movement in the beach is attributed to the difference of seasonal energy conditions. In addition, it is interpreted that the sand at the intertidal zone cannot be removed in the summer when the wave energy is weak, causing the tracer to be buried. This study is expected to contribute to the study of composite gravel beach and coastal coarse sediment movement which have been lacking in research.

  15. Site characterization and validation - monitoring of saline tracer transport by borehole radar measurements

    International Nuclear Information System (INIS)

    Olsson, O.; Andersson, P.; Gustafsson, E.

    1991-08-01

    The objective of this experiment was to map tracer transport in fractured crystalline rock through a combination of radar difference tomography and measurements of tracer concentration in boreholes and the validation drift. The experiment was performed twice, first the D-boreholes were used as a sink and then they were replaced by the validation drift and the experiment repeated. In both experiments saline tracer (200 ml/min, 2% salinity) was injected into fracture zone H about 25 m from the validation drift. The experiment revealed an inhomogeneous transmissivity distribution in Zone H. A significant portion of the tracer is transported upwards along Zone H and towards boreholes T1, T2, and W1. The breakthrough data from both experiments indicate that there are two major transport paths from borehole C2 to the D-boreholes/validation drift. One slow and diluted path to the bottom of the drift which carries the bulk of the mass and one fast path to the crown of the drift with high tracer concentration. The radar difference tomograms show that some tracer is lost through Zone S which intersects Zone H and is nearly perpendicular to it. The intersection between the two zones seems to constitute a preferred flow path. The breakthrough data and the radar difference tomograms have also been used to estimate flow porosity. The estimate obtained area of the same order approximately 10 -4 . (au) (28 refs.)

  16. Time-lapse Mise-á-la-Masse measurements and modeling for tracer test monitoring in a shallow aquifer

    Science.gov (United States)

    Perri, Maria Teresa; De Vita, Pantaleone; Masciale, Rita; Portoghese, Ivan; Chirico, Giovanni Battista; Cassiani, Giorgio

    2018-06-01

    The main goal of this study is to evaluate the reliability of the Mise-á-la-Masse (MALM) technique associated with saline tracer tests for the characterization of groundwater flow direction and velocity. The experimental site is located in the upper part of the Alento River alluvial plain (Campania Region, Southern Italy). In this paper we present the hydrogeological setting, the experimental setup and the relevant field results. Subsequently, we compare those data against the simulated results obtained with a 3D resistivity model of the test area, coupled with a model describing the Advection - Dispersion equation for continuous tracer injection. In particular, we calculate a series of 3D forward solutions starting from a reference model, all derived from electrical tomography results, but taking into consideration different values of mean flow velocity and directions. Each electrical resistivity 3D model is used to produce synthetic voltage maps for MALM surveys. Finally, the synthetic MALM voltage maps are compared with the ones measured in the field in order to assess the information content of the MALM dataset with respect to the groundwater field characteristics. The results demonstrate that the information content of the MALM data is sufficient to define important characteristics of the aquifer geometry and properties. This work shows how a combination of three-dimensional time-lapse modeling of flow, tracer transport and electrical current can substantially contribute towards a quantitative interpretation of MALM measurements during a saline tracer test. This approach can thus revive the use of MALM as a practical, low cost field technique for tracer test monitoring and aquifer hydrodynamic characterization.

  17. Development of Radon-222 as Natural Tracer for Monitoring the Remediation of NAPL in the Subsurface

    International Nuclear Information System (INIS)

    Davis, Brian M.; Semprini, Lewis; Istok, Jonathan

    2003-01-01

    Naturally occurring 222-radon in ground water can potentially be used as an in situ partitioning tracer to characterize dense nonaqueous phase liquid (DNAPL) saturations. The static method involves comparing radon concentrations in water samples from DNAPL-contaminated and non-contaminated portions of an aquifer. During a push-pull test, a known volume of test solution (radon-free water containing a conservation tracer) is first injected (''pushed'') into a well; flow is then reversed and the test solution/groundwater mixture is extracted (''pulled'') from the same well. In the presence of NAPL radon transport is retarded relative to the conservative tracer. Assuming linear equilibrium partitioning, retardation factors for radon can be used to estimate NAPL saturations.The utility of this methodology was evaluated in laboratory and field settings

  18. An alarm instrument for monitoring leakage of oil storage tanks and the location of their leak position using radioisotope tracers

    International Nuclear Information System (INIS)

    Lu Qingqian; Sun Xiaolei; Hu Xusheng

    1990-01-01

    Usually it is difficult to find out gasoline leakage at the bottom of a storage tank from the very beginning. In order to solve this problem, a leak-monitoring technique and an instrument based on the detection of nuclear radiation have been successfully developed. The instrument possesses high sensitivity, short reaction time, excellent stability and rellability. When very small leaks at the bottom of a tank appear, the instrument will show a leak signal and give an alarm. In the meantime, however, the tank can be still used until the preparations for repairing are completed. Then its leak position can be accurately located by using radioisotope tracers

  19. A gasoline vapor monitoring program for a major underground long-term leak

    International Nuclear Information System (INIS)

    Boehler, W.F.; Huttie, R.L.; Hill, K.M.; Ames, P.R.

    1991-01-01

    In January of 1988, a large petroleum distributor located in Long Island, New York, reported that a gasoline leak had occurred, and unfortunately, had gone undetected for a number of years. Since the initial discovery of the greater than 1 million gallon gasoline spill, approximately 110 Vapor Monitoring Wells and more than 120 Water Monitoring Wells have been installed in and around an impacted residential community. This paper will focus on the air monitoring aspects of the gasoline spill project including: (1) air sampling methodology - discussion of strategies, techniques, problems and solutions; (2) analytical methodology - development of a Non-Cryogenic Automated Thermal Desorption GC/MS System for the analysis of Air Toxics; (3) work load requirements for the governmental laboratory; (4) establishment of quality assurance program for participating commercial laboratories; (5) establishment of a computerized quality assured project data base; (6) and interactions with the petroleum distributor, consultants and the residential community

  20. Engineering task plan for the vapor monitor installation into 241-C-103 tank

    International Nuclear Information System (INIS)

    Hertelendy, N.A.

    1994-12-01

    A vapor flow monitor is to be installed into the 241-C-103 tank's exhaust, just downstream of the HEPA filter. The flow monitor system includes the flow sensor, the baffle assembly, the signal conditioning and control electronics, and a chart recorder. The electronics package and the chart recorder are installed into a small, heated instrument cabinet that is mounted on the same steel pallet on which the flowmeter and the diffuser assembly is mounted. The flowmeter is connected to the HEPA filter with an unheated, un-insulated flex hose. An automatic drain, upstream of the flowmeter, is designed to automatically drain the condensate into an evaporating pan. The flowmeter is heated with a temperature controlled heater to avoid condensation

  1. A quantitative infrared spectral library of vapor phase chemicals: applications to environmental monitoring and homeland defense

    Science.gov (United States)

    Sharpe, Steven W.; Johnson, Timothy J.; Sams, Robert L.

    2004-12-01

    The utility of infrared spectroscopy for monitoring and early warning of accidental or deliberate chemical releases to the atmosphere is well documented. Regardless of the monitoring technique (open-path or extractive) or weather the spectrometer is passive or active (Fourier transform or lidar) a high quality, quantitative reference library is essential for meaningful interpretation of the data. Pacific Northwest National Laboratory through the support of the Department of Energy has been building a library of pure, vapor phase chemical species for the last 4 years. This infrared spectral library currently contains over 300 chemicals and is expected to grow to over 400 chemicals before completion. The library spectra are based on a statistical fit to many spectra at different concentrations, allowing for rigorous error analysis. The contents of the library are focused on atmospheric pollutants, naturally occurring chemicals, toxic industrial chemicals and chemicals specifically designed to do damage. Applications, limitations and technical details of the spectral library will be discussed.

  2. Environmental Monitoring of Agro-Ecosystem Using Environmental Isotope Tracer Technology

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae Sung; Cho, Jae Young

    2004-10-01

    This report has provided the counterparts the knowledge and skills on the use of environmental isotope tracer technology for obtaining valuable information on agricultural non-point pollution source in agro-ecosystem. The contamination from agricultural watersheds has been brought into attention as a potential contaminant of streams and tributaries, since majority of them caused water quality degradation, eutrophication of reservoir and negative effect on agro-environment. To prevent the contamination from these watersheds, it is necessary to find out the source of the contamination. However, accurate contaminants outflows from various types of non-point sources have not yet been elucidated due to the fact that the extent of non-point source contaminants related to uncontrollable climatic events and irrigation conditions may differ greatly from place to place and year to year. The dominant use of isotopes in environmental ecosystem research in the last few decades has been to trace sources of waters and solutes. The environmental isotope tracer technology using stable isotopes such as oxygen, hydrogen, carbon, nitrogen, and sulfur has extensively been used for tracing the fate of environmental pollutants and for identification of environmental pollutants sources in agro-ecosystems

  3. Monitoring the variability of precipitable water vapor over the Klang Valley, Malaysia during flash flood

    International Nuclear Information System (INIS)

    Suparta, W; Rahman, R; Singh, M S J

    2014-01-01

    Klang Valley is a focal area of Malaysian economic and business activities where the local weather condition is very important to maintain its reputation. Heavy rainfalls for more than an hour were reported up to 40 mm in September 2013 and 35 mm in October 2013. Both events are monitored as the first and second cases of flash flood, respectively. Based on these cases, we investigate the water vapor, rainfall, surface meteorological data (surface pressure, relative humidity, and temperature) and river water level. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) is used to indicate the impact of flash flood on the rainfall. We found that PWV was dropped 4 mm in 2 hours before rainfall reached to 40 mm and dropped 3 mm in 3 hours before 35 mm of rainfall in respective cases. Variation of PWV was higher in September case compared to October case of about 2 mm. We suggest the rainfall phenomena can disturb the GPS propagation and therefore, the impact of PWV before, during and after the flash flood event at three selected GPS stations in Klang Valley is investigated for possible mitigation in the future

  4. PASSIVE SAMPLING OF GROUND WATER MONITORING WELLS WITHOUT PURGING MULTILEVEL WELL CHEMISTRY AND TRACER DISAPPEARANCE

    Science.gov (United States)

    It is essential that the sampling techniques utilized in groundwater monitoring provide data that accurately depicts the water quality of the sampled aquifer in the vicinity of the well. Due to the large amount of monitoring activity currently underway in the U.S.A. it is also im...

  5. Long open-path instrument for simultaneously monitoring of methane, CO2 and water vapor

    Science.gov (United States)

    Simeonov, Valentin; Parlange, Marc

    2013-04-01

    A new, long open-path instrument for monitoring of path-averaged methane, CO2 and water vapor concentrations will be presented. The instrument is built on the monostatic scheme (transceiver -distant retroreflector). A VCSEL with a central wavelength of 1654 nm is used as a light source. The receiver is built around a 20 cm Newtonian telescope. The design optical path length is 2000 m but can be further extended. To avoid distortions in the shape of the spectral lines caused by atmospheric turbulences they are scanned within 1 µs. The expected concentration resolution for the above mentioned path length is of the order of 2 ppb for methane, 100 ppb for CO2 and 100 ppm for water vapor. The instrument is developed at the Swiss Federal Institute of Technology - Lausanne (EPFL) Switzerland and will be used within the GAW+ CH program for long-term monitoring of background methane and CO2 concentrations in the Swiss Alps. The initial calibration validation tests at EPFL were completed in December 2012 and the instrument will be installed at the beginning of 2013 at the High Altitude Research Station Jungfraujoch (HARSJ). The HARSJ is located at 3580 m ASL and is one of the 24 global GAW stations. One of the goals of the project is to compare path-averaged to the ongoing point measurements of methane in order to identify possible influence of the station. Future deployments of a copy of the instrument include the Canadian arctic and Siberian wetlands. The instrument can be used for ground truthing of satellite observation as well.

  6. Tumoral tracers

    International Nuclear Information System (INIS)

    Camargo, E.E.

    1979-01-01

    Direct tumor tracers are subdivided in the following categories:metabolite tracers, antitumoral tracers, radioactive proteins and cations. Use of 67 Ga-citrate as a clinically important tumoral tracer is emphasized and gallium-67 whole-body scintigraphy is discussed in detail. (M.A.) [pt

  7. Monitoring middle-atmospheric water vapor over Seoul by using a 22 GHz ground-based radiometer SWARA

    Science.gov (United States)

    Ka, Soohyun; de Wachter, Evelyn; Kaempfer, Niklaus; Oh, Jung Jin

    2010-10-01

    Water vapor is the strongest natural greenhouse gas in the atmosphere. It is most abundant in the troposphere at low altitudes, due to evaporation at the ocean surface, with maximum values of around 6 g/kg. The amount of water vapor reaches a minimum at tropopause level and increases again in the middle atmosphere through oxidation of methane and vertical transport. Water vapor has both positive and negative effects on global warming, and we need to study how it works on climate change by monitoring water vapor concentration in the middle atmosphere. In this paper, we focus on the 22 GHz ground-based radiometer called SWARA (Seoul Water vapor Radiometer) which has been operated at Sookmyung women's university in Seoul, Korea since Oct. 2006. It is a joint project of the University of Bern, Switzerland, and the Sookmyung Women's University of Seoul, South Korea. The SWARA receives 22.235 GHz emitted from water vapor spontaneously and converts down to 1.5 GHz with +/- 0.5 GHz band width in 61 kHz resolution. To represent 22.235 GHz water vapor spectrum precisely, we need some calibration methods because the signal shows very weak intensity in ~0.1 K on the ground. For SWARA, we have used the balancing and the tipping curve methods for a calibration. To retrieve the water vapor profile, we have applied ARTS and Qpack software. In this paper, we will present the calibration methods and water vapor variation over Seoul for the last 4 years.

  8. Stochastic joint inversion of hydrogeophysical data for salt tracer test monitoring and hydraulic conductivity imaging

    Science.gov (United States)

    Jardani, A.; Revil, A.; Dupont, J. P.

    2013-02-01

    The assessment of hydraulic conductivity of heterogeneous aquifers is a difficult task using traditional hydrogeological methods (e.g., steady state or transient pumping tests) due to their low spatial resolution. Geophysical measurements performed at the ground surface and in boreholes provide additional information for increasing the resolution and accuracy of the inverted hydraulic conductivity field. We used a stochastic joint inversion of Direct Current (DC) resistivity and self-potential (SP) data plus in situ measurement of the salinity in a downstream well during a synthetic salt tracer experiment to reconstruct the hydraulic conductivity field between two wells. The pilot point parameterization was used to avoid over-parameterization of the inverse problem. Bounds on the model parameters were used to promote a consistent Markov chain Monte Carlo sampling of the model parameters. To evaluate the effectiveness of the joint inversion process, we compared eight cases in which the geophysical data are coupled or not to the in situ sampling of the salinity to map the hydraulic conductivity. We first tested the effectiveness of the inversion of each type of data alone (concentration sampling, self-potential, and DC resistivity), and then we combined the data two by two. We finally combined all the data together to show the value of each type of geophysical data in the joint inversion process because of their different sensitivity map. We also investigated a case in which the data were contaminated with noise and the variogram unknown and inverted stochastically. The results of the inversion revealed that incorporating the self-potential data improves the estimate of hydraulic conductivity field especially when the self-potential data were combined to the salt concentration measurement in the second well or to the time-lapse cross-well electrical resistivity data. Various tests were also performed to quantify the uncertainty in the inverted hydraulic conductivity

  9. Application of naturally occurring isotopes and artificial radioactive tracer for monitoring water flooding in oil field

    International Nuclear Information System (INIS)

    Ahmad, M.; Khan, I.H.; Farooq, M.; Tasneem, M.A.; Rafiq, M.; Din, U.G.; Gul, S.

    2002-03-01

    Water flooding is an important operation to enhance oil recovery. Water is injected in the oil formation under high pressure through an injection well. Movement of the injected water is needed to be traced to test the performance of water flood, investigate unexpected anomalies in flow and verify suspected geological barriers or flow channels, etc. In the present study environmental isotopes and artificial radiotracer (tritium) were used at Fimkassar Oil Field of Oil and Gas Development Company Limited (OGDCL) where water flooding was started in March 1996 in Sakessar formation to maintain its pressure and enhance the oil recovery. Environmental isotopes: /sup 18/O, /sup 2/H and /sup 3/H, and chloride contents were used to determine the breakthrough/transit time and contribution of fresh injected water. Water samples were collected from the injection well, production well and some other fields for reference indices of Sakessar Formation during June 1998 to August 1999. These samples were analyzed for the /sup 18/O, /sup 2/H and /sup 3/H, and chloride contents. Results show that the water of production well is mixture of fresh water and formation water. The fresh water contribution varied from 67% to 80%, while remaining component was the old recharged formation water. This percentage did not change significantly from the time of break-through till the last sampling which indicates good mixing in the reservoir and absence of any quick channel. The initial breakthrough time was 27 months as the fresh water contributed significantly in the first appearance of water in the production well in June 1998. Tritium tracer, which was injected in November 1998, appeared in the production well after 8 months. It show that breakthrough time decreased with the passage of time. /sup 14/C of inorganic carbon in the water in Chorgali and Sakessar Formations was also analyzed which indicates that the water is at least few thousand years old. (author)

  10. Modeling PWR systems for monitoring primary-to-secondary leakage using tritium tracer

    International Nuclear Information System (INIS)

    Peiffer, D.G.

    1992-01-01

    This paper discusses several techniques available for monitoring primary to secondary leakage, focusing on the advantages and disadvantages of each. A mathematical model of Millstone 2 describes the behavior of tritium activity in the secondary plant water when a leak exists. Real data from Millstone 2 illustrate the accuracy and reliability of the model and use of the model to measure the mass of water in the secondary system

  11. Hydrologic Process Regularization for Improved Geoelectrical Monitoring of a Lab-Scale Saline Tracer Experiment

    Science.gov (United States)

    Oware, E. K.; Moysey, S. M.

    2016-12-01

    Regularization stabilizes the geophysical imaging problem resulting from sparse and noisy measurements that render solutions unstable and non-unique. Conventional regularization constraints are, however, independent of the physics of the underlying process and often produce smoothed-out tomograms with mass underestimation. Cascaded time-lapse (CTL) is a widely used reconstruction technique for monitoring wherein a tomogram obtained from the background dataset is employed as starting model for the inversion of subsequent time-lapse datasets. In contrast, a proper orthogonal decomposition (POD)-constrained inversion framework enforces physics-based regularization based upon prior understanding of the expected evolution of state variables. The physics-based constraints are represented in the form of POD basis vectors. The basis vectors are constructed from numerically generated training images (TIs) that mimic the desired process. The target can be reconstructed from a small number of selected basis vectors, hence, there is a reduction in the number of inversion parameters compared to the full dimensional space. The inversion involves finding the optimal combination of the selected basis vectors conditioned on the geophysical measurements. We apply the algorithm to 2-D lab-scale saline transport experiments with electrical resistivity (ER) monitoring. We consider two transport scenarios with one and two mass injection points evolving into unimodal and bimodal plume morphologies, respectively. The unimodal plume is consistent with the assumptions underlying the generation of the TIs, whereas bimodality in plume morphology was not conceptualized. We compare difference tomograms retrieved from POD with those obtained from CTL. Qualitative comparisons of the difference tomograms with images of their corresponding dye plumes suggest that POD recovered more compact plumes in contrast to those of CTL. While mass recovery generally deteriorated with increasing number of time

  12. Study with a steam tracer in a zone near well Az-64, in the Los Azufres geothermal field, Mich.; Estudio con un trazador de vapor en la zona aledana al pozo Az-64, en el campo geotermico de Los Azufres, Mich.

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, Eduardo R. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: iglesias@iie.org.mx; Flores Armenta, Magaly; Quijano Leon, Jose Luis; Torres Rodriguez, Marco A. [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico); Torres, Rodolfo J.; Reyes Picasso, Neftali [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Sandoval Medina, Fernando [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)

    2009-01-15

    and 539 m from the injector. The results showed the six monitored wells are recharged from injection in Az-64 and quantified the corresponding recoveries as steam. Because only a steam-phase tracer was used, we were unable to determine liquid-recovery amounts. The work also allowed us to characterize relations between the permeability in the studied zone and the known distribution of faults. Some relationships were suggested unconsidered before. [Spanish] En el estudio con trazadores precedente a este, efectuado en la zona Maritaro-La Cumbre del campo geotermico de Los Azufres, Mich., se comprobo que la inyeccion en el pozo Az-15 recarga a un grupo de pozos situados a una distancia maxima del inyector de algo menos de 2000 m. Y se comprobo que la inyeccion en dicho pozo o bien no recarga a pozos situados a mas de 2300 m hacia el este, en las inmediaciones de la falla Laguna Verde, o lo hace muy lentamente en un largo periodo. Como es importante recargar la zona mencionada en ultimo termino, se decidio entonces explorar la posibilidad de recargarla desde el pozo Az-64, localizado en dicha area. Para ello se diseno el presente estudio. Se designaron seis pozos productores para monitorear el arribo del trazador. Debido a que todos estos pozos producen vapor (aunque varios producen tambien liquido), y por consideraciones economicas, se decidio utilizar en este caso un trazador de vapor solamente. Se utilizo hexafluoruro de azufre (SF6), un trazador utilizado con exito previamente en este campo. El 24 de octubre de 2006 se inyectaron 96.4 kg de SF6 en el pozo Az-64. El monitoreo de los pozos se realizo durante 156 dias a partir de esa fecha. El trazador se detecto en los seis pozos productores monitoreados. En todos los casos las formas de las curvas de residencia manifestaron claramente la naturaleza fracturada de la permeabilidad involucrada. En todos los casos las curvas de recuperacion del trazador indicaron claramente que la llegada del mismo se habia completado

  13. Tracer theory

    International Nuclear Information System (INIS)

    Margrita, R.

    1988-09-01

    Tracers are used in many fields of science to investigate mass transfer. The scope of tracers applications in Service of Applications Radioisotopes (S.A.R.-France) is large and concerns natural and industrial systems such as Sciences of earth: hydrology - civil engineering - Sedimentology - environmental studies. Industrial field: chemical engineering - mechanical engineering. A general tracer methodology has been developed in our laboratories from these different applications fields and this paper shows these different points of view in using tracers; our wish is that the methods used in an experimental field can be employed in an another one

  14. Impact of small-scale saline tracer heterogeneity on electrical resistivity monitoring in fully and partially saturated porous media: Insights from geoelectrical milli-fluidic experiments

    Science.gov (United States)

    Jougnot, Damien; Jiménez-Martínez, Joaquín; Legendre, Raphaël; Le Borgne, Tanguy; Méheust, Yves; Linde, Niklas

    2018-03-01

    Time-lapse electrical resistivity tomography (ERT) is a geophysical method widely used to remotely monitor the migration of electrically-conductive tracers and contaminant plumes in the subsurface. Interpretations of time-lapse ERT inversion results are generally based on the assumption of a homogeneous solute concentration below the resolution limits of the tomogram depicting inferred electrical conductivity variations. We suggest that ignoring small-scale solute concentration variability (i.e., at the sub-resolution scale) is a major reason for the often-observed apparent loss of solute mass in ERT tracer studies. To demonstrate this, we developed a geoelectrical milli-fluidic setup where the bulk electric conductivity of a 2D analogous porous medium, consisting of cylindrical grains positioned randomly inside a Hele-Shaw cell, is monitored continuously in time while saline tracer tests are performed through the medium under fully and partially saturated conditions. High resolution images of the porous medium are recorded with a camera at regular time intervals, and provide both the spatial distribution of the fluid phases (aqueous solution and air), and the saline solute concentration field (where the solute consists of a mixture of salt and fluorescein, the latter being used as a proxy for the salt concentration). Effective bulk electrical conductivities computed numerically from the measured solute concentration field and the spatial distributions of fluid phases agree well with the measured bulk conductivities. We find that the effective bulk electrical conductivity is highly influenced by the connectivity of high electrical conductivity regions. The spatial distribution of air, saline tracer fingering, and mixing phenomena drive temporal changes in the effective bulk electrical conductivity by creating preferential paths or barriers for electrical current at the pore-scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy

  15. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    Science.gov (United States)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-03-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  16. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    Science.gov (United States)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-01-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  17. An evaluation of absorption spectroscopy to monitor YBa2Cu3O7-x precursors for metal organics chemical vapor deposition processing

    International Nuclear Information System (INIS)

    Matthew Edward Thomas

    1999-01-01

    Absorption spectroscopy was evaluated as a technique to monitor the metal organics chemical vapor deposition (MOCVD) process for forming YBa 2 Cu 3 O 7-x superconducting coated conductors. Specifically, this study analyzed the feasibility of using absorption spectroscopy to monitor the MOCVD supply vapor concentrations of the organic ligand 2,2,6,6-tetramethyl-3,5-heptanedionate (TMHD) metal chelates of barium, copper, and yttrium. Ba(TMHD) 2 , Cu(TMHD) 2 , and Y(TMHD) 3 compounds have successfully been vaporized in the MOCVD processing technique to form high temperature superconducting ''coated conductors,'' a promising technology for wire fabrication. The absorption study of the barium, copper, and yttrium (TMHD) precursors was conducted in the ultraviolet wavelength region from 200nm to 400nm. To simulate the MOCVD precursor flows the Ba(TMHD) 2 , Cu(TMHD) 2 , and Y(TMHD) 3 complexes were vaporized at vacuum pressures of (0.03--10)Torr. Spectral absorption scans of each precursor were conducted to examine potential measurement wavelengths for determining vapor concentrations of each precursor via Beer's law. The experimental results show that under vacuum conditions the barium, copper, and yttrium (TMHD) precursors begin to vaporize between 90 C and 135 C, which are considerably lower vaporization temperatures than atmospheric thermal gravimetric analyses indicate. Additionally, complete vaporization of the copper and yttrium (TMHD) precursors occurred during rapid heating at temperatures between 145 C and 195 C and after heating at constant temperatures between 90 C and 125 C for approximately one hour, whereas the Ba(TMHD) 2 precursor did not completely vaporize. At constant temperatures, near constant vaporization levels for each precursor were observed for extended periods of time. Detailed spectroscopic scans at stable vaporization conditions were conducted

  18. Environmental Tracers

    Directory of Open Access Journals (Sweden)

    Trevor Elliot

    2014-10-01

    Full Text Available Environmental tracers continue to provide an important tool for understanding the source, flow and mixing dynamics of water resource systems through their imprint on the system or their sensitivity to alteration within it. However, 60 years or so after the first isotopic tracer studies were applied to hydrology, the use of isotopes and other environmental tracers are still not routinely necessarily applied in hydrogeological and water resources investigations where appropriate. There is therefore a continuing need to promote their use for developing sustainable management policies for the protection of water resources and the aquatic environment. This Special Issue focuses on the robustness or fitness-for-purpose of the application and use of environmental tracers in addressing problems and opportunities scientifically, to promote their wider use and to address substantive issues of vulnerability, sustainability, and uncertainty in (groundwater resources systems and their management.

  19. In situ, subsurface monitoring of vapor-phase TCE using fiber optics

    International Nuclear Information System (INIS)

    Rossabi, J.; Colston, B. Jr.; Brown, S.; Milanovich, F.; Lee, L.T. Jr.

    1993-01-01

    A vapor-phase, reagent-based, fiber optic trichloroethylene (TCE) sensor developed by Lawrence Livermore National Laboratory (LLNL) was demonstrated at the Savannah River Site (SRS) in two configurations. The first incorporated the sensor into a down-well instrument bounded by two inflatable packers capable of sealing an area for discrete depth analysis. The second involved an integration of the sensor into the probe tip of the Army Corps of Engineers Waterways Experiment Station (WES) cone penetrometry system. Discrete depth measurements of vapor-phase concentrations of TCE in the vadose zone were successfully made using both configurations. These measurements demonstrate the first successful in situ sensing (as opposed to sampling) of TCE at a field site

  20. Functionalized multi-walled carbon nanotube paper for monitoring chemical vapors

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Olejník, R.; Saha, P.

    2015-01-01

    Roč. 15, č. 5 (2015), s. 4003-4008 ISSN 1533-4880 Grant - others:GA MŠk(CZ) ED2.1.00/03.0111; GA MŠk(CZ) EE.2.3.20.0104 Institutional research plan: CEZ:AV0Z20600510 Institutional support: RVO:67985874 Keywords : carbon nanotube network * electrical resistance * organic vapor sensor Subject RIV: BK - Fluid Dynamics Impact factor: 1.338, year: 2015

  1. Study of liquid and steam tracers at the Maritaro - La Cumbre area of the Los Azufres geothermal field, Mich.; Estudio con trazadores de liquido y vapor en la zona Maritaro - La Cumbre del campo geotermico de Los Azufres, Mich.

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, Eduardo R [Instituto de Investigaciones Electricas, Cuernavaca, Morelos, (Mexico)]. E-mail: iglesias@iie.org.mx; Flores Armenta, Magaly; Quijano Leon, Jose Luis; Torres Rodriguez, Marco A [Comision Federal de Electricidad, Morelia, Michoacan (Mexico); Torres, Rodolfo J; Reyes Picasso, Neftali [Instituto de Investigaciones Electricas, Cuernavaca, Morelos, (Mexico)

    2008-01-15

    We ran two simultaneous tracer tests in the Maritaro-La Cumbre area of the Los Azufres geothermal field in Mexico. We wished to determine whether or not fluids injected in well Az-15 recharged the productive areas of six production wells and to estimate the fractions of injected fluid recovered in them, if any. Because only three of the wells produce water and all of them produce steam, two tracers were used, sulfur hexafluoride (SF{sub 6}) for the gas phase and 1,3,6 naphthalene trisulfonate (1,3,6-nts) for the liquid phase. All of the observation wells recorded SF{sub 6}, and the three water-producing wells recorded 1,3,6-nts, proving that fluids injected in well Az-15 do recharge the area of interest. When sampling was suspended, the three water-producing wells were still producing 1,3,6-nts at significant rates. The total recovery of 1,3,6-nts at wells Az-65D, Az-04 and Az-28, 279 days after injection when sampling was halted, were, respectively, 6.1%, 0.90% y 0.16%, for a total of 7.61%. We concluded that these quantities constitute the lower boundaries for the respective recovery factors. When sampling was halted, wells Az-65D, Az-66D and Az-30 were still producing some SF{sub 6} at lower rates, and the rest of the wells were no longer recording the gas phase tracer. The total recovery of SF{sub 6} at wells Az-65D, Az-04, Az-41, Az-30, Az-28 and Az-66D were, respectively, 4.82 e-02%, 1.37 e-03%, 1.48 e-03%, 6.38 e-04%, 1.38 e-03% y 4.31 e-04%, for a total of 5.35 e-02%. The liquid recharge occurred in orders of magnitude greater than the steam. [Spanish] Se efectuaron dos pruebas simultaneas en la zona Maritaro-La Cumbre del campo geotermico de Los Azufres, Mich., Mexico. Los objetivos de estas pruebas fueron determinar si la salmuera de desecho inyectada en el pozo Az-15 recarga las zonas de alimentacion de seis pozos productores designados por CFE, y estimar que fraccion de lo inyectado recarga dichos pozos productores. Debido a que solo tres de los pozos

  2. Measurement of the Tracer Gradient and Sampling System Bias of the Hot Fuel Examination Facility Stack Air Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A.; Flaherty, Julia E.

    2011-07-20

    This report describes tracer gas uniformity and bias measurements made in the exhaust air discharge of the Hot Fuel Examination Facility at Idaho National Laboratory. The measurements were a follow-up on earlier measurements which indicated a lack of mixing of the two ventilation streams being discharged via a common stack. The lack of mixing is detrimental to the accuracy of air emission measurements. The lack of mixing was confirmed in these new measurements. The air sampling probe was found to be out of alignment and that was corrected. The suspected sampling bias in the air sample stream was disproved.

  3. Development of a GPS buoy system for monitoring tsunami, sea waves, ocean bottom crustal deformation and atmospheric water vapor

    Science.gov (United States)

    Kato, Teruyuki; Terada, Yukihiro; Nagai, Toshihiko; Koshimura, Shun'ichi

    2010-05-01

    bottom positions with a few centimeters in accuracy. The system is now operational for more than ten sites along the Japanese coasts. Currently, however, the measurements are not continuous but have been done once to several times a year using a boat. If a GPS and acoustic system is placed on a buoy, ocean bottom position could be monitored in near real-time and continuous manner. This will allow us to monitor more detailed and short term crustal deformations at the sea bottom. Another application plan is for an atmospheric research. Previous researchers have shown that GPS is capable of measuring atmospheric water vapor through estimating tropospheric zenith delay measurements of GPS at the sea surface. Information of water vapor content and its temporal variation over sea surface will much contribute to weather forecast on land which has mostly been conducted only by land observations. Considering that the atmospheric mass moves from west to east in general in and around Japanese islands, information of water vapor together with other atmospheric data from an array of GPS buoy placed in the west of Japanese Islands, will much improve weather forecast. We try to examine if this is also feasible. As a conclusion of a series of GPS buoy experiments, we could assert that GPS buoy system will be a powerful tool to monitor ocean surface and much contribute to provide safe and secure life of people.

  4. Field tests of a chemiresistor sensor for in-situ monitoring of vapor-phase contaminants

    Science.gov (United States)

    Ho, C.; McGrath, L.; Wright, J.

    2003-04-01

    An in-situ chemiresistor sensor has been developed that can detect volatile organic compounds in subsurface environmental applications. Several field tests were conducted in 2001 and 2002 to test the reliability, operation, and performance of the in-situ chemiresistor sensor system. The chemiresistor consists of a carbon-loaded polymer deposited onto a microfabricated circuit. The polymer swells reversibly in the presence of volatile organic compounds as vapor-phase molecules absorb into the polymer, causing a change in the electrical resistance of the circuit. The change in resistance can be calibrated to known concentrations of analytes, and arrays of chemiresistors can be used on a single chip to aid in discrimination. A waterproof housing was constructed to allow the chemiresistor to be used in a variety of media including air, soil, and water. The integrated unit, which can be buried in soils or emplaced in wells, is connected via cable to a surface-based solar-powered data logger. A cell-phone modem is used to automatically download the data from the data logger on a periodic basis. The field tests were performed at three locations: (1) Edwards Air Force Base, CA; (2) Nevada Test Site; and (3) Sandia's Chemical Waste Landfill near Albuquerque, NM. The objectives of the tests were to evaluate the ruggedness, longevity, operation, performance, and engineering requirements of these sensors in actual field settings. Results showed that the sensors could be operated continuously for long periods of time (greater than a year) using remote solar-powered data-logging stations with wireless telemetry. The sensor housing, which was constructed of 304 stainless steel, showed some signs of corrosion when placed in contaminated water for several months, but the overall integrity was maintained. The detection limits of the chemiresistors were generally found to be near 0.1% of the saturated vapor pressure of the target analyte in controlled laboratory conditions (e

  5. Real time monitoring of filament-assisted chemically vapor deposited diamond by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Yue Cong; An, I.; Vedam, K.; Collins, R.W.; Nguyen, H.V.; Messier, R.

    1991-01-01

    Spectroscopic ellipsometry over the range 1.5-4.5 eV was applied as a real time probe of the processes occurring in the initial nucleation of thin film diamond by heated-filament assisted chemical vapor deposition. Using both untreated and diamond-polished c-Si substrates, as well as both carburized and uncarburized tungsten filaments, it was possible to separate and characterize competing phenomena, including the increase in surface temperature induced by filament ignition, the formation of carbide layers, contamination of the substrate by tungsten from the filament, annealing of diamond polishing damage, and, finally, diamond nucleation. An accurate measurement of the true temperature of the substrate surface averaged over the top 500 A can be obtained from the energy position of critical points in the c-Si band structure. For diamond deposition, we operated with an initial excess flow of CH 4 to stimulate nucleation. We applied real time feedback and manual control to reduce the CH 4 flow in the first monolayers of deposition. The thickness of diamond and an estimate of its nucleation density can be obtained from real time spectra, and the latter was in good agreement with that obtained from scanning electron microscopy. (orig.)

  6. Using stable isotopes of carbon and nitrogen as in-situ tracers for monitoring the natural attenuation of explosives

    National Research Council Canada - National Science Library

    Miyares, Paul H

    1999-01-01

    The use of carbon and nitrogen stable isotope measurements from TNT was examined as a possible tool for monitoring the natural attenuation of TNT incubation studies of spiked soil samples were conducted...

  7. A new method to monitor water vapor cycles in active volcanoes

    Science.gov (United States)

    Girona, T.; Costa Rodriguez, F.; Taisne, B.

    2014-12-01

    Simultaneous monitoring of different gas species of volcanic plumes is crucial to understand the mechanisms involved in persistent degassing, and to anticipate volcanic unrest episodes and magma ascent towards the surface. Progress in gas remote-sensing techniques during the last decades has led to the development of ultraviolet absorption spectrometers and UV cameras, which enable to monitor SO2 emission cycles in real time, at very high-frequency (~ 1Hz), and from several kilometers away from the volcanic plume. However, monitoring of the more abundant gases, i.e., H2O and CO2, is limited to volcanoes where infrared spectrometers and infrared lamps can be installed at both sides of the crater rims. In this study, we present a new and simple methodology to register H2O emission cycles from long distances (several kilometers), which is based on the light scattered by the micrometric water droplets of condensed plumes. The method only requires a commercial digital camera and a laptop for image processing, since, as we demonstrate, there is a linear correlation between the digital brightness of the plume and its volcanogenic water content. We have validated the method experimentally by generating controlled condensed plumes with an ultrasonic humidifier, and applied it to the plume of Erebus volcano using a 30 minutes-long movie [1]. The wavelet transforms of the plume brightness and SO2 time series (measured with DOAS [1]) show two common periodic components in the bands ~100­-250 s and ~500-­650 s. However, there is a third periodic component in the band ~300-­450 s in the SO2 time series that is absent in the brightness time series. We propose that the common periodic components are induced by magmatic foams collapsing intermittently beneath shallow geometrical barriers composed by bubbles with high content of both H2O and SO2, whereas the third periodic component could be induced by foams collapsing beneath a deeper geometrical barrier composed by bubbles with

  8. Development of on-line monitoring device to detect the presence/absence of sodium vapor

    International Nuclear Information System (INIS)

    Wolson, R.D.; McPheeters, C.C.; Kremesec, V.J.; Kolba, V.M.

    1983-03-01

    A process is being developed by the Sodium Waste Technology Program at ANL-W to remove metallic sodium from scrap and waste. The final step in the process is the removal of residual metallic sodium by evaporation at temperatures up to 482 0 C (900 0 F) and at pressures of about 10 - 2 torr (1.3 Pa). Efficient operation of this process requires that the operators have a method to indicate the completion of the evaporation. This end point would signify when the chamber and scrap and waste is free of metallic sodium. It was determined that a measure of the vacuum was not sufficiently sensitive, and a research effort was undertaken to select an on-line monitoring device. In this effort, three promising methods were reviewed. The use of quadrupole mass spectrometer was recommended and an on-line device was designed for use in a Sodium Process Demonstration (SPD) Plant

  9. A field comparison of volatile organic compound measurements using passive organic vapor monitors and stainless steel canisters.

    Science.gov (United States)

    Pratt, Gregory C; Bock, Don; Stock, Thomas H; Morandi, Maria; Adgate, John L; Ramachandran, Gurumurthy; Mongin, Steven J; Sexton, Ken

    2005-05-01

    Concurrent field measurements of 10 volatile organic compounds (VOCs) were made using passive diffusion-based organic vapor monitors (OVMs) and the U.S. Federal Reference Method, which comprises active monitoring with stainless steel canisters (CANs). Measurements were obtained throughout a range of weather conditions, repeatedly over the course of three seasons, and at three different locations in the Minneapolis/St. Paul metropolitan area. Ambient concentrations of most VOCs as measured by both methods were low compared to those of other large metropolitan areas. For some VOCs a considerable fraction of measurements was below the detection limit of one or both methods. The observed differences between the two methods were similar across measurement sites, seasons, and meteorological variables. A Bayesian analysis with uniform priors on the differences was applied, with accommodation of sometimes heavy censoring (nondetection) in either device. The resulting estimates of bias and standard deviation of the OVM relative to the CAN were computed by tertile of the canister-measured concentration. In general, OVM and CAN measurements were in the best agreement for benzene and other aromatic compounds with hydrocarbon additions (ethylbenzene, toluene, and xylenes). The two methods were not in such good agreement for styrene and halogenated compounds (carbon tetrachloride, p-dichlorobenzene, methylene chloride, and trichloroethylene). OVMs slightly overestimated benzene concentrations and carbon tetrachloride at low concentrations, but in all other cases where significant differences were found, OVMs underestimated relative to canisters. Our study indicates that the two methods are in agreement for some compounds, but not all. We provide data and interpretation on the relative performance of the two VOC measurement methods, which facilitates intercomparisons among studies.

  10. IR-BASED SATELLITE PRODUCTS FOR THE MONITORING OF ATMOSPHERIC WATER VAPOR OVER THE BLACK SEA

    Directory of Open Access Journals (Sweden)

    VELEA LILIANA

    2016-03-01

    Full Text Available The amount of precipitable water (TPW in the atmospheric column is one of the important information used weather forecasting. Some of the studies involving the use of TPW relate to issues like lightning warning system in airports, tornadic events, data assimilation in numerical weather prediction models for short-range forecast, TPW associated with intense rain episodes. Most of the available studies on TPW focus on properties and products at global scale, with the drawback that regional characteristics – due to local processes acting as modulating factors - may be lost. For the Black Sea area, studies on the climatological features of atmospheric moisture are available from sparse or not readily available observational databases or from global reanalysis. These studies show that, although a basin of relatively small dimensions, the Black Sea presents features that may significantly impact on the atmospheric circulation and its general characteristics. Satellite observations provide new opportunities for extending the knowledge on this area and for monitoring atmospheric properties at various scales. In particular, observations in infrared (IR spectrum are suitable for studies on small-scale basins, due to the finer spatial sampling and reliable information in the coastal areas. As a first step toward the characterization of atmospheric moisture over the Black Sea from satellite-based information, we investigate three datasets of IR-based products which contain information on the total amount of moisture and on its vertical distribution, available in the area of interest. The aim is to provide a comparison of these data with regard to main climatological features of moisture in this area and to highlight particular strengths and limits of each of them, which may be helpful in the choice of the most suitable dataset for a certain application.

  11. Water quality monitoring in a bathing area of Civitavecchia (Latium, Italy) using Chromophoric Dissolved Organic Matter (CDOM) as a tracer of faecal contamination

    Science.gov (United States)

    Madonia, Alice; Bonamano, Simone; Caruso, Gabriella; Stefani', Chiara; Consalvi, Natalizia; Piermattei, Viviana; Zappalà, Giuseppe; Marcelli, Marco

    2017-04-01

    Coastal urban bathing areas are often affected by events of faecal contamination, caused by the discharge of untreated wastewaters during the bathing season that can increase the risk for public health. Monitoring the quality of recreational waters is still closely linked to time-consuming seawater sampling and laboratory analysis, not allowing promptly management interventions. To face this issue, the European environmental policies strongly promote the development of coastal observing systems, above all in the Southern European Seas (SES). Chromophoric Dissolved Organic Matter (CDOM) has been increasingly used as a tracer of bacterial loads, since wastewaters are characterized by a large amount of organic compounds. The aim of this work was to study the relation between CDOM and Escherichia coli abundance, giving relevance to bacterial physiological state detected using both the standard culture method and the innovative fluorescent antibody technique. Attention has been paid also on the expression of extracellular enzymatic activity by the total microbial community to explore the role of bacteria in the decomposition processes of dissolved organic matter. Data were collected during summer 2015 and 2016 in a bathing area of Civitavecchia at increasing distances from the discharge point. The results confirm the usefulness of CDOM measurements as a proxy of faecal pollution in bathing areas. In this perspective, the low-cost stand-alone systems equipped with CDOM fluorescence sensors developed by the Laboratory of Experimental Oceanology and Marine Ecology (Tuscia University) (Marcelli et al., 2014) could allow the continous monitoring of water quality, increasing the capabilities of the Civitavecchia Coastal Environmental Monitoring System (C-CEMS) in the analysis of pollution events. Thanks to the integration of in situ fixed stations, high-resolution satellites imagery and numerical models, C-CEMS provides a management tool to support the stakeholders for timely

  12. Comparison of semiquantitative fluorescence imaging and PET tracer uptake in mesothelioma models as a monitoring system for growth and therapeutic effects

    International Nuclear Information System (INIS)

    Saito, Yuriko; Furukawa, Takako; Arano, Yasushi; Fujibayashi, Yasuhisa; Saga, Tsuneo

    2008-01-01

    Introduction: Various techniques are available for in vivo imaging, and precise understanding of their characteristics is essential for effective use of the imaging results. We established human mesothelioma cell lines expressing red fluorescent protein (RFP) and examined their fluorescence intensity and uptake of positron emission tomography (PET) tracer analogs to compare their characteristics and assess their usefulness in the evaluation of therapeutics. Method: A human mesothelioma cell line was stably transfected to express RFP. Fluorescence, cell number and protein amount were measured during cell growth and treatment with cytotoxic reagents. In in vivo experiments, RFP-expressing cells were injected subcutaneously or into the pleural cavity of nude mice, and fluorescence images were taken with or without pemetrexed treatment. The uptake of [ 3 H]3'-deoxy-3'-fluorothymidine ([ 3 H]FLT) and [ 14 C]2-fluoro-2-deoxy-D-glucose ([ 14 C]FDG) under treatment with the above reagents in vitro and in vivo were examined. Results: Strong correlation was observed between fluorescence intensity and total cell number with or without cytotoxic treatment. The uptake of [ 3 H]FLT and [ 14 C]FDG decreased rapidly after the initiation of treatment with actinomycin D or cycloheximide. When treated with pemetrexed, the uptake of [ 3 H]FLT temporarily increased. The cells formed subcutaneous and orthotopic tumors, with fluorescence intensity correlating with tumor volume. The correlation was sustained under pemetrexed treatment. The uptake of [ 3 H]FLT in vivo increased significantly early after pemetrexed treatment. Conclusion: Fluorescence imaging could be used to semiquantitatively monitor tumor size, whereas PET could be used to monitor tumor response to therapeutic treatments, and especially, FLT might be a good marker of the response to anti-folate chemotherapeutics

  13. Comparison of semiquantitative fluorescence imaging and PET tracer uptake in mesothelioma models as a monitoring system for growth and therapeutic effects

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Yuriko [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, 263-8555 (Japan); Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675 (Japan); Furukawa, Takako [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, 263-8555 (Japan); Biomedical Imaging Research Center, University of Fukui, Yoshida, Fukui, 910-1193 (Japan); Arano, Yasushi [Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675 (Japan); Fujibayashi, Yasuhisa [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, 263-8555 (Japan); Biomedical Imaging Research Center, University of Fukui, Yoshida, Fukui, 910-1193 (Japan); Saga, Tsuneo [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, 263-8555 (Japan)

    2008-11-15

    Introduction: Various techniques are available for in vivo imaging, and precise understanding of their characteristics is essential for effective use of the imaging results. We established human mesothelioma cell lines expressing red fluorescent protein (RFP) and examined their fluorescence intensity and uptake of positron emission tomography (PET) tracer analogs to compare their characteristics and assess their usefulness in the evaluation of therapeutics. Method: A human mesothelioma cell line was stably transfected to express RFP. Fluorescence, cell number and protein amount were measured during cell growth and treatment with cytotoxic reagents. In in vivo experiments, RFP-expressing cells were injected subcutaneously or into the pleural cavity of nude mice, and fluorescence images were taken with or without pemetrexed treatment. The uptake of [{sup 3}H]3'-deoxy-3'-fluorothymidine ([{sup 3}H]FLT) and [{sup 14}C]2-fluoro-2-deoxy-D-glucose ([{sup 14}C]FDG) under treatment with the above reagents in vitro and in vivo were examined. Results: Strong correlation was observed between fluorescence intensity and total cell number with or without cytotoxic treatment. The uptake of [{sup 3}H]FLT and [{sup 14}C]FDG decreased rapidly after the initiation of treatment with actinomycin D or cycloheximide. When treated with pemetrexed, the uptake of [{sup 3}H]FLT temporarily increased. The cells formed subcutaneous and orthotopic tumors, with fluorescence intensity correlating with tumor volume. The correlation was sustained under pemetrexed treatment. The uptake of [{sup 3}H]FLT in vivo increased significantly early after pemetrexed treatment. Conclusion: Fluorescence imaging could be used to semiquantitatively monitor tumor size, whereas PET could be used to monitor tumor response to therapeutic treatments, and especially, FLT might be a good marker of the response to anti-folate chemotherapeutics.

  14. Development of wavelength locking circuit for 1.53 micron water vapor monitoring coherent differential absorption LIDAR

    Science.gov (United States)

    Imaki, Masaharu; Kojima, Ryota; Kameyama, Shumpei

    2018-04-01

    We have studied a ground based coherent differential absorption LIDAR (DIAL) for vertical profiling of water vapor density using a 1.5μm laser wavelength. A coherent LIDAR has an advantage in daytime measurement compared with incoherent LIDAR because the influence of background light is greatly suppressed. In addition, the LIDAR can simultaneously measure wind speed and water vapor density. We had developed a wavelength locking circuit using the phase modulation technique and offset locking technique, and wavelength stabilities of 0.123 pm which corresponds to 16 MHz are realized. In this paper, we report the wavelength locking circuits for the 1.5 um wavelength.

  15. Tracer gas diffusion sampling test plan

    International Nuclear Information System (INIS)

    Rohay, V.J.

    1993-01-01

    Efforts are under way to employ active and passive vapor extraction to remove carbon tetrachloride from the soil in the 200 West Area an the Hanford Site as part of the 200 West Area Carbon Tetrachloride Expedited Response Action. In the active approach, a vacuum is applied to a well, which causes soil gas surrounding the well to be drawn up to the surface. The contaminated air is cleaned by passage through a granular activated carbon bed. There are questions concerning the radius of influence associated with application of the vacuum system and related uncertainties about the soil-gas diffusion rates with and without the vacuum system present. To address these questions, a series of tracer gas diffusion sampling tests is proposed in which an inert, nontoxic tracer gas, sulfur hexafluoride (SF 6 ), will be injected into a well, and the rates of SF 6 diffusion through the surrounding soil horizon will be measured by sampling in nearby wells. Tracer gas tests will be conducted at sites very near the active vacuum extraction system and also at sites beyond the radius of influence of the active vacuum system. In the passive vapor extraction approach, barometric pressure fluctuations cause soil gas to be drawn to the surface through the well. At the passive sites, the effects of barometric ''pumping'' due to changes in atmospheric pressure will be investigated. Application of tracer gas testing to both the active and passive vapor extraction methods is described in the wellfield enhancement work plan (Rohay and Cameron 1993)

  16. Real-time monitoring and analysis of nutrient transportation in a living plant using a positron emitting tracer imaging system (PETIS)

    International Nuclear Information System (INIS)

    Matsuhashi, Shinpei

    2005-01-01

    We visualized the uptake and transportation of nutrition in a living plant using positron-emitting tracers and mathematical analysis of the data. We have been developing a positron-imaging technique to visualize the uptake and transportation of nutrients in a plant by a positron-emitting tracer-imaging system (PETIS) using positron-emitting nuclide-labeled compounds. The PETIS data is analyzed mathematically to understand the physiological meaning of the physical parameters. In this study, the results on the uptake and transportation of nutrients, which were obtained with the use of a positron-imaging method, are introduced. (author)

  17. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  18. Microfabricated gas chromatograph for on-site determinations of TCE in indoor air arising from vapor intrusion. 2. Spatial/temporal monitoring.

    Science.gov (United States)

    Kim, Sun Kyu; Burris, David R; Bryant-Genevier, Jonathan; Gorder, Kyle A; Dettenmaier, Erik M; Zellers, Edward T

    2012-06-05

    We demonstrate the use of two prototype Si-microfabricated gas chromatographs (μGC) for continuous, short-term measurements of indoor trichloroethylene (TCE) vapor concentrations related to the investigation of TCE vapor intrusion (VI) in two houses. In the first house, with documented TCE VI, temporal variations in TCE air concentrations were monitored continuously for up to 48 h near the primary VI entry location under different levels of induced differential pressure (relative to the subslab). Concentrations ranged from 0.23 to 27 ppb by volume (1.2-150 μg/m(3)), and concentration trends agreed closely with those determined from concurrent reference samples. The sensitivity and temporal resolution of the measurements were sufficiently high to detect transient fluctuations in concentration resulting from short-term changes in variables affecting the extent of VI. Spatial monitoring showed a decreasing TCE concentration gradient with increasing distance from the primary VI entry location. In the second house, with no TCE VI, spatial profiles derived from the μGC prototype data revealed an intentionally hidden source of TCE within a closet, demonstrating the capability for locating non-VI sources. Concentrations measured in this house ranged from 0.51 to 56 ppb (2.7-300 μg/m(3)), in good agreement with reference method values. This first field demonstration of μGC technology for automated, near-real-time, selective VOC monitoring at low- or subppb levels augurs well for its use in short- and long-term on-site analysis of indoor air in support of VI assessments.

  19. Identification of Alternative Vapor Intrusion Pathways Using Controlled Pressure Testing, Soil Gas Monitoring, and Screening Model Calculations.

    Science.gov (United States)

    Guo, Yuanming; Holton, Chase; Luo, Hong; Dahlen, Paul; Gorder, Kyle; Dettenmaier, Erik; Johnson, Paul C

    2015-11-17

    Vapor intrusion (VI) pathway assessment and data interpretation have been guided by an historical conceptual model in which vapors originating from contaminated soil or groundwater diffuse upward through soil and are swept into a building by soil gas flow induced by building underpressurization. Recent studies reveal that alternative VI pathways involving neighborhood sewers, land drains, and other major underground piping can also be significant VI contributors, even to buildings beyond the delineated footprint of soil and groundwater contamination. This work illustrates how controlled-pressure-method testing (CPM), soil gas sampling, and screening-level emissions calculations can be used to identify significant alternative VI pathways that might go undetected by conventional sampling under natural conditions at some sites. The combined utility of these tools is shown through data collected at a long-term study house, where a significant alternative VI pathway was discovered and altered so that it could be manipulated to be on or off. Data collected during periods of natural and CPM conditions show that the alternative pathway was significant, but its presence was not identifiable under natural conditions; it was identified under CPM conditions when measured emission rates were 2 orders of magnitude greater than screening-model estimates and subfoundation vertical soil gas profiles changed and were no longer consistent with the conventional VI conceptual model.

  20. Radon as geological tracer

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, T.; Anjos, R.M. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Valladares, D.L.; Rizzotto, M.; Velasco, H.; Ayub, J. Juri [Universidad Nacional de San Luis (Argentina). Inst. de Matematica Aplicada San Luis (IMASL); Silva, A.A.R. da; Yoshimura, E.M. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This work presents measurements of {sup 222}Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of {sup 40}K, {sup 232}Th and {sup 23}'8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using {sup 222}Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m{sup -3} recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  1. Radon as geological tracer

    International Nuclear Information System (INIS)

    Lacerda, T.; Anjos, R.M.; Silva, A.A.R. da; Yoshimura, E.M.

    2012-01-01

    Full text: This work presents measurements of 222 Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of 40 K, 232 Th and 23 '8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using 222 Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m -3 recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  2. Packet Tracer network simulator

    CERN Document Server

    Jesin, A

    2014-01-01

    A practical, fast-paced guide that gives you all the information you need to successfully create networks and simulate them using Packet Tracer.Packet Tracer Network Simulator is aimed at students, instructors, and network administrators who wish to use this simulator to learn how to perform networking instead of investing in expensive, specialized hardware. This book assumes that you have a good amount of Cisco networking knowledge, and it will focus more on Packet Tracer rather than networking.

  3. Helium Tracer Tests for Assessing Air Recovery and Air Distribution During In Situ Air Sparging

    National Research Council Canada - National Science Library

    Johnson, Richard

    2001-01-01

    ...) systems for capturing contaminant vapors liberated by in situ air sparging (IAS). The tracer approach is simple to conduct and provides more direct and reliable measures than the soil-gas pressure approach...

  4. Fractionation in position-specific isotope composition during vaporization of environmental pollutants measured with isotope ratio monitoring by 13C nuclear magnetic resonance spectrometry

    International Nuclear Information System (INIS)

    Julien, Maxime; Parinet, Julien; Nun, Pierrick; Bayle, Kevin; Höhener, Patrick; Robins, Richard J.; Remaud, Gérald S.

    2015-01-01

    Isotopic fractionation of pollutants in terrestrial or aqueous environments is a well-recognized means by which to track different processes during remediation. As a complement to the common practice of measuring the change in isotope ratio for the whole molecule using isotope ratio monitoring by mass spectrometry (irm-MS), position-specific isotope analysis (PSIA) can provide further information that can be exploited to investigate source and remediation of soil and water pollutants. Position-specific fractionation originates from either degradative or partitioning processes. We show that isotope ratio monitoring by 13 C NMR (irm- 13 C NMR) spectrometry can be effectively applied to methyl tert-butylether, toluene, ethanol and trichloroethene to obtain this position-specific data for partitioning. It is found that each compound exhibits characteristic position-specific isotope fractionation patterns, and that these are modulated by the type of evaporative process occurring. Such data should help refine models of how remediation is taking place, hence back-tracking to identify pollutant sources. - Highlights: • Position-Specific Isotope Analysis (PSIA) by 13 C NMR spectrometry. • PSIA on isotope fractionation during several vaporization processes. • PSIA for isotope profiling in environment pollutants. • Intramolecular 13 C reveal normal and inverse effects, bulk values being unchanged. - PSIA in pollutants during evaporation processes shows more detailed information for discerning the nature of the process involved than does bulk isotope measurements

  5. A validation of the application of D2O stable isotope tracer techniques for monitoring day-to-day changes in muscle protein subfraction synthesis in humans

    Science.gov (United States)

    Wilkinson, Daniel J.; Franchi, Martino V.; Brook, Matthew S.; Narici, Marco V.; Williams, John P.; Mitchell, William K.; Szewczyk, Nathaniel J.; Greenhaff, Paul L.; Atherton, Philip J.

    2013-01-01

    Quantification of muscle protein synthesis (MPS) remains a cornerstone for understanding the control of muscle mass. Traditional [13C]amino acid tracer methodologies necessitate sustained bed rest and intravenous cannulation(s), restricting studies to ∼12 h, and thus cannot holistically inform on diurnal MPS. This limits insight into the regulation of habitual muscle metabolism in health, aging, and disease while querying the utility of tracer techniques to predict the long-term efficacy of anabolic/anticatabolic interventions. We tested the efficacy of the D2O tracer for quantifying MPS over a period not feasible with 13C tracers and too short to quantify changes in mass. Eight men (22 ± 3.5 yr) undertook one-legged resistance exercise over an 8-day period (4 × 8–10 repetitions, 80% 1RM every 2nd day, to yield “nonexercised” vs. “exercise” leg comparisons), with vastus lateralis biopsies taken bilaterally at 0, 2, 4, and 8 days. After day 0 biopsies, participants consumed a D2O bolus (150 ml, 70 atom%); saliva was collected daily. Fractional synthetic rates (FSRs) of myofibrillar (MyoPS), sarcoplasmic (SPS), and collagen (CPS) protein fractions were measured by GC-pyrolysis-IRMS and TC/EA-IRMS. Body water initially enriched at 0.16–0.24 APE decayed at ∼0.009%/day. In the nonexercised leg, MyoPS was 1.45 ± 0.10, 1.47 ± 0.06, and 1.35 ± 0.07%/day at 0–2, 0–4, and 0–8 days, respectively (∼0.05–0.06%/h). MyoPS was greater in the exercised leg (0–2 days: 1.97 ± 0.13%/day; 0–4 days: 1.96 ± 0.15%/day, P < 0.01; 0–8 days: 1.79 ± 0.12%/day, P < 0.05). CPS was slower than MyoPS but followed a similar pattern, with the exercised leg tending to yield greater FSRs (0–2 days: 1.14 ± 0.13 vs. 1.45 ± 0.15%/day; 0–4 days: 1.13 ± 0.07%/day vs. 1.47 ± 0.18%/day; 0–8 days: 1.03 ± 0.09%/day vs. 1.40 ± 0.11%/day). SPS remained unchanged. Therefore, D2O has unrivaled utility to quantify day-to-day MPS in humans and inform on short

  6. Tracer attenuation in groundwater

    Science.gov (United States)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  7. Isotopic marking and tracers

    International Nuclear Information System (INIS)

    Morel, F.

    1997-01-01

    The use of radioactive isotopes as tracers in biology has been developed thanks to the economic generation of the required isotopes in accelerators and nuclear reactors, and to the multiple applications of tracers in the life domain; the most usual isotopes employed in biology are carbon, hydrogen, phosphorus and sulfur isotopes, because these elements are present in most of organic molecules. Most of the life science knowledge appears to be dependent to the extensive use of nuclear tools and radioactive tracers; the example of the utilization of radioactive phosphorus marked ATP to study the multiple reactions with proteins, nucleic acids, etc., is given

  8. Suitability of tracers

    International Nuclear Information System (INIS)

    Klotz, D.

    1999-01-01

    Hydrological tracer techniques are a means of making statements on the direction and speed of underground water. One of the simpler tasks is to find out whether there is hydrological communication between two given points. This requires a determination of the direction of flow, which places less exacting demands on the properties of the tracer than does the task of determining the flow velocity of underground water. Tracer methods can serve to infer from flow velocity the distance (flow) velocity, which is defined as the ratio between the distance between two points located in flow direction and the actual time it takes water to flow from one to the other [de

  9. A method and apparatus for monitoring the level of tritiated water vapor in air using a solid scintillator

    International Nuclear Information System (INIS)

    Campi, F.; Ossiri, A.; Terrani, S.; Edwards, R.A.H.; Pacenti, P.

    1998-01-01

    Tritium is presently used in large quantities in laboratories for technological studies, as fuel for the process of nuclear fusion, and in the manufacture of radio-luminescent items. It is also produced in fission nuclear plants, particularly in those which use D 2 O as moderator. The weak energy of beta particles produced by tritium implies that is only harmful if internalized. In nature tritium in air is mainly present under two different chemical forms: elementary and oxidized. The latter is extremely more dangerous than the former as far as radioprotection is concerned; for this reason the derived air concentration limit for the gaseous form is 25,000 times higher than the value for the oxidized one. The purpose of the work presented here is to realize an area monitor that is able to discriminate in real time between the two chemical forms. Using the properties of zeolite as an absorber and scintillator, it was possible to construct such a detector. In 1 h the instrument can reveal HTO concentrations 40 times below the derived air concentration. A concentration equal to the derived air concentration can be revealed within the first minute of counting and the performance may be further improved. Moreover, the prototype realized is able to work automatically and continuously for 5 h. The capability of discriminating the oxidized chemical form, the sensitivity, and the possibility of obtaining real time information make this instrument a good monitor in those cases where there is a real risk of tritium air contamination

  10. Tracer Testing for Estimating Heat Transfer Area in Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, Karsten; van Heel, Ton; Shan, Chao

    2004-05-12

    A key parameter governing the performance and life-time of a Hot Fractured Rock (HFR) reservoir is the effective heat transfer area between the fracture network and the matrix rock. We report on numerical modeling studies into the feasibility of using tracer tests for estimating heat transfer area. More specifically, we discuss simulation results of a new HFR characterization method which uses surface-sorbing tracers for which the adsorbed tracer mass is proportional to the fracture surface area per unit volume. Sorption in the rock matrix is treated with the conventional formulation in which tracer adsorption is volume-based. A slug of solute tracer migrating along a fracture is subject to diffusion across the fracture walls into the adjacent rock matrix. Such diffusion removes some of the tracer from the fluid in the fractures, reducing and retarding the peak in the breakthrough curve (BTC) of the tracer. After the slug has passed the concentration gradient reverses, causing back-diffusion from the rock matrix into the fracture, and giving rise to a long tail in the BTC of the solute. These effects become stronger for larger fracture-matrix interface area, potentially providing a means for estimating this area. Previous field tests and modeling studies have demonstrated characteristic tailing in BTCs for volatile tracers in vapor-dominated reservoirs. Simulated BTCs for solute tracers in single-phase liquid systems show much weaker tails, as would be expected because diffusivities are much smaller in the aqueous than in the gas phase, by a factor of order 1000. A much stronger signal of fracture-matrix interaction can be obtained when sorbing tracers are used. We have performed simulation studies of surface-sorbing tracers by implementing a model in which the adsorbed tracer mass is assumed proportional to the fracture-matrix surface area per unit volume. The results show that sorbing tracers generate stronger tails in BTCs, corresponding to an effective

  11. Pipeline leak detection using volatile tracers

    International Nuclear Information System (INIS)

    Thompson, G.M.; Golding, R.D.

    1993-01-01

    A method of leak detection for underground storage tanks and pipelines adds volatile tracers to the products in the tanks and analyzes the surrounding shallow soil gases for tracer vapors. This method has several advantages: the success of the test is not limited by the size and structural design of the vessels, tanks can be tested at any fill level without taking the tank out of service, the location of a leak along a pipeline is clearly marked by the location of the tracer, and liquid leaks as small as 0.2 liters per hour (lph) can be detected. A limitation is: the backfill material must have some degree of air permeability in the zone above the water table. Several field tests document the success achieved using this method. A tracer leak detection system was installed at Homestead AFB after several other testing methods failed to locate a leak at a valve pit location along approximately 4 kilometers of fuel transfer piping. The leak was detected to the side of the valve pit at a depth of approximately 2.5 meters below the ground surface. Another installation of Edwards AFB involved the collection of 415 soil gas samples along approximately 3,050 meters of 15.25-centimeter fiberglass pipeline. Fourteen separate leaks were detected

  12. Tracers Detect Aquifer Contamination

    National Research Council Canada - National Science Library

    Enfield, Carl

    1995-01-01

    The EPA's National Laboratory (NRMRL) at Ada, OK, along with the University of Florida and the University of Texas, have developed a tracer procedure to detect the amount of contamination in aquifer formations...

  13. Radio-isotopic tracers

    International Nuclear Information System (INIS)

    Wolfangel, R.G.

    1976-01-01

    The invention concerns the dispersions that may be used for preparing radio-isotopic tracers, technetium labelled dispersions, processes for preparing these dispersions and their use as tracers. Technetium 99m sulphur colloids are utilized as scintillation tracers to give a picture of the reticulo-endothelial system, particularly the liver and spleen. A dispersion is provided which only requires the addition of a radioactive nuclide to form a radioactively labelled dispersion that can be injected as a tracer. It is formed of a colloid of tin sulphur dispersed in an aqueous buffer solution. Such a reagent has the advantage of being safe and reliable and is easier to use. The colloid can be prepared more quickly since additions of several different reagents are avoided. There is no need to heat up and no sulphuretted hydrogen, which is a toxic gas, is used [fr

  14. Tracer techniques in microelectronics

    International Nuclear Information System (INIS)

    Flachowsky, J.; Freyer, K.

    1981-01-01

    Tracer technique and neutron activation analysis are capable of measuring impurities in semiconductor material or on the semiconductor surface in a very low concentration range. The methods, combined with autoradiography, are also suitable to determine dopant distributions in silicon. However, both techniques suffer from certain inherent experimental difficulties and/or limitations which are discussed. Methods of tracer technique practicable in the semiconductor field are described. (author)

  15. Tracers and tracing methods

    International Nuclear Information System (INIS)

    Leclerc, J.P.

    2001-01-01

    The first international congress on 'Tracers and tracing methods' took place in Nancy in May 2001. The objective of this second congress was to present the current status and trends on tracing methods and their applications. It has given the opportunity to people from different fields to exchange scientific information and knowledge about tracer methodologies and applications. The target participants were the researchers, engineers and technologists of various industrial and research sectors: chemical engineering, environment, food engineering, bio-engineering, geology, hydrology, civil engineering, iron and steel production... Two sessions have been planned to cover both fundamental and industrial aspects: 1)fundamental development (tomography, tracer camera visualization and particles tracking; validation of computational fluid dynamics simulations by tracer experiments and numerical residence time distribution; new tracers and detectors or improvement and development of existing tracing methods; data treatments and modeling; reactive tracer experiments and interpretation) 2)industrial applications (geology, hydrogeology and oil field applications; civil engineering, mineral engineering and metallurgy applications; chemical engineering; environment; food engineering and bio-engineering). The program included 5 plenary lectures, 23 oral communications and around 50 posters. Only 9 presentations are interested for the INIS database

  16. Test plan for determining breathing rates in single shell tanks using tracer gases. Revision 1

    International Nuclear Information System (INIS)

    Andersen, J.A.

    1997-01-01

    This test plan specifies the requirements and conditions for the injection of tracer gas (Helium (He)) into single shell tanks to determine breathing rates using periodic sampling. The eight tanks which have been selected at the time this Test Plan was developed are A-101, AX-102, AX-103, BY-105, C-107, U-103 (U-103 is counted twice, once during the winter months and once during the summer), and U-105. Other tanks to be sampled will be assigned by Pacific Northwest National Laboratory (PNNL) at a later date in the study process as resources allow, the document shall be revised as required. The sampling of headspace for each of these tanks shall be performed using available risers or the Standard Hydrogen Monitoring System (SHMS) cabinet as available. The tank farm vapor cognizant engineer shall assign the injection and sample testing point for each tank and document the point in the field work package. SUMMA TMI canisters, equipped in-line with dual particulate air filters and two silica gel sorbent traps will be used to collect the gas samples. The purpose of dual particulate air filters is to ensure no radioactive particulates are transferred to the SUMMA TMI canisters. The silica gel sorbent traps will effectively eliminate any tritiated water vapor that may be present in the sample gas stream. PNNL shall supply the tracer gases injection system and shall perform the analysis on the headspace samples. TWRS Characterization project shall inject the tracer gas and perform the sampling. Refer to Engineering Task Plan HNF-SD-TWR-ETP-002 for a detailed description of the responsibilities for this task

  17. Light activates H{sub 2.}{sup 15}0 flow in rice: Detailed monitoring using a positron-emitting tracer imaging system (PETIS)

    Energy Technology Data Exchange (ETDEWEB)

    Kiyomiya, S.; Nakanishi, H.; Mori, S. [The Univ. of Tokyo, Dept. of Applied Biological Chemistry, Tokyo (Japan); Uchida, H.; Nishiyama, S.; Tsukada, H.; Tsuji, A. [Central Res. Lab. Hamamatsu Photonics KK, Shizuoka (Japan); Ishioka, N.S.; Watanabe, S.; Osa, A.; Mizuniwa, C.; Ito, T.; Matsuhashi, S.; Hashimoto, S.; Sekine, T. [Japan Atomic Energy Res. Inst., Takasaki Radation Chemistry Res. Establishment, Gunma (Japan)

    2001-07-01

    Water (H{sub 2}{sup 15}O) translocation from the roots to the top of rice plants (Oryza saliva L. cv. Nipponbare) was visualized over time by a positron-emitting tracer imaging system (PETIS). H{sub 2}{sup 15}O flow was activated 8 min after plants were exposed to bright light (1500 {mu}mol m{sup -2} s{sup -1}). When the light was subsequently removed, the flow gradually slowed and completely stopped after 12 min. In plants exposed to low light (500 {mu}mol m{sup -2} s{sup -1}), H{sub 2}{sup 15}O flow was activated more slowly, and a higher translocation rate of H{sub 2}{sup 15}O was observed in the same low light at the end of the next dark period. NaCl (80 mM) and methylmercury (1 mM) directly suppressed absorption of H{sub 2}{sup 15}O by the roots, while methionine sulfoximine (1 mM), abscisic acid (10 {mu}M) and carbonyl cyanide m-chlorophenylhydrazone (10 mM) were transported to the leaves and enhanced stomatal closure, reducing H{sub 2}{sup 15}O translocation. (au)

  18. Use of Water Balance and Tracer-Based Approaches to Monitor Groundwater Recharge in the Hyper-Arid Gobi Desert of Northwestern China

    Directory of Open Access Journals (Sweden)

    Tomohiro Akiyama

    2018-05-01

    Full Text Available The groundwater recharge mechanism in the hyper-arid Gobi Desert of Northwestern China was analyzed using water balance and tracer-based approaches. Investigations of evaporation, soil water content, and their relationships with individual rainfall events were conducted from April to August of 2004. Water sampling of rainwater, groundwater, and surface water was also conducted. During this period, 10 precipitation events with a total amount of 41.5 mm, including a maximum of 28.9 mm, were observed. Evaporation during the period was estimated to be 33.1 mm. Only the soil water, which was derived from the heaviest precipitation, remained in the vadose zone. This is because a dry surface layer, which was formed several days after the heaviest precipitation event, prevented evaporation. Prior to that, the heaviest precipitation rapidly infiltrated without being affected by evaporation. This is corroborated by the isotopic evidence that both the heaviest precipitation and the groundwater retained no trace of significant kinetic evaporation. Estimated δ-values of the remaining soil water based on isotopic fractionation and its mass balance theories also demonstrated no trace of kinetic fractionation in the infiltration process. Moreover, stable isotopic compositions of the heaviest precipitation and the groundwater were very similar. Therefore, we concluded that the high-intensity precipitation, which rapidly infiltrated without any trace of evaporation, was the main source of the groundwater.

  19. Control permanente de la gestión sanitaria por monitoreo de costos mediante acontecimientos indicadores Ongoing health management control by cost monitoring through tracer indicators

    Directory of Open Access Journals (Sweden)

    Horacio Villanueva

    2001-12-01

    éuticos el costo real superó al costo estándar en un 39,8%. El total gastado en recursos humanos médicos y auxiliares solo representó un 11,5% del costo total. Discusión. Se hacen sugerencias con el fin de aportar soluciones a problemas como el alto costo de la internación social y los insumos terapéuticos, los beneficios de la protocolización de procedimientos y tratamientos en el control de costos, la utilización racional de la tecnología para mejorar la eficiencia con disminución de riesgos, etc. Asimismo, se recomienda la extrapolación de este procedimiento para el control de la gestión de costos en todo servicio en donde se realicen procedimientos quirúrgicos o médicos.Objective. To determine the operational cost of a hospital's surgical unit, compare those results with standards, and determine the incidence of the costs; to produce an effective methodology for this purpose that can be applied to all kinds of medical units using any low-cost widely available computer database system, with that methodology being utilized for ongoing management control. Methods. This study was carried out in 1999 in the Orthopedics and Traumatology Unit of the "Domingo Funes" Public Hospital, in the province of Córdoba, Argentina. Of the 817 patients who underwent diagnostic or therapeutic procedures in that unit during the year, we selected the 154 of them who were hospitalized and required surgical or instrumental procedures. The study used the tracer event method described by Kessner. Through a consensus process, medical specialists and health economists selected and defined these indicators, which were categorized in relation to their complexity (high, medium, limited, or none. Direct and indirect costs were assessed in order to study their contribution to total cost. Total cost was estimated using nine variables that were applied to the different tracer events. Results. The largest portion of total cost, both real and standard, was based on the "bed-day" variable. Of

  20. SIMULASI JARINGAN KOMPUTER MENGGUNAKAN CISCO PACKET TRACER

    Directory of Open Access Journals (Sweden)

    M Mufadhol

    2012-01-01

    Full Text Available Perkembangan jaringan komputer saat ini begitu pesat, monitoring jaringan komputer akan menjadi suatu hal yang sulit dan rumit. Koneksi jaringan komputer merupakan suatu hal yang mendasar dalam suatu jaringan, karena bila koneksi itu bermasalah maka semua jenis aplikasi yang dijalankan melalui jaringan komputer tidak dapat digunakan. Cisco packet tracer dapat digunakan untuk simulasi yang mencerminkan arsitektur dan juga model dari jaringan komputer pada sistem jaringan yang digunakan. Dengan menggunakan aplikasi cisco packet tracer, simulasi mengenai jaringan dapat dimanfaatkan menjadi informasi tentang keadaan koneksi komputer dalam suatu jaringan.

  1. 3-D migration experiment - report 2: Instrumentation and tracers

    International Nuclear Information System (INIS)

    Abelin, H.; Birgersson, L.; Gidlund, J.

    1987-11-01

    This report is one of the four reports describing the Stripa 3D experiment where water and tracer flow has been monitored in a specially excavated drift in the Stripa mine. The experiment was performed in a specially excavated drift at the 360 m level in granite. The whole ceiling and upper part of the walls were covered with more than 350 individual plastic sheets where the water flow into the drift could be collected. 11 different tracers were injected at distances between 11 and 50 m from the ceiling of the drift. The flow rate and tracer monitoring was kept up for more than two years. The tracer breakthrough curves and flow rate distributions were used to study the flow paths, velocities, hydraulic conductivities, dispersivities and channeling effects in the rock. The report describes the instrumentation developed and used as well as the tracers that were tested and used in the experiment. (orig.)

  2. On-line measurements of liquid carry-over from scrubbers using radioactive tracers

    Energy Technology Data Exchange (ETDEWEB)

    Haugan, A; Hassfjell, S [Institute for Energy Technology, Kjeller (Norway); Finborud, A [Mator, Porsgrunn (Norway)

    2004-07-01

    A method to measure liquid carry-over from scrubbers using gamma-emitting tracers is described and results from field tests at two onshore installations are presented. One water/1,2-ethanediol (MEG) and two hydrocarbon liquid (condensate) tracers have been used in the tests. One of the condensate tracers deposited to some extent inside the process pipe, while the other had a too high vapor pressure. The water/MEG tracer showed no MEG carry-over while the carry-over of MEG was documented to be considerable. (author)

  3. On-line measurements of liquid carry-over from scrubbers using radioactive tracers

    International Nuclear Information System (INIS)

    Haugan, A.; Hassfjell, S.; Finborud, A.

    2004-01-01

    A method to measure liquid carry-over from scrubbers using gamma-emitting tracers is described and results from field tests at two onshore installations are presented. One water/1,2-ethanediol (MEG) and two hydrocarbon liquid (condensate) tracers have been used in the tests. One of the condensate tracers deposited to some extent inside the process pipe, while the other had a too high vapor pressure. The water/MEG tracer showed no MEG carry-over while the carry-over of MEG was documented to be considerable. (author)

  4. ER Operations Installation of Three FLUTe Soil-Vapor Monitoring Wells (MWL-SV03 MWL-SV04 and MWL-SV05) at the Mixed Waste Landfill.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John Robin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    This installation report describes the May through July 2014 drilling activities performed for the installation of three multi-port soil-vapor monitoring wells (MWL-SV03, MWL-SV04, and MWL-SV05) at the Mixed Waste Landfill (MWL), which is located at Sandia National Laboratories, New Mexico (SNL/NM). SNL/NM is managed and operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy (DOE)/National Nuclear Security Administration. The MWL is designated as Solid Waste Management Unit (SWMU) 76 and is located in Technical Area (TA) III (Figure 1-1). The locations of the three soil-vapor monitoring wells (MWL-SV03, MWL-SV04, and MWL-SV05) are shown in Figure 1-2

  5. Wairakei tracer tests 1983

    International Nuclear Information System (INIS)

    McCabe, W.J.; Barry, B.J.

    1984-05-01

    Tracer tests, with and without, hot water reinjection into WK213 showed returns of tracer iodine-131; in wells in both the Waiora Valley and the eastern end of the field. The effect of reinjection at a rate of 200 cu. m/h was to reduce the arrived time from 15 to 7 days. Increasing the rate of reinjection into WK62 from 30 cu. m/h to 200 cu. m/h seemed to increase the initial velocity of the tracer wave and the distance it moved. However, returns were recorded only in the adjacent wells WK61 and WK63 with a very small, and three days delayed, response in WK43

  6. Development of an autonomous device for long-term monitoring of radon in water as a tracer for submarine groundwater discharge

    International Nuclear Information System (INIS)

    Kamenik, Jan; Dulaiova, Henrieta; Babinec, James; Jolly, James; Williamson, Mario

    2015-01-01

    An autonomous SGD Sniffer was developed for long-term submarine groundwater discharge (SGD) monitoring. The device is equipped with a scintillation detector NaI(Tl) with a multichannel analyzer. The measurement is controlled by an embedded PC. The device is powered by batteries charged from photovoltaic panels and can be used in a remote area without any additional power source. The device detects gamma-lines from 214 Bi, a grand-grand daughter of 222 Rn. The gamma spectra are saved as text files and contain also basic diagnostic parameters for the analyzer and batteries. A script for batch processing of the spectra was developed for peak area determination. (author)

  7. Models for tracer flow

    International Nuclear Information System (INIS)

    Zuber, A.

    1983-01-01

    A review and discussion is given of mathematical models used for interpretation of tracer experiments in hydrology. For dispersion model, different initial and boundary conditions are related to different injection and detection modes. Examples of applications of various models are described and commented. (author)

  8. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  9. Xanthine tracers and their preparation

    International Nuclear Information System (INIS)

    Groman, E.V.; Cabelli, M.D.

    1980-01-01

    Compounds useful as tracers in the radioimmunoassay of xanthine derivatives such as theophylline and pharmacologically related drugs are described. They are substituted xanthines in which at least one substituted radical contains radioiodine. The tracers are made by linking radioiodinatable or preradioiodinated radicals to the xanthine derivative which is to be assayed. The tracers may be employed in known radioimmunoassay techniques. (author)

  10. Persistence of organophosphorus pesticides in aquatic environments. Coordinated programme on isotope-tracer-aided research and monitoring on agricultural residue - biological interactions in aquatic environment

    International Nuclear Information System (INIS)

    Horvath, L.

    1982-08-01

    A radiometric enzymic assay method was developed for quick measuring of organophosphorous insecticides in water samples. All steps of the assay procedure were carried out in scintillation vials. 50 μl enzyme solution (acetylcholinesterase of electric eel) and 50 μl buffer pH 7 were pipetted into the vial followed by 100 μl of water sample or aqueous solution of the insecticide and the mixture was incubated for 60 minutes. 50 μl 3 H-acetylcholine were added to the vial and the enzymic reaction stopped after 10 minutes by adding 200 μl buffer solution pH 2.5. 10 ml scintillation cocktail were then added and after shaking and 30 minutes standing the radioactivity was determined in a liquid scintillation spectrometer. Acetylcholine remained in the water phase while 3 H-acetic acid released in enzymic hydrolysis may be extracted by an organic solvent. By this method, not only the parent compound but also some of its degradation products, which possess some anticholinesteratic activity can be measured. The method is suitable for combination with thin-layer chromatography for identification purposes. Using this method, we studied the degradation of the organophosphorous insecticides malathion, parathion, DDVP and imidan. The degradation in distilled water and natural water was compared. For example, the half-time of malathion in distilled water at room temperature was 6 days while in natural water (Danube river) it was 4 hours. The degradation processes were also studied in model systems containing sediment and water. Degradation was faster in models containing solid particles than in filtered water. The radiometric enzymic method was tested as analytical procedure for residue monitoring. Since 1978 a residue monitoring programme was in progress in the Danube river near Budapest. Occasionally high residue levels were detected in spring and early summer. The radiometric enzymic method has proved to be a useful analytical method for anticholinesterase pesticides in

  11. Toxicity of fluorescent tracers and their degradation byproducts

    Directory of Open Access Journals (Sweden)

    Philippe Gombert

    2017-01-01

    Full Text Available Tracer tests are frequently used to delineate catchment area of water supply springs in karstic zones. In the karstic chalk of Normandy, the main tracers used are fluorescent: uranine, sulforhodamine B, naphtionate, and Tinopal®. In this area, a statistical analysis shows that less than half of the injected tracers joins the monitored restitution points and enters the drinking water system where they undergo chlorination. Most of the injected tracers is absorbed in the rock matrix or is thrown out of the aquifer via karstic springs: then it can join superficial waters where it is degraded due to the sun and air action. The paper presents firstly the laboratory degradation of a first batch of fluorescent tracers in contact with chlorine, in order to simulate their passage through a water treatment system for human consumption. A second batch of the same tracers is subjected to agents of natural degradation: ultraviolet illumination, sunlight and air sparging. Most tracers is degraded, and toxicity and ecotoxicity tests (on rats, daphniae and algae are performed on degradation byproducts. These tests do not show any acute toxicity but a low to moderate ecotoxicity. In conclusion, the most used fluorescent tracers of the Normandy karstic chalk and their artificial and natural degradation byproducts do not exhibit significant toxicity to humans and the aquatic environment, at the concentrations generally noted at the restitution points.

  12. Tracer tests Wairakei

    International Nuclear Information System (INIS)

    McCabe, W.J.; Manning, M.R.; Barry, B.J.

    1980-07-01

    The report summarises the radioactive tracer tests, using iodine-131 and bromine-82, made in the Wairakei geothermal field over the period 1978-80. Injection of tracer into three wells with strong cool water downflows at about 300-400m below ground level, produced strong rapid responses from the only deep wells feeding from about 800-1000m and lying in the south-westerly direction from the injection wells, i.e. parallel to the fault planes. Shallower wells, even though in some cases much closer to the injection well, reacted much more slowly. Velocities, as measured by peak arrival times, as high as 22m/h over 200m and 11m/h over 650m, were found. The flow patterns for the cool water feeds to the production area are discussed

  13. Radioactive tracers in Sedimentology

    International Nuclear Information System (INIS)

    Rodrigues, H.T.

    1973-01-01

    First is given a broad description of the uses of radioactive tracers in Sedimentology. The general method is established, including determinations of probability and standard deviation. Following are determined: the response law of the detector, the minimum mass for statistical detection, and the minimum mass for dynamic detection. The granularity is an important variable in these calculations. Final conclusions are given, and results are compared with existing theories

  14. Journal: Efficient Hydrologic Tracer-Test Design for Tracer ...

    Science.gov (United States)

    Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed to facilitate the design of tracer tests by root determination of the one-dimensional advection-dispersion equation (ADE) using a preset average tracer concentration which provides a theoretical basis for an estimate of necessary tracer mass. The method uses basic measured field parameters (e.g., discharge, distance, cross-sectional area) that are combined in functional relatipnships that descrive solute-transport processes related to flow velocity and time of travel. These initial estimates for time of travel and velocity are then applied to a hypothetical continuous stirred tank reactor (CSTR) as an analog for the hydrological-flow system to develop initial estimates for tracer concentration, tracer mass, and axial dispersion. Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be necessary for descri

  15. Tracers and Tracer Testing: Design, Implementation, Tracer Selection, and Interpretation Methods

    Energy Technology Data Exchange (ETDEWEB)

    G. Michael Shook; Shannon L.; Allan Wylie

    2004-01-01

    Conducting a successful tracer test requires adhering to a set of steps. The steps include identifying appropriate and achievable test goals, identifying tracers with the appropriate properties, and implementing the test as designed. When these steps are taken correctly, a host of tracer test analysis methods are available to the practitioner. This report discusses the individual steps required for a successful tracer test and presents methods for analysis. The report is an overview of tracer technology; the Suggested Reading section offers references to the specifics of test design and interpretation.

  16. Heat tracer methods

    Science.gov (United States)

    Healy, Richard W.; Scanlon, Bridget R.

    2010-01-01

    The flow of heat in the subsurface is closely linked to the movement of water (Ingebritsen et al., 2006). As such, heat has been used as a tracer in groundwater studies for more than 100 years (Anderson, 2005). As with chemical and isotopic tracers (Chapter 7), spatial or temporal trends in surface and subsurface temperatures can be used to infer rates of water movement. Temperature can be measured accurately, economically, at high frequencies, and without the need to obtain water samples, facts that make heat an attractive tracer. Temperature measurements made over space and time can be used to infer rates of recharge from a stream or other surface water body (Lapham, 1989; Stonestrom and Constantz, 2003); measurements can also be used to estimate rates of steady drainage through depth intervals within thick unsaturated zones (Constantz et al., 2003; Shan and Bodvarsson, 2004). Several thorough reviews of heat as a tracer in hydrologic studies have recently been published (Constantz et al., 2003; Stonestrom and Constantz, 2003; Anderson, 2005; Blasch et al., 2007; Constantz et al., 2008). This chapter summarizes heat-tracer approaches that have been used to estimate recharge.Some clarification in terminology is presented here to avoid confusion in descriptions of the various approaches that follow. Diffuse recharge is that which occurs more or less uniformly across large areas in response to precipitation, infiltration, and drainage through the unsaturated zone. Estimates of diffuse recharge determined using measured temperatures in the unsaturated zone are referred to as potential recharge because it is possible that not all of the water moving through the unsaturated zone will recharge the aquifer; some may be lost to the atmosphere by evaporation or plant transpiration. Estimated fluxes across confining units in the saturated zone are referred to as interaquifer flow (Chapter 1). Focused recharge is that which occurs directly from a point or line source, such

  17. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  18. Development of More Cost-Effective Methods for Long-Term Monitoring of Soil Vapor Intrusion to Indoor Air Using Quantitative Passive Diffusive-Adsorptive Sampling Techniques

    Science.gov (United States)

    2015-05-01

    ASTM ASTM International ASU Arizona State University ATD automated thermal desorption BENZ Benzene C/Co passive sampler concentration...Protection Agency [USEPA], 1998a, b; California Department of Toxic Substance Control, 2011; ASTM International [ASTM] D7758, 2011). This demonstration... microporous sintered polyethylene, through which the vapors diffuse. Figure 1b. Radiello sampler with regular (white) and low-uptake rate

  19. Correction Technique for Raman Water Vapor Lidar Signal-Dependent Bias and Suitability for Water Wapor Trend Monitoring in the Upper Troposphere

    Science.gov (United States)

    Whiteman, D. N.; Cadirola, M.; Venable, D.; Calhoun, M.; Miloshevich, L; Vermeesch, K.; Twigg, L.; Dirisu, A.; Hurst, D.; Hall, E.; hide

    2012-01-01

    The MOHAVE-2009 campaign brought together diverse instrumentation for measuring atmospheric water vapor. We report on the participation of the ALVICE (Atmospheric Laboratory for Validation, Interagency Collaboration and Education) mobile laboratory in the MOHAVE-2009 campaign. In appendices we also report on the performance of the corrected Vaisala RS92 radiosonde measurements during the campaign, on a new radiosonde based calibration algorithm that reduces the influence of atmospheric variability on the derived calibration constant, and on other results of the ALVICE deployment. The MOHAVE-2009 campaign permitted the Raman lidar systems participating to discover and address measurement biases in the upper troposphere and lower stratosphere. The ALVICE lidar system was found to possess a wet bias which was attributed to fluorescence of insect material that was deposited on the telescope early in the mission. Other sources of wet biases are discussed and data from other Raman lidar systems are investigated, revealing that wet biases in upper tropospheric (UT) and lower stratospheric (LS) water vapor measurements appear to be quite common in Raman lidar systems. Lower stratospheric climatology of water vapor is investigated both as a means to check for the existence of these wet biases in Raman lidar data and as a source of correction for the bias. A correction technique is derived and applied to the ALVICE lidar water vapor profiles. Good agreement is found between corrected ALVICE lidar measurments and those of RS92, frost point hygrometer and total column water. The correction is offered as a general method to both quality control Raman water vapor lidar data and to correct those data that have signal-dependent bias. The influence of the correction is shown to be small at regions in the upper troposphere where recent work indicates detection of trends in atmospheric water vapor may be most robust. The correction shown here holds promise for permitting useful upper

  20. Development of radioisotope tracer technology

    International Nuclear Information System (INIS)

    Jin, Joon Ha; Lee, Myun Joo; Jung, Sung Hee; Park, Soon Chul; Lim, Dong Soon; Kim, Jae Ho; Lee, Jae Choon; Lee, Doo Sung; Cho, Yong Suk; Shin, Sung Kuan

    2000-04-01

    The purpose of this study is to develop the radioisotope tracer technology, which can be used in solving industrial and environmental problems and to build a strong tracer group to support the local industries. In relation to the tracer technology in 1999, experiments to estimate the efficiencies of a sludge digester of a waste water treatment plant and a submerged biological reactor of a dye industry were conducted. As a result, the tracer technology for optimization of facilities related to wastewater treatment has been developed and is believed to contribute to improve their operation efficiency. The quantification of the experimental result was attempted to improve the confidence of tracer technology by ECRIN program which basically uses the MCNP simulation principle. Using thin layer activation technique, wear of tappet shim was estimated. Thin layer surface of a tappet shim was irradiated by proton beam and the correlation between the measured activity loss and the amount of wear was established. The equipment was developed to adjust the energy of proton which collides with the surface of tappet. The tracer project team has participated into the tracer test for estimating the efficiency of RFCC system in SK cooperation. From the experiment the tracer team has obtained the primary elements to be considered for judging the efficiency of RFCC unit. By developing the tracer techniques to test huge industrial units like RFCC, the tracer team will be able to support the local industries that require technical services to solve any urgent trouble. (author)

  1. Chemical Tracer Methods: Chapter 7

    Science.gov (United States)

    Healy, Richard W.

    2017-01-01

    Tracers have a wide variety of uses in hydrologic studies: providing quantitative or qualitative estimates of recharge, identifying sources of recharge, providing information on velocities and travel times of water movement, assessing the importance of preferential flow paths, providing information on hydrodynamic dispersion, and providing data for calibration of water flow and solute-transport models (Walker, 1998; Cook and Herczeg, 2000; Scanlon et al., 2002b). Tracers generally are ions, isotopes, or gases that move with water and that can be detected in the atmosphere, in surface waters, and in the subsurface. Heat also is transported by water; therefore, temperatures can be used to trace water movement. This chapter focuses on the use of chemical and isotopic tracers in the subsurface to estimate recharge. Tracer use in surface-water studies to determine groundwater discharge to streams is addressed in Chapter 4; the use of temperature as a tracer is described in Chapter 8.Following the nomenclature of Scanlon et al. (2002b), tracers are grouped into three categories: natural environmental tracers, historical tracers, and applied tracers. Natural environmental tracers are those that are transported to or created within the atmosphere under natural processes; these tracers are carried to the Earth’s surface as wet or dry atmospheric deposition. The most commonly used natural environmental tracer is chloride (Cl) (Allison and Hughes, 1978). Ocean water, through the process of evaporation, is the primary source of atmospheric Cl. Other tracers in this category include chlorine-36 (36Cl) and tritium (3H); these two isotopes are produced naturally in the Earth’s atmosphere; however, there are additional anthropogenic sources of them.

  2. A volatile tracer-assisted headspace analytical technique for determining the swelling capacity of superabsorbent polymers.

    Science.gov (United States)

    Zhang, Shu-Xin; Jiang, Ran; Chai, Xin-Sheng

    2017-09-01

    This paper reports on a new method for the determination of swelling capacity of superabsorbent polymers by a volatile tracer-assisted headspace gas chromatography (HS-GC). Toluene was used as a tracer and added to the solution for polymers swelling test. Based on the differences of the tracer partitioned between the vapor and hydrogel phase before and after the polymer's swelling capacity, a transition point (corresponding to the material swelling capacity) can be observed when plotting the GC signal of toluene vs. the ratio of solution added to polymers. The present method has good precision (RSDpolymers at the elevated temperatures. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Radionuclides as tracers

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    Importance of radioisotopes in medicine is because of their two characteristics: their biological behaviour is identical to their stable counterparts, and because they are radioactive their emissions can be detected by a suitable instrument. All isotopes of iodine will behave in the same way and will concentrate in the thyroid gland. There is no way of detecting the stable, natural iodine in the thyroid gland, but the presence of radioactive iodine can be detected externally in vivo by a detector. Thus, the radioactive iodine becomes a tracer, a sport of a spy, which mimics the behaviour of natural iodine and relays information to a detector. The radioactive tracers are popular because of the ease with which they can be detected in vivo and the fact that the measurement of their presence in the body can be in quantitative terms. The measurement can be very accurate and sensitive. Whenever the measurements can be done in vivo, the information is obtained in dynamic terms, as it is happening, as if the physiological events become transparent

  4. Development of an arsenic trioxide vapor and arsine sampling train

    International Nuclear Information System (INIS)

    Crecelius, E.A.; Sanders, R.W.

    1980-01-01

    A sampling train was evaluated using 76 As tracer for the measurement of particulate arsenic, arsine, and arsenic trioxide vapor in air and industrial process gas streams. In this train, a demister was used to remove droplets of water and oil, and particulates were removed by a filter. Vapor arsenic trioxide was collected in an impinger solution, and arsine gas was collected on silvered quartz beads. Hydrogen sulfide gas did not reduce the arsine trapping efficiency of the silvered beads, and charcoal proved to be an effective trap for both arsine and arsenic trioxide vapor. 1 figure, 2 tables

  5. Monitoring percolation of a conductive tracer, as a proxy for nitrate transport, through glacial till and fractured sandstone in the vadose zone underlying a potato field, using 3D cross-hole electrical resistivity imaging

    Science.gov (United States)

    Wang, S.; Butler, K. E.; Serban, D.; Petersen, B.; Grimmett, M.

    2016-12-01

    Nitrate is a necessary nutrient for crops, but high surface water and groundwater concentrations can negatively affect aquatic ecosystem and human health. At AAFC-AAC Harrington Research Farm (PEI, Canada), 3D cross-hole electrical resistivity imaging (ERI) is being used to investigate the percolation of a conductive tracer (KCl) through a 17 m thick vadose zone as a proxy for the transport of nitrate under natural recharge conditions. The objectives are to investigate the effect of heterogeneity on transport pathways and infer how long it would take for changes in farming practices at the surface to affect nitrate loading to the underlying aquifer. The resistivity array consists of 96 permanently installed electrodes - 24 at 0.68 m spacing in each of three 16 m deep boreholes arranged in a triangle with 9 m sides, and 24 at 1 m spacing buried in shallow trenches connecting the boreholes. A background survey revealed five sub-horizontal layers of alternating resistivity in general agreement with the geology of 6 m soil and glacial till overburden overlying interbedded sandstone and shaley sandstone layers. On March 27th, 2015, 1.1 m of snow was removed from a 15.2 m2 area positioned symmetrically inside the triangular array and 100 kg of granular KCl was distributed on the ground surface. The removed snow was immediately replaced to await the spring thaw. Post-tracer surveys indicate tracer had percolated to depths of 1 m, 1.2 m, 3.0 m and 3.5 m by the 4th, 26th, 30th, and 46th days after tracer application. Its movement slowed significantly by early May, 2015, with the end of snow melt. Tracer spread laterally very slowly through the summer and early fall, 2015, but has remained within the triangular array. The shallow conductivity anomaly produced by the tracer diminished significantly over the winter and spring of 2016 but showed little evidence of bulk matrix flow below 3.5 m depth. It is speculated that fractures in the glacial till, too thin to be resolved by

  6. Melting temperature, vapor density, and vapor pressure of molybdenum pentafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jr, R F; Douglas, T B [National Bureau of Standards, Washington, D.C. (USA). Inst. for Materials Research

    1977-12-01

    A sample of MoF/sub 5/ was prepared by reaction of MoF/sub 6/(g) and Mo(c). Melting curves of temperature against time established the melting temperature at zero impurity to be 318.85 K, the enthalpy of fusion to be 6.1 kJ mol/sup -1/ (+ - 5 per cent), and the cryoscopic impurity of the sample to be 0.15 mole per cent. In the presence of MoF/sub 6/(g) which was added to suppress disproportionation, the vapor density of MoF/sub 5/ over the liquid was measured by the transpiration method at 343, 363, and 383 K, the total MoF/sub 5/ that evaporated being determined by permanganate titration. The total vapor pressure of MoF/sub 5/ oligomers over the liquid was measured by a simple static method at 373 and 392 K, while melting temperatures were taken alternately to monitor possible contamination of the sample. Although the vapor pressures were adjusted for disproportionation, solution of MoF/sub 6/ in MoF/sub 5/ (1), and wall adsorption of MoF/sub 6/ their percentage uncertainty is probably several times that of the vapor densities. A combination of the two properties indicates the average extent of association of the saturated vapor to be near 2, which is the value for the dimer species (MoF/sub 5/)/sub 2/.

  7. Small molecules as tracers in atmospheric secondary organic aerosol

    Science.gov (United States)

    Yu, Ge

    Secondary organic aerosol (SOA), formed from in-air oxidation of volatile organic compounds, greatly affects human health and climate. Although substantial research has been devoted to SOA formation and evolution, the modeled and lab-generated SOA are still low in mass and degree of oxidation compared to ambient measurements. In order to compensate for these discrepancies, the aqueous processing pathway has been brought to attention. The atmospheric waters serve as aqueous reaction media for dissolved organics to undergo further oxidation, oligomerization, or other functionalization reactions, which decreases the vapor pressure while increasing the oxidation state of carbon atoms. Field evidence for aqueous processing requires the identification of tracer products such as organosulfates. We synthesized the standards for two organosulfates, glycolic acid sulfate and lactic acid sulfate, in order to measure their aerosol-state concentration from five distinct locations via filter samples. The water-extracted filter samples were analyzed by LC-MS. Lactic acid sulfate and glycolic acid sulfate were detected in urban locations in the United States, Mexico City, and Pakistan with varied concentrations, indicating their potential as tracers. We studied the aqueous processing reaction between glyoxal and nitrogen-containing species such as ammonium and amines exclusively by NMR spectrometry. The reaction products formic acid and several imidazoles along with the quantified kinetics were reported. The brown carbon generated from these reactions were quantified optically by UV-Vis spectroscopy. The organic-phase reaction between oxygen molecule and alkenes photosensitized by alpha-dicarbonyls were studied in the same manner. We observed the fast kinetics transferring alkenes to epoxides under simulated sunlight. Statistical estimations indicate a very effective conversion of aerosol-phase alkenes to epoxides, potentially forming organosulfates in a deliquescence event and

  8. Expert system for the automatic analysis of the Eddy current signals from the monitoring of vapor generators of a PWR type reactor

    International Nuclear Information System (INIS)

    Benoist, P.; David, B.; Pigeon, M.

    1990-01-01

    An expert system for the automatic analysis of signals from Eddy currents is presented. The system was developed in order to detect and analyse the defects which may exist in vapor generators. The extraction of a signal from a high level background noise is possible. The organization of the work during the system's development, the results of the technique for the extraction of the signal from the background noise, and an example concerning the interpretation of the signal from a defect are presented [fr

  9. Commercial applications of perfluorocarbon tracer (PFT) technology

    International Nuclear Information System (INIS)

    Dietz, R.N.

    1991-06-01

    Tracer technology can be successfully applied to many leak-checking and monitoring evaluations of operating systems (e.g., building HVACs), manufacturing processes and products (e.g., air conditioners), and subsurface components and systems (e.g., underground storage tanks). Perfluorocarbon tracer (PFT) technology is the most sensitive of all tracer technologies because the ambient background levels of the five (5) routinely-used PFTs are in the range of parts per 10 15 parts of air (i.e., parts per quadrillion-ppq) and this technology's instrumentation can measure down to those levels. The effectiveness of this technology is achieved both in terms of cost (very little PFT need to be used) and detectability; for example, very small leaks can be rapidly detected. The PFT compounds, which are environmentally and biologically safe to use, are commercially available as are the sampling and analysis instrumentation. This presentation concerns (1) the steps being taken to commercialize this technology, (2) new applications of processes currently under study, and (3) applications in areas of use that will be particularly beneficial to the environment. 21 refs., 2 figs., 2 tabs

  10. Tracer dating and ocean ventilation

    International Nuclear Information System (INIS)

    Thiele, G.; Sarmiento, J.L.

    1990-01-01

    The interpretation of transient tracer observations depends on difficult to obtain information on the evolution in time of the tracer boundary conditions and interior distributions. Recent studies have attempted to circumvent this problem by making use of a derived quantity, age, based on the simultaneous distribution of two complementary tracers, such as tritium and its daughter, helium 3. The age is defined with reference to the surface such that the boundary condition takes on a constant value of zero. The authors use a two-dimensional model to explore the circumstances under which such a combination of conservation equations for two complementary tracers can lead to a cancellation of the time derivative terms. An interesting aspect of this approach is that mixing can serve as a source or sink of tracer based age. The authors define an idealized ventilation age tracer that is conservative with respect to mixing, and they explore how its behavior compares with that of the tracer-based ages over a range of advective and diffusive parameters

  11. Tracer research in process engineering

    International Nuclear Information System (INIS)

    Iller, E.

    1992-01-01

    The book is a review of modern applications of tracer techniques in chemical and process engineering studies. The next topics have been extensively presented: 1) media flow through apparatus; 2) the tracers in the study of media flow dynamics through apparatus; 3) mathematical interpretation of experimental data from impulse-response method; 4) the models of media flow through chemical reactors and apparatus; 5) radiotracers in mass transport study; 6) examples of practical applications of tracer methods in industrial objects. 84 refs, 96 figs, 31 tabs

  12. Tracer dispersion - experiment and CFD

    International Nuclear Information System (INIS)

    Zitny, R.

    2004-01-01

    Description of tracer distribution by means of dispersion models is a method successfully used in process engineering for fifty years. Application of dispersion models in reactor engineering for characterization of flows in column apparatus, heat exchangers, etc. is summarized and experimental tracer techniques as well as CFD methods for dispersion coefficients evaluation are discussed. Possible extensions of thermal axial dispersion model (ADM) and a core-wall ADM model suitable for description of tracer dispersion in laminar flows are suggested as well as CFD implementation as 1D finite elements. (author)

  13. Meteorological tracers in regional planning

    International Nuclear Information System (INIS)

    Mueller, K.H.

    1974-11-01

    Atmospheric tracers can be used as indicators to study both the ventilation of an urban region and its dispersion meteorology for air pollutants. A correlation analysis applied to the space-time dependent tracer concentrations is able to give transfer functions, the structure and characteristic parameters of which describe the meteorological and topographical situation of the urban region and its surroundings in an integral manner. To reduce the number of persons usually involved in a tracer experiment an automatic air sampling system had to be developed

  14. Proceedings of the atmospheric tracers and tracer application workshop

    International Nuclear Information System (INIS)

    Barr, S.; Gedayloo, T.

    1979-12-01

    In addition to presentations by participating members a general discussion was held in order to summarize and outline the goals and objectives of the workshop. A number of new low level background tracers such as heavy methanes, perfluorocarbons, multiply labeled isotopes such as 13 C 18 O 2 , helium 3, in addition to sample collection techniques and analytical methods for various tracers were discussed. This report is a summary of discussions and papers presented at this workshop

  15. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  16. Tracer studies with aortic infusion result in improper tracer distribution

    International Nuclear Information System (INIS)

    Wisneski, J.A.; Brooks, G.A.; Neese, R.A.; Stanley, W.C.; Morris, D.L.; Gertz, E.W.

    1986-01-01

    It has been suggested that lactate turnover can be accurately assessed by infusing radioactive lactate tracer into the aorta and sampling blood in the vena cava. However, there may be streaming of newly infused tracer in the aorta, resulting in a nonuniform arterial specific activity (SA). Furthermore vena caval blood may not be representative of mixed venous blood. The authors examined this problem in 7 anesthetized dogs with sampling catheters in the pulmonary (PA), carotid (CA), and femoral (FA) arteries, and the superior (SVC) and inferior (IVC) vena cavi. [1- 14 C]lactate was continuously infused into the left ventricle through a catheter introduced through the femoral artery. The same SA (dpm/μmol) was found in the CA and FA, indicating adequate mixing of newly infused tracer with trace. Three dogs showed differences between SVC, IVC and PA, suggesting a mixed venous sample can not be obtained from the VC. When the catheter was moved into the aorta, wide differences in SA appeared between the CA and FA, clearly reflecting streaming of tracer. These differences also appeared in the SVC and IVC. In conclusion, adequate mixing does not occur between tracer and trace in arterial blood with aortic infusion. Further, VC sampling will not give a consistent mixed venous SA. Therefore, for practical reasons, aortic tracer infusion with vena caval sampling will lead to erroneous turnover values

  17. Interpretation of Water Tracer Simulation in the H-1 Segment of the Gullfaks Field

    Energy Technology Data Exchange (ETDEWEB)

    Moid, Farrukh

    2000-07-01

    This thesis describes the water tracer simulation in the H-1 segment of the Gullfaks field. Three passive water tracer slugs were injected from the two producing wells during water flooding, pressure maintenance and reservoir monitoring program in the Gullfaks field. The same program is considered in this thesis. Computer Modelling Group's (CMG) simulator STARS is used for the general reservoir simulation and a separate module for tracer flow (ITRC-SIM) which is incorporated in the STARS and developed at Institute For Energy (IFE) is used for the tracer simulation. Water cut and tracer concentration data are used in history matching of the field. History matching is performed by changing the transmissibility and permeability of different layers; also the effect of changing saturations near the well bore on history matching is examined. It is noted that water cut is sensitive to transmissibility of the layers and the saturation around the well bore. Tracers are found to be moving in the most permeable layers. The corresponding history matching of water and tracer production shows a severe loss of first tracer injected because of imbibition process. Water phase velocity and areal communication between different wells are determined. Advance numerical features of tracer module ITRC-SIM such as flux limiting scheme and grid refinement scheme are evaluated and are found to be an important tool for reducing the numerical smearing. The effects of dispersion and diffusion on tracer response curve are also evaluated. Dispersion makes the tracer concentration curve smeared. Simulation results of water cut and tracer concentration show a good history match for this reservoir. The improved simulation model and the tracer module for this reservoir can be used for the prediction of future performance of the reservoir and interpretation of the tracer behaviour in the reservoir. (author)

  18. Corrosion detection and monitoring in steam generators by means of ultrasound; Deteccion y monitoreo de corrosion por medio de ultrasonido en generadores de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Chacon Nava, Jose G; Calva, Mauricio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Fuentes Samaniego, Raul [Universidad Autonoma de Nuevo Leon (Mexico); Peraza Garcia, Alejandro [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    The tube and component failures in steam generators due to corrosion cause huge economical losses. In this article the internal corrosion processes (hydrogen attack) and high temperature corrosion are described, as well as the ultrasound techniques used for its detection. The importance of obtaining corrosion rates, which are fundamental parameters for the detection of the tube`s residual life. The purpose is to prevent possible failures that would diminish the power plant availability. [Espanol] Las fallas de tuberia en componentes de generadores de vapor debidas a corrosion ocasionan considerables perdidas economicas. En este articulo se describen los procesos de corrosion interna (ataque por hidrogeno) y corrosion en alta temperatura, asi como tecnicas de ultrasonido empleadas para su deteccion. Se destaca la importancia de obtener valores de velocidad de corrosion, que es un parametro fundamental para la determinacion de la vida residual de tuberias. El proposito es poder prevenir posibles fallas que disminuyan la disponibilidad de centrales termoelectricas.

  19. Corrosion detection and monitoring in steam generators by means of ultrasound; Deteccion y monitoreo de corrosion por medio de ultrasonido en generadores de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Chacon Nava, Jose G.; Calva, Mauricio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Fuentes Samaniego, Raul [Universidad Autonoma de Nuevo Leon (Mexico); Peraza Garcia, Alejandro [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    The tube and component failures in steam generators due to corrosion cause huge economical losses. In this article the internal corrosion processes (hydrogen attack) and high temperature corrosion are described, as well as the ultrasound techniques used for its detection. The importance of obtaining corrosion rates, which are fundamental parameters for the detection of the tube`s residual life. The purpose is to prevent possible failures that would diminish the power plant availability. [Espanol] Las fallas de tuberia en componentes de generadores de vapor debidas a corrosion ocasionan considerables perdidas economicas. En este articulo se describen los procesos de corrosion interna (ataque por hidrogeno) y corrosion en alta temperatura, asi como tecnicas de ultrasonido empleadas para su deteccion. Se destaca la importancia de obtener valores de velocidad de corrosion, que es un parametro fundamental para la determinacion de la vida residual de tuberias. El proposito es poder prevenir posibles fallas que disminuyan la disponibilidad de centrales termoelectricas.

  20. Attenuation of concentration fluctuations of water vapor and other trace gases in turbulent tube flow

    Directory of Open Access Journals (Sweden)

    W. J. Massman

    2008-10-01

    Full Text Available Recent studies with closed-path eddy covariance (EC systems have indicated that the attenuation of fluctuations of water vapor concentration is dependent upon ambient relative humidity, presumably due to sorption/desorption of water molecules at the interior surface of the tube. Previous studies of EC-related tube attenuation effects have either not considered this issue at all or have only examined it superficially. Nonetheless, the attenuation of water vapor fluctuations is clearly much greater than might be expected from a passive tracer in turbulent tube flow. This study reexamines the turbulent tube flow issue for both passive and sorbing tracers with the intent of developing a physically-based semi-empirical model that describes the attenuation associated with water vapor fluctuations. Toward this end, we develop a new model of tube flow dynamics (radial profiles of the turbulent diffusivity and tube airstream velocity. We compare our new passive-tracer formulation with previous formulations in a systematic and unified way in order to assess how sensitive the passive-tracer results depend on fundamental modeling assumptions. We extend the passive tracer model to the vapor sorption/desorption case by formulating the model's wall boundary condition in terms of a physically-based semi-empirical model of the sorption/desorption vapor fluxes. Finally we synthesize all modeling and observational results into a single analytical expression that captures the effects of the mean ambient humidity and tube flow (Reynolds number on tube attenuation.

  1. Analysis of infiltration through mill tailings using a bromide tracer

    International Nuclear Information System (INIS)

    Lewis, G.J.; Stephens, D.B.

    1985-01-01

    Infiltration of precipitation into tailings impoundments as a means of recharge to underlying materials is often considered insignificant, particularly in arid and semi-arid environments. A series of experiments was performed to investigate the behavior of infiltrated precipitation into tailing soils, by the use of a bromide tracer. A bromide tracer was applied to the surface of columns driven into the tailings to monitor downward advancement of tracer-laden water. Controlled laboratory experiments on the behavior of the bromide tracer under varying precipitation events and initial soil moisture contents were also conducted. Results indicate that a definite downward migration of infiltrated precipitation occurs, particularly with large magnitude precipitation events, and that, eventually, some fraction of the infiltrated precipitation may continue downward below the zone affected by evaporation. The use of an artificially applied bromide tracer to monitor depth of infiltration of precipitation is a simple, safe technique that can provide valuable information for long-term tailings management strategies at low cost

  2. Tracer transport in fractured rocks

    International Nuclear Information System (INIS)

    Tsang, C.F.; Tsang, Y.W.; Hale, F.V.

    1988-07-01

    Recent interest in the safety of toxic waste underground disposal and nuclear waste geologic repositories has motivated many studies of tracer transport in fractured media. Fractures occur in most geologic formations and introduce a high degree of heterogeneity. Within each fracture, the aperture is not constant in value but strongly varying. Thus for such media, tracer tends to flow through preferred flowpaths or channels within the fractures. Along each of these channels, the aperture is also strongly varying. A detailed analysis is carried out on a 2D single fracture with variable apertures and the flow through channels is demonstrated. The channels defined this way are not rigidly set pathways for tracer transport, but are the preferred flow paths in the sense of stream-tubes in the potential theory. It is shown that such variable-aperture channels can be characterized by an aperture probability distribution function, and not by the exact deterministic geometric locations. We also demonstrate that the 2D tracer transport in a fracture can be calculated by a model of a system of 1D channels characterized by this distribution function only. Due to the channeling character of tracer transport in fractured rock, random point measurements of tracer breakthrough curves may give results with a wide spread in value due to statistical fluctuations. The present paper suggests that such a wide spread can probably be greatly reduced by making line/areal (or multiple) measurements covering a few spatial correlation lengths. 13 refs., 11 figs., 1 tab

  3. Expert system for the automatic analysis of the Eddy current signals from the monitoring of vapor generators of a PWR, type reactor

    International Nuclear Information System (INIS)

    Lefevre, F.; Baumaire, A.; Comby, R.; Benas, J.C.

    1990-01-01

    The automatization of the monitoring of the steam generator tubes required some developments in the field of data processing. The monitoring is performed by means of Eddy current tests. Improvements in signal processing and in pattern recognition associated to the artificial intelligence techniques induced EDF (French Electricity Company) to develop an automatic signal processing system. The system, named EXTRACSION (French acronym for Expert System for the Processing and classification of Signals of Nuclear Nature), insures the coherence between the different fields of knowledge (metallurgy, measurement, signals) during data processing by applying an object oriented representation [fr

  4. Measurement of open streams by using tracers

    International Nuclear Information System (INIS)

    Ramos, German F.; Tarquino, W.; Curcuy, H.; Orozco, C.

    1999-01-01

    This paper presents an intercomparison study to be carried out between flux measurements by using tracers and moulinet. This intercomparison is scheduled to be performed at the measurement station belonging to the National Service of Meteorology and Hydrology (SENAMHI). Two techniques of tracer dilution are outstanded: total evaluation with tracer punctual injection and punctual evaluation with tracer continuous injection. Total evaluation with tracer punctual injection has been used since this technique is considered to be more suitable for hydrology purposes

  5. Use of radioactive tracers in the semiconductor industry

    International Nuclear Information System (INIS)

    Akerman, Karol

    1975-01-01

    Manufacture of the semiconductor materials comprises production and purification of the raw materials (GeC14 or SiHC13), purification of the elemental semiconductors by metallurgical methods (including zone melting), production and doping of single crystals, dividing the crystals into slices of suitable size, formation of p-n junctions and fabrication of the finished semiconductor devices. In the sequence of operations, the behavior of very small quantities of an element must be monitored, and radioactive tracers are often used to solve these problems. Examples are given of the use of radioactive tracers in the semiconductor industry

  6. Radioactive tracers in the sea

    International Nuclear Information System (INIS)

    Jenkins, W.J.; Livingston, H.D.

    1980-01-01

    Artificial radionuclides introduced to the oceans during the last four decades have proved invaluable tools for study of many processes in marine water columns and sediments. Both global and close-in fallout of radioactivity from atmospheric nuclear weapons testing have distributed these radionuclides widely, and in amounts sufficient to be useful as tracers. An additional source of considerable significance and tracer potential comes from coastal discharges of European nuclear fuel reprocessing wastes. The nature of these sources, types and amounts of radionuclides introduced and the time histories of their introduction generate a variety of tracer distributions which illuminate a broad spectrum of physical and chemical processes active over a wide range of timescales. Depending on their respective chemistries, artificial radionuclides have been demonstrated to exhibit both conservative and non-conservative properties in the oceans. Some examples are given of the uses made of soluble, conservative tracers for the study of oceanic transport processes and of non-conservative tracers for studies of processes which move them to, and mix them within, marine sediments. Sampling and measurement techniques which have been used in these studies are described

  7. Application of artificial radioactive tracers for groundwater flow

    International Nuclear Information System (INIS)

    Hamza, M.S.; Aly, A.I.M.; Swailem, F.M.; Nada, A.A.; Awad, M.A.

    1989-01-01

    In this work, the groundwater velocity was estimated by applying radioactive tracer techniques: the single well and the multiple well methods. In the first single well method, radioactive iodine-131 was injected in the well and the radioactivity was monitored with time. The groundwater flow was estimated as a function of the concentration dilution factor of the tracer taking into consideration the permeability of the filter screen and the aquifer. The second method (the multiple well technique) is based on direct measuring of the period of time the tracer needs to disperse from the injection well to one of receptor well arranged in a circle around the injection. The latter method was found to be more accurate and reliable and has also the advantage of determining the groundwater velocity and direction of flow as well. The limitations of the single well technique are discussed and a detailed comparison between single and multi-well techniques is given

  8. Field measurements of tracer gas transport by barometric pumping

    International Nuclear Information System (INIS)

    Lagus, P.L.; McKinnis, W.B.; Hearst, J.R.; Burkhard, N.R.; Smith, C.F.

    1994-01-01

    Vertical gas motions induced by barometric pressure variations can carry radioactive gases out of the rubblized region produced by an underground nuclear explosion, through overburden rock, into the atmosphere. To better quantify transit time and amount of transport, field experiments were conducted at two sites on Pahute Mesa, Kapelli and Tierra, where radioactive gases had been earlier detected in surface cracks. At each site, two tracer gases were injected into the rubblized chimney 300-400 m beneath the surface and their arrival was monitored by concentration measurements in gas samples extracted from shallow collection holes. The first ''active'' tracer was driven by a large quantity of injected air; the second ''passive'' tracer was introduced with minimal gas drive to observe the natural transport by barometric pumping. Kapelli was injected in the fall of 1990, followed by Tierra in the fall of 1991. Data was collected at both sites through the summer of 1993. At both sites, no surface arrival of tracer was observed during the active phase of the experiment despite the injection of several million cubic feet of air, suggesting that cavity pressurization is likely to induce horizontal transport along high permeability layers rather than vertical transport to the surface. In contrast, the vertical pressure gradients associated with barometric pumping brought both tracers to the surface in comparable concentrations within three months at Kapelli, whereas 15 months elapsed before surface arrival at Tierra. At Kapelli, a quasisteady pumping regime was established, with tracer concentrations in effluent gases 1000 times smaller than concentrations thought to exist in the chimney. Tracer concentrations observed at Tierra were typically an order of magnitude smaller. Comparisons with theoretical calculations suggest that the gases are traveling through ∼1 millimeter vertical fractures spaced 2 to 4 meters apart. 6 refs., 18 figs., 3 tabs

  9. Stable isotope tracers and exercise physiology: past, present and future.

    Science.gov (United States)

    Wilkinson, Daniel J; Brook, Matthew S; Smith, Kenneth; Atherton, Philip J

    2017-05-01

    Stable isotope tracers have been invaluable assets in physiological research for over 80 years. The application of substrate-specific stable isotope tracers has permitted exquisite insight into amino acid, fatty-acid and carbohydrate metabolic regulation (i.e. incorporation, flux, and oxidation, in a tissue-specific and whole-body fashion) in health, disease and response to acute and chronic exercise. Yet, despite many breakthroughs, there are limitations to 'substrate-specific' stable isotope tracers, which limit physiological insight, e.g. the need for intravenous infusions and restriction to short-term studies (hours) in controlled laboratory settings. In recent years significant interest has developed in alternative stable isotope tracer techniques that overcome these limitations, in particular deuterium oxide (D 2 O or heavy water). The unique properties of this tracer mean that through oral administration, the turnover and flux through a number of different substrates (muscle proteins, lipids, glucose, DNA (satellite cells)) can be monitored simultaneously and flexibly (hours/weeks/months) without the need for restrictive experimental control. This makes it uniquely suited for the study of 'real world' human exercise physiology (amongst many other applications). Moreover, using D 2 O permits evaluation of turnover of plasma and muscle proteins (e.g. dynamic proteomics) in addition to metabolomics (e.g. fluxomics) to seek molecular underpinnings, e.g. of exercise adaptation. Here, we provide insight into the role of stable isotope tracers, from substrate-specific to novel D 2 O approaches, in facilitating our understanding of metabolism. Further novel potential applications of stable isotope tracers are also discussed in the context of integration with the snowballing field of 'omic' technologies. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  10. Radiochemical tracers in marine biology

    International Nuclear Information System (INIS)

    Petrocelli, S.R.; Anderson, J.W.; Neff, J.M.

    1977-01-01

    Tracers have been used in a great variety of experimentation. More recently, labeled materials have been applied in marine biological research. Some of the existing tracer techniques have been utilized directly, while others have been modified to suit the specific needs of marine biologists. This chapter describes some of the uses of tracers in marine biological research. It also mentions the problems encountered as well as offering possible solutions and discusses further applications of these techniques. Only pertinent references are cited and additional information may be obtained by consulting these references. Due to their relative ease of maintenance, freshwater species are also utilized in studies which involve radiotracer techniques. Since most of these techniques e directly applicable to marine species, some of these studies will also be included

  11. Radioisotope tracer applications in industry

    International Nuclear Information System (INIS)

    Rao, S.M.

    1987-01-01

    Radioisotope tracers have many advantages in industrial trouble-shooting and studies on process kinetics. The applications are mainly of two types: one leading to qualitative (Yes or No type) information and the other to quantitative characterisation of flow processes through mass balance considerations and flow models. ''Yes or No'' type methods are mainly used for leakage and blockage locations in pipelines and in other industrial systems and also for location of water seepage zones in oil wells. Flow measurements in pipelines and mercury inventory in electrolytic cells are good examples of tracer methods using the mass balance approach. Axial dispersion model and Tanks-in-Series model are the two basic flow models commonly used with tracer methods for the characterisation of kinetic processes. Examples include studies on flow processes in sugar crystallisers as well as in a precalcinator in a cement plant. (author). 18 figs

  12. The annual cycle of stratospheric water vapor in a general circulation model

    Science.gov (United States)

    Mote, Philip W.

    1995-01-01

    The application of general circulation models (GCM's) to stratospheric chemistry and transport both permits and requires a thorough investigation of stratospheric water vapor. The National Center for Atmospheric Research has redesigned its GCM, the Community Climate Model (CCM2), to enable studies of the chemistry and transport of tracers including water vapor; the importance of water vapor to the climate and chemistry of the stratosphere requires that it be better understood in the atmosphere and well represented in the model. In this study, methane is carried as a tracer and converted to water; this simple chemistry provides an adequate representation of the upper stratospheric water vapor source. The cold temperature bias in the winter polar stratosphere, which the CCM2 shares with other GCM's, produces excessive dehydration in the southern hemisphere, but this dry bias can be ameliorated by setting a minimum vapor pressure. The CCM2's water vapor distribution and seasonality compare favorably with observations in many respects, though seasonal variations including the upper stratospheric semiannual oscillation are generally too small. Southern polar dehydration affects midlatitude water vapor mixing ratios by a few tenths of a part per million, mostly after the demise of the vortex. The annual cycle of water vapor in the tropical and northern midlatitude lower stratosphere is dominated by drying at the tropical tropopause. Water vapor has a longer adjustment time than methane and had not reached equilibrium at the end of the 9 years simulated here.

  13. Development of radioisotope tracer technology and nucleonic control system

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Joon Ha; Lee, Myun Joo; Jung, Sung Hee and others

    1999-04-01

    The purpose of this study is to develop the radioisotope tracer technology, which can be used in solving industrial and environmental problems and basic technology of nuclear control systems that are widely used for automation of industrial plants, and to build a strong tracer group to support the local industries. In relation to the tracer technology, the data acquisition system, the column scanning equipment and the detection pig for a leakage test have been developed. In order to use in analyzing data of tracer experiments, a computer program for the analysis of residence time distribution has been created as well. These results were utilized in developing the tracer technologies, such as the column scanning, the flow measurement using the dilution method, the simultaneous monitoring rotational movement of piston rings and the optimization of a waste water treatment facility, and the technologies were successfully demonstrated in the local industrial. The stripper of RFCC reactor has been examined to find an unwanted structure in it by imminent request from the industry. Related to the development of nucleonic control system, the state of art report on the technology has been written and an equipment for the analysis of asphalt content has been developed. (author)

  14. A novel headspace gas chromatographic method for in situ monitoring of monomer conversion during polymerization in an emulsion environment.

    Science.gov (United States)

    Chai, Xin-Sheng; Zhong, Jin-Feng; Hu, Hui-Chao

    2012-05-18

    This paper describes a novel multiple-headspace extraction/gas chromatographic (MHE-GC) technique for monitoring monomer conversion during a polymerization reaction in a water-based emulsion environment. The polymerization reaction of methyl methacrylate (MMA) in an aqueous emulsion is used as an example. The reaction was performed in a closed headspace sample vial (as a mini-reactor), with pentane as a tracer. In situ monitoring of the vapor concentration of the tracer, employing a multiple headspace extraction (sampling) scheme, coupled to a GC, makes it possible to quantitatively follow the conversion of MMA during the early stages of polymerization. Data on the integrated amount of the tracer vapor released from the monomer droplet phase during the polymerization is described by a mathematic equation from which the monomer conversion can be calculated. The present method is simple, automated and economical, and provides an efficient tool in the investigation of the reaction kinetics and effects of the reaction conditions on the early stage of polymerization. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Fuel vapor pressure (FVAPRS)

    International Nuclear Information System (INIS)

    Mason, R.E.

    1979-04-01

    A subcode (FVAPRS) is described which calculates fuel vapor pressure. This subcode was developed as part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The fuel vapor pressure subcode (FVAPRS), is presented and a discussion of literature data, steady state and transient fuel vapor pressure equations and estimates of the standard error of estimate to be expected with the FVAPRS subcode are included

  16. USE OF PERFLUOROCARBON TRACER (PFT) TECHNOLOGY FOR SUBSURFACE BARRIER INTEGRITY VERIFICATION AT THE WALDO TEST SITE

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN,T.; HEISER,J.; SENUM,G.; MILLIAN,L.

    2000-02-27

    Researchers from Brookhaven National Laboratory (BNL) tested perfluorocarbon (PFT) gas tracers on a subsurface barrier with known flaws at the Waldo test facility [operated by Science and Engineering Associates, Inc (SEA)]. The tests involved the use of five unique PFT tracers with a different tracer injected along the interior of each wall of the barrier. A fifth tracer was injected exterior to the barrier to examine the validity of diffusion controlled transport of the PFTs. The PFTs were injected for three days at a nominal flow rate of 15 cm{sup 3}/min and a concentrations in the range of a few hundred ppm. Approximately 65 liters of air laced with tracer was injected for each tracer. The tracers were able to accurately detect the presence of the engineered flaws. Two flaws were detected on the north and east walls and lane flaw was detected on the south and west walls. In addition, one non-engineered flaw at the seam between the north and east walls was also detected. The use of multiple tracers provided independent confirmation of the flaws and permitted a distinction between tracers arriving at a monitoring port after being released from a nearby flaw and non-engineered flaws. The PFTs detected the smallest flaw, 0.5 inches in diameter. Visual inspection of the data showed excellent agreement with the known flaw locations and the relative size of the flaws was accurately estimated.

  17. Application of ethanol as a geothermal tracer: a field-test in the Los Azufres geothermal field, Michoacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tello Hinojosa, Enrique [Comision Federal de Electricidad, Morelia, Michoacan (Mexico); Pal Verma, Mahendra [Comision Federal de Electricidad, Morelia, Michoacan (Mexico); Suarez Arriaga, Mario C. [Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan (Mexico); Barrera Conzalez, Victor; Sandoval Medina, Fernando [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2005-12-01

    The thermal decomposition rate of ethanol, rhodamine WT and fluoroscein was determined from laboratory data obtained under conditions of temperature and pressure that simulated a geothermal reservoir. It was found that ethylic alcohol had better thermal stability rhodamine and fluoroscein. Using data obtained from de-ionized water experiments after 168 hours and 200 degree centigrade of temperature, the rhodamine WT and fluoroscein presented a degradation of 99.4% and 99.7%, respectively, while for the ethanol the degradation percentage under the same conditions was only of 44.6%. According to this, ethylic alcohol can be used as a conservative tracer up to about 250 degree centigrade, while rhodamine WT and fluoroscein can be used only at less than 200 degree centigrade, and only where the transit return time is expected to be less than 7 days. Ethanol was used as a conservative tracer in a field test in the southern zone of the Los Azufres geothermal field. The highest concentration was detected in a monitoring well in the steam phase 15 days after the injection, and in the liquid phase, or brine, 34 days after the injection. This suggests that alcohol fractionates preferentially in the steam phase and moves or migrates twice as fast than it does in the liquid phase. The tracer speed can be calculated in 176 m/day in the steam phase and 77.5 m/day in the brine. The ethanol presents good enough characteristics to be used as a tracer in both phases in geothermal environments. [Spanish] Se determino la velocidad de descomposicion termica del etanol, la rodamina y la fluoresceina a partir de datos de laboratorio obtenidos bajo condiciones de presion y de temperatura que simulan las de un yacimiento geotermico. Se encontro que el alcohol etilico presenta una mayor estabilidad termica que la rodamina y la fluoresceina. Empleando los datos obtenidos de experimentos con agua de-ionizada despues de 168 horas y a 200 grados centigrados de temperatura, la rodamina y la

  18. Site characterization and validation - Tracer migration experiment in the validation drift, report 2, part 1: performed experiments, results and evaluation

    International Nuclear Information System (INIS)

    Birgersson, L.; Widen, H.; Aagren, T.; Neretnieks, I.; Moreno, L.

    1992-01-01

    This report is the second of the two reports describing the tracer migration experiment where water and tracer flow has been monitored in a drift at the 385 m level in the Stripa experimental mine. The tracer migration experiment is one of a large number of experiments performed within the Site Characterization and Validation (SCV) project. The upper part of the 50 m long validation drift was covered with approximately 150 plastic sheets, in which the emerging water was collected. The water emerging into the lower part of the drift was collected in short boreholes, sumpholes. Sex different tracer mixtures were injected at distances between 10 and 25 m from the drift. The flowrate and tracer monitoring continued for ten months. Tracer breakthrough curves and flowrate distributions were used to study flow paths, velocities, hydraulic conductivities, dispersivities, interaction with the rock matrix and channelling effects within the rock. The present report describes the structure of the observations, the flowrate measurements and estimated hydraulic conductivities. The main part of this report addresses the interpretation of the tracer movement in fractured rock. The tracer movement as measured by the more than 150 individual tracer curves has been analysed with the traditional advection-dispersion model and a subset of the curves with the advection-dispersion-diffusion model. The tracer experiments have permitted the flow porosity, dispersion and interaction with the rock matrix to be studied. (57 refs.)

  19. Tracers of cancer cells in nuclear oncology

    International Nuclear Information System (INIS)

    Tamgac, F.; Baillet, G.; Moretti, J.L.; Safi, N.; Weinmann, P.; Beco, V. de

    1997-01-01

    Evaluating the extent of disease is important in planning cancer treatment. Different types of tracers are used in vivo to diagnose tumors and these tracers can give supplementary information on the differentiation degree of tumors and response to therapy. (authors)

  20. Physical model for vaporization

    OpenAIRE

    Garai, Jozsef

    2006-01-01

    Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result.

  1. Petroleum Vapor - Field Technical

    Science.gov (United States)

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  2. New SPECT and PET dementia tracers

    International Nuclear Information System (INIS)

    Vergote, J.; Chalon, S.; Emond, P.; Vercouillie, J.; Guilloteau, D.; Vergote, J.; Guilloteau, D.; Pappata, J.S.

    2009-01-01

    Single photon emission tomography (SPECT) and positron emission tomography (PET) are techniques to study in vivo neurotransmitter systems, neuro inflammation and amyloid deposits in normal human brain and in dementia. These methods used to explore the integrity of dopaminergic, cholinergic and serotonergic systems in Alzheimer's disease and in other dementias allowed to understand how the neurotransmission was modified in these disorders. Progress in the understanding of pathophysiological and clinical signs of dementia requires an evolution of the radioligands used to carry out an increasingly early and differential diagnosis in addition to monitoring the progression of disease and the effects of therapies. New emerging radiotracers for neuro inflammation or amyloid deposits are essential. In this article, new SPECT and PET tracers are presented. (authors)

  3. Tracer-tracer relations as a tool for research on polar ozone loss

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rolf

    2010-07-01

    The report includes the following chapters: (1) Introduction: ozone in the atmosphere, anthropogenic influence on the ozone layer, polar stratospheric ozone loss; (2) Tracer-tracer relations in the stratosphere: tracer-tracer relations as a tool in atmospheric research; impact of cosmic-ray-induced heterogeneous chemistry on polar ozone; (3) quantifying polar ozone loss from ozone-tracer relations: principles of tracer-tracer correlation techniques; reference ozone-tracer relations in the early polar vortex; impact of mixing on ozone-tracer relations in the polar vortex; impact of mesospheric intrusions on ozone-tracer relations in the stratospheric polar vortex calculation of chemical ozone loss in the arctic in March 2003 based on ILAS-II measurements; (4) epilogue.

  4. New SPECT tracers: Example of tracers of proteoglycans and melanin

    International Nuclear Information System (INIS)

    Cachin, F.; Mestas, D.; Kelly, A.; Merlin, C.; Veyre, A.; Maublant, J.; Cachin, F.; Chezal, J.M.; Miot-Noirault, E.; Moins, N.; Auzeloux, P.; Vidal, A.; Bonnet-Duquennoy, M.; Boisgard, S.; D'Incan, M.; Madelmont, J.C.; Maublant, J.; Boisgard, S.; D'Incan, M.; Redini, F.; Filaire, M.

    2009-01-01

    The majority of research program on new radiopharmaceuticals turn to tracers used for positron emission tomography (PET). Only a few teams work on new non fluorine labeled tracers. However, the coming of SPECT/CT gamma cameras, the arrival of semi-conductors gamma cameras should boost the development of non-PET tracers. We exhibit in this article the experience acquired by our laboratory in the conception and design of two new non fluorine labelled compounds. The 99m Tc-N.T.P. 15-5 (N.T.P. 15-5 for N-[tri-ethyl-ammonium]-3-propyl-[15]ane-N5) which binds to proteoglycans could be used for the diagnosis and staging of osteoarthritis and chondrosarcoma. The iodo benzamides, specific to the melanin, are nowadays compared to 18 F-fluorodeoxyglucose in a phase III clinical trial for the diagnosis and detection of melanoma metastasis. Our last development focus on N-[2-(diethyl-amino)ethyl]-4 and 2-iodo benzamides respectively B.Z.A. and B.Z.A.2 hetero-aromatic analogues usable for melanoma treatment. (authors)

  5. Waste tank ventilation rates measured with a tracer gas method

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Evans, J.C.; Sklarew, D.S.; Mitroshkov, A.V.

    1998-08-01

    Passive ventilation with the atmosphere is used to prevent accumulation of waste gases and vapors in the headspaces of 132 of the 177 high-level radioactive waste Tanks at the Hanford Site in Southeastern Washington State. Measurements of the passive ventilation rates are needed for the resolution of two key safety issues associated with the rates of flammable gas production and accumulation and the rates at which organic salt-nitrate salt mixtures dry out. Direct measurement of passive ventilation rates using mass flow meters is not feasible because ventilation occurs va multiple pathways to the atmosphere (i.e., via the filtered breather riser and unsealed tank risers and pits), as well as via underground connections to other tanks, junction boxes, and inactive ventilation systems. The tracer gas method discussed in this report provides a direct measurement of the rate at which gases are removed by ventilation and an indirect measurement of the ventilation rate. The tracer gas behaves as a surrogate of the waste-generated gases, but it is only diminished via ventilation, whereas the waste gases are continuously released by the waste and may be subject to depletion mechanisms other than ventilation. The fiscal year 1998 tracer studies provide new evidence that significant exchange of air occurs between tanks via the underground cascade pipes. Most of the single-shell waste tanks are connected via 7.6-cm diameter cascade pipes to one or two adjacent tanks. Tracer gas studies of the Tank U-102/U-103 system indicated that the ventilation occurring via the cascade line could be a significant fraction of the total ventilation. In this two-tank cascade, air evidently flowed from Tank U-103 to Tank U-102 for a time and then was observed to flow from Tank U-102 to Tank U-103

  6. Development and application of a modified wireless tracer for disaster prevention

    Science.gov (United States)

    Chung Yang, Han; Su, Chih Chiang

    2016-04-01

    Typhoon-induced flooding causes water overflow in a river channel, which results in general and bridge scour and soil erosion, thus leading to bridge failure, debris flow and landslide collapse. Therefore, dynamic measurement technology should be developed to assess scour in channels and landslide as a disaster-prevention measure against bridge failure and debris flow. This paper presents a wireless tracer that enables monitoring general scour in river channels and soil erosion in hillsides. The wireless tracer comprises a wireless high-power radio modem, various electronic components, and a self-designed printed circuit board that are all combined with a 9-V battery pack and an auto switch. The entire device is sealed in a jar by silicon. After it was modified, the wireless tracer underwent the following tests for practical applications: power continuation and durability, water penetration, and signal transmission during floating. A regression correlation between the wireless tracer's transmission signal and distance was also established. This device can be embedded at any location where scouring is monitored, and, in contrast to its counterparts that detect scour depth by identifying and analyzing received signals, it enables real-time observation of the scouring process. In summary, the wireless tracer developed in this study provides a dynamic technology for real-time monitoring of scouring (or erosion) and forecasting of landslide hazards. Keywords: wireless tracer; scour; real-time monitoring; landslide hazard.

  7. Spatial variability of mixing ratios of ammonia and tracer gases in a naturally ventilated dairy cow barn

    NARCIS (Netherlands)

    Mendes, Luciano B.; Edouard, Nadège; Ogink, Nico W.M.; Dooren, van Hendrik Jan C.; Fátima F. TinÔco, de Ilda; Mosquera Losada, Julio

    2015-01-01

    The use of the tracer gas ratio method to estimate emissions from naturally ventilated (NV) livestock barns excludes the need of monitoring ventilation rates. However, it requires accurate measurement of tracer release rate (QT) and a representative estimate of the mixing ratio between

  8. The fluorescent tracer experiment on Holiday Beach near Mugu Canyon, Southern California

    Science.gov (United States)

    Kinsman, Nicole; Xu, J. P.

    2012-01-01

    After revisiting sand tracer techniques originally developed in the 1960s, a range of fluorescent coating formulations were tested in the laboratory. Explicit steps are presented for the preparation of the formulation evaluated to have superior attributes, a thermoplastic pigment/dye in a colloidal mixture with a vinyl chloride/vinyl acetate copolymer. In September 2010, 0.59 cubic meters of fluorescent tracer material was injected into the littoral zone about 4 kilometers upcoast of Mugu submarine canyon in California. The movement of tracer was monitored in three dimensions over the course of 4 days using manual and automated techniques. Detailed observations of the tracer's behavior in the coastal zone indicate that this tracer successfully mimicked the native beach sand and similar methods could be used to validate models of tracer movement in this type of environment. Recommendations including how to time successful tracer studies and how to scale the field of view of automated camera systems are presented along with the advantages and disadvantages of the described tracer methodology.

  9. Fifty years of radiochemical tracers

    International Nuclear Information System (INIS)

    Evans, E.A.

    1992-01-01

    During the past 50 years radiochemical tracers, usually in the form of isotopically labelled organic compounds, have been essential tools to further advance our knowledge at the frontiers of a great variety of scientific developments in the life sciences. This plenary lecture reviews necessarily selected highlights in the synthesis and applications of such radiochemical tracers. Included are examples where important advances, made possible by using radiochemicals, have contributed to improving the quality of life on this planet. The principal radioisotopes involved, 14 C, 3 H, 35 S, 32 P, 125 I, are all relatively safe to handle and are commercially available at maximum theoretical specific activity (carrier free). The compounds labeled with these radioisotopes are used in many fields of research which include biosynthesis and biotechnology studies, cell biology, drug metabolism, clinical research and environmental applications, and are briefly reviewed. (author). 55 refs

  10. Tracer techniques in food industry

    International Nuclear Information System (INIS)

    Pertsovskij, E.S.; Sakharov, Eh.V.; Dolinin, V.A.

    1980-01-01

    The appicability of radioactive tracer techniques to process control in food industry are considered. Investigations in the field of food industry carried out using the above method are classified. The 1 class included investigations with preliminary preparation of a radioactive indicator and its following introduction in the system studied. The 2 class includes investigations based on the introduction in the system studied of a non-active indicator which is activated in a neutron flux being in samples selected in or after the process investigated. The 3 class includes studies based on investigations of natural radioactivity of certain nuclides in food stuff. The application of tracer techniques to the above classes of investigations in various fields of food industry and the equipment applied are considered in detail [ru

  11. Improvements to vapor generators

    International Nuclear Information System (INIS)

    Keller, Arthur; Monroe, Neil.

    1976-01-01

    A supporting system is proposed for vapor generators of the 'supported' type. Said supporting system is intended to compensate the disparities of thermal expansion due to the differences in the vertical dimensions of the tubes in the walls of the combustion chamber and their collectors compared to that of the balloon tanks and the connecting tube clusters of vaporization, the first one being longer than the second ones. Said system makes it possible to build said combustion chamber higher than the balloon tanks and the tube clusters of vaporization. The capacity of steam production is thus enhanced [fr

  12. The Accurate Particle Tracer Code

    OpenAIRE

    Wang, Yulei; Liu, Jian; Qin, Hong; Yu, Zhi

    2016-01-01

    The Accurate Particle Tracer (APT) code is designed for large-scale particle simulations on dynamical systems. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and non-linear problems. Under the well-designed integrated and modularized framework, APT serves as a universal platform for researchers from different fields, such as plasma physics, accelerator physics, space science, fusio...

  13. Interpretation of the tracer testing conducted in the Leuggern borehole

    International Nuclear Information System (INIS)

    McNeish, J.A.; Andrews, R.W.; Vomvoris, S.

    1990-12-01

    Tracer testing was conducted in the Leuggern borehole from July to December 1988 to evaluate the hydraulic properties of the crystalline host rock. The tested interval was an approximately 50 m section of fractured crystalline rock at a depth of greater than 1,600 m. The testing consisted of three tracer injection/recovery periods (uranin - 44 days, eosin - 30 days, and naphtionat -14 days), which utilized tracer injection/circulation rates, ranging between 25 and 50 ml/min. During these testing periods, tracer was injected in either of two 1/4 flow lines ported at the top or bottom of the interval and recovered from the other. Following the three tracer injection periods, a natural outflow tracer recovery test was conducted from the central tubing at an average outflow of 12 l/min. The central tubing was ported near the center of the test interval. Data collected during the testing periods included: continuous monitoring of fluid temperature, injection pressure, and electrical conductivity as well as discrete measurement of flow rates, electrical conductivity, fluid temperature, and tracer concentration. Testing results indicate a downward vertical flow of approximately 195-225 ml/min in the isolated interval, from an upper fracture inflow zone to a lower fracture outflow zone. Through analysis of the dilution levels of uranin and eosin during the injection/recovery periods, and review of field data, the top of the upper inflow zone was determined to be approximately 13 m below the top flow line and the bottom of the outflow zone to be approximately 3 to 5 meters above the bottom flow line. The calculated transmissivity value of 6E-05 m 2 /s from observed outflow rate and pressure recovery data, is consistent with results derived from previous hydraulic packer testing in the interval. The effective porosity was determined to be 0.1. Dispersion coefficient values ranged from 1.0 m to 5.0 m. The lateral hydraulic gradient value calculated from tracer recovery

  14. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  15. Radioisotope labeling technique for vapor density measurements of volatile inorganic species

    International Nuclear Information System (INIS)

    Peterson, E.J.; Caird, J.A.; Hessler, J.P.; Hoekstra, H.R.; Williams, C.W.

    1979-01-01

    A new method for complexed metal ion vapor density measurement involving labeling the metal ions of interest with a radioactive isotope is described. The isotope chosen in the present work is unstable and leads to emission of a characteristic γ ray. Thus the γ-counting rate was related to the number density of complexed metal ions in the vapor phase. This technique is applicable to the study of any volatile inorganic species, but in the present study has been used to measure vapor densities of complex species in the TbCl 3 -AlCl 3 system by using tracer 160 Tb. 4 figures, 2 tables

  16. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  17. Auxiliary Electrodes for Chromium Vapor Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey; Shahzad, Moaiz; Britt, Tommy

    2018-05-15

    Measurement of chromia-containing vapors in solid oxide fuel cell systems is useful for monitoring and addressing cell degradation caused by oxidation of the chomia scale formed on alloys for interconnects and balance-of-plant components. One approach to measuring chromium is to use a solid electrolyte with an auxiliary electrode that relates the partial pressure of the chromium containing species to the mobile species in the electrolyte. One example is YCrO3 which can equilibrate with the chromium containing vapor and yttrium in yttria stabilized zirconia to establish an oxygen activity. Another is Na2CrO4 which can equilibrate with the chromium-containing vapor to establish a sodium activity.

  18. Innovative use of a microbial tracer for measuring groundwater through a fractured matrix

    International Nuclear Information System (INIS)

    Strong-Gunderson, J.M.

    1995-01-01

    Site characterization for ground water remediation activities is limited by the one's ability to visualize the complexity of the subsurface environment. Currently, a variety of dyes, colloids, gases, etc., are used to monitor and estimate ground water flow and contaminant transport. The author has recently identified a new, innovative colloidal tracer that is a non-hazardous bacterium that is detectable at very low concentrations (ng/kg), and can provide real-time analysis (3--5 min) for measuring colloid transport. The tracer is the ice nucleating active (INA) bacterium Pseudomonas syringae. The assay conditions require measuring the freezing point of the sample (e.g., ground water and soil slurries). Typically, 10--100 microL drops of water will not freeze until -15 to -20 C. However, if the tracer is present the water will freeze at -3 to -7 C. This increase in the freezing point can only be due to the presence of the tracer and this phenomenon is well documented in the plant pathology and low-temperature biology literature but has only now been applied to site characterization and remediation activities. Laboratory experiments have identified the stability of the tracer in the presence of a variety of ground water contaminants (> 100 ppm) and it is stable over a pH range of 2.3--10.0. The tracer has been demonstrated in conjunction with other commonly used tracers at a variety of field sites: (1) a drilling tracer to identify potential cross contamination, and as a colloid/bacterial tracer in (2) a hydrofracturing demonstration, (3) a horizontal recirculation well system, (4) a fractured karst matrix, and (5) a radioactive contaminated site. The data from these demonstrations have provided additional information about site characteristics including faster ground water flow rates than previously identified and due to its low sensitivities better distribution into a clay matrix than estimated by the bromide tracer

  19. A comparative study of the N metabolism of phytoplankton and periphyton communities in oligotrophic lakes. Part of a coordinated programme on isotopic-tracer-aided research and monitoring on agricultural residue - biological interactions in aquatic ecosystems

    International Nuclear Information System (INIS)

    Goldman, C.R.

    1982-08-01

    Limnological research at Castle Lake, CA, and Lake Tahoe, CA-NEV, USA, during the period 1977-1982 has emphasized the effects of nutrient enrichment and deficiency on primary producers. The low ambient pools of nitrogenous nutrients and their low rates of transformation have necessitated the use of isotope tracer methods ( 14 C, 15 N, 13 N). These techniques have been used in concert with physiological assays, growth bio-assays, and whole-ecosystem nitrogen enrichments. Our most significant results, to date, include: (1) Delineation of 5 algal communities which are spatially distinct yet occur in the same lake and which differ with regard to their principal sources of N; (2) Determination of the relative affinities of the above communities for the various sources of N; (3) Demonstration of the importance of internally regenerated N to phytoplankton productivity; (4) Development of sensitive methodology to utilize the short-lived radioisotope 13 N (t1/2=10 mins) for studies of denitrification and nitrate uptake in aquatic ecosystems; (5) Comparisons of a variety of physiological assays for N-deficiency in aquatic microorganisms, involving short-term and long-term experiments in containers and in an N-enriched lake. The controlled ecosystem manipulations were intended to simulate the effects of watershed disturbance on nitrogen loading in order to more accurately evaluate their potential impacts on inorganic carbon and nitrogen assimilation by natural algal communities. Our research is an experimental approach for contrasting the strategies of planktonic and benthic algae living in the same lake but differing with regard to their principal sources of nitrogen

  20. Modeling UTLS water vapor: Transport/Chemistry interactions

    International Nuclear Information System (INIS)

    Gulstad, Line

    2005-01-01

    This thesis was initially meant to be a study on the impact on chemistry and climate from UTLS water vapor. However, the complexity of the UTLS water vapor and its recent changes turned out to be a challenge by it self. In the light of this, the overall motivation for the thesis became to study the processes controlling UTLS water vapor and its changes. Water vapor is the most important greenhouse gas, involved in important climate feedback loops. Thus, a good understanding of the chemical and dynamical behavior of water vapor in the atmosphere is crucial for understanding the climate changes in the last century. Additionally, parts of the work was motivated by the development of a coupled climate chemistry model based on the CAM3 model coupled with the Chemical Transport Model Oslo CTM2. The future work will be concentrated on the UTLS water vapor impact on chemistry and climate. We are currently studying long term trends in UTLS water vapor, focusing on identification of the different processes involved in the determination of such trends. The study is based on natural as well as anthropogenic climate forcings. The ongoing work on the development of a coupled climate chemistry model will continue within our group, in collaboration with Prof. Wei-Chyung Wang at the State University of New York, Albany. Valuable contacts with observational groups are established during the work on this thesis. These collaborations will be continued focusing on continuous model validation, as well as identification of trends and new features in UTLS water vapor, and other tracers in this region. (Author)

  1. Do conventional monitoring practices indicate in situ air sparging performance?

    International Nuclear Information System (INIS)

    Johnson, P.C.

    1995-01-01

    Short-term pilot tests play a key role in the selection and design of in situ air sparging systems. Most pilot tests are less than 24 h in duration and consist of monitoring changes in dissolved oxygen, water levels in wells, soil gas pressures, and soil gas contaminant concentrations while air is injected into the aquifer. These parameters are assumed to be indicators of air sparging feasibility and performance, and are also used in the design of full-scale systems. In this work the authors assess the validity of this critical assumption. Data are presented from a study site where a typical pilot-scale short-term test was conducted, followed by continued operation of a full-scale system for 110 days. Conventional sampling practices were augmented with more discrete and detailed assessment methods. In addition, a tracer gas was used to better understand air distributions, vapor flow paths, and vapor recovery efficiency. The data illustrate that conclusions regarding the performance and applicability of air sparging at the study site vary significantly depending on the monitoring approach used. There was no clear correlation between short-term pilot-test data and extended system performance when using data collected only from conventional groundwater monitoring wells. Attention is focused on petroleum hydrocarbons

  2. Water Vapor Remote Sensing Techniques: Radiometry and Solar Spectrometry

    Science.gov (United States)

    Somieski, A.; Buerki, B.; Cocard, M.; Geiger, A.; Kahle, H.-G.

    The high variability of atmospheric water vapor content plays an important role in space geodesy, climatology and meteorology. Water vapor has a strong influence on transatmospheric satellite signals, the Earth's climate and thus the weather forecasting. Several remote sensing techniques have been developed for the determination of inte- grated precipitable water vapor (IPWV). The Geodesy and Geodynamics Lab (GGL) utilizes the methods of Water Vapor Radiometry and Solar Spectrometry to quantify the amount of tropospheric water vapor and its temporal variations. The Water Vapor Radiometer (WVR) measures the radiation intensity of the atmosphere in a frequency band ranging from 20 to 32 GHz. The Solar Atmospheric MOnitoring Spectrome- ter (SAMOS) of GGL is designed for high-resolution measurements of water vapor absorption lines using solar radiation. In the framework of the ESCOMPTE (ExpÊrience sur Site pour COntraindre les Mod- Éles de Pollution atmosphÊrique et de Transport d'Emissions) field campaign these instruments have been operated near Marseille in 2001. They have aquired a long time series of integrated precipitable water vapor content (IPWV). The accuracy of IPWV measured by WVR and SAMOS is 1 kg/m2. Furthermore meteorological data from radiosondes were used to calculate the IPWV in order to provide comparisons with the results of WVR and SAMOS. The methods of Water Vapor Radiometry and So- lar Spectrometry will be discussed and first preliminary results retrieved from WVR, SAMOS and radiosondes during the ESCOMPTE field campaign will be presented.

  3. Doublet Tracer Testing in Klamath Falls, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, J.S.; Johnson, S.E.; Horne, R.N.; Jackson, P. B. [Pet. Eng. Dept., Stanford University; Culver, G.G. [Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR

    0001-01-01

    A tracer test was carried out in a geothermal doublet system to study the injection behavior of a developed reservoir known to be fractured. The doublet produces about 320 gpm of 160 degrees Fahrenheit water that is used for space heating and then injected; the wells are spaced 250 ft apart. Tracer breakthrough was observed in 2 hours and 45 minutes in the production well, indicating fracture flow. However, the tracer concentrations were low and indicated porous media flow; the tracers mixed with a reservoir volume much larger than a fracture.

  4. Doublet Tracer Testing in Klamath Falls, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, J S; Johnson, S E; Horne, R N; Jackson, P B [Pet. Eng. Dept., Stanford University; Culver, G G [Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR

    0000-12-30

    A tracer test was carried out in a geothermal doublet system to study the injection behavior of a developed reservoir known to be fractured. The doublet produces about 320 gpm of 160 degrees Fahrenheit water that is used for space heating and then injected; the wells are spaced 250 ft apart. Tracer breakthrough was observed in 2 hours and 45 minutes in the production well, indicating fracture flow. However, the tracer concentrations were low and indicated porous media flow; the tracers mixed with a reservoir volume much larger than a fracture.

  5. Tracer a application in marine outfall studies

    International Nuclear Information System (INIS)

    Genders, S.

    1979-01-01

    The applicability of radioactive and fluorescent tracers for field studies to predict or investigate waste water transport and dispersion from marine outfalls is evaluated. The application of either instantaneous or continuous tracer release, 'in situ' detection of tracers and data processing are considered. The necessity of a combined use of tracer techniques and conventional hydrographic methods for a statistical prediction of transport and dillution of waste water are pointed out. A procedure to determine an outlet distance from the coast, which satisfy bathing water criteria is outlined. (M.A.) [pt

  6. Principles and techniques of gamma ray tracers

    International Nuclear Information System (INIS)

    Claxton, K.T.

    1978-01-01

    Radioactive tracer techniques provide a very sensitive means of studying physical and chemical processes in a whole variety of different media. Some of the techniques and principles of radioactive tracers and their application to practical engineering systems are discussed. Information which has been found useful in the design of high temperature liquid sodium facilities employing radio-tracers, is presented. The report deals solely with the use of gamma-emitting species as the tracer. These find particular application for in-situ studies on engineering systems where the highly penetrating properties of gamma rays are needed for detection through strongly absorbent media such as stainless steel pepe walls. (author)

  7. Use of artificial tracers in hydrology

    International Nuclear Information System (INIS)

    1991-05-01

    The IAEA has convened an Advisory Group Meeting with the following objectives: To define the role of artificial radioactive tracers for water tracing in comparison with other non-radioactive tracers. To evaluate the real needs of artificial radioactive tracers in hydrology. To identify the fields for which artificial radioactive tracers are useful as well as those in which they can be substituted by other tracers. To discuss the strategy to be adopted to overcome the difficulties derived from the restrictions on the use of radioactive tracers in hydrology. The meeting was held at IAEA Headquarters from 19 to 22 March 1990, and was attended by 30 participants from 15 Member States. The conclusions and recommendations are that the use of artificial radioactive tracers should be restricted to cases where other tracers cannot be used or do not provide the same quality of information. Tritium, iodine-131, bromine-82, chromium-51 in the form of Cr-EDTA, technetium-99m obtained from 99 Mo-generators and gold-198 as an adsorbable tracer are, practically, the only radionuclides used for water tracing. The use of other radionuclides for this purpose does not appear to be necessary, possible and/or convenient. Refs, figs and tabs

  8. Quadratic tracer dynamical models tobacco growth

    International Nuclear Information System (INIS)

    Qiang Jiyi; Hua Cuncai; Wang Shaohua

    2011-01-01

    In order to study the non-uniformly transferring process of some tracer dosages, we assume that the absorption of some tracer by tobacco is a quadratic function of the tracer quantity of the tracer in the case of fast absorption, whereas the exclusion of the tracer from tobacco is a linear function of the tracer quantity in the case of slow exclusion, after the tracer is introduced into tobacco once at zero time. A single-compartment quadratic dynamical model of Logistic type is established for the leaves of tobacco. Then, a two-compartment quadratic dynamical model is established for leaves and calms of the tobacco. Qualitative analysis of the models shows that the tracer applied to the leaves of the tobacco is excluded finally; however, the tracer stays at the tobacco for finite time. Two methods are also given for computing the parameters in the models. Finally, the results of the models are verified by the 32 P experiment for the absorption of tobacco. (authors)

  9. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  10. Scintigraphy of inflammation with nanometer-sixed colloidal tracers

    International Nuclear Information System (INIS)

    De Schrijver, M.

    1989-01-01

    This book describes a novel approach to the scintigraphy of inflammatory processes of the extremities. It presents a method specially developed to bring this diagnostic modality whithin the reach of every nuclear medicine centre without requiring a special infrastructure or extensively trained personnel. The author revieuws the existing nuclear medicine techniques and critically analyses their relative advantages and pitfalls before proceeding to a detailed account of the use of a colloidal tracer for detecting and monitoring inflammation. The author identifies the pathophysiological basis of his concept and gives extensive preclinical data prior to discussing a number of comparative clinical studies with the new technique. Additional benefits are brought by the book's emphasis on the importance of a solid radiopharmacological foundation to the medically used tracers and demonstrates with a few suprising examples how shortcomings at this level may lead to misleading findings in the daily practive of nuclear medicine, even with routinely used radiopharmaceuticals. (author). refs.; figs.; tabs

  11. Use of tracers to quantify subsurface flow through a mining pit.

    Science.gov (United States)

    Schladow, S Geoffrey; Clark, Jordan F

    2008-12-01

    Three independent tracer experiments were conducted to quantify the through-flow of water from Herman Pit, an abandoned mercury (Hg) mine pit adjacent to Clear Lake, California, USA. The tracers used were Rhodamine-WT, sulfur hexafluoride, and a mixture of sulfur hexafluoride and neon-22. The tracers were injected into Herman Pit, a generally well-mixed water body of approximately 81,000 m2, and the concentrations were monitored in the mine pit, observation wells, and the lake for 2-3 months following each injection. The results for all three experiments showed that the tracer arrived at certain observation wells within days of injection. Comparing all the well data showed a highly heterogeneous response, with a small number of wells showing this near-instantaneous response and others taking months before the tracer was detectable. Tracer was also found in the lake on four occasions over a one-month period, too few to infer any pattern but sufficient to confirm the connection of the two water bodies. Using a simple mass balance model it was possible to determine the effective loss rate through advection for each of the tracers and with this to estimate the through-flow rate. The through-flow rate for all three experiments was approximately 630 L/s, at least 1-2 orders of magnitude larger than previous estimates, all of which had been based on geochemical inferences or other indirect measures of the pit through-flow.

  12. Tracking tracer breakthrough in the hyporheic zone using time‐lapse DC resistivity, Crabby Creek, Pennsylvania

    Science.gov (United States)

    Nyquist, Jonathan E.; Toran, Laura; Fang, Allison C.; Ryan, Robert J.; Rosenberry, Donald O.

    2010-01-01

    Characterization of the hyporheic zone is of critical importance for understanding stream ecology, contaminant transport, and groundwater‐surface water interaction. A salt water tracer test was used to probe the hyporheic zone of a recently re‐engineered portion of Crabby Creek, a stream located near Philadelphia, PA. The tracer solution was tracked through a 13.5 meter segment of the stream using both a network of 25 wells sampled every 5–15 minutes and time‐lapse electrical resistivity tomographs collected every 11 minutes for six hours, with additional tomographs collected every 100 minutes for an additional 16 hours. The comparison of tracer monitoring methods is of keen interest because tracer tests are one of the few techniques available for characterizing this dynamic zone, and logistically it is far easier to collect resistivity tomographs than to install and monitor a dense network of wells. Our results show that resistivity monitoring captured the essential shape of the breakthrough curve and may indicate portions of the stream where the tracer lingered in the hyporheic zone. Time‐lapse resistivity measurements, however, represent time averages over the period required to collect a tomographic data set, and spatial averages over a volume larger than captured by a well sample. Smoothing by the resistivity data inversion algorithm further blurs the resulting tomograph; consequently resistivity monitoring underestimates the degree of fine‐scale heterogeneity in the hyporheic zone.

  13. Quantitative liquid and vapor distribution measurements in evaporating fuel sprays using laser-induced exciplex fluorescence

    International Nuclear Information System (INIS)

    Fansler, Todd D; Drake, Michael C; Gajdeczko, Boguslaw; Düwel, Isabell; Koban, Wieland; Zimmermann, Frank P; Schulz, Christof

    2009-01-01

    Fully quantitative two-dimensional measurements of liquid- and vapor-phase fuel distributions (mass per unit volume) from high-pressure direct-injection gasoline injectors are reported for conditions of both slow and rapid vaporization in a heated, high-pressure spray chamber. The measurements employ the coevaporative gasoline-like fluorobenzene (FB)/diethylmethylamine (DEMA)/hexane exciplex tracer/fuel system. In contrast to most previous laser-induced exciplex-fluorescence (LIEF) experiments, the quantitative results here include regions in which liquid and vapor fuel coexist (e.g. near the injector exit). A unique aspect is evaluation of both vapor- and liquid-phase distributions at varying temperature and pressure using only in situ vapor-phase fluorescence calibration measurements at room temperature and atmospheric pressure. This approach draws on recent extensive measurements of the temperature-dependent spectroscopic properties of the FB–DEMA exciplex system, in particular on knowledge of the quantum efficiencies of the vapor-phase and liquid-phase (exciplex) fluorescence. In addition to procedures necessary for quantitative measurements, we discuss corrections for liquid–vapor crosstalk (liquid fluorescence that overlaps the vapor-fluorescence bandpass), the unknown local temperature due to vaporization-induced cooling, and laser-sheet attenuation by scattering and absorption

  14. Estimation of the dilution field near a marine outfall by using effluent turbidity as an environmental tracer and comparison with dye tracer data.

    Science.gov (United States)

    Pecly, José Otavio Goulart

    2018-01-01

    The alternative use of effluent turbidity to determine the dilution field of a domestic marine outfall located off the city of Rio de Janeiro was evaluated through field work comprising fluorescent dye tracer injection and tracking with simultaneous monitoring of sea water turbidity. A preliminary laboratory assessment was carried out with a sample of the outfall effluent whose turbidity was measured by the nephelometric method before and during a serial dilution process. During the field campaign, the dye tracer was monitored with field fluorometers and the turbidity was observed with an optical backscattering sensor interfaced to an OEM data acquisition system. About 4,000 samples were gathered, covering an area of 3 km × 3 km near the outfall diffusers. At the far field - where a drift towards the coastline was observed - the effluent plume was adequately labeled by the dye tracer. The turbidity plume was biased due to the high and variable background turbidity of sea water. After processing the turbidity dataset with a baseline detrending method, the plume presented high correlation with the dye tracer plume drawn on the near dilution field. However, dye tracer remains more robust than effluent turbidity.

  15. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  16. Vapor liquid fraction determination

    International Nuclear Information System (INIS)

    1980-01-01

    This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)

  17. Heat of vaporization spectrometer

    International Nuclear Information System (INIS)

    Edwards, D. Jr.

    1978-01-01

    Multilayer desorption measurements of various substances adsorbed on a stainless steel substrate are found to exhibit desorption profiles consistent with a zeroth order desorption model. The singleness of the desorption transients together with their narrow peak widths makes the technique ideally suited for a heat of vaporization spectrometer for either substance analysis or identification

  18. Nanoparticle tracers in calcium carbonate porous media

    KAUST Repository

    Li, Yan Vivian; Cathles, Lawrence M.; Archer, Lynden A.

    2014-01-01

    the fractures or channels where flow occurs and thus take much less time to travel between two points. In combination with a chemical tracer they can measure the degree of flow concentration. A prerequisite for tracer applications is that the particles

  19. Tracer filamentation at an unstable ocean front

    Science.gov (United States)

    Feng, Yen Chia; Mahadevan, Amala; Thiffeault, Jean-Luc; Yecko, Philip

    2017-11-01

    A front, where two bodies of ocean water with different physical properties meet, can become unstable and lead to a flow with high strain rate and vorticity. Phytoplankton and other oceanic tracers are stirred into filaments by such flow fields, as can often be seen in satellite imagery. The stretching and folding of a tracer by a two-dimensional flow field has been well studied. In the ocean, however, the vertical shear of horizontal velocity is typically two orders of magnitude larger than the horizontal velocity gradient. Theoretical calculations show that vertical shear alters the way in which horizontal strain affects the tracer, resulting in thin, sloping structures in the tracer field. Using a non-hydrostatic ocean model of an unstable ocean front, we simulate tracer filamentation to identify the effect of vertical shear on the deformation of the tracer. In a complementary laboratory experiment, we generate a simple, vertically sheared strain flow and use dye and particle image velocimetry to quantify the filamentary structures in terms of the strain and shear. We identify how vertical shear alters the tracer filaments and infer how the evolution of tracers in the ocean will differ from the idealized two-dimensional paradigm. Support of NSF DMS-1418956 is acknowledged.

  20. Dynamic dual-tracer PET reconstruction.

    Science.gov (United States)

    Gao, Fei; Liu, Huafeng; Jian, Yiqiang; Shi, Pengcheng

    2009-01-01

    Although of important medical implications, simultaneous dual-tracer positron emission tomography reconstruction remains a challenging problem, primarily because the photon measurements from dual tracers are overlapped. In this paper, we propose a simultaneous dynamic dual-tracer reconstruction of tissue activity maps based on guidance from tracer kinetics. The dual-tracer reconstruction problem is formulated in a state-space representation, where parallel compartment models serve as continuous-time system equation describing the tracer kinetic processes of dual tracers, and the imaging data is expressed as discrete sampling of the system states in measurement equation. The image reconstruction problem has therefore become a state estimation problem in a continuous-discrete hybrid paradigm, and H infinity filtering is adopted as the estimation strategy. As H infinity filtering makes no assumptions on the system and measurement statistics, robust reconstruction results can be obtained for the dual-tracer PET imaging system where the statistical properties of measurement data and system uncertainty are not available a priori, even when there are disturbances in the kinetic parameters. Experimental results on digital phantoms, Monte Carlo simulations and physical phantoms have demonstrated the superior performance.

  1. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  2. IMAGE Project: Results of Laboratory Tests on Tracers for Supercritical Conditions.

    Science.gov (United States)

    Brandvoll, Øyvind; Opsahl Viig, Sissel; Nardini, Isabella; Muller, Jiri

    2016-04-01

    The use of tracers is a well-established technique for monitoring dynamic behaviour of water and gas through a reservoir. In geothermal reservoirs special challenges are encountered due to high temperatures and pressures. In this work, tracer candidates for monitoring water at supercritical conditions (temperature > 374°C, pressure ca 218 bar), are tested in laboratory experiments. Testing of tracers at supercritical water conditions requires experimental set-ups which tolerate harsh conditions with respect to high temperature and pressure. In addition stringent HES (health, environment and safety) factors have to be taken into consideration when designing and performing the experiments. The setup constructed in this project consists of a pressure vessel, high pressure pump, instrumentation for pressure and temperature control and instrumentation required for accurate sampling of tracers. In order to achieve accurate results, a special focus has been paid to the development of the tracer sampling technique. Perfluorinated cyclic hydrocarbons (PFCs) have been selected as tracer candidates. This group of compounds is today commonly used as gas tracers in oil reservoirs. According to the literature they are stable at temperatures up to 400°C. To start with, five PFCs have been tested for thermal stability in static experiments at 375°C and 108 bar in the experimental setup described above. The tracer candidates will be further tested for several months at the relevant conditions. Preliminary results indicate that some of the PFC compounds show stability after three months. However, in order to arrive at conclusive results, the experiments have to be repeated over a longer period and paying special attention to more accurate sampling procedures.

  3. Tracer diffusion in ternary alloys

    International Nuclear Information System (INIS)

    Tahir-Kheli, R.A.

    1985-07-01

    An intuitive extension of the theory for diffusion in dynamic binary alloys given in the preceding paper is presented. This theory has also received an independent derivation, based on more formal procedures, by Holdsworth and Elliott. We present Monte Carlo estimates for diffusion correlation factors, fsup(A), fsup(B), and fsup(C) and compare them with the theory. The agreement between the theoretical results and the Monte Carlo estimates for the correlation factors of the slow particles, i.e., fsup(C) and fsup(B), is found to be generally good. In contrast, for the correlation factor, fsup(A), referring to the diffusion coefficient of fast particles in the system, the theoretical results are found to be systematically lower by a small but resolvable margin. It is suggested that this is occasioned by the neglect of spatial constraints on the scattering of coupled tracer-background particle field pairs. (author)

  4. Transuranic and tracer simulant resuspension

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1977-07-01

    Plutonium resuspension results are summarized for experiments conducted at Rocky Flats, onsite on the Hanford reservation, and for winds blowing from offsite onto the Hanford reservation near the Prosser barricade boundary. In each case, plutonium resuspension was shown by increased airborne plutonium concentrations as a function of either wind speed or as compared to fallout levels. All measured airborne concentrations were below maximum permissible concentrations (MPC). Both plutonium and cesium concentrations on airborne soil were normalized by the quantity of airborne soil sampled. Airborne radionuclide concentrations in μCi/g were related to published values for radionuclide concentrations on surface soils. For this ratio of radionuclide concentration per gram on airborne soil divided by that for ground surface soil, there are eight orders of magnitude uncertainty from 10 -4 to 10 4 . Horizontal plutonium fluxes on airborne nonrespirable soils at all three sites were bracketed within the same three to four orders of magnitude from 10 -7 to 10 -3 μCi/(m 2 day) for plutonium-239 and 10 -8 to 10 -5 μCi/(m 2 day) for plutonium-238. These are the entire experimental base for nonrespirable airborne plutonium transport. Airborne respirable plutonium-239 concentrations increased with wind speed for a southeast wind direction coming from offsite near the Hanford reservation Prosser barricade. Airborne plutonium fluxes on nonrespirable particles had isotopic ratios, 240 Pu/ 239+240 Pu, similar to weapons grade plutonium rather than fallout plutonium. Resuspension rates were summarized for controlled inert particle tracer simulant experiments. Wind resuspension rates for tracers increased with wind speed to about the fifth power

  5. Water Vapor Tacers as Diagnostics of the Regional Atmospheric Hydrologic Cycle

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle, especially in North America where moisture transport and local evaporation are important sources of water for precipitation. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. All evaporative sources of water are accounted for by tracers, and the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The Geostationary Operational Environmental Satellites General Circulation Model (GEOS GCM) is used to simulate several summer periods to determine the source regions of precipitation for the United States and India. Using this methodology, a detailed analysis of the recycling of water, interannual variability of the sources of water and links to the Great Plains low-level jet and North American monsoon will be presented. Potential uses in GCM sensitivity studies, predictability studies and data assimilation especially regarding the North American monsoon and GEWEX America Prediction Project (GAPP) will be discussed.

  6. [{sup 18}F]FBEM-Z{sub HER2:342}-Affibody molecule - a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kramer-Marek, Gabriela; Lee, Sang Bong; Capala, Jacek [National Institutes of Health, National Cancer Institute, Bethesda, MD (United States); Kiesewetter, Dale O.; Jagoda, Elaine [National Institutes of Health, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD (United States); Martiniova, Lucia [National Institutes of Health, National Institute of Child Health and Human Development, Bethesda, MD (United States)

    2008-05-15

    The expression of human epidermal growth factor receptor-2 (HER2) receptors in cancers is correlated with a poor prognosis. If assessed in vivo, it could be used for selection of appropriate therapy for individual patients and for monitoring of the tumor response to targeted therapies. We have radiolabeled a HER2-binding Affibody molecule with fluorine-18 for in vivo monitoring of the HER2 expression by positron emission tomography (PET). The HER2-binding Z{sub HER2:342}-Cys Affibody molecule was conjugated with N-2-(4-[{sup 18}F]fluorobenzamido)ethylmaleimide ([{sup 18}F]FBEM). The in vitro binding of the resulting radioconjugate was characterized by receptor saturation and competition assays. For in vivo studies, the radioconjugate was injected into the tail vein of mice bearing subcutaneous HER2-positive or HER2-negative tumors. Some of the mice were pre-treated with non-labeled Z{sub HER2:342}-Cys. The animals were sacrificed at different times post-injection, and the radioactivity in selected tissues was measured. PET images were obtained using an animal PET scanner. In vitro experiments indicated specific, high-affinity binding to HER2. PET imaging revealed a high accumulation of the radioactivity in the tumor as early as 20 min after injection, with a plateau being reached after 60 min. These results were confirmed by biodistribution studies demonstrating that, as early as 1 h post-injection, the tumor to blood concentration ratio was 7.5 and increased to 27 at 4 h. Pre-saturation of the receptors with unlabeled Z{sub HER2:342}-Cys lowered the accumulation of radioactivity in HER2-positive tumors to the levels observed in HER2-negative ones. Our results suggest that the [{sup 18}F]FBEM-Z{sub HER2:342} radioconjugate can be used to assess HER2 expression in vivo. (orig.)

  7. Using the tracer-dilution discharge method to develop streamflow records for ice-affected streams in Colorado

    Science.gov (United States)

    Capesius, Joseph P.; Sullivan, Joseph R.; O'Neill, Gregory B.; Williams, Cory A.

    2005-01-01

    Accurate ice-affected streamflow records are difficult to obtain for several reasons, which makes the management of instream-flow water rights in the wintertime a challenging endeavor. This report documents a method to improve ice-affected streamflow records for two gaging stations in Colorado. In January and February 2002, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, conducted an experiment using a sodium chloride tracer to measure streamflow under ice cover by the tracer-dilution discharge method. The purpose of this study was to determine the feasibility of obtaining accurate ice-affected streamflow records by using a sodium chloride tracer that was injected into the stream. The tracer was injected at two gaging stations once per day for approximately 20 minutes for 25 days. Multiple-parameter water-quality sensors at the two gaging stations monitored background and peak chloride concentrations. These data were used to determine discharge at each site. A comparison of the current-meter streamflow record to the tracer-dilution streamflow record shows different levels of accuracy and precision of the tracer-dilution streamflow record at the two sites. At the lower elevation and warmer site, Brandon Ditch near Whitewater, the tracer-dilution method overestimated flow by an average of 14 percent, but this average is strongly biased by outliers. At the higher elevation and colder site, Keystone Gulch near Dillon, the tracer-dilution method experienced problems with the tracer solution partially freezing in the injection line. The partial freezing of the tracer contributed to the tracer-dilution method underestimating flow by 52 percent at Keystone Gulch. In addition, a tracer-pump-reliability test was conducted to test how accurately the tracer pumps can discharge the tracer solution in conditions similar to those used at the gaging stations. Although the pumps were reliable and consistent throughout the 25-day study period

  8. Vapor pressure and enthalpy of vaporization of linear aliphatic alkanediamines

    International Nuclear Information System (INIS)

    Pozdeev, Vasiliy A.; Verevkin, Sergey P.

    2011-01-01

    Highlights: → We measured vapor pressure of diamines H 2 N-(CH 2 ) n -NH 2 with n = 3 to 12. → Vaporization enthalpies at 298 K were derived. → We examined consistency of new and available in the literature data. → Enthalpies of vaporization show linear dependence on numbers n. → Enthalpies of vaporization correlate linearly with Kovat's indices. - Abstract: Vapor pressures and the molar enthalpies of vaporization of the linear aliphatic alkanediamines H 2 N-(CH 2 ) n -NH 2 with n = (3 to 12) have been determined using the transpiration method. A linear correlation of enthalpies of vaporization (at T = 298.15 K) of the alkanediamines with the number n and with the Kovat's indices has been found, proving the internal consistency of the measured data.

  9. Using Tracer Technology to Characterize Contaminated Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Maresca, Joseph, W., Jr., Ph.D.; Bratton, Wesley, L., Ph.D., P.E.; Dickerson, Wilhelmina; Hales, Rochelle

    2005-12-30

    The Pipeline Characterization Using Tracers (PCUT) technique uses conservative and partitioning, reactive or other interactive tracers to remotely determine the amount of contaminant within a run of piping or ductwork. The PCUT system was motivated by a method that has been successfully used to characterize subsurface soil contaminants and is similar in operation to that of a gas chromatography column. By injecting a ?slug? of both conservative and partitioning tracers at one end (or section) of the piping and measuring the time history of the concentration of the tracers at the other end (or another section) of the pipe, the presence, location, and amount of contaminant within the pipe or duct can be determined. The tracers are transported along the pipe or duct by a gas flow field, typically air or nitrogen, which has a velocity that is slow enough so that the partitioning tracer has time to interact with the contaminant before the tracer slug completely passes over the contaminate region. PCUT not only identifies the presence of contamination, it also can locate the contamination along the pipeline and quantify the amount of residual. PCUT can be used in support of deactivation and decommissioning (D&D) of piping and ducts that may have been contaminated with hazardous chemicals such as chlorinated solvents, petroleum products, radioactive materials, or heavy metals, such as mercury.

  10. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  11. Tracers vs. trajectories in a coastal region

    Science.gov (United States)

    Engqvist, A.; Döös, K.

    2008-12-01

    Two different methods of estimating the water exchange through a Baltic coastal region have been used, consisting of particle trajectories and passive tracers. Water is traced from and to a small discharge region near the coast. The discharge material in this region is treated as zero dimensional particles or tracers with neutral buoyancy. The real discharge material could be a leakage of radio-nuclides through the sea floor from an underground repository of nuclear waste. Water exchange rates between the discharge region and the model domain are estimated using both forward and backward trajectories as well as passive tracers. The Lagrangian trajectories can account for the time evolution of the water exchange while the tracers give one average age per model grid box. Water exchange times such as residence time, age and transient times have been calculated with trajectories but only the average age (AvA) for tracers. The trajectory calculations provide a more detailed time evolution than the tracers. On the other hand the tracers are integrated "on-line" simultaneously in the sea circulation model with the same time step while the Lagrangian trajectories are integrated "off-line" from the stored model velocities with its inherent temporal resolution, presently one hour. The sub-grid turbulence is parameterised as a Laplacian diffusion for the passive tracers and with an extra stochastic velocity for trajectories. The importance of the parameterised sub-grid turbulence for the trajectories is estimated to give an extra diffusion of the same order as the Laplacian diffusion by comparing the Lagrangian dispersions with and without parameterisation. The results of the different methods are similar but depend on the chosen diffusivity coefficient with a slightly higher correlation between trajectories and tracers when integrated with a lower diffusivity coefficient.

  12. Variations in stable hydrogen and oxygen isotopes in atmospheric water vapor in the marine boundary layer across a wide latitude range.

    Science.gov (United States)

    Liu, Jingfeng; Xiao, Cunde; Ding, Minghu; Ren, Jiawen

    2014-11-01

    The newly-developed cavity ring-down laser absorption spectroscopy analyzer with special calibration protocols has enabled the direct measurement of atmospheric vapor isotopes at high spatial and temporal resolution. This paper presents real-time hydrogen and oxygen stable isotope data for atmospheric water vapor above the sea surface, over a wide range of latitudes spanning from 38°N to 69°S. Our results showed relatively higher values of δ(18)O and δ(2)H in the subtropical regions than those in the tropical and high latitude regions, and also a notable decreasing trend in the Antarctic coastal region. By combining the hydrogen and oxygen isotope data with meteoric water line and backward trajectory model analysis, we explored the kinetic fractionation caused by subsiding air masses and related saturated vapor pressure in the subtropics, and the evaporation-driven kinetic fractionation in the Antarctic region. Simultaneous observations of meteorological and marine variables were used to interpret the isotopic composition characteristics and influential factors, indicating that d-excess is negatively correlated with humidity across a wide range of latitudes and weather conditions worldwide. Coincident with previous studies, d-excess is also positively correlated with sea surface temperature and air temperature (Tair), with greater sensitivity to Tair. Thus, atmospheric vapor isotopes measured with high accuracy and good spatial-temporal resolution could act as informative tracers for exploring the water cycle at different regional scales. Such monitoring efforts should be undertaken over a longer time period and in different regions of the world. Copyright © 2014. Published by Elsevier B.V.

  13. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  14. Robot Tracer with Visual Camera

    Science.gov (United States)

    Jabbar Lubis, Abdul; Dwi Lestari, Yuyun; Dafitri, Haida; Azanuddin

    2017-12-01

    Robot is a versatile tool that can function replace human work function. The robot is a device that can be reprogrammed according to user needs. The use of wireless networks for remote monitoring needs can be utilized to build a robot that can be monitored movement and can be monitored using blueprints and he can track the path chosen robot. This process is sent using a wireless network. For visual robot using high resolution cameras to facilitate the operator to control the robot and see the surrounding circumstances.

  15. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  16. Statistically Based Morphodynamic Modeling of Tracer Slowdown

    Science.gov (United States)

    Borhani, S.; Ghasemi, A.; Hill, K. M.; Viparelli, E.

    2017-12-01

    Tracer particles are used to study bedload transport in gravel-bed rivers. One of the advantages associated with using of tracer particles is that they allow for direct measures of the entrainment rates and their size distributions. The main issue in large scale studies with tracer particles is the difference between tracer stone short term and long term behavior. This difference is due to the fact that particles undergo vertical mixing or move to less active locations such as bars or even floodplains. For these reasons the average virtual velocity of tracer particle decreases in time, i.e. the tracer slowdown. In summary, tracer slowdown can have a significant impact on the estimation of bedload transport rate or long term dispersal of contaminated sediment. The vast majority of the morphodynamic models that account for the non-uniformity of the bed material (tracer and not tracer, in this case) are based on a discrete description of the alluvial deposit. The deposit is divided in two different regions; the active layer and the substrate. The active layer is a thin layer in the topmost part of the deposit whose particles can interact with the bed material transport. The substrate is the part of the deposit below the active layer. Due to the discrete representation of the alluvial deposit, active layer models are not able to reproduce tracer slowdown. In this study we try to model the slowdown of tracer particles with the continuous Parker-Paola-Leclair morphodynamic framework. This continuous, i.e. not layer-based, framework is based on a stochastic description of the temporal variation of bed surface elevation, and of the elevation specific particle entrainment and deposition. Particle entrainment rates are computed as a function of the flow and sediment characteristics, while particle deposition is estimated with a step length formulation. Here we present one of the first implementation of the continuum framework at laboratory scale, its validation against

  17. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  18. The accurate particle tracer code

    Science.gov (United States)

    Wang, Yulei; Liu, Jian; Qin, Hong; Yu, Zhi; Yao, Yicun

    2017-11-01

    The Accurate Particle Tracer (APT) code is designed for systematic large-scale applications of geometric algorithms for particle dynamical simulations. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and nonlinear problems. To provide a flexible and convenient I/O interface, the libraries of Lua and Hdf5 are used. Following a three-step procedure, users can efficiently extend the libraries of electromagnetic configurations, external non-electromagnetic forces, particle pushers, and initialization approaches by use of the extendible module. APT has been used in simulations of key physical problems, such as runaway electrons in tokamaks and energetic particles in Van Allen belt. As an important realization, the APT-SW version has been successfully distributed on the world's fastest computer, the Sunway TaihuLight supercomputer, by supporting master-slave architecture of Sunway many-core processors. Based on large-scale simulations of a runaway beam under parameters of the ITER tokamak, it is revealed that the magnetic ripple field can disperse the pitch-angle distribution significantly and improve the confinement of energetic runaway beam on the same time.

  19. Development of Radioisotope Tracer Technology

    International Nuclear Information System (INIS)

    Jung, Sung Hee; Jin, Joon Ha; Kim, Jong Bum; Kim, Jin Seop; Kim, Jae Jo; Park, Soon Chul; Lim, Don Soon; Choi, Byung Jong; Jang, Dong Soon; Kim, Hye Sook

    2007-06-01

    The project is aimed to develop the radiotracer technology for process optimization and trouble-shooting to establish the environmental and industrial application of radiation and radioisotopes. The advanced equipment and software such as high speed data acquisition system, RTD model and high pressure injection tool have developed. Based on the various field application to the refinery/petrochemical industries, the developed technology was transfer to NDT company for commercial service. For the environmental application of radiotracer technology, injector, detector sled, core sampler, RI and GPS data logging system are developed and field tests were implemented successfully at Wolsung and Haeundae beach. Additionally tracer technology were also used for the performance test of the clarifier in a wastewater treatment plant and for the leak detection in reservoirs. From the experience of case studies on radiotracer experiment in waste water treatment facilities, 'The New Excellent Technology' is granted from the ministry of environment. For future technology, preliminary research for industrial gamma transmission and emission tomography which are new technology combined with radioisotope and image reconstruction are carried out

  20. Compartmental modeling and tracer kinetics

    CERN Document Server

    Anderson, David H

    1983-01-01

    This monograph is concerned with mathematical aspects of compartmental an­ alysis. In particular, linear models are closely analyzed since they are fully justifiable as an investigative tool in tracer experiments. The objective of the monograph is to bring the reader up to date on some of the current mathematical prob­ lems of interest in compartmental analysis. This is accomplished by reviewing mathematical developments in the literature, especially over the last 10-15 years, and by presenting some new thoughts and directions for future mathematical research. These notes started as a series of lectures that I gave while visiting with the Division of Applied ~1athematics, Brown University, 1979, and have developed in­ to this collection of articles aimed at the reader with a beginning graduate level background in mathematics. The text can be used as a self-paced reading course. With this in mind, exercises have been appropriately placed throughout the notes. As an aid in reading the material, the e~d of a ...

  1. Development of a downhole tool measuring real-time concentration of ionic tracers and pH in geothermal reservoirs

    Science.gov (United States)

    Hess, Ryan F.; Boyle, Timothy J.; Limmer, Steven; Yelton, William G.; Bingham, Samuel; Stillman, Greg; Lindblom, Scott; Cieslewski, Grzegorz

    2014-06-01

    For enhanced or Engineered Geothermal Systems (EGS) geothermal brine is pumped to the surface via the production wells, the heat extracted to turn a turbine to generate electricity, and the spent brine re-injected via injection wells back underground. If designed properly, the subsurface rock formations will lead this water back to the extraction well as heated brine. Proper monitoring of these geothermal reservoirs is essential for developing and maintaining the necessary level of productivity of the field. Chemical tracers are commonly used to characterize the fracture network and determine the connectivity between the injection and production wells. Currently, most tracer experiments involve injecting the tracer at the injection well, manually collecting liquid samples at the wellhead of the production well, and sending the samples off for laboratory analysis. While this method provides accurate tracer concentration data at very low levels of detection, it does not provide information regarding the location of the fractures which were conducting the tracer between wellbores. Sandia is developing a high-temperature electrochemical sensor capable of measuring tracer concentrations and pH downhole on a wireline tool. The goal of this effort is to collect real-time pH and ionic tracer concentration data at temperatures up to 225 °C and pressures up to 3000 psi. In this paper, a prototype electrochemical sensor and the initial data obtained will be presented detailing the measurement of iodide tracer concentrations at high temperature and pressure in a newly developed laboratory scale autoclave.

  2. Tracer surface diffusion on UO2

    International Nuclear Information System (INIS)

    Zhou, S.Y.; Olander, D.R.

    1983-06-01

    Surface diffusion on UO 2 was measured by the spreading of U-234 tracer on the surface of a duplex diffusion couple consisting of wafers of depleted and enriched UO 2 joined by a bond of uranium metal

  3. Exploring Hydrofluorocarbons as Groundwater Age Tracers (Invited)

    Science.gov (United States)

    Haase, K. B.; Busenberg, E.; Plummer, L. N.; Casile, G.; Sanford, W. E.

    2013-12-01

    Groundwater dating tracers are an essential tool for analyzing hydrologic conditions in groundwater systems. Commonly used tracers for dating post-1940's groundwater include sulfur hexafluoride (SF6), chlorofluorocarbons (CFCs), 3H-3He, and other isotopic tracers (85Kr, δ2H and δ18O isotopes, etc.). Each tracer carries a corresponding set of advantages and limitations imposed by field, analytical, and interpretive methods. Increasing the number available tracers is appealing, particularly if they possess inert chemical properties and unique temporal emission histories from other tracers. Atmospherically derived halogenated trace gases continue to hold untapped potential for new tracers, as they are generally inert and their emission histories are well documented. SF5CF3, and CFC-13 were previously shown to have application as dating tracers, though their low mixing ratios and low solubility require large amounts of water to be degassed for their quantification. Two related groups of compounds, hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) are hypothesized to be potential age tracers, having similar mixing ratios to the CFCs and relatively high solubility. However, these compounds yield gas chromatography electron capture detector (GC-ECD) responses that are 10-2 -10-5 less than CFC-12, making purge and trap or field stripping GC-ECD approaches impractical. Therefore, in order to use dissolved HCFCs and HFCs as age tracers, different approaches are needed. To solve this problem, we developed an analytical method that uses an atomic emission detector (GC-AED) in place of an ECD to detect fluorinated compounds. In contrast to the ECD, the AED is a universally sensitive, highly linear, elementally specific detector. The new GC-AED system is being used to measure chlorodifluoromethane (HCFC-22), 1,1,1,2-tetrafluoroethane (HFC-134a), and other fluorinated compounds in one liter water samples to study their potential as age dating tracers. HCFC-22 is a

  4. Bromide as chemical tracer to measure the liquid effluent flow at IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Silva, Douglas B.; Faustino, Mainara G.; Monteiro, Lucilena R.; Cotrim, Marycel E.B.; Pires, Maria Aparecida F.

    2013-01-01

    Due to recent changes in CONAMA Resolution 357, which occurred through the publication of Resolution 430, on May 13, 2011 that now set standards about the effluent release, IPEN-CNEN/SP initiated several actions to improve the Environmental Monitoring Program (PMA-Q) of stable chemical compounds. Besides various parameters (physical and chemical) established by CONAMA, the submission of an annual pollution inventory report became necessary. The liquid effluent flow measurement is required to implement this inventory. Thereby, this paper describes a study that uses bromide as a chemical tracer. This paper presents the results of 6 tracer releases in IPEN wastewater collection network between 2011 and 2012. Two tracer releases designs were performed: single pulse and continuous releases performed with 1 to 6 hours duration, done by using one single piston pump manufactured by DIONEX. After the release, one fraction of the effluent was collected every 15 minutes at IPEN effluent monitoring station. The tracer concentration in the effluent was analyzed by ion chromatography and flow was calculated considering the dilution in the system and pump flow set up for the release. The flow values were measured in 6 events were determined and evaluated as per Brazilian regulation requirements. Experimental designs to be implemented during 2013 monitoring were also discussed in this paper, contributing to legal compliance and to improve IPEN's Environmental Monitoring Program for stable chemical compounds (PMA-Q). (author)

  5. Radioisotope tracers in industrial flow studies

    International Nuclear Information System (INIS)

    Easey, J.F.

    1987-01-01

    The scope of radioisotope tracer work carried out by ANSTO has involved most sectors of Australian industry including iron and steel coal, chemical, petrochemical, natural gas, metallurgical, mineral, power generation, liquified air plant, as well as port authorities, water and sewerage instrumentalities, and environmental agencies. A major class of such studies concerns itself with flow and wear studies involving industrial equipment. Some examples are discussed which illustrate the utility of radioisotope tracer techniques in these applications

  6. Focuss algorithm application in kinetic compartment modeling for PET tracer

    International Nuclear Information System (INIS)

    Huang Xinrui; Bao Shanglian

    2004-01-01

    Molecular imaging is in the process of becoming. Its application mostly depends on the molecular discovery process of imaging probes and drugs, from the mouse to the patient, from research to clinical practice. Positron emission tomography (PET) can non-invasively monitor . pharmacokinetic and functional processes of drugs in intact organisms at tracer concentrations by kinetic modeling. It has been known that for all biological systems, linear or nonlinear, if the system is injected by a tracer in a steady state, the distribution of the tracer follows the kinetics of a linear compartmental system, which has sums of exponential solutions. Based on the general compartmental description of the tracer's fate in vivo, we presented a novel kinetic modeling approach for the quantification of in vivo tracer studies with dynamic positron emission tomography (PET), which can determine a parsimonious model consisting with the measured data. This kinetic modeling technique allows for estimation of parametric images from a voxel based analysis and requires no a priori decision about the tracer's fate in vivo, instead determining the most appropriate model from the information contained within the kinetic data. Choosing a set of exponential functions, convolved with the plasma input function, as basis functions, the time activity curve of a region or a pixel can be written as a linear combination of the basis functions with corresponding coefficients. The number of non-zero coefficients returned corresponds to the model order which is related to the number of tissue compartments. The system macro parameters are simply determined using the focal underdetermined system solver (FOCUSS) algorithm. The FOCUSS algorithm is a nonparametric algorithm for finding localized energy solutions from limited data and is a recursive linear estimation procedure. FOCUSS algorithm usually converges very fast, so demands a few iterations. The effectiveness is verified by simulation and clinical

  7. Marine chemistry and tracer applications of radiocaesium

    International Nuclear Information System (INIS)

    McKay, W.A.

    1983-03-01

    The general aims of this project were to study the marine chemistry of Windscale-derived radiocaesium and to continue previous research at Glasgow University on its tracer application in Scottish waters and sediments. It was found that a considerable percentage of sediment-associated 137 Cs (approximately 12 to 50%) may be contained by carbonate, oxide and organic coatings which appear to be relatively stable under a wide range of redox conditions. Whilst the partitioning of 137 Cs is related to the concentration of these oxides, organics and, to a much lesser extent, carbonates, their function is predominantly to prevent 137 Cs release from clay mineral exchange sites. 137 Cs activities per unit sediment weight were highest in the clay fraction with its uptake by coarse sediments appearing to be controlled by clay minerals coatings formed in the marine environment and cemented partly by oxides and organics. Though the sites sampled (Clyde Sea Area (C.S.A.) and L. Etive) encompassed a wide range of sediment types, the range of estimated 137 Cs distribution coefficients (K D ) was relatively small (360 to 890). Coatings may thus have more influence on K d s in the coastal marine environment than particle size distributions. Apparent concentration factors (C F s) of X325, X2800 and X1910 were determined for the associated carbonate, oxide and organic coatings, for a site off Greenock. Use of 'dry' sediments appeared to produce considerably overestimated values for the degree of 137 Cs fixation. Thus 'wet' sediments were used in these studies. Over the 1978-1981 period, approximately 35% of Windscale output passed through the C.S.A., diluted 26 times during transit. An estimated 0.3% of this water-borne inventory was removed into the sediments. Windscale to C.S.A. transit and residence times of 4 and 12 months respectively were derived. Monitoring the deeper levels of L. Etive allowed 137 Cs to be used to trace patterns of w

  8. Improving Marine Ecosystem Models with Biochemical Tracers

    Science.gov (United States)

    Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.

    2018-01-01

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  9. EGS in sedimentary basins: sensitivity of early-flowback tracer signals to induced-fracture parameters

    Science.gov (United States)

    Karmakar, Shyamal; Ghergut, Julia; Sauter, Martin

    2015-04-01

    Artificial-fracture design, and fracture characterization during or following stimulation treatment is a central aspect of many EGS ('enhanced' or 'engineered' geothermal system) projects. During the creation or stimulation of an EGS, the injection of fluids, followed by flowback and production stages offers the opportunity for conducting various tracer tests in a single-well (SW) configuration, and given the typical operational and time limitations associated with such tests, along with the need to assess treatment success in real time, investigators mostly favour using short-time tracer-test data, rather than awaiting long-term 'tailings' of tracer signals. Late-time tracer signals from SW injection-flowback and production tests have mainly been used for the purpose of multiple-fracture inflow profiling in multi-layer reservoirs [1]. However, the potential of using SW short-term tracer signals for fracture characterization [2, 3] remained little explored as yet. Dealing with short-term flowback signals, we face a certain degree of parameter interplay, leading to ambiguity in fracture parameter inversion from the measured signal of a single tracer. This ambiguity can, to a certain extent, be overcome by - combining different sources of information (lithostratigraphy, and hydraulic monitoring) in order to constrain the variation range of hydrogeologic parameters (matrix and fracture permeability and porosity, fracture size), - using different types of tracers, such as conservative tracer pairs with contrasting diffusivity, or tracers pairs with contrasting sorptivity onto target surfaces. Fracture height is likely to be constrained by lithostratigraphy, while fracture length is supposed to be determinable from hydraulic monitoring (pressure recordings); the flowback rate can be assumed as a known (measurable) quantity during individual-fracture flowback. This leaves us with one or two unknown parameters to be determined from tracer signals: - the transport

  10. Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing

    Science.gov (United States)

    Potyrailo, Radislav; Naik, Rajesh R.

    2013-07-01

    At present, monitoring of air at the workplace, in urban environments, and on battlefields; exhaled air from medical patients; air in packaged food containers; and so forth can be accomplished with different types of analytical instruments. Vapor sensors have their niche in these measurements when an unobtrusive, low-power, and cost-sensitive technical solution is required. Unfortunately, existing vapor sensors often degrade their vapor-quantitation accuracy in the presence of high levels of interferences and cannot quantitate several components in complex gas mixtures. Thus, new sensing approaches with improved sensor selectivity are required. This technological task can be accomplished by the careful design of sensing materials with new performance properties and by coupling these materials with the suitable physical transducers. This review is focused on the assessment of the capabilities of bionanomaterials and bioinspired nanostructures for selective vapor sensing. We demonstrate that these sensing materials can operate with diverse transducers based on electrical, mechanical, and optical readout principles and can provide vapor-response selectivity previously unattainable by using other sensing materials. This ability for selective vapor sensing provides opportunities to significantly impact the major directions in development and application scenarios of vapor sensors.

  11. Tracer experiment by using radioisotope in surface water environment

    International Nuclear Information System (INIS)

    Suh, K.S.; Kim, K.C.; Chun, I.Y.; Jung, S.H.; Lee, C.W.

    2007-01-01

    Complete text of publication follows. 1. Objective An expansion of industrial activities and urbanization result in still increasing amount of pollutants discharged into surface water. Discharged pollutants in surface water have harmful effects on the ecology of a river system and human beings. Pollutants discharged into surface water is transported and dispersed under conditions characteristic to particular natural water receiver. Radiotracer method is a useful tool for monitoring the pollutant dispersion and description of mixing process taking place in natural streams. A tracer experiment using radioisotope was carried out to investigate the characteristics of a pollutant transport and a determination of the diffusion coefficients in a river system. 2. Methods The upper area of the Keum river was selected for the tracer experiment, which is located in a mid west of Korea. The measurements of the velocity and bathymetry before a tracer experiment were performed to select the sampling lines for a detection of the radioisotope. The radioisotope was instantaneously injected into a flow as a point source by an underwater glass-vial crusher. The detection was made with 60 2inch NaI(Tl) scintillation detectors at 3 transverse lines at a downstream position. The multi-channel data acquisition systems were used to collect and process the signals transmitted from the detectors. Two-dimensional numerical models were used to simulate the hydraulic parameters and the concentration distributions of the radioisotope injected into the river. 3. Results and Conclusion The calculated results such as velocity and concentrations were compared with the measured ones. The dispersion characteristics of the radioisotope were analyzed according to a variation of the flow rate, water level and diffusion coefficients. Also, the diffusion coefficients were calculated by using the measured concentrations and the coefficients obtained from the field experiment were compared with the ones

  12. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  13. Nuclear system vaporization

    International Nuclear Information System (INIS)

    Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Nakagawa, T.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    A particular case of the hot nuclei de-excitation is the total nuclear dislocation into light particles (n, p, d, t, 3 He and α). Such events were first observed at bombarding energies lower than 100 MeV/nucleon due to high detection performances of the INDRA multidetector. The light system Ar + Ni was studied at several bombarding energies ranging from 32 to 95 MeV/nucleon. The events associated to a total vaporization of the system occur above the energy threshold of ∼ 50 MeV/nucleon. A study of the form of these events shows that we have essentially two sources. The excitation energy of these sources may be determined by means of the kinematic properties of their de-excitation products. A preliminary study results in excitation energy values of the order 10 - 14 MeV/nucleon. The theoretical calculation based on a statistical model modified to take into account high excitation energies and excited levels in the lightest nuclei predicts that the vaporization of the two partner nuclei in the Ar + Ni system takes place when the excitation energy exceeds 12 MeV/nucleon what is qualitatively in agreement with the values deduced from calorimetric analysis

  14. Evaluation of single- and dual-porosity models for reproducing the release of external and internal tracers from heterogeneous waste-rock piles.

    Science.gov (United States)

    Blackmore, S; Pedretti, D; Mayer, K U; Smith, L; Beckie, R D

    2018-05-30

    Accurate predictions of solute release from waste-rock piles (WRPs) are paramount for decision making in mining-related environmental processes. Tracers provide information that can be used to estimate effective transport parameters and understand mechanisms controlling the hydraulic and geochemical behavior of WRPs. It is shown that internal tracers (i.e. initially present) together with external (i.e. applied) tracers provide complementary and quantitative information to identify transport mechanisms. The analysis focuses on two experimental WRPs, Piles 4 and Pile 5 at the Antamina Mine site (Peru), where both an internal chloride tracer and externally applied bromide tracer were monitored in discharge over three years. The results suggest that external tracers provide insight into transport associated with relatively fast flow regions that are activated during higher-rate recharge events. In contrast, internal tracers provide insight into mechanisms controlling solutes release from lower-permeability zones within the piles. Rate-limited diffusive processes, which can be mimicked by nonlocal mass-transfer models, affect both internal and external tracers. The sensitivity of the mass-transfer parameters to heterogeneity is higher for external tracers than for internal tracers, as indicated by the different mean residence times characterizing the flow paths associated with each tracer. The joint use of internal and external tracers provides a more comprehensive understanding of the transport mechanisms in WRPs. In particular, the tracer tests support the notion that a multi-porosity conceptualization of WRPs is more adequate for capturing key mechanisms than a dual-porosity conceptualization. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Radioactive tracer technique in process optimization: applications in the chemical industry

    International Nuclear Information System (INIS)

    Charlton, J.S.

    1989-01-01

    Process optimization is concerned with the selection of the most appropriate technological design of the process and with controlling its operation to obtain maximum benefit. The role of radioactive tracers in process optimization is discussed and the various circumstances under which such techniques may be beneficially applied are identified. Case studies are presented which illustrate how radioisotopes may be used to monitor plant performance under dynamic conditions to improve production efficiency and to investigate the cause of production limitations. In addition, the use of sealed sources to provide information complementary to the tracer study is described. (author)

  16. Space-Time Variations in Water Vapor as Observed by the UARS Microwave Limb Sounder

    Science.gov (United States)

    Elson, Lee S.; Read, William G.; Waters, Joe W.; Mote, Philip W.; Kinnersley, Jonathan S.; Harwood, Robert S.

    1996-01-01

    Water vapor in the upper troposphere has a significant impact on the climate system. Difficulties in making accurate global measurements have led to uncertainty in understanding water vapor's coupling to the hydrologic cycle in the lower troposphere and its role in radiative energy balance. The Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite is able to retrieve water vapor concentration in the upper troposphere with good sensitivity and nearly global coverage. An analysis of these preliminary retrievals based on 3 years of observations shows the water vapor distribution to be similar to that measured by other techniques and to model results. The primary MLS water vapor measurements were made in the stratosphere, where this species acts as a conserved tracer under certain conditions. As is the case for the upper troposphere, most of the stratospheric discussion focuses on the time evolution of the zonal mean and zonally varying water vapor. Stratospheric results span a 19-month period and tropospheric results a 36-month period, both beginning in October of 1991. Comparisons with stratospheric model calculations show general agreement, with some differences in the amplitude and phase of long-term variations. At certain times and places, the evolution of water vapor distributions in the lower stratosphere suggests the presence of meridional transport.

  17. Proceedings of Tracer 3. International Conference on Tracers and Tracing Methods

    International Nuclear Information System (INIS)

    2004-01-01

    Tracer 3 conference is a continuation of former Tracer 1 (1998) and Tracer 2 (2001) conferences organized by CNRS - Nancy France. The objective of this 3rd conference is presentation of different aspects of tracer method applications and development of tracer methodology.The new field of activity presented at the Conference was application of stable isotopes as natural tracers for investigations of environmental processes. The conference gave the possibility for scientific information exchange between specialists from different fields of activity such as chemical engineering, chemistry, bioengineering, environmental engineering, hydrology, civil engineering, metallurgy, etc. The presentations were divided into groups covering the principal items of Conference. Section A. Fundamental development - RTD and tracer methodology, - RTD methodology and Computational Fluid Dynamics (CFD), - New tracers and detectors. Section B. Industrial applications - Environment, - Geology, hydrogeology and oil field applications, - Civil engineering, mineral engineering and metallurgy applications, - Food engineering and bioengineering, - Material engineering, - Chemical engineering. During the Conference INIS promotion materials were exposed by INIS liaison officer for Poland

  18. Proceedings of Tracer 3. International Conference on Tracers and Tracing Methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Tracer 3 conference is a continuation of former Tracer 1 (1998) and Tracer 2 (2001) conferences organized by CNRS - Nancy France. The objective of this 3rd conference is presentation of different aspects of tracer method applications and development of tracer methodology.The new field of activity presented at the Conference was application of stable isotopes as natural tracers for investigations of environmental processes. The conference gave the possibility for scientific information exchange between specialists from different fields of activity such as chemical engineering, chemistry, bioengineering, environmental engineering, hydrology, civil engineering, metallurgy, etc. The presentations were divided into groups covering the principal items of Conference. Section A. Fundamental development - RTD and tracer methodology, - RTD methodology and Computational Fluid Dynamics (CFD), - New tracers and detectors. Section B. Industrial applications - Environment, - Geology, hydrogeology and oil field applications, - Civil engineering, mineral engineering and metallurgy applications, - Food engineering and bioengineering, - Material engineering, - Chemical engineering. During the Conference INIS promotion materials were exposed by INIS liaison officer for Poland.

  19. Long residence times - bad tracer tests?

    Science.gov (United States)

    Ghergut, Julia; Behrens, Horst; Sauter, Martin

    2015-04-01

    Tracer tests conducted at geothermal well doublets or triplets in the Upper Rhine Rift Valley [1] all face, with very few exceptions so far, one common issue: lack of conclusive tracer test results, or tracer signals still undetectable for longer than one or two years after tracer injection. While the reasons for this surely differ from site to site (Riehen, Landau, Insheim, Bruchsal, ...), its effects on how the usefulness of tracer tests is perceived by the non-tracer community are pretty much the same. The 'poor-signal' frustration keeps nourishing two major 'alternative' endeavours : (I) design and execute tracer tests in single-well injection-withdrawal (push-pull), 'instead of' inter-well flow-path tracing configurations; (II) use 'novel' tracer substances instead of the 'old' ones which have 'obviously failed'. Frustration experienced with most inter-well tracer tests in the Upper Rhine Rift Valley has also made them be regarded as 'maybe useful for EGS' ('enhanced', or 'engineered' geothermal systems, whose fluid RTD typically include a major share of values below one year), but 'no longer worthwhile a follow-up sampling' in natural, large-scale hydrothermal reservoirs. We illustrate some of these arguments with the ongoing Bruchsal case [2]. The inter-well tracer test conducted at Bruchsal was (and still is!) aimed at assessing inter-well connectivity, fluid residence times, and characterizing the reservoir structure [3]. Fluid samples taken at the geothermal production well after reaching a fluid turnover of about 700,000 m3 showed tracer concentrations in the range of 10-8 Minj per m3, in the liquid phase of each sample (Minj being the total quantity of tracer injected as a short pulse at the geothermal re-injection well). Tracer signals might actually be higher, owing to tracer amounts co-precipitated and/or adsorbed onto the solid phase whose accumulation in the samples was unavoidable (due to pressure relief and degassing during the very sampling

  20. Physical and mathematical modeling of diesel fuel liquid and vapor movement in porous media

    International Nuclear Information System (INIS)

    Johnson, T.E.; Kreamer, D.K.

    1994-01-01

    Two-dimensional physical modeling of diesel fuel leaks was conducted in sand tanks to determine liquid and vapor migration characteristics. Mathematical modeling provided estimation of vapor concentrations at discrete times and distances from the vapor source and was compared to the physical experiment. The mathematical gaseous diffusion model was analogous to the Theis equation for ground-water flow, accounted for sorptive effects of the media, and was calibrated using measured concentrations from the sand tank. Mathematically different positions of the vapor source were tested to better relate observed liquid flow rates and media configuration to gaseous concentrations. The calculated diffusion parameters were then used to estimate theoretical, three-dimensional vapor transport from a hypothetical liquid leak of 2.0 1/hr for 30 days. The associated three-dimensional vapor plume, which would be reasonably detectable by commercially available vadose zone monitors, was estimated to have a diameter of 8 m with a vapor concentration of 50 ppm at the outside edge of the vapor plume. A careful application of the method and values can be used to give a first approximation to the number of vapor monitors required at a field site as well as the optimal locations for the monitors

  1. TRACER - TRACING AND CONTROL OF ENGINEERING REQUIREMENTS

    Science.gov (United States)

    Turner, P. R.

    1994-01-01

    TRACER (Tracing and Control of Engineering Requirements) is a database/word processing system created to document and maintain the order of both requirements and descriptive material associated with an engineering project. A set of hierarchical documents are normally generated for a project whereby the requirements of the higher level documents levy requirements on the same level or lower level documents. Traditionally, the requirements are handled almost entirely by manual paper methods. The problem with a typical paper system, however, is that requirements written and changed continuously in different areas lead to misunderstandings and noncompliance. The purpose of TRACER is to automate the capture, tracing, reviewing, and managing of requirements for an engineering project. The engineering project still requires communications, negotiations, interactions, and iterations among people and organizations, but TRACER promotes succinct and precise identification and treatment of real requirements separate from the descriptive prose in a document. TRACER permits the documentation of an engineering project's requirements and progress in a logical, controllable, traceable manner. TRACER's attributes include the presentation of current requirements and status from any linked computer terminal and the ability to differentiate headers and descriptive material from the requirements. Related requirements can be linked and traced. The program also enables portions of documents to be printed, individual approval and release of requirements, and the tracing of requirements down into the equipment specification. Requirement "links" can be made "pending" and invisible to others until the pending link is made "binding". Individuals affected by linked requirements can be notified of significant changes with acknowledgement of the changes required. An unlimited number of documents can be created for a project and an ASCII import feature permits existing documents to be incorporated

  2. Summary of a Gas Transport Tracer Test in the Deep Cerros Del Rio Basalts, Mesita del Buey, Los Alamos NM.

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rahn, Thomas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ortiz, John Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Salazar, Larry Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Snyder, Emily Elisabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-16

    Here we describe results from a tracer test in the Cerros del Rio basalt beneath Mesita del Buey, Technical Area 54 (TA-54) at Los Alamos National Laboratory (LANL or the Laboratory). This report follows from plans outlined in our previous Tracer Test Work Plan (LANL 2016). These activities were conducted by LANL to further characterize subsurface properties of the Cerros del Rio basalts at Material Disposal Area (MDA) L (Figure 1.1-1). The work presented follows from the “Interim Measures Work Plan for Soil-Vapor Extraction of Volatile Organic Compounds from Material Disposal Area L, Technical Area 54, Revision 1,” submitted to the New Mexico Environment Department (NMED) in September 2014 (LANL 2014). Remediation of the MDA L vapor plume by soil-vapor extraction (SVE) is recommended as part of the final remedy in the “Corrective Measures Evaluation Report for Material Disposal Area L, Solid Waste Management Unit 54-006, at Technical Area 54, Revision 2” to meet a remedial action objective of preventing groundwater from being impacted above a regulatory standard by the transport of volatile organic compounds (VOCs) to groundwater through soil vapor (LANL 2011).

  3. Tracers of air-sea gas exchange

    International Nuclear Information System (INIS)

    Liss, P.S.

    1988-01-01

    The flux of gas across the air-sea interface is determined by the product of the interfacial concentration difference driving the exchange and a rate constant, often termed the transfer velocity. The concentration-difference term is generally obtained by direct measurement, whereas more indirect approaches are required to estimate the transfer velocity and its variation as a function of controlling parameters such as wind and sea state. Radioactive tracers have proved particularly useful in the estimation of air-sea transfer velocities and, recently, stable purposeful tracers have also started to be used. In this paper the use of the following tracers to determine transfer velocities at the sea surface is discussed: natural and bomb-produced 14 C, dissolved oxygen, 222 Rn and sulphur hexafluoride. Other topics covered include the relation between transfer velocity and wind speed as deduced from tracer and wind-tunnel studies, and the discrepancy between transfer velocities determined by using tracers and from eddy correlation measurements in the atmosphere. (author)

  4. Vapor-Driven Propulsion of Catalytic Micromotors

    Science.gov (United States)

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-08-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors.

  5. Chemical vapor composites (CVC)

    International Nuclear Information System (INIS)

    Reagan, P.

    1993-01-01

    The Chemical Vapor Composite, CVC trademark , process fabricates composite material by simply mixing particles (powders and or fibers) with CVD reactants which are transported and co-deposited on a hot substrate. A key feature of the CVC process is the control provided by varing the density, geometry (aspect ratio) and composition of the entrained particles in the matrix material, during deposition. The process can fabricate composite components to net shape (± 0.013 mm) on a machined substrate in a single step. The microstructure of the deposit is described and several examples of different types of particles in the matrix are illustrated. Mechanical properties of SiC composite material fabricated with SiC powder and fiber will be presented. Several examples of low cost ceramic composite products will be shown. (orig.)

  6. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  7. A 82Br tracer study of coastal groundwater movement at Hat Head, NSW

    International Nuclear Information System (INIS)

    Hughes, C.; Stone, D.

    2003-01-01

    At Hat Head, NSW, on the eastern Australian coast, a radioisotope tracer study of groundwater flow in response to tidal forcing was conducted adjacent to a tidal creek. Using radiotracer, 82 Br, groundwater movement was tracked in-situ over 5 days on two occasions encompassing both neap and spring tide conditions. The tracer was injected into one borehole and gamma counts monitored from an adjacent borehole using NaI(Th) detectors. This technique maps the path of the slow moving tracer without sampling and allows the net groundwater movement to be distinguished from short term tidally driven fluxes. During the neap tide period net groundwater movement of 0.1 m/d was observed with horizontal tidal fluctuations in the order of 0.04 m. This contrasts with the tidally dominated spring tide period where net groundwater movement was negligible but tidally driven fluctuations of up to 0.13 m were observed

  8. Heat tracer test in an alluvial aquifer: Field experiment and inverse modelling

    Science.gov (United States)

    Klepikova, Maria; Wildemeersch, Samuel; Hermans, Thomas; Jamin, Pierre; Orban, Philippe; Nguyen, Frédéric; Brouyère, Serge; Dassargues, Alain

    2016-09-01

    Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in an injection well and monitoring the evolution of groundwater temperature and tracer concentration in the pumping well and in measurement intervals. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells closely spaced along three transects were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume is explained by the groundwater flow gradient on the site and heterogeneities in the hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with a pilot point approach for inversion of the hydraulic conductivity field, the main preferential flow paths were delineated. The successful application of a field heat tracer test at this site suggests that heat tracer tests is a promising approach to image hydraulic conductivity field. This methodology could be applied in aquifer thermal energy storage (ATES) projects for assessing future efficiency that is strongly linked to the hydraulic conductivity variability in the considered aquifer.

  9. Keeping the secret: Insights from repeated catchment-scale tracer experiments under transient conditions

    Science.gov (United States)

    Bogner, Christina; Hauhs, Michael; Lange, Holger

    2016-04-01

    Catchment-level tracer experiments are generally performed to identify site-specific hydrological response functions of the catchment. The existence and uniqueness of these response functions are hardly ever questioned. Here, we report on a series of replicated tracer experiments in two small first-order catchments, G1 (0.6 ha, roofed) and F4 (2.3 ha, without roof) at Gårdsjön in SW Sweden. The soils in both catchments are shallow (500 m2) the experiments were done without a roof mostly at transient conditions. The catchment F4 was equipped with a sprinkler system with a watering capacity of around 38-45 m3 day-1. Natural rainfall comes in addition. A bromide tracer solution was injected to groundwater at a single location about 40 m upstream the weir over a period of less than an hour, and was monitored using a set of groundwater tubes and the weir at the outlet over the following 4 days. In addition, discharge was measured. The experiments were repeated each summer from 2007 to 2015. While steady state conditions were guaranteed in G1, steady runoff has been achieved only four times in F4. We investigated tracer recovery rates against cumulated runoff since tracer application. Substantially different transit times and qualitatively different behaviour of the breakthrough curves were observed, even under steady state conditions. In G1, no single system response function could be identified in 5 replicates. Similarly, the catchment response functions in F4 under steady state differed between experiments. However, they remained in a similar range as in G1. Based on these results, we question the identifiability of flow paths and system properties, such as saturated water content or hydrologic transmissivity, at the catchment scale using tracer experiments. Rather, the series demonstrate the utter importance of the initial and boundary conditions which largely determine the response of the system to inert tracer pulses.

  10. Optical acetone vapor sensors based on chiral nematic liquid crystals and reactive chiral dopants

    NARCIS (Netherlands)

    Cachelin, P.; Green, J.P.; Peijs, T.; Heeney, M.; Bastiaansen, C.W.M.

    2016-01-01

    Accurate monitoring of exposure to organic vapors, such as acetone, is an important part of maintaining a safe working environment and adhering to long- and short-term exposure limits. Here, a novel acetone vapor detection system is described based on the use of a reactive chiral dopant in a nematic

  11. Vapor-droplet flow equations

    International Nuclear Information System (INIS)

    Crowe, C.T.

    1975-01-01

    General features of a vapor-droplet flow are discussed and the equations expressing the conservation of mass, momentum, and energy for the vapor, liquid, and mixture using the control volume approach are derived. The phenomenological laws describing the exchange of mass, momentum, and energy between phases are also reviewed. The results have application to development of water-dominated geothermal resources

  12. Coefficients of tracer transfer through membranes. Pt. 7

    Energy Technology Data Exchange (ETDEWEB)

    Dorabialska, A; Hawlicka, E; Plonka, A [Politechnika Lodzka (Poland)

    1974-01-01

    The doubled value of the tracer transfer coefficient in the self-diffusion process is equal to the sum of tracer transfer coefficients in the diffusion and interfusion processes. The fundamental phenomenological relation can be deduced for the coefficients of tracer transfer between two phases of electrolyte solutions spearated by a virtual boundary. Indeed, the doubled value of the tracer mobility in the self-diffusion experiment (no concentration gradient of the traced substance) is equal to the sum of the tracer mobilities in the diffusion (tracer movement along with the concentration gradient of the traced substance) and interfusion experiments (tracer movement against the concentration gradient of the traced substance). Thus the doubled value of the tracer transfer coefficient in the self-diffusion process should be equal to the sum of tracer transfer coefficients in the diffusion and interfusion processes. The experimental verification of that fundamental relation is presented.

  13. Description and results of tracer tests conducted for a deep fracture zone within granitic rock at the Leuggern borehole

    International Nuclear Information System (INIS)

    Spane, F.A. jr.

    1990-09-01

    A tracer test program was planned at the Leuggern borehole, to provide hydrogeologic information concerning the fracture zone(s) intersected within the depth interval 1,634.9 - 1,688.9 m. The original design of the tracer-dilution test was to: establish a uniform tracer concentration within the test system, and then monitor (at ground surface) the decline of tracer concentration within the circulated test system fluid. Analysis of the tracer concentration decline pattern was expected to provide an estimate of the natural lateral flux and lateral hydraulic gradient for the isolated test interval. A later pump-back test was also designed to recover tracer that had been 'flushed' into the test section, during the previous closed-circulation period. Analysis of the tracer recovery pattern was expected to provide an estimate of the dispersivity within the intersected fracture system. Results obtained from 'arrival-time' information during the Eosin and Naphtionat injection/recovery phases indicate a downward vertical flow of approximately 195-225 ml/min in the isolated interval, from an analysis of the dilution levels of Uranin and Eosin during the injection/recovery periods, and review of field data, the top of the upper inflow zone was determined to be approximately 13 m below the top flow line and the bottom of the outflow zone to be approximately 3 to 5 meters above the bottom flow line. (author) 30 figs., tabs., 42 refs

  14. Simulation and interpretation of inter-well tracer tests

    Directory of Open Access Journals (Sweden)

    Dugstad Øyvind

    2013-05-01

    Full Text Available In inter-well tracer tests (IWTT, chemical compounds or radioactive isotopes are used to label injection water and gas to establish well connections and fluid patterns in petroleum reservoirs. Tracer simulation is an invaluable tool to ease the interpretation of IWTT results and is also required for assisted history matching application of tracer data. In this paper we present a new simulation technique to analyse and interpret tracer results. Laboratory results are used to establish and test formulations of the tracer conservation equations, and the technique is used to provide simulated tracer responses that are compared with observed tracer data from an extensive tracer program. The implemented tracer simulation methodology use a fast post-processing of previously simulated reservoir simulation runs. This provides a fast, flexible and powerful method for analysing gas tracer behaviour in reservoirs. We show that simulation time for tracers can be reduced by factor 100 compared to solving the tracer flow equations simultaneously with the reservoir fluid flow equations. The post-processing technique, combined with a flexible built-in local tracer-grid refinement is exploited to reduce numerical smearing, particularly severe for narrow tracer pulses.

  15. Double tracer experiments to evaluate atmospheric transport and dose models

    International Nuclear Information System (INIS)

    Nielsen, S.P.; Gryning, S.-E.; Thykier-Nielsen, S.; Karlberg, O.; Lyck, E.

    1986-05-01

    Two tracers, sulphurhexafluoride (SF 6 ) and radioactive noble gases, were released simultaneously from a 110-m stack and detected downwind at distances of 3-4 km. The experiments were made at the Swedish nuclear power plant Ringhals in 1981. The radioactive tracer was routine emissions from unit 1 (BWR). The one-hour measurements yielded crosswind profiles at ground level of SF 6 -concentrations and of gamma radiation from the plume. The measured profiles were compared to profiles calculated with computer models. The comparison showed that the models sometimes underestimate and sometimes overestimate the results, which seems to indicate that the models within their limited accuracy yield unbiased results. The ratios between measured and calculated values range from 0.2 to 3. The measurements revealed a surplus of gamma radiations from the noble gas daughters compared to those from the gases. This was interpreted as due to ground desposition and the estimated deposition velocities range from 2 to 10 cm/s. The meteorological conditions were monitored from a 100-m meteorological tower and from an 11-m mast. Measurements were made of wind speed, wind direction, and temperatures at different heights, and during each experiment a mini-radiosonde was released giving information on a possible inversion layer. The SF 6 -tracer was injected to the stack prior to the experiments. Air-samples were collected downwind in plastic bags by radio-controlled sampling units. The SF 6 -concentrations in the bags were determined with gas chromatography. Measurements of the gamma radiation from the plume were made with ionisation chambers and GM-counters. Furthermore, a few mobile gamma spectrometers were available giving information on the unscattered gamma radiation, thereby permitting identification of the radioactive isotopes. The work was partly financed by the Nuclear Safety Board of the Swedish Utilities and by the Danish association of utilities in Jutland and on Funen, Elsam

  16. Enhanced Oil Recovery: Aqueous Flow Tracer Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Rovani; John Schabron

    2009-02-01

    A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

  17. Biological tracer for waste site characterization

    International Nuclear Information System (INIS)

    Strong-Gunderson, J.

    1995-01-01

    Remediating hazardous waste sites requires detailed site characterization. In groundwater remediation, characterizing the flow paths and velocity is a major objective. Various tracers have been used for measuring groundwater velocity and transport of contaminants, colloidal particles, and bacteria and nutrients. The conventional techniques use dissolved solutes, dyes. and gases to estimate subsurface transport pathways. These tracers can provide information on transport and diffusion into the matrix, but their estimates for groundwater flow through fractured regions are very conservative. Also, they do not have the same transport characteristics as bacteria and suspended colloid tracers, both of which must be characterized for effective in-place remediation. Bioremediation requires understanding bacterial transport and nutrient distribution throughout the acquifer, knowledge of contaminants s mobile colloidal particles is just essential

  18. Use of radioactive tracers in dynamic sedimentology

    International Nuclear Information System (INIS)

    Tola, Francois.

    1982-01-01

    In the first part, developments in the use of radioactive tracers in sedimentology are recalled together with the corresponding fields of application and the identities of the main users. The state-of-the-art in France is also discussed; The main characteristics of the method are then described and compared with those of more classical methods. The results that can be obtained with tracer methods are then outlined. The criteria employed to establish the granulometry characteristics of the tracer, the particular radioisotope to be used, and the masses and activities involved, are treated. A list is then given of the main isotopes available in France and their characteristics. The various different labelling techniques employed are studied together with their respective advantages and disadvantages. The special case of pelitic sediments is mentioned. The use of reduced model isotope generators, double labelling and applications to studies of the mud plug in the Gironde Estuary are also discussed. The methods and materials used for injecting and detecting tracers are described, emphasis being given to the economic factors associated with the use of radioactive tracers in sedimentology. The second part of the report contains two chapters: - studies of transport by driftage: presentation and analysis of results and the application of the Count Rate Balance method to obtain quantitative information on transport; - studies of in-suspension transport of fine sediments in the sea: the procedures adopted from the moment when the tracer is introduced up to the time when the results are analyzed and interpreted, enables the trajectories and mean velocities of the transported sediments to be determined together with their degree of dilution and their settling speeds and rates; it is also possible to investigate the evolution and horizontal dispersion of the sediments in this way. Results from recent experiments are presented in both parts of the report

  19. Tracer applications in oil reservoirs in Brazil

    International Nuclear Information System (INIS)

    Moreira, R.M.; Ferreira Pinto, A.M.

    2004-01-01

    Radiotracer applications in oil reservoirs in Brazil started in 1997 at the request of the State Oil Company (Petrobras) at the Carmoplois oilfield. 1 Ci of HTO was injected in a regular five-spot plot and the results obtained were quite satisfactory. Shortly after this test one other request asked for distinguishing the contribution of different injection wells to a production well. It was then realized that other tracers should be available. As a first choice 35 SCN - has been selected since it could be produced at CDTN. An alternative synthesis path was defined which shortened post-irradiation manipulations. The tracer was tested in core samples and a field injection, simultaneously with HTO, was carried out at the Buracica field; again the HTO performed well but 35 SCN - showed up well ahead. Presently the HTO applications are being done on a routine basis. All in all, four tests were performed (some are still ongoing), and the detection limits for both 3 H and 35 S were optimized by refining the sample preparation stage. Lanthanide complexes used as activable tracers are also an appealing option, however core tests performed so far with La-, Ce- and Eu-EDTA indicated some delay of the tracer, so other complexants such as DOTA are to be tried in further laboratory tests and in a field application. Thus, a deeper understanding of their complexation chemistry and carefully conducted tests must be performed before lanthanide complexes can be qualified as reliable oil reservoir tracers. More recently, Petrobras has been asking for partitioning tracers intended for SOR measurement

  20. Vapor pressure and enthalpy of vaporization of aliphatic propanediamines

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Chernyak, Yury

    2012-01-01

    Highlights: ► We measured vapor pressure of four aliphatic 1,3-diamines. ► Vaporization enthalpies at 298 K were derived. ► We examined consistency of new and available data in the literature. ► A group-contribution method for prediction was developed. - Abstract: Vapor pressures of four aliphatic propanediamines including N-methyl-1,3-propanediamine (MPDA), N,N-dimethyl-1,3-propanediamine (DMPDA), N,N-diethyl-1,3-propanediamine (DEPDA) and N,N,N′,N′-tetramethyl-1,3-propanediamine (4MPDA) were measured using the transpiration method. The vapor pressures developed in this work and reported in the literature were used to derive molar enthalpy of vaporization values at the reference temperature 298.15 K. An internal consistency check of the enthalpy of vaporization was performed for the aliphatic propanediamines studied in this work. A group-contribution method was developed for the validation and prediction vaporization enthalpies of amines and diamines.

  1. DETERMINING HOW VAPOR PHASE MTBE REACHES GROUND WATER

    Science.gov (United States)

    EPA Region 2 and ORD have funded a RARE project for FY 2005/2006 to evaluate the prospects that MTBE (and other fuel components) in vapors that escape from an underground storage tank (UST) can find its way to ground water produced by monitoring wells at a gasoline filling statio...

  2. A Citizen's Guide to Vapor Intrusion Mitigation

    Science.gov (United States)

    This guide describes how vapor intrusion is the movement of chemical vapors from contaminated soil and groundwater into nearby buildings.Vapors primarily enter through openings in the building foundation or basement walls.

  3. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  4. Geologic flow characterization using tracer techniques

    International Nuclear Information System (INIS)

    Klett, R.D.; Tyner, C.E.; Hertel, E.S. Jr.

    1981-04-01

    A new tracer flow-test system has been developed for in situ characterization of geologic formations. This report describes two sets of test equipment: one portable and one for testing in deep formations. Equations are derived for in situ detector calibration, raw data reduction, and flow logging. Data analysis techniques are presented for computing porosity and permeability in unconfined isotropic media, and porosity, permeability and fracture characteristics in media with confined or unconfined two-dimensional flow. The effects of tracer pulse spreading due to divergence, dispersion, and porous formations are also included

  5. Selection of tracers for oil and gas evaluation

    International Nuclear Information System (INIS)

    Bjoernstad, T.

    1991-08-01

    The importance of tracer tests in reservoir descriptions is increasingly acknowledged by reservoir engineers as a method to obtain valuable dynamic information from the reservoir. The report describes the ''state-of-the art'' on tracer technology for interwell investigations. Experiences gained from a number of reported field tracer tests are reviewed, and results from detailed laboratory investigations on the static and dynamic behavior of various tracer molecules are discussed. A critical evaluation of the applicability of the various identified tracers is provided. Present and future trends in the development of tracer technology for reservoir description are sketched. 64 refs., 12 figs., 2 tabs

  6. Application of multiple tracers (SF6 and chloride) to identify the transport by characteristics of contaminant at two separate contaminated sites

    Science.gov (United States)

    Lee, K. K.; Lee, S. S.; Kim, H. H.; Koh, E. H.; Kim, M. O.; Lee, K.; Kim, H. J.

    2016-12-01

    Multiple tracers were applied for source and pathway detection at two different sites. CO2 gas injected in the subsurface for a shallow-depth CO2 injection and leak test can be regarded as a potential contaminant source. Therefore, it is necessary to identify the migration pattern of CO2 gas. Also, at a DNAPL contaminated site, it is important to figure out the characteristics of plume evolution from the source zone. In this study, multiple tracers (SF6 and chloride) were used to evaluate the applicability of volatile and non-volatile tracers and to identify the characteristics of contaminant transport at each CO2 injection and leak test site and DNAPL contaminated site. Firstly, at the CO2 test site, multiple tracers were used to perform the single well push-drift-pull tracer test at total 3 specific depth zones. As results of tests, volatile and non-volatile tracers showed different mass recovery percentage. Most of chloride mass was recovered but less than half of SF6 mass was recovered due to volatile property. This means that only gaseous SF6 leak out to unsaturated zone. However, breakthrough curves of both tracers indicated similar peak time, effective porosity, and regional groundwater velocity. Also, at both contaminated sites, natural gradient tracer tests were performed with multiple tracers. With the results of natural gradient tracer test, it was possible to confirm the applicability of multiple tracers and to understand the contaminant transport in highly heterogeneous aquifer systems through the long-term monitoring of tracers. Acknowledgement: financial support was provided by the R&D Project on Environmental Management of Geologic CO2 Storage)" from the KEITI (Project Number: 2014001810003) and Korea Ministry of Environment as "The GAIA project (2014000540010)".

  7. Tracer SWIW tests in propped and un-propped fractures: parameter sensitivity issues, revisited

    Science.gov (United States)

    Ghergut, Julia; Behrens, Horst; Sauter, Martin

    2017-04-01

    -scale diffusion; (iii) attempt to determine both advective and non-advective transport parameters from one and the same conservative-tracer signal (relying on 'third-party' knowledge), or from twin signals of a so-called 'dual' tracer pair, e. g.: using tracers with contrasting reactivity and partitioning behavior to determine residual saturation in depleted oilfields (Tomich et al. 1973), or to determine advective parameters (Ghergut et al. 2014); using early-time signals of conservative and sorptive tracers for propped-fracture characterization (Karmakar et al. 2015); using mid-time signals of conservative tracers for a reservoir-borne inflow profiling in multi-frac systems (Ghergut et al. 2016), etc. The poster describes new uses of type-(iii) techniques for the specific purposes of shale-gas reservoir characterization, productivity monitoring, diagnostics and engineering of 're-frac' treatments, based on parameter sensitivity findings from German BMWi research project "TRENDS" (Federal Ministry for Economic Affairs and Energy, FKZ 0325515) and from the EU-H2020 project "FracRisk" (grant no. 640979).

  8. Passive vapor extraction feasibility study

    International Nuclear Information System (INIS)

    Rohay, V.J.

    1994-01-01

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft 3 /min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft 3 /min air flow rates, passive vapor extraction is more cost effective below 100 ppm

  9. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  10. Combined use of heat and saline tracer to estimate aquifer properties in a forced gradient test

    Science.gov (United States)

    Colombani, N.; Giambastiani, B. M. S.; Mastrocicco, M.

    2015-06-01

    Usually electrolytic tracers are employed for subsurface characterization, but the interpretation of tracer test data collected by low cost techniques, such as electrical conductivity logging, can be biased by cation exchange reactions. To characterize the aquifer transport properties a saline and heat forced gradient test was employed. The field site, located near Ferrara (Northern Italy), is a well characterized site, which covers an area of 200 m2 and is equipped with a grid of 13 monitoring wells. A two-well (injection and pumping) system was employed to perform the forced gradient test and a straddle packer was installed in the injection well to avoid in-well artificial mixing. The contemporary continuous monitor of hydraulic head, electrical conductivity and temperature within the wells permitted to obtain a robust dataset, which was then used to accurately simulate injection conditions, to calibrate a 3D transient flow and transport model and to obtain aquifer properties at small scale. The transient groundwater flow and solute-heat transport model was built using SEAWAT. The result significance was further investigated by comparing the results with already published column experiments and a natural gradient tracer test performed in the same field. The test procedure shown here can provide a fast and low cost technique to characterize coarse grain aquifer properties, although some limitations can be highlighted, such as the small value of the dispersion coefficient compared to values obtained by natural gradient tracer test, or the fast depletion of heat signal due to high thermal diffusivity.

  11. Use of labeled compounds in tracer experiments

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The use of radiotracers in research has become common. This chapter looks at some of the underlying assumptions and advantages of labeled compounds: advantages of radiotracers; availability of suitable tracers and labeled compounds; purity of labeled compounds; autoradiolysis; storage of labeled compounds; detection systems for chromatography and electrophoretic methods. 14 refs., 2 figs

  12. Rate tracer studies of heterogeneous catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Happel, J; Kiang, S

    1977-10-01

    An analysis is presented of the extent to which parameters involved in transient tracing of isotopic species in heterogeneous catalysis can be determined by experiments in which tracer concentrations are measured as a function of time. Different treatments for open and closed systems with the over-all reaction at equilibrium or irreversible were developed.

  13. Tracer dispersion in planar multipole flows

    International Nuclear Information System (INIS)

    Koplik, J.; Redner, S.; Hinch, E.J.

    1994-01-01

    We study the motion of passive Brownian tracer particles in steady two-dimensional potential flows between sources and sinks. Our primary focus is understanding the long-time properties of the transit time probability distribution for the tracer to reach the sink p(t) and the influence of the flow geometry on this probability. A variety of illustrative case studies is considered. For radial potential flow in an annular region, competition between convection and diffusion leads to nonuniversal decay of the transit time probability. Dipolar and higher multipole flows are found to exhibit generic features, such as a power-law decay in p(t) with an exponent determined by the multipole moment, an exponential cutoff related to stagnation points, and a ''shoulder'' in p(t) that is related to reflection from the system boundaries. For spatially extended sinks, it is also shown that the spatial distribution of the collected tracer is independent of the overall magnitude of the flow field and that p(t) decays as a power law with a geometry-dependent exponent. Our results may offer the possibility of using tracer measurements to characterize the flow geometry of porous media

  14. Nanoparticle tracers in calcium carbonate porous media

    KAUST Repository

    Li, Yan Vivian

    2014-07-15

    Tracers are perhaps the most direct way of diagnosing subsurface fluid flow pathways for ground water decontamination and for natural gas and oil production. Nanoparticle tracers could be particularly effective because they do not diffuse away from the fractures or channels where flow occurs and thus take much less time to travel between two points. In combination with a chemical tracer they can measure the degree of flow concentration. A prerequisite for tracer applications is that the particles are not retained in the porous media as the result of aggregation or sticking to mineral surfaces. By screening eight nanoparticles (3-100 nm in diameter) for retention when passed through calcium carbonate packed laboratory columns in artificial oil field brine solutions of variable ionic strength we show that the nanoparticles with the least retention are 3 nm in diameter, nearly uncharged, and decorated with highly hydrophilic polymeric ligands. The details of these column experiments and the tri-modal distribution of zeta potential of the calcite sand particles in the brine used in our tests suggests that parts of the calcite surface have positive zeta potential and the retention of negatively charged nanoparticles occurs at these sites. Only neutral nanoparticles are immune to at least some retention. © 2014 Springer Science+Business Media.

  15. Using neural networks to describe tracer correlations

    Directory of Open Access Journals (Sweden)

    D. J. Lary

    2004-01-01

    Full Text Available Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and methane volume mixing ratio (v.m.r.. In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE which has continuously observed CH4  (but not N2O from 1991 till the present. The neural network Fortran code used is available for download.

  16. Using radioactive tracer technique in municipal hygiene

    International Nuclear Information System (INIS)

    Yurasova, O.I.

    1974-01-01

    Work of the A. N. Syrsin Institute of General and Municiapl Hygiene using raidoactive tracers is reviewed. The studies include research on protein metabolism in the living organism following action of unfavorable factors of the environment; determination of the paths of introduction into the organism of substances with an alien composition; and study of the rate of resorption of subcutaneous papuli. Results are shown of radioactive-tracer studies on the mechanism of action of poisonous substances on the living organism and of migration of alien chemical compounds in the organism and in objects in the environment. It is concluded that the radioactive tracer method has wide application in municipal hygiene and sanitary microbiology. The absence of laborious operations, economy of time, precision of the experiments, and the possibility of obtaining additional information on the mechanism of action of poisonous substances on the organism and the low cost of such studies compared with other methods makes the radioactive tracer method economically attractive. The studies made show the various types of use of the method in municipal hygiene and sanitary microbiology

  17. Hybrid tracers for sentinel node biopsy

    International Nuclear Information System (INIS)

    Van Den Berg, N. S.; Kleinjan, G. I.; Valdés-Olmos, R. A.; Buckle, T.; Van Leeuwen, F. I.; Klop, W. M.; Horenblas, S.; Van Der Poel, H. G.

    2014-01-01

    Conventional sentinel node (SN) mapping is performed by injection of a radiocolloid followed by lymphoscintigraphy to identify the number and location of the primary tumor draining lymph node(s), the so-called SN(s). Over the last decade research has focused on the introduction of new imaging agents that can further aid (surgical) SN identification. Different tracers for SN mapping, with varying sizes and isotopes have been reported, most of which have proven their value in a clinical setting. A major challenge lies in transferring this diagnostic information obtained at the nuclear medicine department to the operating theatre thereby providing the surgeon with (image) guidance. Conventionally, an intraoperative injection of vital blue dye or a fluorescence dye is given to allow intraoperative optical SN identification. However, for some indications, the radiotracer-based approach remains crucial. More recently, hybrid tracers, that contain both a radioactive and fluorescent label, were introduced to allow for direct integration of pre- and intraoperative guidance technologies. Their potential is especially high when they are used in combination with new surgical imaging modalities and navigation tools. Next to a description of the known tracers for SN mapping, this review discusses the application of hybrid tracers during SN biopsy and how the introduction of these new techniques can further aid in translation of nuclear medicine information into the operating theatre.

  18. Fractal tracer distributions in turbulent field theories

    DEFF Research Database (Denmark)

    Hansen, J. Lundbek; Bohr, Tomas

    1998-01-01

    We study the motion of passive tracers in a two-dimensional turbulent velocity field generated by the Kuramoto-Sivashinsky equation. By varying the direction of the velocity-vector with respect to the field-gradient we can continuously vary the two Lyapunov exponents for the particle motion and t...

  19. Suitability of tracers; Eignung von Tracern

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, D. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany). Inst. fuer Hydrologie

    1999-02-01

    Hydrological tracer techniques are a means of making statements on the direction and speed of underground water. One of the simpler tasks is to find out whether there is hydrological communication between two given points. This requires a determination of the direction of flow, which places less exacting demands on the properties of the tracer than does the task of determining the flow velocity of underground water. Tracer methods can serve to infer from flow velocity the distance (flow) velocity, which is defined as the ratio between the distance between two points located in flow direction and the actual time it takes water to flow from one to the other. [Deutsch] Mit Hilfe der hydrologischen Markierungstechniken koennen Aussagen ueber die Richtung und die Geschwindigkeit von Bewegungen des unterirdischen Wassers gemacht werden. Der einfachere Fall liegt vor, wenn festgestellt werden soll, ob zwischen zwei Punkten eine hydrologische Verbindung besteht. Bei dieser Fliessrichtungsbestimmung sind die Forderungen an die Eigenschaften der einzusetzenden Tracer geringer als bei der Bestimmung der Geschwindigkeit des unterirdischen Wassers. Von den Geschwindigkeiten des unterirdischen Wassers ist die Abstands-(Fliess)geschwindigkeit, die definiert ist durch das Verhaeltnis aus dem Abstand und der wahren Fliesszeit zwischen zwei in Bewegungsrichtung gelegenen Punkten, durch Tracermethoden zu bestimmen. (orig.)

  20. Using radioactive tracer technique in municipal hygiene

    Energy Technology Data Exchange (ETDEWEB)

    Yurasova, O I [Institut Obshchej i Kommunal' noj Gigieny, Moscow (USSR)

    1974-01-01

    Work of the A. N. Syrsin Institute of General and Municiapl Hygiene using raidoactive tracers is reviewed. The studies include research on protein metabolism in the living organism following action of unfavorable factors of the environment; determination of the paths of introduction into the organism of substances with an alien composition; and study of the rate of resorption of subcutaneous papuli. Results are shown of radioactive-tracer studies on the mechanism of action of poisonous substances on the living organism and of migration of alien chemical compounds in the organism and in objects in the environment. It is concluded that the radioactive tracer method has wide application in municipal hygiene and sanitary microbiology. The absence of laborious operations, economy of time, precision of the experiments, and the possibility of obtaining additional information on the mechanism of action of poisonous substances on the organism and the low cost of such studies compared with other methods makes the radioactive tracer method economically attractive. The studies made show the various types of use of the method in municipal hygiene and sanitary microbiology.

  1. Dimers in nucleating vapors

    Science.gov (United States)

    Lushnikov, A. A.; Kulmala, M.

    1998-09-01

    The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersaturation of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the particle formation-growth process is studied starting with the definition of dimers as bound states of two associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor over all classical bound states, and the equilibrium population of dimers is found for two types of intermolecular forces: the Lennard-Jones (LJ) and rectangular well+hard core (RW) potentials. The principle of detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation-growth process is then investigated under the assumption that the trimers are stable with respect to evaporation and that the condensation rate is a power function of the particle mass. If the power exponent λ=n/(n+1) (n is a non-negative integer), the kinetics of the process is described by a finite set of moments of particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter than that of the condensational growth, n+2 universal functions of a nondimensional time define the kinetic process. These functions are calculated for λ=2/3 (gas-to-particle conversion in the free molecular regime) and λ=1/2 (formation of islands on surfaces).

  2. Safety assessment of in-vessel vapor explosion loads in next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kwang Hyun; Cho, Jong Rae; Choi, Byung Uk; Kim, Ki Yong; Lee, Kyung Jung [Korea Maritime University, Busan (Korea); Park, Ik Kyu [Seoul National University, Seoul (Korea)

    1998-12-01

    A safety assessment of the reactor vessel lower head integrity under in-vessel vapor explosion loads has been performed. The premixing and explosion calculations were performed using TRACER-II code. Using the calculated explosion pressures imposed on the lower head inner wall, strain calculations were performed using ANSYS code. The explosion analyses show that the explosion impulses are not altered significantly by the uncertain parameters of triggering location and time, fuel and vapor volume fractions in uniform premixture bounding calculations within the conservative ranges. Strain analyses using the calculated pressure loads on the lower head inner wall show that the vapor explosion-induced lower head failure is physically unreasonable. The static analysis using the conservative explosion-end pressure of 7,246 psia shows that the maximum equivalent strain is 4.3% at the bottom of lower head, which is less than the allowable threshold value of 11%. (author). 24 refs., 40 figs., 3 tabs.

  3. Halon-1301, a new Groundwater Age Tracer

    Science.gov (United States)

    Beyer, Monique; van der Raaij, Rob; Morgenstern, Uwe; Jackson, Bethanna

    2015-04-01

    Groundwater dating is an important tool to assess groundwater resources in regards to direction and time scale of groundwater flow and recharge and to assess contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However ambiguous age interpretations are often faced, due to a limited set of available tracers and limitations of each tracer method when applied alone. There is a need for additional, complementary groundwater age tracers. We recently discovered that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate [Beyer et al, 2014]. Halon-1301 can be determined along with SF6, SF5CF3 and CFC-12 in groundwater using a gas chromatography setup with attached electron capture detector developed by Busenberg and Plummer [2008]. Halon-1301 has not been assessed in groundwater. This study assesses the behaviour of Halon-1301 in water and its suitability as a groundwater age tracer. We determined Halon-1301 in 17 groundwater and various modern (river) waters sites located in 3 different groundwater systems in the Wellington Region, New Zealand. These waters have been previously dated with tritium, CFC-12, CFC-11 and SF6 with mean residence times ranging from 0.5 to over 100 years. The waters range from oxic to anoxic and some show evidence of CFC contamination or degradation. This allows us to assess the different properties affecting the suitability of Halon-1301 as groundwater age tracer, such as its conservativeness in water and local contamination potential. The samples are analysed for Halon-1301 and SF6simultaneously, which allows identification of issues commonly faced when using gaseous tracers such as contamination with modern air during sampling. Overall we found in the assessed groundwater samples Halon-1301 is a feasible new groundwater tracer. No sample indicated significantly elevated

  4. Methods for conduct of atmospheric tracer studies at ANSTO

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G H; Stone, D J.M.; Pascoe, J H [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia). Environment Division

    2000-07-01

    A perfluorocarbon atmospheric tracer system has been developed to investigate atmospheric dispersion processes in the region surrounding the Lucas Heights Science and Technology Centre. This report discusses the tracer release, sampling and analysis methods.

  5. Determination of Chlorinated Solvent Sorption by Porous Material-Application to Trichloroethene Vapor on Cement Mortar.

    Science.gov (United States)

    Musielak, Marion; Brusseau, Mark L; Marcoux, Manuel; Morrison, Candice; Quintard, Michel

    2014-08-01

    Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L -1 ) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnitude of retardation (retardation factor = 23) and sorption (sorption coefficient = 10.6 cm 3 g -1 ) for TCE, compared to negligible sorption for SF6. This magnitude of sorption obtained with pollutant vapor is much bigger than the one obtained for aqueous-flow experiments conducted for water-saturated systems. The considerable sorption exhibited for TCE under vapor-flow conditions is attributed to some combination of accumulation at the air-water interface and vapor-phase adsorption, both of which are anticipated to be significant for this system given the large surface area associated with the cement mortar. Transport of both SF6 and TCE was simulated successfully with a two-region physical non-equilibrium model, consistent with the dual-medium structure of the crushed cement mortar. This work emphasizes the importance of taking into account sorption phenomena when modeling transport of volatile organic compounds through concrete material, especially in regard to assessing vapor intrusion.

  6. Laplace transform in tracer kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, Eliete B., E-mail: eliete@pucrs.br [Instituto do Cerebro (InsCer/FAMAT/PUC-RS), Porto Alegre, RS, (Brazil). Faculdade de Matematica

    2013-07-01

    The main objective this paper is to quantify the pharmacokinetic processes: absorption, distribution and elimination of radiopharmaceutical(tracer), using Laplace transform method. When the drug is administered intravenously absorption is complete and is available in the bloodstream to be distributed throughout the whole body in all tissues and fluids, and to be eliminated. Mathematical modeling seeks to describe the processes of distribution and elimination through compartments, where distinct pools of tracer (spatial location or chemical state) are assigned to different compartments. A compartment model is described by a system of differential equations, where each equation represents the sum of all the transfer rates to and from a specific compartment. In this work a two-tissue irreversible compartment model is used for description of tracer, [{sup 18}F]2-fluor-2deoxy-D-glucose. In order to determine the parameters of the model, it is necessary to have information about the tracer delivery in the form of an input function representing the time-course of tracer concentration in arterial blood or plasma. We estimate the arterial input function in two stages and apply the Levenberg-Marquardt Method to solve nonlinear regressions. The transport of FDG across de arterial blood is very fast in the first ten minutes and then decreases slowly. We use de Heaviside function to represent this situation and this is the main contribution of this study. We apply the Laplace transform and the analytical solution for two-tissue irreversible compartment model is obtained. The only approach is to determinate de arterial input function. (author)

  7. Guidebook on radioisotope tracers in industry

    International Nuclear Information System (INIS)

    1990-01-01

    The idea of using tracers (chemical, dyes, etc.) in the investigation of complex physical phenomena has always attracted the attention of scientists and engineers. When radioactive isotopes became available it was immediately recognized that they offered an almost ideal solution to tracer selection. This book is devoted to reviewing the present status of the tracer method as such and to its applications to those branches of industry which have derived large benefits from the use of this modern technology. The main objectives of the IAEA's Industrial Applications and Chemistry Section is to help Member States in introducing to their own industries the different isotope and radiation techniques which have become available as a result of developments in the nuclear sciences. This section proposed the preparation of this guidebook, putting together various radiotracer methods and the experience obtained so far in their industrial use. Chapters 2 to 4 cover the general concept of tracers, technology and safety aspects, as well as data evaluation and interpretation. In chapter 5, therefore, general applications are discussed. In chapter 6, specialists in selected fields discuss their experience in radiotracer applications in various types of industrial activity. Most case studies are illustrated by at least one detailed example of an experiment carried out at an industrial installation. Current trends in the development of radiotracer methods are discussed in chapter 7, from both a theoretical and a practical viewpoint. Some possible new RTT applications in the future are also discussed here. Sealed radioactive sources are used almost as often as radioisotope tracers in industrial measurements. Annex I gives a short review of these techniques. Readers who are interested in the basic principles of radioisotope production will find the necessary information in Annex II. Annexes III, V and VI provide a demonstration of fundamental relations and properties; useful

  8. Using predictive uncertainty analysis to optimise tracer test design and data acquisition

    Science.gov (United States)

    Wallis, Ilka; Moore, Catherine; Post, Vincent; Wolf, Leif; Martens, Evelien; Prommer, Henning

    2014-07-01

    Tracer injection tests are regularly-used tools to identify and characterise flow and transport mechanisms in aquifers. Examples of practical applications are manifold and include, among others, managed aquifer recharge schemes, aquifer thermal energy storage systems and, increasingly important, the disposal of produced water from oil and shale gas wells. The hydrogeological and geochemical data collected during the injection tests are often employed to assess the potential impacts of injection on receptors such as drinking water wells and regularly serve as a basis for the development of conceptual and numerical models that underpin the prediction of potential impacts. As all field tracer injection tests impose substantial logistical and financial efforts, it is crucial to develop a solid a-priori understanding of the value of the various monitoring data to select monitoring strategies which provide the greatest return on investment. In this study, we demonstrate the ability of linear predictive uncertainty analysis (i.e. “data worth analysis”) to quantify the usefulness of different tracer types (bromide, temperature, methane and chloride as examples) and head measurements in the context of a field-scale aquifer injection trial of coal seam gas (CSG) co-produced water. Data worth was evaluated in terms of tracer type, in terms of tracer test design (e.g., injection rate, duration of test and the applied measurement frequency) and monitoring disposition to increase the reliability of injection impact assessments. This was followed by an uncertainty targeted Pareto analysis, which allowed the interdependencies of cost and predictive reliability for alternative monitoring campaigns to be compared directly. For the evaluated injection test, the data worth analysis assessed bromide as superior to head data and all other tracers during early sampling times. However, with time, chloride became a more suitable tracer to constrain simulations of physical transport

  9. Tubing For Sampling Hydrazine Vapor

    Science.gov (United States)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  10. Vapor trap for liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T

    1968-05-22

    In a pipe system which transfers liquid metal, inert gas (cover gas) is packed above the surface of the liquid metal to prevent oxidization of the liquid. If the metal vapor is contained in such cover gas, the circulating system of the cover gas is blocked due to condensation of liquid metal inside the system. The present invention relates to an improvement in vapor trap to remove the metal vapor from the cover gas. The trap consists of a cylindrical outer body, an inlet nozzle which is deeply inserted inside the outer body and has a number of holes to inject the cove gas into the body, metal mesh or steel wool which covers the exterior of the nozzle and on which the condensation of the metal gas takes place, and a heater wire hich is wound around the nozzle to prevent condensation of the metal vapor at the inner peripheral side of the mesh.

  11. New radioactive tracers can help find cause of jaundice

    International Nuclear Information System (INIS)

    Carrard, G.

    1987-01-01

    Radioactive tracers for the investigation of a condition known as persistent jaundice of the newborn, have been designed, prepared and tested at ANSTO. The tracers are chemical compounds of the radioactive elements gallium-67 and indium-111. They given lower radiation doses than the conventional radioactive tracer, iodine-131, used in these studies

  12. PET tracers for somatostatin receptor imaging of neuroendocrine tumors

    DEFF Research Database (Denmark)

    Johnbeck, Camilla Bardram; Knigge, Ulrich; Kjær, Andreas

    2014-01-01

    Neuroendocrine tumors have shown rising incidence mainly due to higher clinical awareness and better diagnostic tools over the last 30 years. Functional imaging of neuroendocrine tumors with PET tracers is an evolving field that is continuously refining the affinity of new tracers in the search...... these PET tracers further....

  13. Industrial tracer application in people's republic of china

    International Nuclear Information System (INIS)

    Sun Maoyi

    1987-01-01

    A number of important applications of radioisotopes and their compounds used as tracers in petroleum industry, metallurgical industry, mechanical industry, chemical industry, electronic industry, hydrology and water conservancy in China are introduced in this paper. And the tracer technique applied to entomology is also mentioned. The industrial tracer applications are successful and beneficial in People's Republic of China from the examples given. (author)

  14. USING PERFLUOROCARBON TRACERS FOR VERIFICATION OF CAP AND COVER SYSTEMS PERFORMANCE

    International Nuclear Information System (INIS)

    HEISER, J.; SULLIVAN, T.

    2001-01-01

    The Department of Energy (DOE) Environmental Management (EM) office has committed itself to an accelerated cleanup of its national facilities. The goal is to have much of the DOE legacy waste sites remediated by 2006. This includes closure of several sites (e.g., Rocky Flats and Fernald). With the increased focus on accelerated cleanup, there has been considerable concern about long-term stewardship issues in general, and verification and long-term monitoring (LTM) of caps and covers, in particular. Cap and cover systems (covers) are vital remedial options that will be extensively used in meeting these 2006 cleanup goals. Every buried waste site within the DOE complex will require some form of cover system. These covers are expected to last from 100 to 1000 years or more. The stakeholders can be expected to focus on system durability and sustained performance. DOE EM has set up a national committee of experts to develop a long-term capping (LTC) guidance document. Covers are subject to subsidence, erosion, desiccation, animal intrusion, plant root infiltration, etc., all of which will affect the overall performance of the cover. Very little is available in terms of long-term monitoring other than downstream groundwater or surface water monitoring. By its very nature, this can only indicate that failure of the cover system has already occurred and contaminants have been transported away from the site. This is unacceptable. Methods that indicate early cover failure (prior to contaminant release) or predict approaching cover failure are needed. The LTC committee has identified predictive monitoring technologies as a high priority need for DOE, both for new covers as well as existing covers. The same committee identified a Brookhaven National Laboratory (BNL) technology as one approach that may be capable of meeting the requirements for LTM. The Environmental Research and Technology Division (ERTD) at BNL developed a novel methodology for verifying and monitoring

  15. Natural tracer profiles across argillaceous formations

    International Nuclear Information System (INIS)

    Mazurek, Martin; Alt-Epping, Peter; Bath, Adrian; Gimmi, Thomas; Niklaus Waber, H.; Buschaert, Stephane; Canniere, Pierre De; Craen, Mieke De; Gautschi, Andreas; Savoye, Sebastien; Vinsot, Agnes; Wemaere, Isabelle; Wouters, Laurent

    2011-01-01

    Highlights: → Solute transport processes in clay and shale formations at nine sites are examined. → Conservative pore-water tracers (e.g. Cl - , δ 18 O, δ 2 H, He) show regular profiles. → These indicate the dominance of diffusive transport over times of 10 5 -10 6 years. → The contribution of vertical advection to transport is limited or negligible. → Modelled evolution times are in line with independent palaeo-hydrogeological data. - Abstract: Argillaceous formations generally act as aquitards because of their low hydraulic conductivities. This property, together with the large retention capacity of clays for cationic contaminants, has brought argillaceous formations into focus as potential host rocks for the geological disposal of radioactive and other waste. In several countries, programmes are under way to characterise the detailed transport properties of such formations at depth. In this context, the interpretation of profiles of natural tracers in pore waters across the formations can give valuable information about the large-scale and long-term transport behaviour of these formations. Here, tracer-profile data, obtained by various methods of pore-water extraction for nine sites in central Europe, are compiled. Data at each site comprise some or all of the conservative tracers: anions (Cl - , Br - ), water isotopes (δ 18 O, δ 2 H) and noble gases (mainly He). Based on a careful evaluation of the palaeo-hydrogeological evolution at each site, model scenarios are derived for initial and boundary pore-water compositions and an attempt is made to numerically reproduce the observed tracer distributions in a consistent way for all tracers and sites, using transport parameters derived from laboratory or in situ tests. The comprehensive results from this project have been reported in . Here the results for three sites are presented in detail, but the conclusions are based on model interpretations of the entire data set. In essentially all cases, the

  16. Application of organic tracers in characterizing the greater confinement disposal test at the Nevada Test Site

    International Nuclear Information System (INIS)

    Olson, M.C.

    1985-01-01

    The Greater Confinement Disposal Test (GCDT) is a research project investigating the feasibility of augered-shaft disposal of low-level radioactive waste considered unsuitable for shallow land burial. Gaseous diffusion of radionuclides through alluvial sediments is considered the primary contaminant migration process. Volatile halocarbon tracers are released in the subsurface and their migration is monitored to determine media effective diffusion coefficients, tortuosity values, and sorption terms. Design and instrumentation of the emplacement and monitoring shafts of the disposal facility are detailed. Instrumentation includes a three-dimensional array of soil-air sample stations encircling the disposal waste. Recirculation flow lines minimize induced advection in the alluvial matrix due to tracer sample collection. 6 references, 5 figures, 2 tables

  17. Combined interpretation of radar, hydraulic, and tracer data from a fractured-rock aquifer near Mirror Lake, New Hampshire, USA

    Science.gov (United States)

    Day-Lewis, F. D.; Lane, J.W.; Gorelick, S.M.

    2006-01-01

    An integrated interpretation of field experimental cross-hole radar, tracer, and hydraulic data demonstrates the value of combining time-lapse geophysical monitoring with conventional hydrologic measurements for improved characterization of a fractured-rock aquifer. Time-lapse difference-attenuation radar tomography was conducted during saline tracer experiments at the US Geological Survey Fractured Rock Hydrology Research Site near Mirror Lake, Grafton County, New Hampshire, USA. The presence of electrically conductive saline tracer effectively illuminates permeable fractures or pathways for geophysical imaging. The geophysical results guide the construction of three-dimensional numerical models of ground-water flow and solute transport. In an effort to explore alternative explanations for the tracer and tomographic data, a suite of conceptual models involving heterogeneous hydraulic conductivity fields and rate-limited mass transfer are considered. Calibration data include tracer concentrations, the arrival time of peak concentration at the outlet, and steady-state hydraulic head. Results from the coupled inversion procedure suggest that much of the tracer mass migrated outside the three tomographic image planes, and that solute is likely transported by two pathways through the system. This work provides basic and site-specific insights into the control of permeability heterogeneity on ground-water flow and solute transport in fractured rock. ?? Springer-Verlag 2004.

  18. Simultaneous extraction and concentration of water pollution tracers using ionic-liquid-based systems.

    Science.gov (United States)

    Dinis, Teresa B V; Passos, Helena; Lima, Diana L D; Sousa, Ana C A; Coutinho, João A P; Esteves, Valdemar I; Freire, Mara G

    2017-07-29

    Human activities are responsible for the release of innumerous substances into the aquatic environment. Some of these substances can be used as pollution tracers to identify contamination sources and to prioritize monitoring and remediation actions. Thus, their identification and quantification are of high priority. However, due to their presence in complex matrices and at significantly low concentrations, a pre-treatment/concentration step is always required. As an alternative to the currently used pre-treatment methods, mainly based on solid-phase extractions, aqueous biphasic systems (ABS) composed of ionic liquids (ILs) and K 3 C 6 H 5 O 7 are here proposed for the simultaneous extraction and concentration of mixtures of two important pollution tracers, caffeine (CAF) and carbamazepine (CBZ). An initial screening of the IL chemical structure was carried out, with extraction efficiencies of both tracers to the IL-rich phase ranging between 95 and 100%, obtained in a single-step. These systems were then optimized in order to simultaneously concentrate CAF and CBZ from water samples followed by HPLC-UV analysis, for which no interferences of the ABS phase-forming components and other interferents present in a wastewater effluent sample have been found. Based on the saturation solubility data of both pollution tracers in the IL-rich phase, the maximum estimated concentration factors of CAF and CBZ are 28595- and 8259-fold. IL-based ABS can be thus envisioned as effective pre-treatment techniques of environmentally-related aqueous samples for a more accurate monitoring of mixtures of pollution tracers. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. An experimental approach to determining subsurface leakage from a surface impoundment using a radioisotope tracer

    International Nuclear Information System (INIS)

    Ashwood, T.L.; Story, J.D.; Larsen, I.L.; Schultz, F.J.

    1987-01-01

    Bromine-82, a 35.3-h half-life radionuclide, was used as a tracer to determine the paths and rates of leakage from an unlined, 1,000,000-gal (3,785,000 L), surface impoundment at the Oak Ridge National Laboratory. Since the impoundment is underlain and surrounded by storm sewer and sanitary sewer lines (most of them predating the impoundment), known and suspected leak sites in storm drain catch basins and sanitary sewer manholes were sampled periodically and analyzed for 82 Br. A series of four ground water monitoring wells - three downgradient and one upgradient from the impoundment - were also sampled for 82 Br. Although the catch basin and manhole samples picked up 82 Br in leakage from the impoundment less than 5 h after application of the tracer, the monitoring well samples did not contain detectable levels of the radionuclide. It was concluded that the monitoring wells were sampling groundwater moving through the formation, whereas the storm drains and manholes were sampling water leading rapidly through secondary porosity and along preferred pathways. The decline in tracer concentration as a function of time was used to determine the residence time of water in the pond and hence the flow rate through the pond. This flow rate, when compared with the known outflow rate, indicated that the leakage flow was small. Hence, the main value of the test was to identify rapid leakage pathways. The experiment demonstrates the need for sampling subsurface drain systems as part of an integrated monitoring system for leak detection. The effectiveness of 82 Br as a tracer for rapid leaks was also shown

  20. Prospect of radon as a tracer in studying of landslide forecast

    International Nuclear Information System (INIS)

    Zhang Huifeng; Ding Dexin

    2004-01-01

    Radon, as a chemical element of radioactivity, is widely used in the fields of earth-quake monitoring, prospecting mine and exploring resource. This paper discussed the theory of radon's separating out from the soil and the theory and means of surveying radon. It also relates the radon anomaly in the measuring process of soil radon, caused by the interferring of the environmental factors in measurement results. It further clarifies the wilde application of radon as a tracer in landslide forecast. (authors)

  1. 15N tracer techniques in pediatric research

    International Nuclear Information System (INIS)

    Heine, W.; Richter, I.; Plath, C.; Wutzke, K.; Stolpe, H.J.; Tiess, M.; Toewe, J.

    1983-01-01

    The main topics of the review comprise mathematical fundamentals of the determination of N metabolism parameters using the 3-pool method, the value of different 15 N tracer substances for the determination of whole-body protein parameters, the utilization of parenterally applied D-amino acids, studies on the influence of different diets on the N metabolism of premature infants with the 15 N tracer technique, the application of the 15 N-glycine-STH-test for the evaluation of the therapeutic effect of STH in children suffering from hypothalamico-hypophyseal dwarfism, in vivo studies on urea utilization by the infant intestinal flora under various dietary regimens as well as in vitro investigations on the utilization of 15 N-labelled urea and NH 4 Cl, resp., by the intestinal flora

  2. Radioactive tracers and the cracking modelings

    International Nuclear Information System (INIS)

    Bettens, B.

    1982-01-01

    The use of tracers (3H and 14 C) labelled in specific positions is an intensive contribution to the understanding and the revealing of the very often complex cracking modeling. The pyrolytic decay of the phenol and the cresols, of the aniline, of the phenantrene and its hydrogenated derived products were investigated and are presented as examples. The decay mechanisms give a theoretical knowledge of the thermal cracking and allow to handle the results on an industrial scale. (AF)

  3. The medical applications of radioactive tracers

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, J.G.

    1947-12-31

    This report provides a broad yet in depth overview of the use of radioactive materials as tracers in medicine and biology for the period of 1935--1947. Particular attention is paid to is of radio-sodium, radio-iodine, radio-iron, radio-phosphorus, radio-strontium, and fission products. The main thrust of this paper is human rather than animal work and focuses in work that has been published.

  4. Water vapor estimation using digital terrestrial broadcasting waves

    Science.gov (United States)

    Kawamura, S.; Ohta, H.; Hanado, H.; Yamamoto, M. K.; Shiga, N.; Kido, K.; Yasuda, S.; Goto, T.; Ichikawa, R.; Amagai, J.; Imamura, K.; Fujieda, M.; Iwai, H.; Sugitani, S.; Iguchi, T.

    2017-03-01

    A method of estimating water vapor (propagation delay due to water vapor) using digital terrestrial broadcasting waves is proposed. Our target is to improve the accuracy of numerical weather forecast for severe weather phenomena such as localized heavy rainstorms in urban areas through data assimilation. In this method, we estimate water vapor near a ground surface from the propagation delay of digital terrestrial broadcasting waves. A real-time delay measurement system with a software-defined radio technique is developed and tested. The data obtained using digital terrestrial broadcasting waves show good agreement with those obtained by ground-based meteorological observation. The main features of this observation are, no need for transmitters (receiving only), applicable wherever digital terrestrial broadcasting is available and its high time resolution. This study shows a possibility to estimate water vapor using digital terrestrial broadcasting waves. In the future, we will investigate the impact of these data toward numerical weather forecast through data assimilation. Developing a system that monitors water vapor near the ground surface with time and space resolutions of 30 s and several kilometers would improve the accuracy of the numerical weather forecast of localized severe weather phenomena.

  5. Skeletal scintigraphy and quantitative tracer studies in metabolic bone disease

    Science.gov (United States)

    Fogelman, Ignac

    means of quantitating this uptake the use of bone to soft-tissue ratios derived from the bone scan image by computer was critically evaluated. The technique was shown to be observer dependent and again found to be of limited value due to the large overlap of patient results with those from control subjects. In chapter 3 the use of bone scan imaging in metabolic bone disease has been compared with radiology. Despite the difficulties mentioned above the metabolic index was employed, and the bone scan found to be the more sensitive investigation in primary hyperparathyroidism, renal osteodystrophy and osteomalacia. In osteoporosis, however, the bone scan was often unable to identify disease and radiology remains the investigation of choice. In a further study comparing bone scanning and radiology in Paget's disease, the bone scan was found to be clearly the more sensitive investigation. As a result of the work described in chapter 2 it became apparent that a sensitive means of quantitating absolute bone uptake of tracer could be of diagnostic value. In chapter 4 a promising new quantitative technique is described in which the 24-hour whole-body retention of Tc-99m diphosphonate (WBR) is measured using a shadow-shield whole-body monitor. At 24 hours after injection, diphosphonate has reached a stable equilibrium in bone reflecting skeletal metabolic activity, while tracer in the soft-tissues of the body has been largely excreted via the urinary tract. It was found that this technique provided a sensitive means of detecting patients with primary hyperparathyroidism, osteomalacia, renal osteodystrophy and Paget's disease and that in these conditions all the results from individual patients lay outside the control range. In further studies the WBR technique was shown to be highly reproducible and not subject to any significant technical errors.

  6. Tracer technology modeling the flow of fluids

    CERN Document Server

    Levenspiel, Octave

    2012-01-01

    A vessel’s behavior as a heat exchanger, absorber, reactor, or other process unit is dependent upon how fluid flows through the vessel.  In early engineering, the designer would assume either plug flow or mixed flow of the fluid through the vessel.  However, these assumptions were oftentimes inaccurate, sometimes being off by a volume factor of 100 or more.  The result of this unreliable figure produced ineffective products in multiple reaction systems.   Written by a pioneering researcher in the field of chemical engineering, the tracer method was introduced to provide more accurate flow data.  First, the tracer method measured the actual flow of fluid through a vessel.  Second, it developed a suitable model to represent the flow in question.  Such models are used to follow the flow of fluid in chemical reactors and other process units, like in rivers and streams, or solid and porous structures.  In medicine, the tracer method is used to study the flow of chemicals—harmful  and harmless—in the...

  7. Radon diagnostics and tracer gas measurements

    International Nuclear Information System (INIS)

    Jilek, K.; Brabec, M.

    2004-01-01

    An outline is presented of the tracer gas technique, which is used for continuous measurements of air ventilation rate (generally time-varying) and for simultaneous estimation of air ventilation rate and radon entry rate, and some of its limitations are discussed. The performance of this technique in the calculation of the air ventilation rate is demonstrated on real data from routine measurements. The potential for air ventilation rate estimation based on radon measurements only is discussed. A practical application is described of the tracer gas technique to a simultaneous estimation of the air ventilation rate and radon entry rate in a real house where the effectiveness of radon remedy was tested. The following main advantages of the CO tracer gas techniques are stressed: (i) The averaging method continuous determination of the ventilation rate with good accuracy (≤ 20 %). (ii) The newly presented and verified method based on simultaneous measurements of radon concentration and CO gas concentration enables separate continuous measurements of the radon entry rate and ventilation rate. The results of comparative measurements performed with the aim to estimate the inaccuracy in determination of radon entry rate showed acceptable and good agreement up to approximately 10 %. The results of comparative measurements performed with the aim to estimate the mutual commensuration of the method to the determination of the ventilation rate confirmed the expected unreliability the two parametric non-linear regression method, which is the most frequently used method in radon diagnostic in the Czech Republic

  8. Novel tracer for radiation treatment planning

    International Nuclear Information System (INIS)

    Schwarzenboeck, S.; Krause, B.J.; Herrmann, K.; Gaertner, F.; Souvatzoglou, M.; Klaesner, B.

    2011-01-01

    PET and PET/CT with innovative tracers gain increasing importance in diagnosis and therapy management, and radiation treatment planning in radio-oncology besides the widely established FDG. The introduction of [ 18 F]Fluorothymidine ([ 18 F]FLT) as marker of proliferation, [ 18 F]Fluoromisonidazole ([ 18 F]FMISO) and [ 18 F]Fluoroazomycin-Arabinoside ([ 18 F]FAZA) as tracer of hypoxia, [ 18 F]Fluoroethyltyrosine ([ 18 F]FET) and [ 11 C]Methionine for brain tumour imaging, [ 68 Ga]DOTATOC for somatostatin receptor imaging, [ 18 F]FDOPA for dopamine synthesis and radioactively labeled choline derivatives for imaging phospholipid metabolism have opened novel approaches to tumour imaging. Some of these tracers have already been implemented into radio-oncology: Amino acid PET and PET/CT have the potential to optimise radiation treatment planning of brain tumours through accurate delineation of tumour tissue from normal tissue, necrosis and edema. Hypoxia represents a major therapeutic problem in radiation therapy. Hypoxia imaging is very attractive as it may allow to increase the dose in hypoxic tumours potentially allowing for a better tumour control. Advances in hybrid imaging, i.e. the introduction of MR/PET, may also have an impact in radio-oncology through synergies related to the combination of molecular signals of PET and a high soft tissue contrast of MRI as well as functional MRI capabilities. (orig.)

  9. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  10. Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

    2011-07-01

    The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel

  11. Temperature as a tracer of hydrological dynamics in an anchialine cave system with a submarine spring

    Science.gov (United States)

    Domínguez-Villar, David; Cukrov, Neven; Krklec, Kristina

    2018-01-01

    Although temperature is a nonconservative tracer, it often provides useful information to understand hydrological processes. This study explores the potential of temperature to characterize the hydrological dynamics of a submarine spring and its coastal karst aquifer in Krka Estuary (Croatia). The estuary is well stratified and its water column has a clear thermocline. A network of loggers was designed to monitor the temperature along vertical profiles in the estuary and the coastal aquifer, taking advantage of an anchialine cave that enabled access to the subterranean estuary. The location of the thermocline in the groundwater, which defines the upper boundary of the saline intrusion, depends on (1) the recharge of the aquifer via infiltration of precipitation, (2) the evolution of the thermocline in the estuary, and (3) the tidal oscillations. The sources of water flowing though the anchialine cave were identified: brackish water from the estuary above the thermocline, saline water from the estuary below the thermocline, and freshwater from infiltrated precipitation. A conceptual model is described that characterizes the hydrological dynamics of this coastal aquifer and its interactions with the estuary. Thus, at least for some hydrological settings, temperature is a valid tracer to characterize the main hydrological processes. The measurement of temperature is inexpensive compared to other (conservative) tracers. Therefore, for those hydrological settings that have water masses with distinct temperatures, the use of temperature as a tracer to establish conceptual models of the hydrological dynamics is encouraged.

  12. Emission quantification using the tracer gas dispersion method: The influence of instrument, tracer gas species and source simulation

    DEFF Research Database (Denmark)

    Delre, Antonio; Mønster, Jacob; Samuelsson, Jerker

    2018-01-01

    The tracer gas dispersion method (TDM) is a remote sensing method used for quantifying fugitive emissions by relying on the controlled release of a tracer gas at the source, combined with concentration measurements of the tracer and target gas plumes. The TDM was tested at a wastewater treatment...... plant for plant-integrated methane emission quantification, using four analytical instruments simultaneously and four different tracer gases. Measurements performed using a combination of an analytical instrument and a tracer gas, with a high ratio between the tracer gas release rate and instrument...... precision (a high release-precision ratio), resulted in well-defined plumes with a high signal-to-noise ratio and a high methane-to-tracer gas correlation factor. Measured methane emission rates differed by up to 18% from the mean value when measurements were performed using seven different instrument...

  13. Asian Tracer Experiment and Atmospheric Modeling (TEAM) Project: Draft Field Work Plan for the Asian Long-Range Tracer Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K Jerry; Flaherty, Julia E.

    2007-08-01

    This report provides an experimental plan for a proposed Asian long-range tracer study as part of the international Tracer Experiment and Atmospheric Modeling (TEAM) Project. The TEAM partners are China, Japan, South Korea and the United States. Optimal times of year to conduct the study, meteorological measurements needed, proposed tracer release locations, proposed tracer sampling locations and the proposed durations of tracer releases and subsequent sampling are given. Also given are the activities necessary to prepare for the study and the schedule for completing the preparation activities leading to conducting the actual field operations. This report is intended to provide the TEAM members with the information necessary for planning and conducting the Asian long-range tracer study. The experimental plan is proposed, at this time, to describe the efforts necessary to conduct the Asian long-range tracer study, and the plan will undoubtedly be revised and refined as the planning goes forward over the next year.

  14. New approaches to the study of lanthanide/actinide chloride: aluminum chloride vapor phase complexes

    International Nuclear Information System (INIS)

    Peterson, E.J.; Caird, J.A.; Carnall, W.T.; Hessler, J.P.; Hoekstra, H.R.; Williams, C.W.

    1979-01-01

    The spectrophotometric technique for vapor density measurements of complexed metal ions has been reformulated to account for temperature dependent effects and multi-species systems. Analysis of vapor pressure information indicates that the NdCl 3 --AlCl 3 and HoCl 3 --AlCl 3 systems are adequately explained by the existence of three vapor species. The two higher molecular weight complexes LnAl 4 Cl 15 and LnAl 3 Cl 12 were first proposed by Oeye and Gruen. The newly identified higher temperature species, HoAl 2 Cl 9 , contributes significantly to the vapor density above 750 0 K and below 3 atm of dimer pressure. In view of the consistency of the Nd +3 and Ho +3 chemistry the data for the Sm +3 system should be viewed with reservation. A new method for vapor density measurements involving use of radioactive tracers has been discussed in terms of its applicability to the study of (Ln,An)Cl 3 (AlCl 3 )/sub x/ systems

  15. Portable device for generation of ultra-pure water vapor feeds

    Science.gov (United States)

    Velin, P.; Stenman, U.; Skoglundh, M.; Carlsson, P.-A.

    2017-11-01

    A portable device for the generation of co-feeds of water vapor has been designed, constructed, and evaluated for flexible use as an add-on component to laboratory chemical reactors. The vapor is formed by catalytic oxidation of hydrogen, which benefits the formation of well-controlled minute concentrations of ultra-pure water. Analysis of the effluent stream by on-line mass spectrometry and Fourier transform infrared spectroscopy confirms that water vapor can be, with high precision, generated both rapidly and steadily over extended periods in the range of 100 ppm to 3 vol. % (limited by safety considerations) using a total flow of 100 to 1500 ml/min at normal temperature and pressure. Further, the device has been used complementary to a commercial water evaporator and mixing system to span water concentrations up to 12 vol. %. Finally, an operando diffuse reflective infrared Fourier transform spectroscopic measurement of palladium catalysed methane oxidation in the absence and presence of up to 1.0 vol. % water has been carried out to demonstrate the applicability of the device for co-feeding well-controlled low concentrations of water vapor to a common type of spectroscopic experiment. The possibilities of creating isotopically labeled water vapor as well as using tracer gases for dynamic experiments are discussed.

  16. Determination of Vaporization Properties and Volatile Hazardous Components Relevant to Kukersite Oil Shale Derived Fuel Oil Handling

    Directory of Open Access Journals (Sweden)

    Ada TRAUMANN

    2014-09-01

    Full Text Available The aim of this study was to investigate vaporization properties of shale fuel oil in relation to inhalation exposure. The shale fuel oil was obtained from kukersite oil shale. The shale oil and its light fraction (5 % of the total fuel oil were characterized by vapor pressure curve, molecular weight distribution, elemental composition and functional groups based on FTIR spectra. The rate of vaporization from the total fuel oil at different temperatures was monitored as a function of time using thermogravimetric analysis (TGA. It is shown that despite its relatively low vapor pressure at room temperature a remarkable amount of oil vaporizes influencing air quality significantly. From the TGA data the changes in the vapor pressure during vaporization process were estimated. Although the shale fuel oil has a strong, unpleasant smell, the main hazards to workplace air quality depend on the vaporization rate of different toxic compounds, such as benzene, toluene, xylene or phenolic compounds. The presence of these hazardous substances in the vapor phase of shale fuel oil was monitored using headspace analysis coupled with selective ion monitoring (SIM and confirmed by the NIST Mass Spectral library and retention times of standards. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4549

  17. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  18. TPR system: a powerful technique to monitor carbon nanotube formation during chemical vapour deposition; Sistema RTP: uma tecnica poderosa para o monitoramento da formacao de nanotubos de carbono durante o processo por deposicao de vapor quimico

    Energy Technology Data Exchange (ETDEWEB)

    Tristao, Juliana Cristina; Moura, Flavia Cristina Camilo; Lago, Rochel Montero, E-mail: rochel@ufmg.b [Universidade Federal de Minas Gerais (DQ/UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica; Sapag, Karim [Universidade Nacional de San Luis (Argentina). Lab. de Ciencias de Superficies y Medios Porosos

    2010-07-01

    In this work, a TPR (Temperature Programmed Reduction) system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition), The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al{sub 2}O{sub 3} and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields. (author)

  19. A proposal to use chlorine-36 for monitoring the movement of radionuclides from nuclear explosions

    International Nuclear Information System (INIS)

    Phillips, F.M.; Davis, S.N.; Kubik, P.

    1990-01-01

    Chlorine-36 has been produced in large amounts by hundreds of nuclear explosions on the Nevada Test Site as well as 12 off-site explosions at eight locations in five states. Continued monitoring of the redistribution of radionuclides by subsurface water is of concern in most of the areas affected by the detonations. Chlorine-36 has the following advantages as a built-in tracer for this redistribution: its mobility is equal to or greater than water, its long half-life assures its continued usefulness over long periods, collection and storage of samples is simple, it is not subject to vapor transport at ordinary temperatures, its natural background is very low, and it does not form insoluble precipitates. Chlorine-36 from the Gnome event near Carlsbad, New Mexico, illustrates how 36 Cl can be used to help study the redistribution of radionuclides in the soil profile. Chlorine-36 is also potentially useful as a tracer to study movement of contaminants around large nuclear reactor complexes and near repositories for radioactive waste

  20. Analysis of volatile phase transport in soils using natural radon gas as a tracer

    International Nuclear Information System (INIS)

    Chen, C.; Thomas, D.M.

    1992-01-01

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The experiment monitored soil gas radon activity, soil moisture, and soil temperature at three depths in the shallow soil column; barometric pressure, rainfall and wind speed were monitored at the soil surface. Linear and multiple regression analysis of the data sets has shown that the gas phase radon activities under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been demonstrated

  1. Isotopes as tracers in a contaminated fractured chalk aquitard

    Science.gov (United States)

    Nativ, R.; Adar, E.

    2003-04-01

    Clusters of industrial plants often generate contaminant plumes with several potential sources. Prevention of further pollution and designing suitable remedial measures require identification of the contributing source among all potential ones and the sorting of currently active sources from historical ones. In the study area, an industrial complex in the Negev desert, Israel, the lateral spread of groundwater contamination combined with water level patterns and the location of wastewater storage lagoons and treatment facilities posed a serious monitoring problem. Because (1) wastewater from all plants was mixed through a central wastewater pipeline and spread in various ways and means throughout the site, and (2) a groundwater mounding area was formed upgradient of the site, the contribution of potentially contaminating individual downgradient facilities could not be inferred using site-specific contaminants and/or the increased hydraulic head. Stable isotopes of oxygen, hydrogen and sulfur, as well as tritium, proved to be an efficient monitoring tool. Isotopic characterization of the two end members, namely, the natural, uncontaminated groundwater in off-site wells, and the industrial wastewater, provided the criteria for constraining a contaminating source when several alternative sources appeared viable. The isotopic fractionation of oxygen and hydrogen isotopes could be tied to the various disposal phases of the industrial wastewater. The presented case studies illustrate the important role of isotopes as tracers at contaminated sites.

  2. Waste Tank Vapor Project: Tank vapor database development

    International Nuclear Information System (INIS)

    Seesing, P.R.; Birn, M.B.; Manke, K.L.

    1994-09-01

    The objective of the Tank Vapor Database (TVD) Development task in FY 1994 was to create a database to store, retrieve, and analyze data collected from the vapor phase of Hanford waste tanks. The data needed to be accessible over the Hanford Local Area Network to users at both Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The data were restricted to results published in cleared reports from the laboratories analyzing vapor samples. Emphasis was placed on ease of access and flexibility of data formatting and reporting mechanisms. Because of time and budget constraints, a Rapid Application Development strategy was adopted by the database development team. An extensive data modeling exercise was conducted to determine the scope of information contained in the database. a A SUN Sparcstation 1000 was procured as the database file server. A multi-user relational database management system, Sybase reg-sign, was chosen to provide the basic data storage and retrieval capabilities. Two packages were chosen for the user interface to the database: DataPrism reg-sign and Business Objects trademark. A prototype database was constructed to provide the Waste Tank Vapor Project's Toxicology task with summarized and detailed information presented at Vapor Conference 4 by WHC, PNL, Oak Ridge National Laboratory, and Oregon Graduate Institute. The prototype was used to develop a list of reported compounds, and the range of values for compounds reported by the analytical laboratories using different sample containers and analysis methodologies. The prototype allowed a panel of toxicology experts to identify carcinogens and compounds whose concentrations were within the reach of regulatory limits. The database and user documentation was made available for general access in September 1994

  3. The use of a radioactive tracer for the determination of distillation end point in a coke oven

    International Nuclear Information System (INIS)

    Burgio, N.; Capannesi, G.; Ciavola, C.; Sedda, F.

    1995-01-01

    A novel high precision detection method for the determination of the distillation end point of the coking process (usually in the 950 deg C range) has been developed. The system is based on the use of a metallic capsule that melts at a fixed temperature and releases a radioactive gas tracer ( 133 Xe) in the stream of the distillation gas. A series of tests on a pilot oven confirmed the feasibility of the method on industrial scale. Application of the radioactive tracer method to the staging and monitoring in the coking process appears to be possible. (author). 6 refs., 5 figs., 3 tabs

  4. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  5. Vapor generation methods for explosives detection research

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  6. CityFlux perfluorocarbon tracer experiments

    Directory of Open Access Journals (Sweden)

    F. K. Petersson

    2010-07-01

    Full Text Available In June 2006, two perfluorocarbon tracer experiments were conducted in central Manchester UK as part of the CityFlux campaign. The main aim was to investigate vertical dispersion in an urban area during convective conditions, but dispersion mechanisms within the street network were also studied. Paired receptors were used in most cases where one receptor was located at ground level and one at roof level. One receptor was located on the roof of Portland Tower which is an 80 m high building in central Manchester. Source receptor distances in the two experiments varied between 120 and 600 m.

    The results reveal that maximum concentration was sometimes found at roof level rather than at ground level implying the effectiveness of convective forces on dispersion. The degree of vertical dispersion was found to be dependent on source receptor distance as well as on building height in proximity to the release site.

    Evidence of flow channelling in a street canyon was also found. Both a Gaussian profile and a street network model were applied and the results show that the urban topography may lead to highly effective flow channelling which therefore may be a very important dispersion mechanism should the right meteorological conditions prevail.

    The experimental results from this campaign have also been compared with a simple urban dispersion model that was developed during the DAPPLE framework and show good agreement with this.

    The results presented here are some of the first published regarding vertical dispersion. More tracer experiments are needed in order to further characterise vertical concentration profiles and their dependence on, for instance, atmospheric stability. The impact of urban topography on pollutant dispersion is important to focus on in future tracer experiments in order to improve performance of models as well as for our understanding of the relationship between air quality and public health.

  7. CityFlux perfluorocarbon tracer experiments

    Science.gov (United States)

    Petersson, F. K.; Martin, D.; White, I. R.; Henshaw, S. J.; Nickless, G.; Longley, I.; Percival, C. J.; Gallagher, M.; Shallcross, D. E.

    2010-07-01

    In June 2006, two perfluorocarbon tracer experiments were conducted in central Manchester UK as part of the CityFlux campaign. The main aim was to investigate vertical dispersion in an urban area during convective conditions, but dispersion mechanisms within the street network were also studied. Paired receptors were used in most cases where one receptor was located at ground level and one at roof level. One receptor was located on the roof of Portland Tower which is an 80 m high building in central Manchester. Source receptor distances in the two experiments varied between 120 and 600 m. The results reveal that maximum concentration was sometimes found at roof level rather than at ground level implying the effectiveness of convective forces on dispersion. The degree of vertical dispersion was found to be dependent on source receptor distance as well as on building height in proximity to the release site. Evidence of flow channelling in a street canyon was also found. Both a Gaussian profile and a street network model were applied and the results show that the urban topography may lead to highly effective flow channelling which therefore may be a very important dispersion mechanism should the right meteorological conditions prevail. The experimental results from this campaign have also been compared with a simple urban dispersion model that was developed during the DAPPLE framework and show good agreement with this. The results presented here are some of the first published regarding vertical dispersion. More tracer experiments are needed in order to further characterise vertical concentration profiles and their dependence on, for instance, atmospheric stability. The impact of urban topography on pollutant dispersion is important to focus on in future tracer experiments in order to improve performance of models as well as for our understanding of the relationship between air quality and public health.

  8. PIV tracer behavior on propagating shock fronts

    International Nuclear Information System (INIS)

    Glazyrin, Fyodor N; Mursenkova, Irina V; Znamenskaya, Irina A

    2016-01-01

    The present work was aimed at the quantitative particle image velocimetry (PIV) measurement of a velocity field near the front of a propagating shock wave and the study of the dynamics of liquid tracers crossing the shock front. For this goal, a shock tube with a rectangular cross-section (48  ×  24 mm) was used. The flat shock wave with Mach numbers M  =  1.4–2.0 propagating inside the tube channel was studied as well as an expanding shock wave propagating outside the channel with M  =  1.2–1.8 at its main axis. The PIV imaging of the shock fronts was carried out with an aerosol of dioctyl sebacate (DEHS) as tracer particles. The pressures of the gas in front of the shock waves studied ranged from 0.013 Mpa to 0.1 MPa in the series of experiments. The processed PIV data, compared to the 1D normal shock theory, yielded consistent values of wake velocity immediately behind the plain shock wave. Special attention was paid to the blurring of the velocity jump on the shock front due to the inertial particle lag and peculiarities of the PIV technique. A numerical algorithm was developed for analysis and correction of the PIV data on the shock fronts, based on equations of particle-flow interaction. By application of this algorithm, the effective particle diameter of the DEHS aerosol tracers was estimated as 1.03  ±  0.12 μm. A number of different formulations for particle drag were tested with this algorithm, with varying success. The results show consistency with previously reported experimental data obtained for cases of stationary shock waves. (paper)

  9. Vapor generating unit blowdown arrangement

    International Nuclear Information System (INIS)

    McDonald, B.N.

    1978-01-01

    A vapor generating unit having a U-shaped tube bundle is provided with an orificed downcomer shroud and a fluid flow distribution plate between the lower hot and cold leg regions to promote fluid entrained sediment deposition in proximity to an apertured blowdown pipe

  10. Survey on industrial applications of radioactive tracers

    International Nuclear Information System (INIS)

    Kim, Jae Rok; Yoo, Young Soo; Lee, Jong Doo; Awh, Ok Doo; Kim, Jun Hyung

    1986-12-01

    Current status and future feasibilities of industrial tracer applications in the Republic of Korea have been surveyed. Microleak detection using Krypton-85 in eight electronics industrial companies, and efficiency tests of steam generators in four nuclear power plants using Sodium-24 are the principal applications in Korea. Future applications are expected for mercury inventory in one soda industrial company, and alkali movement studies in two cement industrial companies. Korean industries expressed deep interest in leak detection in underground pipelines, abrasion/corrosion studies, mixing rate and residence time measurements. (Author)

  11. Pharmaceuticals as Groundwater Tracers - Applications and Limitations

    Science.gov (United States)

    Scheytt, T. J.; Mersmann, P.; Heberer, T.

    2003-12-01

    Pharmaceutically active substances and metabolites are found at concentrations up to the microgram/L-level in groundwater samples from the Berlin (Germany) area and from several other places world wide. Among the compounds detected in groundwater are clofibric acid, propyphenazone, diclofenac, ibuprofen, and carbamazepine. Clofibric acid, the active metabolite of clofibrate and etofibrate (blood lipid regulators) is detected in groundwater at maximum concentrations of 7300 ng/L. Among the most important input paths of drugs are excretion and disposal into the sewage system. Groundwater contamination is likely to be due to leaky sewage systems, influent streams, bank filtration, and irrigation with effluent water from sewage treatment plants. There are no known natural sources of the above mentioned pharmaceuticals. The use of pharmaceuticals as tracers may include: (a) Quantification of infiltration from underground septic tanks (b) Detection of leaky sewage systems / leaky sewage pipes (c) Estimation of the effectiveness of sewage treatment plants (d) Identification of transport pathways of other organic compounds (e) Quantification of surface water / groundwater interaction (f) Characterization of the biodegradation potential. The use of pharmaceuticals as tracers is limited by variations in input. These variations depend on the amount of drugs prescribed and used in the study area, the social structure of the community, the amount of hospital discharge, and temporal concentration variations. Furthermore, the analysis of trace amounts of pharmaceuticals is sophisticated and expensive and may therefore limit the applicability of pharmaceuticals as tracers. Finally, the transport and degradation behavior of pharmaceuticals is not fully understood. Preliminary experiments in the laboratory were conducted using sediment material and groundwater from the Berlin area to evaluate the transport and sorption behavior of selected drugs. Results of the column experiments

  12. Tracer preparate and method for its production

    International Nuclear Information System (INIS)

    Pratt, F.P.; Gagnon, D.

    1978-01-01

    The injectable tracer preparate for investigations to determine the blood flow in organs or the effect of drugs on the blood flow consists of a core of ion exchanger resin coated with polyfuran or a polymer which is the reaction product of a monomer catalysable by acid or base. The nuclei have a diameter of 10 to 200 micron, the coating thickness is between 1 and 3 micron. Ions of Ce 141, Cr 51, Sr 85, Sr 46 or Co 57 of strength 0.1-100 millicurie are adsorbed on the nucleus. (DG) [de

  13. Tracer techniques in estimating nuclear materials holdup

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1987-01-01

    Residual inventory of nuclear materials remaining in processing facilities (holdup) is recognized as an insidious problem for safety of plant operations and safeguarding of special nuclear materials (SNM). This paper reports on an experimental study where a well-known method of radioanalytical chemistry, namely tracer technique, was successfully used to improve nondestructive measurements of holdup of nuclear materials in a variety of plant equipment. Such controlled measurements can improve the sensitivity of measurements of residual inventories of nuclear materials in process equipment by several orders of magnitude and the good quality data obtained lend themselves to developing mathematical models of holdup of SNM during stable plant operations

  14. Measurement of distribution coefficients using a radial injection dual-tracer test

    International Nuclear Information System (INIS)

    Pickens, J.F.; Jackson, R.E.; Inch, K.J.; Merritt, W.F.

    1981-01-01

    The dispersive and adsorptive properties of a sandy aquifer were evaluated by using a radial injection dual-tracer test with 131 I as the nonreactive tracer and 85 Sr as the reactive tracer. The tracer migration was monitored by using multilevel point-sampling devices located at various radial distances and depths. Nonequilibrium physical and chemical adsorption effects for 85 Sr were treated as a spreading or dispersion mechanism in the breakthrough curve analysis. The resulting effective dispersivity values for 85 Sr were typically a factor of 2 to 5 larger than those obtained for 131 I. The distribution coefficient (K/sub d//sup Sr/) values obtained from analysis of the breakthrough curves at three depths and two radial distances ranged from 2.6 to 4.5 ml/g. These compare favorably with values obtained by separation of fluids from solids in sediment cores, by batch experiments on core sediments and by analysis of a 25-year-old radioactive waste plume in another part of the same aquifer. Correlations of adsorbed 85 Sr radioactivity with grain size fractions demonstrated preferential adsorption to the coarsest fraction and to the finest fraction. The relative amounts of electrostatically and specifically adsorbed 85 Sr on the aquifer sediments were determined with desorption experiments on core sediments using selective chemical extractants. The withdrawal phase breakthrough curves for the well, obtained immediately following the injection phase, showed essentially full tracer recoveries for both 131 I and 85 Sr. Relatively slow desorption of 85 Sr provided further indication of the nonequilibrium nature of the adsorption-desorption phenomena

  15. Using the Aerasense NanoTracer for simultaneously obtaining several ultrafine particle exposure metrics

    International Nuclear Information System (INIS)

    Marra, J

    2011-01-01

    The expanding production and use of nanomaterials increases the chance of human exposure to engineered nanoparticles (NP), also referred to as ultrafine particles (UFP; ≤ 100 - 300 nm). This is particularly true in workplaces where they can become airborne and thereafter inhaled by workers during nanopowder processing. Considering the suspected hazard of many engineered UFPs, the general recommendation is to take measures for minimizing personal exposure while monitoring the UFP pollution for assessment and control purposes. The portable Aerasense NanoTracer accomplishes this UFP monitoring, either intermittently or in real time. This paper reviews its design and operational characteristics and elaborates on a number of application extensions and constraints. The NanoTracer's output signals enable several UFP exposure metrics to be simultaneously inferred. These include the airborne UFP number concentration and the number-averaged particle size, serving as characteristics of the pertaining UFP pollution. When non-hygroscopic particles are involved, the NanoTracer's output signals also allow an estimation of the lung-deposited UFP surface area concentration and the lung-deposited UFP mass concentration. It is thereby possible to distinguish between UFP depositions in the alveolar region, the trachea-bronchial region and the head airway region, respectively, by making use of the ICRP particle deposition model.

  16. Measurements of waste tank passive ventilation rates using tracer gases

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Olsen, K.B.; Sklarew, D.S.; Evans, J.C.; Remund, K.M.

    1997-09-01

    This report presents the results of ventilation rate studies of eight passively ventilated high-level radioactive waste tanks using tracer gases. Head space ventilation rates were determined for Tanks A-101, AX-102, AX-103, BY-105, C-107, S-102, U-103, and U-105 using sulfur hexafluoride (SF 6 ) and/or helium (He) as tracer gases. Passive ventilation rates are needed for the resolution of several key safety issues. These safety issues are associated with the rates of flammable gas production and ventilation, the rates at which organic salt-nitrate salt mixtures dry out, and the estimation of organic solvent waste surface areas. This tracer gas study involves injecting a tracer gas into the tank headspace and measuring its concentration at different times to establish the rate at which the tracer is removed by ventilation. Tracer gas injection and sample collection were performed by SGN Eurisys Service Corporation and/or Lockheed Martin Hanford Corporation, Characterization Project Operations. Headspace samples were analyzed for He and SF 6 by Pacific Northwest National Laboratory (PNNL). The tracer gas method was first demonstrated on Tank S-102. Tests were conducted on Tank S-102 to verify that the tracer gas was uniformly distributed throughout the tank headspace before baseline samples were collected, and that mixing was sufficiently vigorous to maintain an approximately uniform distribution of tracer gas in the headspace during the course of the study. Headspace samples, collected from a location about 4 in away from the injection point and 15, 30, and 60 minutes after the injection of He and SF 6 , indicated that both tracer gases were rapidly mixed. The samples were found to have the same concentration of tracer gases after 1 hour as after 24 hours, suggesting that mixing of the tracer gas was essentially complete within 1 hour

  17. Chemotherapeutic agent and tracer composition and use thereof

    International Nuclear Information System (INIS)

    Babb, A. L.

    1985-01-01

    A therapeutic composition suitable for extracorporeal treatment of whole blood comprises a dialyzable chemotherapeutic agent and a dialyzable fluorescable tracer means. The removal rate of the fluorescable tracer compound from treated blood during hemodialysis is a function of the removal rate of unreacted chemotherapeutic agent present. The residual chemotherapeutic agent concentration after hemodialysis is ascertained by measuring the concentration of the fluorescable tracer compound in a dialysate using fluorometric techniques

  18. Atmospheric Gas Tracers in Groundwater: Theory, Sampling. Measurement and Interpretation

    International Nuclear Information System (INIS)

    Bayari, C.S.

    2002-01-01

    Some of the atmospheric gasses posses features that are sought in an environmental tracer of hydrogeologic interest. Among these, chlorofluorocarbons, sulfur hegzafluoride, carbon tetrachloride, methyl chloroform, krypton-85 etc. have found increasing use in groundwater age dating studies during the last ten years. This paper explains the theory of their use as tracer and discusses the major concerns as related to their sampling and analyses. Factors affecting their applicability and the approach to interpret tracer gas data is briefly outlined

  19. Compilation and analyses of results from cross-hole tracer tests with conservative tracers

    Energy Technology Data Exchange (ETDEWEB)

    Hjerne, Calle; Nordqvist, Rune; Harrstroem, Johan (Geosigma AB (Sweden))

    2010-09-15

    Radionuclide transport in hydrogeological formations is one of the key factors for the safety analysis of a future repository of nuclear waste. Tracer tests have therefore been an important field method within the SKB investigation programmes at several sites since the late 1970's. This report presents a compilation and analyses of results from cross-hole tracer tests with conservative tracers performed within various SKB investigations. The objectives of the study are to facilitate, improve and reduce uncertainties in predictive tracer modelling and to provide supporting information for SKB's safety assessment of a final repository of nuclear waste. More specifically, the focus of the report is the relationship between the tracer mean residence time and fracture hydraulic parameters, i.e. the relationship between mass balance aperture and fracture transmissivity, hydraulic diffusivity and apparent storativity. For 74 different combinations of pumping and injection section at six different test sites (Studsvik, Stripa, Finnsjoen, Aespoe, Forsmark, Laxemar), estimates of mass balance aperture from cross-hole tracer tests as well as transmissivity were extracted from reports or in the SKB database Sicada. For 28 of these combinations of pumping and injection section, estimates of hydraulic diffusivity and apparent storativity from hydraulic interference tests were also found. An empirical relationship between mass balance aperture and transmissivity was estimated, although some uncertainties for individual data exist. The empirical relationship between mass balance aperture and transmissivity presented in this study deviates considerably from other previously suggested relationships, such as the cubic law and transport aperture as suggested by /Dershowitz and Klise 2002/, /Dershowitz et al. 2002/ and /Dershowitz et al. 2003/, which also is discussed in this report. No clear and direct empirical relationship between mass balance aperture and hydraulic

  20. Nested Tracer Studies In Catchment Hydrology: Towards A Multiscale Understanding of Runoff Generation and Catchment Funtioning

    Science.gov (United States)

    Soulsby, C.; Rodgers, P.; Malcolm, I. A.; Dunn, S.

    Geochemical and isotopic tracers have been shown to have widespread utility in catch- ment hydrology in terms of identifying hydrological source areas and characterising residence time distributions. In many cases application of tracer techniques has pro- vided insights into catchment functioning that could not be obtained from hydromet- ric and/or modelling studies alone. This paper will show how the use of tracers has contributed to an evolving perceptual model of hydrological pathways and runoff gen- eration processes in catchments in the Scottish highlands. In particular the paper will focus on the different insights that are gained at three different scales of analysis; (a) nested sub-catchments within a mesoscale (ca. 200 square kilometers) experimen- tal catchment; (b) hillslope-riparian interactions and (c) stream bed fluxes. Nested hydrometric and hydrochemical monitoring within the mesoscale Feugh catchment identified three main hydrological response units: (i) plateau peatlands which gener- ated saturation overland flow in the catchment headwaters, (ii) steep valley hillslopes which drain from the plateaux into (iii) alluvial and drift aquifers in the valley bottoms. End Member Mixing Analysis (EMMA) in 8 nested sub-catchments indicated that that stream water tracer concentrations can be modelled in terms of 2 dominant runoff pro- cesses; overland flow from the peat and groundwater from the drift aquifers. Ground- water contributions generally increased with catchment size, though this was moder- ated by the characteristics of individual sub-basins, with drift cover being particularly important. Hillslope riparian interactions were also examined using tracers, hydromet- ric data and a semi-distributed hydrological model. This revealed that in the glaciated, drift covered terrain of the Scottish highlands, extensive valley bottom aquifers effec- tively de-couple hillslope waters from the river channel. Thus, riparian groundwater appears to significantly

  1. Hanford soil partitioning and vapor extraction study

    International Nuclear Information System (INIS)

    Yonge, D.; Hossain, A.; Cameron, R.; Ford, H.; Storey, C.

    1996-07-01

    This report describes the testing and results of laboratory experiments conducted to assist the carbon tetrachloride soil vapor extraction project operating in the 200 West Area of the Hanford Site in Richland, Washington. Vapor-phase adsorption and desorption testing was performed using carbon tetrachloride and Hanford Site soils to estimate vapor-soil partitioning and reasonably achievable carbon tetrachloride soil concentrations during active vapor extractions efforts at the 200 West Area. (CCl 4 is used in Pu recovery from aqueous streams.)

  2. Vapor Pressure Data Analysis and Statistics

    Science.gov (United States)

    2016-12-01

    near 8, 2000, and 200, respectively. The A (or a) value is directly related to vapor pressure and will be greater for high vapor pressure materials...1, (10) where n is the number of data points, Yi is the natural logarithm of the i th experimental vapor pressure value, and Xi is the...VAPOR PRESSURE DATA ANALYSIS AND STATISTICS ECBC-TR-1422 Ann Brozena RESEARCH AND TECHNOLOGY DIRECTORATE

  3. Performance Testing of Tracer Gas and Tracer Aerosol Detectors for use in Radionuclide NESHAP Compliance Testing

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lattin, Rebecca Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-28

    The Rad-NESHAP program, part of the Air Quality Compliance team of LANL’s Compliance Programs group (EPC-CP), and the Radiation Instrumentation & Calibration team, part of the Radiation Protection Services group (RP-SVS), frequently partner on issues relating to characterizing air flow streams. This memo documents the most recent example of this partnership, involving performance testing of sulfur hexafluoride detectors for use in stack gas mixing tests. Additionally, members of the Rad-NESHAP program performed a functional trending test on a pair of optical particle counters, comparing results from a non-calibrated instrument to a calibrated instrument. Prior to commissioning a new stack sampling system, the ANSI Standard for stack sampling requires that the stack sample location must meet several criteria, including uniformity of tracer gas and aerosol mixing in the air stream. For these mix tests, tracer media (sulfur hexafluoride gas or liquid oil aerosol particles) are injected into the stack air stream and the resulting air concentrations are measured across the plane of the stack at the proposed sampling location. The coefficient of variation of these media concentrations must be under 20% when evaluated over the central 2/3 area of the stack or duct. The instruments which measure these air concentrations must be tested prior to the stack tests in order to ensure their linear response to varying air concentrations of either tracer gas or tracer aerosol. The instruments used in tracer gas and aerosol mix testing cannot be calibrated by the LANL Standards and Calibration Laboratory, so they would normally be sent off-site for factory calibration by the vendor. Operational requirements can prevent formal factory calibration of some instruments after they have been used in hazardous settings, e.g., within a radiological facility with potential airborne contamination. The performance tests described in this document are intended to demonstrate the reliable

  4. Engineering Task Plan for Preparing the Type 4 In Situ Vapor Samplers (ISVS) for Use

    International Nuclear Information System (INIS)

    BOGER, R.M.

    2000-01-01

    The DOE has identified a need to sample vapor space and exhaust ducts of several waste tanks The In-Situ Vapor Sampling (ISVS) Type IV vapor sampling cart has been identified as the appropriate monitoring tool. The ISVS carts have been out of service for a number of years. This ETP outlines the work to be performed to ready the type IV gas sampler for operation Characterization Engineering will evaluate the Type IV gas sampler carts to determine their state of readiness and will proceed to update procedures and equipment documentation to make the sampler operationally acceptable

  5. Advection and dispersion of bed load tracers

    Science.gov (United States)

    Lajeunesse, Eric; Devauchelle, Olivier; James, François

    2018-05-01

    We use the erosion-deposition model introduced by Charru et al. (2004) to numerically simulate the evolution of a plume of bed load tracers entrained by a steady flow. In this model, the propagation of the plume results from the stochastic exchange of particles between the bed and the bed load layer. We find a transition between two asymptotic regimes. The tracers, initially at rest, are gradually set into motion by the flow. During this entrainment regime, the plume is strongly skewed in the direction of propagation and continuously accelerates while spreading nonlinearly. With time, the skewness of the plume eventually reaches a maximum value before decreasing. This marks the transition to an advection-diffusion regime in which the plume becomes increasingly symmetrical, spreads linearly, and advances at constant velocity. We analytically derive the expressions of the position, the variance, and the skewness of the plume and investigate their asymptotic regimes. Our model assumes steady state. In the field, however, bed load transport is intermittent. We show that the asymptotic regimes become insensitive to this intermittency when expressed in terms of the distance traveled by the plume. If this finding applies to the field, it might provide an estimate for the average bed load transport rate.

  6. Device and method for traditional chinese medicine diagnosis using radioactive tracer method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shanling; Shen, Miaohe

    1997-05-29

    Disclosed is a device and method for traditional chinese medicine diagnosis using radioactive-tracer method. At least two nuclear radiation probes are arranged apart along the channels to detect the changing with time and on space of the intensity of radioactivity of the nuclear radioactive tracer which has been injected into the body in the channel position. The detected signals are amplified by amplifiers, and the outputs of the amplifiers are applied to data processing means which monitor the whole detecting process in real time and analyse and process the detected information about the changing of the intensity of radioactivity with time and on space indicating the operating of vital energy and blood, and obtain state parameters about operating of vital energy and blood in the body which is then output through data output means. (author) figs.

  7. Data summary report: Southern sector monitoring well installations

    International Nuclear Information System (INIS)

    Jones, W.E.

    2000-01-01

    This report provides construction documentation for four double-screen monitoring wells installed as part of the groundwater monitoring strategy identified in the Groundwater Effectiveness Monitoring Strategy for the Proposed Southern Sector Phase I Groundwater Corrective Action (WSRC-RP-99-4114, Rev. 0, July 1999). The proposed corrective action includes In-Well Vapor Stripping Wells SSR-001 through SSR-012, designed to intercept and ameliorate the TCE and PCE plumes at the 500 parts per billion isoconcentration contour. The four monitoring wells (SSM-10, -15A, -16-, and -17) constructed during this project are designed to monitor the effectiveness of the In-Well Vapor Stripping Well system. One monitoring well (SSM-10) is located hydraulically upgradient of vapor stripping wells. The other three wells are located hydraulically downgradient of the vapor stripping wells. Four monitoring wells additional to those describe in this report will be installed for effectiveness monitoring in the future

  8. Method of estimating changes in vapor concentrations continuously generated from two-component organic solvents.

    Science.gov (United States)

    Hori, Hajime; Ishidao, Toru; Ishimatsu, Sumiyo

    2010-12-01

    We measured vapor concentrations continuously evaporated from two-component organic solvents in a reservoir and proposed a method to estimate and predict the evaporation rate or generated vapor concentrations. Two kinds of organic solvents were put into a small reservoir made of glass (3 cm in diameter and 3 cm high) that was installed in a cylindrical glass vessel (10 cm in diameter and 15 cm high). Air was introduced into the glass vessel at a flow rate of 150 ml/min, and the generated vapor concentrations were intermittently monitored for up to 5 hours with a gas chromatograph equipped with a flame ionization detector. The solvent systems tested in this study were the methanoltoluene system and the ethyl acetate-toluene system. The vapor concentrations of the more volatile component, that is, methanol in the methanol-toluene system and ethyl acetate in the ethyl acetate-toluene system, were high at first, and then decreased with time. On the other hand, the concentrations of the less volatile component were low at first, and then increased with time. A model for estimating multicomponent organic vapor concentrations was developed, based on a theory of vapor-liquid equilibria and a theory of the mass transfer rate, and estimated values were compared with experimental ones. The estimated vapor concentrations were in relatively good agreement with the experimental ones. The results suggest that changes in concentrations of two-component organic vapors continuously evaporating from a liquid reservoir can be estimated by the proposed model.

  9. Estimating enthalpy of vaporization from vapor pressure using Trouton's rule.

    Science.gov (United States)

    MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2007-04-15

    The enthalpy of vaporization of liquids and subcooled liquids at 298 K (delta H(VAP)) is an important parameter in environmental fate assessments that consider spatial and temporal variability in environmental conditions. It has been shown that delta H(VAP)P for non-hydrogen-bonding substances can be estimated from vapor pressure at 298 K (P(L)) using an empirically derived linear relationship. Here, we demonstrate that the relationship between delta H(VAP)and PL is consistent with Trouton's rule and the ClausiusClapeyron equation under the assumption that delta H(VAP) is linearly dependent on temperature between 298 K and the boiling point temperature. Our interpretation based on Trouton's rule substantiates the empirical relationship between delta H(VAP) degree and P(L) degrees for non-hydrogen-bonding chemicals with subcooled liquid vapor pressures ranging over 15 orders of magnitude. We apply the relationship between delta H(VAP) degrees and P(L) degrees to evaluate data reported in literature reviews for several important classes of semivolatile environmental contaminants, including polycyclic aromatic hydrocarbons, chlorobenzenes, polychlorinated biphenyls and polychlorinated dibenzo-dioxins and -furans and illustrate the temperature dependence of results from a multimedia model presented as a partitioning map. The uncertainty associated with estimating delta H(VAP)degrees from P(L) degrees using this relationship is acceptable for most environmental fate modeling of non-hydrogen-bonding semivolatile organic chemicals.

  10. Active thermal tracer testing in a shallow aquifer of the Thur valley, Switzerland

    Science.gov (United States)

    Schweingruber, Mischa; Somogyvári, Márk; Bayer, Peter

    2015-04-01

    Tracer tests are one of the standard methods for investigating groundwater processes. Among the range of different test variants, using heat as a tracer has gained substantial interest during the last decade. Temperature measurements have become essential ingredients for example for characterization of river-aquifer interactions and in the field of geothermics. Much less attention than on natural temperature signals has been devoted to induced synthetic temperature signals, even though it is well known that temperature is an easy to measure, invisible but sensitive system property. Design, application and inversion of such active thermal tracer tests represent one focus of our work. We build up on the experience from related field experiments, where heated water was injected and the propagation of the generated thermal anomaly was monitored. In this presentation, we show the results from first field-testing in an alluvial aquifer at the Widen site in the Thur valley in Switzerland. The thermal evolution of groundwater was monitored in summer 2014 during and after several days of heated water injection. By this test, we want to derive insights into the prevailing hydraulic heterogeneity of the shallow aquifer at the site. The results are used for calibration of a two dimensional hydrogeological numerical model. With the calibrated hydraulic conductivity field, the experiment is simulated and the transient evolution of the heat plume is visualized. Hydraulic heterogeneity is identified as one main factor for lateral spreading of the heat plume. The most important result of the experiment is that the significance of the ambient flow field is very high and even with high pumping rates to establish forced gradient conditions its effect cannot be overridden. During the test, precious technical experience was gained, which will be beneficial for subsequent heat tracer applications. For example, the challenge of maintaining a constant injection rate and temperature could

  11. Vapor deposition of tantalum and tantalum compounds

    International Nuclear Information System (INIS)

    Trkula, M.

    1996-01-01

    Tantalum, and many of its compounds, can be deposited as coatings with techniques ranging from pure, thermal chemical vapor deposition to pure physical vapor deposition. This review concentrates on chemical vapor deposition techniques. The paper takes a historical approach. The authors review classical, metal halide-based techniques and current techniques for tantalum chemical vapor deposition. The advantages and limitations of the techniques will be compared. The need for new lower temperature processes and hence new precursor chemicals will be examined and explained. In the last section, they add some speculation as to possible new, low-temperature precursors for tantalum chemical vapor deposition

  12. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  13. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  14. Water vapor increase in the northern hemispheric lower stratosphere by the Asian monsoon anticyclone observed during TACTS campaign in 2012

    Science.gov (United States)

    Rolf, Christian; Vogel, Bärbel; Hoor, Peter; Günther, Gebhard; Krämer, Martina; Müller, Rolf; Müller, Stephan; Riese, Martin

    2017-04-01

    Water vapor plays a key role in determining the radiative balance in the upper troposphere and lower stratosphere (UTLS) and thus the climate of the Earth (Forster and Shine, 2002; Riese et al., 2012). Therefore a detailed knowledge about transport pathways and exchange processes between troposphere and stratosphere is required to understand the variability of water vapor in this region. The Asian monsoon anticyclone caused by deep convection over and India and east Asia is able to transport air masses from the troposphere into the nothern extra-tropical stratosphere (Müller et al. 2016, Vogel et al. 2016). These air masses contain pollution but also higher amounts of water vapor. An increase in water vapor of about 0.5 ppmv in the extra-tropical stratosphere above a potential temperature of 380 K was detected between August and September 2012 by in-situ instrumentation above the European northern hemisphere during the HALO aircraft mission TACTS. Here, we investigated the origin of this water vapor increase with the help of the 3D Lagrangian chemistry transport model CLaMS (McKenna et al., 2002). We can assign an origin of the moist air masses in the Asian region (North and South India and East China) with the help of model origin tracers. Additionally, back trajectories of these air masses with enriched water vapor are used to differentiate between transport from the Asia monsoon anticyclone and the upwelling of moister air in the tropics particularly from the Pacific and Southeast Asia.

  15. Importance Profiles for Water Vapor

    Science.gov (United States)

    Mapes, Brian; Chandra, Arunchandra S.; Kuang, Zhiming; Zuidema, Paquita

    2017-11-01

    Motivated by the scientific desire to align observations with quantities of physical interest, we survey how scalar importance functions depend on vertically resolved water vapor. Definitions of importance begin from familiar examples of water mass I m and TOA clear-sky outgoing longwave flux I OLR, in order to establish notation and illustrate graphically how the sensitivity profile or "kernel" depends on whether specific humidity S, relative humidity R, or ln( R) are used as measures of vapor. Then, new results on the sensitivity of convective activity I con to vapor (with implied knock-on effects such as weather prediction skill) are presented. In radiative-convective equilibrium, organized (line-like) convection is much more sensitive to moisture than scattered isotropic convection, but it exists in a drier mean state. The lesson for natural convection may be that organized convection is less susceptible to dryness and can survive and propagate into regions unfavorable for disorganized convection. This counterintuitive interpretive conclusion, with respect to the narrow numerical result behind it, highlights the importance of clarity about what is held constant at what values in sensitivity or susceptibility kernels. Finally, the sensitivities of observable radiance signals I sig for passive remote sensing are considered. While the accuracy of R in the lower free troposphere is crucial for the physical importance scalars, this layer is unfortunately the most difficult to isolate with passive remote sensing: In high emissivity channels, water vapor signals come from too high in the atmosphere (for satellites) or too low (for surface radiometers), while low emissivity channels have poor altitude discrimination and (in the case of satellites) are contaminated by surface emissions. For these reasons, active ranging (LiDAR) is the preferred observing strategy.

  16. Vapor Pressure of Antimony Triiodide

    Science.gov (United States)

    2017-12-07

    unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Vapor Pressure 1 3. Experiment 3 4. Discussion and Measurements 5 5...SbI3 as a function of temperature ......................... 6 Approved for public release; distribution is unlimited. 1 1. Introduction ...single-crystal thin films of n-type (Bi,Sb)2(Te,Se)3 materials presents new doping challenges because it is a nonequilibrium process. (Bi,Sb)2(Te,Se)3

  17. Sodium vapor charge exchange cell

    International Nuclear Information System (INIS)

    Hiddleston, H.R.; Fasolo, J.A.; Minette, D.C.; Chrien, R.E.; Frederick, J.A.

    1976-01-01

    An operational sequential charge-exchange ion source yielding a 50 MeV H - current of approximately 8 mA is planned for use with the Argonne 500 MeV booster synchrotron. We report on the progress for development of a sodium vapor charge-exchange cell as part of that planned effort. Design, fabrication, and operating results to date are presented and discussed. (author)

  18. Monitoreo de emisiones de material particulado de chimeneas de generadores de vapor de la industria azucarera en Tucumán, R. Argentina Monitoring of effluent particulate matter emitted by sugarcane factory stacks in Tucumán

    Directory of Open Access Journals (Sweden)

    Marcos A. Golato

    2012-06-01

    Full Text Available Durante las moliendas en los años 2008, 2009, 2010 y 2011, se realizaron mediciones de las concentraciones de material particulado total (MPT en las emisiones de chimeneas de calderas de la industria azucarera, en Tucumán, R. Argentina. El objetivo de este trabajo fue monitorear la evolución de la concentración y emisión de MPT y observar la influencia de los sistemas de filtrado instalados en las chimeneas de las mencionadas unidades. Se ilustran los datos de las emisiones de MPT obtenidas en los años indicados, con valores promedio por caldera de 58,5 kg/h, 33,6 kg/h, 47,6 kg/h y 33,9 kg/h, respectivamente. Asimismo, este estudio muestra un seguimiento minucioso de un grupo de calderas bagaceras, para determinar la evolución de las emisiones en función de las variables de operación características de esas calderas. Los resultados demostraron la influencia del mantenimiento y de la correcta operación de los equipos de filtrado en la calidad de los gases que fluyen por las chimeneas. Se estudió la influencia de los índices característicos de diseño de los lavadores de gases en la concentración de partículas. Se observó que se ha logrado un menor impacto ambiental a lo largo del tiempo analizado.Total particulate matter (TPM concentrations were measured in stack fumes from sugar factory steam generating boilers in Tucumán in 2008, 2009, 2010 and 2011. The objective of this work was to monitor the evolution of TPM concentrations and emissions and observe the efficiency of filtration systems used in sugarcane factory stacks. Average values of 58.5 kg/h, 33.6 kg/h, 47.6 kg/h and 33.9 kg/h were obtained in 2008, 2009, 2010 and 2011, respectively. Bagasse boilers were also meticulously surveyed to obtain data of the evolution of emissions in relation to specific operation variables of the boilers. Data concerning the quality of effluent gasses from the stacks demonstrated the influence of maintaining and correctly using filtration

  19. TMI cable tracer operation and maintenance manual for assembly 417910

    International Nuclear Information System (INIS)

    Sumstine, R.L.

    1983-11-01

    This manual provides technical information and instructions to operate and maintain the cable tracer designed for the Three Mile Island (TMI) Unit 2 Reactor Building. The TMI cable tracer was developed to allow TMI personnel to trace cables in cable trays that may be tested or sectioned for destructive examination

  20. Methane emission quantification from landfills using a double tracer approach

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Samuelsson, J.; Fredenslund, Anders Michael

    2007-01-01

    A tracer method was successfully used for quantification of the whole methane (CH4) emission from Fakse landfill. By using two different tracers the emission from different sections of the landfill could be quantified. Furthermore, is was possible to determine the emissions from local on site...

  1. Use of 236Pu and 242Pu as a radiochemical tracer for estimation of Pu in bioassay samples by fission track analysis

    International Nuclear Information System (INIS)

    Sawant, Pramilla D.; Prabhu, Supreetha P.; Kalsi, P.C.

    2008-01-01

    236 Pu and 242 Pu are routinely used as radiochemical yield monitors in India for bioassay monitoring of occupational workers by alpha spectrometry. Fission Track Analysis (FTA) is also being standardized for trace level determination of Pu in bioassay samples. The present study, reports the utility of 236 Pu and 242 Pu as radiochemical tracers in estimation of Pu in bioassay samples by FTA technique. The advantages of using 236 Pu tracer in FTA over 242 Pu as well as the interference caused due to presence of 241 Pu in the bioassay samples of occupational workers handling power reactor grade Pu is discussed. (author)

  2. National Biomedical Tracer Facility. Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, R.

    1995-02-14

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

  3. Use of radioactive tracers in chemical reactions

    International Nuclear Information System (INIS)

    Paci, B.; Saiki, M.

    1979-01-01

    A method for the determination of small quantities of nickel by using radioactive tracers is presented. An analytical application of the displacement reaction between and zinc-ethylenediaminetetraacetate, (Zn-EDTA), labelled with 65 Zn is investigated. This method is based on the extraction of radioactive zinc, displaced by nickel from the zinc chelate, into a dithizone-carbon tetrachloride solution and the subsequent measurement of the activity of an aliquot of the extract. It is shown that the method is very sentitive and nickel can be measured in concentrations as small as 0,1μg/ml or even less, depending on the specific activity of the radioreagent used. The precision and accuracy of the method are determined. An attempt to eliminate the problem of interference by using masking agents or by means of a previous separation of nickel and other interfereing metals, is also made. (Author) [pt

  4. Positron emission tomography tracers for imaging angiogenesis

    International Nuclear Information System (INIS)

    Haubner, Roland; Beer, Ambros J.; Wang, Hui; Chen, Xiaoyuan

    2010-01-01

    Position emission tomography imaging of angiogenesis may provide non-invasive insights into the corresponding molecular processes and may be applied for individualized treatment planning of antiangiogenic therapies. At the moment, most strategies are focusing on the development of radiolabelled proteins and antibody formats targeting VEGF and its receptor or the ED-B domain of a fibronectin isoform as well as radiolabelled matrix metalloproteinase inhibitors or α v β 3 integrin antagonists. Great efforts are being made to develop suitable tracers for different target structures. All of the major strategies focusing on the development of radiolabelled compounds for use with positron emission tomography are summarized in this review. However, because the most intensive work is concentrated on the development of radiolabelled RGD peptides for imaging α v β 3 expression, which has successfully made its way from bench to bedside, these developments are especially emphasized. (orig.)

  5. Atmospheric tracer experiments for regional dispersion studies

    International Nuclear Information System (INIS)

    Heffter, J.L.; Ferber, G.J.

    1980-01-01

    Tracer experiments are being conducted to verify atmospheric transport and dispersion calculations at distances from tens to hundreds of km from pollutant sources. In one study, a 2 1/2 year sampling program has been carried out at 13 sites located 30 to 140 km from a source of 85 Kr at the Savannah River Plant in South Carolina. Average weekly concentrations as well as twice-daily concentrations were obtained. Sampling data and meteorological data, including surface, tower, and rawinsonde observations are available on magnetic tape for model verification studies. Some verification results for the Air Resources Laboratories Atmospheric Transort and Dispersion Model (ARL-ATAD) are shown for averaging periods from one week to two years

  6. Use of radioactive tracers in chemical reactions

    International Nuclear Information System (INIS)

    Paci, B.

    1979-01-01

    A method for the determination of small quantities of nickel using radioactive tracers is presented. An analytical application of the displacement reaction between nickel and zinc ethylenediaminetetraacetate labeled with zinc-65 is pursued. This method is based on the extraction of radioactive zinc displaced by nickel from the zinc chelate into a dithizone-carbon tetracloride solution and the subsequent measurement of the activity of an aliquot of the extract. The method is very sensitive and nickel can be measured in concentrations as small as 0.1μg/ml or even less, depending on the specific activity of the radioreagent used. The precision and the accuracy of the method are determined. The problem of interferences, trying to eliminate them by using masking agents or by means of a previous separation between nickel and other interfering metals, is also investigated [pt

  7. National Biomedical Tracer Facility. Project definition study

    International Nuclear Information System (INIS)

    Schafer, R.

    1995-01-01

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H - , H + , and D + ). The proposed NBTF facility includes an 80 MeV, 1 mA H - cyclotron that will produce proton-induced (neutron deficient) research isotopes

  8. Chemical tracers of shipping emissions in a Mediterranean harbour

    Science.gov (United States)

    Viana, M.; Amato, F.; Alastuey, A.; Querol, X.; Román, A.; García, M.

    2009-04-01

    Particle emissions from transport-related activities are known as one of the most important sources contributing to the PM mass concentrations in urban environments. However, only limited information is currently available in the literature on the contribution to PM levels by specific transport related sources such as shipping emissions, even though according to the latest IPCC report (Ribeiro et al., 2007), shipping emissions are receiving increased scrutiny by international and regional regulatory agencies because of their potential impact on air quality and human health in communities downwind from major shipping lanes and ports (Dominguez et al., 2008). One of the main reasons for this lack of information is the complexity in the detection of shipping emissions, given that no specific emission tracers have so far been identified as a consequence of the vast variability of combustion fuels burnt by vessels. The city of Melilla was selected for the study of shipping emissions due to its location on the South-Western sector of the Mediterranean basin, on the Northern coast of Morocco and less than 200 km from the Gibraltar Strait (35°17´40" N, 2°56´30" W). The city covers an extension of 13.4 km2, with a population of 70000 inhabitants. The monitoring station selected for the present study is representative of urban background levels, and it is located at approximately 150 m from the Melilla harbour. The harbour is mainly characterised by commercial traffic (passanger and container), although minerals and other loose materials are also stocked on the docks located farthest away from the monitoring site. PM10, PM2.5 and PM1 levels were determined on an hourly basis between 12/01/2008 and 19/12/2008 using a GRIMM laser spectrometer, which produced more than 8000 data points for each size fraction (24000 data points in total). In addition, PM10 and PM2.5 levels were sampled on quartz fibre filter substrates (Munktell) by means of high-volume samplers (PM1025 MCV

  9. Suitable activated carbon-13 tracer techniques

    International Nuclear Information System (INIS)

    Zhang Weicheng; Peng Xiuru; Wang Yuhua

    1995-12-01

    Feasibility and applicability studies of the proton induced gamma ray emission (PIGE) have been performed. The graphite was firstly bombarded at various proton energies to determine gamma ray yield (and, thus, sensitivities) for the reaction of interest. The accuracy for the determination of 13 C abundance was checked, and the precision with which this value and ratios 13 C/ 12 C may be obtained was established by repetitive analysis samples. The performance of different standards in this determination was assessed. The mathematical treatment was developed for the determination of 13 C abundance in tracer studies, and to derive the equations that govern this method of analysis from first principles, to arrive finally at a simple expression by virtue of the observed regularities. The system was calibrated by measuring the gamma ray yield form the 12 C (p, γ) 13 N and 13 C(p,γ) 14 N reaction as a function of known 13 C enrichment. Using this experimentally determined calibration curve, unknown materials can be assayed. This technique is applicable to the analysis of samples with 13 C enrichments between 0.1% and 90%. The samples of human breath natural samples were analyzed against graphite and Cylinder CO 2 standards. Relative standard deviations were 13 C abundance, an increase in 13 C per cent isotopic abundance from the natural 1.11% (average) to only 1.39% may be ascertained. Finally, PIGE is compared with more classical techniques for analysis of 13 C tracer experiments. Ease and speed are important advantages of this technique over mass spectrometry, and its error is compatible with the natural variation of biological results. (9 refs., 11 figs., 9 tabs.)

  10. Rate equations for tracer studies in recirculating reactors

    Energy Technology Data Exchange (ETDEWEB)

    Happel, J [Columbia Univ., New York (USA). Dept. of Chemical Engineering

    1974-10-01

    The employment of isotopic tracers is a useful technique for gaining insight into the rate controlling steps of a complex chemical reaction such as is frequently encountered in heterogeneous catalysis. An effective procedure has been to superpose tracer transfer on a reaction which is occurring under steady state conditions. If tracer transfer is employed in this fashion it is often possible to assess the individual step velocities in an assumed reaction mechanism. If transient transfer of tracer is now introduced it is possible in addition to estimate surface concentrations of chemisorbed species. The purpose of the present paper is to present the mathematical relationships involved when transfer of the tracer is not differential in the investigation. For this purpose a simple example is chosen to illustrate the various possibilities involved.

  11. Molecular dynamics investigation of tracer diffusion in a simple liquid

    International Nuclear Information System (INIS)

    Ould-Kaddour, F.; Barrat, J.L.

    1991-05-01

    Extensive Molecular-Dynamics (MD) simulations have been carried out for a model trace-solvent system made up of 100 solvent molecules and 8 tracer molecules interacting through truncated Lennard-Jones potentials. The influence of the size ratio between solute and solvent, of their mass ratio and of the solvent viscosity on the diffusivity of a small tracer were investigated. Positive deviations from a Stokes-Einstein behaviour are observed, in qualitative agreement with experimental observations. It was also observed that as tracer and solvent become increasingly dissimilar, their respective dynamics becomes decoupled. We suggest that such decouplings can be interpreted by writing their mobility of the tracer as the sum of two terms, the first one arising from a coupling between tracer dynamics and hydrodynamics modes of the solvent, and the second one describing jump motion in a locally nearly frozen environment. (author). 17 refs, 4 figs, 6 tabs

  12. Rate equations for tracer studies in recirculatinng reactors

    International Nuclear Information System (INIS)

    Happel, J.

    1974-01-01

    The employment of isotopic tracers is a useful technique for gaining insight into the rate controlling steps of a complex chemical reaction such as is frequently encountered in heterogeneous catalysis. An effective procedure has been to superpose tracer transfer on a reaction which is occurring under steady state conditions. If tracer transfer is employed in this fashion it is often possible to assess the individual step velocities in an assumed reaction mechanism. If transient transfer of tracer is now introduced it is possible in addition to estimate surface concentrations of chemisorbed species. The purpose of the present paper is to present the mathematical relationships involved when transfer of the tracer is not differential in the investigation. For this purpose a simple example is chosen to illustrate the various possibilities involved. (auth.)

  13. Benefits of important industrial tracer applications in the GDR

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Goeldner, R.; Koennecke, H.G.; Kupsch, H.; Luther, D.; Otto, R.; Reinhardt, R.; Ulrich, H.

    1990-01-01

    Tracers can be used to label substances or objects in order to discriminate between them, to follow their movement, to record changes of concentration and distribution between phases, etc. The main advantages of tracer investigations are the contactless recording of signals without influencing the observed process (also under rigorous operation conditions), the high detection sensitivity, the large number of available tracer nuclides (problems of all branches of industry can be solved) and the fact that tracer investigation can be carried out on operating production units, so that they provide valuable checks of the validity of design and process data. The cost-to-benefit ratio can be as low as 1:50. In the following some selected examples of tracer applications and their benefits will be presented. (orig./BBR) [de

  14. Tracer migration experiments in the Stripa mine 1980-1991

    International Nuclear Information System (INIS)

    Birgersson, L.; Widen, H.; Aagren, T.; Neretnieks, I.

    1992-05-01

    During more than 10 years, tracer experiments have been performed in the Stripa mine as part of the Stripa project to investigate the properties of both 'average' fractured rock and fracture zones. Experiments have been performed that have ranged from a few decimeters, to examine the diffusion into the rock matrix, up to tracer migration to a drift more than 50 meters from the injection point. This report compiles the results and experience that have been gained from all these tracer experiments. The experiments that are described in this report are: * The in-situ diffusion experiment where simultaneous flow and diffusion of tracers in undisturbed rock were studied over more than 3 years to validate diffusivities obtained under laboratory conditions. * Migration in a single fracture where water flow distribution and tracer transport were studied using both conservative and sorbing tracers over migration distances up to 10 meters. * The 3-D migration experiment where water inflow and tracer transport to a drift covered with 350 plastic sheet were investigated to get information on flow porosity, dispersion and channeling. The transport distances were between 10 and 56 meters from the injection points to the drift. * The channeling experiments in which the aim was to examine the channeling properties of single fractures in detail. Pressure pulse tests and tracer experiments were performed over a distances of 2 meters. * The tracer migration experiment in the validation drift where the tracer were injected mainly in a fracture zone and the collection was inside both a drift covered with plastic sheets similar to in the 3-D experiment as well as in a borehole. The distances between injection and sampling location were between 10 and 25 meters. (57 refs.) (au)

  15. Methods and systems using encapsulated tracers and chemicals for reservoir interrogation and manipulation

    Science.gov (United States)

    Roberts, Jeffery; Aines, Roger D; Duoss, Eric B; Spadaccini, Christopher M

    2014-11-04

    An apparatus, method, and system of reservoir interrogation. A tracer is encapsulating in a receptacle. The receptacle containing the tracer is injected into the reservoir. The tracer is analyzed for reservoir interrogation.

  16. Novel tracer for radiation treatment planning; Welche neuen PET-Tracer braucht die Strahlentherapie?

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzenboeck, S.; Krause, B.J. [Rostock Univ. (Germany). Klinik fuer Nuklearmedizin; Herrmann, K.; Gaertner, F.; Souvatzoglou, M. [Technische Univ. Muenchen (Germany). Klinik fuer Nuklearmedizin; Klaesner, B. [Klinikum Bogenhausen, Muenchen (Germany). Inst. fuer Radiologie und Nuklearmedizin

    2011-07-15

    PET and PET/CT with innovative tracers gain increasing importance in diagnosis and therapy management, and radiation treatment planning in radio-oncology besides the widely established FDG. The introduction of [{sup 18}F]Fluorothymidine ([{sup 18}F]FLT) as marker of proliferation, [{sup 18}F]Fluoromisonidazole ([{sup 18}F]FMISO) and [{sup 18}F]Fluoroazomycin-Arabinoside ([{sup 18}F]FAZA) as tracer of hypoxia, [{sup 18}F]Fluoroethyltyrosine ([{sup 18}F]FET) and [{sup 11}C]Methionine for brain tumour imaging, [{sup 68}Ga]DOTATOC for somatostatin receptor imaging, [{sup 18}F]FDOPA for dopamine synthesis and radioactively labeled choline derivatives for imaging phospholipid metabolism have opened novel approaches to tumour imaging. Some of these tracers have already been implemented into radio-oncology: Amino acid PET and PET/CT have the potential to optimise radiation treatment planning of brain tumours through accurate delineation of tumour tissue from normal tissue, necrosis and edema. Hypoxia represents a major therapeutic problem in radiation therapy. Hypoxia imaging is very attractive as it may allow to increase the dose in hypoxic tumours potentially allowing for a better tumour control. Advances in hybrid imaging, i.e. the introduction of MR/PET, may also have an impact in radio-oncology through synergies related to the combination of molecular signals of PET and a high soft tissue contrast of MRI as well as functional MRI capabilities. (orig.)

  17. Bromide as a tracer for studying water movement and nitrate displacement in soils: comparison with stable isotope tracers

    International Nuclear Information System (INIS)

    Russow, R.; Knappe, S.

    1999-01-01

    Tracers are an ideal means of studying water movement and associated nitrate displacement. Often bromide is preferred as a tracer because it is considered a representative tracer for water and because, being a conservative tracer (i.e. not involved in chemical and biological soil processes), it can be used for studying anion transport in soils. Moreover, it is less expensive and easier to measure than the stable isotopes deuterium and 15 N. Its great advantage over radioactive tracers (e.g. tritium), which outweighs their extreme sensitivity and ease of measurement and which it has in common with stable isotopes, is that it does not require radiation protection measures. However, there are also constraints on the use of bromide as a tracer in soil/water/plant systems. Our own studies on different soils using D 2 O, bromide and [ 15 N]-nitrate in lysimeters suggest that the above assumptions on bromide tracers need not always be valid under conditions as they prevail in biologically active soils. As the present paper shows, these studies permit a good assessment of the possibilities and limits to these tracers [de

  18. Test plan for air monitoring during the Cryogenic Retrieval Demonstration

    International Nuclear Information System (INIS)

    Yokuda, E.

    1992-06-01

    This report presents a test plan for air monitoring during the Cryogenic Retrieval Demonstration (CRD). Air monitors will be used to sample for the tracer elements neodymium, terbium, and ytterbium, and dysprosium. The results from this air monitoring will be used to determine if the CRD is successful in controlling dust and minimizing contamination. Procedures and equipment specifications for the test are included

  19. Microwave measurements of water vapor partial pressure at high temperatures

    International Nuclear Information System (INIS)

    Latorre, V.R.

    1991-01-01

    One of the desired parameters in the Yucca Mountain Project is the capillary pressure of the rock comprising the repository. This parameter is related to the partial pressure of water vapor in the air when in equilibrium with the rock mass. Although there are a number of devices that will measure the relative humidity (directly related to the water vapor partial pressure), they generally will fail at temperatures on the order of 150C. Since thee author has observed borehole temperatures considerably in excess of this value in G-Tunnel at the Nevada Test Site (NTS), a different scheme is required to obtain the desired partial pressure data at higher temperatures. This chapter presents a microwave technique that has been developed to measure water vapor partial pressure in boreholes at temperatures up to 250C. The heart of the system is a microwave coaxial resonator whose resonant frequency is inversely proportional to the square root of the real part of the complex dielectric constant of the medium (air) filling the resonator. The real part of the dielectric constant of air is approximately equal to the square of the refractive index which, in turn, is proportional to the partial pressure of the water vapor in the air. Thus, a microwave resonant cavity can be used to measure changes in the relative humidity or partial pressure of water vapor in the air. Since this type of device is constructed of metal, it is able to withstand very high temperatures. The actual limitation is the temperature limit of the dielectric material in the cable connecting the resonator to its driving and monitoring equipment-an automatic network analyzer in our case. In the following sections, the theory of operation, design, construction, calibration and installation of the microwave diagnostics system is presented. The results and conclusions are also presented, along with suggestions for future work

  20. Strontium isotopes as natural tracers in reservoir oilfield and in groundwater systems

    International Nuclear Information System (INIS)

    Santos, Marcos E.; Palmieri, Helena E.L.; Moreira, Rubens M.

    2009-01-01

    The radioactive beta (β - ) decay of 87 Rb to 87 Sr is an important isotope system that has been widely applied for geochronological purposes and in identifying ground water sources, aquifer interactions and as a tracer for a secondary recovery process in offshore oilfields via seawater injection. The 87 Sr/ 86 Sr ratio of present seawater is constant worldwide, while formation waters in hydrocarbon reservoirs have various values are in most cases higher than modern seawater. This can be the basis for a natural tracer technique aiming at evaluating the performance of seawater injection processes by evaluating the 87 Sr/ 86 Sr ratio and the total Sr content of formation waters in the reservoir prior to injection, followed by monitoring these values in the produced water as injection proceeds. Inductively Couple Plasma Mass Spectrometry ICP-MS is a technique that has potential to be used in studies with tracers in the environment in the determination of isotope ratios and element traces in a sample. This work describes the methodology that will be used for the determination of variations in the isotopic composition of Sr and presents the preliminary results obtained determination of the strontium isotope ratios ( 87 Sr/ 86 Sr) using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). (author)

  1. Investigation of Groundwater Flow Variations near a Recharge Pond with Repeat Deliberate Tracer Experiments

    Directory of Open Access Journals (Sweden)

    Jordan F Clark

    2014-06-01

    Full Text Available Determining hydraulic connections and travel times between recharge facilities and production wells has become increasingly important for permitting and operating managed aquifer recharge (MAR sites, a water supply strategy that transfers surface water into aquifers for storage and later extraction. This knowledge is critical for examining water quality changes and assessing the potential for future contamination. Deliberate tracer experiments are the best method for determining travel times and identifying preferential flow paths between recharge sites over the time scales of weeks to a few years. This paper compares the results of two deliberate tracer experiments at Kraemer Basin, Orange County, CA, USA. Results from the first experiment, which was conducted in October 1998, showed that a region of highly transmissive sedimentary material extends down gradient from the basin for more than 3 km [1]. Mean groundwater velocities were determined to be approximately 2 km/year in this region based on the arrival time of the tracer center of mass. A second experiment was initiated in January 2008 to determine if travel times from this basin to monitoring and production wells changed during the past decade in response to new recharge conditions. Results indicate that flow near Kraemer Basin was stable, and travel times to most wells determined during both experiments agree within the experimental uncertainty.

  2. Use of rare earth oxides as tracers to identify sediment source areas for agricultural hillslopes

    Directory of Open Access Journals (Sweden)

    C. Deasy

    2010-11-01

    Full Text Available Understanding sediment sources is essential to enable more effective targeting of in-field mitigation approaches to reduce diffuse pollution from agricultural land. In this paper we report on the application of rare earth element oxides to arable soils at hillslope scale in order to determine sediment source areas and their relative importance, using a non-intrusive method of surface spraying. Runoff, sediments and rare earth elements lost from four arable hillslope lengths at a site in the UK with clay soils were monitored from three rainfall events after tracer application. Measured erosion rates were low, reflecting the typical event conditions occurring at the site, and less than 1% of the applied REO tracers were recovered, which is consistent with the results of comparable studies. Tracer recovery at the base of the hillslope was able to indicate the relative importance of different hillslope sediment source areas, which were found to be consistent between events. The principal source of eroded sediments was the upslope area, implying that the wheel tracks were principally conduits for sediment transport, and not highly active sites of erosion. Mitigation treatments for sediment losses from arable hillslopes should therefore focus on methodologies for trapping mobile sediments within wheel track areas through increasing surface roughness or reducing the connectivity of sediment transport processes.

  3. NASA Experiment on Tropospheric-Stratospheric Water Vapor Transport in the Intertropical Convergence Zone

    Science.gov (United States)

    Page, William A.

    1982-01-01

    The following six papers report preliminary results obtained from a field experiment designed to study the role of tropical cumulo-nimbus clouds in the transfer of water vapor from the troposphere to the stratosphere over the region of Panama. The measurements were made utilizing special NOAA enhanced IR satellite images, radiosonde-ozonesondes and a NASA U-2 aircraft carrying. nine experiments. The experiments were provided by a group of NASA, NOAA, industry, and university scientists. Measurements included atmospheric humidity, air and cloud top temperatures, atmospheric tracer constituents, cloud particle characteristics and cloud morphology. The aircraft made a total of eleven flights from August 30 through September 18, 1980, from Howard Air Force Base, Panama; the pilots obtained horizontal and vertical profiles in and near convectively active regions and flew around and over cumulo-nimbus towers and through the extended anvils in the stratosphere. Cumulo-nimbus clouds in the tropics appear to play an important role in upward water vapor transport and may represent the principal source influencing the stratospheric water vapor budget. The clouds provide strong vertical circulation in the troposphere, mixing surface air and its trace materials (water vapor, CFM's sulfur compounds, etc.) quickly up to the tropopause. It is usually assumed that large scale mean motions or eddy scale motions transport the trace materials through the tropopause and into the stratosphere where they are further dispersed and react with other stratospheric constituents. The important step between the troposphere and stratosphere for water vapor appears to depend upon the processes occurring at or near the tropopause at the tops of the cumulo-nimbus towers. Several processes have been sugested: (1) The highest towers penetrate the tropopause and carry water in the form of small ice particles directly into the stratosphere. (2) Water vapor from the tops of the cumulonimbus clouds is

  4. Continuous and simultaneous measurements of precipitation and vapor isotopes over two monsoon seasons during 2016-2017 in Singapore

    Science.gov (United States)

    Jackisch, D.; He, S.; Ong, M. R.; Goodkin, N.

    2017-12-01

    Water isotopes are important tracers of climate dynamics and their measurement can provide valuable insights into the relationship between isotopes and atmospheric parameters and overall convective activities. While most studies provide data on daily or even monthly time scales, high-temporal in-situ stable isotope measurements are scarce, especially in the tropics. In this study, we presented δ18O and δ2H values in precipitation and vapor continuously and simultaneously measured using laser spectroscopy in Singapore during the 2016/2017 Northeast (NE) Asian monsoon and 2017 Southwest (SW) Asian monsoon. We found that δ-values of precipitation and vapor exhibit quite different patterns during individual events, although there is a significant correlation between the δ-values of precipitation and of vapor. δ-values in precipitation during individual precipitation events show a distinct V-shape pattern, with the lowest isotope values observed in the middle of the event. However, isotopes in water vapor mostly show an L-shape and are characterized by a gradual decrease with the onset of rainfall. The difference in δ-values of precipitation and vapor is generally constant during the early stage of the events but gradually increases near the end. It is likely that vapor and precipitation are closer to equilibrium at the early stage of a rain event, but diverge at the later stages. This divergence can be largely attributed to the evaporation of raindrops. We notice a frequent drop in d-excess of precipitation, whereas d-excess in vapor increases. In addition, a significant correlation exists between outgoing longwave radiation (OLR) and isotopes in both precipitation and vapor, suggesting an influence of regional convective activity.

  5. First research coordination meeting of the coordinated research project on validation of tracers and software for interwell investigations. Meeting report

    International Nuclear Information System (INIS)

    2004-01-01

    Interwell tracer test is an important reservoir engineering tool for secondary and tertiary recovery of oil. Most of the oil fields in many developing countries are in the stage of secondary recovery. Moreover, the oil industry remains at priority in these countries. It is therefore appropriate that further efforts should be channeled primarily towards promoting the radiotracer technology in this priority sector. The main purpose of interwell tracer tests in oil and geothermal reservoirs is to monitor qualitatively and quantitatively the fluid connections between injection and production wells and to map the flow field. Tracer is added into injection fluid via an injection well and observed in the surrounding production wells. Tracer response is then used to describe the flow pattern and obtain better understanding of the reservoir. This is important knowledge in order to optimize oil recovery. Radioactive tracers have been playing an important role in interwell tests because of their advantages, such as high sensitivity, stability and selectivity. Most of the information given by the tracer response curves cannot be obtained by means of other techniques. Interwell tracer test is also used in geothermal reservoirs to get better understanding of reservoir geology and to optimize production and re-injection program. High temperature geothermal resources are normally used for power generation. Whereas, middle and low temperature reservoirs are developing for civil living such as room heating and warm water supplying. Geothermal resource is now well recognized as a green and important part of follow-up energy sources in many developing countries. Over the years, the IAEA has contributed substantial funding and effort to the development of radiotracer technology and its transfer to developing Member States. Significant progress has been made enabling the countries to establish national radiotracer groups with an indigenous capacity to sustain and develop applications

  6. The Annual Cycle of Water Vapor on Mars as Observed by the Thermal Emission Spectrometer

    Science.gov (United States)

    Smith, Michael D.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Spectra taken by the Mars Global Surveyor Thermal Emission Spectrometer (TES) have been used to monitor the latitude, longitude, and seasonal dependence of water vapor for over one full Martian year (March 1999-March 2001). A maximum in water vapor abundance is observed at high latitudes during mid-summer in both hemispheres, reaching a maximum value of approximately 100 pr-micrometer in the north and approximately 50 pr-micrometer in the south. Low water vapor abundance (water vapor. The latitudinal and seasonal dependence of the decay of the northern summer water vapor maximum implies cross-equatorial transport of water to the southern hemisphere, while there is little or no corresponding transport during the decay of the southern hemisphere summer maximum. The latitude-longitude dependence of annually-averaged water vapor (corrected for topography) has a significant positive correlation with albedo and significant negative correlations with thermal inertia and surface pressure. Comparison of TES results with those retrieved from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) experiments shows some similar features, but also many significant differences. The southern hemisphere maximum observed by TES was not observed by MAWD and the large latitudinal gradient in annually-averaged water vapor observed by MAWD does not appear in the TES results.

  7. Microwave assisted chemical vapor infiltration

    International Nuclear Information System (INIS)

    Devlin, D.J.; Currier, R.P.; Barbero, R.S.; Espinoza, B.F.; Elliott, N.

    1991-01-01

    A microwave assisted process for production of continuous fiber reinforced ceramic matrix composites is described. A simple apparatus combining a chemical vapor infiltration reactor with a conventional 700 W multimode oven is described. Microwave induced inverted thermal gradients are exploited with the ultimate goal of reducing processing times on complex shapes. Thermal gradients in stacks of SiC (Nicalon) cloths have been measured using optical thermometry. Initial results on the ''inside out'' deposition of SiC via decomposition of methyltrichlorosilane in hydrogen are presented. Several key processing issues are identified and discussed. 5 refs

  8. Overview of chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

    1993-06-01

    Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

  9. The European Tracer Experiment - experimental results and database

    International Nuclear Information System (INIS)

    Nodop, K.; Connolly, R.; Girardi, F.

    1997-01-01

    As part of the European Tracer Experiment (ETEX) two successful atmospheric experiments were carried out in October and November, 1994. Perfluorocarbon (PFC) tracers were released into the atmosphere in Monterfil, Brittany, and air samples were taken at 168 stations in 17 European countries for 72 hours after the release. Upper air tracer measurements were made from three aircraft. During the first experiment a westerly air flow transported the tracer plume north-eastwards across Europe. During the second release the flow was eastwards. The results from the ground sampling network allowed the determination of the cloud evolution as far as Sweden, Poland and Bulgaria. Typical background concentrations of the tracer used are around 5 to 7 fl/l in ambient air. Concentrations in the plume ranged from 10 to above 200 fl/l. The tracer release characteristics, the tracer concentrations at the ground and in upper air, the routine and additional meteorological observations at the ground level and in upper air, trajectories derived from constant-level balloons and the meteorological input fields for long-range transport (LRT) models are assembled in the ETEX database. The ETEX database is accessible via the Internet

  10. Methods of 15N tracer research in biological systems

    International Nuclear Information System (INIS)

    Hirschberg, K.; Faust, H.

    1985-01-01

    The application of the stable isotope 15 N is of increasing importance in different scientific disciplines, especially in medicine, agriculture, and the biosciences. The close correlation between the growing interest and improvements of analytical procedures resulted in remarkable advances in the 15 N tracer technique. On the basis of the latest results of 15 N tracer research in life sciences and agriculture methods of 15 N tracer research in biological systems are compiled. The 15 N methodology is considered under three headings: Chemical analysis with a description of methods of sample preparation (including different separation and isolation methods for N-containing substances of biological and agricultural origin) and special procedures converting ammonia to molecular nitrogen. Isotopic analysis with a review on the most important methods of isotopic analysis of nitrogen: mass spectrometry (including the GC-MS technique), emission spectrometry, NMR spectroscopy, and other analytical procedures. 15 N-tracer techniques with a consideration of the role of the isotope dilution analysis as well as different labelling techniques and the mathematical interpretation of tracer data (modelling, N turnover experiments). In these chapters also sources of errors in chemical and isotopic analysis, the accuracy of the different methods and its importance on tracer experiments are discussed. Procedures for micro scale 15 N analysis and aspects of 15 N analysis on the level of natural abundance are considered. Furthermore some remarks on isotope effects in 15 N tracer experiments are made. (author)

  11. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  12. Thermogravimetric measurements of liquid vapor pressure

    International Nuclear Information System (INIS)

    Rong Yunhong; Gregson, Christopher M.; Parker, Alan

    2012-01-01

    Highlights: ► Rapid determination of vapor pressure by TGA. ► Demonstration of limitations of currently available approaches in literature. ► New model for vapor pressure assessment of small size samples in TGA. ► New model accounts for vapor diffusion and sample geometry and measures vapor pressure normally within 10%. - Abstract: A method was developed using thermo-gravimetric analysis (TGA) to determine the vapor pressure of volatile liquids. This is achieved by measuring the rate of evaporation (mass loss) of a pure liquid contained within a cylindrical pan. The influence of factors like sample geometry and vapor diffusion on evaporation rate are discussed. The measurement can be performed across a wide range of temperature yielding reasonable results up to 10 kPa. This approach may be useful as a rapid and automatable method for measuring the volatility of flavor and fragrance raw materials.

  13. Leak detection on underground fuel oil transfer line using radio tracer iodine-131

    International Nuclear Information System (INIS)

    Wickramanayake, D.G.L.; Ranjith, H.L.A.

    1998-01-01

    Leak detection study was carried out on the fuel oil transfer line of the Ceylon Petroleum Corporation using 131 I tracer. The study was carried out to determine whether the technique developed can be used in the field and to monitor the condition of the pipeline. Radiation safety assessment was made prior to the test. The dynamic pressurization technique was used. Any detectable leak was not shown at the detecting sensitivity of 0.40 mm 2 under the test conditions. The method reported is considered to be successful and economically viable. (author)

  14. Buried pipeline leak-detection technique and instruments using radioactive tracers

    International Nuclear Information System (INIS)

    Zhou Shuxuan; Lu Qingqian; Tang Yonghua

    1987-01-01

    For detecting and locating leaks on buried pipelines, a leak-detection technique and related instruments have been developed. Some quantity of fluid mixed with a radioactive tracer is injected. After the pipeline is cleaned, a leak-detector is put into and moves along the pipline to monitor the leaked radioactivity and to record both the radioactive signal and the time signal on a magnetic tape. From the signal curves, it can be judged whether there are any leaks on the pipeline and, if any, where they are

  15. Excavation damage zone tracer experiment in the floor of the room 415 test tunnel

    International Nuclear Information System (INIS)

    Frost, L.H.; Everitt, R.A.

    1997-03-01

    A 3.5-m-diameter test tunnel was constructed on the 420 Level of AECL's Underground Research Laboratory using a mechanical excavation technique. The orientation of the tunnel was chosen to maximize the stress ratio in the plane perpendicular to the tunnel axis in order to promote and study stress-induced excavation damage. The resulting excavation damage zone (EDZ) is characterized by a distinct breakout notch in both the floor and roof of the tunnel. In the floor of the tunnel, the main flow pathway within the EDZ is within a zone of intense grain-size fracturing (process zone) located at the tip of the breakout notch; virtually no flow occurs outside this region. A tracer experiment was performed within the EDZ in the floor of the tunnel to characterize the solute transport properties (permeability, transport porosity and dispersivity) within the process zone, as well as to develop and demonstrate methods for determining the transport properties within EDZs of underground tunnels. The experiment was performed as a constant head test by continuously injecting a constant concentration of iodide tracer into a region of the process zone, and by monitoring tracer breakthrough from the zone at a distance 1.5 m away. An equivalent-porous-media approach was taken in analysing fluid flow and solute transport through the process zone. Based on mass flux calculations, the hydraulic conductivity and transport porosity of the process zone are estimated to be 7.4 x 10 -7 m/s and 2.7 % respectively. Based on an analytic solution that represents tracer transport within the process zone as one-dimensional advective diffusive transport in a finite homogeneous porous medium, the longitudinal dispersivity and transport porosity of the zone are estimated to be 0.60 m and 3.3 % respectively. The transport porosity values estimated by both the mass flux and analytic calculations compare quite well. (author)

  16. Chemical and Isotopic Tracers of Groundwater Sustainability: an Overview of New Science Directions

    Science.gov (United States)

    Bullen, T.

    2002-12-01

    Groundwater sustainability is an emerging concept that is rapidly gaining attention from both scientists and water resource managers, particularly with regard to contamination and degradation of water quality in strategic aquifers. The sustainability of a groundwater resource is a complex function of its susceptibility to factors such as intrusion of poor-quality water from diverse sources, lack of sufficient recharge and reorganization of groundwater flowpaths in response to excessive abstraction. In theory the critical limit occurs when degradation becomes irreversible, such that remediative efforts may be fruitless on a reasonable human time scale. Chemical and isotopic tracers are proving to be especially useful tools for assessment of groundwater sustainability issues such as characterization of recharge, identification of potential sources, pathways and impacts of contaminants and prediction of how hydrology will change in response to excessive abstraction. A variety of relatively cost-efficient tracers are now available with which to assess the susceptibility of groundwater reserves to contamination from both natural and anthropogenic sources, and may provide valuable monitoring and regulatory tools for water resource managers. In this overview, the results of several ongoing groundwater studies by the U.S. Geological Survey will be discussed from the perspective of implications for new science directions for groundwater sustainability research that can benefit water policy development. A fundamental concept is that chemical and isotopic tracers used individually often provide ambiguous information, and are most effective when used in a rigorous "multi-tracer" context that considers the complex linkages between the hydrology, geology and biology of groundwater systems.

  17. Fluorinated tracers for imaging cancer with positron emission tomography

    International Nuclear Information System (INIS)

    Couturier, Olivier; Chatal, Jean-Francois; Luxen, Andre; Vuillez, Jean-Philippe; Rigo, Pierre; Hustinx, Roland

    2004-01-01

    2-[ 18 F]fluoro-2-deoxy-d-glucose (FDG) is currently the only fluorinated tracer used in routine clinical positron emission tomography (PET). Fluorine-18 is considered the ideal radioisotope for PET imaging owing to the low positron energy (0.64 MeV), which not only limits the dose rate to the patient but also results in a relatively short range of emission in tissue, thereby providing high-resolution images. Further, the 110-min physical half-life allows for high-yield radiosynthesis, transport from the production site to the imaging site and imaging protocols that may span hours, which permits dynamic studies and assessment of potentially fairly slow metabolic processes. The synthesis of fluorinated tracers as an alternative to FDG was initially tested using nucleophilic fluorination of the molecule, as performed when radiolabelling with iodine-124 or bromide-76. However, in addition to being long, with multiple steps, this procedure is not recommended for bioactive molecules containing reactive groups such as amine or thiol groups. Radiochemical yields are also often low. More recently, radiosynthesis from prosthetic group precursors, which allows easier radiolabelling of biomolecules, has led to the development of numerous fluorinated tracers. Given the wide availability of 18 F, such tracers may well develop into important routine tracers. This article is a review of the literature concerning fluorinated radiotracers recently developed and under investigation for possible PET imaging in cancer patients. Two groups can be distinguished. The first includes ''generalist'' tracers, i.e. tracers amenable to use in a wide variety of tumours and indications, very similar in this respect to FDG. These are tracers for non-specific cell metabolism, such as protein synthesis, amino acid transport, nucleic acid synthesis or membrane component synthesis. The second group consists of ''specific'' tracers for receptor expression (i.e. oestrogens or somatostatin), cell

  18. A tracer diffusion model derived from microstructure

    International Nuclear Information System (INIS)

    Lehikoinen, Jarmo; Muurinen, Arto; Olin, Markus

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: Numerous attempts have been made to explain the tracer diffusion of various solutes in compacted clays. These attempts have commonly suffered from an inability to describe the diffusion of uncharged and charged solutes with a single unified model. Here, an internally consistent approach to describing the diffusion of solutes in a heterogeneous porous medium, such as compacted bentonite, in terms of its microstructure is presented. The microstructure is taken to be represented by a succession of unit cells, which consist of two consecutive regions (Do, 1996). In the first region, the diffusion is viewed to occur in two parallel paths: one through microcrystalline units (micropores) and the other through meso-pores between the microcrystalline units. Solutes exiting these two paths are then joined together to continue diffusing through the second, disordered, region, connecting the two adjacent microcrystalline units. Adsorption (incl. co-ion exclusion) is thought to occur in the micropores, whereas meso-pores and the disordered region accommodate free species alone. Co-ions are also assumed to experience transfer resistance into and out of the micropores, which is characterized in the model by a transmission coefficient. Although the model is not new per se, its application to compacted clays has never been attempted before. It is shown that in the limit of strong adsorption, the effective diffusivity is limited from above only by the microstructural parameters of the model porous medium. As intuitive and logical as this result may appear, it has not been proven before. In the limit of vanishing disordered region, the effective diffusivity is no longer explicitly constrained by any of the model parameters. The tortuosity of the diffusion path, i.e. the quotient of the actual diffusion path length in the porous-medium coordinates and the characteristic length of the laboratory frame

  19. Microbial DNA; a possible tracer of groundwater

    Science.gov (United States)

    Sugiyama, Ayumi; Segawa, Takuya; Furuta, Tsuyumi; Nagaosa, Kazuyo; Tsujimura, Maki; Kato, Kenji

    2017-04-01

    chemical materials dissolved in groundwater. Though viral particle was employed as a tracer to chase the movement of groundwater, it doesn't tell the chemical and physical environmental condition where the particle was incorporated into groundwater. Thus, we propose microbial DNA as a new tracer to track the route of groundwater.

  20. Tropical stratospheric water vapor measured by the microwave limb sounder (MLS)

    Science.gov (United States)

    Carr, E. S.; Harwood, R. S.; Mote, P. W.; Peckham, G. E.; Suttie, R. A.; Lahoz, W. A.; O'Neill, A.; Froidevaux, L.; Jarnot, R. F.; Read, W. G.

    1995-01-01

    The lower stratospheric variability of equatorial water vapor, measured by the Microwave Limb Sounder (MLS), follows an annual cycle modulated by the quasi-biennial oscillation. At levels higher in the stratosphere, water vapor measurements exhibit a semi-annual oscillatory signal with the largest amplitudes at 2.2 and 1hPa. Zonal-mean cross sections of MLS water vapor are consistent with previous satellite measurements from the limb infrared monitor of the stratosphere (LIMS) and the stratospheric Aerosol and Gas Experiment 2 (SAGE 2) instruments in that they show water vapor increasing upwards and the polewards from a well defined minimum in the tropics. The minimum values vary in height between the retrieved 46 and 22hPa pressure levels.

  1. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    Science.gov (United States)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  2. Ion vapor deposition and its application

    International Nuclear Information System (INIS)

    Bollinger, H.; Schulze, D.; Wilberg, R.

    1981-01-01

    Proceeding from the fundamentals of ion vapor deposition the characteristic properties of ion-plated coatings are briefly discussed. Examples are presented of successful applications of ion-plated coatings such as coatings with special electrical and dielectric properties, coatings for corrosion prevention, and coatings for improving the surface properties. It is concluded that ion vapor deposition is an advantageous procedure in addition to vapor deposition. (author)

  3. Contamination Tracer Testing With Seabed Rock Drills: IODP Expedition 357

    Science.gov (United States)

    Orcutt, B.; Bergenthal, M.; Freudenthal, T.; Smith, D. J.; Lilley, M. D.; Schneiders, L.; Fruh-Green, G. L.

    2016-12-01

    IODP Expedition 357 utilized seabed rock drills for the first time in the history of the ocean drilling program, with the aim of collecting intact core of shallow mantle sequences from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This new drilling approach required the development of a new system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.

  4. Contamination tracer testing with seabed drills: IODP Expedition 357

    Science.gov (United States)

    Orcutt, Beth N.; Bergenthal, Markus; Freudenthal, Tim; Smith, David; Lilley, Marvin D.; Schnieders, Luzie; Green, Sophie; Früh-Green, Gretchen L.

    2017-11-01

    IODP Expedition 357 utilized seabed drills for the first time in the history of the ocean drilling program, with the aim of collecting intact sequences of shallow mantle core from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This novel drilling approach required the development of a new remote seafloor system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.

  5. Monofilament Vaporization Propulsion (MVP) System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Monofilament Vaporization Propulsion (MVP) is a new propulsion technology targeted at secondary payload applications. It does not compromise on performance while...

  6. Experiences of marijuana-vaporizer users.

    Science.gov (United States)

    Malouff, John M; Rooke, Sally E; Copeland, Jan

    2014-01-01

    Using a marijuana vaporizer may have potential harm-reduction advantages on smoking marijuana, in that the user does not inhale smoke. Little research has been published on use of vaporizers. In the first study of individuals using a vaporizer on their own initiative, 96 adults anonymously answered questions about their experiences with a vaporizer and their use of marijuana with tobacco. Users identified 4 advantages to using a vaporizer over smoking marijuana: perceived health benefits, better taste, no smoke smell, and more effect from the same amount of marijuana. Users identified 2 disadvantages: inconvenience of setup and cleaning and the time it takes to get the device operating for each use. Only 2 individuals combined tobacco in the vaporizer mix, whereas 15 combined tobacco with marijuana when they smoked marijuana. Almost all participants intended to continue using a vaporizer. Vaporizers seem to have appeal to marijuana users, who perceive them as having harm-reduction and other benefits. Vaporizers are worthy of experimental research evaluating health-related effects of using them.

  7. Vapor pressures and thermophysical properties of selected hexenols and recommended vapor pressure for hexan-1-ol

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Matějka, P.

    2015-01-01

    Roč. 402, Sep (2015), 18-29 ISSN 0378-3812 Institutional support: RVO:68378271 Keywords : alcohols * vapor pressure * heat capacity * ideal - gas thermodynamic properties * vaporization enthalpy Subject RIV: BJ - Thermodynamics Impact factor: 1.846, year: 2015

  8. EPA Biofuels Research: Biofuel Vapor Generation and Monitoring Methods

    Science.gov (United States)

    The interest in renewable fuels and alternative energy sources has stimulated development of alternatives to traditional petroleum-based fuels. The EPA's Office of Transportation Air Quality (OTAQ) requires information regarding the potential health hazards ofthese fuels regardin...

  9. Ground-based observations of Mars and Venus water vapor during 1972 and 1973

    International Nuclear Information System (INIS)

    Barker, E.S.

    1974-01-01

    The Venus water vapor line at 8197.71 A has been monitored at several positions on the disk of Venus and at phase angles between 22 0 and 91 0 . Variations in the abundance have been found with both position and time. The total two-way transmission has varied from less than 5 to 77 μ of water vapor. Comparisons are made between water vapor abundance, presence of UV features and the CO 2 abundance determined from near simultaneous observations of CO 2 bands at the same position on the disk of Venus. The amount of Martian atmospheric water vapor has been monitored during the past two years at McDonald Observatory using the echelle coude scanner of the 272cm reflector. Two periods of the Martain year have been monitored. The first period was during and after the great 1971 dust storm (Lsub(s)=290 0 to 20 0 or summer in the southern hemisphere). The results obtained are compared to the Mariner 9 IRIS and Mars 3 observations made during the same period. During the second period (Lsub(s)=124 0 to 266 0 ) observations were made to follow the seasonal latitudinal and diurnal changes in the water abundance in the Martian atmosphere. Studies of the latitudinal and diurnal vapor distributions indicate the location of maximum and minimum abundances for this season are positively correlated with surface temperature variations. (Auth.)

  10. Positron emitting tracers for studies of cocaine

    International Nuclear Information System (INIS)

    Fowler, J.S.; Gatley, S.J.; MacGregor, R.R.; Wolf, A.P.; Yu, D.W.; Dewey, S.L.; Schlyer, D.J.; Volkow, N.D.; Bendriem, B.; Logan, J.

    1990-01-01

    The use of PET to study the behavior and mechanism of action of therapeutic drugs and substances of abuse can be approached from a number of perspectives. The most common approach is to measure the effect of a drug on some aspect of metabolism and requires well characterized radiotracers whose behavior in vivo can be related to a discrete biochemical transformation. A second approach is to study the labeled drug itself. This provides information on the drug's regional distribution and kinetics as well as its pharmacological profile and metabolism. Cocaine has been labeled in different positions with carbon-11 and with fluorine-18 and the stereoisomers of cocaine have also been labeled to characterize its binding and metabolism in human and baboon brain. Regional cocaine binding as measured by PET is consistent with reversible binding to striatal dopamine reuptake sites and its time course parallels the behavioral activation of cocaine. The behaviorally inactive enantiomer (+)-cocaine is rapidly metabolized in serum preventing its entry into the brain. These PET tracers are useful in understanding the neurochemical basis of cocaine's action

  11. National Biomedical Tracer Facility: Project definition study

    International Nuclear Information System (INIS)

    Heaton, R.; Peterson, E.; Smith, P.

    1995-01-01

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design

  12. Isotope and chemical tracers in groundwater hydrology

    International Nuclear Information System (INIS)

    Kendall, C.; Stewart, M.K.; Morgenstern, U.; Trompetter, V.

    1999-01-01

    The course sessions cover: session 1, Fundamentals of stable and radioactive isotopes; session 2, Stable oxygen and hydrogen isotopes in hydrology: background, examples, sampling strategy; session 3, Catchment studies using oxygen and hydrogen isotopes: background - the hydrologic water balance, evapotranspiration - the lion's share, runoff generation - new water/old water fractions, groundwater recharge - the crumbs; session 4, Isotopes in catchment hydrology: survey of applications, future developments; session 5, Applications of tritium in hydrology: background and measurement, interpretation, examples; session 6, Case studies using mixing models: Hutt Valley groundwater system, an extended mixing model for simulating tracer transport in the unsaturated zone; session 7, Groundwater dating using CFC concentrations: background, sampling and measurement, use and applications; session 8, Groundwater dating with carbon-14: background, sampling and measurement, use and applications; session 9, NZ case studies: Tauranga warm springs, North Canterbury Plains groundwater; session 10, Stable carbon and nitrogen isotopes: background and examples, biological applications of C-N-S isotopes; session 11, New developments in isotope hydrology: gas isotopes, compound specific applications, age dating of sediments etc; session 12, NZ case studies: North Canterbury Plains groundwater (continued), Waimea Plains groundwater. (author). refs., figs

  13. National Biomedical Tracer Facility: Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, R.; Peterson, E. [Los Alamos National Lab., NM (United States); Smith, P. [Smith (P.A.) Concepts and Designs (United States)

    1995-05-31

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

  14. Chemical and pharmacological aspects of cerebral tracers

    International Nuclear Information System (INIS)

    Rapin, J.R.; Duterte, D.; Le Poncin-Lafitte, M.; Coornaert, S.; Desplanches, G.; Bardy, A.; Askienazy, S.; Moretti, J.L.; Raynaud, C.

    1983-01-01

    Among the iodophenylalkylamines studied and labelled with iodine 125 or iodine 123, N-isopropyl-iodo-amphetamin (IAMP) was selected and proposed as tracer for blood flow, a ''chemical embolus'' having almost 100% extraction in the brain. A new way of obtaining N-isopropyl-p-iodo-amphetamin is proposed and the easily-applied exchange reaction with iodine 125 or 123 gives a product with a radiochemical purity of more than 96% and an unexchanged radioactive iodine content of less than 1%. The pharmacokinetic study of this product in the Wistar rat showed distribution in three compartments and the appearance of a steady state by the fourth minute. The target organes are the lungs, liver and brain. The latter receives 3% of the radioactivity and the autoradiographic study shows that the early distribution in the brain for IAMP closely equal the blood flow as found by a diffusible indicator. In the first hour, the redistribution is very low and at this time although IAMP is proposed for the study of regional blood flow, it does not exactly determine the flow but allows the cell activity [fr

  15. Chemical and pharmacological aspects of cerebral tracers

    International Nuclear Information System (INIS)

    Rapin, J.R.; Duterte, D.; Le Poncin-Lafitte, M.; Coornaert, S.; Desplanches, G.; Bardy, A.; Moretti, J.L.; Raynaud, C.

    1983-01-01

    Among the iodophenylalkylamines studied and labelled with iodine 125 or iodine 123, N-isopropyl-iodo-amphetamin (IAMP) was selected and proposed as tracer for blood flow, a ''chemical embolus'' having almost 100% extraction in the brain. A new way of obtaining N-isopropyl-p-iodo-amphetamin is proposed and the easily-applied exchange reaction with iodine 125 or 123 gives product with a radiochemical purity of more than 96% and an unexchanged radioactive iodine content of less than 1%. The pharmacokinetic study of this product in the Wistar rat showed distribution in three compartments and the appearance of a steady state by the fourth minute. The target organs are the lungs, liver and brain. The latter receives 3% of the radioactivity and the autoradiographic study shows that the early distribution in the brain for IAMP closely equals the blood flow as found by a diffusible indicator. In the first hour, the redistribution is very low and at this time although IAMP is proposed for the study of regional blood flow, it does not exactly determine the flow but rather mirrors cell activity [fr

  16. A Systematic Method For Tracer Test Analysis: An Example Using Beowawe Tracer Data

    Energy Technology Data Exchange (ETDEWEB)

    G. Michael Shook

    2005-01-01

    Quantitative analysis of tracer data using moment analysis requires a strict adherence to a set of rules which include data normalization, correction for thermal decay, deconvolution, extrapolation, and integration. If done correctly, the method yields specific information on swept pore volume, flow geometry and fluid velocity, and an understanding of the nature of reservoir boundaries. All calculations required for the interpretation can be done in a spreadsheet. The steps required for moment analysis are reviewed in this paper. Data taken from the literature is used in an example calculation.

  17. Enthalpy of vaporization and vapor pressure of whiskey lactone and menthalactone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Simmons, Daniel; Chickos, James

    2017-01-01

    Highlights: • The vapor pressure and vaporization enthalpies of cis and trans-whiskey lactone have been evaluated. • Enthalpies of vaporization and vapor pressures of (+)-isomintlactone and (−)-mintlactone were also evaluated. • The sublimation enthalpy and corresponding vapor pressure of (+) -isomintlactone at T = 298.15 K is estimated. - Abstract: Enthalpies of vaporization at T = 298.15 K of cis and trans-whiskey lactone have been evaluated by correlation gas chromatography to be (68.4 ± 1.7) kJ·mol −1 and (67.5 ± 1.7) kJ·mol −1 , respectively. The enthalpies of vaporization of isomintlactone and mintlactone also evaluated by correlation gas chromatography have been found to have vaporization enthalpies of (74.2 ± 1.8) kJ·mol −1 and (73.2 ± 1.8) kJ·mol −1 respectively. The vapor pressures for cis and trans-whiskey lactone at T = 298.15 K have been evaluated as (1.5 ± 0.09) Pa and (2.0 ± 0.1) Pa using vapor pressures of a series of lactones as standards. Vapor pressures for isomintlactone and mintlactone were evaluated as (0.26 ± 0.012) Pa and (0.33 ± 0.02) Pa, respectively. Fusion and sublimation enthalpies for (+)-isomintlactone as well as the vapor pressure of the solid have been estimated.

  18. Evaluating 10B-enriched Boric Acid, Bromide, and Heat as Tracers of Recycled Groundwater Flow near MAR Operations

    Science.gov (United States)

    Becker, T.; Clark, J. F.

    2012-12-01

    County, CA, USA) has been in progress since September 6, 2011, following injection of boric acid enriched in boron-10 (10B) and bromide (Br-) tracers. Tracer concentrations are collected at 9 monitoring wells that have pre-experiment estimated travel times between 0.5 to 180 days. Results indicate that 10B-enriched boric acid is an effective deliberate tracer at MAR sites; however, the ion's movement is slightly retarded relative to bromide by the substrate. 10B/Br- travel time ratios range from 1 to 1.4. In addition to the two deliberate geochemical tracers, heat is being evaluated as a possible intrinsic tracer at MAR sites. At the time of the experiment (late summer), reclaimed water was significantly warmer (~20°F) than the native groundwater as it entered the system. Time series are developed from loggers outfitted at each monitoring well, with measurements recorded hourly accurate to one thousandth of a degree. Results are similar to 10B & Br- travel times and validate the potential of heat as an intrinsic tracer.

  19. Our experience of blood flow measurements using radioactive tracers

    International Nuclear Information System (INIS)

    Danet, Bernard.

    1974-01-01

    A critical study of blood flow measuring methods is proposed. After a review of the various diffusible and non-diffusible radioactive tracers and the corresponding detector systems, the principles which allow to measure blood flow from the data so obtained, are studied. There is a different principle of flow measurement for each type of tracer. The theory of flow measurement using non-diffusible tracers (human serum albumin labelled with 131 I or sup(99m)Tc, 113 In-labelled siderophiline) and its application to cardiac flow measurement are described first. Then the theory of flow measurement using diffusible tracers ( 133 Xe, 85 Kr) and its application to measurement of blood flow through tissues (muscles and kidney particularly) are described. A personal experience of this various flow measurements is reported. The results obtained, the difficulties encountered and the improvments proposed are developed [fr

  20. Diffusing passive tracers in random incompressible flows: Statistical topography aspects

    International Nuclear Information System (INIS)

    Klyatskin, V.I.; Woyczynski, W.A.; Gurarie, D.

    1996-01-01

    The paper studies statistical characteristics of the passive tracer concentrations and of its spatial gradient, in random incompressible velocity fields from the viewpoint of statistical topography. The statistics of interest include mean values, probability distributions, as well as various functionals characterizing topographic features of tracers. The functional approach is used. We consider the influence of the mean flow (the linear shear flow) and the molecular diffusion coefficient on the statistics of the tracer. Most of our analysis is carried out in the framework of the delta-correlated (in time) approximation and conditions for its applicability are established. But we also consider the diffusion approximation scheme for finite correlation radius. The latter is applied to a diffusing passive tracer that undergoes sedimentation in a random velocity field

  1. Application of fluorescent-and radioactive tracers in Sedimentalogy

    International Nuclear Information System (INIS)

    Alencar, L.M.L. de.

    1981-01-01

    The development of techniques of sediment labelling, creating the possibility of using fluorescent and radioactive tracers not yet applied in Brazil, in the area of sedimentology, is studied. (A.R.H.) [pt

  2. Simulation of Tracer Transport in Porous Media: Application to Bentonites

    International Nuclear Information System (INIS)

    Bru, A.; Casero, D.

    2001-01-01

    We present a formal framework to describe tracer transport in heterogeneous media, such as porous media like bentonites. In these media, mean field approximation is not valid because there exist some geometrical constraints and the transport is anomalous. (Author)

  3. Chlorine isotopes potential as geo-chemical tracers

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Pradhan, U.K.; Banerjee, R.

    The potential of chlorine isotopes as tracers of geo-chemical processes of earth and the oceans is highlighted based on systematic studies carried out in understanding the chlorine isotope fractionation mechanism, its constancy in seawater and its...

  4. Hydraulic characterisation of karst systems with man-made tracers

    International Nuclear Information System (INIS)

    Werner, A.

    1998-01-01

    Tracer experiments using man-made tracers are common in hydrogeological exploration of groundwater aquifers in karst systems. In the present investigation, a convection-dispersion model (multidispersion model with consideration of several flow paths) and a single-cleft model (consideration of the diffusion between the cleft and the surrounding rock matrix) were used for evaluating tracer experiments in the main hydrological system of the saturated zone of karst systems. In addition to these extended analytical solutions, a numerical transport model was developed for investigating the influence of the transient flow rate on the flow and transport parameters. Comparative evaluations of the model approaches for the evaluation of tracer experiments were made in four different karst systems: Danube-Aach, Paderborn, Slowenia and Lurbach, of which the Danube-Aach system was considered as the most important. The investigation also comprised three supplementary experiments in order to enable a complete hydraulic characterisation of the system. (orig./SR) [de

  5. Systems approach to tracer data in groundwater hydrology

    International Nuclear Information System (INIS)

    Saxena, R.K.

    1977-01-01

    A brief review of current mathematical methods for the analysis of tracer data in groundwater hydrology has been given. The description of the hydrological cycle as a whole or in part, by a system (compartment) or sub-system under linear and stationary conditions is discussed. Basic concepts of transit time, residence time, their distributions in time and response characteristics of a system are outlined. From the knowledge of tracer input, output and systems response function for a generalised system, reservoir capacity and storage for given period can be estimated. Use of a time series model for environmental tracer data in discreet time scale aimed at the solution of hydrological problems e.g. mean transit time and reservoir capacity is also explored. It is concluded that the combination of tracer data with systems approach can go a long way in the study of some complex hydrological problems. (author)

  6. Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges

    Directory of Open Access Journals (Sweden)

    Dora M. Paolucci

    2011-03-01

    Full Text Available A broadly responsive optical organic vapor sensor is described that responds to low concentrations of organic vapors without significant interference from water vapor. Responses to several classes of organic vapors are highlighted, and trends within classes are presented. The relationship between molecular properties (vapor pressure, boiling point, polarizability, and refractive index and sensor response are discussed.

  7. Method for Determination of Neptunium in Large-Sized Urine Samples Using Manganese Dioxide Coprecipitation and 242Pu as Yield Tracer

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin; Roos, Per

    2013-01-01

    A novel method for bioassay of large volumes of human urine samples using manganese dioxide coprecipitation for preconcentration was developed for rapid determination of 237Np. 242Pu was utilized as a nonisotopic tracer to monitor the chemical yield of 237Np. A sequential injection extraction chr...... and rapid analysis of neptunium contamination level for emergency preparedness....

  8. Results of repeat tracer tests at Ohaaki, NZ

    International Nuclear Information System (INIS)

    McCabe, W.J.; Morris, C.

    1995-01-01

    During 20 years of tracer testing at Ohaaki a number of wells have been used more than once as tracer injection sites. In studying the various responses obtained it has been necessary to consider variations in the experimental test conditions before making comparisons which relate to field conditions. Some very significant changes have occurred in the field hydrology in recent years and water flow speeds as high as those encountered at Wairakei have been demonstrated. (author). 4 refs., 2 tabs., 10 figs

  9. Evaporation rate in containers used for storing radioactive tracer solutions

    International Nuclear Information System (INIS)

    Gascon, J.L.

    2002-01-01

    In radiochemical analysis, the storage of a tracer solution is an important issue to bear in mind. The evaporation of the tracer solution depends on the type of container used for storing. Evaporation rate in four kinds of containers, i.e., flame-sealed glass ampoule, sealed glass flask, flame-sealed polyethylene ampoule and screw glass vial was studied. It is concluded that the evaporation rate depends on the system of closing. (author)

  10. Labeling of fruitflies and their identification by tracer activation

    International Nuclear Information System (INIS)

    Haisch, A.; Forster, S.; Staerk, H.

    1975-01-01

    A technique was worked out to label and identify cherry fruit flies (Rhagoletic cerasi L.) in large numbers. For that purpose, the tracers dysprosium and samarium were mingled with a carrier substance (silica gel) which, mixed with silica sand, formed the substrate for emergence. The flies, the pupae of which were in this substrate, took up with their ptilinum-labeled silica gel during their crawling through the sand up to the surface. The tracer was detected after its activation by neutron irradiation

  11. Use of tracers for locating and designing sea outfalls

    International Nuclear Information System (INIS)

    Gauthier, M.; Quetin, B.

    1976-01-01

    Various tracers are used for investigating the propagation of substances in solution or suspension (radioactive, biological, chemical substances and floats). Floats and dyes are the most employed. The main problems associated with the use of such tracers and data interpretation are discussed and it is shown how effective quantitative data can be obtained, especially as regards estimation of turbulent diffusion parameters and identification of suitable dispersion methods for purposes of determining pollutant concentration and areas affected thereby [fr

  12. Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments

    International Nuclear Information System (INIS)

    Khan, Ali M.; Wick, Lukas Y.; Harms, Hauke; Thullner, Martin

    2016-01-01

    Biodegradation of organic chemicals in the vapor phase of soils and vertical flow filters has gained attention as promising approach to clean up volatile organic compounds (VOC). The drivers of VOC biodegradation in unsaturated systems however still remain poorly understood. Here, we analyzed the processes controlling aerobic VOC biodegradation in a laboratory setup mimicking the unsaturated zone above a shallow aquifer. The setup allowed for diffusive vapor-phase transport and biodegradation of three VOC: non-deuterated and deuterated toluene as two compounds of highly differing biodegradability but (nearly) identical physical and chemical properties, and MTBE as (at the applied experimental conditions) non-biodegradable tracer and internal control. Our results showed for toluene an effective microbial degradation within centimeter VOC transport distances despite high gas-phase diffusivity. Degradation rates were controlled by the reactivity of the compounds while oxic conditions were found everywhere in the system. This confirms hypotheses that vadose zone biodegradation rates can be extremely high and are able to prevent the outgassing of VOC to the atmosphere within a centimeter range if compound properties and site conditions allow for sufficiently high degradation rates. - Highlights: • The column setup allows resolving vapor-phase VOC concentration gradients at cm scale resolution. • Vapor-phase and liquid-phase concentrations are measured simultaneously. • Isotopically labelled VOC was used as reference species of low biodegradability. • Biodegradation rates in the unsaturated zone can be very high and act at a cm scale. • Unsaturated material can be an effective bio-barrier avoiding biodegradable VOC emissions. - Microbial degradation activity can be sufficient to remove VOC from unsaturated porous media after a few centimeter of vapor-phase diffusive transport and mayeffectively avoid atmospheric emissions.

  13. A new PET tracer specific for vascular endothelial growth factor receptor

    International Nuclear Information System (INIS)

    Wang, Hui; Cai, Weibo; Chen, Kai; Li, Zi-Bo; Kashefi, Amir; He, Lina; Chen, Xiaoyuan

    2007-01-01

    Noninvasive positron emission tomography (PET) imaging of vascular endothelial growth factor receptor 2 (VEGFR-2) expression could be a valuable tool for evaluation of patients with a variety of malignancies, and particularly for monitoring those undergoing antiangiogenic therapies that block VEGF/VEGFR-2 function. The aim of this study was to develop a VEGFR-2-specific PET tracer. The D63AE64AE67A mutant of VEGF 121 (VEGF DEE ) was generated by recombinant DNA technology. VEGF 121 and VEGF DEE were purified and conjugated with DOTA for 64 Cu labeling. The DOTA conjugates were tested in vitro for VEGFR-2 specificity and functional activity. In vivo tumor targeting efficacy and pharmacokinetics of 64 Cu-labeled VEGF 121 and VEGF DEE were compared using an orthotopic 4T1 murine breast tumor model. Blocking experiments, biodistribution studies, and immunofluorescence staining were carried out to confirm the noninvasive imaging results. Cell binding assay demonstrated that VEGF DEE had about 20-fold lower VEGFR-1 binding affinity and only slightly lower VEGFR-2 binding affinity as compared with VEGF 121 . MicroPET imaging studies revealed that both 64 Cu-DOTA-VEGF 121 and 64 Cu-DOTA-VEGF DEE had rapid and prominent activity accumulation in VEGFR-2-expressing 4T1 tumors. The renal uptake of 64 Cu-DOTA-VEGF DEE was significantly lower than that of 64 Cu-DOTA-VEGF 121 as rodent kidneys expressed high levels of VEGFR-1 based on immunofluorescence staining. Blocking experiments and biodistribution studies confirmed the VEGFR specificity of 64 Cu-DOTA-VEGF DEE . We have developed a VEGFR-2-specific PET tracer, 64 Cu-DOTA-VEGF DEE . It has comparable tumor targeting efficacy to 64 Cu-DOTA-VEGF 121 but much reduced renal toxicity. This tracer may be translated into the clinic for imaging tumor angiogenesis and monitoring antiangiogenic treatment efficacy. (orig.)

  14. Program plan for the resolution of tank vapor issues

    International Nuclear Information System (INIS)

    Osborne, J.W.; Huckaby, J.L.

    1994-05-01

    Since 1987, workers at the Hanford Site waste tank farms in Richland, Washington, have reported strong odors emanating from the large, underground high-level radioactive waste storage tanks. Some of these workers have complained of symptoms (e.g., headaches, nausea) related to the odors. In 1992, the U.S. Department of Energy, which manages the Hanford Site, and Westinghouse Hanford Company determined that the vapor emissions coming from the tanks had not been adequately characterized and represented a potential health risk to workers in the immediate vicinity of the tanks. At that time, workers in certain areas of the tank farms were required to use full-face, supplied-breathing-air masks to reduce their exposure to the fugitive emissions. While use of supplied breathing air reduced the health risks associated with the fugitive emissions, it introduced other health and safety risks (e.g., reduced field of vision, air-line tripping hazards, and heat stress). In 1992, an aggressive program was established to assure proper worker protection while reducing the use of supplied breathing air. This program focuses on characterization of vapors inside the tanks and industrial hygiene monitoring in the tank farms. If chemical filtration systems for mitigation of fugitive emissions are deemed necessary, the program will also oversee their design and installation. This document presents the plans for and approach to resolving the Hanford Site high-level waste tank vapor concerns. It is sponsored by the Department of Energy Office of Environmental Restoration and Waste Management

  15. Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China

    Science.gov (United States)

    Xu, Wei; Su, Xiaosi; Dai, Zhenxue; Yang, Fengtian; Zhu, Pucheng; Huang, Yong

    2017-11-01

    Environmental tracers (such as major ions, stable and radiogenic isotopes, and heat) monitored in natural waters provide valuable information for understanding the processes of river-groundwater interactions in arid areas. An integrated framework is presented for interpreting multi-tracer data (major ions, stable isotopes (2H, 18O), the radioactive isotope 222Rn, and heat) for delineating the river-groundwater interactions in Nalenggele River basin, northwest China. Qualitative and quantitative analyses were undertaken to estimate the bidirectional water exchange associated with small-scale interactions between groundwater and surface water. Along the river stretch, groundwater and river water exchange readily. From the high mountain zone to the alluvial fan, groundwater discharge to the river is detected by tracer methods and end-member mixing models, but the river has also been identified as a losing river using discharge measurements, i.e. discharge is bidirectional. On the delta-front of the alluvial fan and in the alluvial plain, in the downstream area, the characteristics of total dissolved solids values, 222Rn concentrations and δ18O values in the surface water, and patterns derived from a heat-tracing method, indicate that groundwater discharges into the river. With the environmental tracers, the processes of river-groundwater interaction have been identified in detail for better understanding of overall hydrogeological processes and of the impacts on water allocation policies.

  16. Effects from influent boundary conditions on tracer migration and spatial variability features in intermediate-scale experiments

    International Nuclear Information System (INIS)

    Fuentes, H.R.; Polzer, W.L.; Springer, E.P.

    1987-04-01

    In previous unsaturated transport studies at Los Alamos dispersion coefficients were estimated to be higher close to the tracer source than at greater distances from the source. Injection of tracers through discrete influent outlets could have accounted for those higher dispersions. Also, a lack of conservation of mass of the tracers was observed and suspected to be due to spatial variability in transport. In the present study experiments were performed under uniform influent (ponded) conditions in which breakthrough of tracers was monitored at four locations at each of four depths. All other conditions were similar to those of the unsaturated transport experiments. A comparison of results from these two sets of experiments indicates differences in the parameter estimates. Estimates were made for the dispersion coefficient and the retardation factor by the one-dimensional steady flow computer code, CFITIM. Estimates were also made for mass and for velocity and the dispersion coefficient by the method of moments. The dispersion coefficient decreased with depth under discrete influent application and increased with depth under ponded influent application. Retardation was predicted better under the discrete influent application than under ponded influent application. Differences in breakthroughs and in estimated parameters among locations at the same depth were observed under ponded influent application. Those differences indicate that there is a lack of conservation of mass as well as significant spatial variability across the experimental domain. 14 refs., 9 figs., 8 tabs

  17. Green River air quality model development: meteorological and tracer data, July/August 1982 field study in Brush Valley, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Whiteman, C.D.; Lee, R.N.; Orgill, M.M.; Zak, B.D.

    1984-06-01

    Meteorological and atmospheric tracer studies were conducted during a 3-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The objective of the field experiments was to obtain data to evaluate a model, called VALMET, developed at PNL to predict dispersion of air pollutants released from an elevated stack located within a deep mountain valley in the post-sunrise temperature inversion breakup period. Three tracer experiments were conducted in the valley during the 2-week period. In these experiments, sulfur hexafluoride (SF/sub 6/) was released from a height of approximately 100 m, beginning before sunrise and continuing until the nocturnal down-valley winds reversed several hours after sunrise. Dispersion of the sulfur hexafluoride after release was evaluated by measuring SF/sub 6/ concentrations in ambient air samples taken from sampling devices operated within the valley up to about 8 km down valley from the source. An instrumented research aircraft was also used to measure concentrations in and above the valley. Tracer samples were collected using a network of radio-controlled bag sampling stations, two manually operated gas chromatographs, a continuous SF/sub 6/ monitor, and a vertical SF/sub 6/ profiler. In addition, basic meteorological data were collected during the tracer experiments. Frequent profiles of vertical wind and temperature structure were obtained with tethered balloons operated at the release site and at a site 7.7 km down the valley from the release site. 10 references, 63 figures, 50 tables.

  18. Altered Tracer Distribution and Clearance in the Extracellular Space of the Substantia Nigra in a Rodent Model of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Yuan Fang

    2017-07-01

    Full Text Available The relationship between extracellular space (ECS diffusion parameters and brain drug clearance is not well-studied, especially in the context of Parkinson's disease (PD. Therefore, we used a rodent model of PD to explore the distribution and clearance of a magnetic resonance tracer. Forty male Sprague Dawley rats were randomized into four different groups: a PD group, a Madopar group (PD + Madopar treatment, a sham group, and a control group. All rats received an injection of the extracellular tracer gadolinium-diethylene triaminepentacetic acid (Gd-DTPA directly into the substantia nigra (SN. ECS diffusion parameters including the effective diffusion coefficient (D*, clearance coefficient (k', ratio of the maximum distribution volume of the tracer (Vd-max%, and half-life (t1/2 were measured. We found that all parameters were significantly increased in the PD group compared to the other three groups (D*: F = 5.774, p = 0.0025; k': F = 20.00, P < 0.0001; Vd-max%: F = 12.81, P < 0.0001; and t1/2: F = 23.35, P < 0.0001. In conclusion, the PD group exhibited a wider distribution and lower clearance of the tracer compared to the other groups. Moreover, k' was more sensitive than D* for monitoring morphological and functional changes in the ECS in a rodent model of PD.

  19. Heat as a tracer to determine streambed water exchanges

    Science.gov (United States)

    Constantz, J.

    2010-01-01

    This work reviews the use of heat as a tracer of shallow groundwater movement and describes current temperature-based approaches for estimating streambed water exchanges. Four common hydrologic conditions in stream channels are graphically depicted with the expected underlying streambed thermal responses, and techniques are discussed for installing and monitoring temperature and stage equipment for a range of hydrological environments. These techniques are divided into direct-measurement techniques in streams and streambeds, groundwater techniques relying on traditional observation wells, and remote sensing and other large-scale advanced temperatureacquisition techniques. A review of relevant literature suggests researchers often graphically visualize temperature data to enhance conceptual models of heat and water flow in the near-stream environment and to determine site-specific approaches of data analysis. Common visualizations of stream and streambed temperature patterns include thermographs, temperature envelopes, and one-, two-, and three-dimensional temperature contour plots. Heat and water transport governing equations are presented for the case of transport in streambeds, followed by methods of streambed data analysis, including simple heat-pulse arrival time and heat-loss procedures, analytical and time series solutions, and heat and water transport simulation models. A series of applications of these methods are presented for a variety of stream settings ranging from arid to continental climates. Progressive successes to quantify both streambed fluxes and the spatial extent of streambeds indicate heat-tracing tools help define the streambed as a spatially distinct field (analogous to soil science), rather than simply the lower boundary in stream research or an amorphous zone beneath the stream channel.

  20. Atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Stern, R.C.; Paisner, J.A.

    1985-01-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements

  1. Lanthanide-based fluorescent tracers in complex media

    International Nuclear Information System (INIS)

    Brichart, Thomas

    2014-01-01

    Tracers are objects allowing the determination of the position or the distribution of a product; tracers are currently used in a great variety of domains. Despite the fact that each field has it's own specifications, it is possible to find tracers in medicine (contrast agents), anti-counterfeiting or geological exploration. We have developed lanthanide complex tracers for oil field injection waters. Those tracers, derived from the DOTA, have been detected at concentration lower than 1 ppb, thanks to a simple and compact apparatus. This detection has been made possible by the use of time-resolved fluorescence spectroscopy, this technique allows us to get rid of the background noise created by the intrinsic fluorescence of oil residues that are present in production waters. We also demonstrated how we can, through a reverse microemulsion synthesis, encapsulate several different dyes inside a single nanoparticle composed of a gold core and a silica shell. We showed as well, how those particles can be used as smart tracers to gather data, such as temperature, pH, solvents, etc. inside the well. Finally the use of lanthanides and scale inhibitors properties allowed us to create a simple and fast dosing protocol of such scale inhibitors in injection waters. This dosage will then allow the quick adjustment of their concentration inside each well. (author) [fr

  2. Determination of the self purification of streams using tracers

    International Nuclear Information System (INIS)

    Salviano, J.S.

    1982-04-01

    A methodology for the 'in situ' evaluation of the self purification of streams is discussed. It consists of the simultaneous injection of two tracers into the stream. One of the tracers is oxidized by biochemical processes. It can be either artificially supplied to the stream or a naturally present component can be used. This tracer is used for the determination of the self purification parameters. The other tracer is conservative and allows for the hydrodynamic effects. Tests have been carried out in two streams with quite different hydrodynamic and physicochemical conditions. In the first stream, with a flow-rate of about 0.9 m 3 /s, urea was used as the nonconservative tracer. In the other stream, which had a flow-rate of about 5 m 3 /s, only a radioactive tracer has been used, and the rate of biochemical oxidation has been determined from BOD measurements. Calculations have been implemented on a digital computer. In both cases it was found that the reoxygenation rate is more conveniently determined by empirical formulas. Results from both tests have been deemed realistic by comparison with similar experiments. (Author) [pt

  3. Root zone effects on tracer migration in arid zones

    International Nuclear Information System (INIS)

    Tyler, S.W.; Walker, G.R.

    1994-01-01

    The study of groundwater recharge and soil water movement in arid regions has received increased attention in the search for safe disposal sites for hazardous wastes. In passing through the upper 1 to 2 m of most soil profiles, tracers indicative of recharge such as Cl, 2 H, 18 O, Br, 3 H, and 56 Cl are subjected to a wide range of processes not encountered deeper in the profile. This transition zone, where water enters as precipitation and leaves as recharge, is often ignored when environmental tracers are used to estimate deep soil water flux and recharge, yet its effect may be profound. In this work, we reexamine the processes of root extraction and its effect on the velocity and distribution of tracers. Examples are presented for idealized conditions, which show clearly the relation between the root zone processes and the deep drainage or recharge. The results indicate that, when recharge is small and root zone processes are not accounted for, tracer techniques can significantly overestimate recharge until the tracer has moved well below the root zone. By incorporating simple models of root zone processes, a clearer understanding of tracer distributions and a more accurate estimate of recharge can then be made. 11 refs., 9 figs

  4. Statistical atmospheric inversion of local gas emissions by coupling the tracer release technique and local-scale transport modelling: a test case with controlled methane emissions

    Directory of Open Access Journals (Sweden)

    S. Ars

    2017-12-01

    Full Text Available This study presents a new concept for estimating the pollutant emission rates of a site and its main facilities using a series of atmospheric measurements across the pollutant plumes. This concept combines the tracer release method, local-scale atmospheric transport modelling and a statistical atmospheric inversion approach. The conversion between the controlled emission and the measured atmospheric concentrations of the released tracer across the plume places valuable constraints on the atmospheric transport. This is used to optimise the configuration of the transport model parameters and the model uncertainty statistics in the inversion system. The emission rates of all sources are then inverted to optimise the match between the concentrations simulated with the transport model and the pollutants' measured atmospheric concentrations, accounting for the transport model uncertainty. In principle, by using atmospheric transport modelling, this concept does not strongly rely on the good colocation between the tracer and pollutant sources and can be used to monitor multiple sources within a single site, unlike the classical tracer release technique. The statistical inversion framework and the use of the tracer data for the configuration of the transport and inversion modelling systems should ensure that the transport modelling errors are correctly handled in the source estimation. The potential of this new concept is evaluated with a relatively simple practical implementation based on a Gaussian plume model and a series of inversions of controlled methane point sources using acetylene as a tracer gas. The experimental conditions are chosen so that they are suitable for the use of a Gaussian plume model to simulate the atmospheric transport. In these experiments, different configurations of methane and acetylene point source locations are tested to assess the efficiency of the method in comparison to the classic tracer release technique in coping

  5. Statistical atmospheric inversion of local gas emissions by coupling the tracer release technique and local-scale transport modelling: a test case with controlled methane emissions

    Science.gov (United States)

    Ars, Sébastien; Broquet, Grégoire; Yver Kwok, Camille; Roustan, Yelva; Wu, Lin; Arzoumanian, Emmanuel; Bousquet, Philippe

    2017-12-01

    This study presents a new concept for estimating the pollutant emission rates of a site and its main facilities using a series of atmospheric measurements across the pollutant plumes. This concept combines the tracer release method, local-scale atmospheric transport modelling and a statistical atmospheric inversion approach. The conversion between the controlled emission and the measured atmospheric concentrations of the released tracer across the plume places valuable constraints on the atmospheric transport. This is used to optimise the configuration of the transport model parameters and the model uncertainty statistics in the inversion system. The emission rates of all sources are then inverted to optimise the match between the concentrations simulated with the transport model and the pollutants' measured atmospheric concentrations, accounting for the transport model uncertainty. In principle, by using atmospheric transport modelling, this concept does not strongly rely on the good colocation between the tracer and pollutant sources and can be used to monitor multiple sources within a single site, unlike the classical tracer release technique. The statistical inversion framework and the use of the tracer data for the configuration of the transport and inversion modelling systems should ensure that the transport modelling errors are correctly handled in the source estimation. The potential of this new concept is evaluated with a relatively simple practical implementation based on a Gaussian plume model and a series of inversions of controlled methane point sources using acetylene as a tracer gas. The experimental conditions are chosen so that they are suitable for the use of a Gaussian plume model to simulate the atmospheric transport. In these experiments, different configurations of methane and acetylene point source locations are tested to assess the efficiency of the method in comparison to the classic tracer release technique in coping with the distances

  6. SOIL VAPOR EXTRACTION TECHNOLOGY: REFERENCE HANDBOOK

    Science.gov (United States)

    Soil vapor extraction (SVE) systems are being used in Increasing numbers because of the many advantages these systems hold over other soil treatment technologies. SVE systems appear to be simple in design and operation, yet the fundamentals governing subsurface vapor transport ar...

  7. Mechanics of gas-vapor bubbles

    NARCIS (Netherlands)

    Hao, Yue; Zhang, Yuhang; Prosperetti, Andrea

    2017-01-01

    Most bubbles contain a mixture of vapor and incondensible gases. While the limit cases of pure vapor and pure gas bubbles are well studied, much less is known about the more realistic case of a mixture. The bubble contents continuously change due to the combined effects of evaporation and

  8. Vapor Pressures of Several Commercially Used Alkanolamines

    NARCIS (Netherlands)

    Klepacova, Katarina; Huttenhuis, Patrick J. G.; Derks, Peter W. J.; Versteeg, Geert F.; Klepáčová, Katarína

    For the design of acid gas treating processes, vapor-liquid equilibrium (VLE) data must be available of the solvents to be applied. In this study the vapor pressures of seven frequently industrially used alkanolamines (diethanolamine, N-methylethanolamine, N,N-dimethylethanolamine,

  9. Recommended Vapor Pressure of Solid Naphthalen

    Czech Academy of Sciences Publication Activity Database

    Růžička, K.; Fulem, Michal; Růžička, V.

    2005-01-01

    Roč. 50, - (2005), s. 1956-1970 ISSN 0021-9568 Institutional research plan: CEZ:AV0Z10100521 Keywords : solid naphthalene * vapor pressure * enthalpy of vaporization * enthalpy of fusion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.610, year: 2005

  10. Effect of granosan vapors on mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Lishenko, N P; Lishenko, I D

    1974-01-01

    Experiments were performed to determine the effects of granosan on the germination of vetch seeds. Vetch seeds were stored from 4-6 days in ethyl mercuric chloride vapors. Results indicated that the vapors caused a sharp decrease in germination and caused chromosomal aberrations during the anaphase.

  11. Condensation of vapor bubble in subcooled pool

    Science.gov (United States)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.

    2017-02-01

    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  12. 40 CFR 796.1950 - Vapor pressure.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a.... In addition, chemicals that are likely to be gases at ambient temperatures and which have low water... gases until the measured vapor pressure is constant, a process called “degassing.” Impurities more...

  13. Risk assessment of metal vapor arcing

    Science.gov (United States)

    Hill, Monika C. (Inventor); Leidecker, Henning W. (Inventor)

    2009-01-01

    A method for assessing metal vapor arcing risk for a component is provided. The method comprises acquiring a current variable value associated with an operation of the component; comparing the current variable value with a threshold value for the variable; evaluating compared variable data to determine the metal vapor arcing risk in the component; and generating a risk assessment status for the component.

  14. Copper ion as a new leakage tracer.

    Science.gov (United States)

    Modaresi, J; Baharizade, M; Shareghi, A; Ahmadi, M; Daneshkazemi, A

    2013-12-01

    Most failures of root canal treatments are caused by bacteria. Studies showed that the most common cause of endodontic failures were the incomplete obturation of the root canal and the lack of adequate apical seal. Some in-vitro methods are used to estimate sealing quality, generally by measuring microleakage that allows the tracer agent to penetrate the filled canal. Conventional methods of evaluating the seal of endodontically treated teeth are complicated and have some drawbacks. We used copper ion diffusion method to assess the leakage and the results were compared to dye penetration method. The crowns of 21 extracted teeth were cut off at the CEJ level. After preparing the canals, the teeth were placed in tubes containing saline. They were divided randomly into 15 experimental cases; 3 positive and 3 negative controls. Positive controls were filled by single cone without sealer while the experimental and the negative control groups were filled by lateral technique. The coronal portion of gutta was removed and 9mm was left. The external surface of each tooth was coated with nail polish. Two millimeters of apical portion was immersed into 9ml of distilled water and 0.3ml of CuSO4 solution was injected into the coronal portion. After 2 days, copper sulfate was measured by an atomic absorption spectrophotometer. The teeth were then immersed in 2% methylene blue for 24 hours, sectioned and the extent of dye penetration was measured by a stereomicroscope. The maximum and minimum recorded copper ion concentrations for the experimental group were 18.37 and 2.87ppm respectively. The maximum and minimum recorded dye penetrations for the experimental group were 8.5 and 3.5mm respectively. The statistical analysis, adopting paired samples test, showed poor correlation between average recorded results of two methods. Based on our results, there was no significant correlation between the dye penetration and the copper ion diffusion methods.

  15. Biogeochemical tracers of the marine cyanobacterium Trichodesmium

    Science.gov (United States)

    Carpenter, Edward J.; Harvey, H. Rodger; Fry, Brian; Capone, Douglas G.

    1997-01-01

    We examined the utility of several biogeochemical tracers for following the fate of the planktonic diazotrophic cyanobacterium Trichodesmium in the sea. The presence of a (CIO) fatty acid previously reported was observed in a culture of Trichodesmium but was not found in natural samples. This cyanobacterium had high concentrations of C 14 and C 16 acids, with lesser amounts of several saturated and unsaturated C 18 fatty acids. This composition was similar to that of other marine cyanobacteria. The major hydrocarbon identified was the C 17n-alkane, which was present in all samples from the five stations examined. Sterols common to algae and copepods were observed in many samples along with hopanoids representative of bacteria, suggesting a varied community structure in colonies collected from different stations. We found no unique taxonomic marker of Trichodesmium among the sterols. Measurements of the σ 15N and σ 13C in Trichodesmium samples from the SW Sargasso and NW Caribbean Seas averaged -0.4960 (range from -0.7 to -0.25960) and -12.9%0 (range from -15.2 to -11.9960), respectively, thus confirming previous observations that this cyanobacterial diazotroph has both the lowest σ 15N and highest σ 13C of any marine phytoplankter observed to date. A culture of Trichodesmium grown under diazotrophic conditions had a σ 15N between -1.3 and -3.6960. Our results support the supposition that the relatively low σ 15N and high σ 13C values observed in suspended and sediment-trapped material from some tropical and subtropical seas result from substantial input of C and N by Trichodesmium.

  16. Stable isotopes as tracers for radionuclides

    International Nuclear Information System (INIS)

    Giussani, A.; Bartolo, D. de; Cantone, M.C.; Zilker, T.; Greim, H.; Roth, P.; Werner, E.

    2000-01-01

    The assessment of internal dose after incorporation of radionuclides requires as input data the knowledge of the uptake into the systemic circulation, the distribution and retention in selected organs, the excretion pathways. Realistic biokinetic models are needed for reliable estimates, correct interpretation of bioassay measurements, appropriate decision-making in radiological emergencies. For many radionuclides, however, the biokinetic models currently recommended are often generic, with very few specific parameters, due to the lack of experimental human data. The use of stable isotopes as tracers enables to determine important biokinetic parameters such as the fractional uptake, the clearance from the transfer compartment, the excretion patterns under experimentally controlled conditions. The subjects investigated are not exposed to any radiation risk, so this technique enables to obtain biokinetic information also for sensitive groups of the population, such as children or pregnant women, and to determine age- and gender-specific model parameters. Sophisticated analytical method, able to discriminate and quantitate different isotopes of the same element in complex matrices such as biological fluids, have to be purposely developed and optimized. Activation analysis and mass spectrometry are the most proper techniques of choice. Experiments were conducted with molybdenum, tellurium, ruthenium and zirconium. Activation analysis with protons, thermal ionization mass spectrometry and inductively coupled mass spectrometry were employed for the determination of stable isotopes of these elements in blood plasma and urine samples. Several deviations from the predictions of the ICRP models were observed. For example, modifications to the current model for molybdenum have been suggested on the basis of these results. The dose coefficients to the target regions calculated with this proposed model are even of one order of magnitude different than the ICRP estimates

  17. (18)F-alfatide II and (18)F-FDG dual-tracer dynamic PET for parametric, early prediction of tumor response to therapy.

    Science.gov (United States)

    Guo, Jinxia; Guo, Ning; Lang, Lixin; Kiesewetter, Dale O; Xie, Qingguo; Li, Quanzheng; Eden, Henry S; Niu, Gang; Chen, Xiaoyuan

    2014-01-01

    A single dynamic PET acquisition using multiple tracers administered closely in time could provide valuable complementary information about a tumor's status under quasiconstant conditions. This study aimed to investigate the utility of dual-tracer dynamic PET imaging with (18)F-alfatide II ((18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2) and (18)F-FDG for parametric monitoring of tumor responses to therapy. We administered doxorubicin to one group of athymic nude mice with U87MG tumors and paclitaxel protein-bound particles to another group of mice with MDA-MB-435 tumors. To monitor therapeutic responses, we performed dual-tracer dynamic imaging, in sessions that lasted 90 min, starting with injection via the tail vein catheters with (18)F-alfatide II, followed 40 min later by (18)F-FDG. To achieve signal separation of the 2 tracers, we fit a 3-compartment reversible model to the time-activity curve of (18)F-alfatide II for the 40 min before (18)F-FDG injection and then extrapolated to 90 min. The (18)F-FDG tumor time-activity curve was isolated from the 90-min dual-tracer tumor time-activity curve by subtracting the fitted (18)F-alfatide II tumor time-activity curve. With separated tumor time-activity curves, the (18)F-alfatide II binding potential (Bp = k3/k4) and volume of distribution (VD) and (18)F-FDG influx rate ((K1 × k3)/(k2 + k3)) based on the Patlak method were calculated to validate the signal recovery in a comparison with 60-min single-tracer imaging and to monitor therapeutic response. The transport and binding rate parameters K1-k3 of (18)F-alfatide II, calculated from the first 40 min of the dual-tracer dynamic scan, as well as Bp and VD correlated well with the parameters from the 60-min single-tracer scan (R(2) > 0.95). Compared with the results of single-tracer PET imaging, (18)F-FDG tumor uptake and influx were recovered well from dual-tracer imaging. On doxorubicin treatment, whereas no significant changes in static tracer uptake values of (18)F-alfatide II

  18. Authentically radiolabelled Mn(II) complexes as bimodal PET/MR tracers

    Energy Technology Data Exchange (ETDEWEB)

    Vanasschen, Christian; Brandt, Marie; Ermert, Johannes [Institute of Neuroscience and Medicine, INM-5 - Nuclear Chemistry, Forschungszentrum Jülich (Germany); Neumaier, Bernd [Institute for Radiochemistry and Experimental Molecular Imaging, Medical Clinics, University of Cologne (Germany); Coenen, Heinz H [Institute of Neuroscience and Medicine, INM-5 - Nuclear Chemistry, Forschungszentrum Jülich (Germany)

    2015-05-18

    The development of small molecule bimodal PET/MR tracers is mainly hampered by the lack of dedicated preparation methods. Authentic radiolabelling of MR contrast agents ensures easy access to such probes: a ligand, chelating a paramagnetic metal ion (e.g. Mn2+) and the corresponding PET isotope (e.g. 52gMn), leads to a “cocktail mixture” where both imaging reporters exhibit the same pharmacokinetics. Paramagnetic [55Mn(CDTA)]2- shows an excellent compromise between thermodynamic stability, kinetic inertness and MR contrast enhancement. Therefore, the aim of this study was to develop new PET/MR tracers by labelling CDTA ligands with paramagnetic manganese and the β+-emitter 52gMn. N.c.a. 52gMn (t1/2: 5.6 d; Eβ+: 575.8 keV (29.6%)) was produced by proton irradiation of a natCr target followed by cation-exchange chromatography. CDTA was radiolabelled with n.c.a. 52gMn2+ in NaOAc buffer (pH 6) at RT. The complex was purified by RP-HPLC and its stability tested in PBS and blood plasma at 37°C. The redox stability was assessed by monitoring the T1 relaxation (20 MHz) in HEPES buffer (pH 7.4). A functionalized CDTA ligand was synthesized in 5 steps. [52gMn(CDTA)]2- was quantitatively formed within 30 min at RT. The complex was stable for at least 6 days in PBS and blood plasma at 37°C and no oxidation occurred within 7 months storage at RT. Labelling CDTA with an isotopic 52g/55Mn2+ mixture led to the corresponding bimodal PET/MR tracer. Furthermore, a functionalized CDTA ligand was synthesized with an overall yield of 18-25%. [52g/55Mn(CDTA)]2-, the first manganese-based bimodal PET/MR tracer prepared, exhibits excellent stability towards decomplexation and oxidation. This makes the functionalized CDTA ligand highly suitable for designing PET/MR tracers with high relaxivity or targeting properties.

  19. Authentically radiolabelled Mn(II) complexes as bimodal PET/MR tracers

    International Nuclear Information System (INIS)

    Vanasschen, Christian; Brandt, Marie; Ermert, Johannes; Neumaier, Bernd; Coenen, Heinz H

    2015-01-01

    The development of small molecule bimodal PET/MR tracers is mainly hampered by the lack of dedicated preparation methods. Authentic radiolabelling of MR contrast agents ensures easy access to such probes: a ligand, chelating a paramagnetic metal ion (e.g. Mn2+) and the corresponding PET isotope (e.g. 52gMn), leads to a “cocktail mixture” where both imaging reporters exhibit the same pharmacokinetics. Paramagnetic [55Mn(CDTA)]2- shows an excellent compromise between thermodynamic stability, kinetic inertness and MR contrast enhancement. Therefore, the aim of this study was to develop new PET/MR tracers by labelling CDTA ligands with paramagnetic manganese and the β+-emitter 52gMn. N.c.a. 52gMn (t1/2: 5.6 d; Eβ+: 575.8 keV (29.6%)) was produced by proton irradiation of a natCr target followed by cation-exchange chromatography. CDTA was radiolabelled with n.c.a. 52gMn2+ in NaOAc buffer (pH 6) at RT. The complex was purified by RP-HPLC and its stability tested in PBS and blood plasma at 37°C. The redox stability was assessed by monitoring the T1 relaxation (20 MHz) in HEPES buffer (pH 7.4). A functionalized CDTA ligand was synthesized in 5 steps. [52gMn(CDTA)]2- was quantitatively formed within 30 min at RT. The complex was stable for at least 6 days in PBS and blood plasma at 37°C and no oxidation occurred within 7 months storage at RT. Labelling CDTA with an isotopic 52g/55Mn2+ mixture led to the corresponding bimodal PET/MR tracer. Furthermore, a functionalized CDTA ligand was synthesized with an overall yield of 18-25%. [52g/55Mn(CDTA)]2-, the first manganese-based bimodal PET/MR tracer prepared, exhibits excellent stability towards decomplexation and oxidation. This makes the functionalized CDTA ligand highly suitable for designing PET/MR tracers with high relaxivity or targeting properties.

  20. Building blocks for ionic liquids: Vapor pressures and vaporization enthalpies of 1-(n-alkyl)-imidazoles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Portnova, Svetlana V.; Verevkin, Sergey P.; Skrzypczak, Andrzej; Schubert, Thomas

    2011-01-01

    Highlights: → We measured vapor pressures of the 1-(n-alkyl)-imidazoles by transpiration method. → Variations on the alkyl chain length n were C 3 , C 5 -C 7 , and C 9 -C 10 . → Enthalpies of vaporization were derived from (p, T) dependencies. → Enthalpies of vaporization at 298.15 K were linear dependent on the chain length. - Abstract: Vapor pressures of the linear 1-(n-alkyl)-imidazoles with the alkyl chain C 3 , C 5 -C 7 , and C 9 -C 10 have been measured by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. A linear correlation of enthalpies of vaporization Δ l g H m (298.15 K) of the 1-(n-alkyl)-imidazoles with the chain length has been found.

  1. Sistem Pre Kompilasi Data Tracer Studi Online Ditjen Belmawa Ristekdikti (Studi Kasus: Politeknik Harapan Bersama

    Directory of Open Access Journals (Sweden)

    Very Kurnia Bakti

    2017-01-01

    Full Text Available Tracer studi merupakan salah satu upaya yang diharapkan dapat menyediakan informasi untuk mengevaluasi hasil pendidikan di Politeknik Harapan Bersama dari kuisioner yang diberikan kepada alumni. Kegiatan tracer studi ini sudah dilaksanakan secara online, namun masih terdapat kendala pada bagian sistem yang digunakan saat ini, hal tersebut menyebabkan Politeknik Harapan Bersama tidak dapat melaporkan / mengunggah hasil tracer studi kepada Ditjen Belmawa Ristekdikti, dimana form kuisioner dan data export tracer studi yang dihasilkan berbeda dengan kebutuhan seperti yang tercantum pada surat edaran No. 313/B/SE/2016 tentang pelaksanaan tracer studi di tingkat perguruan tinggi. Mengingat pentingnya tracer studi sebagai umpan balik bagi Politeknik Harapan Bersama, maka perlu solusi untuk mengatasi kekurangan sistem ini. Dengan merubah sistem yang ada dengan sistem tracer studi yang baru merupakan solusi yang tepat dalam permasalahan ini. Sistem tracer studi yang baru mampu menghasilkan data tracer studi alumni dan pengisian form kuisioner sesuai dengan standar Ditjen Belmawa Ristekdikti yang dapat diunggah sistem tracer studi ristekdikti.

  2. VAPOR SAMPLING DEVICE FOR INTERFACE WITH MICROTOX ASSAY FOR SCREENING TOXIC INDUSTRIAL CHEMICALS

    Science.gov (United States)

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  3. Polymer-coated vertical-cavity surface-emitting laser diode vapor sensor

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2010-01-01

    We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain ...

  4. Characterization of a managed aquifer recharge system using multiple tracers.

    Science.gov (United States)

    Moeck, Christian; Radny, Dirk; Popp, Andrea; Brennwald, Matthias; Stoll, Sebastian; Auckenthaler, Adrian; Berg, Michael; Schirmer, Mario

    2017-12-31

    Knowledge about the residence times of artificially infiltrated water into an aquifer and the resulting flow paths is essential to developing groundwater-management schemes. To obtain this knowledge, a variety of tracers can be used to study residence times and gain information about subsurface processes. Although a variety of tracers exists, their interpretation can differ considerably due to subsurface heterogeneity, underlying assumptions, and sampling and analysis limitations. The current study systematically assesses information gained from seven different tracers during a pumping experiment at a site where drinking water is extracted from an aquifer close to contaminated areas and where groundwater is artificially recharged by infiltrating surface water. We demonstrate that the groundwater residence times estimated using dye and heat tracers are comparable when the thermal retardation for the heat tracer is considered. Furthermore, major ions, acesulfame, and stable isotopes (δ 2 H and δ 18 O) show that mixing of infiltrated water and groundwater coming from the regional flow path occurred and a vertical stratification of the flow system exist. Based on the concentration patterns of dissolved gases (He, Ar, Kr, N 2 , and O 2 ) and chlorinated solvents (e.g., tetrachloroethene), three temporal phases are observed in the ratio between infiltrated water and regional groundwater during the pumping experiment. Variability in this ratio is significantly related to changes in the pumping and infiltration rates. During constant pumping rates, more infiltrated water was extracted, which led to a higher dilution of the regional groundwater. An infiltration interruption caused however, the ratio to change and more regional groundwater is extracted, which led to an increase in all concentrations. The obtained results are discussed for each tracer considered and its strengths and limitations are illustrated. Overall, it is demonstrated that aquifer heterogeneity and

  5. Assessing preferential flow by simultaneously injecting nanoparticle and chemical tracers

    KAUST Repository

    Subramanian, S. K.; Li, Yan; Cathles, L. M.

    2013-01-01

    The exact manner in which preferential (e.g., much faster than average) flow occurs in the subsurface through small fractures or permeable connected pathways of other kinds is important to many processes but is difficult to determine, because most chemical tracers diffuse quickly enough from small flow channels that they appear to move more uniformly through the rock than they actually do. We show how preferential flow can be assessed by injecting 2 to 5 nm carbon particles (C-Dots) and an inert KBr chemical tracer at different flow rates into a permeable core channel that is surrounded by a less permeable matrix in laboratory apparatus of three different designs. When the KBr tracer has a long enough transit through the system to diffuse into the matrix, but the C-Dot tracer does not, the C-Dot tracer arrives first and the KBr tracer later, and the separation measures the degree of preferential flow. Tracer sequestration in the matrix can be estimated with a Peclet number, and this is useful for experiment design. A model is used to determine the best fitting core and matrix dispersion parameters and refine estimates of the core and matrix porosities. Almost the same parameter values explain all experiments. The methods demonstrated in the laboratory can be applied to field tests. If nanoparticles can be designed that do not stick while flowing through the subsurface, the methods presented here could be used to determine the degree of fracture control in natural environments, and this capability would have very wide ranging value and applicability.

  6. TracerLPM (Version 1): An Excel® workbook for interpreting groundwater age distributions from environmental tracer data

    Science.gov (United States)

    Jurgens, Bryant C.; Böhlke, J.K.; Eberts, Sandra M.

    2012-01-01

    TracerLPM is an interactive Excel® (2007 or later) workbook program for evaluating groundwater age distributions from environmental tracer data by using lumped parameter models (LPMs). Lumped parameter models are mathematical models of transport based on simplified aquifer geometry and flow configurations that account for effects of hydrodynamic dispersion or mixing within the aquifer, well bore, or discharge area. Five primary LPMs are included in the workbook: piston-flow model (PFM), exponential mixing model (EMM), exponential piston-flow model (EPM), partial exponential model (PEM), and dispersion model (DM). Binary mixing models (BMM) can be created by combining primary LPMs in various combinations. Travel time through the unsaturated zone can be included as an additional parameter. TracerLPM also allows users to enter age distributions determined from other methods, such as particle tracking results from numerical groundwater-flow models or from other LPMs not included in this program. Tracers of both young groundwater (anthropogenic atmospheric gases and isotopic substances indicating post-1940s recharge) and much older groundwater (carbon-14 and helium-4) can be interpreted simultaneously so that estimates of the groundwater age distribution for samples with a wide range of ages can be constrained. TracerLPM is organized to permit a comprehensive interpretive approach consisting of hydrogeologic conceptualization, visual examination of data and models, and best-fit parameter estimation. Groundwater age distributions can be evaluated by comparing measured and modeled tracer concentrations in two ways: (1) multiple tracers analyzed simultaneously can be evaluated against each other for concordance with modeled concentrations (tracer-tracer application) or (2) tracer time-series data can be evaluated for concordance with modeled trends (tracer-time application). Groundwater-age estimates can also be obtained for samples with a single tracer measurement at one

  7. Water vapor retrieval over many surface types

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  8. Water Vapor Permeation in Plastics

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Paul E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-01-01

    Polyvinyl toluene (PVT) and polystyrene (PS) (referred to as “plastic scintillator”) are used for gamma ray detectors. A significant decrease in radiation detection performance has been observed in some PVT-based gamma-ray detectors in systems in outdoor environments as they age. Recent studies have revealed that plastic scintillator can undergo an environmentally related material degradation that adversely affects gamma ray detection performance under certain conditions and histories. A significant decrease in sensitivity has been seen in some gamma-ray detectors in some systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no aging effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. The objective of this report is to document the phenomenon of permeability of plastic scintillator to water vapor and to derive the relationship between time, temperature, humidity and degree of water penetration in plastic. Several conclusions are documented about the properties of water permeability of plastic scintillator.

  9. Spectral analysis for evaluation of myocardial tracers for medical imaging

    International Nuclear Information System (INIS)

    Huesman, Ronald H.; Reutter, Bryan W.; Marshall, Robert C.

    2000-01-01

    Kinetic analysis of dynamic tracer data is performed with the goal of evaluating myocardial radiotracers for cardiac nuclear medicine imaging. Data from experiments utilizing the isolated rabbit heart model are acquired by sampling the venous blood after introduction of a tracer of interest and a reference tracer. We have taken the approach that the kinetics are properly characterized by an impulse response function which describes the difference between the reference molecule (which does not leave the vasculature) and the molecule of interest which is transported across the capillary boundary and is made available to the cell. Using this formalism we can model the appearance of the tracer of interest in the venous output of the heart as a convolution of the appearance of the reference tracer with the impulse response. In this work we parameterize the impulse response function as the sum of a large number of exponential functions whose predetermined decay constants form a spectrum, and each is required only to have a nonnegative coefficient. This approach, called spectral analysis, has the advantage that it allows conventional compartmental analysis without prior knowledge of the number of compartments which the physiology may require or which the data will support

  10. Analysis of some laboratory tracer runs in natural fissures

    International Nuclear Information System (INIS)

    Moreno, L.; Neretnieks, I.

    1984-01-01

    Tracer tests in natural fissures performed in the laboratory are analysed by means of fitting two different models. In the experiments, sorbing and non-sorbing tracers were injected into a natural fissure running parallel to the axis of a drill core. The models take into account advection, diffusion into the rock matrix, sorption onto the rock surface and dispersion. For the last mechanism, one of the models considers hydrodynamic dispersion while the other model assumes channeling dispersion. The models take into account time delays in the inlet and outlet channels. The dispersion characteristics and water residence time were determined from the experiments with non-sorbing tracers. Surface and volume sorption coefficients and data on diffusion into the rock matrix were determined for the sorbing tracers. The results are compared with values independently determined in the laboratory. Good agreement was obtained using either model. When these models are used for prediction of tracer transport over larger distances, the results will depend on the model. The model with channeling dispersion will show a greater dispersion than the model with hydrodynamic dispersion. (author)

  11. A microcantilever-based alcohol vapor sensor-application and response model

    DEFF Research Database (Denmark)

    Jensenius, Henriette; Thaysen, Jacob; Rasmussen, Anette Alsted

    2000-01-01

    A recently developed microcantilever probe with integrated piezoresistive readout has been applied as a gas sensor. Resistors, sensitive to stress changes, are integrated on the flexible cantilevers. This makes it possible to monitor the cantilever deflection electrically and with an integrated...... is a direct measure of the molecular concentration of alcohol vapor. On the basis of the model the detection limit of this cantilever-based sensor is determined to be below 10 ppm for alcohol vapor measurements. Furthermore, the time response of the cantilever can be used to distinguish between different...

  12. Point of net vapor generation and vapor void fraction in subcooled boiling

    International Nuclear Information System (INIS)

    Saha, P.; Zuber, N.

    1974-01-01

    An analysis is presented directed at predicting the point of net vapor generation and vapor void fraction in subcooled boiling. It is shown that the point of net vapor generation depends upon local conditions--thermal and fluid dynamic. Thus, at low mass flow rates the net vapor generation is determined by thermal conditions, whereas at high mass flow rates the phenomenon is hydrodynamically controlled. Simple criteria are derived which can be used to predict these local conditions for net vapor generation. These criteria are used to determine the vapor void fraction is subcooled boiling. Comparison between the results predicted by this analysis and experimental data presently available shows good agreement for wide range of operating conditions, fluids and geometries. (U.S.)

  13. GOES WATER VAPOR TRANSPORT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOES Water Vapor Transport CD contains nineteen months of geostationary satellite-derived products from the GOES-8 satellite spanning the 1987-1988 El Nino...

  14. Vaporization of Samarium trichloride studied by thermogravimetry

    International Nuclear Information System (INIS)

    Esquivel, Marcelo R.; Pasquevich, Daniel M.

    2003-01-01

    In the present work, the vaporization reaction of SmCl 3 (l) obtained from the 'in situ' reaction of Sm 2 O 3 (s) and Cl 2 (g)-C(s) was studied by thermogravimetry under controlled atmosphere. The effects of both the temperature between 825 C degrees and 950 C degrees and the total flow gas on the vaporization rate of the following reaction: SmCl 3 (l) = SmCl 3 (g) were analyzed. The vaporization rate of the process was found to be independent of then total gas flow rate and highly dependent on the temperature. E ap calculation led to a value of 240 ± 10 kJ.mol -1 . A comparison between this value and that of the molar enthalpy of vaporization allow to the conclusion that the reaction occur in conditions near to equilibrium. The SmCl 3 identity was determined by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). (author)

  15. Perspective: Highly stable vapor-deposited glasses

    Science.gov (United States)

    Ediger, M. D.

    2017-12-01

    This article describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the "ideal glass." Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquids are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.

  16. Fundamentals of Friction and Vapor Phase Lubrication

    National Research Council Canada - National Science Library

    Gellman, Andrew

    2004-01-01

    This is the final report for the three year research program on "Fundamentals of Friction and Vapor Phase Lubrication" conducted at Carnegie Mellon with support from AFOSR grant number F49630-01-1-0069...

  17. GOES WATER VAPOR TRANSPORT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOES Water Vapor Transport CD contains nineteen months of geostationary satellite-derived products spanning the 1987/1988 El Nino Southern Oscillation (ENSO)...

  18. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev; Marston, Jeremy O.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T

    2011-01-01

    , we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development

  19. DMSP SSMT/2 - Atmospheric Water Vapor Profiler

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/T-2 sensor is a five channel, total power microwave radiometer with three channels situated symmetrically about the 183.31 GHz water vapor resonance line and...

  20. 78 FR 42595 - Marine Vapor Control Systems

    Science.gov (United States)

    2013-07-16

    ... revise the substance As noted in the NPRM, the changes in this section were of this section. intended... the vapor-moving device, as recommended by CTAC in 1997 to maintain a minimum size of non-flammable...

  1. Tracer measurements compared to process data reconciliation in accordance with VDI 2048

    International Nuclear Information System (INIS)

    Hungerbuehler, Thomas; Langenstein, Magnus

    2007-01-01

    The feed water mass flow is the key measured variable used to determine the thermal reactor output in a nuclear power plant. Usually this parameter is recorded via venturi nozzles or orifice plates. The problem with both principles of measurement, however, is that an accuracy of below 1% cannot be reached. In the case of nuclear power plants and depending on the size of the plant, this corresponds to an electrical output of 4 MWel to 16 MWel. In order to make more accurate statements about the feed water amounts recirculated in the water-steam circuit, tracer measurements that offer an accuracy of up to 0.2% are used. A drawback of this method is that this measuring principle is suitable only for providing an instantaneous picture but does not provide continuous operating information about the feed water mass flow. Process data reconciliation based on VDI 2048 is a mathematical-statistic process that makes use of redundant process information. The uncertainty of reconciled feed water flow rates and the thermal reactor output calculated on this basis can be reduced to 0.4%. The overall process monitored continuously in this manner therefore provides hourly process information of a quality equal to that obtained with acceptance measurements. In the NPP Beznau both methods have been used in parallel to determine the feed water flow rates in 2004 (unit 1) and 2005 (unit 2). Comparison of the results shows that a high level of agreement is obtained between the results of the reconciliation and the results of the tracer measurements. For this reason it was decided that no future tracer measurements will be conducted anymore. A result of the findings of this comparison, a high level of acceptance of process data reconciliation based on VDI 2048 was achieved. (author)

  2. Natural stream flow-rates measurements by tracer techniques

    International Nuclear Information System (INIS)

    Cuellar Mansilla, J.

    1982-01-01

    This paper presents the study of the precision obtained measuring the natural stream flow rates by tracer techniques, especially when the system presents a great slope and a bed constituted by large and extended particle size. The experiences were realized in laboratory pilot channels with flow-rates between 15 and 130 [1/s]; and in natural streams with flow-rates from 1 to 25 m 3 /s. Tracer used were In-133m and Br-82 for laboratory and field measurements respectively. In both cases the tracer was injected as a pulse and its dilution measured collecting samples in the measured section, at constant flow-rates, of 5[1] in laboratory experiences and 60[1] of water in field experiences. Precisions obtained at a 95% confidence level were about 2% for laboratory and 3% for field. (I.V.)

  3. Collective and tracer diffusion kinetics in the ternary random alloy

    International Nuclear Information System (INIS)

    Belova, I.V.; Murch, G.E.; Allnatt, A.R.

    2002-01-01

    In this study, collective and tracer diffusion kinetics is addressed for the ternary random alloy. A formal solution from the self-consistent theory of Moleko et al (Moleko L K, Allnatt A R and Allnatt E L 1989 Phil. Mag. A 59 141) is derived for collective diffusion and compared with the corresponding solution for the binary random alloy. Tracer diffusion in the ternary alloy is treated from the perspective of a special case of the quaternary random alloy. Results from Monte Carlo calculations for tracer and collective correlation factors (for the bcc ternary random alloy) are found to be in excellent agreement with this self-consistent theory but in only semi-quantitative agreement with the earlier theory of Manning (Manning J R 1971 Phys. Rev. B 4 1111). (author)

  4. Concentration dynamics in lakes and reservoirs. Studies using radioactive tracers

    International Nuclear Information System (INIS)

    Gilath, Ch.

    1983-01-01

    The use of radioactive tracers for the investigation of concentration dynamics of inert soluble matter in lakes and reservoirs is reviewed. Shallow and deep stratified lakes are considered. The mechanism of mixing in lakes, flow pattern and input - output response are discussed. The methodology of the use of radioactive tracers for concentration dynamic studies is described. Examples of various investigations are reviewed. The dynamics of shallow lakes can be found and expressed in terms of transfer functions, axial dispersion models, residence time distributions and sometimes only semiquantitative information about the flow pattern. The dynamics of deep, stratified lakes is more complex and difficult to investigate with tracers. Flow pattern, horizontal and vertical eddy diffusivities, mass transfer between the hypolimnion and epilimnion are tools used for describing this dynamics. (author)

  5. Live controls for radioisotope tracer food chain experiments using meiofauna

    International Nuclear Information System (INIS)

    Montagna, P.A.

    1983-01-01

    Formalin poisoned samples are inadequate for measuring the amount of label to be subtracted as control values for certain food chain studies that employ radioactive tracers. In some studies, tracer is added just before incubation to label ''food'' during the feeding study. Commonly, parallel, poisoned incubations are used to distinguish between biotic and abiotic label incorporation. But, a poisoned control does not account for label that could enter a consumer via active transport, epicuticular microfloral uptake, or grazing on labeled, non-food particles. Experiments were performed to test if label uptake is greater in live non-grazing than dead organisms. Marine benthic meiofauna incoporate from 3 to 133 times more tracer when they are alive and not grazing than when they are formalin killed. These results suggest that control experiments with live animals be performed to measure all processes by which label can enter consumers in food chain experiments. (orig.)

  6. Holdup time measurement by radioactive tracers in pulp production

    International Nuclear Information System (INIS)

    Roetzer, H.; Donhoffer, D.

    1988-12-01

    A batch of pulp was to be labelled before passing two bleaching towers of a pulp plant. Activated glass fibres were used as a tracer, which contained 24-Na with a half-life of 15 hours. It was shown in laboratory tests, that the glass fibres were suitable for transport studies of wood pulp. For use in the tests the fibres were activated and suspended in water. Due to the small diameter of the fibres (2-5 micrometers) this suspension shows physical properties very similar to the pulp. For detection six scintillation probes were mounted at different positions outside the bleaching tower. Radiation protection during the test was very easy due to the low total activity of the tracer material. Residence time distributions for both towers were measured. The successful tracer experiments show, that the method of labelling is suited for investigations of material transport in the pulp and paper industry. 3 figs., 11 refs., 2 tabs. (Author)

  7. Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation

    DEFF Research Database (Denmark)

    Kjølby, Birgitte Fuglsang; Østergaard, Leif; Kiselev, Valerij G

    2006-01-01

    The concentration of MRI tracers cannot be measured directly by MRI and is commonly evaluated indirectly using their relaxation effect. This study develops a comprehensive theoretical model to describe the transverse relaxation in perfused tissue caused by intravascular tracers. The model takes...... into account a number of individual compartments. The signal dephasing is simulated in a semianalytical way by embedding Monte Carlo simulations in the framework of analytical theory. This approach yields a tool for fast, realistic simulation of the change in the transverse relaxation. The results indicate...... with bulk blood. The enhancement of relaxation in tissue is due to the contrast in magnetic susceptibility between blood vessels and parenchyma induced by the presence of paramagnetic tracer. Beyond the perfusion measurements, the results can be applied to quantitation of functional MRI and to vessel size...

  8. Contamination tracer testing with seabed drills: IODP Expedition 357

    Directory of Open Access Journals (Sweden)

    B. N. Orcutt

    2017-11-01

    Full Text Available IODP Expedition 357 utilized seabed drills for the first time in the history of the ocean drilling program, with the aim of collecting intact sequences of shallow mantle core from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This novel drilling approach required the development of a new remote seafloor system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.

  9. A technique to depress desflurane vapor pressure.

    Science.gov (United States)

    Brosnan, Robert J; Pypendop, Bruno H

    2006-09-01

    To determine whether the vapor pressure of desflurane could be decreased by using a solvent to reduce the anesthetic molar fraction in a solution (Raoult's Law). We hypothesized that such an anesthetic mixture could produce anesthesia using a nonprecision vaporizer instead of an agent-specific, electronically controlled, temperature and pressure compensated vaporizer currently required for desflurane administration. One healthy adult female dog. Propylene glycol was used as a solvent for desflurane, and the physical characteristics of this mixture were evaluated at various molar concentrations and temperatures. Using a circle system with a breathing bag attached at the patient end and a mechanical ventilator to simulate respiration, an in-circuit, nonprecision vaporizer containing 40% desflurane and 60% propylene glycol achieved an 11.5% +/- 1.0% circuit desflurane concentration with a 5.2 +/- 0.4 (0 = off, 10 = maximum) vaporizer setting. This experiment was repeated with a dog attached to the breathing circuit under spontaneous ventilation with a fresh gas flow of 0.5 L minute(-1). Anesthesia was maintained for over 2 hours at a mean vaporizer setting of 6.2 +/- 0.4, yielding mean inspired and end-tidal desflurane concentrations of 8.7% +/- 0.5% and 7.9% +/- 0.7%, respectively. Rather than alter physical properties of vaporizers to suit a particular anesthetic agent, this study demonstrates that it is also possible to alter physical properties of anesthetic agents to suit a particular vaporizer. However, propylene glycol may not prove an ideal solvent for desflurane because of its instability in solution and substantial-positive deviation from Raoult's Law.

  10. Metal Vapor Arcing Risk Assessment Tool

    Science.gov (United States)

    Hill, Monika C.; Leidecker, Henning W.

    2010-01-01

    The Tin Whisker Metal Vapor Arcing Risk Assessment Tool has been designed to evaluate the risk of metal vapor arcing and to help facilitate a decision toward a researched risk disposition. Users can evaluate a system without having to open up the hardware. This process allows for investigating components at risk rather than spending time and money analyzing every component. The tool points to a risk level and provides direction for appropriate action and documentation.

  11. Dynamics and mechanics of bed-load tracer particles

    Directory of Open Access Journals (Sweden)

    C. B. Phillips

    2014-12-01

    Full Text Available Understanding the mechanics of bed load at the flood scale is necessary to link hydrology to landscape evolution. Here we report on observations of the transport of coarse sediment tracer particles in a cobble-bedded alluvial river and a step-pool bedrock tributary, at the individual flood and multi-annual timescales. Tracer particle data for each survey are composed of measured displacement lengths for individual particles, and the number of tagged particles mobilized. For single floods we find that measured tracer particle displacement lengths are exponentially distributed; the number of mobile particles increases linearly with peak flood Shields stress, indicating partial bed load transport for all observed floods; and modal displacement distances scale linearly with excess shear velocity. These findings provide quantitative field support for a recently proposed modeling framework based on momentum conservation at the grain scale. Tracer displacement is weakly negatively correlated with particle size at the individual flood scale; however cumulative travel distance begins to show a stronger inverse relation to grain size when measured over many transport events. The observed spatial sorting of tracers approaches that of the river bed, and is consistent with size-selective deposition models and laboratory experiments. Tracer displacement data for the bedrock and alluvial channels collapse onto a single curve – despite more than an order of magnitude difference in channel slope – when variations of critical Shields stress and flow resistance between the two are accounted for. Results show how bed load dynamics may be predicted from a record of river stage, providing a direct link between climate and sediment transport.

  12. How well do different tracers constrain the firn diffusivity profile?

    Directory of Open Access Journals (Sweden)

    C. M. Trudinger

    2013-02-01

    Full Text Available Firn air transport models are used to interpret measurements of the composition of air in firn and bubbles trapped in ice in order to reconstruct past atmospheric composition. The diffusivity profile in the firn is usually calibrated by comparing modelled and measured concentrations for tracers with known atmospheric history. However, in most cases this is an under-determined inverse problem, often with multiple solutions giving an adequate fit to the data (this is known as equifinality. Here we describe a method to estimate the firn diffusivity profile that allows multiple solutions to be identified, in order to quantify the uncertainty in diffusivity due to equifinality. We then look at how well different combinations of tracers constrain the firn diffusivity profile. Tracers with rapid atmospheric variations like CH3CCl3, HFCs and 14CO2 are most useful for constraining molecular diffusivity, while &delta:15N2 is useful for constraining parameters related to convective mixing near the surface. When errors in the observations are small and Gaussian, three carefully selected tracers are able to constrain the molecular diffusivity profile well with minimal equifinality. However, with realistic data errors or additional processes to constrain, there is benefit to including as many tracers as possible to reduce the uncertainties. We calculate CO2 age distributions and their spectral widths with uncertainties for five firn sites (NEEM, DE08-2, DSSW20K, South Pole 1995 and South Pole 2001 with quite different characteristics and tracers available for calibration. We recommend moving away from the use of a firn model with one calibrated parameter set to infer atmospheric histories, and instead suggest using multiple parameter sets, preferably with multiple representations of uncertain processes, to assist in quantification of the uncertainties.

  13. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    Science.gov (United States)

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  14. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium

    International Nuclear Information System (INIS)

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L.

    2007-01-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D 2 transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude

  15. Radiation monitoring at Pakistan research reactor

    International Nuclear Information System (INIS)

    Ali, A.

    1984-05-01

    Area radiation monitoring is accomplished by using Tracer Lab. radiation monitor. Personnel monitoring is carried out using film badges, TLDs (Thermoluminescent Dosimeters) and pocket dosimeters. For the evaluation of monthly accumulated doses of radiation workers film badges/TLDs and for instantaneous/short term dose measurement in higher radiation zones pocket dosimeters are used in addition to film badge/TLD. Environmental monitoring is necessary to check the PARR operation effect on background radiation level in the vicinity of PINSTECH. (A.B.). 4 refs

  16. Vapor Explosions with Subcooled Freon

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.; McUmber, L.M.

    1976-01-01

    Explosive vapor formation accompanied by destructive shock waves, can be produced when two liquids, at much different temperatures, are brought into intimate contact. A proposed analytical model states that the interface temperature upon contact between the two liquid systems, gust be greater than or equal to the spontaneous nucleation temperature of that liquid-liquid system and that the thermal boundary layer must be sufficiently developed to support a critical size cavity. For time scales greater than 10-12 sec, the interface temperature upon contact of two semi-infinite masses, with constant thermal properties, can be related to the initial liquid temperatures. The spontaneous nucleation behavior at the interface can either be heterogeneous or homogeneous in nature. In either case, the critical size cavities, which initiate the vaporization process, are produced by local density fluctuations within the cold liquid. For homogeneous conditions, the two liquids present a well-wetted system and the vapor embryos are produced entirely within the cold liquid. For heterogeneous conditions, which result from poor, or imperfect wetting, at the liquid-liquid interface, the critical sized cavities are created at the interface at somewhat lower temperatures. A sequence of experiments, using Freon-22 and water, Freon-22 and mineral oil, and Freon-12 and mineral oil have been performed to test this spontaneous nucleation premise. For Freon-22 at its normal boiling point, the interface temperature of the water must be at least 77 deg. C before the interface temperature equals or exceeds the minimum homogeneous nucleation value of 54 deg. C and 84 deg. C before the interface temperature equals 60 deg. C where the homogeneous nucleation rate becomes truly explosive. The Freon-water test demonstrated explosive interactions for water temperatures considerably lower than this value and this was attributed to the heterogeneous nucleation characteristics of that particular system

  17. Effect of impact angle on vaporization

    Science.gov (United States)

    Schultz, Peter H.

    1996-09-01

    Impacts into easily vaporized targets such as dry ice and carbonates generate a rapidly expanding vapor cloud. Laboratory experiments performed in a tenuous atmosphere allow deriving the internal energy of this cloud through well-established and tested theoretical descriptions. A second set of experiments under near-vacuum conditions provides a second measure of energy as the internal energy converts to kinetic energy of expansion. The resulting data allow deriving the vaporized mass as a function of impact angle and velocity. Although peak shock pressures decrease with decreasing impact angle (referenced to horizontal), the amount of impact-generated vapor is found to increase and is derived from the upper surface. Moreover, the temperature of the vapor cloud appears to decrease with decreasing angle. These unexpected results are proposed to reflect the increasing roles of shear heating and downrange hypervelocity ricochet impacts created during oblique impacts. The shallow provenance, low temperature, and trajectory of such vapor have implications for larger-scale events, including enhancement of atmospheric and biospheric stress by oblique terrestrial impacts and impact recycling of the early atmosphere of Mars.

  18. MESYST, Simulation of 3-D Tracer Dispersion in Atmosphere

    International Nuclear Information System (INIS)

    Mastrangelo, V.; Mehilli, I.

    2000-01-01

    1 - Description of program or function: Mesyst code is used for the simulation of 3D tracer dispersion in atmosphere. Three packages are part of this system: Cre-topo: prepares the terrain data for the Mesyst. Noabl: code calculates three- dimensional free divergence wind fields over complex terrain. Pas: Computing of tracer concentrations and depositions on a given domain. 2 - Method of solution: NOABL - Line Over Relaxation + Special adaptation of Gauss procedure. PAS - Monte Carlo Method. 3 - Restrictions on the complexity of the problem: Computations: Mesh size: variable from some meters to some hundreds meters Mesh number: variable depending on available real data (some hundreds points on each directions)

  19. Key aspects of stratospheric tracer modeling using assimilated winds

    Directory of Open Access Journals (Sweden)

    B. Bregman

    2006-01-01

    Full Text Available This study describes key aspects of global chemistry-transport models and their impact on stratospheric tracer transport. We concentrate on global models that use assimilated winds from numerical weather predictions, but the results also apply to tracer transport in general circulation models. We examined grid resolution, numerical diffusion, air parcel dispersion, the wind or mass flux update frequency, and time interpolation. The evaluation is performed with assimilated meteorology from the "operational analyses or operational data" (OD from the European Centre for Medium-Range Weather Forecasts (ECMWF. We also show the effect of the mass flux update frequency using the ECMWF 40-year re-analyses (ERA40. We applied the three-dimensional chemistry-transport Tracer Model version 5 (TM5 and a trajectory model and performed several diagnoses focusing on different transport regimes. Covering different time and spatial scales, we examined (1 polar vortex dynamics during the Arctic winter, (2 the large-scale stratospheric meridional circulation, and (3 air parcel dispersion in the tropical lower stratosphere. Tracer distributions inside the Arctic polar vortex show considerably worse agreement with observations when the model grid resolution in the polar region is reduced to avoid numerical instability. The results are sensitive to the diffusivity of the advection. Nevertheless, the use of a computational cheaper but diffusive advection scheme is feasible for tracer transport when the horizontal grid resolution is equal or smaller than 1 degree. The use of time interpolated winds improves the tracer distributions, particularly in the middle and upper stratosphere. Considerable improvement is found both in the large-scale tracer distribution and in the polar regions when the update frequency of the assimilated winds is increased from 6 to 3 h. It considerably reduces the vertical dispersion of air parcels in the tropical lower stratosphere. Strong

  20. Lumped parameter models for the interpretation of environmental tracer data

    International Nuclear Information System (INIS)

    Maloszewski, P.; Zuber, A.

    1996-01-01

    Principles of the lumped-parameter approach to the interpretation of environmental tracer data are given. The following models are considered: the piston flow model (PFM), exponential flow model (EM), linear model (LM), combined piston flow and exponential flow model (EPM), combined linear flow and piston flow model (LPM), and dispersion model (DM). The applicability of these models for the interpretation of different tracer data is discussed for a steady state flow approximation. Case studies are given to exemplify the applicability of the lumped-parameter approach. Description of a user-friendly computer program is given. (author). 68 refs, 25 figs, 4 tabs