WorldWideScience

Sample records for monitor plant health

  1. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health

    Directory of Open Access Journals (Sweden)

    Anand K. Asundi

    2008-05-01

    Full Text Available Optical technologies can be developed as practical tools for monitoring plant health by providing unique spectral signatures that can be related to specific plant stresses. Signatures from thermal and fluorescence imaging have been used successfully to track pathogen invasion before visual symptoms are observed. Another approach for noninvasive plant health monitoring involves elucidating the manner with which light interacts with the plant leaf and being able to identify changes in spectral characteristics in response to specific stresses. To achieve this, an important step is to understand the biochemical and anatomical features governing leaf reflectance, transmission and absorption. Many studies have opened up possibilities that subtle changes in leaf reflectance spectra can be analyzed in a plethora of ways for discriminating nutrient and water stress, but with limited success. There has also been interest in developing transgenic phytosensors to elucidate plant status in relation to environmental conditions. This approach involves unambiguous signal creation whereby genetic modification to generate reporter plants has resulted in distinct optical signals emitted in response to specific stressors. Most of these studies are limited to laboratory or controlled greenhouse environments at leaf level. The practical translation of spectral cues for application under field conditions at canopy and regional levels by remote aerial sensing remains a challenge. The movement towards technology development is well exemplified by the Controlled Ecological Life Support System under development by NASA which brings together technologies for monitoring plant status concomitantly with instrumentation for environmental monitoring and feedback control.

  2. ChemAND - a system health monitor for plant chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Dundar, Y.; Bergeron, M.; Laporte, R. [Hydro-Quebec, Groupe Chimie, Centrale Nucleaire Gentilly-2, Gentilly, Quebec (Canada)

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  3. ChemAND - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchell, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M.; Dundar, Y.; Bergeron, M.; Laporte, R.

    2001-01-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display-it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam cycle system, as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  4. ChemAND - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M.; Dundar, Y.; Bergeron, M.; Laporte, R.

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  5. Environment monitoring and residents health condition monitoring of nuclear power plant Bohunice region

    International Nuclear Information System (INIS)

    Letkovicova, M.; Rehak, R.; Stehlikova, B.; Celko, M.; Hraska, S.; Klocok, L.; Kostial, J.; Prikazsky, V.; Vidovic, J.; Zirko, M.; Beno, T.; Mitosinka, J.

    1998-01-01

    The report contents final environment evaluation and selected characteristic of residents health physics of nuclear power plant Bohunice region. Evaluated data were elaborated during analytical period 1993-1997.Task solving which results are documented in this final report was going on between 1996- 1998. The report deals in individual stages with the following: Information obtaining and completing which characterize demographic situation of the area for the 1993-1997 period; Datum obtaining and completing which contain selected health physics characteristics of the area residents; Database structures for individual data archiving from monitoring and collection; Brief description of geographic information system for graphic presentation of evaluation results based on topographic base; Digital mapping structure description; Results and evaluation of radionuclide monitoring in environment performed by Environmental radiation measurements laboratory by the nuclear power plant Bohunice for the 1993-1997 period. Demographic situation evaluation and selected health physics characteristics of the area of nuclear power plant residents for the 1993-1997 period are summarized in the final part of the document. Monitoring results and their evaluation is processed in graph, table, text description and map output forms. Map outputs are processed in the geographic information system Arc View GIS 3.0a environment

  6. ChemANDTM - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchel, G.R.; Balakrishnan, P.V.; Tosello, G.

    1999-07-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation and feeds these parameters to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently has two analytical models developed for the balance-of-plant. CHEMSOLV calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information will be used by operations personnel to evaluate the potential for SG tube corrosion in the crevice region. CHEMSOLV also calculates chemistry conditions throughout the steam-cycle system, as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. A second model, SLUDGE, calculates the deposit loading in the SG as a function of time, based on concentrations of corrosion product in the final feedwater and plant operating conditions. Operations personnel can use this information to predict where to inspect and when to clean. In a future development, SLUDGE will track deposit loading arising from start-up crud bursts and will be used in conjunction with the thermohydraulics code, THIRST, to predict

  7. New seismic array solution for earthquake observations and hydropower plant health monitoring

    Science.gov (United States)

    Antonovskaya, Galina N.; Kapustian, Natalya K.; Moshkunov, Alexander I.; Danilov, Alexey V.; Moshkunov, Konstantin A.

    2017-09-01

    We present the novel fusion of seismic safety monitoring data of the hydropower plant in Chirkey (Caucasus Mountains, Russia). This includes new hardware solutions and observation methods, along with technical limitations for three types of applications: (a) seismic monitoring of the Chirkey reservoir area, (b) structure monitoring of the dam, and (c) monitoring of turbine vibrations. Previous observations and data processing for health monitoring do not include complex data analysis, while the new system is more rational and less expensive. The key new feature of the new system is remote monitoring of turbine vibration. A comparison of the data obtained at the test facilities and by hydropower plant inspection with remote sensors enables early detection of hazardous hydrodynamic phenomena.

  8. ChemAND{sup TM} - a system health monitor for plant chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Mitchel, G.R.; Balakrishnan, P.V.; Tosello, G

    1999-07-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation and feeds these parameters to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently has two analytical models developed for the balance-of-plant. CHEMSOLV calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information will be used by operations personnel to evaluate the potential for SG tube corrosion in the crevice region. CHEMSOLV also calculates chemistry conditions throughout the steam-cycle system, as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. A second model, SLUDGE, calculates the deposit loading in the SG as a function of time, based on concentrations of corrosion product in the final feedwater and plant operating conditions. Operations personnel can use this information to predict where to inspect and when to clean. In a future development, SLUDGE will track deposit loading arising from start-up crud bursts and will be used in conjunction with the thermohydraulics code, THIRST, to

  9. Application of Equipment Monitoring Technology in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kang, H. T.; Lee, J. K.; Lee, K. D.; Jo, S. H.

    2012-01-01

    The major goal of nuclear power industries during the past 10 years is to increase reliability and utility capacity factor. As the capacitor factor, however, crept upward. it became harder to attain next percentage of improvement. Therefore other innovative technologies are required. By the technologies applied to the fossil power plants, equipment health monitoring was performed on equipment to maintain it in operable condition and contributed on improving their reliability a lot. But the equipment monitoring may be limited to the observation of current system states in nuclear power plant. Monitoring of current system states is being augmented with prediction of future operating states and predictive diagnosis of future failure states. Such predictive diagnosis is motivated by the need for nuclear power plants to optimize equipment performance and reduce costs and unscheduled downtime. This paper reviews the application of techniques that focus on improving reliability in nuclear power plant by monitoring and predicting equipment health and suggests how possible to support on-line monitoring

  10. Structural health monitoring of power plant components based on a local temperature measurement concept

    International Nuclear Information System (INIS)

    Rudolph, Juergen; Bergholz, S.; Hilpert, R.; Jouan, B.; Goetz, A.

    2012-01-01

    The fatigue assessment of power plant components based on fatigue monitoring approaches is an essential part of the integrity concept and modern lifetime management. It is comparable to structural health monitoring approaches in other engineering fields. The methods of fatigue evaluation of nuclear power plant components based on realistic thermal load data measured on the plant are addressed. In this context the Fast Fatigue Evaluation (FFE) and Detailed Fatigue Calculation (DFC) of nuclear power plant components are parts of the three staged approach to lifetime assessment and lifetime management of the AREVA Fatigue Concept (AFC). The three stages Simplified Fatigue Estimation (SFE), Fast Fatigue Evaluation (FFE) and Detailed Fatigue Calculation (DFC) are characterized by increasing calculation effort and decreasing degree of conservatism. Their application is case dependent. The quality of the fatigue lifetime assessment essentially depends on one hand on the fatigue model assumptions and on the other hand on the load data as the basic input. In the case of nuclear power plant components thermal transient loading is most fatigue relevant. Usual global fatigue monitoring approaches rely on measured data from plant instrumentation. As an extension, the application of a local fatigue monitoring strategy (to be described in detail within the scope of this paper) paves the way of delivering continuously (nowadays at a frequency of 1 Hz) realistic load data at the fatigue relevant locations. Methods of qualified processing of these data are discussed in detail. Particularly, the processing of arbitrary operational load sequences and the derivation of representative model transients is discussed. This approach related to realistic load-time histories is principally applicable for all fatigue relevant components and ensures a realistic fatigue evaluation. (orig.)

  11. Environmental monitoring report for Plantex Plant covering 1979

    International Nuclear Information System (INIS)

    Alexander, R.E.; Cornelius, V.A.

    1980-05-01

    The environmental monitoring program at Pantex Plant for 1979 is summarized. Monitoring data for both radioactive and non-radioactive species in the local environment are presented. Although plant activities involve the handling of significant quantities of uranium, plutonium, and tritium, only small releases of uranium (depleted in the isotope 235 U) and tritium occurred which could have affected the local environment. Monitoring data indicate that concentrations of these nuclides in the environment are below established criteria for air and water and therefore do not present a health hazard either to employees or to the public

  12. Plant monitoring device

    International Nuclear Information System (INIS)

    Moriyama, Kunio.

    1991-01-01

    The monitoring device of the present invention is most suitable to early detection for equipment abnormality, or monitoring of state upon transient conditions such as startup and shutdown of an electric power plant, a large-scaled thermonuclear device and an accelerator plant. That is, in existent moitoring devices, acquired data are stored and the present operation states are monitored in comparison. A plant operation aquisition data reproduction section is disposed to the device. From the past operation conditions stored in the plant operation data aquisition reproducing section, the number of operation cycles that agrees with the present plant operation conditions is sought, to determine the agreed aquired data. Since these aquired data are time sequential data measured based on the standard time determined by the operation sequence, aquired data can be reproduced successively on every sample pitches. With such a constitution, aquired data under the same operation conditions as the present conditions are displayed together with the measured data. Accordingly, accurate monitoring can be conducted from the start-up to the shutdown of the plant. (I.S.)

  13. Environmental monitoring report for Pantex Plant covering 1980

    International Nuclear Information System (INIS)

    Alexander, R.E.; Laseter, W.A.

    1981-03-01

    This report summarizes the environmental monitoring program at Pantex Plant for 1980. Monitoring data for both radioactive and non-radioactive species in the local environment is presented. Although plant activities involve the handling of significant quantities of uranium, plutonium, and tritium, only small releases of uranium (depleted in the isotope 235 U) and tritium occurred which could have affected the local environment. Monitoring data indicate that concentrations of these nuclides in the environment are below established criteria for air and water and therefore do not present a health hazard either to employees or to the public

  14. Environmental monitoring report for Pantex Plant covering 1982

    International Nuclear Information System (INIS)

    Laseter, W.A.

    1983-03-01

    This report summarizes the environmental monitoring program at Pantex Plant for 1982. Monitoring data for both radioactive and non-radioactive species in the local environment is presented. Plant activities involve the handling of significant quantities of uranium, plutonium, and tritium. However, only small releases of uranium (depleted in the isotope 235 U) and tritium occurred which could have affected the local environment. Monitoring data indicate that concentrations of these nuclides in the environment are below established criteria for air and water and therefore should not present a health hazard either to employees or to the public

  15. Plant performance monitoring program at Krsko NPP

    International Nuclear Information System (INIS)

    Bach, B.; Kavsek, D.

    2004-01-01

    A high level of nuclear safety and plant reliability results from the complex interaction of a good design, operational safety and human performance. This is the reason for establishing a set of operational plant safety performance indicators, to enable monitoring of both plant performance and progress. Performance indicators are also used for setting challenging targets and goals for improvement, to gain additional perspective on performance relative to other plants and to provide an indication of a potential need to adjust priorities and resources to achieve improved overall plant performance. A specific indicator trend over a certain period can provide an early warning to plant management to evaluate the causes behind the observed changes. In addition to monitoring the changes and trends, it is also necessary to compare the indicators with identified targets and goals to evaluate performance strengths and weaknesses. Plant Performance Monitoring Program at Krsko NPP defines and ensures consistent collection, processing, analysis and use of predefined relevant plant operational data, providing a quantitative indication of nuclear power plant performance. When the program was developed, the conceptual framework described in IAEA TECDOC-1141 Operational Safety Performance Indicators for Nuclear Power Plants was used as its basis in order to secure that a reasonable set of quantitative indications of operational safety performance would be established. Safe, conservative, cautious and reliable operation of the Krsko NPP is a common goal for all plant personnel. It is provided by continuous assurance of both health and safety of the public and employees according to the plant policy stated in program MD-1 Notranje usmeritve in cilji NEK, which is the top plant program. Establishing a program of monitoring and assessing operational plant safety performance indicators represents effective safety culture of plant personnel.(author)

  16. Development of Structural Health Monitoring System for pipes in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Eom, H. S.; Choi, Y. C.; Shin, S. H.; Youn, D. B.; Park, J. H.

    2010-01-01

    Structural health monitoring (SHM) has becoming an important issue in the maintenance of various structures such as large steel plates, vessels, and pipes in nuclear power plants. There are important factors to be considered in developing an SHM system. With consideration of these factors, we have developed a computerized multi-channel ultrasonic system that can handle array transducers and generate a high-power pulse for online SHM of the plates and pipes. The proposed system is compact but has all the necessary functions for SHM of important structure such as pipes and plates in a NPP

  17. Structural health monitoring and lifecycle-management for civil engineering constructions in power plants and industrial facilities; Zustandsueberwachung und Lebensdauermanagement von baulichen Einrichtungen in Kraftwerken und Industrieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Lehnen, Dieter; Demmer, Martin; Pfister, Tobias [ZERNA Planen und Pruefen GmbH, Bochum (Germany)

    2013-09-01

    In contrast to other fields of engineering, structural health monitoring and lifecycle management for civil engineering constructions in power plants and industrial facilities have to be developed yet. The necessity of this development immediately arises from the building regulations law with its extensive set of regulations as well as from economic constraints. Approaches and methods of structural health monitoring and lifecycle management for civil engineering constructions in power plants and industrial facilities could be improved intensively during recent years. The paper focuses on practical examples that show the necessity of comprehensive and strategic structural health monitoring in conjunction with lifecycle management for civil engineering constructions in power plants and industrial facilities unambiguously und clear. (orig.)

  18. Online Monitoring of Concrete Structures in Nuclear Power Plants: Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The existing fleet of nuclear power plants in the United States have initial operating licenses of 40 years, and many of these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code-based design margins of safety. Structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. The online monitoring of concrete structures project conducted under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability program at Idaho National Laboratory is seeking to develop and demonstrate capabilities for concrete structures health monitoring. Through this research project, several national laboratories and Vanderbilt University propose to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes the integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses activities in this project during October-December, 2014. The most significant activity during this period was the organizing of a two-day workshop on research needs in online monitoring of concrete structures, hosted by Vanderbilt University in November 2014. Thirty invitees from academia, industry and government participated in the workshop. The presentations and discussions at the workshop surveyed current activities related to concrete structures deterioration modeling and monitoring, and identified the challenges, knowledge gaps, and opportunities for advancing the state of the art; these

  19. Environmental monitoring report for Pantex Plant covering 1974

    International Nuclear Information System (INIS)

    Alexander, R.E.

    1975-01-01

    During 1974 Pantex Plant conducted a monitoring program to determine the concentration of specific radioactive and non-radioactive species in the local environment. Although the plant activities involved the handling of significant quantities of uranium, plutonium, and tritium, only small releases of uranium (depleted in the isotope 235 U) and tritium have occurred which could affect the local environment. Monitoring data indicate that concentrations of these nuclides in the environment are below established criteria for air and water and therefore do not present a health hazard either to employees or to the public. (U.S.)

  20. Environmental monitoring report for Pantex Plant covering 1984

    International Nuclear Information System (INIS)

    Laseter, W.A.

    1985-01-01

    This report summarizes the environmental monitoring program at Pantex Plant for 1984. It has been prepared in accordance with the United States Department of Energy Order 5484.1. This report presents monitoring data for both radioactive and non-radioactive species in the local environment. Plant activities involve the handling of significant quantities of uranium, plutonium, and tritium. However, only a small release of tritium occurred which could have affected the local environment. Monitoring data indicate that concentrations of this nuclide in the environment are below established criteria for air and water and therefore should not present a health hazard either to employees or to the public. 22 refs., 7 figs., 23 tabs

  1. Environmental monitoring report for Pantex Plant covering 1978

    International Nuclear Information System (INIS)

    Alexander, R.E.; Cornelius, V.A.

    1979-05-01

    This report summarizes the environmental monitoring program at Pantex Plant for 1978. It has been prepared in accordance with the United States Department of Energy Manual Chapter 0513. This report presents monitoring data for both radioactive and non-radioactive species in the local environment. Although plant activities involve the handling of significant quantities of uranium, plutonium, and tritium, only small releases of uranium (depleted in the isotope 235 U) and tritium occurred which could have affected the local environment. Monitoring data indicate that concentrations of these nuclides in the environment are below established criteria for air and water and therefore should not present a health hazard either to employees or to the public

  2. Integrated online condition monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, Hashem M.

    2010-01-01

    Online condition monitoring or online monitoring (OLM) uses data acquired while a nuclear power is operating to continuously assess the health of the plant's sensors, processes, and equipment; to measure the dynamic performance of the plant's process instrumentation; to verify in-situ the calibration of the process instrumentation; to detect blockages, voids, and leaks in the pressure sensing lines; to identify core flow anomalies; to extend the life of neutron detectors and other sensors; and to measure the vibration of reactor internals. Both the steady-state or DC output of plant sensors and their AC signal or noise output can be used to assess sensor health, depending on whether the application is monitoring a rapidly changing (e.g., core barrel motion) or a slowly changing (e.g., sensor calibration) process. The author has designed, developed, installed, and tested OLM systems (comprised of software/hardware-based data acquisition and data processing modules) that integrate low-frequency (1 mHz to 1 Hz) techniques such as RTD cross-calibration, pressure transmitter calibration monitoring, and equipment condition monitoring and high-frequency (1 Hz to 1 kHz) techniques such as the noise analysis technique. The author has demonstrated the noise analysis technique's effectiveness for measuring the dynamic response-time of pressure transmitters and their sensing lines; for performing predictive maintenance on reactor internals; for detecting core flow anomalies; and for extending neutron detector life. Integrated online condition monitoring systems can combine AC and DC data acquisition and signal processing techniques, can use data from existing process sensors during all modes of plant operation, including startup, normal operation, and shutdown; can be retrofitted into existing PWRs, BWRs, and other reactor types and will be integrated into next-generation plants. (orig.)

  3. Integrated online condition monitoring system for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, Hashem M. [Analysis and Measurement Services Corporation, Knoxville, TN (United States). AMS Technology Center

    2010-09-15

    Online condition monitoring or online monitoring (OLM) uses data acquired while a nuclear power is operating to continuously assess the health of the plant's sensors, processes, and equipment; to measure the dynamic performance of the plant's process instrumentation; to verify in-situ the calibration of the process instrumentation; to detect blockages, voids, and leaks in the pressure sensing lines; to identify core flow anomalies; to extend the life of neutron detectors and other sensors; and to measure the vibration of reactor internals. Both the steady-state or DC output of plant sensors and their AC signal or noise output can be used to assess sensor health, depending on whether the application is monitoring a rapidly changing (e.g., core barrel motion) or a slowly changing (e.g., sensor calibration) process. The author has designed, developed, installed, and tested OLM systems (comprised of software/hardware-based data acquisition and data processing modules) that integrate low-frequency (1 mHz to 1 Hz) techniques such as RTD cross-calibration, pressure transmitter calibration monitoring, and equipment condition monitoring and high-frequency (1 Hz to 1 kHz) techniques such as the noise analysis technique. The author has demonstrated the noise analysis technique's effectiveness for measuring the dynamic response-time of pressure transmitters and their sensing lines; for performing predictive maintenance on reactor internals; for detecting core flow anomalies; and for extending neutron detector life. Integrated online condition monitoring systems can combine AC and DC data acquisition and signal processing techniques, can use data from existing process sensors during all modes of plant operation, including startup, normal operation, and shutdown; can be retrofitted into existing PWRs, BWRs, and other reactor types and will be integrated into next-generation plants. (orig.)

  4. Development of a Plant Health Index Monitor

    International Nuclear Information System (INIS)

    Heo, Gyun Young; An, Sang Ha; Seo, Ho Joon; Kim, Cho

    2010-01-01

    Since 2008, BNF Technology Inc. and Kyung Hee University have developed the 'Plant Health Index (PHI)' which is a software package to detect 'unhealthy conditions' of plant equipment in advance. While the difference between a setpoint and an operational condition is called 'process margin', the residual between an anticipated normal condition and an operational condition is called 'process uncertainty' or 'healthiness' in this study. It is obvious that the anomalies in process uncertainty can be observed earlier than those in process margin, which is the concept of 'early-warning' proposed in the recent condition-based maintenance (CBM) studies. One of the key factors for implementing the early warning capability should be how to expect the anticipated normal conditions using available information. The PHI was developed on the basis of empirical models, and we have published a few papers with regarding to the core technologies of the PHI. However, the overall architecture and features of the PHI have not been introduced to academic area so far. This paper delineates the overview of the PHI, and focuses on the recently developed module, which is the health index generator

  5. Development of a Plant Health Index Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Gyun Young [Kyung Hee University, Yongin (Korea, Republic of); An, Sang Ha [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Seo, Ho Joon [BNF Technology Inc., Daejeon (Korea, Republic of); Kim, Cho [Korea South-East Power Co., Seoul (Korea, Republic of)

    2010-05-15

    Since 2008, BNF Technology Inc. and Kyung Hee University have developed the 'Plant Health Index (PHI)' which is a software package to detect 'unhealthy conditions' of plant equipment in advance. While the difference between a setpoint and an operational condition is called 'process margin', the residual between an anticipated normal condition and an operational condition is called 'process uncertainty' or 'healthiness' in this study. It is obvious that the anomalies in process uncertainty can be observed earlier than those in process margin, which is the concept of 'early-warning' proposed in the recent condition-based maintenance (CBM) studies. One of the key factors for implementing the early warning capability should be how to expect the anticipated normal conditions using available information. The PHI was developed on the basis of empirical models, and we have published a few papers with regarding to the core technologies of the PHI. However, the overall architecture and features of the PHI have not been introduced to academic area so far. This paper delineates the overview of the PHI, and focuses on the recently developed module, which is the health index generator

  6. Environmental monitoring report for Pantex Plant covering 1986

    International Nuclear Information System (INIS)

    Laseter, W.A.

    1987-04-01

    This report summarizes the environmental monitoring program at Pantex Plant for 1986. It has been prepared in accordance with the US Department of Energy Order 5484.1. This report presents monitoring data for both radioactive and nonradioactive species in the local environment. Plant activities involve the handling of significant quantities of uranium, plutonium and tritium in the form of completed parts received from other DOE facilities, resulting in a very low potential for release of these radionuclides to the atmosphere. In 1986 only small releases of depleted uranium (depleted in the isotope U-235) and tritium occurred which could have affected the local environment. Monitoring data indicate that concentrations of these nuclides in the environment are below established criteria for air and water and therefore should not present a health hazard either to employees or to the public

  7. Configuration of Risk Monitor System by PLant Defense-In.Depth Monitor and Relability Monitor

    DEFF Research Database (Denmark)

    Yoshikawa, Hidekazu; Lind, Morten; Yang, Ming

    2012-01-01

    A new method of risk monitor system of a nuclear power plant has been proposed from the aspect by what degree of safety functions incorporated in the plant system is maintained by multiple barriers of defense-in-depth (DiD). Wherein, the central idea is plant DiD risk monitor and reliability...... monitor derived from the four aspects of (i) design principle of nuclear safety to realize DiD concept, (ii) definition of risk and risk to be monitored, (iii) severe accident phenomena as major risk, (iv) scheme of risk ranking, and (v) dynamic risk display. In this paper, the overall frame...... of the proposed frame on risk monitor system is summarized and the detailed discussion is made on the definitions of major terminologies of risk, risk ranking, anatomy of fault occurrence, two-layer configuration of risk monitor, how to configure individual elements of plant DiD risk monitor and its example...

  8. Development of nuclear power plant Risk Monitor

    International Nuclear Information System (INIS)

    Yang Xiaoming; Sun Jinlong; Ma Chao; Wang Lin; Gu Xiaohui; Bao Zhenli; Qu Yong; Zheng Hao

    2014-01-01

    Risk Monitor is a tool to monitor the real-time risk of a nuclear power plant for risk management and comprehensive decision-making, which has been widely used all over the world. The nuclear power plant Risk Monitor applies the real-time risk model with low-complicacy that could reflect the plant's actual configuration, automatically reads the plant's configuration information from the engineering system through the developed interface, and efficiently analyzes the plant's risk Dy the intelligent parallel-computing method in order to provide the risk basement for the safety management of nuclear power plant. This paper generally introduces the background, architecture, functions and key technical features of a nuclear power plant Risk Monitor, and validates the risk result, which could well reflect the plant's risk information and has a significant practical value. (authors)

  9. Supervisory monitoring system in nuclear power plants

    International Nuclear Information System (INIS)

    Ciftcioglu, O.; Turkcan, E.

    1997-01-01

    Monitoring of a power plant is one of the essential tasks during operation and the computer-based implementations are nowadays seemingly quite mature. However, presently these are still not satisfactory enough to meet the high standards to the licensing requirements and they are mostly not truly integrated to the plant's design-based monitoring system. This is basically due to the robustness problem as the majority of the methods are not robust enough for the monitoring of the safety parameter set in a plant or intelligent supervision. Therefore, a supervisory monitoring system (SMS) in a plant is necessary to supervise the monitoring tasks: determining the objectives to be obtained and finding the means to support them. SMS deals with the changing plant status and the coordination of the information flow among the monitoring subunits. By means of these robustness and consistency in monitoring is achieved. The paper will give the guidelines of knowledge and data management techniques in a framework of robust comprehensive and coordinated monitoring which is presented as supervisory monitoring. Such a high level monitoring serves for consistent and immediate actions in fault situations while this particularly has vital importance in preventing imminent severe accidents next to the issues of recognition of the monitoring procedures for licensing and enhanced plant safety. (author). 8 refs, 5 figs

  10. The Meteorological Monitoring program at a former nuclear weapons plant

    International Nuclear Information System (INIS)

    Maxwell, D.R.; Bowen, B.M.

    1994-01-01

    The purpose of the Meteorological Monitoring program at Rocky Flats Plant (RFP) is to provide meteorological information for use in assessing the transport, and diffusion, and deposition of effluent actually or potentially released into the atmosphere by plant operations. Achievement of this objective aids in protecting health and safety of the public, employees, and environment, and directly supports Emergency Response programs at RFP. Meteorological information supports the design of environmental monitoring networks for impact assessments, environmental surveillance activities, remediation activities, and emergency responses. As the mission of the plant changes from production of nuclear weapons parts to environmental cleanup and economic development, smaller releases resulting from remediation activities become more likely. These possible releases could result from airborne fugitive dust, evaporation from collection ponds, or grass fires

  11. Plant-wide integrated equipment monitoring and analysis system

    International Nuclear Information System (INIS)

    Morimoto, C.N.; Hunter, T.A.; Chiang, S.C.

    2004-01-01

    A nuclear power plant equipment monitoring system monitors plant equipment and reports deteriorating equipment conditions. The more advanced equipment monitoring systems can also provide information for understanding the symptoms and diagnosing the root cause of a problem. Maximizing the equipment availability and minimizing or eliminating consequential damages are the ultimate goals of equipment monitoring systems. GE Integrated Equipment Monitoring System (GEIEMS) is designed as an integrated intelligent monitoring and analysis system for plant-wide application for BWR plants. This approach reduces system maintenance efforts and equipment monitoring costs and provides information for integrated planning. This paper describes GEIEMS and how the current system is being upgraded to meet General Electric's vision for plant-wide decision support. (author)

  12. Configuration of risk monitor system by plant defense-in-depth risk monitor and reliability monitor

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Lind Morten; Yang Ming; Hashim Muhammad; Zhang Zhijian

    2012-01-01

    A new method of risk monitor system of a nuclear power plant has been proposed from the aspect by what degree of safety functions incorporated in the plant system is maintained by multiple barriers of defense-in-depth (DiD). Wherein, the central idea is plant DiD risk monitor and reliability monitor derived from the five aspects of (1) design principle of nuclear safety based on DiD concept, (2) definition of risk and risk to be monitored, (3) severe accident phenomena as major risk, (4) scheme of risk ranking, and (5) dynamic risk display. In this paper, the overall frame of the proposed risk monitor system is summarized and the detailed discussion is made on major items such as definition of risk and risk ranking, anatomy of fault occurrence, two-layer configuration of risk monitor, how to configure individual elements of plant DiD risk monitor, and lastly how to apply for a PWR safety system. (author)

  13. Operation monitor for plant equipment

    International Nuclear Information System (INIS)

    Kondo, Tetsufumi; Kanemoto, Shigeru.

    1991-01-01

    In a nuclear power plant, states of each of equipment in the plant are monitored accurately even under such a operation condition that the power is changed. That is, the fundamental idea is based on a model comparison method. A deviation between an output signal upon normal plant state obtained in a forecasting model device and that of the objective equipment in the plant are compared with a predetermined value. The result of the comparison is inputted to an alarm device to alarm the abnormality of the states of the equipment to an operator. The device of the present invention thus constituted can monitor the abnormality of the operation of equipment accurately even under such a condition that a power level fluctuates. As a result, it can remarkably contribute to mitigate operator's monitoring operation under the condition such as during load following operation. (I.S.)

  14. Facility effluent monitoring plan for the B plant

    International Nuclear Information System (INIS)

    Lesser, J.E.

    1994-09-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plant assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated every three years

  15. Pinellas Plant environmental monitoring report 1985

    International Nuclear Information System (INIS)

    1986-04-01

    The effluent and environmental monitoring programs maintained by the Pinellas Plant are designed to determine the efficiencies of treatment and control mechanisms for environmental releases; to provide measurements of discharge concentrations for comparison with applicable standards; and to assess the concentrations of these discharges in the on-site and off-site environment. This report was prepared in accordance with the reporting requirements of USDOE Draft Order 5484.1A, ''Environmental Protection, Safety, and Health Protection Information Reporting Requirements.'' All radiological and chemical effluents were found in compliance

  16. New developments in online plant monitoring

    International Nuclear Information System (INIS)

    Laipple, Bernd; Langenstein, Magnus

    2007-01-01

    The large quantities of information produced within plant processes nearly make the plausibility of data impossible without the help of additional tools. For this reason, a variety of plant monitoring tools has been developed in the past which promise a sensible compression of data. The main problem with the offered tools lies with the omission of procedural plausibility. The newly developed plant monitoring system BTB ProcessPlus is based on the VDI 2048 methodology of process data reconciliation. Plausibility and quality control therefore serve as a basis for the system. With this procedural process image, significant diagnosis and monitoring tools have been developed and now offer a fast and economically optimal support in process optimization. This paper describes the methodology according to VDI 2048. The benefits of the online plant monitoring system are demonstrated by means of examples from day-to-day operations. (author)

  17. Monitoring support system for nuclear power plant

    International Nuclear Information System (INIS)

    Higashikawa, Yuichi; Kubota, Rhuji; Tanaka, Keiji; Takano, Yoshiyuki

    1996-01-01

    The nuclear power plants in Japan reach to 49 plants and supply 41.19 million kW in their installed capacities, which is equal to about 31% of total electric power generation and has occupied an important situation as a stable energy supplying source. As an aim to keeping safe operation and working rate of the power plants, various monitoring support systems using computer technology, optical information technology and robot technology each advanced rapidly in recent year have been developed to apply to the actual plants for a plant state monitoring system of operators in normal operation. Furthermore, introduction of the emergent support system supposed on accidental formation of abnormal state of the power plants is also investigated. In this paper, as a monitoring system in the recent nuclear power plants, design of control panel of recent central control room, introduction to its actual plant and monitoring support system in development were described in viewpoints of improvement of human interface, upgrade of sensor and signal processing techniques, and promotion of information service technique. And, trend of research and development of portable miniature detector and emergent monitoring support system are also introduced in a viewpoint of labor saving and upgrade of the operating field. (G.K.)

  18. Monitoring Biological Activity at Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  19. Progress on health physics monitoring systems at the French Atomic Energy Commission

    International Nuclear Information System (INIS)

    Grimont, B.; Joffre, H.; Leblanc, P.

    1977-01-01

    The need for health physics protection on nuclear plants or laboratory (nuclear power plant, fuel processing plant, etc) leads to data measurement and monitoring centralisation. This paper reviews the systems used for that purpose: old monobloc electronic systems, mini computer system, recent microprocessor-based system, it shows the impact of new methods on the system performances : standardization of measurements and alarms level for irradiation and contamination, reliability, peripherals devices (typewriters, CRT) availability for easy and efficient monitoring, and hardware compactness [fr

  20. 75 FR 52504 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2010-08-26

    ...; National Animal Health Monitoring System; Dairy Heifer Raiser 2010 Study AGENCY: Animal and Plant Health... Service's intention to initiate an information collection to support the National Animal Health Monitoring... Warnken, Management and Program Analyst, Centers for Epidemiology and Animal Health, VS, APHIS, 2150...

  1. Occupational health programme for lead workers in battery plants

    Science.gov (United States)

    Lee, Byung-Kook

    The realization of problems resulting from the exposure to undue high lead levels of workers in lead-using industries, particularly in storage battery plants, has given rise to a new occupational health service, the so-called type specific (harmful agent specific) group occupational health. In 1988, the Korean Ministry of Labor designated the Institute of Industrial Medicine, Soonchunhyang University, as an authorized organization to take care of lead workers in lead industries. The following occupational health services are provided by the Institute: (i) physical health examination; (ii) biological monitoring with zinc protoporphyrin, urine δ-aminolevulinic acid and blood lead; (iii) respiratory protection with maintenance-free respirators; (iv) measurement of the environmental condition of workplaces; (v) health education. A three-year occupational health programme for lead workers has contributed to improvements in the working conditions of lead industries, particularly in large-scale battery plants, and has decreased the unnecessary high lead burden of workers through on-going medical surveillance with biological monitoring and health education schemes. The strong commitment of both employers and the government to improve the working conditions of lead industries, together with the full cooperation of lead workers, has served to reduce the high lead burdens of lead workers. This decreases the number of lead-poisoning cases and provides more comfortable workplaces, particularly in battery plants.

  2. Plant monitoring and signal validation at HFIR

    International Nuclear Information System (INIS)

    Mullens, J.A.

    1991-01-01

    This paper describes a monitoring system for the Oak Ridge National Laboratory's (ORNL'S) High Flux Isotope Reactor (HFIR). HFIR is an 85 MW pressurized water reactor designed to produce isotopes and intense neutron beams. The monitoring system is described with respect to plant signals and computer system; monitoring overview; data acquisition, logging and network distribution; signal validation; status displays; reactor condition monitoring; reactor operator aids. Future work will include the addition of more plant signals, more signal validation and diagnostic capabilities, improved status display, integration of the system with the RELAP plant simulation and graphical interface, improved operator aids, and an alarm filtering system. 8 refs., 7 figs. (MB)

  3. Chemical monitoring strategy for the assessment of advanced water treatment plant performance.

    Science.gov (United States)

    Drewes, J E; McDonald, J A; Trinh, T; Storey, M V; Khan, S J

    2011-01-01

    A pilot-scale plant was employed to validate the performance of a proposed full-scale advanced water treatment plant (AWTP) in Sydney, Australia. The primary aim of this study was to develop a chemical monitoring program that can demonstrate proper plant operation resulting in the removal of priority chemical constituents in the product water. The feed water quality to the pilot plant was tertiary-treated effluent from a wastewater treatment plant. The unit processes of the AWTP were comprised of an integrated membrane system (ultrafiltration, reverse osmosis) followed by final chlorination generating a water quality that does not present a source of human or environmental health concern. The chemical monitoring program was undertaken over 6 weeks during pilot plant operation and involved the quantitative analysis of pharmaceuticals and personal care products, steroidal hormones, industrial chemicals, pesticides, N-nitrosamines and halomethanes. The first phase consisted of baseline monitoring of target compounds to quantify influent concentrations in feed waters to the plant. This was followed by a period of validation monitoring utilising indicator chemicals and surrogate measures suitable to assess proper process performance at various stages of the AWTP. This effort was supported by challenge testing experiments to further validate removal of a series of indicator chemicals by reverse osmosis. This pilot-scale study demonstrated a simplified analytical approach that can be employed to assure proper operation of advanced water treatment processes and the absence of trace organic chemicals.

  4. In plant corrosion potential monitoring

    International Nuclear Information System (INIS)

    Rosborg, B.; Molander, A.

    1997-01-01

    Examples of in plant redox and corrosion potential monitoring in light water reactors are given. All examples are from reactors in Sweden. The measurements have either been performed in side-stream autoclaves connected to the reactor systems by sampling lines, or in-situ in the system piping itself. Potential monitoring can give quite different results depending upon the experimental method. For environments with small concentrations of oxidants sampling lines can introduce large errors. During such circumstances in-situ measurements are necessary. Electrochemical monitoring is a valuable technique as a complement to conventional water chemistry follow-up in plants. It can be used for water chemistry surveillance and can reveal unintentional and harmful water chemistry transients. (author). 15 figs

  5. In plant corrosion potential monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, B; Molander, A [Studsvik Material AB, Nykoeping (Sweden)

    1997-02-01

    Examples of in plant redox and corrosion potential monitoring in light water reactors are given. All examples are from reactors in Sweden. The measurements have either been performed in side-stream autoclaves connected to the reactor systems by sampling lines, or in-situ in the system piping itself. Potential monitoring can give quite different results depending upon the experimental method. For environments with small concentrations of oxidants sampling lines can introduce large errors. During such circumstances in-situ measurements are necessary. Electrochemical monitoring is a valuable technique as a complement to conventional water chemistry follow-up in plants. It can be used for water chemistry surveillance and can reveal unintentional and harmful water chemistry transients. (author). 15 figs.

  6. On-line acquisition of plant related and environmental parameters (plant monitoring) in gerbera: determining plant responses

    NARCIS (Netherlands)

    Baas, R.; Slootweg, G.

    2004-01-01

    For on-line plant monitoring equipment to be functional in commercial glasshouse horticulture, relations between sensor readings and plant responses on both the short (days) and long term (weeks) are required. For this reason, systems were installed to monitor rockwool grown gerbera plants on a

  7. Plant operation state monitoring system

    International Nuclear Information System (INIS)

    Sakai, Masanori; Babuchi, Katsumi; Arato, Toshiaki

    1994-01-01

    The system of the present invention accurately monitors a plant operation state of a plant, such as a nuclear power plant and a thermal power plant by using high temperature water, based on water quality informations. That is, water quality informations for the objective portion by using an electrochemical water quality sensor disposed in the objective portion to be monitored in the plant are continuously extracted for a predetermined period of time. Water quality is evaluated based on the extracted information. Obtained results for water quality evaluation and predetermined reference values of the plant operation handling are compared. Necessary part among the results of the measurement is displayed or recorded. The predetermined period of time described above is a period that the water quality information reaches at least a predetermined value or a period that the predetermined value is estimated by the water quality information, and it is defined as a period capable of measuring the information for three months continuously. The measurement is preferably conducted continuously in a period up to each periodical inspection on about every one year. (I.S.)

  8. Screening and monitoring of main diseases a modern strategy of health maintenance in personnel of radiation dangerous plants

    International Nuclear Information System (INIS)

    Takhauov, R. M.; Karpov, A. B.; Kubat, I. I.; Maslyuk, A. I.; Semenova, Y. V.; Freidin, M. B.; Trivozhenko, A. B.; Litvinenko, T. M.

    2004-01-01

    Population health is greatly determined by social factors, mode of life, ecological situation, amount and quality of medical assistance. The analysis of reasons of health troubles increase in population should be done taking into account the above aspects. Main consideration should be given to the development of measures aimed at the highest possible decrease of technogenic and anthropogenic factors influence on a human. Thereupon a complex programme of main diseases screening and monitoring in the personnel of the Siberian Group of Chemical enterprises (SGCE) to be the biggest one among Russian atomic plants has been developed. The purpose of the present paper is to determine main diseases at the earliest stage, the decrease of death rate, as well as the complex estimation of technogenic factor influence on the personnel of radiation dangerous plants nand their offsprings. In this case a long-term effect of low doses seems to be the main risk factor. Taking into account the structure of death rate causes of the population of industrialized countries as well as the spectrum of stochastic effects of ionizing radiation, the screening of cardiac ischemia and arterial hypertension, localization of cancer and congenital malformations have been chosen as the program priorities. Algorithm of instrumental laboratory screening of a particular disease includes modern diagnostic tests. Groups ar risk are formed taking into account a complex of exogenous and endogenous risk factors (age, chronic diseases, bad habits, length of service at a radiation dangerous plant, dose loads, hereditary factors) and on the basis of the screening examination results. The information obtained is entered in the list of database of the Regional Medico dosimetric Register of the SGCE personnel and Seversk residents followed by analysis and monitoring of groups ar risk. (Author) 4 refs

  9. Structural Health Monitoring of Piping in Nuclear Power Plants - A Review of Efficiency of Existing Methods

    International Nuclear Information System (INIS)

    Stepinski, Tadeusz

    2011-05-01

    In the first part of the report, we review various efforts that have been recently performed in the USA in the field of reactor health monitoring. They were carried out by different organizations and they addressed different issues related to the safety of nuclear reactors. Among other aspects, we present technical issues related to the design of a self-diagnostic monitoring system for the next generation of nuclear reactors. We also give a brief review of the international experience of such systems in today's reactors. In the second part of the report we focus on long range ultrasonic techniques that can be used for monitoring piping in nuclear reactors. Common strategy used in the Swedish nuclear plants is leak before break (LBB), which relies on monitoring leaks from the pipelines as indications of possible pipe break. Significant parts of piping systems are partly or entirely inaccessible for the NDE inspectors, which complicates the use of proactive strategies. One solution to the problem could be implementing monitoring systems capable of monitoring pipelines over a long range. The method, which has shown much promise in such applications is the UT based on guided waves (GW) referred to as long range ultrasound testing (LRUT). In the report we give a brief review of the GW theory followed by the presentation the commercial GW instruments and transducers designed for the LRUT of piping. We also present examples of the baseline based systems using permanently installed transducers. In the final part we report capacity tests of the LRUT instruments performed in collaboration with two different manufactures

  10. On-line plant-wide monitoring using neural networks

    International Nuclear Information System (INIS)

    Turkcan, E.; Ciftcioglu, O.; Eryurek, E.; Upadhyaya, B.R.

    1992-06-01

    The on-line signal analysis system designed for a multi-level mode operation using neural networks is described. The system is capable of monitoring the plant states by tracking different number of signals up to 32 simultaneously. The data used for this study were acquired from the Borssele Nuclear Power Plant (PWR type), and using the on-line monitoring system. An on-line plant-wide monitoring study using a multilayer neural network model is discussed in this paper. The back-propagation neural network algorithm is used for training the network. The technique assumes that each physical state of the power plant can be represented by a unique pattern of instrument readings which can be related to the condition of the plant. When disturbance occurs, the sensor readings undergo a transient, and form a different set of patterns which represent the new operational status. Diagnosing these patterns can be helpful in identifying this new state of the power plant. To this end, plant-wide monitoring with neutral networks is one of the new techniques in real-time applications. (author). 9 refs.; 5 figs

  11. Plant monitoring device

    International Nuclear Information System (INIS)

    Ito, Toru.

    1994-01-01

    The device of the present invention comprises a data collecting section for periodically collecting processed data sent from plant equipments, a top node induction and processing section for an important plant function model for inducing the plant function to be noted particularly by an operator from important plant function models by using process data and a window screen selection section for selecting a window screen to be displayed based on the result of the evaluation for each of function nodes based on the processing described above and determining the layout and automatically forming the display screen. It is constituted so that the kind and the layout of the window under display are checked if they are the same as those one cycle before or not and, if they are different, the screen is automatically switched to a new screen display. Then, operator's psychological burdens such as selection of information and judgement for the operation upon occurrence of plant abnormality and accident can be mitigated, to provide a safe operation circumstance having reinforced monitoring of the function of the whole plant can be provided. (N.H.)

  12. One foot in the furrow: linkages between agriculture, plant pathology, and public health.

    Science.gov (United States)

    Scholthof, Karen-Beth G

    2003-01-01

    Plant pathology is a field of biology that focuses on understanding the nature of disease in plants as well as on more practical aspects of preventing and controlling plant diseases in crop plants that are important to agriculture. Throughout history, plant diseases have had significant effects on human health and welfare. Several examples, in both historical and contemporary contexts, are presented in this review to show how plant pathogens, biotechnology, and farming practices have affected public health. Specific topics illustrating clear linkages between agriculture and human health include allergens in the environment, food-safety and agricultural practices, mycotoxigenic fungi, agrobioterrorism, and the biological control of plant diseases. The further argument is made that in order to monitor and ensure that good health and safety practices are maintained from "farm to fork," public health specialists may benefit from the resources and expertise of agricultural scientists.

  13. On-line acquisition of plant related and environmental parameters (plant monitoring) in gerbera: determining plant responses

    OpenAIRE

    Baas, R.; Slootweg, G.

    2004-01-01

    For on-line plant monitoring equipment to be functional in commercial glasshouse horticulture, relations between sensor readings and plant responses on both the short (days) and long term (weeks) are required. For this reason, systems were installed to monitor rockwool grown gerbera plants on a minute-to-minute basis from July 2002 until April 2003. Data collected included, amongst others, crop transpiration from lysimeter data (2 m2), canopy temperature using infrared sensors, rockwool water...

  14. Pantex Plant meteorological monitoring program

    International Nuclear Information System (INIS)

    Snyder, S.F.

    1993-07-01

    The current meteorological monitoring program of the US Department of Energy's Pantex Plant, Amarillo, Texas, is described in detail. Instrumentation, meteorological data collection and management, and program management are reviewed. In addition, primary contacts are noted for instrumentation, calibration, data processing, and alternative databases. The quality assurance steps implemented during each portion of the meteorological monitoring program are also indicated

  15. Optimal Design of Air Quality Monitoring Network and its Application in an Oil Refinery Plant: An Approach to Keep Health Satus of Workers

    Directory of Open Access Journals (Sweden)

    Khaled ZoroufchiBenis

    2015-12-01

    Full Text Available Background: Industrial air pollution is a growing challenge to humane health, especially in developing countries, where there is no systematic monitoring of air pollution. Given the importance of the availabil­ity of valid information on population exposure to air pollutants, it is important to design an optimal Air Quality Monitoring Network (AQMN for assessing population exposure to air pollution and predicting the magnitude of the health risks to the population. Methods: A multi-pollutant method (implemented as a MATLAB program was explored for configur­ing an AQMN to detect the highest level of pollution around an oil refinery plant. The method ranks potential monitoring sites (grids according to their ability to represent the ambient concentra­tion. The term of cluster of contiguous grids that exceed a threshold value was used to calculate the Station Dosage. Selection of the best configuration of AQMN was done based on the ratio of a sta­tion’s dosage to the total dosage in the network. Results: Six monitoring stations were needed to detect the pollutants concentrations around the study area for estimating the level and distribution of exposure in the population with total network effi­ciency of about 99%. An analysis of the design procedure showed that wind regimes have greatest effect on the location of monitoring stations. Conclusion: The optimal AQMN enables authorities to implement an effective program of air quality management for protecting human health.

  16. Process monitoring for reprocessing plant safeguards: a summary review

    International Nuclear Information System (INIS)

    Kerr, H.T.; Ehinger, M.H.; Wachter, J.W.; Hebble, T.L.

    1986-10-01

    Process monitoring is a term typically associated with a detailed look at plant operating data to determine plant status. Process monitoring has been generally associated with operational control of plant processes. Recently, process monitoring has been given new attention for a possible role in international safeguards. International Safeguards Project Office (ISPO) Task C.59 has the goal to identify specific roles for process monitoring in international safeguards. As the preliminary effort associated with this task, a review of previous efforts in process monitoring for safeguards was conducted. Previous efforts mentioned concepts and a few specific applications. None were comprehensive in addressing all aspects of a process monitoring application for safeguards. This report summarizes the basic elements that must be developed in a comprehensive process monitoring application for safeguards. It then summarizes the significant efforts that have been documented in the literature with respect to the basic elements that were addressed

  17. Vibration control and monitoring in nuclear power plants

    International Nuclear Information System (INIS)

    Theodor, P.

    1989-01-01

    Nuclear Power Plants are operated with a computer system support. The computer system for a nuclear power plant is designed to reliably monitor plant parameters and perform a series of operations and calculations designed to allow increased plant operation efficiency. Rotating machinery surveillance methods for the recognition of damage are particularly important in Nuclear Power Plants. Deviation of the vibration behavior from normal conditions is an indicator of the development of incipient faults and can be reliably recognized by the use of vibration monitoring systems. Machinery Condition Monitoring is defined as a method or methods of surveillance designed to recognize changes from a norm and is also a warning or it initiates an automatic shutdown when the changes exceed limiting values or safety limits. This paper reports that it is important to distinguish between surveillance and diagnostics. Whereas the former is necessary for protection, the latter is not generally required until it becomes necessary to identify the source of a known anomaly

  18. The use of BEACON monitoring in plant power uprates

    International Nuclear Information System (INIS)

    Miller, Wade

    2003-01-01

    BEACON is the core support software technology that provides Utilities with continuous 3-D core power distribution monitoring, operational analysis capability, and operations support capability. BEACON monitoring delivers quantifiable plant margins for both reload design and plant operations improvement. When linked to Plant Power Upratings, BEACON permits an improvement in fuel cycle economics through higher peaking factors, higher power levels and higher discharge burnups. Operational flexibility of Uprated Plants is enhanced through elimination of axial power shape and core power tilt specifications. Also, the number of flux maps for these plants is reduced and local power is monitored continuously, permitting faster power escalation. Integrated 3-D power distribution analysis capabilities provide core designers with historical margin data that permits a reduction in core follow requirements as well as reduced curve book data related scope. Examples of specific Uprated Plant applications will be discussed. In anticipation of future needs of Uprated Plants, plans to integrate the technology of BEACON with COLSS are being executed. Finally, the capability to monitor Crud Induced Power Shift (axial offset) is also planned for incorporation into BEACON in the near future and will be discussed

  19. Chemistry indices for long term plant health management

    International Nuclear Information System (INIS)

    Galt, K.J.; Cerisier, S.D.M.; Caris, N.B.

    1998-01-01

    Eskom's Koeberg Nuclear Power Station has maintained and reported on the WANO Chemistry Performance Index for a number of years. Because of the masking effects of multiple averaging, the value of the Index was questionable. The modified WANO Chemistry Performance Indicator, introduced recently, was considered an improvement. However, it was felt that it is too general to adequately address the long-term plant health management needs of a specific plant; a more tailored, plant-specific indicator is needed. A system of indices for measuring and managing long-term plant health at Eskom's 10 large fossil-fired power stations had been developed in 1996. The major success of these indices in improving plant performance management lay in their inclusion in station performance contracts. The Fossil Chemistry Index was based on the original WANO Chemistry Performance Index and suffered from the same shortcomings. Consequently, a major revision of this index was initiated to address these deficiencies. The objectives set for the revised common indicator were that target and limit values from Eskom Chemistry Standards should be incorporated, that the masking effect of multiple averaging be minimised or eliminated, that weighting factors be introduced to reflect the relative importance of selected parameters, that conditioning chemical effectiveness be monitored, and that ranges of values be accommodated. In tandem with this revision, there was requirement to include Koeberg in the reporting of long term plant health indicators. Instead of developing completely separate chemistry indicators for fossil and nuclear plant. A commonality of approach to Long Term Plant Health indicators was sought. This has resulted in a single indicator determination, with parameter selection, limit values, and target values providing the required plant specificity. (J.P.N.)

  20. On-line Monitoring and Calibration Techniques in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2011-01-01

    Years of research, testing and experience in the field of sensor diagnostics have yielded many technologies which offer financial as well as operational benefits to the nuclear industry. Among these technologies are On-Line Monitoring (OLM) and On-Line Calibration of critical process monitoring sensors such as resistance temperature detectors (RTD), thermocouples, and pressure transmitters to name a few. The remote access and verification of these sensors have been shown to limit the exposure of maintenance personnel to harsh environments while at the same time effectively and efficiently diagnosing the health and performance of these sensors. In addition to sensors, technologies exist in determining not only the health of instrumentation and control (I and C) cabling that carries the signals from these sensors, but also these same cable testing techniques can be used in the remote evaluation of many end devices used in safety related operations as well. Given these advances in sensor system monitoring techniques it would seem to follow that nuclear utilities from around the world would be applying these tried and true techniques to optimize up time and to provide additional confidence in the output of processing sensors. However, although several of the world's regulatory bodies have approved of the concept of these techniques, few utilities have undertaken to fully embrace on-line monitoring and on-line calibration of nuclear process sensors. In the United States efforts are now underway, with representatives of the U.S. nuclear industry and nuclear power plant vendors to obtain generic NRC licensing for the use of OLM in nuclear power plants. If approved, generic licensing will help pave the way toward greater implementation of OLM and its related calibration techniques. (author)

  1. Facility Effluent Monitoring Plan for the 284-E and 284-W power plants

    International Nuclear Information System (INIS)

    Herman, D.R.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The 284-E and 284-W Power Plants are coal-fired plants used to generate steam. Electricity is not generated at these facilities. The maximum production of steam is approximately 159 t (175 tons)/h at 101 kg (225 lb)/in 2 . Steam generated at these facilities is used in other process facilities (i. e., the B Plant, Plutonium-Uranium Extraction Plant, 242-A Evaporator) for heating and process operations. The functions or processes associated with these facilities do not have the potential to generate radioactive airborne effluents or radioactive liquid effluents, therefore, radiation monitoring equipment is not used on the discharge of these streams. The functions or processes associated with the production of steam result in the use, storage, management and disposal of hazardous materials

  2. Fully integrated safeguards and security for reprocessing plant monitoring

    International Nuclear Information System (INIS)

    Duran, Felicia Angelica; Ward, Rebecca; Cipiti, Benjamin B.; Middleton, Bobby D.

    2011-01-01

    Nuclear fuel reprocessing plants contain a wealth of plant monitoring data including material measurements, process monitoring, administrative procedures, and physical protection elements. Future facilities are moving in the direction of highly-integrated plant monitoring systems that make efficient use of the plant data to improve monitoring and reduce costs. The Separations and Safeguards Performance Model (SSPM) is an analysis tool that is used for modeling advanced monitoring systems and to determine system response under diversion scenarios. This report both describes the architecture for such a future monitoring system and present results under various diversion scenarios. Improvements made in the past year include the development of statistical tests for detecting material loss, the integration of material balance alarms to improve physical protection, and the integration of administrative procedures. The SSPM has been used to demonstrate how advanced instrumentation (as developed in the Material Protection, Accounting, and Control Technologies campaign) can benefit the overall safeguards system as well as how all instrumentation is tied into the physical protection system. This concept has the potential to greatly improve the probability of detection for both abrupt and protracted diversion of nuclear material.

  3. Integrated monitoring of wind plant systems

    Science.gov (United States)

    Whelan, Matthew J.; Janoyan, Kerop D.; Qiu, Tong

    2008-03-01

    Wind power is a renewable source of energy that is quickly gaining acceptance by many. Advanced sensor technologies have currently focused solely on improving wind turbine rotor aerodynamics and increasing of the efficiency of the blade design and concentration. Alternatively, potential improvements in wind plant efficiency may be realized through reduction of reactionary losses of kinetic energy to the structural and substructural systems supporting the turbine mechanics. Investigation of the complete dynamic structural response of the wind plant is proposed using a large-scale, high-rate wireless sensor network. The wireless network enables sensors to be placed across the sizable structure, including the rotating blades, without consideration of cabling issues and the economic burden associated with large spools of measurement cables. A large array of multi-axis accelerometers is utilized to evaluate the modal properties of the system as well as individual members and would enable long-term structural condition monitoring of the wind turbine as well. Additionally, environmental parameters, including wind speed, temperature, and humidity, are wirelessly collected for correlation. Such a wireless system could be integrated with electrical monitoring sensors and actuators and incorporated into a remote multi-turbine centralized plant monitoring and control system.

  4. EDGAR, a new plant radiation monitoring system

    International Nuclear Information System (INIS)

    Vuong, Q.M.; Da Costa Vieira, D.

    2004-01-01

    The EDGAR system is a new radiation monitoring system for nuclear power plant, reprocessing plant and nuclear research reactor for radioactive contamination, gamma and neutron field monitoring. Developed by French Atomic Energy Agency, this system provides not only complete functions of standard RMS, also allows spectroscopy level detection of alpha and beta particles based on a patented collimator unit. A complete computerized approach has been taken allowing full installation control in a single PC based display and communication unit. (author)

  5. Sampling and analysis plan for groundwater and surface water monitoring at the Y-12 Plant during calendar year 1995

    International Nuclear Information System (INIS)

    1994-10-01

    This plan provides a description of the groundwater and surface-water quality monitoring activities planned for calendar year (CY) 1995 at the Department of Energy Y-12 Plant. Included in this plan are the monitoring activities managed by the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization through the Y-12 Plant Groundwater Protection Program (GWPP). Other groundwater and surface water monitoring activities (e.g. selected Environmental Restoration Program activities, National Pollution Discharge Elimination System (NPDES) monitoring) not managed through the Y-12 Plant GWPP are not addressed in this report. Several monitoring programs will be implemented in three hydrogeologic regimes: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located within Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant. For various reasons, modifications to the 1995 monitoring programs may be necessary during implementation. For example, changes in regulatory requirements may alter the parameters specified for selected wells, or wells could be added to or deleted from the monitoring network. All modifications to the monitoring programs will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan

  6. Application of fatigue monitoring system in PWR nuclear power plant

    International Nuclear Information System (INIS)

    Piao Lei

    2014-01-01

    Fatigue failure is one form of equipment failure of nuclear power plant, influencing equipment lifetime and lifetime extension. Fatigue monitoring system can track real thermal transient at fatigue sensitive components, establish a basis for fatigue analyses based on realistic operating loads, identify unexpected operational transients, optimize the plant behavior by improved operating modes, provide supporting data for lifetime management, enhance security of plant and reduce economical loss. Fatigue monitoring system has been applied in many plants and is required to be applied in Generation-III nuclear power plant. It is necessary to develop the fatigue monitoring system with independent intellectual property rights and improve the competitiveness of domestic Generation-III nuclear power technology. (author)

  7. Groundwater monitoring at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Kehrman, R.; Broberg, K.; Tatro, G.; Richardson, R.; Dasczcyszak, W.

    1990-01-01

    This paper discusses the Groundwater Monitoring Program (GPM) being conducted at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The Regulatory and Environmental Programs (REP) section of the Environment, Safety and Health department (ES ampersand H) is responsible for conducting environmental monitoring at the WIPP. Groundwater monitoring is one of the ongoing environmental activities currently taking place. The REP section includes water quality sampling and water level monitoring. The WIPP Project is a research and develop facility designed to demonstrate the safe disposal of defense-generated waste in a geologic repository. Water quality sampling for physical, chemical, and radiological parameters has been an ongoing activity at the WIPP site for the past six years, and will continue through the life of the project. The water quality of a well is sampled while the well is continuously pumped. Serial samples of the pumped water are collected and tested for pH, Eh, temperature, specific gravity, specific conductivity, alkalinity, chlorides, divalent cations, ferrous iron, and total iron. Stabilization of serial sampling parameters determined if a representative sample is being obtained, Representative samples are sent to contract laboratories and analyzed for general chemistry, major cations and anions, and radionuclides. 13 refs., 4 figs., 1 tab

  8. Safety assessment and life time management of nuclear power plants: from reasonable design to reliable structural health monitoring

    International Nuclear Information System (INIS)

    Savov, K.

    2005-01-01

    Nowadays the safety of Nuclear Power Plants is becoming more and more significant. Therefore consideration of severe accidents shall be included in both design and operating process of Nuclear Power Plants. In particular ground motion forms one of the important natural hazards. For structural analysis both linear-elastic and non-linear methods are specified by the engineering codes for earthquake resistance design. However, time history analysis is required for investigation of non-linear structural behaviour. Moreover, non-linearities are often caused by the presence of damage. This can be detected by means of structural health monitoring and subsequently system identification. In this paper the advantages of both dynamic time history analysis and damage detection by means of wavelet analysis are discussed. First, the non-linear behaviour of a frame structure due to an artificial earthquake motion is analyzed. A comparison to non-time history techniques is performed as well. Next, failure sources are simulated in the system and then detected by means of a novel wavelet approach. (author)

  9. Establishment of a computerized occupational health system at the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Otos, M.

    1990-01-01

    An overall personnel health system has been under installation in the Paks Nuclear Power Plant Company, Hungary, for an automatic health monitoring and survey of the personnel exposed to radiation. The system will consist of nine modules when completed. The personnel fitness module is described in detail, and the periodical fitness examinations with computer control are presented. The examinations are using a personnel database system, and a statistical module is used to evaluate monitoring results. (R.P.)

  10. Augmented fish health monitoring

    International Nuclear Information System (INIS)

    Michak, P.; Rogers, R.; Amos, K.

    1991-05-01

    The Bonneville Power Administration (BPA) initiated the Augmented Fish Health Monitoring project in 1986. This project was a five year interagency project involving fish rearing agencies in the Columbia Basin. Historically, all agencies involved with fish health in the Columbia Basin were conducting various levels of fish health monitoring, pathogen screening and collection. The goals of this project were; to identify, develop and implement a standardized level of fish health methodologies, develop a common data collection and reporting format in the area of artificial production, evaluate and monitor water quality, improve communications between agencies and provide annual evaluation of fish health information for production of healthier smolts. This completion report will contain a project evaluation, review of the goals of the project, evaluation of the specific fish health analyses, an overview of highlights of the project and concluding remarks. 8 refs., 1 fig., 4 tabs

  11. 75 FR 52711 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2010-08-27

    ...In accordance with the Paperwork Reduction Act of 1995, this notice announces the Animal and Plant Health Inspection Service's intention to initiate an information collection to support the National Animal Health Monitoring System Sheep 2011 Study.

  12. 76 FR 28414 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2011-05-17

    ...In accordance with the Paperwork Reduction Act of 1995, this notice announces the Animal and Plant Health Inspection Service's intention to initiate Emergency Epidemiologic Investigations, an information collection to support the National Animal Health Monitoring System.

  13. Evaluating Leaf and Canopy Reflectance of Stressed Rice Plants to Monitor Arsenic Contamination

    Directory of Open Access Journals (Sweden)

    Varaprasad Bandaru

    2016-06-01

    Full Text Available Arsenic contamination is a serious problem in rice cultivated soils of many developing countries. Hence, it is critical to monitor and control arsenic uptake in rice plants to avoid adverse effects on human health. This study evaluated the feasibility of using reflectance spectroscopy to monitor arsenic in rice plants. Four arsenic levels were induced in hydroponically grown rice plants with application of 0, 5, 10 and 20 µmol·L−1 sodium arsenate. Reflectance spectra of upper fully expanded leaves were acquired over visible and infrared (NIR wavelengths. Additionally, canopy reflectance for the four arsenic levels was simulated using SAIL (Scattering by Arbitrarily Inclined Leaves model for various soil moisture conditions and leaf area indices (LAI. Further, sensitivity of various vegetative indices (VIs to arsenic levels was assessed. Results suggest that plants accumulate high arsenic amounts causing plant stress and changes in reflectance characteristics. All leaf spectra based VIs related strongly with arsenic with coefficient of determination (r2 greater than 0.6 while at canopy scale, background reflectance and LAI confounded with spectral signals of arsenic affecting the VIs’ performance. Among studied VIs, combined index, transformed chlorophyll absorption reflectance index (TCARI/optimized soil adjusted vegetation index (OSAVI exhibited higher sensitivity to arsenic levels and better resistance to soil backgrounds and LAI followed by red edge based VIs (modified chlorophyll absorption reflectance index (MCARI and TCARI suggesting that these VIs could prove to be valuable aids for monitoring arsenic in rice fields.

  14. Challenges and Prospects of Equipment Health Monitoring with Wireless Sensor Network in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Chen, Dongyi; Jiang, Jin; Bari, Ataul; Wang, Quan; Hashemian, Hash-M.

    2014-01-01

    A wireless sensor network (WSN) system can offer tremendous benefits to equipment condition monitoring in newly-constructed and/or refurbished nuclear power plants (NPPs). However, it has not been widely accepted so far because of the following requirements by the NPP operators ectromagnetic (EM) emissions from the wireless transceivers must not interfere with the functionalities of the sensitive safety and protection systems in the plant, WSN must perform reliably in the presence of high levels of EM interference from devices such as relays and motor driven pumps, and ionizing radiation sources, dependable WSN performance in harsh industrial environments that are cluttered with cable trays, piping, valves, pumps, motors, and concrete and steel structures, and trict compliance with nuclear regulatory guidelines on EM emissions by the wireless devices. This paper will review the key issues associated with the deployment of WSN for equipment condition monitoring in NPPs. Some promising WSN technologies that can be used in NPP applications are also discussed

  15. Challenges and Prospects of Equipment Health Monitoring with Wireless Sensor Network in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongyi [University of Electronic Science and Technology of China, Chengdu (China); Jiang, Jin; Bari, Ataul; Wang, Quan [University of Western Ontario, Ontario (Canada); Hashemian, Hash-M. [AMS Technology Center Knoxville (United States)

    2014-08-15

    A wireless sensor network (WSN) system can offer tremendous benefits to equipment condition monitoring in newly-constructed and/or refurbished nuclear power plants (NPPs). However, it has not been widely accepted so far because of the following requirements by the NPP operators ectromagnetic (EM) emissions from the wireless transceivers must not interfere with the functionalities of the sensitive safety and protection systems in the plant, WSN must perform reliably in the presence of high levels of EM interference from devices such as relays and motor driven pumps, and ionizing radiation sources, dependable WSN performance in harsh industrial environments that are cluttered with cable trays, piping, valves, pumps, motors, and concrete and steel structures, and trict compliance with nuclear regulatory guidelines on EM emissions by the wireless devices. This paper will review the key issues associated with the deployment of WSN for equipment condition monitoring in NPPs. Some promising WSN technologies that can be used in NPP applications are also discussed.

  16. Risk monitor riskangel for risk-informed applications in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Fang; Wang, Jiaqun; Wang, Jin; Li, Yazhou; Hu, Liqin; Wu, Yican

    2016-01-01

    Highlights: • A general risk monitor riskangel with high-speed cutsets generator engine. • Benchmarks of actual nuclear power plant (NPP) instantaneous risk models. • Applications in daily operation, maintenance plan and component out of service. - Abstract: This paper studied the requirements of risk monitor software and its applications as a plant specific risk monitor, which supports risk-informed configuration risk management for the two CANDU 6 units at the Third Qinshan nuclear power plant (TQNPP) in China. It also describes the regulatory prospective on risk-informed Probabilistic Safety Assessment (PSA) applications and the use of risk monitor at operating nuclear power plants, high level technical and functional requirements for the development of CANDU specific risk monitor software, and future development trends.

  17. Nuclear power plant monitoring using real-time learning neural network

    International Nuclear Information System (INIS)

    Nabeshima, Kunihiko; Tuerkcan, E.; Ciftcioglu, O.

    1994-01-01

    In the present research, artificial neural network (ANN) with real-time adaptive learning is developed for the plant wide monitoring of Borssele Nuclear Power Plant (NPP). Adaptive ANN learning capability is integrated to the monitoring system so that robust and sensitive on-line monitoring is achieved in real-time environment. The major advantages provided by ANN are that system modelling is formed by means of measurement information obtained from a multi-output process system, explicit modelling is not required and the modelling is not restricted to linear systems. Also ANN can respond very fast to anomalous operational conditions. The real-time ANN learning methodology with adaptive real-time monitoring capability is described below for the wide-range and plant-wide data from an operating nuclear power plant. The layered neural network with error backpropagation algorithm for learning has three layers. The network type is auto-associative, inputs and outputs are exactly the same, using 12 plant signals. (author)

  18. Environmental monitoring at the Savannah River Plant. Annual report, 1984

    International Nuclear Information System (INIS)

    Zeigler, C.C.; Lawrimore, I.B.; O'Rear, W.E.

    1985-06-01

    Ensuring the radiation safety of the public in the vicinity of the Savannah River Plant was a foremost consideration in the design of the plant and has continued to be a primary objective during 31 years of SRP operations. An extensive surveillance program has been continuously maintained since 1951 (before SRP startup) to determine the concentrations of radionuclides in the environment of the plant. The results of this comprehensive monitoring program are reported annually in two publications. The first, ''Savannah River Plant Environmental Report for 1984'' [DPSPU85-30-1], contains radiation dose data, routine radiological and nonradiological environmental surveillance activities, summaries of environmental protection programs that are in progress, summaries of sitewide environmental research and management programs, and a summary of National Environmental Policy Act (NEPA) activities. This report is the second and contains primarily radiation dose data and radiological and nonradiological monitoring data both onsite and offsite. It is placed in Department of Energy (DOE) reading rooms and is available to the public upon request. A listing of corresponding reports that have been issued since before plant startup is presented in Appendix A. The scope of the environmental monitoring program at SRP has increased significantly during the years since plant startup. The change is reflected in annual reports. Prior to the mid-1970's the reports contained primarily radiological monitoring data. Beginning in the mid-1970's the reports started including more and more nonradiological monitoring data as those programs increased. The nonradiological monitoring program now approaches the size and extensiveness of the radiological monitoring program

  19. Integration of acoustic emission systems within Integri-TechTM analysis system for structural health monitoring of pressurised engineering plant

    International Nuclear Information System (INIS)

    Ghouri, A A; Galbraith, Walter; Pierce, S Gareth; Gachagan, Anthony; Rafferty, Steven; Pickwell, Andy

    2015-01-01

    The aim of this Acoustic Emission (AE) based Structural Health Monitoring project is to enable accurate location of AE sources in pressurised engineering plant and to use AE source location data to establish defect locations for use within Integri-Tech TM ; a finite element based analysis, monitoring and fitness for service assessment system. Integri-Tech TM is a windows based system which carries out combined analysis and assessment providing fatigue life and remnant life calculations and inspection priorities presenting the results in an accessible web portal format. The software uses finite element stress models created in the companion software Model Wizard. The AE monitoring system that has been developed can be used with an array of up to four AE broad band sensor channels with associated signal processing. Using a flexible approach in MATLAB, the authors have developed algorithms which were used for analysing the received AE signals to extract information about the nature and location of the source. The ability to carry out source location and possibly perform real time monitoring (detecting cracking as it occurs) is attractive feature of the AE system developed for this project. The time of arrival (TOA) data was used by Integri-Tech TM software to calculate source location using its own built-in algorithm, and this was verified independently using a MATLAB approach. (paper)

  20. Development of nuclear power plant monitoring system with neutral network using on-line PWR plant simulator

    International Nuclear Information System (INIS)

    Nabeshima Kunihiko; Suzuki Katsuo; Nose, Shoichi; Kudo, Kazuhiko

    1996-01-01

    The purpose of this paper is to demonstrate a nuclear power plant monitoring system using artificial neural network (ANN). The major advantages of the monitoring system are that a multi-output process system can be modelled using measurement information without establishing any mathematical expressions. The dynamics model of reactor plant was constructed by using three layered auto-associative neural network with backpropagation learning algorithm. The basic idea of anomaly detection method is to monitor the deviation between process signals measured from actual plant and corresponding output signals from the ANN plant model. The simulator used is a self contained system designed for training. Four kinds of simulated malfunction caused by equipment failure during steady state operation were used to evaluate the capability of the neural network monitoring system. The results showed that this monitoring system detected the symptom of small anomaly earlier than the prevailing alarm system. (author). 7 refs, 7 figs, 2 tabs

  1. Development of nuclear power plant monitoring system with neutral network using on-line PWR plant simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kunihiko, Nabeshima; Katsuo, Suzuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan); Nose, Shoichi; Kudo, Kazuhiko [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1997-12-31

    The purpose of this paper is to demonstrate a nuclear power plant monitoring system using artificial neural network (ANN). The major advantages of the monitoring system are that a multi-output process system can be modelled using measurement information without establishing any mathematical expressions. The dynamics model of reactor plant was constructed by using three layered auto-associative neural network with backpropagation learning algorithm. The basic idea of anomaly detection method is to monitor the deviation between process signals measured from actual plant and corresponding output signals from the ANN plant model. The simulator used is a self contained system designed for training. Four kinds of simulated malfunction caused by equipment failure during steady state operation were used to evaluate the capability of the neural network monitoring system. The results showed that this monitoring system detected the symptom of small anomaly earlier than the prevailing alarm system. (author). 7 refs, 7 figs, 2 tabs.

  2. Plant monitor system

    International Nuclear Information System (INIS)

    Scarola, K.; Jamison, D.; Manazir, R.; Rescori, R.; Harmon, D.

    1991-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system which is nuclear qualified for rapid response to changes in plant parameters and a component control system which together provide a discrete monitoring and control capability at a panel in the control room. A separate data processing system, which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs and a large, overhead integrated process status overview board. The discrete indicator and alarm system and the data processing system receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the main machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof. (author)

  3. A radiation monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Iwai, Masaru; Nakamori, S.; Ikeda, H.; Oda, M.

    1974-01-01

    Safety with respect to radiation is vital factor, particularly in view of the increasing number of nuclear power plants. For this purpose, a radiation monitoring system is provided to perform constant supervision. This article describes the purpose, installation location, specifications and circuitry of a system which is divided into three units: the process monitor, area monitor and off-site monitor. (auth.)

  4. Techniques for Primary-to-Secondary Leak Monitoring in PWR Plants

    International Nuclear Information System (INIS)

    Sohn, Wook; Chi, Jun Hwa; Kang, Duck Won; Tae, Jeong Woo

    2006-01-01

    Historically, corrosion and mechanical damage have made steam generator tubes in PWR plants see various types of degradation from both the primary and secondary sides of the tubes. Since the tube degradation can lead to through-wall failure, the plant personnel should make efforts to prevent the failure. One of such preventive efforts is to monitor primary-to-secondary leakage (PSL) that usually precedes the tube rupture. Thus the objective of PSL monitoring is to make operators to determine when to shutdown the plant in order to minimize the likelihood of propagation of leaks to tube rupture under normal and faulted conditions This paper addresses briefly the status of techniques for PSL monitoring used in PWR plants

  5. 76 FR 13969 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2011-03-15

    ...In accordance with the Paperwork Reduction Act, this notice announces the Animal and Plant Health Inspection Service's intention to initiate an information collection to support the research and development phase of surveys entitled National Animal Health Monitoring System needs assessments.

  6. Plant pathology: monitoring a pathogen-targeted host protein.

    Science.gov (United States)

    Ellis, Jeff; Dodds, Peter

    2003-05-13

    A plant protein RIN4 is targeted and modified by bacterial pathogens as part of the disease process. At least two host resistance proteins monitor this pathogen interference and trigger the plant's defence responses.

  7. A Simple Demonstration of Concrete Structural Health Monitoring Framework

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nath, Paromita [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bao, Yanqing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bru Brea, Jose Maria [Idaho National Lab. (INL), Idaho Falls, ID (United States); Koester, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report describes a proof-of-concept example on a small concrete slab subjected to a freeze-thaw experiment that explores techniques in each of the four elements of the framework and their integration. An experimental set-up at Vanderbilt University’s Laboratory for Systems Integrity and Reliability is used to research effective combination of full-field techniques that include infrared thermography, digital image correlation, and ultrasonic measurement. The measured data are linked to the probabilistic framework: the thermography, digital image correlation data, and ultrasonic measurement data are used for Bayesian calibration of model parameters, for diagnosis of damage, and for prognosis of future damage. The proof-of-concept demonstration presented in this report highlights the significance of each element of the framework and their integration.

  8. Structural Health Monitoring of Nuclear Spent Fuel Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lingyu

    2018-04-10

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. To ensure that nuclear power remains clean energy, monitoring has been identified by DOE as a high priority cross-cutting need, necessary to determine and predict the degradation state of the systems, structures, and components (SSCs) important to safety (ITS). Therefore, nondestructive structural condition monitoring becomes a need to be installed on existing or to be integrated into future storage system to quantify the state of health or to guarantee the safe operation of nuclear power plants (NPPs) during their extended life span. In this project, the lead university and the collaborating national laboratory teamed to develop a nuclear structural health monitoring (n-SHM) system based on in-situ piezoelectric sensing technologies that can monitor structural degradation and aging for nuclear spent fuel DCSS and similar structures. We also aimed to identify and quantify possible influences of nuclear spent fuel environment (temperature and radiation) to the piezoelectric sensor system and come up with adequate solutions and guidelines therefore. We have therefore developed analytical model for piezoelectric based n-SHM methods, with considerations of temperature and irradiation influence on the model of sensing and algorithms in acoustic emission (AE), guided ultrasonic waves (GUW), and electromechanical impedance spectroscopy (EMIS). On the other side, experimentally the temperature and irradiation influence on the piezoelectric sensors and sensing capabilities were investigated. Both short-term and long-term irradiation investigation with our collaborating national laboratory were performed. Moreover, we developed multi-modal sensing, validated in laboratory setup, and conducted the testing on the We performed multi-modal sensing development, verification and validation tests on very complex structures

  9. Development of distributed plant monitoring and diagnosis system at Monju

    International Nuclear Information System (INIS)

    Okusa, Kyoichi; Tamayama, Kiyoshi; Kitamura, Tomomi

    2003-01-01

    In a nuclear plant, it is required to detect an anomaly as early as possible and to inhibit adverse consequences. This requirement is especially important for a prototype Fast Breeder Reactor Monju. Therefore, a monitoring and diagnosis system is required to be developed for Monju plant equipments. In these days, such a monitoring and diagnosis system can be realized using Web technology with rationalized system resources due to the remarkable progress of computer network technology. Then, we developed a Web based platform for the monitoring and diagnosis system of Monju. Distributed architecture, standardization and highly flexible system structure have been taken account of in the development. This newly developed platform and prototype monitoring and diagnosis systems have been validated. Prototype monitoring and diagnosis systems on the platform acquire Monju plant data and display the data on client computers using Monju intranet with acceptable delay times. The prototype monitoring and diagnosis systems for Monju have been developed on the platform and the whole system has been validated. (author)

  10. Diagnosis of faults in EDF power plants: From monitoring to diagnosis

    International Nuclear Information System (INIS)

    Joussellin, A.; Chevalier, R.

    1994-01-01

    Electricite de France is constantly in search of means to improve safety and availability in its nuclear power plants. To this end, EDF has designed new monitoring systems for the major components of its units: for turbogenerator and inlet valves monitoring, for reactor coolant pumps monitoring, for internal structures monitoring and for loose parts detection. New techniques for signal acquisition and processing for diagnosis are used and all these monitoring systems are designed with the same general concept on monitoring. Simultaneously, a workstation for monitoring and aid in diagnosis (PSAD) is under development. It will integrate every monitoring system and will constitute an indispensable tool for plant personnel, enabling them to diagnose the condition of plant equipment, and providing them with high efficiency and user-friendly tools. The PSAD will have a flexible architecture, guaranteeing optimum distribution of computing power to make it available where it is needed

  11. Standard guide for in-plant performance evaluation of automatic pedestrian SNM monitors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This guide is affiliated with Guide C1112 on special nuclear material (SNM) monitors, Guide C1169 on laboratory performance evaluation, and Guide C1189 on calibrating pedestrian SNM monitors. This guide to in-plant performance evaluation is a comparatively rapid way to verify whether a pedestrian SNM monitor performs as expected for detecting SNM or SNM-like test sources. 1.1.1 In-plant performance evaluation should not be confused with the simple daily functional test recommended in Guide C1112. In-plant performance evaluation takes place less often than daily tests, usually at intervals ranging from weekly to once every three months. In-plant evaluations are also more extensive than daily tests and may examine both a monitor's nuisance alarm record and its detection sensitivity for a particular SNM or alternative test source. 1.1.2 In-plant performance evaluation also should not be confused with laboratory performance evaluation. In-plant evaluation is comparatively rapid, takes place in the monitor...

  12. Plants status monitor: Modelling techniques and inherent benefits

    International Nuclear Information System (INIS)

    Breeding, R.J.; Lainoff, S.M.; Rees, D.C.; Prather, W.A.; Fickiessen, K.O.E.

    1987-01-01

    The Plant Status Monitor (PSM) is designed to provide plant personnel with information on the operational status of the plant and compliance with the plant technical specifications. The PSM software evaluates system models using a 'distributed processing' technique in which detailed models of individual systems are processed rather than by evaluating a single, plant-level model. In addition, development of the system models for PSM provides inherent benefits to the plant by forcing detailed reviews of the technical specifications, system design and operating procedures, and plant documentation. (orig.)

  13. Data acquisition and monitoring of radwaste cementation plants

    International Nuclear Information System (INIS)

    Cable, A.S.; Lee, D.J.; Samways, J.; Weller, F.C.; Williams, J.R.A.

    1988-03-01

    This paper summarises the progress made in the two years to June 1987 on the DOE funded programme for Data acquisition and monitoring of Radwaste Cementation Plants. The results of the computer based data logging and processing system fitted to an in-drum mixing station, cement powder plant and sludge handling plant are reported. (author)

  14. Improved core monitoring for improved plant operations

    International Nuclear Information System (INIS)

    Mueller, N.P.

    1987-01-01

    Westinghouse has recently installed a core on-line surveillance, monitoring and operations systems (COSMOS), which uses only currently available core and plant data to accurately reconstruct the core average axial and radial power distributions. This information is provided to the operator in an immediately usable, human-engineered format and is accumulated for use in application programs that provide improved core performance predictive tools and a data base for improved fuel management. Dynamic on-line real-time axial and radial core monitoring supports a variety of plant operations to provide a favorable cost/benefit ratio for such a system. Benefits include: (1) relaxation or elimination of certain technical specifications to reduce surveillance and reporting requirements and allow higher availability factors, (2) improved information displays, predictive tools, and control strategies to support more efficient core control and reduce effluent production, and (3) expanded burnup data base for improved fuel management. Such systems can be backfit into operating plants without changing the existing instrumentation and control system and can frequently be implemented on existing plant computer capacity

  15. Diagnosis of faults in EDF power plants: from monitoring to diagnosis

    International Nuclear Information System (INIS)

    Joussellin, A.

    1994-06-01

    Electricite de France is constantly is search of means to improve safety and availability in its nuclear power plants. To this end, EDF has designed new monitoring systems for the major components of its units: for turbogenerator and inlet valves monitoring, for reactor coolant pumps monitoring, for internal structures monitoring and for loose parts detection. New techniques for signal acquisition and processing for diagnosis are used and all these monitoring systems are designed with the same general concept on monitoring. Simultaneously, a workstation for monitoring and aid in diagnosis (PSAD) is under development. It will integrate every monitoring system and will constitute an indispensable tool for plant personnel, enabling them to diagnose the condition of plant equipment, and providing them with high efficiency and user-friendly tools. The PSAD will have a flexible architecture, guaranteeing optimum distribution of computing power to make it available where it is needed. (author). 5 figs., 4 refs

  16. Building and application of the plant condition monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, S.

    2013-01-01

    To achieve the stable operation of nuclear power plants, we developed the plant condition monitoring system based on the heat and mass balance calculation. This system has adopted the heat balance model based on the actual plant data to find the symptoms of the disorder of the equipment by heat balance changes in the turbine system. (author)

  17. 78 FR 24153 - Notice of Emergency Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2013-04-24

    ...In accordance with the Paperwork Reduction Act of 1995, this notice announces that the Animal and Plant Health Inspection Service has requested and received emergency approval of an information collection for a National Animal Health Monitoring System Equine Herpesvirus Myeloencephalopathy Study to support the equine industry in the United States.

  18. Use of media and public-domain Internet sources for detection and assessment of plant health threats.

    Science.gov (United States)

    Thomas, Carla S; Nelson, Noele P; Jahn, Gary C; Niu, Tianchan; Hartley, David M

    2011-09-05

    Event-based biosurveillance is a recognized approach to early warning and situational awareness of emerging health threats. In this study, we build upon previous human and animal health work to develop a new approach to plant pest and pathogen surveillance. We show that monitoring public domain electronic media for indications and warning of epidemics and associated social disruption can provide information about the emergence and progression of plant pest infestation or disease outbreak. The approach is illustrated using a case study, which describes a plant pest and pathogen epidemic in China and Vietnam from February 2006 to December 2007, and the role of ducks in contributing to zoonotic virus spread in birds and humans. This approach could be used as a complementary method to traditional plant pest and pathogen surveillance to aid global and national plant protection officials and political leaders in early detection and timely response to significant biological threats to plant health, economic vitality, and social stability. This study documents the inter-relatedness of health in human, animal, and plant populations and emphasizes the importance of plant health surveillance.

  19. One health? What about plant health?

    DEFF Research Database (Denmark)

    Danielsen, Solveig

    2012-01-01

    One Health has been defined around zoonotic diseases and the sharing of infrastructure and capacities of human and animal health systems in the health triad, people-animals-environment. Plant health needs to be part of the One Health concept....

  20. ''PSAD'' on-line monitoring and aid to diagnosis workstation: a monitoring tool for EDF power plants

    International Nuclear Information System (INIS)

    Morel, J.; Mazalerat, J.M.; Monnier, B.; Cordier, R.

    1993-01-01

    Like other electricity utilities, Electricite de France seeks to enhance the safety and availability of its nuclear power plants. To this end, for over ten years EDF has been installing on each plant unit two monitoring systems of its own design, one to monitor the primary cooling system, and the other, the turbogenerator set. Since the beginning of this project, widespread progress has been made in techniques of signal acquisition and processing, and in diagnosis using artificial intelligence methods. EDF has decided to call on these advanced techniques in developing its new-generation monitoring equipment, and to integrate them in its development of a workstation for on-line monitoring and diagnosis-support (PSAD: Poste de Surveillance et d'Aide au Diagnostic). PSAD will be a tool for on-line monitoring of the main components in nuclear power plants (initially the main coolant pumps and turbogenerator sets, and soon thereafter, monitoring of internal structures, detection of loose parts in the primary cooling system, etc.). PSAD will provide plant personnel with indispensable support in their diagnosis of the condition of plant equipment. It will integrate user-friendly, high-performance systems that also free the operator from many day-to-day tasks. PSAD will have a flexible architecture, for optimum distribution of the computing power where it is most needed, thereby improving the quality of the data. This paper presents the project objectives and describes work currently under way to implement EDF's diagnosis-support strategy for the years to come. (authors). 5 figs., 6 refs

  1. Process control and monitoring system: Thermal Power Plant Gacko

    International Nuclear Information System (INIS)

    Jeremovic, Dragan; Skoko, Maksim; Gjokanovic, Zdravko

    2004-01-01

    DCS Ovation system, manufactured by Westinghouse, USA, is described in this paper. Emphasize on concept of realization and basic characteristic in Thermal Power Plant Gacko is given in this paper. The most important, noticed by now, comparative effects and performances of new monitoring and control system according to classical monitoring and control system of 300 MW units Thermal Power Plant Gacko in Gacko, are given in the conclusion. (Author)

  2. Centralized operation and monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Kudo, Mitsuru; Sato, Hideyuki; Murata, Fumio

    1988-01-01

    According to the prospect of long term energy demand, in 2000, the nuclear power generation facilities in Japan are expected to take 15.9% of the total energy demand. From this fact, it is an important subject to supply nuclear power more stably, and in the field of instrumentation and control, many researches and developments and the incessant effort of improvement have been continued. In the central operation and monitoring system which is the center of the stable operation of nuclear power plants, the man-machine technology aiding operators by electronic and computer application technologies has been positively developed and applied. It is considered that hereafter, for the purpose of rationally heightening the operation reliability of the plants, the high quality man-machine system freely using the most advanced technologies such as high reliability digital technology, optical information transmission, knowledge engineering and so on is developed and applied. The technical trend of operation and monitoring system, the concept of heightening operation and monitoring capability, the upgrading of operation and monitoring system, and the latest operation, monitoring and control systems for nuclear power plants and waste treatment facilities are described. (K.I.)

  3. 77 FR 30030 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants

    Science.gov (United States)

    2012-05-21

    ... Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance. SUMMARY... (RG) 1.160, ``Monitoring the Effectiveness of Maintenance at Nuclear Power Plants.'' This guide... Monitoring the Effectiveness of Maintenance at Nuclear Power Plants,'' which provides methods that are...

  4. Promoting health equity: WHO health inequality monitoring at global and national levels

    Science.gov (United States)

    Hosseinpoor, Ahmad Reza; Bergen, Nicole; Schlotheuber, Anne

    2015-01-01

    Background Health equity is a priority in the post-2015 sustainable development agenda and other major health initiatives. The World Health Organization (WHO) has a history of promoting actions to achieve equity in health, including efforts to encourage the practice of health inequality monitoring. Health inequality monitoring systems use disaggregated data to identify disadvantaged subgroups within populations and inform equity-oriented health policies, programs, and practices. Objective This paper provides an overview of a number of recent and current WHO initiatives related to health inequality monitoring at the global and/or national level. Design We outline the scope, content, and intended uses/application of the following: Health Equity Monitor database and theme page; State of inequality: reproductive, maternal, newborn, and child health report; Handbook on health inequality monitoring: with a focus on low- and middle-income countries; Health inequality monitoring eLearning module; Monitoring health inequality: an essential step for achieving health equity advocacy booklet and accompanying video series; and capacity building workshops conducted in WHO Member States and Regions. Conclusions The paper concludes by considering how the work of the WHO can be expanded upon to promote the establishment of sustainable and robust inequality monitoring systems across a variety of health topics among Member States and at the global level. PMID:26387506

  5. Promoting health equity: WHO health inequality monitoring at global and national levels.

    Science.gov (United States)

    Hosseinpoor, Ahmad Reza; Bergen, Nicole; Schlotheuber, Anne

    2015-01-01

    Health equity is a priority in the post-2015 sustainable development agenda and other major health initiatives. The World Health Organization (WHO) has a history of promoting actions to achieve equity in health, including efforts to encourage the practice of health inequality monitoring. Health inequality monitoring systems use disaggregated data to identify disadvantaged subgroups within populations and inform equity-oriented health policies, programs, and practices. This paper provides an overview of a number of recent and current WHO initiatives related to health inequality monitoring at the global and/or national level. We outline the scope, content, and intended uses/application of the following: Health Equity Monitor database and theme page; State of inequality: reproductive, maternal, newborn, and child health report; Handbook on health inequality monitoring: with a focus on low- and middle-income countries; Health inequality monitoring eLearning module; Monitoring health inequality: an essential step for achieving health equity advocacy booklet and accompanying video series; and capacity building workshops conducted in WHO Member States and Regions. The paper concludes by considering how the work of the WHO can be expanded upon to promote the establishment of sustainable and robust inequality monitoring systems across a variety of health topics among Member States and at the global level.

  6. Promoting health equity: WHO health inequality monitoring at global and national levels

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Hosseinpoor

    2015-09-01

    Full Text Available Background: Health equity is a priority in the post-2015 sustainable development agenda and other major health initiatives. The World Health Organization (WHO has a history of promoting actions to achieve equity in health, including efforts to encourage the practice of health inequality monitoring. Health inequality monitoring systems use disaggregated data to identify disadvantaged subgroups within populations and inform equity-oriented health policies, programs, and practices. Objective: This paper provides an overview of a number of recent and current WHO initiatives related to health inequality monitoring at the global and/or national level. Design: We outline the scope, content, and intended uses/application of the following: Health Equity Monitor database and theme page; State of inequality: reproductive, maternal, newborn, and child health report; Handbook on health inequality monitoring: with a focus on low- and middle-income countries; Health inequality monitoring eLearning module; Monitoring health inequality: an essential step for achieving health equity advocacy booklet and accompanying video series; and capacity building workshops conducted in WHO Member States and Regions. Conclusions: The paper concludes by considering how the work of the WHO can be expanded upon to promote the establishment of sustainable and robust inequality monitoring systems across a variety of health topics among Member States and at the global level.

  7. Automatic acoustic and vibration monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Tothmatyas, Istvan; Illenyi, Andras; Kiss, Jozsef; Komaromi, Tibor; Nagy, Istvan; Olchvary, Geza

    1990-01-01

    A diagnostic system for nuclear power plant monitoring is described. Acoustic and vibration diagnostics can be applied to monitor various reactor components and auxiliary equipment including primary circuit machinery, leak detection, integrity of reactor vessel, loose parts monitoring. A noise diagnostic system has been developed for the Paks Nuclear Power Plant, to supervise the vibration state of primary circuit machinery. An automatic data acquisition and processing system is described for digitalizing and analysing diagnostic signals. (R.P.) 3 figs

  8. 78 FR 58269 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2013-09-23

    ...In accordance with the Paperwork Reduction Act of 1995, this notice announces the Animal and Plant Health Inspection Service's intention to request approval of a new information collection for the National Animal Health Monitoring System's Bison 2014 Study to support the bison industry of the United States.

  9. Development and application of the plant condition monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, S.

    2014-01-01

    To achieve the stable operation of nuclear power plants, we developed the plant condition monitoring system based on the heat and mass balance calculation. In this system, it is a significant feature to adopt the sophisticated heat balance model based on the actual plant data to find the symptoms of anomalies in the turbine system from heat balance changes. (author)

  10. Environmental monitoring at the Savannah River Plant. Annual report, 1983

    International Nuclear Information System (INIS)

    Ashley, C.; Padezanin, P.C.; Zeigler, C.C.

    1984-06-01

    This annual report presents data for 1983 radioactivity and radioisotope concentrations in the air, water, plants, and animals of the Savannah River Plant. Additional monitoring was performed for chemical contaminants such as mercury and chlorocarbons. All concentrations were within applicable federal and state limits or not detectable with state-of-the-art monitoring equipment

  11. Environmental monitoring at the Savannah River Plant. Annual report, 1976

    International Nuclear Information System (INIS)

    Ashley, C.; Zeigler, C.C.

    1978-03-01

    The environmental monitoring program at the Savannah River Plant (SRP) provides reliable measurement of radioactive materials released at the source (approximately 40 locations) and present in the environment (approximately 500 locations). In recent years, water-quality testing and analysis have become an essential part of the environmental monitoring program. Aqueous discharges to plant streams are monitored for nonradioactive materials by chemical analyses of water sampled in flowing streams (approximately 25 locations). A brief discussion of plant releases to the environment and radioactive and nonradioactive materials detected in the environment are presented. The appendices contain data analysis and quality control information, sensitivities of laboratory analyses, tables of environmental sample analyses, and maps of sampling locations

  12. Operation status display and monitoring system for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Wakabayashi, Yasuo; Hayakawa, Hiroyasu; Kawamura, Atsuo; Kaneda, Mitsunori.

    1982-01-01

    Lately, the development of the system has been made for BWR plants, which monitors the operating status not only in normal operation but also in abnormal state and also for plant safety. Recently, the improvement of man-machine interface has been tried through the practical use of technique which displays data collectively on a CRT screen relating them mutually. As one of those results, the practical use of an electronic computer and color CRT display for No. 1 unit in the Fukushima No. 2 Nuclear Power Station (2F-1), Tokyo Electric Power Co., is described. Also, new centralized control panels containing such systems were used for the 1100 MWe BWR nuclear power plants now under construction, No. 3 unit of the Fukushima No. 2 Power Station and No. 1 unit of Kashiwazaki-Kariwa Nuclear Power Station (2F-3 and K-1, respectively). The display and monitoring system in 2F-1 plant is the first one in which a computer and color CRTs were practically employed for a BWR plant in Japan, and already in commercial operation. The advanced operating status monitoring system, to which the result of evaluation of the above system was added, was incorporated in the new centralized control panels presently under production for 2F-3 and K-1 plants. The outline of the system, the functions of an electronic computer, plant operating status monitor, surveillance test guide, the automation of plant operation and auxiliary operation guide are reported for these advanced monitoring system. It was confirmed that these systems are useful means to improve the man-machine communication for plant operation minitoring. (Wakatsuki, Y.)

  13. Discussion on monitoring items of radionuclides in influents from nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Yanxia; Li Jin; Liu Jiacheng; Han Shanbiao; Yu Zhengwei

    2014-01-01

    For the radionuclide monitoring items of effluents from nuclear power plant, this paper makes some comparisons and analysis from three aspects of the international atomic energy general requirements, the routine radionuclide measurement items of China's nuclear power plant and effluents low level radionuclide experimental research results. Finally, it summarizes the necessary items and recommended items of the radionuclide monitoring of effluents from nuclear power plant, which can provide references for the radioactivity monitoring activities of nuclear power plant effluent and the supervisions of regulatory departments. (authors)

  14. Monitor and control device in a nuclear power plant

    International Nuclear Information System (INIS)

    Neda, Toshikatsu.

    1980-01-01

    Purpose: To facilitate and ensure monitor and control, as well as improve the operation efficiency and save man power, by render the operation automatic utilizing a process computer and centralizing the monitor and control functions. Constitution: All of the operations from the start up to stop in a nuclear power plant are conducted by way of a monitor and control board. The process data for the nuclear power plant are read into the process computer and displayed on a CRT display. Controls are carried out respectively for the control rod on a control rod panel, for the feedwater rate on a feedwater control panel, for the recycling flow rate on a recycling control panel and for the turbine generator on a turbine control panel. When the operation is conducted by an automatic console, operation signals from the console are imputted into the process computer and the state of the power plant is monitored and automatic operation is carried out based on the operation signals and from signals from each of the panels. (Moriyama, K.)

  15. 78 FR 58268 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2013-09-23

    ...In accordance with the Paperwork Reduction Act of 1995, this notice announces the Animal and Plant Health Inspection Service's intention to request approval of a new information collection for the National Animal Health Monitoring System's Cervid 2014 Study to support the farmed cervid industry in the United States.

  16. Continuous monitoring of odours from a composting plant using electronic noses.

    Science.gov (United States)

    Sironi, Selena; Capelli, Laura; Céntola, Paolo; Del Rosso, Renato; Il Grande, Massimiliano

    2007-01-01

    The odour impact of a composting plant situated in an urbanized area was evaluated by continuously monitoring the ambient air close to the plant during a period of about 4 days using two electronic noses. One electronic nose was installed in a nearby house, and the other one inside the perimeter of the composting plant in order to compare the response of both instruments. The results of the monitoring are represented by tables that report the olfactory class and the odour concentration value attributed to the analyzed air for each of the 370 measurements carried out during the monitoring period. The electronic nose installed at the house detected the presence of odours coming from the composting plant for about 7.8% of the monitoring total duration. Of the odour detections, 86% (25 of 29 measurements) were classified as belonging to the olfactory class corresponding to the open air storage of the waste screening overflows heaps, which was therefore identified to be the major odour source of the monitored composting plant. In correspondence of the measurements during which the electronic nose inside the house detected the presence of odours from the composting plant, the olfactory classes recognized by both instruments coincide. Moreover, the electronic nose at the house detected the presence of odours from the composting plant at issue in correspondence of each odour perception of the house occupants. The results of the study show the possibility of using an electronic nose for environmental odours monitoring, which enables the classification of the quality of the air and to quantify the olfactory nuisance from an industrial source in terms of duration and odour concentration.

  17. Plant applications of online corrosion monitoring: CO2 capture amine plant case study

    NARCIS (Netherlands)

    Kane, R.D.; Srinivasan, S.; Khakharia, P.M.; Goetheer, E.L.V.; Mertens, J.; Vroey, S. de

    2015-01-01

    Over the past several years, there has been a significant effort to bring corrosion monitoring into the realm of online, real-time management with plant process control technology. As part of this new direction in corrosion monitoring, corrosion data (e.g. information on corrosion rate, measured

  18. Radiation monitor system for nuclear power plants

    International Nuclear Information System (INIS)

    Wu Bingzhe; Guo Shusheng

    1990-12-01

    The system has 8 kinds of radiation monitors and 2 stage microcomputers designed for processing the data from each monitor, storaging the information, printing out and displaying on the colour CRT. The function of the system includes high-value alarm, warm alarm and failure alarm, so called t hree-level alarms . Two functions of the alarms are the threshold alarm and the tendency alarm, so that this system is an intelligency system. This system has high reliability and very wide range when LOCA accident takes place. It is aseismic and immune to industrial interference. The system can meet IEC-761-1 standard and is of nuclear safety 3rd class. Also the following monitors were designed: 133 Xe monitor, 131 I monitor, low-level liquid monitor and high radiation γ area monitor. The system can meet the requirements of nuclear power plants

  19. Continuous emission monitoring systems for power plants. The state-of-the-art

    International Nuclear Information System (INIS)

    Bamberger, J.A.

    1988-01-01

    Continuous monitoring of power plant emissions is performed to improve combustion and control equipment efficiency, and in response to various government agency requirements. This paper focuses upon recent developments in Continuous Emission Monitoring (CEM) and Systems (CEMS) for power plants. Topics presented include the perspective of the U.S. Environmental Protection Agency and the states: Continuous Monitoring of Power Plant Emissions - An EPA Perspective; Pennsylvania's Proposed Continuous Emission Monitoring System Data Telemetry Requirements for Municipal, Hospital and Infectious Waste Incinerators; the importance of quality assurance; Continuous Emission Monitoring and Quality Assurance Requirements for New Power Plants; Highlights of Pennsylvania's Continuous Emission Monitoring System Quality Assurance Program; improved system specifications and data acquisition methods; Improved Specifications for Continuous Emission Monitoring; A Microcomputer-Based Data Acquisition System for CEMS; CEMS applications; Expanded Use of CEMS in Acid Rain Control Programs: Opinions of Users, Control Agencies and Vendors; and an innovative measurement technique to assess electrostatic precipitator performance; The Assessment of Pulverized Coal Fly Ash Collection in Electrostatic Precipitators Using an Instrumental Assessment Technique

  20. A Demonstration of Concrete Structural Health Monitoring Framework for Degradation due to Alkali-Silica Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neal, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nath, Paromita [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bao, Yanqing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Peter [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-04-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant that is subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements: monitoring, data analytics, uncertainty quantification and prognosis. This report focuses on degradation caused by ASR (alkali-silica reaction). Controlled specimens were prepared to develop accelerated ASR degradation. Different monitoring techniques – thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) -- were used to detect the damage caused by ASR. Heterogeneous data from the multiple techniques was used for damage diagnosis and prognosis, and quantification of the associated uncertainty using a Bayesian network approach. Additionally, MapReduce technique has been demonstrated with synthetic data. This technique can be used in future to handle large amounts of observation data obtained from the online monitoring of realistic structures.

  1. Sensor/signal monitoring and plant maintenance

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.; Tuerkcan, E.

    1994-02-01

    Nuclear Power Plant (NPO) availability is determined by the intended functionality of safety related system and components. Therefore, maintenance is an important issue in a power plant connected to the plant's reliability and safety. The traditional maintenance policies proved to be rather costly and even not effectively addressing NPP requirements. Referring to these drawbacks, in the last decade, in the nuclear reliability centered maintenance (RCM) gained substantial interest due to its merits. In the formal implementation of RCM, apparently, predictive maintenance is not considered. However, with the impact of modern real-time and on-line surveillance and monitoring methodologies, the predictive maintenance procedures like sensor/signal verification and validation are to be included into RCM. (orig.)

  2. Environmental monitoring at the Savannah River Plant. Annual report, 1975

    International Nuclear Information System (INIS)

    Ashley, C.; Zeigler, C.C.

    1975-01-01

    The environmental monitoring program at the Savannah River Plant (SRP) provides reliable measurement of radioactive materials both released at the source (approximately 40 locations) and concentrated in the environment (approximately 500 locations). In recent years, water quality testing and analysis have become an essential part of the environmental monitoring program. Aqueous discharges to plant streams are monitored for nonradioactive materials by chemical analyses of water sampled in flowing streams (approximately 25 locations). A brief discussion of plant releases to the environment and radioactive and nonradioactive materials detected in the environment are presented in the following text, figures, and tables. The appendices contain an interpretation of data treatment, tables of results of environmental sample analyses, sensitivities of laboratory analyses, and maps of sampling locations

  3. On-line valve monitoring at the Ormen Lange gas plant

    Energy Technology Data Exchange (ETDEWEB)

    Greenlees, R.; Hale, S. [Score Atlanta Inc., Kennesaw, Georgia (United States)

    2011-07-01

    The purpose of this presentation is to discuss replacing time and labor intensive nuclear outage activities with on line condition monitoring solutions, primarily the periodic verification of MOV functionality discussed in USNRC Generic Letter 96.05. This regulation requires that MOV age related performance degradations are properly identified and accounted for, causing utilities to have to retest valves periodically for the duration of the plants operating license. AECL designed CANDU reactors have a world class performance and safety record, with typical average annual capacity factors of 90%. The CANDU reactor design has the ability to refuel on line, as a result (a) it can be a challenge scheduling all required valve testing into limited duration outage work windows, (b) at multi unit sites, Unit 0 valves can be difficult to test because they are rarely ever out of service, (c) deuterium-oxide (heavy water) moderator is expensive to manufacture, as a result, effective through valve leakage monitoring is essential. These three factors alone make CANDU sites the most suitable candidates for on line valve monitoring systems. Nuclear industry regulations have been instrumental in the development of 'at the valve' diagnostic systems, but diagnostic testing has not typically been utilized to the same degree in other less regulated industries. However, that trend is changing, and the move toward valve diagnostics and condition monitoring has moved fastest in the offshore oil and gas industry on the Norwegian side of the North Sea. The Ormen Lange plant, located on Nyhamna Island on the west coast of Norway, operated by Shell, is one of the worlds most advanced gas processing plants. A stated maintenance goal for the plant is that 70% of the maintenance budget and spend should be based on the results of on line condition monitoring, utilizing monitoring systems equipped with switch sensing, strain gages, hydraulic and pneumatic pressure transducers and

  4. On-line valve monitoring at the Ormen Lange gas plant

    International Nuclear Information System (INIS)

    Greenlees, R.; Hale, S.

    2011-01-01

    The purpose of this presentation is to discuss replacing time and labor intensive nuclear outage activities with on line condition monitoring solutions, primarily the periodic verification of MOV functionality discussed in USNRC Generic Letter 96.05. This regulation requires that MOV age related performance degradations are properly identified and accounted for, causing utilities to have to retest valves periodically for the duration of the plants operating license. AECL designed CANDU reactors have a world class performance and safety record, with typical average annual capacity factors of 90%. The CANDU reactor design has the ability to refuel on line, as a result (a) it can be a challenge scheduling all required valve testing into limited duration outage work windows, (b) at multi unit sites, Unit 0 valves can be difficult to test because they are rarely ever out of service, (c) deuterium-oxide (heavy water) moderator is expensive to manufacture, as a result, effective through valve leakage monitoring is essential. These three factors alone make CANDU sites the most suitable candidates for on line valve monitoring systems. Nuclear industry regulations have been instrumental in the development of 'at the valve' diagnostic systems, but diagnostic testing has not typically been utilized to the same degree in other less regulated industries. However, that trend is changing, and the move toward valve diagnostics and condition monitoring has moved fastest in the offshore oil and gas industry on the Norwegian side of the North Sea. The Ormen Lange plant, located on Nyhamna Island on the west coast of Norway, operated by Shell, is one of the worlds most advanced gas processing plants. A stated maintenance goal for the plant is that 70% of the maintenance budget and spend should be based on the results of on line condition monitoring, utilizing monitoring systems equipped with switch sensing, strain gages, hydraulic and pneumatic pressure transducers and acoustic leakage

  5. Radiological monitoring plan for the Oak Ridge Y-12 Plant: Surface Water

    International Nuclear Information System (INIS)

    1997-10-01

    The Y-12 Plant conducts a surface water monitoring program in response to DOE Orders and state of Tennessee requirements under the National Pollutant Discharge Elimination System (NPDES). The anticipated codification of DOE Order 5400.5 for radiation protection of the public and the environment (10 CFR Part 834) will require an environmental radiation protection plan (ERPP). The NPDES permit issued by the state of Tennessee requires a radiological monitoring plan (RMP) for Y-12 Plant surface waters. In a May 4, 1995 memo, the state of Tennessee, Division of Water Pollution Control, stated their desired needs and goals regarding the content of RMPs, associated documentation, and data resulting from the RMPs required under the NPDES permitting system (L. Bunting, General Discussion, Radiological Monitoring Plans, Tennessee Division of Water Pollution Control, May 4,1995). Appendix A provides an overview of how the Y-12 Plant will begin to address these needs and goals. It provides a more complete, documented basis for the current Y-12 Plant surface water monitoring program and is intended to supplement documentation provided in the Annual Site Environmental Reports (ASERs), NPDES reports, Groundwater Quality Assessment Reports, and studies conducted under the Y-12 Plant Environmental Restoration (ER) Program. The purpose of this update to the Y-12 Plant RMP is to satisfy the requirements of the current NPDES permit, DOE Order 5400.5, and 10 CFR Part 834, as current proposed, by defining the radiological monitoring plan for surface water for the Y-12 Plant. This plan includes initial storm water monitoring and data analysis. Related activities such as sanitary sewer and sediment monitoring are also summarized. The plan discusses monitoring goals necessary to determine background concentrations of radionuclides, to quantify releases, determine trends, satisfy regulatory requirements, support consequence assessments, and meet requirements that releases be ''as low as

  6. Monitoring and management of tritium from the nuclear power plant effluent

    Science.gov (United States)

    Zhang, Qiaoe; Liu, Ting; Yang, Lili; Meng, De; Song, Dahu

    2018-01-01

    It is important to regulate tritium nuclides from the nuclear power plant effluent, the paper briefly analyzes the main source of tritium, and the regulatory requirements associated with tritium in our country and the United States. The monitoring methods of tritium from the nuclear power plant effluent are described, and the purpose to give some advice to our national nuclear power plant about the effluent of tritium monitoring and management.

  7. Prognostic Health Monitoring System: Component Selection Based on Risk Criteria and Economic Benefit Assessment

    International Nuclear Information System (INIS)

    Pham, Binh T.; Agarwal, Vivek; Lybeck, Nancy J.; Tawfik, Magdy S.

    2012-01-01

    Prognostic health monitoring (PHM) is a proactive approach to monitor the ability of structures, systems, and components (SSCs) to withstand structural, thermal, and chemical loadings over the SSCs planned service lifespan. The current efforts to extend the operational license lifetime of the aging fleet of U.S. nuclear power plants from 40 to 60 years and beyond can benefit from a systematic application of PHM technology. Implementing a PHM system would strengthen the safety of nuclear power plants, reduce plant outage time, and reduce operation and maintenance costs. However, a nuclear power plant has thousands of SSCs, so implementing a PHM system that covers all SSCs requires careful planning and prioritization. This paper therefore focuses on a component selection that is based on the analysis of a component's failure probability, risk, and cost. Ultimately, the decision on component selection depends on the overall economical benefits arising from safety and operational considerations associated with implementing the PHM system. (author)

  8. Calibration of radiation monitors at nuclear power plants

    International Nuclear Information System (INIS)

    Boudreau, L.; Miller, A.D.; Naughton, M.D.

    1994-03-01

    This work was performed to provide guidance to the utilities in the primary and secondary calibration of the radiation monitoring systems (RMS) installed in nuclear power plants. These systems are installed in nuclear power plants to monitor ongoing processes, identify changing radiation fields, predict and limit personnel radiation exposures and measure and control discharge of radioactive materials to the environment. RMS are checked and calibrated on a continuing basis to ensure their precision and accuracy. This report discusses various approaches towards primary and secondary calibrations of the RMS equipment in light of accepted practices at typical power plants and recent interpretations of regulatory guidance. Detailed calibration techniques and overall system responses, trends, and practices are discussed. Industry, utility, and regulatory sources were contacted to create an overall consensus of the most reasonable approaches to optimizing the performance of this equipment

  9. Hydrosphere monitoring at nuclear power plant sites

    International Nuclear Information System (INIS)

    Belousova, A.P.; Zakharova, T.V.; Shvets, V.M.

    1993-01-01

    The paper deals with problems related to protection of the environment in areas occupied by nuclear power plants (NPP). NPP construction and operation result in destruction of ecological, geochemical and geological equilibria in and around NPP sites. This process requires monitoring. Recommendations of the International Agency for Atomic Energy (IAAE) suggest monitoring to commence 2-3 years prior to the start of NPP construction. The paper describes the extent of hydrosphere monitoring and guidelines along which monitoring is to be organized. The authors recommend a certain approach toward the planning observation networks and provide description of forecasting subsystem that consist of a data bank, a continuously operating model (COM) and a forecast unit

  10. Automation of technical specification monitoring for nuclear power plants

    International Nuclear Information System (INIS)

    Lin, J.C.; Abbott, E.C.; Hubbard, F.R.

    1986-01-01

    The complexity of today's nuclear power plants combined with an equally detailed regulatory process makes it necessary for the plant staff to have access to an automated system capable of monitoring the status of limiting conditions for operation (LCO). Pickard, Lowe and Garrick, Inc. (PLG), has developed the first of such a system, called Limiting Conditions for Operation Monitor (LIMCOM). LIMCOM provides members of the operating staff with an up-to-date comparison of currently operable equipment and plant operating conditions with what is required in the technical specifications. LIMCOM also provides an effective method of screening tagout requests by evaluating their impact on the LCOs. Finally, LIMCOM provides an accurate method of tracking and scheduling routine surveillance. (author)

  11. Nuclear power plant control room operator control and monitoring tasks

    International Nuclear Information System (INIS)

    Bovell, C.R.; Beck, M.G.; Carter, R.J.

    1998-01-01

    Oak Ridge National Laboratory is conducting a research project the purpose of which is to develop the technical bases for regulatory review criteria for use in evaluating the safety implications of human factors associated with the use of artificial intelligence and expert systems, and with advanced instrumentation and control (I and C) systems in nuclear power plants (NPP). This report documents the results from Task 8 of that project. The primary objectives of the task was to identify the scope and type of control and monitoring tasks now performed by control-room operators. Another purpose was to address the types of controls and safety systems needed to operate the nuclear plant. The final objective of Task 8 was to identify and categorize the type of information and displays/indicators required to monitor the performance of the control and safety systems. This report also discusses state-of-the-art controls and advanced display devices which will be available for use in control-room retrofits and in control room of future plants. The fundamental types of control and monitoring tasks currently conducted by operators can be divided into four classifications: function monitoring tasks, control manipulation tasks, fault diagnostic tasks, and administrative tasks. There are three general types of controls used in today's NPPs, switches, pushbuttons, and analog controllers. Plant I and C systems include components to achieve a number of safety-related functions: measuring critical plant parameters, controlling critical plant parameters within safety limits, and automatically actuating protective devices if safe limits are exceeded. The types of information monitored by the control-room operators consist of the following parameters: pressure, fluid flow and level, neutron flux, temperature, component status, water chemistry, electrical, and process and area radiation. The basic types of monitoring devices common to nearly all NPP control rooms include: analog meters

  12. Environmental monitoring in the vicinity of the Savannah River Plant. Annual report, 1976

    International Nuclear Information System (INIS)

    1976-01-01

    A continuous monitoring program has been maintained since 1951 (before plant start-up) to determine concentrations of radioactive materials in a 1200-square-mile area outside SRP. Although some gaseous and liquid radioactive materials are discharged from SRP operations, concentrations and doses to the surrounding population continued to be far below levels considered significant from a public health viewpoint. The concentration of radioactivity added by SRP to its environs during 1976 was too small to be distinguished from natural background radiation and fallout from worldwide nuclear weapons tests. Beta activity in particulate air filters was about 1.5 times the 1975 level and was due entirely to global fallout. This concentration, both at the plant perimeter and 25 miles away (0.07 pCi/m 3 ), represents 0.07% of the Concentration Guide (CG) (defined in the Applicable Standards section which follows). Tritium oxide in air at the plant perimeter was greater than in air at more distant locations; the average concentration at the plant perimeter (50 pCi/m 3 ) was less than 0.1 of the Concentration Guide. Tritium, cesium-137, and strontium-90 were the only radionuclides of plant origin detectable in river water by routine analyses.Special research programs using ultra-low-level techniques have detected trace quantities of other radionuclides of plant origin. Radioactive materials in river fish also continued very low. Monitoring in a five-square-mile swamp bordering the Savannah River immediately below the SRP boundary has shown radioactivity (primarily cesium-137) above the natural background level in soil and vegetation

  13. Monitoring and modeling crop health and water use via in-situ, airborne and space-based platforms

    KAUST Repository

    McCabe, Matthew; Houborg, Rasmus; Jensen, Rasmus; Nielsen, Helene

    2014-01-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress

  14. Biological monitoring of environmental contaminants (plants). Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Burton, M.A.S.

    1986-01-01

    Knowledge of contaminant concentrations does not necessarily indicate their significance to plant populations and communities within ecosystems. Accumulation within plants facilitates analysis of contaminants which may be present at very low levels in the environment and may show the spatial distribution and changes in the level of contamination with time. Effects on species distribution within plant communities and visible injury to foliage may also be related to contamination. Species can be selected appropriate to the area and the contaminant to be monitored. Species used to investigate the input of contaminants from atmospheric deposition, for example, may differ from those used to assess transfer through food webs. Mosses and lichens have been particularly widely used in many countries to show distribution of metals and radionuclides on local and regional scales and of pesticide contamination. Visible injury to foliage of higher plant species may reflect atmospheric concentrations of gaseous pollutants and monitoring networks of transplanted sensitive species can provide information on contaminant levels on a regional scale. Changes in species composition, especially of lichens, have also been related to the degree of contamination.

  15. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January--December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1998-03-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). A plan for the biological monitoring of the receiving streams was implemented in 1987 and consisted of ecological surveys, toxicity monitoring of effluents and receiving streams, evaluation of bioaccumulation of trace contaminants in biota, and supplemental chemical characterization of effluents. Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in (1) identifying those effluents with the potential for adversely affecting instream fauna, (2) assessing the ecological health of receiving streams, and (3) guiding plans for remediation and protecting human health. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of benthic macroinvertebrate communities and fish. With the exception of the benthic macroinvertebrate community surveys, this report focuses on activities from January to December 1997.

  16. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January-December 1997

    International Nuclear Information System (INIS)

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1998-03-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). A plan for the biological monitoring of the receiving streams was implemented in 1987 and consisted of ecological surveys, toxicity monitoring of effluents and receiving streams, evaluation of bioaccumulation of trace contaminants in biota, and supplemental chemical characterization of effluents. Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in (1) identifying those effluents with the potential for adversely affecting instream fauna, (2) assessing the ecological health of receiving streams, and (3) guiding plans for remediation and protecting human health. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of benthic macroinvertebrate communities and fish. With the exception of the benthic macroinvertebrate community surveys, this report focuses on activities from January to December 1997

  17. Condition monitoring and maintenance of nuclear power plant concrete structures

    International Nuclear Information System (INIS)

    Orr, R.; Prasad, N.

    1988-01-01

    Nuclear power plant concrete structures are potentially subject to deterioration due to several environmental conditions, including weather exposure, ground water exposure, and sustained high temperature and radiation levels. The nuclear power plant are generally licensed for a term of 40 years. In order to maximize the return from the existing plants, feasibility studies are in progress for continued operation of many of these plants beyond the original licensed life span. This paper describes a study that was performed with an objective to define appropriate condition monitoring and maintenance procedures. A timely implementation of a condition monitoring and maintenance program would provide a valuable database and would provide justification for extension of the plant's design life. The study included concrete structures such as the containment buildings, interior structures, basemats, intake structures and cooling towers. Age-related deterioration at several operating power plants was surveyed and the potential degradation mechanisms have been identified

  18. Lunar Health Monitor (LHM)

    Science.gov (United States)

    Lisy, Frederick J.

    2015-01-01

    Orbital Research, Inc., has developed a low-profile, wearable sensor suite for monitoring astronaut health in both intravehicular and extravehicular activities. The Lunar Health Monitor measures respiration, body temperature, electrocardiogram (EKG) heart rate, and other cardiac functions. Orbital Research's dry recording electrode is central to the innovation and can be incorporated into garments, eliminating the need for conductive pastes, adhesives, or gels. The patented dry recording electrode has been approved by the U.S. Food and Drug Administration. The LHM is easily worn under flight gear or with civilian clothing, making the system completely versatile for applications where continuous physiological monitoring is needed. During Phase II, Orbital Research developed a second-generation LHM that allows sensor customization for specific monitoring applications and anatomical constraints. Evaluations included graded exercise tests, lunar mission task simulations, functional battery tests, and resting measures. The LHM represents the successful integration of sensors into a wearable platform to capture long-duration and ambulatory physiological markers.

  19. Hyperspectral monitoring of chemically sensitive plant sentinels

    Science.gov (United States)

    Simmons, Danielle A.; Kerekes, John P.; Raqueno, Nina G.

    2009-08-01

    Automated detection of chemical threats is essential for an early warning of a potential attack. Harnessing plants as bio-sensors allows for distributed sensing without a power supply. Monitoring the bio-sensors requires a specifically tailored hyperspectral system. Tobacco plants have been genetically engineered to de-green when a material of interest (e.g. zinc, TNT) is introduced to their immediate vicinity. The reflectance spectra of the bio-sensors must be accurately characterized during the de-greening process for them to play a role in an effective warning system. Hyperspectral data have been collected under laboratory conditions to determine the key regions in the reflectance spectra associated with the degreening phenomenon. Bio-sensor plants and control (nongenetically engineered) plants were exposed to TNT over the course of two days and their spectra were measured every six hours. Rochester Institute of Technologys Digital Imaging and Remote Sensing Image Generation Model (DIRSIG) was used to simulate detection of de-greened plants in the field. The simulated scene contains a brick school building, sidewalks, trees and the bio-sensors placed at the entrances to the buildings. Trade studies of the bio-sensor monitoring system were also conducted using DIRSIG simulations. System performance was studied as a function of field of view, pixel size, illumination conditions, radiometric noise, spectral waveband dependence and spectral resolution. Preliminary results show that the most significant change in reflectance during the degreening period occurs in the near infrared region.

  20. MONITORING ON PLANT LEAF WATER POTENTIAL USING NIR SPECTROSCOPY FOR WATER STRESS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Diding Suhandy

    2012-12-01

    Full Text Available The performance of the calibration model with temperature compensation for on-plant leaf water potential (LWP determination in tomato plants was evaluated. During a cycle of water stress, the on-plant LWP measurement was conducted. The result showed that the LWP values under water stress and recovery from water stress could be monitored well. It showed that a real time monitoring of the LWP values using NIR spectroscopy could be possible.   Keywords: water stress, real time monitoring of leaf water potential, NIR spectroscopy, plant response-based

  1. Pinellas Plant environmental monitoring report 1986

    International Nuclear Information System (INIS)

    1987-04-01

    The effluent and environmental monitoring programs maintained by the Pinellas Plant are designed to determine the efficiencies of treatment and control mechanisms for environmental releases; to provide measurements of discharge concentrations for comparison with applicable standards; and to assess the concentrations of these discharges in the on-site and off-site environment

  2. Metabolic monitoring in New Zealand district health board mental health services.

    Science.gov (United States)

    Staveley, Aimee; Soosay, Ian; O'Brien, Anthony J

    2017-11-10

    To audit New Zealand district health boards' (DHBs) metabolic monitoring policies in relation to consumers prescribed second-generation antipsychotic medications using a best practice guideline. Metabolic monitoring policies from DHBs and one private clinic were analysed in relation to a best practice standard developed from the current literature and published guidelines relevant to metabolic syndrome. Fourteen of New Zealand's 20 DHBs currently have metabolic monitoring policies for consumers prescribed antipsychotic medication. Two of those policies are consistent with the literature-based guideline. Eight policies include actions to be taken when consumers meet criteria for metabolic syndrome. Four DHBs have systems for measuring their rates of metabolic monitoring. There is no consensus on who is clinically responsible for metabolic monitoring. Metabolic monitoring by mental health services in New Zealand reflects international experience that current levels of monitoring are low and policies are not always in place. Collaboration across the mental health and primary care sectors together with the adoption of a consensus guideline is needed to improve rates of monitoring and reduce current rates of physical health morbidities.

  3. National health inequality monitoring: current challenges and opportunities.

    Science.gov (United States)

    Hosseinpoor, Ahmad Reza; Bergen, Nicole; Schlotheuber, Anne; Boerma, Ties

    National health inequality monitoring needs considerably more investment to realize equity-oriented health improvements in countries, including advancement towards the Sustainable Development Goals. Following an overview of national health inequality monitoring and the associated resource requirements, we highlight challenges that countries may encounter when setting up, expanding or strengthening national health inequality monitoring systems, and discuss opportunities and key initiatives that aim to address these challenges. We provide specific proposals on what is needed to ensure that national health inequality monitoring systems are harnessed to guide the reduction of health inequalities.

  4. Resilient monitoring systems: architecture, design, and application to boiler/turbine plant.

    Science.gov (United States)

    Garcia, Humberto E; Lin, Wen-Chiao; Meerkov, Semyon M; Ravichandran, Maruthi T

    2014-11-01

    Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this paper is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliency is quantified based on the Kullback-Leibler divergence and shown to be sufficiently high in all scenarios considered.

  5. Lunar Health Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During the Phase II Lunar Health Monitor program, Orbital Research will develop a second generation wearable sensor suite for astronaut physiologic monitoring. The...

  6. Diagnostic and monitoring systems in nuclear power plants

    International Nuclear Information System (INIS)

    Wehling, H.J.; Jax, P.; Streicher, V.

    1987-01-01

    Monitoring systems are important for the availability of nuclear power plants. A survey is given about such systems designed and constructed by the Kraftwerk Union AG Erlangen (Federal Republic of Germany) in order to assure the mechanical integrity of reactor cooling systems. Three monitoring systems based on microprocessors are presented: KUES (acoustic detection of loose parts), SUES (vibration), and FAMOS (fatigue)

  7. Microbiological monitoring in geothermal plants

    Science.gov (United States)

    Alawi, M.; Lerm, S.; Vetter, A.; Vieth, A.; Seibt, A.; Wolfgramm, M.; Würdemann, H.

    2009-12-01

    In times of increasing relevance of alternative energy resources the utilization of geothermal energy and subsurface energy storage gains importance and arouses increasing interest of scientists. The research project “AquiScreen” investigates the operational reliability of geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. Microbiological analyses based on fluid and solid phases of geothermal systems are conducted to evaluate the impact of microbial populations on these systems. The presentation focuses on first results obtained from microbiological monitoring of geothermal plants located in two different regions of Germany: the North German Basin and the Molasse Basin in the southern part characterized by different salinities and temperatures. Fluid and filter samples taken during regular plant operation were investigated using genetic fingerprinting based on PCR-amplified 16S rRNA genes to characterize the microbial biocenosis of the geothermal aquifer. Sequencing of dominant bands of the fingerprints and the subsequent comparison to 16S rRNA genes from public databases enables a correlation to metabolic classes and provides information about the biochemical processes in the deep biosphere. The genetic profiles revealed significant differences in microbiological community structures of geothermal aquifers investigated. Phylogenetic analyses indicate broad metabolical diversity adapted to the specific conditions in the aquifers. Additionally a high amount of so far uncultivated microorganisms was detected indicating very specific indigenous biocenosis. However, in all geothermal plants bacteria were detected despite of fluid temperatures from 45° to 120°C. The identified microorganisms are closely related to thermophilic and hyperthermophilic species detectable in hot wells and hot springs, like Thermus scotoductus and Thermodesulfovibrio yellowstonii, respectively. Halophilic species were detected in

  8. Plant-based diets and cardiovascular health.

    Science.gov (United States)

    Satija, Ambika; Hu, Frank B

    2018-02-13

    Plant-based diets, defined in terms of low frequency of animal food consumption, have been increasingly recommended for their health benefits. Numerous studies have found plant-based diets, especially when rich in high quality plant foods such as whole grains, fruits, vegetables, and nuts, to be associated with lower risk of cardiovascular outcomes and intermediate risk factors. This review summarizes the current evidence base examining the associations of plant-based diets with cardiovascular endpoints, and discusses the potential biological mechanisms underlying their health effects, practical recommendations and applications of this research, and directions for future research. Healthful plant-based diets should be recommended as an environmentally sustainable dietary option for improved cardiovascular health. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. How to improve plant efficiency through leading plant monitoring and control system technology-Almaraz NPP Samo

    International Nuclear Information System (INIS)

    Garcia Rodriguez, A.; Schwee, S.M.

    1994-01-01

    The nuclear industry is currently faced with an intense pressure to reduce the cost of electric production. To achieve these cost reductions, utilities are changing the way they have traditionally operated. They are embracing innovative processes and systems to fundamentally change the way they have operated and maintained their plants. Plant monitoring and control technology has been instrumental in affecting these rapid and proactive changes. Our challenge is to use these new technologies in ways that improve plant reliability while lowering operation and maintenance costs. What must we do to increase operational time, improve safety and reliability while reducing all costs including fixed as well as labor? We will discuss an overall plant monitoring system vision that will allow these changes in operational practices. (Author)

  10. Comprehensive Health Risk Management after the Fukushima Nuclear Power Plant Accident.

    Science.gov (United States)

    Yamashita, S

    2016-04-01

    Five years have passed since the Great East Japan Earthquake and the subsequent Fukushima Daiichi Nuclear Power Plant accident on 11 March 2011. Countermeasures aimed at human protection during the emergency period, including evacuation, sheltering and control of the food chain were implemented in a timely manner by the Japanese Government. However, there is an apparent need for improvement, especially in the areas of nuclear safety and protection, and also in the management of radiation health risk during and even after the accident. Continuous monitoring and characterisation of the levels of radioactivity in the environment and foods in Fukushima are now essential for obtaining informed consent to the decisions on living in the radio-contaminated areas and also on returning back to the evacuated areas once re-entry is allowed; it is also important to carry out a realistic assessment of the radiation doses on the basis of measurements. Until now, various types of radiation health risk management projects and research have been implemented in Fukushima, among which the Fukushima Health Management Survey is the largest health monitoring project. It includes the Basic Survey for the estimation of external radiation doses received during the first 4 months after the accident and four detailed surveys: thyroid ultrasound examination, comprehensive health check-up, mental health and lifestyle survey, and survey on pregnant women and nursing mothers, with the aim to prospectively take care of the health of all the residents of Fukushima Prefecture for a long time. In particular, among evacuees of the Fukushima Nuclear Power Plant accident, concern about radiation risk is associated with psychological stresses. Here, ongoing health risk management will be reviewed, focusing on the difficult challenge of post-disaster recovery and resilience in Fukushima. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  11. Marine monitoring surveys for desalination plants-A critical review

    KAUST Repository

    Lattemann, Sabine

    2013-01-01

    Environmental impact assessment (EIA) studies are standard practice and a regulatory requirement for most new desalination projects today. However, most of the EIA studies are limited to predictive information; that is, they gather information on the project and the project\\'s environment before project implementation to make predictions about likely impacts. The EIAs may involve comprehensive studies, such as field monitoring, laboratory toxicity testing, and modeling studies. Consequently, the"surprising paucity of useful experimental data, either from laboratory tests or from field monitoring studies", which was observed by the US National Research Council in 2008, has been gradually decreasing. However, there is still a long-term research need on the site-specific effects of desalination plants after project commissioning has taken place. A main challenge of field research is the adequate design of the monitoring studies, which have to adequately distinguish the effects of the desalination project from natural processes over long periods of time. The existing monitoring studies have so far used a wide range of approaches and methods to investigate the environmental impacts of desalination plant discharges. Shortfalls are often that they are limited in scope, short-term, or localized. In essence, many studies fall short of recognizing the potentially synergetic effects of the single waste components of the discharges on marine organisms and the complexity of the potential responses by the ecosystem. While the possible risk of damage arising from the concentrate discharge to the marine environment in close proximity to the outfall is at hand, no conclusive evidence can yet be provided concerning the long-term impacts of desalination plant discharges, let alone the cumulative impacts on certain sea areas. This paper conducts a critical review of existing monitoring programs for desalination plants. Shortcomings of current practices are identified and relevant

  12. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.; Hines, Wes; Upadhyaya, Belle

    2012-07-17

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.

  13. Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Brandt, C.C.; Christensen, S.W.; Greeley, M.S.JR.; Hill, W.R.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

    2000-09-01

    The revised Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted as required by the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995 and became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Science Division (ESD) at the Oak Ridge National Laboratory (ORNL) at the request of the Y-12 Plant. The revision to the BMAP plan is based on results of biological monitoring conducted during the period of 1985 to present. Details of the specific procedures used in the current routine monitoring program are provided; experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas (e.g., additional bioaccumulation monitoring if results indicate unexpectedly high PCBs or Hg) or a reduction in sampling intensity in others (e.g., reduction in the number of sampling sites when no impact is still observed). The program scope will be re-evaluated annually. By using the results of previous monitoring efforts to define the current program and to guide us in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of Y-12 Plant operations (past and present) on the biota of EFPC and to document the ecological effects of remedial actions.

  14. Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health

    Directory of Open Access Journals (Sweden)

    Katherine E. French

    2017-07-01

    Full Text Available Creating sustainable bioeconomies for the 21st century relies on optimizing the use of biological resources to improve agricultural productivity and create new products. Arbuscular mycorrhizae (phylum Glomeromycota form symbiotic relationships with over 80% of vascular plants. In return for carbon, these fungi improve plant health and tolerance to environmental stress. This symbiosis is over 400 million years old and there are currently over 200 known arbuscular mycorrhizae, with dozens of new species described annually. Metagenomic sequencing of native soil communities, from species-rich meadows to mangroves, suggests biologically diverse habitats support a variety of mycorrhizal species with potential agricultural, medical, and biotechnological applications. This review looks at the effect of mycorrhizae on plant metabolism and how we can harness this symbiosis to improve crop health. I will first describe the mechanisms that underlie this symbiosis and what physiological, metabolic, and environmental factors trigger these plant-fungal relationships. These include mycorrhizal manipulation of host genetic expression, host mitochondrial and plastid proliferation, and increased production of terpenoids and jasmonic acid by the host plant. I will then discuss the effects of mycorrhizae on plant root and foliar secondary metabolism. I subsequently outline how mycorrhizae induce three key benefits in crops: defense against pathogen and herbivore attack, drought resistance, and heavy metal tolerance. I conclude with an overview of current efforts to harness mycorrhizal diversity to improve crop health through customized inoculum. I argue future research should embrace synthetic biology to create mycorrhizal chasses with improved symbiotic abilities and potentially novel functions to improve plant health. As the effects of climate change and anthropogenic disturbance increase, the global diversity of arbuscular mycorrhizal fungi should be monitored

  15. 76 FR 65165 - Importation of Plants for Planting; Risk-Based Sampling and Inspection Approach and Propagative...

    Science.gov (United States)

    2011-10-20

    ..., this 14th day of October 2011. Kevin Shea, Acting Administrator, Animal and Plant Health Inspection... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2011-0092] Importation of Plants for Planting; Risk-Based Sampling and Inspection Approach and Propagative Monitoring and...

  16. Communications interface for plant monitoring system

    International Nuclear Information System (INIS)

    Lee, K.L.; Morgan, F.A.

    1988-01-01

    This paper presents the communications interface for an intelligent color graphic system which PSE and G developed as part of a plant monitoring system. The intelligent graphic system is designed to off-load traditional host functions such as dynamic graphic updates, keyboard handling and alarm display. The distributed system's data and synchronization problems and their solutions are discussed

  17. Use of simulators for validation of advanced plant monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Uytterhoeven, G.; Vlaminck, M. De [Belgatom, Brussels (Belgium); Javaux, D. [Cognitive Ergonomics Work-Psychology Department, University of Liege, Sart-Tilman (Belgium)

    1999-07-01

    This paper describes how the full-scope nuclear power plant simulator of Doel (Belgium) was used to assess Situation Awareness for the validation of a process monitoring and supervision system, named DIMOS. The method (derived from a method originally developed for the aerospace industry) has been adapted and applied to compare the efficiency of two versions of the monitoring system: Alarm-masking and non alarm-masking versions of DIMOS have been analysed in their ability to support Situation Awareness, to improve performance and to fulfil the satisfaction of operators. Both normal power plant operating conditions and abnormal operating conditions were simulated and a large number of power plant operators were involved in the evaluation. The paper focuses on the rationale behind the 'Situation Awareness' evaluation, the experiment environment and the results regarding the added value of the alarm masking version of the monitoring system. (author)

  18. Use of simulators for validation of advanced plant monitoring systems

    International Nuclear Information System (INIS)

    Uytterhoeven, G.; Vlaminck, M. De; Javaux, D.

    1999-01-01

    This paper describes how the full-scope nuclear power plant simulator of Doel (Belgium) was used to assess Situation Awareness for the validation of a process monitoring and supervision system, named DIMOS. The method (derived from a method originally developed for the aerospace industry) has been adapted and applied to compare the efficiency of two versions of the monitoring system: Alarm-masking and non alarm-masking versions of DIMOS have been analysed in their ability to support Situation Awareness, to improve performance and to fulfil the satisfaction of operators. Both normal power plant operating conditions and abnormal operating conditions were simulated and a large number of power plant operators were involved in the evaluation. The paper focuses on the rationale behind the 'Situation Awareness' evaluation, the experiment environment and the results regarding the added value of the alarm masking version of the monitoring system. (author)

  19. Environmental monitoring at the Forsmark nuclear power plant

    International Nuclear Information System (INIS)

    Sandstroem, O.

    1991-01-01

    The use of cooling water at such large power plants as Forsmark creates a considerable hazard for fish in the intake area, as they may be transported into the plant and killed. Several millions of Baltic herring and three-spined stickleback are lost each year at the intake screens. A release of cooling water to an open sea area is generally considered as a minor environmental problem, a presumption so far not contradicated by the results from the monitoring studies at Forsmark. In the Biotest basin, however, where the exposure to heat is maximal, a long series of effects ultimately changing populations of plants, benthic animals and fish have been documented. One important conclusion after ten years of studies in a heated Biotest basin, is that ecosystem stability seems to need very long time to be established, if it ever will. The monitoring of radioactivity controls the quality of the fish as food but is also directed to select special species accumulating these elements, bladder wrack etc. At Forsmark only small amounts of radionuclides from the plant so far have been detected in the marine environment. (KAE)

  20. Design of a particulate-monitoring network for the Y-12 plant

    International Nuclear Information System (INIS)

    Hougland, E.S.; Oakes, T.W.; Underwood, J.N.

    1982-01-01

    An Air Quality Monitoring Network Design (AQMND) with multiple objectives is being developed for the Y-12 Plant production facilities. The objectives are: Y-12 facility surveillance; monitoring the transport of Y-12 generated airborne effluents towards either the Oak Ridge National Laboratory or the developed region of the City of Oak Ridge; and monitoring population exposure in residential areas close to the Y-12 Plant. A two step design process was carried out, using the Air Quality Monitor Network Design Model (AQMND) previously used for the Oak Ridge National Laboratory network. In the first step of the design we used existing air quality monitor locations, subjectively designated locations, and grid intersections as a set of potential monitor sites. The priority sites from the first step (modified to account for terrain and accessibility), and subjectively designated sites, were used as the potential monitor sites for the second step of the process which produced the final design recommendations for the monitor network

  1. Integrated Wireless Monitoring and Control System in Reverse Osmosis Membrane Desalination Plants

    Directory of Open Access Journals (Sweden)

    Al Haji Ahmad

    2015-01-01

    Full Text Available The operational processes of the Reverse Osmosis (RO membrane desalination plants require continuous monitoring through the constant attendance of operators to ensure proper productivity and minimize downtime and prevent membrane failure. Therefore, the plant must be equipped with a control system that monitors and controls the operational variables. Monitoring and controlling the affecting parameters are critical to the evaluation of the performance of the desalination plant, which will help the operator find and resolve problems immediately. Therefore, this paper was aimed at developing an RO unit by utilizing a wireless sensor network (WSN system. Hence, an RO pilot plant with a feed capacity of 1.2 m3/h was utilized, commissioned, and tested in Kuwait to assess and verify the performance of the integrated WSN in RO membrane desalination system. The investigated system allowed the operators to remotely monitor the operational process of the RO system. The operational data were smoothly recorded and monitored. Furthermore, the technical problems were immediately determined, which reduced the time and effort in rectifying the technical problems relevant to the RO performance. The manpower requirements of such treatment system were dramatically reduced by about 50%. Based on a comparison between manual and wireless monitoring operational processes, the availability of the integrated RO unit with a wireless monitoring was increased by 10%

  2. Environmental monitoring around nuclear power plants of EDF in France

    International Nuclear Information System (INIS)

    Chretien, V.; Hemidy, P.Y.

    2010-01-01

    As part of the regulatory environmental monitoring around its nuclear power plants, EDF carries out every year more than 40.000 measurements. In addition EDF performs more precise radioecological surveys on all its sites. This monitoring shows the minor incidence of EDF's nuclear power plants on the environment and a general decrease of gamma emitters radionuclides in the environment. These results confirm the efforts lead by EDF to minimise its impacts on the environment, linked to an efficient waste management and demonstrate the good operating standards of its plants. On a qualitative viewpoint, significant efforts on both metrology and organization have lead to improved measurements capabilities, in order to achieve NF EN ISO/CEI 17025 standard compliance. More recently, a similar approach has been implemented with sampling methods. While today the level achieved in the number and quality of measurement complies with the objectives of the monitoring of the impact of the nuclear power plants on the environment, the results of this monitoring should be presented to the public with more pedagogy to give an adequate answer to their expectations. The new questions that will undoubtedly be raised by the recent availability of this information on the Internet should reinforce this dialogue and should also be the opportunity to improve the quality of our communication. (author)

  3. Online condition monitoring to enable extended operation of nuclear power plants

    International Nuclear Information System (INIS)

    Meyer, Ryan Michael; Bond, Leonard John; Ramuhalli, Pradeep

    2012-01-01

    Safe, secure, and economic operation of nuclear power plants will remain of strategic significance. New and improved monitoring will likely have increased significance in the post-Fukushima world. Prior to Fukushima, many activities were already underway globally to facilitate operation of nuclear power plants beyond their initial licensing periods. Decisions to shut down a nuclear power plant are mostly driven by economic considerations. Online condition monitoring is a means to improve both the safety and economics of extending the operating lifetimes of nuclear power plants, enabling adoption of proactive aging management. With regard to active components (e.g., pumps, valves, motors, etc.), significant experience in other industries has been leveraged to build the science base to support adoption of online condition-based maintenance and proactive aging management in the nuclear industry. Many of the research needs are associated with enabling proactive management of aging in passive components (e.g., pipes, vessels, cables, containment structures, etc.). This paper provides an overview of online condition monitoring for the nuclear power industry with an emphasis on passive components. Following the overview, several technology/knowledge gaps are identified, which require addressing to facilitate widespread online condition monitoring of passive components. (author)

  4. A detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum.

    Science.gov (United States)

    Cheng, Mengzhu; Wang, Lihong; Yang, Qing; Huang, Xiaohua

    2018-08-30

    The pollution of rare earth elements (REEs) in ecosystem is becoming more and more serious, so it is urgent to establish methods for monitoring the pollution of REEs. Monitoring environmental pollution via the response of plants to pollutants has become the most stable and accurate method compared with traditional methods, but scientists still need to find the primary response of plants to pollutants to improve the sensitivity and speed of this method. Based on the facts that the initiation of endocytosis is the primary cellular response of the plant leaf cells to REEs and the detection of endocytosis is complex and expensive, we constructed a detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum [La(III), a representative of REEs] by designing a new immuno-electrochemical method for detecting the content change in extracellular vitronectin-like protein (VN) that are closely related to endocytosis. Results showed that when 30 μM La(III) initiated a small amount of endocytosis, the content of extracellular VN increased by 5.46 times, but the structure and function of plasma membrane were not interfered by La(III); when 80 μM La(III) strongly initiated a large amount of endocytosis, the content of extracellular VN increased by 119 times, meanwhile, the structure and function of plasma membrane were damaged. In summary, the detection method can reflect the response of plants to La(III) via detecting the content change in extracellular VN, which provides an effective and convenient way to monitor the response of plants to exogenous REEs. Copyright © 2018. Published by Elsevier Inc.

  5. Service life monitoring of the main components at the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Hahn, J.; Vincour, D.

    2007-01-01

    Knowledge and experience gained from the introduction and periodical implementation of life assessment of the major components of the Temelin nuclear power plant is summarized. The initial Soviet technical design of the plant did not incorporate lifetime monitoring and evaluation, therefore it was completed with demonstrative strength and lifetime calculations from Czech companies. Moreover, a Westinghouse primary circuit diagnosis and monitoring system, including the monitoring of temperature and pressure cycles for low-cycle fatigue evaluation, was installed at the plant. The DIALIFE code for the calculation of mainly the low-cycle fatigue of the key pressure components, was developed and installed subsequently as a superstructure to the monitoring system. (author)

  6. Monitoring well inspection and maintenance plan Y-12 Plant, Oak Ridge, Tennessee (revised)

    International Nuclear Information System (INIS)

    1996-09-01

    Inspection and maintenance of groundwater monitoring wells is a primary element of the Oak Ridge Y-12 Plant Groundwater Protection Program (GWPP). This document is the revised groundwater monitoring well inspection and maintenance plan for the U.S. Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee. The plan provides a systematic program for: (1) inspecting the physical condition of monitoring wells at the Y-12 Plant and (2) identifying maintenance needs that will extend the life of each well and ensure that representative groundwater quality samples and hydrologic data are collected from the wells. Original documentation for the Y-12 Plant GWPP monitoring well inspection and maintenance program was provided in HSW, Inc. 1991a. The original revision of the plan specified that only a Monitoring Well Inspection/Maintenance Summary need be updated and reissued each year. Rapid growth of the monitoring well network and changing regulatory requirements have resulted in constant changes to the status of wells (active or inactive) listed on the Monitoring Well Inspection/Maintenance Summary. As a result, a new mechanism to track the status of monitoring wells has been developed and the plan revised to formalize the new business practices. These changes are detailed in Sections 2.4 and 2.5

  7. Radiation monitoring instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Bharath Kumar, M.

    2013-01-01

    Measurement of nucleonic signals is required to control and operate the reactor in a safe and reliable manner. To achieve this, parameters like Neutron flux, other radiation fields, contamination levels, source strength, release thru stack etc. are required to be monitored and controlled. The above are required to be monitored throughout the life of the reactor whether it is operational or in shutdown condition. In addition such monitoring is also required during decommissioning phase of the reactor as needed. To measure these parameters a large number of instruments are used in Nuclear Power Plants (NPP) which includes sensors and electronics for detecting alpha, beta, gamma and neutron radiation with qualification to withstand harsh environment

  8. Monitoring update on four listed plants on the Arizona Strip

    Science.gov (United States)

    Lee E. Hughes

    2001-01-01

    Four listed plants on the Arizona Strip are being monitored for various population characteristics. Pediocactus sileri Engelm. L. Benson and P. bradyi L. Benson have been monitored since 1985-86, Asclepias welshii N & P Holmgren since 1989, and Cycladenia humilis Benth. var. jonesii Welsh & Atwood since 1993. The two pediocactus species were monitored in plots...

  9. A monitoring system of radioactive tracers in hydroponic solution for research on plant physiology

    International Nuclear Information System (INIS)

    Suzui, N.; Kawachi, N.; Ishioka, N.; Fujimaki, S.; Yamaguchi, M.

    2009-01-01

    The mechanism of nutrient uptake in plants has received considerable attention in the field of plant science. Here we describe the development of a new monitoring system of radioactive tracers in hydroponic solution, which enables the noninvasive measurement of radioactive tracer uptake by an intact plant. In addition, we incorporated a weighing instrument into this system in order to simultaneously monitor water uptake by the same plant. For an evaluation of this monitoring system, we conducted a tracer experiment with a rice plant and a positron-emitting radioactive tracer, and successfully obtained continuous data for the amounts of radioactive tracer and water taken up by the intact plant over 36 h. (authors)

  10. A monitoring system of radioactive tracers in hydroponic solution for research on plant physiology

    Energy Technology Data Exchange (ETDEWEB)

    Suzui, N.; Kawachi, N.; Ishioka, N.; Fujimaki, S. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Yamaguchi, M. [Takasaki Advanced Radiation Research Institute, Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan)

    2009-07-01

    The mechanism of nutrient uptake in plants has received considerable attention in the field of plant science. Here we describe the development of a new monitoring system of radioactive tracers in hydroponic solution, which enables the noninvasive measurement of radioactive tracer uptake by an intact plant. In addition, we incorporated a weighing instrument into this system in order to simultaneously monitor water uptake by the same plant. For an evaluation of this monitoring system, we conducted a tracer experiment with a rice plant and a positron-emitting radioactive tracer, and successfully obtained continuous data for the amounts of radioactive tracer and water taken up by the intact plant over 36 h. (authors)

  11. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1990 to November 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A. [ed.

    1994-03-01

    On September 23, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Lab (ORNL) added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in identifying those effluents with the potential for adversely affecting instream fauna, assessing the ecological health of receiving streams, guiding plans for remediation, and protecting human health. In September 1992, a renewed permit was issued which requires toxicity monitoring of continuous and intermittent outfalls on a quarterly basis. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities. This report includes ESD/ORNL activities occurring from December 1990 to November 1992.

  12. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1990 to November 1992

    International Nuclear Information System (INIS)

    Kszos, L.A.

    1994-03-01

    On September 23, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Lab (ORNL) added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in identifying those effluents with the potential for adversely affecting instream fauna, assessing the ecological health of receiving streams, guiding plans for remediation, and protecting human health. In September 1992, a renewed permit was issued which requires toxicity monitoring of continuous and intermittent outfalls on a quarterly basis. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities. This report includes ESD/ORNL activities occurring from December 1990 to November 1992

  13. Containment pressure monitoring method after severe accident in nuclear power plant

    International Nuclear Information System (INIS)

    Luo Chuanjie; Zhang Shishui

    2011-01-01

    The containment atmosphere monitoring system in nuclear power plant was designed on the basis of design accident. But containment pressure will increase greatly in a severe accident, and pressure instrument in the containment can't satisfy the monitoring requirement. A new method to monitor the pressure change in the containment after a severe accident was considered, through which accident soften methods can be adopted. Under present technical condition, adding a pressure monitoring channel out of containment for post-severe accident is a considerable method. Daya Bay Nuclear Power Plant implemented this modification, by which the containment release time can be delayed during severe accident, and nuclear safety can be increased. After analysis, this method is safe and feasible. (authors)

  14. Hybrid Modeling Improves Health and Performance Monitoring

    Science.gov (United States)

    2007-01-01

    Scientific Monitoring Inc. was awarded a Phase I Small Business Innovation Research (SBIR) project by NASA's Dryden Flight Research Center to create a new, simplified health-monitoring approach for flight vehicles and flight equipment. The project developed a hybrid physical model concept that provided a structured approach to simplifying complex design models for use in health monitoring, allowing the output or performance of the equipment to be compared to what the design models predicted, so that deterioration or impending failure could be detected before there would be an impact on the equipment's operational capability. Based on the original modeling technology, Scientific Monitoring released I-Trend, a commercial health- and performance-monitoring software product named for its intelligent trending, diagnostics, and prognostics capabilities, as part of the company's complete ICEMS (Intelligent Condition-based Equipment Management System) suite of monitoring and advanced alerting software. I-Trend uses the hybrid physical model to better characterize the nature of health or performance alarms that result in "no fault found" false alarms. Additionally, the use of physical principles helps I-Trend identify problems sooner. I-Trend technology is currently in use in several commercial aviation programs, and the U.S. Air Force recently tapped Scientific Monitoring to develop next-generation engine health-management software for monitoring its fleet of jet engines. Scientific Monitoring has continued the original NASA work, this time under a Phase III SBIR contract with a joint NASA-Pratt & Whitney aviation security program on propulsion-controlled aircraft under missile-damaged aircraft conditions.

  15. On-line monitoring applications at nuclear power plants. A risk informed approach to calibration reduction

    International Nuclear Information System (INIS)

    Shankar, Ramesh; Hussey, Aaron; Davis, Eddie

    2003-01-01

    On-line monitoring of instrument channels provides increased information about the condition of monitored channels through accurate, more frequent evaluation of each cannel's performance over time. This type of performance monitoring is a methodology that offers an alternate approach to traditional time-directed calibration. EPRI's strategic role in on-line monitoring is to facilitate its implementation and cost-effective use in numerous applications at power plants. To this end, EPRI has sponsored an on-line monitoring implementation project at multiple nuclear plants specifically intended to install and use on-line monitoring technology. The selected on-line monitoring method is based on the Multivariate State Estimation Technique. The project has a planned three-year life; seven plants are participating in the project. The goal is to apply on-line monitoring to all types of power plant applications and document all aspects of the implementation process in a series of EPRI reports. These deliverables cover installation, modeling, optimization, and proven cost-benefit. This paper discusses the actual implementation of on-line monitoring to various nuclear plant instrument systems. Examples of detected instrument drift are provided. (author)

  16. BARC-risk monitor- a tool for operational safety assessment in nuclear power plants

    International Nuclear Information System (INIS)

    Vinod, Gopika; Saraf, R.K.; Babar, A.K.; Hadap, Nikhil

    2000-12-01

    Probabilistic safety assessment has become a key tool as on today to identify and understand nuclear power plant vulnerabilities. As a result of the availability of these PSA studies, there is a desire to use them to enhance plant safety and to operate the nuclear stations in the most efficient manner. Risk monitor is a PC based tool, which computes the real time safety level and assists plant personnel to manage day-to-day activities. Risk monitor is a PC based user friendly software tool used for modification and re-analysis of a nuclear power plant. Operation of risk monitor is based on PSA methods for assisting in day to day applications. Risk monitoring programs can assess the risk profile and are used to optimise the operation of nuclear power plants with respect to a minimum risk level over the operating time. This report presents the background activities of risk monitor, its application areas and also gives the status of such tools in international scenarios. The software is based on the PSA model of Kaiga generating station and would be applicable to similar design configuration. (author)

  17. Environmental radioactivity monitoring around the Rokkasho reprocessing plant

    International Nuclear Information System (INIS)

    Sasaki, K.; Hareyama, H.; Takeishi, M.

    2009-01-01

    Japan Nuclear Fuel Limited has carried out environmental monitoring in order to check that the dose of radiation to which the public is exposed around the Rokkasho Reprocessing Plant (RRP) is much lower than the annual dose limit. The monitoring is mainly carried out according to 'the program decided by the Nuclear Safety Commission (NSC) of Japan' and 'the program decided by the Aomori Prefectural Government.' In this report, we present information on the monitoring according to the NSC program, that is the point of view of selection of the monitoring items for dose assessment, the point of view of the dose assessment from the monitoring results, etc. Also, we report on estimation of the effects from the facilities on the monitoring results obtained and dose assessment of the public during Active testing of RRP. (author)

  18. Development of advanced secondary chemistry monitoring system for Korea nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Sang Hak; Kim, Chung Tae

    1997-01-01

    Water chemistry control is one of the most important tasks in order to maintain the reliability of plant equipments and extend the operating life of the plant. KEPCO and KOPEC developed a computerized tool for this purpose -ASCMS (advanced secondary chemistry monitoring system) which is able to monitor and diagnose the secondary water chemistry. A prototype system had been installed at KORI 3 nuclear power plant since April 1993 in order to evaluate the system performance. After the implementation of enhancements identified during the testing of the prototype, we have developed the advanced secondary monitoring system, ASCMS which is installed at 5 nuclear power plants and has been under operations since April 1997. The ASCMS comprises PC subsystem designed for data acquisition, data analysis, and data diagnosis. The ASCMS will provide overall information related to steam generator secondary side water chemistry problems and improve plant availability, reduce radiation exposure to workers, and reduce operating and maintenance costs. 6 figs

  19. Modern handling and monitoring concepts for nuclear power plants

    International Nuclear Information System (INIS)

    Hofmann, H.; Lochner, K.H.

    1989-01-01

    Advanced microprocessor technology offers new means and methods also to power plant operation to improve the man-machine interface by using VDU's for process control, thus enhancing plant safety and reliability. A future control-room concept involving operation and monitoring to be effected by means of VDU's exclusively, calls for a detailed knowledge of the requirements which are made by the process and the operator on the system, and for the application of a very powerful microprocessor technology. Visualization of operating and monitoring processes matched to the needs of operators should be possible at high functionality and display quality without substantial restrictions caused by the device technology used. (orig.) [de

  20. Complex monitoring of the surroundings of the Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Tylova, E.

    1993-01-01

    Based on a Resolution of the Government of the Czech Republic, the Ministry of the Environment and the Ministry of Health of the Czech Republic shall develop a project of complex environmental pollution and contamination monitoring in the surroundings of the Dukovany nuclear power plant and shall discuss this project with municipalities there till the end of 1993. The objective of the project is to assess in a complex manner the situation in the Dukovany area with respect to all risks and their simultaneous effects, so as to ensure that the population in the area concerned is not burdened to an intolerable extent. (Z.S.)

  1. Monitoring of biogas test plants

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Esbensen, Kim H.

    2011-01-01

    realistic bioreactor scales, it is necessary to obtain a fairly constant level of volatile fatty acid (VFA) concentration, which furthers a stable biogas production. Uncontrolled VFA contents have a significant negative impact on biogas production; VFA concentrations should not exceed 5–6000 mg/L lest......Most studies reported in the literature have investigated near infrared spectroscopy (NIR) in laboratory-scale or minor pilot biogas plants only; practically no other studies have examined the potential for meso-scale/full-scale on-line process monitoring. The focus of this study is on a meso......-scale biogas test plant implementation of process analytical technologies (PAT) to develop multivariate calibration/prediction models for anaerobic digestion (AD) processes. A 150 L bioreactor was fitted with a recurrent loop at which NIR spectroscopy and attendant reference sampling were carried out. In all...

  2. Informing pest prevention efforts through Sentinel Plant Monitoring

    Science.gov (United States)

    2010-01-01

    Botanic gardens with international collections provide a unique opportunity to help detect potential invasive threats to forest health. Nursery stock is well-recognized as a major pathway for the introduction of invasive insects and pathogens to native ecosystems. Plant health regulators need help knowing what pests attack host plants abroad so they can develop ways to...

  3. Oak Ridge Y-12 Plant biological monitoring and abatement program (BMAP) plan

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Brandt, C.C.; Cicerone, D.S. [and others

    1998-02-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y-12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided, but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas or a reduction in sampling intensity in others. By using the results of previous monitoring efforts to define the current program and to guide them in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions.

  4. Oak Ridge Y-12 Plant biological monitoring and abatement program (BMAP) plan

    International Nuclear Information System (INIS)

    Adams, S.M.; Brandt, C.C.; Cicerone, D.S.

    1998-02-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y-12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided, but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas or a reduction in sampling intensity in others. By using the results of previous monitoring efforts to define the current program and to guide them in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions

  5. System health monitoring

    International Nuclear Information System (INIS)

    Reneke, J.A.; Fryer, M.O.

    1995-01-01

    Well designed large systems include many instrument taking data. These data are used in a variety of ways. They are used to control the system and its components, to monitor system and component health, and often for historical or financial purposes. This paper discusses a new method of using data from low level instrumentation to monitor system and component health. The method uses the covariance of instrument outputs to calculate a measure of system change. The method involves no complicated modeling since it is not a parameter estimation algorithm. The method is iterative and can be implemented on a computer in real time. Examples are presented for a metal lathe and a high efficiency particulate air (HEPA) filter. It is shown that the proposed method is quite sensitive to system changes such as wear out and failure. The method is useful for low level system diagnostics and fault detection

  6. Networked Biomedical System for Ubiquitous Health Monitoring

    Directory of Open Access Journals (Sweden)

    Arjan Durresi

    2008-01-01

    Full Text Available We propose a distributed system that enables global and ubiquitous health monitoring of patients. The biomedical data will be collected by wearable health diagnostic devices, which will include various types of sensors and will be transmitted towards the corresponding Health Monitoring Centers. The permanent medical data of patients will be kept in the corresponding Home Data Bases, while the measured biomedical data will be sent to the Visitor Health Monitor Center and Visitor Data Base that serves the area of present location of the patient. By combining the measured biomedical data and the permanent medical data, Health Medical Centers will be able to coordinate the needed actions and help the local medical teams to make quickly the best decisions that could be crucial for the patient health, and that can reduce the cost of health service.

  7. Groundwater monitoring at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Kehrman, R.; Broberg, K.; Tatro, G.; Richardson, R.; Dasczcyszak, W.

    1990-01-01

    This paper discusses the Groundwater Monitoring Program (GMP) being conducted at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The Regulatory and Environmental Programs (REP) section of the Environment, Safety and Health department (ES ampersand H) is responsible for conducting environmental monitoring at the WIPP. Groundwater monitoring is one of the ongoing environmental activities currently taking place. The REP section includes water-quality sampling and water-level monitoring. The WIPP Project is a research and development facility designed to demonstrate the safe disposal of defense-generated TRU and mixed waste in a geologic repository. The Salado Formation of Permian age serves as the repository medium. The Salado Formation consists of bedded salt and associated evaporites. The formation is 602 meters thick at the site area; the top surface is located at a subsurface depth of 262 meters (10). The repository lies at a subsurface depth of 655 meters. Water-quality sampling for physical, chemical, and radiological parameters has been an ongoing activity at the WIPP site for the past six years, and will continue through the life of the project. Data collected from this program to date, has been used by Sandia National Laboratories for site characterization and performance assessment work. The data has also been used to establish a baseline of preoperational radiological and nonradiological groundwater quality. Once the facility begins receiving waste, this baseline will be used to determine if the WIPP facility influences or alters groundwater quality over time. The water quality of a well is determined while the well is continuously pumped. Serial samples of the pumped water are collected and tested for pH, Eh, temperature, specific gravity, specific conductivity, alkalinity, chlorides, divalent cations, ferrous iron, and total iron. 13 refs., 4 figs., 1 tab

  8. On-line surveillance system for Borssele nuclear power plant monitoring and diagnostics

    International Nuclear Information System (INIS)

    Tuerkcan, E.; Ciftcioglu, Oe.

    1993-08-01

    An operating on-line surveillance and diagnostic system is described where information processing for monitoring and fault diagnosis and plant maintenance are addressed. The surveillance system by means of its realtime multiprocessing, multitasking execution capabilities can perform plant-wide and wide-range monitoring for enhanced plant safety and operational reliability as well as enhanced maintenance. At the same time the system provides the possibilities for goal-oriented research and development such as estimation, filtering, verification and validation and neural networks. (orig./HP)

  9. Neural networks for sensor validation and plant monitoring

    International Nuclear Information System (INIS)

    Upadhyaya, B.R.; Eryurek, E.; Mathai, G.

    1990-01-01

    Sensor and process monitoring in power plants require the estimation of one or more process variables. Neural network paradigms are suitable for establishing general nonlinear relationships among a set of plant variables. Multiple-input multiple-output autoassociative networks can follow changes in plant-wide behavior. The backpropagation algorithm has been applied for training feedforward networks. A new and enhanced algorithm for training neural networks (BPN) has been developed and implemented in a VAX workstation. Operational data from the Experimental Breeder Reactor-II (EBR-II) have been used to study the performance of BPN. Several results of application to the EBR-II are presented

  10. Monitoring of occupational exposure at nuclear power plants

    International Nuclear Information System (INIS)

    1997-01-01

    The regulations concerning the monitoring of radiation doses of nuclear power plant workers and the reporting of radiation doses to the Finnish Centre for Radiation and Nuclear Safety (STUK) are specified in the guide. (10 refs.)

  11. Privacy by design in personal health monitoring.

    Science.gov (United States)

    Nordgren, Anders

    2015-06-01

    The concept of privacy by design is becoming increasingly popular among regulators of information and communications technologies. This paper aims at analysing and discussing the ethical implications of this concept for personal health monitoring. I assume a privacy theory of restricted access and limited control. On the basis of this theory, I suggest a version of the concept of privacy by design that constitutes a middle road between what I call broad privacy by design and narrow privacy by design. The key feature of this approach is that it attempts to balance automated privacy protection and autonomously chosen privacy protection in a way that is context-sensitive. In personal health monitoring, this approach implies that in some contexts like medication assistance and monitoring of specific health parameters one single automatic option is legitimate, while in some other contexts, for example monitoring in which relatives are receivers of health-relevant information rather than health care professionals, a multi-choice approach stressing autonomy is warranted.

  12. Physical health monitoring in mental health settings: a study exploring mental health nurses' views of their role.

    Science.gov (United States)

    Mwebe, Herbert

    2017-10-01

    To explore nurses' views of their role in the screening and monitoring of the physical care needs of people with serious mental illness in a mental health service provider. There is increasing awareness through research that people with serious mental illness disproportionately experience and die early from physical health conditions. Mental health nurses are best placed as front-line workers to offer screening, monitoring and interventions; however, their views on physical care interventions are not studied often. Qualitative exploratory study. The study was carried out in a mental health inpatient centre in England. Volunteer sampling was adopted for the study with a total target sample of (n = 20) nurses from three inpatient wards. Semistructured interviews were conducted with (n = 10) registered mental health nurses who had consented to take part in the study. Inductive data analysis and theme development were guided by a thematic analytic framework. Participants shared a clear commitment regarding their role regarding physical health screening and monitoring in mental health settings. Four themes emerged as follows: features of current practice and physical health monitoring; perceived barriers to physical health monitoring; education and training needs; and strategies to improve physical health monitoring. Nurses were unequivocal in their resolve to ensure good standard physical health monitoring and screening interventions in practice. However, identified obstacles have to be addressed to ensure that physical health screening and monitoring is integrated adequately in everyday clinical activities. Achieving this would require improvements in nurses' training, and an integrated multiservice and team-working approach. Attending to the physical health needs of people with serious mental illness has been associated with multiple improvements in both mental and physical health; nurses have a vital role to play in identifying and addressing causes of poor

  13. Forest health monitoring: 2008 national technical report

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2012-01-01

    The Forest Health Monitoring (FHM) Program’s annual national technical report has three objectives: (1) to present forest health status and trends from a national or a multi-State regional perspective using a variety of sources, (2) to introduce new techniques for analyzing forest health data, and (3) to report results of recently completed evaluation monitoring...

  14. Design of wearable health monitoring device

    Science.gov (United States)

    Devara, Kresna; Ramadhanty, Savira; Abuzairi, Tomy

    2018-02-01

    Wearable smart health monitoring devices have attracted considerable attention in both research community and industry. Some of the causes are the increasing healthcare costs, along with the growing technology. To address this demand, in this paper, design and evaluation of wearable health monitoring device integrated with smartphone were presented. This device was designed for patients in need of constant health monitoring. The performance of the proposed design has been tested by conducting measurement once in 2 minutes for 10 minutes to obtain heart rate and body temperature data. The comparation between data measured by the proposed device and that measured by the reference device yields only an average error of 1.45% for heart rate and 1.04% for body temperature.

  15. Monitoring, Tracking, and Recording Pancreas-Related Health Issues in Real Time

    Science.gov (United States)

    Chrysikos, Theofilos; Zisi, Iliana; Katsini, Christina; Raptis, George E.; Kotsopoulos, Stavros

    2017-11-01

    The monitoring of pancreas-related health issues in real-time and outside the medical room is a challenge in the wide e-health domain. This paper introduces WHEAMO, a novel e-health platform which employs medical implants (biosensors), which function as antennas, planted in the pancreas. WHEAMO uses wireless in-body propagation to track, monitor, and record critical parameters, such as glucose. The signal reaches the skin and then it is propagated in an indoor environment (e.g., medical room) over to a terminal equipped with adaptive, user-configurable, and intelligent mechanisms which provide personalized recommendations to varying WHEAMO users (e.g., medical personnel, health care workers, patients). The personalized nature of the provided recommendations is based on patients unique characteristics via a sophisticated knowledge-base. The fundamentals of in-body and on-body wireless propagation and channel characterization have been studied in a series of published works. Researchers have tested both electric-field (dipole) and magnetic-field (patch, loop) antennas. Another important aspect concerns the frequency band in which the signal propagation will occur. Among the frequencies that have gathered scientific and academic interest are the Medical Implant Communication Service (MICS) band at 402-405 MHz, the 900 MHz channel and the industrial, scientific and medical (ISM) radio band at 2.45 GHz.

  16. OAK RIDGE Y-12 PLANT BIOLOGICAL MONITORING AND ABATEMENT PROGRAM (BMAP) PLAN

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, S.M.; BRANDT, C.C.; CHRISTENSEN, S.W.; CICERONE, D.S.; GREELEY, M.S.JR; HILL, W.R.; HUSTON, M.S.; KSZOS, L.A.; MCCARTHY, J.F.; PETERSON, M.J.; RYON, M.G.; SMITH, J.G.; SOUTHWORTH, G.R.; STEWART, A.J.

    1998-10-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y- 12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas (e.g., additional toxicity testing if initial results indicate low survival or reproduction) or a reduction in sampling intensity in others (e.g., reduction in the number of sampling sites when no impact is observed). By using the results of previous monitoring efforts to define the current program and to guide us in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions.

  17. Health Monitoring System Technology Assessments: Cost Benefits Analysis

    Science.gov (United States)

    Kent, Renee M.; Murphy, Dennis A.

    2000-01-01

    The subject of sensor-based structural health monitoring is very diverse and encompasses a wide range of activities including initiatives and innovations involving the development of advanced sensor, signal processing, data analysis, and actuation and control technologies. In addition, it embraces the consideration of the availability of low-cost, high-quality contributing technologies, computational utilities, and hardware and software resources that enable the operational realization of robust health monitoring technologies. This report presents a detailed analysis of the cost benefit and other logistics and operational considerations associated with the implementation and utilization of sensor-based technologies for use in aerospace structure health monitoring. The scope of this volume is to assess the economic impact, from an end-user perspective, implementation health monitoring technologies on three structures. It specifically focuses on evaluating the impact on maintaining and supporting these structures with and without health monitoring capability.

  18. Monitoring and assessment of health issues at energy plant and gas station Pak steel bin Qasim Karachi

    International Nuclear Information System (INIS)

    Memon, Z.

    2005-01-01

    No doubt Environmental and health safety issues in big cities of Pakistan are developing havoc problems due to mechanized operations by emitting flue gases, effluent and acoustic noise, which it is my topic to discuss in detail. Acoustic noise is one of the major environmental problems in Industrial Plants. The noise study under taken in detail at feed pumps, super heater, exhausters and accumulators of Energy plant (E.P) as the regulators, control room etc. of Gas station (G.S) Pak Steel Bin Qasim Karachi. In light of permissible occupational noise exposure limits, as allowed by the ISO,EEC and other National Standards, some recommendations have been made to provide safety measures for workers against high level noise health hazards like head ache, hearing problem, Irritation, accidents at work, tension, disturbance to work and so many physiological and psychological effects, along with guidelines to overcome the break downs an improve efficiency of the plants. (Orig./A.B.)

  19. Volatile Organic Compound (VOC) Air Monitoring Program design for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Frank, L.

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) Volatile Organic Compound (VOC) Monitoring Program has been developed as part of the Department of Energy's (DOE's) No-Migration Variance petition submitted to the Environmental Protection Agency (EPA). The program is designed to demonstrate that there will be no migration of hazardous chemicals past the unit boundary in concentrations which exceed any health-based standards. The monitoring program will use EPA compendium Method TO-14. Both air and carbon sorption media samples will be collected as part of the program. Eleven separate monitoring sites have been selected where both 24-hour integrated and 1-hour grab samples will be collected and analyzed for five target compounds. The bin-scale experimental test rooms will be configured with a gas collection manifold and an activated carbon sorption bed to remove VOCs before they can be emitted into the WIPP underground atmosphere. 10 refs., 4 figs., 7 tabs

  20. Environmental monitoring in the vicinity of the Savannah River Plant. Annual report for 1975

    International Nuclear Information System (INIS)

    1975-01-01

    The concentration of radioactivity added by the Savannah River Plant to its environs during 1975 was, for the most part, too small to be distinguished from natural background radiation and fallout from worldwide nuclear weapons tests. Beta activity in particulate air filters was about one-half of the 1974 level and was due entirely to global fallout. An accidental release of tritium to the atmosphere occurred in a production facility on December 31, 1975. Monitoring teams were deployed along the estimated puff trajectory immediately following the release. Monitoring extended from the production facility to the Atlantic Ocean north of Charleston, SC. Environmental sample concentrations of tritium oxide were all within normal ranges. The low concentrations of tritium measured in environmental samples around the plantsite were of no health significance. Tritium, cesium-137, and strontium-90 were the only radionuclides of plant origin detectable in river water by routine analyses. None of these had an average concentration exceeding 0.2 percent of the Concentration Guide in river water samples 8 miles downstream from the plant. Monitoring in an offsite swamp immediately below the SRP boundary has shown radioactivity (primarily cesium-137) above the natural background level in soil and vegetation. Only one-third of a five-square-mile swamp, which is largely uninhabited and inaccessible, bordering the Savannah River and downstream from SRP is affected. No restrictions on use of the swamp are considered warranted nor are remedial actions needed. Concentrations of radioactivity in vegetation and soil were, in most instances, lower than those reported in 1974. During 1975 the average dose from atmospheric releases of radioactive materials from SRP was calculated to be 0.66 millirem (mrem) at the plant perimeter

  1. Wireless online position monitoring of manual valve types for plant configuration management in nuclear power plants

    International Nuclear Information System (INIS)

    Agarwal, Vivek; Buttles, John W.; Beaty, Lawrence H.; Naser, Joseph; Hallbert, Bruce P.

    2016-01-01

    In the current competitive energy market, the nuclear industry is committed to lower the operations and maintenance cost; increase productivity and efficiency while maintaining safe and reliable operation. The present operating model of nuclear power plants is dependent on large technical staffs that put the nuclear industry at long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management in offsetting labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will enable the continued safe operation of today’s fleet of light water reactors by providing the technical means to monitor components in plants today that are only routinely monitored through manual activities. The wireless enabled valve position indicators that are the subject of this paper are able to provide a valid position indication available continuously, rather than only periodically. As a result, a real-time (online) availability of valve positions using an affordable technologies are vital to plant configuration when compared with long-term labor rates, and provide information that can be used for a variety of plant engineering, maintenance, and management applications.

  2. On-Line Monitoring of Instrument Channel Performance in Nuclear Power Plant Using PEANO

    International Nuclear Information System (INIS)

    Fantoni, Paolo F.; Hoffmann, Mario; Shankar, Ramesh; Davis, Eddie L.

    2002-01-01

    On-Line monitoring evaluates instrument channel performance by assessing its consistency with other plant indications. Industry and EPRI experience at several plants has shown this overall approach to be very effective in identifying instrument channels that are exhibiting degrading or inconsistent performance characteristics. On-Line monitoring of instrument channels provides information about the condition of the monitored channels through accurate, more frequent monitoring of each channel's performance over time. This type of performance monitoring is a methodology that offers an alternate approach to traditional time-directed calibration. On-line monitoring of these channels can provide an assessment of instrument performance and provide a basis for determining when adjustments are necessary. Elimination or reduction of unnecessary field calibrations can reduce associated labor costs, reduce personnel radiation exposure and reduce the potential for miss-calibration. PEANO is a system for on-line calibration monitoring developed in the years 1995-2000 at the Institutt for energiteknikk (IFE), Norway, which makes use of Artificial Intelligence techniques for its purpose. The system has been tested successfully in Europe in off-line tests with EDF (France), Tecnatom (Spain) and ENEA (Italy). PEANO is currently installed and used for on-line monitoring at the HBWR reactor in Halden. This paper describes the results of performance tests on PEANO with real data from a US PWR plant, in the framework of a co-operation among IFE, EPRI and Edan Engineering, to evaluate the potentials of PEANO for future installations in US nuclear plants. (authors)

  3. Monitoring well plugging and abandonment plan, Y-12 Plant, Oak Ridge, Tennessee (revised)

    International Nuclear Information System (INIS)

    1997-05-01

    Plugging and abandonment (P ampersand A) of defunct groundwater monitoring wells is a primary element of the Oak Ridge Y-12 Plant Groundwater Protection Program (GWPP) (AJA Technical Services, Inc. 1996). This document is the revised groundwater monitoring well P ampersand A plan for the U.S. Department of Energy (DOE) Y-12 Plant located in Oak Ridge, Tennessee. This plan describes the systematic approach employed by Y-12 Plant GWPP to identify wells that require P ampersand A, the technical methods employed to perform P ampersand A activities, and administrative requirements. Original documentation for Y-12 Plant GWPP groundwater monitoring well P ampersand A was provided in HSW, Inc. (1991). The original revision of the plan specified that a comprehensive monitoring well P ampersand A was provided in HSW, Inc. (1991). The original revision of the plan specified that a comprehensive monitoring well P ampersand A schedule be maintained. Wells are added to this list by issuance of both a P ampersand A request and a P ampersand A addendum to the schedule. The current Updated Subsurface Data Base includes a single mechanism to track the status of monitoring wells. In addition, rapid growth of the groundwater monitoring network and new regulatory requirements have resulted in constant changes to the status of wells. As a result, a streamlined mechanism to identify and track monitoring wells scheduled for P ampersand A has been developed and the plan revised to formalize the new business practices

  4. Smart health monitoring systems: an overview of design and modeling.

    Science.gov (United States)

    Baig, Mirza Mansoor; Gholamhosseini, Hamid

    2013-04-01

    Health monitoring systems have rapidly evolved during the past two decades and have the potential to change the way health care is currently delivered. Although smart health monitoring systems automate patient monitoring tasks and, thereby improve the patient workflow management, their efficiency in clinical settings is still debatable. This paper presents a review of smart health monitoring systems and an overview of their design and modeling. Furthermore, a critical analysis of the efficiency, clinical acceptability, strategies and recommendations on improving current health monitoring systems will be presented. The main aim is to review current state of the art monitoring systems and to perform extensive and an in-depth analysis of the findings in the area of smart health monitoring systems. In order to achieve this, over fifty different monitoring systems have been selected, categorized, classified and compared. Finally, major advances in the system design level have been discussed, current issues facing health care providers, as well as the potential challenges to health monitoring field will be identified and compared to other similar systems.

  5. Health disparities monitoring in the U.S.: lessons for monitoring efforts in Israel and other countries.

    Science.gov (United States)

    Abu-Saad, Kathleen; Avni, Shlomit; Kalter-Leibovici, Ofra

    2018-02-28

    Health disparities are a persistent problem in many high-income countries. Health policymakers recognize the need to develop systematic methods for documenting and tracking these disparities in order to reduce them. The experience of the U.S., which has a well-established health disparities monitoring infrastructure, provides useful insights for other countries. This article provides an in-depth review of health disparities monitoring in the U.S. Lessons of potential relevance for other countries include: 1) the integration of health disparities monitoring in population health surveillance, 2) the role of political commitment, 3) use of monitoring as a feedback loop to inform future directions, 4) use of monitoring to identify data gaps, 5) development of extensive cross-departmental cooperation, and 6) exploitation of digital tools for monitoring and reporting. Using Israel as a case in point, we provide a brief overview of the healthcare and health disparities landscape in Israel, and examine how the lessons from the U.S. experience might be applied in the Israeli context. The U.S. model of health disparities monitoring provides useful lessons for other countries with respect to documentation of health disparities and tracking of progress made towards their elimination. Given the persistence of health disparities both in the U.S. and Israel, there is a need for monitoring systems to expand beyond individual- and healthcare system-level factors, to incorporate social and environmental determinants of health as health indicators/outcomes.

  6. Monitoring corrosion and biofilm formation in nuclear plants using electrochemical methods

    International Nuclear Information System (INIS)

    Licina, G.J.; Nekoksa, G.; Ward, G.L.; Howard, R.L.; Cubicciotti, D.

    1993-01-01

    During the 1980's, degradation of piping, heat exchangers, and other components in raw water cooled systems by a variety of corrosion mechanisms became an important in the reliability and cost effectiveness of U.S. nuclear plants. General and localized corrosion, including pitting and crevice corrosion, have all been shown to be operative in nuclear plant cooling systems. Microbiologically influenced corrosion (MIC) also afflicts nuclear cooling water and service water systems. The prediction of locations to be inspected, selection of mitigation measures, and control of water treatments and maintenance planning rely upon the accuracy and sensitivity of monitoring techniques. Electrochemical methods can provide rapid measurements of corrosion and biological activity on line. The results from a corrosion monitoring study in a service water system at a fresh water cooled nuclear plant are presented. This study utilized determinations of open circuit potential and reversed potentiodynamic scans on carbon steels, Admiralty, and stainless steels (Types 304 and 316 as well as high chromium, high molybdenum ferritic and austenitic grades) to evaluate the rate and form of corrosion to be anticipated in typical service. An electrochemical method that permits the monitoring of biofilm activity on-line has been developed. Results from laboratory and in-plant exposure in a nuclear power plant system are presented

  7. Support of the Ukrainian supervisory authority in establishing a modern nuclear power plant monitoring

    International Nuclear Information System (INIS)

    Beyer, M.; Carl, H.; Schumann, P.; Seidel, A.; Weiss, F.P.; Zschau, J.; Nowak, K.

    2000-01-01

    The type of monitoring of nuclear power plants in Ukraine practiced in the early nineties provided the supervisory authority with only inadequate access to information about the current safety status of plants. For the Zaporozhye nuclear power plant, unit 5, a technical system to improve operational monitoring has been designed, installed and commissioned for trial operation at the end of 1995 as a pilot project. The system complements existing operational checking and monitoring facilities by including modern means of information technology. It enables concentration on a continuous monitoring of the state of unit 5 in normal operation and in cases of anormalies or incidents so that when recognisable deviations from the regular plant operation occur, the authority can immediately inquire and if necessary impose conditions on the operator. In 1997, the Information and Crisis Centre of the Ukraninian supervisory authority in Kiev was equipped with the most essential technical means necessary for quasi-simultaneous transfer of data and voice and for monitoring purposes and connected to the Centre to the Zaporozhye system. A similar monitoring system for both VVER-440 units of the Rovno nuclear power plant by analogy with the pilot project was specified and put into operation and connected to the ICC in 1998. (orig.) [de

  8. Concepts of plant health – reviewing and challenging the foundations of plant protection

    OpenAIRE

    Döring, Thomas; Pautasso, Marco; Finckh, Maria R.; Wolfe, Martin

    2012-01-01

    Plant health is a frequently used but ill-defined term. However, there is an extensive literature on general health definitions and health criteria in human medicine. Taking up ideas from these philosophical debates, concepts of plant health are reviewed and a framework developed to locate these concepts according to their position in several philosophical controversies. In particular, (i) the role of values in defining plant health in a naturalist versus a normativist approach; (ii) negative...

  9. Waste Isolation Pilot Plant Environmental Monitoring Plan

    International Nuclear Information System (INIS)

    2008-01-01

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problems; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) explains the rationale and design criteria for the environmental monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document changes in the environmental monitoring program. Guidance for preparation of EMPs is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  10. Health physics training of plant staff

    International Nuclear Information System (INIS)

    Heublein, R.M. Jr.

    1982-01-01

    The scope of this document entitled Health Physics Training of Plant Staff addresses those critical elements common to all health physics training programs. The incorporation of these elements in a health physics training program will provide some assurances that the trainees are competent to work in the radiological environment of a nuclear plant. This paper provides sufficient detail for the health physicist to make managerial decisions concerning the planning, development, implementation, and evaluation of health physics training programs. Two models are provided in the appendices as examples of performance based health physics training programs

  11. Workplace monitoring and occupational health studies in the Sostanj Thermal Power Plant, Slovenia

    International Nuclear Information System (INIS)

    Jacimovic, R.; Falnoga, I.; Jeran, Z.; Byrne, A.R.; Kobal, A.B.; Stropnik, B.

    1998-01-01

    Up to now, only a few investigations have been performed in the Sostanj Thermal Power Plant (TPP) involving comprehensive studies of trace elements, toxic elements, heavy metals and radionuclides in the workplaces. The aim of the project is development and application of nuclear and nuclear-related analytical techniques for workplace pollution and occupational health studies, leading to formation of a database concerning the trace element air pollution inside the Sostanj Thermal Power Plant. In this report, the emphasis is on the methodology and analytical development (neutron activation analysis, X-ray spectrometry, total-reflection X-ray fluorescence (TXRF) spectroscopy and proton induced X-ray emission (PIXE)), and to a lesser extent on the results obtained up to now. Analytical results for several certified reference materials of similar matrix as the real samples investigated were obtained. Results obtained by the k 0 -standardization method and XRF technique for aerosols (coarse and fine fractions) ore also presented and discussed. (author)

  12. Technical diagnostics - equipment monitoring for increasing safety and availability of nuclear power plants

    International Nuclear Information System (INIS)

    Sturm, A.; Foerster, R.

    1977-01-01

    Utilization of technical diagnostics in equipment monitoring of nuclear power plants for ensuring nuclear safety, economic availability, and for decision making on necessary maintenance is reviewed. Technical diagnostics is subdivided into inspection and early detection of malfunctions. Moreover, combination of technical diagnostics and equipment monitoring, integration of technical diagnostics into maintenance strategy, and problems of introducing early detection of malfunctions into maintenance management of nuclear power plants are also discussed. In addition, a compilation of measuring techniques used in technical diagnostics has been made. The international state of the art of equipment monitoring in PWR nuclear power plants is illustrated by description of the sound and vibration measuring techniques. (author)

  13. The Department of Energy`s Rocky Flats Plant: A guide to record series useful for health-related research. Volume VII. Employee occupational exposure and health

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This is the seventh in a series of seven volumes which constitute a guide to records of the Rocky Flats Plant useful for conducting health-related research. The primary purpose of Volume VII is to describe record series pertaining to employee occupational exposure and health at the Department of Energy`s (DOE) Rocky Flats Plant, now named the Rocky Flats Environmental Technology Site, near Denver, Colorado. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project, provides a history of occupational exposure monitoring and health practices at Rocky Flats, and identifies organizations contributing to occupational exposure monitoring and health policies and activities. Other topics include the scope and arrangement of the guide and the organization to contact for access to these records. Comprehensive introductory and background information is available in Volume 1. Other volumes in the guide pertain to administrative and general subjects, facilities and equipment, production and materials handling, environmental and workplace monitoring, and waste management. In addition, HAI has produced a subject-specific guide, titled The September 1957 Rocky Flats Fire: A Guide to Record Series of the Department of Energy and Its Contractors, which researchers should consult for further information about records related to this incident.

  14. Monitoring Systems for Hydropower Plants

    Directory of Open Access Journals (Sweden)

    Damaschin Pepa

    2015-07-01

    Full Text Available One of the most important issue in hydro power industry is to determine the necessary degree of automation in order to improve the operation security. Depending upon the complexity of the system (the power plant equipment the automation specialist will build a philosophy of control following some general principals of security and operation. Helped by the modern digital equipment, today is relative easy to design a complete monitoring and supervising system including all the subparts of a hydro aggregate. A series of sensors and transducers specific for each auxiliary installation of the turbine and generator will be provided, together with a PLC or an industrial PC that will run an application software for implementing the security and control algorithms. The purpose of this paper is to offer a general view of these issues, providing a view of designing an automation & control and security system for hydro power plants of small, medium and big power.

  15. Establishment of a sensor testbed at NIST for plant productivity monitoring

    Science.gov (United States)

    Allen, D. W.; Hutyra, L.; Reinmann, A.; Trlica, A.; Marrs, J.; Jones, T.; Whetstone, J. R.; Logan, B.; Reblin, J.

    2017-12-01

    Accurate assessments of biogenic carbon fluxes is challenging. Correlating optical signatures to plant activity allows for monitoring large regions. New methods, including solar-induced fluorescence (SIF), promise to provide more timely and accurate estimate of plant activity, but we are still developing a full understanding of the mechanistic leakage between plant assimilation of carbon and SIF. We have initiated a testbed to facilitate the evaluation of sensors and methods for remote monitoring of plant activity at the NIST headquarters. The test bed utilizes a forested area of mature trees in a mixed urban environment. A 1 hectare plot within the 26 hectare forest has been instrumented for ecophysiological measurements with an edge (100 m long) that is persistently monitored with multimodal optical sensors (SIF spectrometers, hyperspectral imagers, thermal infrared imaging, and lidar). This biological testbed has the advantage of direct access to the national scales maintained by NIST of measurements related to both the physical and optical measurements of interest. We offer a description of the test site, the sensors, and preliminary results from the first season of observations for ecological, physiological, and remote sensing based estimates of ecosystem productivity.

  16. A Design of Ginseng Planting Environment Monitoring System Based on WSN

    Directory of Open Access Journals (Sweden)

    Xin Ding

    2014-03-01

    Full Text Available Through the analysis of ginseng products industry chain, this paper designs and implements ginseng planting environment monitoring system. The system realized data collection and detection of ginseng planting environment in real time by using wireless sensor, transmission of environmental parameters in real time by using GPRS wireless transmission module, and video monitor and alarm of ginseng land by using unattended machine. It is the foundation of information transformation of ginseng products industry chain based on the Internet of Things. The experiment of ginseng planting base in Fusong indicates the system can offer support of original data for scientific cultivation of ginseng, comprehensive analysis of ginseng products and propaganda of ginseng brand.

  17. Architecture and design of third Qinshan nuclear power plant risk monitor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F.; Li, Y.; Wang, J.; Wang, J.; Hu, L. [Inst. of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, Univ. of Science and Technology of China, No.350 Shushanhu Road, Shushan District, Hefei, Anhui, 230031 (China)

    2012-07-01

    Risk monitor is a real-time analysis tool to determine the point-in-time risk based on actual plant configuration, which is an important application of PSA (Probabilistic Safety Assessment). In this study the status and development trend of risk monitor were investigated and a risk monitor named TQRM (Third Qinshan nuclear power plant Risk Monitor) was developed. The B/S architecture and the two key computing methods pre-solved and resolving PSA model method adopted in TQRM were introduced. The functions and technical features were also presented. Now TQRM has been on-line for more than one year and used in the operation and maintenance of TQNPP. The experience demonstrates that TQRM's results are accurate and real-time, the architecture is stable, and it could be extended and maintained conveniently for any other Risk-Informed Application. (authors)

  18. Advanced targeted monitoring of high temperature components in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E; Maile, K; Jovanovic, A [MPA Stuttgart (Germany)

    1999-12-31

    The article presents the idea of targeted monitoring of high-temperature pressurized components in fossil-fueled power plants, implemented within a modular software system and using, in addition to pressure and temperature data, also displacement and strain measurement data. The concept has been implemented as a part of a more complex company-oriented Internet/Intranet system of MPA Stuttgart (ALIAS). ALIAS enables to combine smoothly the monitoring results with those of the off-line analysis, e. g. sensitivity analyses, comparison with preceding experience (case studies), literature search, search in material databases -(experimental and standard data), nonlinear FE-analysis, etc. The concept and the system have been implemented in real plant conditions several power plants in Germany and Europe: one of these applications and its results are described more in detail in the presentation. (orig.) 9 refs.

  19. Advanced targeted monitoring of high temperature components in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Maile, K.; Jovanovic, A. [MPA Stuttgart (Germany)

    1998-12-31

    The article presents the idea of targeted monitoring of high-temperature pressurized components in fossil-fueled power plants, implemented within a modular software system and using, in addition to pressure and temperature data, also displacement and strain measurement data. The concept has been implemented as a part of a more complex company-oriented Internet/Intranet system of MPA Stuttgart (ALIAS). ALIAS enables to combine smoothly the monitoring results with those of the off-line analysis, e. g. sensitivity analyses, comparison with preceding experience (case studies), literature search, search in material databases -(experimental and standard data), nonlinear FE-analysis, etc. The concept and the system have been implemented in real plant conditions several power plants in Germany and Europe: one of these applications and its results are described more in detail in the presentation. (orig.) 9 refs.

  20. Monitoring method of an atomic power plant

    International Nuclear Information System (INIS)

    Koba, Akitoshi; Goto, Seiichiro; Ohashi, Hideaki.

    1975-01-01

    Object: To make a monitoring vehicle, which is loaded with various detecting elements, go round along the monorail disposed so as to surround various devices to thereby early discover various abnormal conditions. Structure: The monitoring vehicle is travelled on the monorail disposed so as to surround the periphery of various devices in an atomic power plant so that detection signals from an ITV camera, temperature and radioactive rays and sound detecting elements, and the like are received through a slide contact between the wheel and transmitting and receiving line disposed in the wheel groove to transmit the signals to a central control panel. (Yoshihara, H.)

  1. A Production-Rule Analysis System for Nuclear Plant monitoring and emergency response applications

    International Nuclear Information System (INIS)

    Ragheb, M.; Tsoukalas, L.; McDonough, T.; Parker, M.

    1987-01-01

    A Production-Rule Analysis System for Nuclear Power Plant Monitoring is presented. The signals generated by the Zion-1 Plant are considered for emergency Response applications. The integrity of the Plant Radiation, the Reactor Coolant, the Fuel Clad, and the Containment Systems, is monitored. Representation of the system is in the form of a goal-tree generating a Knowledge-Base searched by an Inference Engine functioning in the forward-chaining mode. The Gaol-tree is built from Fault-Trees based on plant operational information. The system is implemented on a VAX-8500 and is programmed in OPS-5

  2. Real-time power plant monitoring and verification and validation issues

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.; Tuerkcan, E.

    1993-03-01

    By means of the advances in the computer technology, the implementation of a real-time power plant monitoring and dynamic signal analysis system is described. As hardware and software, the system has several essential components to perform the task. Among these, mention may be made of a remote-controlled data acquisition system, a fast data processing system and a dynamic signal analysis system. For a complex system like an NPP, the system verification and validation is an important issue as the plant operation involves many engineering disciplines and also the 'soft sciences'. Additionally, the real-time requirements impose substantial time limitation for the implementation of tasks. The system V and V is accomplished partly by means of V and V of the system components which are monitored by the help of sensory signals. Therefore, an essential part of the V and V task involves the real-time analyses of the data provided by these signals. In this respect the NPP real-time monitoring system described possesses the required design features to carry out this task which provides enhanced reliability and availability in plant operation. (orig./HP)

  3. Continuous monitoring of plutonium solution in a conversion plant

    International Nuclear Information System (INIS)

    Hassan, B.; Piana, M.; Mousalli, G.; Saukkonen, H.; Hosima, T.; Kawa, T.

    2000-01-01

    This paper describes the implementation of a safeguards Tank Monitoring System (TAMS) in a Plutonium Conversion Plant (PCP). TAMS main objective is to provide the International Atomic Energy Agency (IAEA) (the Agency) with continuous data for safeguards evaluation and review of inventories and flows of plutonium solutions. It has been designed to monitor, in unattended mode, the inventory of each tank and transactions of solutions between tanks, as well as to confirm the absence of borrowing plutonium solutions from and to a neighboring reprocessing plant. The instrumentation consists of one electronic scanner that collects pressure data from electromanometers connected to the tank dip tubes, one uninterruptable power supply and one personal computer operating in a Windows-NT environment. The pressure data transmitted to the acquisition system is saved and converted to volume and density values, coupled with a graph capability to display events in each tank at intervals of 15 seconds. The system operation has not only strengthened the safeguards measures in PCP but also reduced inspection effort while minimizing intrusion to normal plant activities and radiation exposure to personnel. TAMS is a powerful, reliable tool that has significantly improved the effectiveness of safeguards implementation at PCP. The future combined use of TAMS with remote monitoring (RM) will further enhance efficiency of the safeguards measures at PCP. (author)

  4. Aquatic indicator organisms as a tool to monitor discharges from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Outola, Iisa; Vartti, Vesa-Pekka; Klemola, Seppo [STUK - Radiation and Nuclear Safety Authority, P.O. Box 14, 00881 Helsinki (Finland)

    2014-07-01

    There are four operating nuclear power plant units in Finland at two separate locations. The units started operation during 1977-1980. The surveillance of radioactive substances in the vicinities of the nuclear power plant is carried out under the permanent monitoring programs. Some 1000 samples are taken annually from the surroundings of the power plants to confirm that the discharges from the power plants are within permissible release limits and to monitor the dispersion of discharges in the environment. Aquatic indicator organisms (macro-algae, periphyton, mussels, crustacean, submerged aquatic plants) are included in the monitoring program. The indicator organisms are valuable monitoring objects both in normal and emergency situations because they accumulate effectively and often very rapidly radioactive substances from the medium. Six different species (Periphyton, Fucus vesiculosus, Myriophyllum spicatum, Potamogeton pectinatus, Saduria entomon, Macoma Baltica/Mytilus edulis) are collected regularly. Number of sampling location for each species varies from 1 to 7. Some species are collected continuously, some 1-2 times in a year. In this study we have evaluated the monitoring results for the aquatic indicator organisms for the period of 2005-2010 concerning concentration of discharge nuclides. Our aim was to answer the following questions using the monitoring data from aquatic organisms: 1) Which radionuclides are released to the marine environment and how often do we detect them? 2) How far from the nuclear power plants discharge radionuclides are detected? 3) How concentration of discharge radionuclides has changed with time in aquatic organisms? The number of discharge nuclides detected in the aquatic indicator samples was 11. Most of them were only detected in few samples, but {sup 58}Co, {sup 60}Co, {sup 54}Mn and {sup 110m}Ag were detected more frequently. Most of the observations above detection limits were made within the 5 km distance from the

  5. Interim Report on Concrete Degradation Mechanisms and Online Monitoring Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neal, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The existing nuclear power plants in the United States have initial operating licenses of 40 years, though most of these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. The research on online monitoring of concrete structures conducted under the Advanced Instrumentation, Information, and Control Systems Technologies Pathway of the Light Water Reactor Sustainability Program at Idaho National Laboratory will develop and demonstrate concrete structures health monitoring capabilities. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code margins of safety. Therefore, structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. Through this research project, several national laboratories and Vanderbilt University propose to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes the integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses available techniques and ongoing challenges in each of the four elements of the proposed framework with emphasis on degradation mechanisms and online monitoring techniques.

  6. The use of the road to health card in monitoring child health | Tarwa ...

    African Journals Online (AJOL)

    The use of the road to health card in monitoring child health. ... The Road to Health Chart (RTHC) provides a simple, cheap, practical and convenient method of monitoring child health. The RTHC could assist ... Conclusions: Many parents believe that the RTHC is only required for Well-baby-clinic visits, not for consultations.

  7. Environmental monitoring at the Savannah River Plant. Annual report for 1978

    International Nuclear Information System (INIS)

    Ashley, C.; Zeigler, C.C.

    1981-01-01

    The environmental monitoring program at the Savannah River Plant (SRP) provides reliable measurement of radioactive materials released at the source (approximately 40 locations) and present in the environment (approximately 500 locations). In recent years, the environmental monitoring program has been expanded to include measurements of nonradioactive materials released by SRP. A brief discussion of plant releases to the environment and radioactive and nonradioactive materials detected in the environment are presented. The appendices contain data analysis and quality control information, sensitivities of laboratory analyses, tables of environmental sample analyses, and maps of sampling locations

  8. Health Monitor for Multitasking, Safety-Critical, Real-Time Software

    Science.gov (United States)

    Zoerner, Roger

    2011-01-01

    Health Manager can detect Bad Health prior to a failure occurring by periodically monitoring the application software by looking for code corruption errors, and sanity-checking each critical data value prior to use. A processor s memory can fail and corrupt the software, or the software can accidentally write to the wrong address and overwrite the executing software. This innovation will continuously calculate a checksum of the software load to detect corrupted code. This will allow a system to detect a failure before it happens. This innovation monitors each software task (thread) so that if any task reports "bad health," or does not report to the Health Manager, the system is declared bad. The Health Manager reports overall system health to the outside world by outputting a square wave signal. If the square wave stops, this indicates that system health is bad or hung and cannot report. Either way, "bad health" can be detected, whether caused by an error, corrupted data, or a hung processor. A separate Health Monitor Task is started and run periodically in a loop that starts and stops pending on a semaphore. Each monitored task registers with the Health Manager, which maintains a count for the task. The registering task must indicate if it will run more or less often than the Health Manager. If the task runs more often than the Health Manager, the monitored task calls a health function that increments the count and verifies it did not go over max-count. When the periodic Health Manager runs, it verifies that the count did not go over the max-count and zeroes it. If the task runs less often than the Health Manager, the periodic Health Manager will increment the count. The monitored task zeroes the count, and both the Health Manager and monitored task verify that the count did not go over the max-count.

  9. DIMOS: a new generation of nuclear power plant process monitoring systems

    International Nuclear Information System (INIS)

    Vlaminck, M. de; Gilliot, B.; Remacle, J.

    1993-01-01

    A new generation of nuclear power plant supervision systems is described, called DIMOS (DIstributed MOnitoring System). It was installed in August 1991 at the Doel nuclear power plant and is now monitoring reactors 1 and 2. The system represents one of the largest and most advanced process monitoring systems in operation. DIMOS has successfully provided the solution to the old system's limitations such as functional deficiencies, low response time, management and coherence of the data, maintenance costs, spare parts, and system availability. The use of the software development methodologies HOOD and ADA have not only allowed a rapid integration and installation of a robust system, but will also make further developments and improvements possible with maximum flexibility. (Z.S.) 2 figs

  10. San Diego Multiple Species Conservation Program (MSCP) Rare Plant Monitoring Review and Revision

    Science.gov (United States)

    McEachern, Kathryn; Pavlik, Bruce M.; Rebman, Jon; Sutter, Rob

    2007-01-01

    Introduction The San Diego Multiple Species Conservation Program (MSCP) was developed for the conservation of plants and animals in the south part of San Diego County, under the California Natural Community Conservation Planning Act of 1991 (California Department of Fish and Game) and the Federal Endangered Species Act of 1973, as amended (16 U.S. Code 1531-1544.) The Program is on the leading edge of conservation, as it seeks to both guide development and conserve at-risk species with the oversight of both State and Federal agencies. Lands were identified for inclusion in the MSCP based on their value as habitat for at-risk plants or plant communities (Natural Community Conservation Planning, 2005). Since its inception in the mid-1990s the Program has protected over 100,000 acres, involving 15 jurisdictions and the U.S. Fish and Wildlife Service (USFWS) and California Department of Fish and Game (CDFG) in the conservation of 87 taxa. Surveys for covered species have been conducted, and management and monitoring have been implemented at some high priority sites. Each jurisdiction or agency manages and monitors their conservation areas independently, while collaborating regionally for long-term protection. The San Diego MSCP is on the forefront of conservation, in one of the most rapidly growing urban areas of the country. The planning effort that developed the MSCP was state-of-the-art, using expert knowledge, spatial habitat modeling, and principles of preserve design to identify and prioritize areas for protection. Land acquisition and protection are ahead of schedule for most jurisdictions. Surveys have verified the locations of many rare plant populations known from earlier collections, and they provide general information on population size and health useful for further conservation planning. Management plans have been written or are in development for most MSCP parcels under jurisdictional control. Several agencies are developing databases for implementation

  11. Standard guide to In-Plant performance evaluation of Hand-Held SNM monitors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This guide is one of a series on the application and evaluation of special nuclear material (SNM) monitors. Other guides in the series are listed in Section 2, and the relationship of in-plant performance evaluation to other procedures described in the series is illustrated in Fig. 1. Hand-held SNM monitors are described in of Guide C1112, and performance criteria illustrating their capabilities can be found in Appendix X1. 1.2 The purpose of this guide to in-plant performance evaluation is to provide a comparatively rapid procedure to verify that a hand-held SNM monitor performs as expected for detecting SNM or alternative test sources or to disclose the need for repair. The procedure can be used as a routine operational evaluation or it can be used to verify performance after a monitor is calibrated. 1.3 In-plant performance evaluations are more comprehensive than daily functional tests. They take place less often, at intervals ranging from weekly to once every three months, and derive their result fr...

  12. Application of wireless sensor networks in personnel dosage monitoring system of nuclear power plant

    International Nuclear Information System (INIS)

    Chen Yonghong; Zhang Dafa; Jiang Wei; Chen Dengke

    2007-01-01

    Aim to meet the need of personnel dosage monitoring of nuclear power plant, a monitoring system was designed which based on wireless sensor network. First, the basic concept was described; the characteristics of the wireless sensor network applied in the monitoring system of nuclear power plant were also been analyzed; the structure of the system was built too. Finally, the special technologies like the choice of communication mode, the security of communication network and orientation that used in the monitoring system were discussed. (authors)

  13. Mobile health monitoring system for community health workers

    CSIR Research Space (South Africa)

    Sibiya, G

    2014-09-01

    Full Text Available of hypertension as it provides real time information and eliminates the need to visit a healthcare facility to take blood pressure readings. Our proposed mobile health monitoring system enables faster computerization of data that has been recorded... pressure, heart rate and glucose readings. These reading closely related to most common NCDs. D. Feedback to health worker and the subject of care Community health workers are often not professionally trained on health. As a result they are not expected...

  14. Practical experience with second law power plant monitoring

    International Nuclear Information System (INIS)

    Lang, F.D.; Horn, K.F.

    1992-01-01

    This article discusses the use of an ultimate performance monitoring technique derived from Second Law concepts. Other techniques and their methods have been reported. If electricity is to be produced with the minimum of unproductive consumption of fuel - then fundamental thermodynamic losses must be understood on a system bases. Such understanding cuts across vendor curves, plant design, fuels, etc. Thermal losses in a nuclear unit are comparable at a prime facia level to losses at any other thermal system. They are what we must minimize in the production of electricity, no manner the method of that production. The Second Law offers the only foundation for the study of such losses, and thus affords the bases for a true and ultimate indicator of system performance. From such a foundation, a parameter is needed to tell us specifically what components are thermodynamically responsible for fuel consumption given either their direct creation of electricity or their contribution to thermodynamic losses. The Fuel Consumption Index, discussed in this article, is this parameter. It can be used for thermodynamic system design, monitoring, diagnosing problems, and economic dispatching. It tells us why fuel is being consumed; consumed by a nuclear plant, trash burner, a 40 year-old fossil plant, etc

  15. A Denoising Based Autoassociative Model for Robust Sensor Monitoring in Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Ahmad Shaheryar

    2016-01-01

    Full Text Available Sensors health monitoring is essentially important for reliable functioning of safety-critical chemical and nuclear power plants. Autoassociative neural network (AANN based empirical sensor models have widely been reported for sensor calibration monitoring. However, such ill-posed data driven models may result in poor generalization and robustness. To address above-mentioned issues, several regularization heuristics such as training with jitter, weight decay, and cross-validation are suggested in literature. Apart from these regularization heuristics, traditional error gradient based supervised learning algorithms for multilayered AANN models are highly susceptible of being trapped in local optimum. In order to address poor regularization and robust learning issues, here, we propose a denoised autoassociative sensor model (DAASM based on deep learning framework. Proposed DAASM model comprises multiple hidden layers which are pretrained greedily in an unsupervised fashion under denoising autoencoder architecture. In order to improve robustness, dropout heuristic and domain specific data corruption processes are exercised during unsupervised pretraining phase. The proposed sensor model is trained and tested on sensor data from a PWR type nuclear power plant. Accuracy, autosensitivity, spillover, and sequential probability ratio test (SPRT based fault detectability metrics are used for performance assessment and comparison with extensively reported five-layer AANN model by Kramer.

  16. Wearable Sensors for Remote Health Monitoring.

    Science.gov (United States)

    Majumder, Sumit; Mondal, Tapas; Deen, M Jamal

    2017-01-12

    Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  17. Wearable Sensors for Remote Health Monitoring

    Directory of Open Access Journals (Sweden)

    Sumit Majumder

    2017-01-01

    Full Text Available Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  18. Remote and Centralized Monitoring of PV Power Plants

    DEFF Research Database (Denmark)

    Kopacz, Csaba; Spataru, Sergiu; Sera, Dezso

    2014-01-01

    the inverters within each PV plant. The monitoring software stores the PV measurements in a data warehouse optimized for managing and data mining large amounts of data, from where it can be later visualized, analyzed and exported. By combining PV production measurements data with I-V curve measurements...

  19. Waste to energy plant-air pollution monitoring and reporting

    International Nuclear Information System (INIS)

    Mullowney, R.L.

    1988-01-01

    We can't eat it. We can't wear it. We are running out of places to bury it. We can't export it. We can't stop making it. Garbage seems to be, by volume at least, our biggest national product. These facts are driving more and more industries and municipalities to construct waste to energy plants. Following the adage that when you get lemons, make lemonade, municipalities have been burning their garbage to produce steam and electricity. Communities, fearful that what they have produced may be toxic to them when burned, have enacted stringent air pollution control and monitoring regulations. The federal government has enacted regulations under the Clean Air Act 43 CFR Part 60 which regulate the emission limits monitoring and reporting requirements of waste energy plants. The most important of these regulations was enacted on December 16, 1987 and June 26, 1987, regulating particulate, SO 2 and NO x emissions. This paper reports that these regulations also tie in to various other EPA regulations and requirements. The most important of these to air pollution monitoring is Appendix F, Quality Assurance. However, these regulations are only minimum requirements -- individual states further strengthen their bite by requiring lower emissions limits and the monitoring of additional parameters such as H 2 S, HCl, NH 2 , CO, CO 2 and moisture. These monitoring limits and reporting requirements are currently being negotiated on a case by case basis in most instances

  20. Innovations in plant health services in Nicaragua

    DEFF Research Database (Denmark)

    Danielsen, Solveig; Centeno, Julio; López, Julio

    2013-01-01

    to the creation of a ‘National Plant Health System’ offering regular advice to farmers. The innovations were driven by a momentum for change, committed individuals, joint learning and flexibility in programme management. External facilitation encouraged experimentation and bolstered growth of new alliances....... The development of the national plant health system was constrained by existing work cultures that limit the scope of individual and institutional innovations.......Establishing a few community-based plant clinics in Nicaragua led to a series of innovations in plant health service delivery. A grassroots experiment became a nationwide initiative involving local service providers, universities, research institutions and diagnostic laboratories. This led...

  1. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Yackly

    2005-12-01

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas

  2. Acoustic Techniques for Structural Health Monitoring

    Science.gov (United States)

    Frankenstein, B.; Augustin, J.; Hentschel, D.; Schubert, F.; Köhler, B.; Meyendorf, N.

    2008-02-01

    Future safety and maintenance strategies for industrial components and vehicles are based on combinations of monitoring systems that are permanently attached to or embedded in the structure, and periodic inspections. The latter belongs to conventional nondestructive evaluation (NDE) and can be enhanced or partially replaced by structural health monitoring systems. However, the main benefit of this technology for the future will consist of systems that can be differently designed based on improved safety philosophies, including continuous monitoring. This approach will increase the efficiency of inspection procedures at reduced inspection times. The Fraunhofer IZFP Dresden Branch has developed network nodes, miniaturized transmitter and receiver systems for active and passive acoustical techniques and sensor systems that can be attached to or embedded into components or structures. These systems have been used to demonstrate intelligent sensor networks for the monitoring of aerospace structures, railway systems, wind energy generators, piping system and other components. Material discontinuities and flaws have been detected and monitored during full scale fatigue testing. This paper will discuss opportunities and future trends in nondestructive evaluation and health monitoring based on new sensor principles and advanced microelectronics. It will outline various application examples of monitoring systems based on acoustic techniques and will indicate further needs for research and development.

  3. [Use of routine data from statutory health insurances for federal health monitoring purposes].

    Science.gov (United States)

    Ohlmeier, C; Frick, J; Prütz, F; Lampert, T; Ziese, T; Mikolajczyk, R; Garbe, E

    2014-04-01

    Federal health monitoring deals with the state of health and the health-related behavior of populations and is used to inform politics. To date, the routine data from statutory health insurances (SHI) have rarely been used for federal health monitoring purposes. SHI routine data enable analyses of disease frequency, risk factors, the course of the disease, the utilization of medical services, and mortality rates. The advantages offered by SHI routine data regarding federal health monitoring are the intersectoral perspective and the nearly complete absence of recall and selection bias in the respective population. Further, the large sample sizes and the continuous collection of the data allow reliable descriptions of the state of health of the insurants, even in cases of multiple stratification. These advantages have to be weighed against disadvantages linked to the claims nature of the data and the high administrative hurdles when requesting the use of SHI routine data. Particularly in view of the improved availability of data from all SHI insurants for research institutions in the context of the "health-care structure law", SHI routine data are an interesting data source for federal health monitoring purposes.

  4. Wearable sensors for human health monitoring

    Science.gov (United States)

    Asada, H. Harry; Reisner, Andrew

    2006-03-01

    Wearable sensors for continuous monitoring of vital signs for extended periods of weeks or months are expected to revolutionize healthcare services in the home and workplace as well as in hospitals and nursing homes. This invited paper describes recent research progress in wearable health monitoring technology and its clinical applications, with emphasis on blood pressure and circulatory monitoring. First, a finger ring-type wearable blood pressure sensor based on photo plethysmogram is presented. Technical issues, including motion artifact reduction, power saving, and wearability enhancement, will be addressed. Second, sensor fusion and sensor networking for integrating multiple sensors with diverse modalities will be discussed for comprehensive monitoring and diagnosis of health status. Unlike traditional snap-shot measurements, continuous monitoring with wearable sensors opens up the possibility to treat the physiological system as a dynamical process. This allows us to apply powerful system dynamics and control methodologies, such as adaptive filtering, single- and multi-channel system identification, active noise cancellation, and adaptive control, to the monitoring and treatment of highly complex physiological systems. A few clinical trials illustrate the potentials of the wearable sensor technology for future heath care services.

  5. Using modular neural networks to monitor accident conditions in nuclear power plants

    International Nuclear Information System (INIS)

    Guo, Z.

    1992-01-01

    Nuclear power plants are very complex systems. The diagnoses of transients or accident conditions is very difficult because a large amount of information, which is often noisy, or intermittent, or even incomplete, need to be processed in real time. To demonstrate their potential application to nuclear power plants, neural networks axe used to monitor the accident scenarios simulated by the training simulator of TVA's Watts Bar Nuclear Power Plant. A self-organization network is used to compress original data to reduce the total number of training patterns. Different accident scenarios are closely related to different key parameters which distinguish one accident scenario from another. Therefore, the accident scenarios can be monitored by a set of small size neural networks, called modular networks, each one of which monitors only one assigned accident scenario, to obtain fast training and recall. Sensitivity analysis is applied to select proper input variables for modular networks

  6. Design of smart neonatal health monitoring system using SMCC.

    Science.gov (United States)

    De, Debashis; Mukherjee, Anwesha; Sau, Arkaprabha; Bhakta, Ishita

    2017-02-01

    Automated health monitoring and alert system development is a demanding research area today. Most of the currently available monitoring and controlling medical devices are wired which limits freeness of working environment. Wireless sensor network (WSN) is a better alternative in such an environment. Neonatal intensive care unit is used to take care of sick and premature neonates. Hypothermia is an independent risk factor for neonatal mortality and morbidity. To prevent it an automated monitoring system is required. In this Letter, an automated neonatal health monitoring system is designed using sensor mobile cloud computing (SMCC). SMCC is based on WSN and MCC. In the authors' system temperature sensor, acceleration sensor and heart rate measurement sensor are used to monitor body temperature, acceleration due to body movement and heart rate of neonates. The sensor data are stored inside the cloud. The health person continuously monitors and accesses these data through the mobile device using an Android Application for neonatal monitoring. When an abnormal situation arises, an alert is generated in the mobile device of the health person. By alerting health professional using such an automated system, early care is provided to the affected babies and the probability of recovery is increased.

  7. Substantiation of the radiation monitoring scope in the region of nuclear power plant location

    Energy Technology Data Exchange (ETDEWEB)

    Zykova, A S; Zhakov, Yu A; Yambrovskii, Ya M

    1977-12-01

    To provide radiation safety of the population in the region of nuclear power plant location, it is necessary to define the character and quantity of radiation monitoring. On the basis of radiation monitoring of effluents from operating nuclear power plants it is found that the effluents can be registered at a distance of 5-7 km from the plant. The quantity of sample analysis of the main enviromental objectives must provide an exact definition of the content of radioactive substances produced by radioactive fallouts and effluents from nuclear power plants.

  8. Substantiation of the radiation monitoring scope in the region of nuclear power plant location

    International Nuclear Information System (INIS)

    Zykova, A.S.; Zhakov, Yu.A.; Jambrovskij, Ya.M.

    1977-01-01

    To provide radiation safety of the population in the region of nuclear power plant location, it is necessary to define the character and quantity of radiation monitoring. On the basis of radiation monitoring of flowouts from operating nuclear power plants it is found that the flowouts can be registered at a distance of 5-7 km from the plant. The quantity of sample analysis of the main enviromental objectives must provide an exact definition of the content of radioactive substances produced by radioactive fallouts and flowouts from nuclear power plants

  9. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2014-04-30

    This report describes research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  10. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Braatz, Brett G.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2013-09-01

    This report describes the status of ongoing research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  11. New technologies in nuclear power plant monitoring and diagnosis

    International Nuclear Information System (INIS)

    Turkcan, E.; Verhoef, J.P.; Ciftcioglu, O.

    1996-01-01

    Several representative new technologies being introduce for monitoring and diagnosis in nuclear power plants (NPP) are presented in this paper. In Sec. 2, the Kalman filtering is briefly described and it relevance to conventional time series analysis methods are emphasized. In this respect, its NPP monitoring and fault diagnosis implementations are given and the important features are pointed out. In Sec. 3, the NN technology is briefly described and the scope is focused on the NPP monitoring and fault diagnosis implementations. In Sec. 4, the wavelet technology is briefly described and the utilization of this technology in Nuclear Technology is exemplified. In this respect, also the prospective role of this technology for real-time monitoring and fault diagnosis is revealed. (author). 33 refs, 6 figs

  12. New technologies in nuclear power plant monitoring and diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Turkcan, E; Verhoef, J P [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Ciftcioglu, O [Istanbul Technical Univ., Istanbul (Turkey). Nuclear Power Dept.

    1997-12-31

    Several representative new technologies being introduce for monitoring and diagnosis in nuclear power plants (NPP) are presented in this paper. In Sec. 2, the Kalman filtering is briefly described and it relevance to conventional time series analysis methods are emphasized. In this respect, its NPP monitoring and fault diagnosis implementations are given and the important features are pointed out. In Sec. 3, the NN technology is briefly described and the scope is focused on the NPP monitoring and fault diagnosis implementations. In Sec. 4, the wavelet technology is briefly described and the utilization of this technology in Nuclear Technology is exemplified. In this respect, also the prospective role of this technology for real-time monitoring and fault diagnosis is revealed. (author). 33 refs, 6 figs.

  13. Annual report on the environmental radiation monitoring around Tokai Reprocessing Plant. FY 2001. Document on present state of affairs

    International Nuclear Information System (INIS)

    Shinohara, Kunihiko; Takeishi, Minoru; Miyagawa, Naoto

    2002-06-01

    Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed since 1975, based on ''Safety Regulations for the Tokai Reprocessing Plant, Chapter IV - Environmental Monitoring''. This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant during April 2001 to March 2002. Appendices present comprehensive information, such as monitoring program, monitoring results, meteorological data and annual discharges from the plant. (author)

  14. Environmental monitoring at the Savannah River Plant. Annual report, 1974

    International Nuclear Information System (INIS)

    Ashley, C.; Zeigler, C.C.

    1975-08-01

    Results obtained from the environmental radioactivity monitoring program at the Savannah River Plant (SRP) during 1974 are summarized. A brief discussion of plant releases to the environment and radioactivity detected in the environment is presented in the following text, figures, and tables. The appendices contain tables of results from environmental samples analyses, sensitivities of laboratory analyses, and maps of sampling locations. (auth)

  15. Waste Isolation Pilot Plant Environmental Monitoring Plan

    International Nuclear Information System (INIS)

    2004-01-01

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problem; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) has been written to contain the rationale and design criteria for the monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document any proposed changes in the environmental monitoring program. Guidance for preparation of Environmental Monitoring Plans is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance. The plan will be effective when it is approved by the appropriate Head of Field Organization or their designee. The plan discusses major environmental monitoring and hydrology activities at the WIPP and describes the programs established to ensure that WIPP operations do not

  16. Flexible Sensing Electronics for Wearable/Attachable Health Monitoring.

    Science.gov (United States)

    Wang, Xuewen; Liu, Zheng; Zhang, Ting

    2017-07-01

    Wearable or attachable health monitoring smart systems are considered to be the next generation of personal portable devices for remote medicine practices. Smart flexible sensing electronics are components crucial in endowing health monitoring systems with the capability of real-time tracking of physiological signals. These signals are closely associated with body conditions, such as heart rate, wrist pulse, body temperature, blood/intraocular pressure and blood/sweat bio-information. Monitoring such physiological signals provides a convenient and non-invasive way for disease diagnoses and health assessments. This Review summarizes the recent progress of flexible sensing electronics for their use in wearable/attachable health monitoring systems. Meanwhile, we present an overview of different materials and configurations for flexible sensors, including piezo-resistive, piezo-electrical, capacitive, and field effect transistor based devices, and analyze the working principles in monitoring physiological signals. In addition, the future perspectives of wearable healthcare systems and the technical demands on their commercialization are briefly discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Context aware sensing for health monitoring

    NARCIS (Netherlands)

    Landete, F.; Chen, W.; Bouwstra, S.; Feijs, L.M.G.; Bambang Oetomo, S.

    2012-01-01

    Health Monitoring systems with textile sensors offer more comfort compared to gel electrodes, however they tend to suffer from poor skin contact and motion artifacts. In order to improve the monitoring reliability, we propose to apply multiple sensors and context aware sensing. A context aware

  18. Activity monitoring systems in health care

    NARCIS (Netherlands)

    Kröse, B.; van Oosterhout, T.; van Kasteren, T.; Salah, A.A.; Gevers, T.

    2011-01-01

    This chapter focuses on activity monitoring in a home setting for health care purposes. First the most current sensing systems are described, which consist of wearable and ambient sensors. Then several approaches for the monitoring of simple actions are discussed, like falls or therapies. After

  19. Acceptance by laypersons and medical professionals of the personalized eHealth platform, eHealthMonitor.

    Science.gov (United States)

    Griebel, Lena; Kolominsky-Rabas, Peter; Schaller, Sandra; Siudyka, Jakub; Sierpinski, Radoslaw; Papapavlou, Dimitrios; Simeonidou, Aliki; Prokosch, Hans-Ulrich; Sedlmayr, Martin

    2017-09-01

    Often, eHealth services are not accepted because of factors such as eHealth literacy or trust. Within this study, eHealthMonitor was evaluated in three European countries (Germany, Greece, and Poland) by medical professionals and laypersons with respect to numerous acceptance factors. Questionnaires were created on the basis of factors from literature and with the help of scales which have already been validated. A qualitative survey was conducted in Germany, Poland, and Greece. The eHealth literacy of all participants was medium/high. Laypersons mostly agreed that they could easily become skillful with eHealthMonitor and that other people thought that they should use eHealthMonitor. Amongst medical professionals, a large number were afraid that eHealthMonitor could violate their privacy or the privacy of their patients. Overall, the participants thought that eHealthMonitor was a good concept and that they would use it. The main hindrances to the use of eHealthMonitor were found in trust issues including data privacy. In the future, more research on the linkage of all measured factors is needed, for example, to address the question of whether highly educated people tend to mistrust eHealth information more than people with lower levels of education.

  20. Wearable sensors for health monitoring

    Science.gov (United States)

    Suciu, George; Butca, Cristina; Ochian, Adelina; Halunga, Simona

    2015-02-01

    In this paper we describe several wearable sensors, designed for monitoring the health condition of the patients, based on an experimental model. Wearable sensors enable long-term continuous physiological monitoring, which is important for the treatment and management of many chronic illnesses, neurological disorders, and mental health issues. The system is based on a wearable sensors network, which is connected to a computer or smartphone. The wearable sensor network integrates several wearable sensors that can measure different parameters such as body temperature, heart rate and carbon monoxide quantity from the air. After the portable sensors measuring parameter values, they are transmitted by microprocessor through the Bluetooth to the application developed on computer or smartphone, to be interpreted.

  1. Monitoring well installation plan for the Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The installation and development of groundwater monitoring wells is a primary element of the Y-12 Plant Groundwater Protection Program (GWPP), which monitors groundwater quality and hydrologic conditions at the Oak Ridge Y-12 Plant. This document is a groundwater monitoring well installation and development plan for the US Department of Energy (DOE) Y-12 Plant located in Oak Ridge, Tennessee. This plan formalizes well installation and construction methods, well development methods, and core drilling methods that are currently implemented at the Y-12 Plant under the auspices of the GWPP. Every three years, this plan will undergo a review, during which revisions necessitated by changes in regulatory requirements or GWPP objectives may be made

  2. Pinellas Plant feasibility study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Pinellas Plant was built in 1956 to manufacture neutron generators, a principal component in nuclear weapons. In September 1990, the Department of Health and Rehabilitative Services (HRS) entered into an agreement with DOE to independently examine environmental monitoring data from the plant and health data from Pinellas County to determine if an epidemiological study is technically feasible to measure possible off-site health effects from ionizing radiation. Through normal plant operations, some radioactive materials have been released to the environment. Eighty percent of the total plant releases of 107,707 curies occurred in the early years of plant operation (1957--1960). The primary materials released were tritium gas, tritium oxide and krypton-85. Environmental monitoring for radioactive releases from the plant has been done regularly since 1975. The US Public Health Service Centers for Disease Control and Prevention (CDC), in assisting HRS, has determined that sufficient radiological data exist by which a dose reconstruction can be done. A dose reconstruction can provide an estimate of how much radiological exposure someone living in the vicinity of the Pinellas Plant may have suffered from environmental releases.

  3. Pinellas Plant feasibility study. Final report

    International Nuclear Information System (INIS)

    1994-09-01

    The Pinellas Plant was built in 1956 to manufacture neutron generators, a principal component in nuclear weapons. In September 1990, the Department of Health and Rehabilitative Services (HRS) entered into an agreement with DOE to independently examine environmental monitoring data from the plant and health data from Pinellas County to determine if an epidemiological study is technically feasible to measure possible off-site health effects from ionizing radiation. Through normal plant operations, some radioactive materials have been released to the environment. Eighty percent of the total plant releases of 107,707 curies occurred in the early years of plant operation (1957--1960). The primary materials released were tritium gas, tritium oxide and krypton-85. Environmental monitoring for radioactive releases from the plant has been done regularly since 1975. The US Public Health Service Centers for Disease Control and Prevention (CDC), in assisting HRS, has determined that sufficient radiological data exist by which a dose reconstruction can be done. A dose reconstruction can provide an estimate of how much radiological exposure someone living in the vicinity of the Pinellas Plant may have suffered from environmental releases

  4. High-temperature gas-cooled reactor steam-cycle/cogeneration lead plant. Plant Protection and Instrumentation System design description

    International Nuclear Information System (INIS)

    1983-01-01

    The Plant Protection and Instrumentation System provides plant safety system sense and command features, actuation of plant safety system execute features, preventive features which maintain safety system integrity, and safety-related instrumentation which monitors the plant and its safety systems. The primary function of the Plant Protection and Instrumentation system is to sense plant process variables to detect abnormal plant conditions and to provide input to actuation devices directly controlling equipment required to mitigate the consequences of design basis events to protect the public health and safety. The secondary functions of the Plant Protection and Instrumentation System are to provide plant preventive features, sybsystems that monitor plant safety systems status, subsystems that monitor the plant under normal operating and accident conditions, safety-related controls which allow control of reactor shutdown and cooling from a remote shutdown area

  5. Caladium plant poisoning

    Science.gov (United States)

    ... enough to prevent normal speaking and swallowing. Home Care If the plant was eaten, wipe out the mouth with a ... to Expect at the Emergency Room Take the plant with you to the hospital, if possible. The health care provider will measure and monitor the person's vital ...

  6. Rhizosphere pseudomonads as probiotics improving plant health.

    Science.gov (United States)

    Kim, Young Cheol; Anderson, Anne J

    2018-04-20

    Many root-colonizing microbes are multifaceted in traits that improve plant health. Although isolates designated as biological control agents directly reduce pathogen growth, many exert additional beneficial features that parallel changes induced in animal and other hosts by health-promoting microbes termed probiotics. Both animal and plant probiotics cause direct antagonism of pathogens and induce systemic immunity in the host to pathogens and other stresses. They also alter host development, and improve host nutrition. The probiotic root-colonizing pseudomonads are generalists in terms of plant hosts, soil habitats and the array of stress responses that are ameliorated in the plant. This review illustrates how the probiotic pseudomonads, nurtured by the C and N sources released by the plant in root exudates, form protective biofilms on the root surface and produce the metabolites or enzymes to boost plant health. The findings reveal the multifunctional nature of many of the microbial metabolites in the plant-probiotic interplay. The beneficial effects of probiotics on plant function can contribute to sustainable yield and quality in agricultural production. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  7. Patient monitoring in mobile health: opportunities and challenges.

    Science.gov (United States)

    Mohammadzadeh, Niloofar; Safdari, Reza

    2014-01-01

    In most countries chronic diseases lead to high health care costs and reduced productivity of people in society. The best way to reduce costs of health sector and increase the empowerment of people is prevention of chronic diseases and appropriate health activities management through monitoring of patients. To enjoy the full benefits of E-health, making use of methods and modern technologies is very important. This literature review articles were searched with keywords like Patient monitoring, Mobile Health, and Chronic Disease in Science Direct, Google Scholar and Pub Med databases without regard to the year of publications. Applying remote medical diagnosis and monitoring system based on mobile health systems can help significantly to reduce health care costs, correct performance management particularly in chronic disease management. Also some challenges are in patient monitoring in general and specific aspects like threats to confidentiality and privacy, technology acceptance in general and lack of system interoperability with electronic health records and other IT tools, decrease in face to face communication between doctor and patient, sudden interruptions of telecommunication networks, and device and sensor type in specific aspect. It is obvious identifying the opportunities and challenges of mobile technology and reducing barriers, strengthening the positive points will have a significant role in the appropriate planning and promoting the achievements of the health care systems based on mobile and helps to design a roadmap for improvement of mobile health.

  8. Use of medicinal plants by health professionals in Mexico.

    Science.gov (United States)

    Alonso-Castro, Angel Josabad; Domínguez, Fabiola; Maldonado-Miranda, Juan José; Castillo-Pérez, Luis Jesús; Carranza-Álvarez, Candy; Solano, Eloy; Isiordia-Espinoza, Mario Alberto; Del Carmen Juárez-Vázquez, María; Zapata-Morales, Juan Ramón; Argueta-Fuertes, Marco Antonio; Ruiz-Padilla, Alan Joel; Solorio-Alvarado, César Rogelio; Rangel-Velázquez, Joceline Estefanía; Ortiz-Andrade, Rolffy; González-Sánchez, Ignacio; Cruz-Jiménez, Gustavo; Orozco-Castellanos, Luis Manuel

    2017-02-23

    The use of medicinal plants in Mexico has been documented since pre-Hispanic times. Nevertheless, the level of use of medicinal plants by health professionals in Mexico remains to be explored. To evaluate the use, acceptance and prescription of medicinal plants by health professionals in 9 of the states of Mexico. Direct and indirect interviews, regarding the use and acceptance of medicinal plants, with health professionals (n=1614), including nurses, physicians, pharmacists, and odontologists from nine states in Mexico were performed from January 2015 to July 2016. The interviews were analyzed with the factor the informant consensus (FIC). The information obtained indicated that 46% of those interviewed feel patients should not use medicinal plants as an alternative therapy. Moreover, 54% of health professionals, and 49% of the physicians have used medicinal plants as an alternative therapy for several diseases. Twenty eight percent of health professionals, and 26% of the physicians, have recommended or prescribed medicinal plants to their patients, whereas 73% of health professionals were in agreement with receiving academic information regarding the use and prescription of medicinal plants. A total of 77 plant species used for medicinal purposes, belonging to 40 botanical families were reported by the interviewed. The results of the FIC showed that the categories of diseases of the digestive system (FIC=0.901) and diseases of the respiratory system (FIC=0.898) had the greatest agreement. This study shows that medicinal plants are used for primary health care in Mexico by health professionals. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  9. Operational margin monitoring system for boiling water reactor power plants

    International Nuclear Information System (INIS)

    Fukutomi, S.; Takigawa, Y.

    1992-01-01

    This paper reports on an on-line operational margin monitoring system which has been developed for boiling water reactor power plants to improve safety, reliability, and quality of reactor operation. The system consists of a steady-state core status prediction module, a transient analysis module, a stability analysis module, and an evaluation and guidance module. This system quantitatively evaluates the thermal margin during abnormal transients as well as the stability margin, which cannot be evaluated by direct monitoring of the plant parameters, either for the current operational state or for a predicted operating state that may be brought about by the intended operation. This system also gives operator guidance as to appropriate or alternate operations when the operating state has or will become marginless

  10. Monitoring shifts in plant diversity in response to climate change: A method for landscapes

    Science.gov (United States)

    Stohlgren, T.J.; Owen, A.J.; Lee, M.

    2000-01-01

    Improved sampling designs are needed to detect, monitor, and predict plant migrations and plant diversity changes caused by climate change and other human activities. We propose a methodology based on multi-scale vegetation plots established across forest ecotones which provide baseline data on patterns of plant diversity, invasions of exotic plant species, and plant migrations at landscape scales in Rocky Mountain National Park, Colorado, USA. We established forty two 1000-m2 plots in relatively homogeneous forest types and the ecotones between them on 14 vegetation transects. We found that 64% of the variance in understory species distributions at landscape scales were described generally by gradients of elevation and under-canopy solar radiation. Superimposed on broad-scale climatic gradients are small-scale gradients characterized by patches of light, pockets of fertile soil, and zones of high soil moisture. Eighteen of the 42 plots contained at least one exotic species; monitoring exotic plant invasions provides a means to assess changes in native plant diversity and plant migrations. Plant species showed weak affinities to overstory vegetation types, with 43% of the plant species found in three or more vegetation types. Replicate transects along several environmental gradients may provide the means to monitor plant diversity and species migrations at landscape scales because: (1) ecotones may play crucial roles in expanding the geophysiological ranges of many plant species; (2) low affinities of understory species to overstory forest types may predispose vegetation types to be resilient to rapid environmental change; and (3) ecotones may help buffer plant species from extirpation and extinction.

  11. Radiation environmental monitoring and assessment of plant-221 site ten years after decommissioning

    International Nuclear Information System (INIS)

    Li Yang; Gu Zhijie; Pan Wei; Ren Xiaona; Hu Xiaolin; She Haiqiang

    2011-01-01

    More than 10 years have passed since nuclear facility decommissioning practice for Plant-221 finished. Environmental radiation monitoring and post assessment of the decommissioning site of Plant-221 was carried out during 2003-2006, which was organized by Department of Environmental Protection and executed by China Institute for Radiation Protection, Environmental Radiation Monitoring station of Qinghai Province, etc. It shows that the decommissioning practice for Plant-221 complied with relevant limits for decommissioning, and its environmental radiation situation has not had significant change in general after 10 years, and the potential impact to the public and the environmental is acceptable. (authors)

  12. Introduction to:Forest health monitoring program

    Science.gov (United States)

    Mark J. Ambrose

    2009-01-01

    This annual technical report is a product of the Forest Health Monitoring (FHM) Program. The report provides information about a variety of issues relating to forest health at a national scale. FHM national reports have the dual focus of presenting analyses of the latest available data and showcasing innovative techniques for analyzing forest health data. The report is...

  13. Thin layer activation : on-line monitoring of metal loss in process plant

    International Nuclear Information System (INIS)

    Boulton, L.H.; Wallace, G.

    1993-01-01

    Corrosion, erosion and wear of metals is a common cause of failure in some process plant and equipment. Monitoring of these destructive effects has been done for many years to help plant engineers minimise the damage, in order to avoid unexpected failures and unscheduled shutdowns. Traditional methods of monitoring, such as standard NDT techniques, inform the engineer of what has happened, providing data such as culmulative loss of wall thickness. The modern approach to monitoring however, is to employ a technique which gives both current loss rates as well as integrated losses. Thin Layer Activation (TLA) provides on-line monitoring of corrosion, erosion and wear of metals, to a high degree of accuracy. It also gives cumulative information which can be backed up with weight-loss results if required. Thus current rather than historical loss rates are measured before any significant loss of metal has occurred. (author). 14 refs., 2 figs

  14. Monitoring and operational support on nuclear power plants using an artificial intelligence system

    International Nuclear Information System (INIS)

    Bianchi, P.H.; Baptista Filho, B.D.

    2009-01-01

    The monitoring task in nuclear power plants is of crucial importance with respect to safety and efficient operation. The operators have a wide range of variables to observe and analyze; the quantity of variables and their behavior determine the time they have to take correct decisions. The complexity of such aspects in a nuclear power plant influences both, the plant operational efficiency and the general safety issues. This paper describes an experimental system developed by the authors which aims to assist the operators of nuclear power plants to take quick and safe decisions. The system maps the status of plant and helps the operators to make quick judgments by using artificial intelligence methods. The method makes use of a small set of monitored variables and presents a map of the plant status in a friendly manner. This system uses an architecture that has multiple self-organizing maps to perform these tasks. (author)

  15. Monitoring and operational support on nuclear power plants using an artificial intelligence system

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Paulo H.; Baptista Filho, Benedito D., E-mail: phbianchi@gmail.co, E-mail: bdbfilho@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    The monitoring task in nuclear power plants is of crucial importance with respect to safety and efficient operation. The operators have a wide range of variables to observe and analyze; the quantity of variables and their behavior determine the time they have to take correct decisions. The complexity of such aspects in a nuclear power plant influences both, the plant operational efficiency and the general safety issues. This paper describes an experimental system developed by the authors which aims to assist the operators of nuclear power plants to take quick and safe decisions. The system maps the status of plant and helps the operators to make quick judgments by using artificial intelligence methods. The method makes use of a small set of monitored variables and presents a map of the plant status in a friendly manner. This system uses an architecture that has multiple self-organizing maps to perform these tasks. (author)

  16. Implementation strategies and tools for condition based monitoring at nuclear power plants

    International Nuclear Information System (INIS)

    2007-05-01

    There is now an acute need to optimize maintenance to improve both reliability and competitiveness of nuclear power plant operation. There is an increasing tendency to move from the preventive (time based) maintenance concept to one dependent on plant and component conditions. In this context, various on-line and off-line condition monitoring and diagnostics, nondestructive inspection techniques and surveillance are used. Component selection for condition based maintenance, parameter selection for monitoring condition, evaluation of condition monitoring results are issues influencing the effectiveness of condition based maintenance. All these selections of components and parameters to be monitored, monitoring and diagnostics techniques to be used, acceptance criteria and trending for condition evaluation, and the economic aspect of predictive maintenance and condition monitoring should be incorporated into an integrated, effective condition based maintenance programme, which is part of the plant's overall maintenance optimization programme. This publication collects and analyses proven condition based maintenance strategies and techniques (engineering and organizational) in Member States. It includes selected papers on maintenance optimization presented during its preparation. This report was prepared under IAEA project on integrated NPP life cycle management including decommissioning. The main objective of an integrated life cycle management programme is to enable NPP's to compete, without compromising safety, successfully in the changing energy markets throughout their service life and to facilitate life extension and eventual decommissioning through improved engineering, technological, economic and managerial actions. The technical working group on NPP life management and other advisory groups nominated by the Member States provide recommendations on high priority needs of Member States in this area

  17. Configuration management and load monitoring procedures for nuclear plant structures

    International Nuclear Information System (INIS)

    Chu, S.L.; Skaczylo, A.T.

    1990-01-01

    This paper describes a computer-aided engineering tool called the Load Monitoring System (LMS) that was proven effective for monitoring floor framing, loads, and structural integrity. The system links structural analysis, design investigation, and reporting and automated drafting programs with a Data Base Management System (DBMS). It provides design engineers with a powerful tool for quickly incorporating, tracking, and assessing load revisions and determining effects on steel floor framing members and connections, thereby helping to reduce design man-hours, minimize the impact of structural modifications, and maintain and document the design baseline. The major benefit to utilities are the reduction in engineering costs, assistance with plant configuration management, and assurance of structural safety throughout the operating life of a nuclear plant and at evaluation for license renewal. (orig./HP)

  18. Simulation Based Data Reconciliation for Monitoring Power Plant Efficiency

    International Nuclear Information System (INIS)

    Park, Sang Jun; Heo, Gyun Young

    2010-01-01

    Power plant efficiency is analyzed by using measured values, mass/energy balance principles, and several correlations. Since the measured values can have uncertainty depending on the accuracy of instrumentation, the results of plant efficiency should definitely have uncertainty. The certainty may occur due to either the randomness or the malfunctions of a process. In order to improve the accuracy of efficiency analysis, the data reconciliation (DR) is expected as a good candidate because the mathematical algorithm of the DR is based on the first principles such as mass and energy balance considering the uncertainty of instrumentation. It should be noted that the mass and energy balance model for analyzing power plant efficiency is equivalent to a steady-state simulation of a plant system. Therefore the DR for efficiency analysis necessitates the simulation which can deal with the uncertainty of instrumentation. This study will propose the algorithm of the simulation based DR which is applicable to power plant efficiency monitoring

  19. Perry Nuclear Power Plant Area/Equipment Temperature Monitoring Program

    International Nuclear Information System (INIS)

    McGuire, L.L.

    1991-01-01

    The Perry Nuclear Power Plant Area/Equipment Temperature Monitoring Program serves two purposes. The first is to track temperature trends during normal plant operation in areas where suspected deviations from established environmental profiles exist. This includes the use of Resistance Temperature Detectors, Recorders, and Temperature Dots for evaluation of equipment qualified life for comparison with tested parameters and the established Environmental Design Profile. It also may be used to determine the location and duration of steam leaks for effect on equipment qualified life. The second purpose of this program is to aid HVAC design engineers in determining the source of heat outside anticipated design parameters. Resistance Temperature Detectors, Recorders, and Temperature Dots are also used for this application but the results may include design changes to eliminate the excess heat or provide qualified equipment (cable) to withstand the elevated temperature, splitting of environmental zones to capture accurate temperature parameters, or continued environmental monitoring for evaluation of equipment located in hot spots

  20. Radiation Monitoring - A Key Element in a Nuclear Power Program

    International Nuclear Information System (INIS)

    Hussein, A.S.; El-dally, T.A.

    2008-01-01

    For a nuclear power plant, radiation is especially of great concern to the public and the environment. Therefore, a radiation monitoring program is becoming a critical importance. This program covers all phases of the nuclear plant including preoperational, normal operation, accident and decommissioning. The fundamental objective of radiation monitoring program is to ensure that the health and safety of public inside and around the plant and to confirm the radiation doses are below the dose limits for workers and the public. This paper summarizes the environmental radiation monitoring program for a nuclear power plant

  1. Monitoring and diagnostic system of fission product transport and release in nuclear power plants

    International Nuclear Information System (INIS)

    Kodaira, H.; Kondo, S.; Togo, Y.

    1983-01-01

    A monitoring and diagnostic system (MADS) of fission product (FP) transport and release in nuclear power plants (NPPs) is proposed and the conceptual design for MADS is studied. A MADS can be described in the most general way as a computer-based information processing system which takes in plant data, processes it and displays the results to the NPP's operating crew. A major concern for MADS is, however, not to evaluate general plant dynamics, but to monitor the distribution of whole radioactive materials such as FP, and to diagnose the plant state in the view of FP transport during the NPP's lifetime. Several functions demanded of MADS are: (a) during normal operation, to certify the fuel integrity and the effectiveness of the purification systems, (b) in an unusual event, to identify the event and to monitor the amount of FP release with accuracy, and (c) in case of a rare occurrence, to estimate the maximum potential release

  2. Utilizing Ecological Health Index to Monitor Grazingland Ecological Health: A Quick and Flexible Method for Ranchers and Farmers

    Science.gov (United States)

    Xu, S.; Borrelli, P. R.; Raven, M. R.; Rowntree, J. E.

    2017-12-01

    Grazing lands should be monitored to ensure their long-term productivity and sustainability. While monitoring protocols do exist, there is a need to simplify procedures for land managers while maintaining efficacy in order to increase usage. The objective in this study was to investigate the effectiveness of an Ecological Health Index (EHI) on indicating ecological health in grazing lands. We introduced the EHI, which was derived by synthesizing vegetation and soil cover indicators already existing in the literature to ranchers in Patagonia. Additionally, we implemented long-term transects at 44 farms from two ecological regions in Patagonia, the non-brittle Humid Magellan Steppe (HMS) (n=24) and the brittle Subandean Grasslands (SG) (n=20), to collect quantitative vegetative and soil measurements and correlated this back to EHI. In the non-brittle area HMS with even distribution of rainfall and good temperature which can support more plant biomass, the EHI ranged from -40 to 65 with a mean of 12.5 ± 24. The EHI from brittle SG ranged from -80 to 75 with a mean of 1.25 ± 35, which was 90% lower than the mean non-brittle EHI. From a quantitative perspective, HMS had greater species richness compared to SG (27 vs. 20, P=0.0003). Similarly, the average percentage of total live vegetation was higher in HMS than that in SG (77% vs. 48%, P pavement percentage and bare ground + erosion pavement (P < 0.05). These results suggest that EHI could be a useful method to detect the ecological health and productivity in grazing lands. Overall, we conclude that EHI is an effective short and long-term monitoring approach that ranchers could easily use annually to monitor grazing lands and determine the impacts of ranch decision-making on important ecosystem indicators.

  3. Monitoring the Environmental Impact of TiO2 Nanoparticles Using a Plant-Based Sensor Network

    Science.gov (United States)

    Lenaghan, Scott C.; Li, Yuanyuan; Zhang, Hao; Burris, Jason N.; Stewart, C. Neal; Parker, Lynne E.; Zhang, Mingjun

    2016-01-01

    The increased manufacturing of nanoparticles for use in cosmetics, foods, and clothing necessitates the need for an effective system to monitor and evaluate the potential environmental impact of these nanoparticles. The goal of this research was to develop a plant-based sensor network for characterizing, monitoring, and understanding the environmental impact of TiO2 nanoparticles. The network consisted of potted Arabidopsis thaliana with a surrounding water supply, which was monitored by cameras attached to a laptop computer running a machine learning algorithm. Using the proposed plant sensor network, we were able to examine the toxicity of TiO2 nanoparticles in two systems: algae and terrestrial plants. Increased terrestrial plant growth was observed upon introduction of the nanoparticles, whereas algal growth decreased significantly. The proposed system can be further automated for high-throughput screening of nanoparticle toxicity in the environment at multiple trophic levels. The proposed plant-based sensor network could be used for more accurate characterization of the environmental impact of nanomaterials. PMID:28458617

  4. Risk assessment in support of plant health

    DEFF Research Database (Denmark)

    Jeger, Michael; Schans, Jan; Lövei, Gabor L.

    2012-01-01

    environmental risk assessment and the evaluation of risk reducing options. Quantitative approaches have become increasingly important during this time. The Panel has developed such methods in climatic mapping (in association with the Joint Research Councils), application of spatial spread models, re......With the establishment of the Plant Health Panel in 2006, EFSA became the body responsible for risk assessment in the plant health area for the European Union (EU). Since then more than 70 outputs have been produced dealing with the full range of organisms harmful to plant health across all crop...... types and plants in the environment. There has been an increasing trend towards producing scientific opinions which are full pest risk assessments for the whole EU territory. In its work, and as a contribution to the wider development of risk assessment methodology, the Panel has developed a series...

  5. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant.

    Science.gov (United States)

    Moreno-Garcia, Isabel M; Palacios-Garcia, Emilio J; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J; Varo-Martinez, Marta; Real-Calvo, Rafael J

    2016-05-26

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant's components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.

  6. Annual radiological environmental monitoring report, Watts Bar Nuclear Plant

    International Nuclear Information System (INIS)

    1988-05-01

    This report describes the preoperational environmental radiological monitoring program conducted by TVA in the vicinity of the Watts Bar Nuclear Plant (WBN) in 1988. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas that will not be influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels. During plant operations, results from stations near the plant will be compared with concentrations from control stations and with preoperational measurements to determine potential impacts to the public. The exposures calculated from environmental samples were contributed by naturally occurring radioactive materials, from materials commonly found in the environment as a result of atmospheric fallout, or from the operation of other nuclear facilities in the area. Since WBN has not operated, there has been no contribution of radioactivity from the plant to the environment. 4 refs., 2 figs., 1 tab

  7. Development of an Ion Chamber for Monitoring the Containment of a Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae-Yung; Kim, Han-Soo; Park, Se-Hwan; Ha, Jang-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    Nuclear power plants need many different types of radiation detectors for different purposes. Neutron detectors are installed inside and outside of the core to check the neutron flux. Scintillation detectors are used to check the fission products included in the liquids and gases of plant system. Geiger-Mueller counters are used for the area radiation monitoring. In addition to the above-mentioned detectors, ion chambers are installed to monitor radiation level of the containment. A few ion chambers are located within the reactor containment to monitor radiation level of an accident case. Therefore, the ion chamber should be capable of monitoring high level radiation dose up to 10{sup 7} R/h. Korea Atomic Energy Research Institute (KAERI) developed an ion chamber for monitoring the radiation dose inside the containment.

  8. Equity-Oriented Monitoring in the Context of Universal Health Coverage

    Science.gov (United States)

    Hosseinpoor, Ahmad Reza; Bergen, Nicole; Koller, Theadora; Prasad, Amit; Schlotheuber, Anne; Valentine, Nicole; Lynch, John; Vega, Jeanette

    2014-01-01

    Monitoring inequalities in health is fundamental to the equitable and progressive realization of universal health coverage (UHC). A successful approach to global inequality monitoring must be intuitive enough for widespread adoption, yet maintain technical credibility. This article discusses methodological considerations for equity-oriented monitoring of UHC, and proposes recommendations for monitoring and target setting. Inequality is multidimensional, such that the extent of inequality may vary considerably across different dimensions such as economic status, education, sex, and urban/rural residence. Hence, global monitoring should include complementary dimensions of inequality (such as economic status and urban/rural residence) as well as sex. For a given dimension of inequality, subgroups for monitoring must be formulated taking into consideration applicability of the criteria across countries and subgroup heterogeneity. For economic-related inequality, we recommend forming subgroups as quintiles, and for urban/rural inequality we recommend a binary categorization. Inequality spans populations, thus appropriate approaches to monitoring should be based on comparisons between two subgroups (gap approach) or across multiple subgroups (whole spectrum approach). When measuring inequality absolute and relative measures should be reported together, along with disaggregated data; inequality should be reported alongside the national average. We recommend targets based on proportional reductions in absolute inequality across populations. Building capacity for health inequality monitoring is timely, relevant, and important. The development of high-quality health information systems, including data collection, analysis, interpretation, and reporting practices that are linked to review and evaluation cycles across health systems, will enable effective global and national health inequality monitoring. These actions will support equity-oriented progressive realization of UHC

  9. Proceedings of recent innovations and experience with plant monitoring and utility operations

    International Nuclear Information System (INIS)

    Fruchtman, I.

    1991-01-01

    This book contains proceedings of Recent Innovations and Experience with Plant Monitoring and Utility Operations. Topics covered include: a number of innovative actions recently applied at plants in the United States, Australia, and the People's Republic of China. A preview of forthcoming instrumentation and monitoring techniques, enhanced boiler and turbine operations and maintenance, determining root causes of boiler related problems, welding technique that eliminates high temperature, post weld heat treatment, successful application of a portable oil filtration skid, and a method of evaluation for high pressure turbine life assessment using the EPRI rotor life assessment software

  10. Structural health monitoring system/method using electroactive polymer fibers

    Science.gov (United States)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor)

    2013-01-01

    A method for monitoring the structural health of a structure of interest by coupling one or more electroactive polymer fibers to the structure and monitoring the electroactive responses of the polymer fiber(s). Load changes that are experienced by the structure cause changes in the baseline responses of the polymer fiber(s). A system for monitoring the structural health of the structure is also provided.

  11. Structural health monitoring with a wireless vibration sensor network

    NARCIS (Netherlands)

    Basten, T.G.H.; Sas, P; Schiphorst, F.B.A.; Jonckheere, S.; Moens, D.

    2012-01-01

    Advanced maintenance strategies for infrastructure assets such as bridges or off shore wind turbines require actual and reliable information of the maintenance status. Structural health monitoring based on vibration sensing can help in supplying the input needed for structural health monitoring

  12. A methodology for on-line fatigue life monitoring of Indian nuclear power plant components

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.K.; Dutta, B.K.; Kushawaha, H.S.

    1992-01-01

    Fatigue is one of the most important aging effects of nuclear power plant components. Information about accumulation of fatigue helps in assessing structural degradation of the components. This assists in-service inspection and maintenance and may also support future life extension program of a plant. In the present report a methodology is being proposed for monitoring on line fatigue life of nuclear power plant components using available plant instrumentations. Major factors affecting fatigue life of a nuclear power plant components are the fluctuations of temperature, pressure and flow rate. Green's function technique is used in on line fatigue monitoring as computation time is much less than finite element method. A code has been developed which computes temperature and stress Green's functions in 2-D and axisymmetric structure by finite element method due to unit change in various fluid parameters. A post processor has also been developed which computes the temperature and stress responses using corresponding Green's functions and actual fluctuation in fluid parameters. In this post processor, the multiple site problem is solved by superimposing single site Green's function technique. It is also shown that Green's function technique is best suited for on line fatigue life monitoring of nuclear power plant components. (author). 6 refs., 43 figs

  13. Instrument surveillance and calibration verification through plant wide monitoring using autoassociative neural networks

    International Nuclear Information System (INIS)

    Wrest, D.J.; Hines, J.W.; Uhrig, R.E.

    1996-01-01

    The approach to instrument surveillance and calibration verification (ISCV) through plant wide monitoring proposed in this paper is an autoassociative neural network (AANN) which will utilize digitized data presently available in the Safety Parameter Display computer system from Florida Power Corporations Crystal River number 3 nuclear power plant. An autoassociative neural network is one in which the outputs are trained to emulate the inputs over an appropriate dynamic range. The relationships between the different variables are embedded in the weights by the training process. As a result, the output can be a correct version of an input pattern that has been distorted by noise, missing data, or non-linearities. Plant variables that have some degree of coherence with each other constitute the inputs to the network. Once the network has been trained with normal operational data it has been shown to successfully monitor the selected plant variables to detect sensor drift or failure by simply comparing the network inputs with the outputs. The AANN method of monitoring many variables not only indicates that there is a sensor failure, it clearly indicates the signal channel in which the signal error has occurred. (author). 11 refs, 8 figs, 2 tabs

  14. Instrument surveillance and calibration verification through plant wide monitoring using autoassociative neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Wrest, D J; Hines, J W; Uhrig, R E [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering

    1997-12-31

    The approach to instrument surveillance and calibration verification (ISCV) through plant wide monitoring proposed in this paper is an autoassociative neural network (AANN) which will utilize digitized data presently available in the Safety Parameter Display computer system from Florida Power Corporations Crystal River number 3 nuclear power plant. An autoassociative neural network is one in which the outputs are trained to emulate the inputs over an appropriate dynamic range. The relationships between the different variables are embedded in the weights by the training process. As a result, the output can be a correct version of an input pattern that has been distorted by noise, missing data, or non-linearities. Plant variables that have some degree of coherence with each other constitute the inputs to the network. Once the network has been trained with normal operational data it has been shown to successfully monitor the selected plant variables to detect sensor drift or failure by simply comparing the network inputs with the outputs. The AANN method of monitoring many variables not only indicates that there is a sensor failure, it clearly indicates the signal channel in which the signal error has occurred. (author). 11 refs, 8 figs, 2 tabs.

  15. Development of automated patrol-type monitoring and inspection system for nuclear power plant and application to actual plant

    International Nuclear Information System (INIS)

    Senoo, Makoto; Koga, Kazunori; Hirakawa, Hiroshi; Tanaka, Keiji

    1996-01-01

    An automated patrol-type monitoring and inspection system was developed and applied in a nuclear power plant. This system consists of a monorail, a monitoring robot and an operator's console. The monitoring robot consists of a sensor unit and a control unit. Three kinds of sensor, a color ITV camera, an infrared camera and a microphone are installed in the sensor unit. The features of this monitoring robot are; (1) Weights 15 kg with a cross-sectional dimensions of 152 mm width and 290 mm height. (2) Several automatic monitoring functions are installed using image processing and frequency analysis for three sensor signals. (author)

  16. Rhizobacterial diversity in India and its influence on soil and plant health.

    Science.gov (United States)

    Johri, Bhavdish N; Sharma, A; Virdi, J S

    2003-01-01

    The rhizosphere or the zone of influence around roots harbors a multitude of microorganisms that are affected by both abiotic and biotic stresses. Among these are the dominant rhizobacteria that prefer living in close vicinity to the root or on its surface and play a crucial role in soil health and plant growth. Both free-living and symbiotic bacteria are involved in such specific ecological niches and help in plant matter degradation, nutrient mobilization and biocontrol of plant disease. While the rhizosphere as a domain of fierce microbial activity has been studied for over a century, the availability of modern tools in microbial ecology has now permitted the study of microbial communities associated with plant growth and development, in situ localization of important forms, as well as the monitoring of introduced bacteria as they spread in the soil and root environment. This interest is linked to environmental concerns for reduced use of chemicals for disease control as well as an appreciation for utilization of biologicals and organics in agriculture. Indian researchers have studied the diversity of rhizobacteria in a variety of plants, cereals, legumes and others along with assessment of their functionality based on the release of enzymes (soil dehydrogenase, phosphatase, nitrogenase, etc.), metabolites (siderophores, antifungals, HCN, etc.), growth promoters (IAA, ethylene) and as inducers of systemic disease resistance (ISR). Based on such primary screening protocols, effective rhizobacteria have been field tested with success stories from various agroecological zones of the country, as reflected in the control of root- and soil-borne diseases, improved soil health and increased crop yields. Several commercial formulations, mostly based on dry powder (charcoal, lignite, farmyard manure, etc.) have been prepared and field tested, however, problems of appropriate shelf-life and cell viability are still to be solved. Also, inherent in such low cost

  17. Genetically modified plants and human health.

    Science.gov (United States)

    Key, Suzie; Ma, Julian K-C; Drake, Pascal Mw

    2008-06-01

    Genetically modified (or GM) plants have attracted a large amount of media attention in recent years and continue to do so. Despite this, the general public remains largely unaware of what a GM plant actually is or what advantages and disadvantages the technology has to offer, particularly with regard to the range of applications for which they can be used. From the first generation of GM crops, two main areas of concern have emerged, namely risk to the environment and risk to human health. As GM plants are gradually being introduced into the European Union there is likely to be increasing public concern regarding potential health issues. Although it is now commonplace for the press to adopt 'health campaigns', the information they publish is often unreliable and unrepresentative of the available scientific evidence. We consider it important that the medical profession should be aware of the state of the art, and, as they are often the first port of call for a concerned patient, be in a position to provide an informed opinion. This review will examine how GM plants may impact on human health both directly - through applications targeted at nutrition and enhancement of recombinant medicine production - but also indirectly, through potential effects on the environment. Finally, it will examine the most important opposition currently facing the worldwide adoption of this technology: public opinion.

  18. Instrumentation for chemical and radiochemical monitoring in nuclear power plants

    International Nuclear Information System (INIS)

    Nordmann, F.; Ballard, G.

    2009-01-01

    This article details the instrumentation implemented in French nuclear power plants for the monitoring of chemical and radiochemical effluents with the aim of limiting their environmental impact. It describes the controls performed with chemical automata for the search for drifts, anomalies or pollution in a given circuit. The operation principles of the different types of chemical automata are explained as well as the manual controls performed on samples manually collected. Content: 1 - general considerations; 2 - objectives of the chemical monitoring: usefulness of continuous monitoring with automata, transmission to control rooms and related actions, redundancy of automata; 3 - instrumentation and explanations for the main circuits: principle of chemical automata monitoring, instrumentation of the main primary circuit, instrumentation of the main secondary circuit, instrumentation of the tertiary circuit, preparation of water makeup (demineralized water), other loops, instrumentation for effluents and environment monitoring, measurement principles of chemical automata, control and maintenance of chemical automata; 4 - manual controls after sampling; 5 - radiochemical monitoring: automatized radiochemical measurements, manual radiochemical measurements; 6 - conclusion

  19. FRAMEWORK FOR STRUCTURAL ONLINE HEALTH MONITORING OF AGING AND DEGRADATION OF SECONDARY PIPING SYSTEMS DUE TO SOME ASPECTS OF EROSION

    Energy Technology Data Exchange (ETDEWEB)

    Gribok, Andrei V.; Agarwal, Vivek

    2017-06-01

    This paper describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants (NPPs). The paper also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system, which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk-informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. Furthermore, of the operations and maintenance costs in U.S. plants, approximately 80% are labor costs. To address the issue of rising operating costs and economic viability, in 2017, companies that operate the national nuclear energy fleet started the Delivering the Nuclear Promise Initiative, which is a 3 year program aimed at maintaining operational focus, increasing value, and improving efficiency. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at

  20. 1. Biologic monitoring at Barsebaeck nuclear power plant 1985-1997. 2. Biological monitoring at Swedish nuclear power plants in 1998. Annual report 1998

    International Nuclear Information System (INIS)

    Andersson, Jan; Mo, K.; Thoernqvist, S.

    1999-06-01

    This report gives an account for two studies on the ecological effects of effluents to the aquatic environment from the Swedish nuclear power plants: 1. The results of biological monitoring at the Barsebaeck nuclear power plant during the period 1985-1997 are summarised. Comparisons are made with a previous report from 1969-1983. The fish community was studied by fyke net test fishing in the cooling water effluent area along a gradient out to unaffected sites. The loss of young eels in the cooling water intake was estimated annually. Damage on female grey mullet oocyte development was analysed on samples of cooling water exposed fish. 2. The biological monitoring at the Swedish nuclear power plants during 1998 was with minor exceptions performed according to the established programmes. The monitoring at Forsmark is running in the enclosed Biotest basin at the cooling water outlet and in the surrounding archipelago. Reference data are collected at Finbo, NW Aaland, and in the nearby Graesoe archipelago. In 1998 as in previous years the benthic macro fauna abundance within the Biotest basin showed strong variations. In the beginning of the year abundance and biomass were low, in the autumn though, higher than average. Oskarshamn: The monitoring is performed in the small effluent bay, Hamnefjaerden bay, in the waters surrounding the cooling water plume and in a reference area, Kvaedoe-fjaerden, 100 km north of the power plant. Perch and roach catches have been high in the Hamnefjaerden bay since the late 1980's. In 1998 catches of perch were on a higher level than in 1997, both in spring and in summer. The changes for roach were small. A moderate decrease in eel catches took place in 1997 and 1998, indicating a reduced effect of stockings in the late 1980's. Ringhals: The monitoring is performed in the area close to the cooling water outlet, which is located at an open coast, and in a reference area. An attraction of yellow eel to the effluent area has been

  1. Development of full power risk monitoring system for UCN 3 and 4 nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Seung Hwan; Jang, Seung Chul; Kim, Kil Yoo; Han, Sang Hoon; Jung, Won Dae

    2002-03-01

    This report describes full power risk monitoring system (DynaRM) of NPPs which evaluates the current plant risk and monitor the risk change caused by the configuration change due to preventive maintenance or periodic maintenance activities. In order to calculate the core damage frequency, the inoperable equipment's basic event should be submitted to a quantification engine. DynaRM uses a risk monitor model converted from PSA model as the quantification engine, which can respond fast for the various equipment configuration changes. DynaRM is developed to solve these kinds of problems and difficulties. The main two key features of DynaRM are real time risk monitoring and real time maintenance plan decision supporting. With DynaRM, the plant risk can be calculated automatically only with out of service equipment information and equipment maintenance scheduling is easy by modifying the detail schedule plan. We have developed the DynaRM for the Korean standard nuclear power plant and it is currently using at Ulchin 3,4 NPP. The adaptation for the other NPPs is also easy with a little modification since DynaRM was developed by considering it to be used in the other NPPs. Moreover, we also expect DynaRM will be a good advisory tool for the plant risk monitoring and maintenance scheduling

  2. Using a plant health system framework to assess plant clinic performance in Uganda

    DEFF Research Database (Denmark)

    Danielsen, Solveig; Matsiko, Frank B.

    2016-01-01

    and expand, new analytical frameworks and tools are needed to identify factors influencing performance of services and systems in specific contexts, and to guide interventions. In this paper we apply a plant health system framework to assess plant clinic performance, using Uganda as a case study...... factors, influenced by basic operational and financial concerns, inter-institutional relations and public sector policies. Overall, there was a fairly close match between the plant health system attributes and plant clinic performance, suggesting that the framework can help explain system functioning....... A comparative study of plant clinics was carried out between July 2010 and September 2011 in the 12 districts where plant clinics were operating at that time. The framework enabled us to organise multiple issues and identify key features that affected the plant clinics. Clinic performance was, among other...

  3. Principles in wireless building health monitoring systems.

    Science.gov (United States)

    Pentaris, F. P.; Makris, J. P.; Stonham, J.; Vallianatos, F.

    2012-04-01

    Monitoring the structural state of a building is essential for the safety of the people who work, live, visit or just use it as well as for the civil protection of urban areas. Many factors can affect the state of the health of a structure, namely man made, like mistakes in the construction, traffic, heavy loads on the structures, explosions, environmental impacts like wind loads, humidity, chemical reactions, temperature changes and saltiness, and natural hazards like earthquakes and landslides. Monitoring the health of a structure provides the ability to anticipate structural failures and secure the safe use of buildings especially those of public services. This work reviews the state of the art and the challenges of a wireless Structural Health Monitoring (WiSHM). Literature review reveals that although there is significant evolution in wireless structural health monitoring, in many cases, monitoring by itself is not enough to predict when a structure becomes inappropriate and/or unsafe for use, and the damage or low durability of a structure cannot be revealed (Chintalapudi, et al., 2006; Ramos, Aguilar, & Lourenço, 2011). Several features and specifications of WiSHM like wireless sensor networking, reliability and autonomy of sensors, algorithms of data transmission and analysis should still be evolved and improved in order to increase the predictive effectiveness of the SHM (Jinping Ou & Hui Li, 2010; Lu & Loh, 2010) . Acknowledgments This work was supported in part by the ARCHEMEDES III Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled «Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC) ».

  4. 15. Internal symposium on recent progress of nondestructive inspection and monitoring technologies for nuclear power plants

    International Nuclear Information System (INIS)

    1994-01-01

    At the symposium, lectures were given on the recent development of the nondestructive inspection technology for nuclear power plants, the trend regarding the nondestructive inspection in foreign countries (Japan-Germany atomic energy seminar), the present state and subjects of the monitoring technology in BWR plants, the present state and subjects of the monitoring technology in PWR plants, and the present state and the subjects for hereafter of the defect evaluation method in the equipment of light water reactors. The data on the ultrasonic flaw detection in aluminum alloy welded joints were obtained. The German inspection technology is similar to that in Japan and other countries. The research on the plant synthetic monitoring and diagnosis system is reported. The monitoring systems for abnormal state in operation, troubles and the secular change of equipment are reported. The evaluation of the flaws in nuclear piping is reported. The summaries of the lectures are collected in this book. (K.I.)

  5. Radiological monitoring plan for the Oak Ridge Y-12 Plant: Surface water

    International Nuclear Information System (INIS)

    1995-01-01

    National Pollutant Discharge Elimination System (NPDES) Permit TN0002968, issued April 28, 1995, requires that the Y-12 Plant Radiological Monitoring Plan for surface water be modified (Part 111-H). These modifications shall consist of expanding the plan to include storm water monitoring and an assessment of alpha, beta, and gamma emitters. In addition, a meeting was held with personnel from the Tennessee Department of Environment and Conservation (TDEC) on May 4, 1995. In this meeting, TDEC personnel provided guidance to Y-12 Plant personnel in regard to the contents of the modified plan. This report contains a revised plan incorporating the permit requirements and guidance provided by TDEC personnel. In addition, modifications were made to address future requirements of the new regulation for radiation protection of the public and the environment in regards to surface water monitoring

  6. Evaluation of nuclear power plant environmental impact prediction, based on monitoring programs. Summary and recommendations

    International Nuclear Information System (INIS)

    Gore, K.L.; Thomas, J.M.; Kannberg, L.D.; Watson, D.G.

    1977-02-01

    An evaluation of the effectivenss of non-radiological environmental monitoring programs is presented. The monitoring programs for Monticello, Haddam Neck, and Millstone Nuclear Generating Plants are discussed. Recommendations for improvements in monitoring programs are presented

  7. Annual radiological environmental monitoring report: Watts Bar Nuclear Plant, 1991

    International Nuclear Information System (INIS)

    1992-04-01

    This report describes the preoperational environmental radiological monitoring program conducted by TVA in the vicinity of the Watts Bar Nuclear Plant (WBN) in 1991. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas that will not be influenced by plant operations. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels. During plant operations, results from stations near the plant will be compared with concentrations from control stations and with preoperational measurements to determine potential impacts to the public. Exposures calculated from environmental samples were contributed by naturally occurring radioactive materials, from materials commonly found in the environment a a result of atmospheric fallout, or from the operation of other nuclear facilities in the area. Since WBN has not operated, there has been no contribution of radioactivity from the plant to the environment

  8. Annual radiological environmental monitoring report: Watts Bar Nuclear Plant, 1992

    International Nuclear Information System (INIS)

    1993-04-01

    This report describes the preoperational environmental radiological monitoring program conducted by TVA in the vicinity of the Watts Bar Nuclear Plant (WBN) in 1992. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas that will not be influenced by plant operations. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels. During plant operations, results from stations near the plant will be compared with concentrations from control stations and with preoperational measurements to determine potential impacts to the public. Exposures calculated from environmental samples were contributed by naturally occurring radioactive materials, from materials commonly found in the environment as a result of atmospheric fallout, or from the operation of other nuclear facilities in the area. Since WBN has not operated, there has been no contribution of radioactivity from the plant to the environment

  9. Online Monitoring of Large Centrifugal Pumps in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel, Efenji A.; Faragalla, Mohamed M.; Awwal, Arigi M.; Lee, Yong-kwan [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-10-15

    Online Monitoring detects and diagnoses incipient faults, performs predictive maintenance, and can estimate the Remaining Useful Life (RUL) of Active and Passive Components before they fail. In an effort towards assisting Utility Partners to be proactive in the management of their Assets, the Electric Power Research Institute (EPRI) collaborated with the Idaho National Laboratory (INL) to develop a Fleet-Wide Prognostic and Health Monitoring (FW-PHM) Software Suite. The FW-PHM is a web based diagnostic tools and databases designed for use in commercial NPP. The AFS development process as designed by EPRI can be adapted to Large Centrifugal Pumps (LCP) in Nuclear Power Plants (NPP). For the purpose of this endeavor, the set of LCP considered are Safety Class-Motor Driven-Vertical Centrifugal Pumps for primary flow which includes Safety Injection, Containment Spray, and Residual Heat Removal. Fault Signatures of the LCP for OLM has been developed following the INCOSE V-model systems development approach. The fault types, fault features, and their detection methods and effectiveness for the LCP were established by diligently following the guidelines recommended by EPRI. An optimization of the FS for OLM has been suggested for implementation. As a way of extending this work, a Cost-Benefit Analysis between OLM and the conventional Periodic Maintenance for the LCP in NPP is proposed.

  10. Online Monitoring of Large Centrifugal Pumps in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Emmanuel, Efenji A.; Faragalla, Mohamed M.; Awwal, Arigi M.; Lee, Yong-kwan

    2016-01-01

    Online Monitoring detects and diagnoses incipient faults, performs predictive maintenance, and can estimate the Remaining Useful Life (RUL) of Active and Passive Components before they fail. In an effort towards assisting Utility Partners to be proactive in the management of their Assets, the Electric Power Research Institute (EPRI) collaborated with the Idaho National Laboratory (INL) to develop a Fleet-Wide Prognostic and Health Monitoring (FW-PHM) Software Suite. The FW-PHM is a web based diagnostic tools and databases designed for use in commercial NPP. The AFS development process as designed by EPRI can be adapted to Large Centrifugal Pumps (LCP) in Nuclear Power Plants (NPP). For the purpose of this endeavor, the set of LCP considered are Safety Class-Motor Driven-Vertical Centrifugal Pumps for primary flow which includes Safety Injection, Containment Spray, and Residual Heat Removal. Fault Signatures of the LCP for OLM has been developed following the INCOSE V-model systems development approach. The fault types, fault features, and their detection methods and effectiveness for the LCP were established by diligently following the guidelines recommended by EPRI. An optimization of the FS for OLM has been suggested for implementation. As a way of extending this work, a Cost-Benefit Analysis between OLM and the conventional Periodic Maintenance for the LCP in NPP is proposed

  11. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Science.gov (United States)

    2012-04-23

    ... Used in Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants... of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive, instead it...

  12. Development of a risk monitoring system for nuclear power plants based on GO-FLOW methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun, E-mail: youngjun51@hotmail.com [College of Nuclear Science and Technology, Harbin Engineering University, No. 145 Nantong Street, Nangang District, Harbin 150001 (China); Yang, Ming, E-mail: yangming@hrbeu.edu.cn [College of Nuclear Science and Technology, Harbin Engineering University, No. 145 Nantong Street, Nangang District, Harbin 150001 (China); Yoshikawa, Hidekazu, E-mail: yosikawa@kib.biglobe.ne.jp [Symbio Community Forum, Kyoto (Japan); Yang, Fangqing, E-mail: yfq613@163.com [China Nuclear Power Technology Research Institute, 518000 (China)

    2014-10-15

    Highlights: • A method for developing Living PSA is proposed. • Living PSA is easy to update with online modification to system model file. • A risk monitoring system is designed and developed using the GO-FLOW. • The risk monitoring system is useful for plant daily operation risk management. - Abstract: The paper presents a risk monitoring system developed based on GO-FLOW methodology which is a success-oriented system reliability modeling technique for phased mission as well as time-dependent problems analysis. The risk monitoring system is designed to receive information on plant configuration changes either from equipment failures, operator interventions, or maintenance activities, then update the Living PSA model with online modification to the system GO-FLOW model file which contains all the functional modes of equipment represented by a proposed generalized GO-FLOW modeling structure, and display risk values graphically. The risk monitoring system can be used to assist safety engineers and plant operators in their maintenance management and daily operation risk management at NPPs.

  13. Development of a risk monitoring system for nuclear power plants based on GO-FLOW methodology

    International Nuclear Information System (INIS)

    Yang, Jun; Yang, Ming; Yoshikawa, Hidekazu; Yang, Fangqing

    2014-01-01

    Highlights: • A method for developing Living PSA is proposed. • Living PSA is easy to update with online modification to system model file. • A risk monitoring system is designed and developed using the GO-FLOW. • The risk monitoring system is useful for plant daily operation risk management. - Abstract: The paper presents a risk monitoring system developed based on GO-FLOW methodology which is a success-oriented system reliability modeling technique for phased mission as well as time-dependent problems analysis. The risk monitoring system is designed to receive information on plant configuration changes either from equipment failures, operator interventions, or maintenance activities, then update the Living PSA model with online modification to the system GO-FLOW model file which contains all the functional modes of equipment represented by a proposed generalized GO-FLOW modeling structure, and display risk values graphically. The risk monitoring system can be used to assist safety engineers and plant operators in their maintenance management and daily operation risk management at NPPs

  14. Software system development of NPP plant DiD risk monitor. Basic design of software configuration

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Nakagawa, Takashi

    2015-01-01

    A new risk monitor system is under development which can be applied not only to prevent severe accident in daily operation but also to serve as to mitigate the radiological hazard just after severe accident happens and long term management of post-severe accident consequences. The fundamental method for the new risk monitor system is first given on how to configure the Plant Defense in-Depth (DiD) Risk Monitor by object-oriented software system based on functional modeling approach. In this paper, software system for the plant DiD risk monitor is newly developed by object oriented method utilizing Unified Modeling Language (UML). Usage of the developed DiD risk monitor is also introduced by showing examples for LOCA case of AP1000. (author)

  15. Recent Developments on Wireless Sensor Networks Technology for Bridge Health Monitoring

    Directory of Open Access Journals (Sweden)

    Guang-Dong Zhou

    2013-01-01

    Full Text Available Structural health monitoring (SHM systems have shown great potential to sense the responses of a bridge system, diagnose the current structural conditions, predict the expected future performance, provide information for maintenance, and validate design hypotheses. Wireless sensor networks (WSNs that have the benefits of reducing implementation costs of SHM systems as well as improving data processing efficiency become an attractive alternative to traditional tethered sensor systems. This paper introduces recent technology developments in the field of bridge health monitoring using WSNs. As a special application of WSNs, the requirements and characteristics of WSNs when used for bridge health monitoring are firstly briefly discussed. Then, the state of the art in WSNs-based bridge health monitoring systems is reviewed including wireless sensor, network topology, data processing technology, power management, and time synchronization. Following that, the performance validations and applications of WSNs in bridge health monitoring through scale models and field deployment are presented. Finally, some existing problems and promising research efforts for promoting applications of WSNs technology in bridge health monitoring throughout the world are explored.

  16. Monitoring of pipelines in nuclear power plants by measuring laser-based mechanical impedance

    International Nuclear Information System (INIS)

    Lee, Hyeonseok; Sohn, Hoon; Yang, Suyoung; Yang, Jinyeol

    2014-01-01

    Using laser-based mechanical impedance (LMI) measurement, this study proposes a damage detection technique that enables structural health monitoring of pipelines under the high temperature and radioactive environments of nuclear power plants (NPPs). The applications of conventional electromechanical impedance (EMI) based techniques to NPPs have been limited, mainly due to the contact nature of piezoelectric transducers, which cannot survive under the high temperature and high radiation environments of NPPs. The proposed LMI measurement technique aims to tackle the limitations of the EMI techniques by utilizing noncontact laser beams for both ultrasound generation and sensing. An Nd:Yag pulse laser is used for ultrasound generation, and a laser Doppler vibrometer is employed for the measurement of the corresponding ultrasound responses. For the monitoring of pipes covered by insulation layers, this study utilizes optical fibers to guide the laser beams to specific target locations. Then, an outlier analysis is adopted for autonomous damage diagnosis. Validation of the proposed LMI technique is carried out on a carbon steel pipe elbow under varying temperatures. A corrosion defect chemically engraved in the specimen is successfully detected. (papers)

  17. Monitoring of pipelines in nuclear power plants by measuring laser-based mechanical impedance

    Science.gov (United States)

    Lee, Hyeonseok; Sohn, Hoon; Yang, Suyoung; Yang, Jinyeol

    2014-06-01

    Using laser-based mechanical impedance (LMI) measurement, this study proposes a damage detection technique that enables structural health monitoring of pipelines under the high temperature and radioactive environments of nuclear power plants (NPPs). The applications of conventional electromechanical impedance (EMI) based techniques to NPPs have been limited, mainly due to the contact nature of piezoelectric transducers, which cannot survive under the high temperature and high radiation environments of NPPs. The proposed LMI measurement technique aims to tackle the limitations of the EMI techniques by utilizing noncontact laser beams for both ultrasound generation and sensing. An Nd:Yag pulse laser is used for ultrasound generation, and a laser Doppler vibrometer is employed for the measurement of the corresponding ultrasound responses. For the monitoring of pipes covered by insulation layers, this study utilizes optical fibers to guide the laser beams to specific target locations. Then, an outlier analysis is adopted for autonomous damage diagnosis. Validation of the proposed LMI technique is carried out on a carbon steel pipe elbow under varying temperatures. A corrosion defect chemically engraved in the specimen is successfully detected.

  18. Thermal performance monitoring and assessment in Dukovany nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Madron, F. [Chemplant Technology s.r.o., Hrncirska 4, 400 01 Usti nad Labem (Czech Republic); Papuga, J. [CEZ a.s., JE Dukovany, 675 50 Dukovany (Czech Republic); Pliska, J. [I and C ENERGO a.s., Prazska 684, 674 01 Trebic (Czech Republic)

    2006-07-01

    Competition in the European electricity market forces generators to achieve - in compliance with safety and environmental standards - efficiency of production as high as possible. This efficiency or heat rate is an important indicator of both the condition of the plant equipment and the quality of plant operation. Similar thermal performance indicators can also be calculated for components of the plant equipment such as heat exchangers. However, it is not easy to quantify these indicators with sufficient precision so that the results can be used for conduct of plant operation in near-real time and for predictive maintenance. This paper describes a present state of the system monitoring and evaluating thermal performance of the reactor units in Dukovany Nuclear Power Plant. The system provides information on actual and desirable (should-be) values of thermal performance indicators for control room operators, performance engineers and maintenance planners. The system is designed to monitor steady states and has two main functions: data validation and process simulation. Data validation is based on data reconciliation methodology and carried out with Recon software by Chemplant Technology. A detailed model of the secondary side for mass and heat balancing has been made up by means of the Recon's graphical editor; now it contains roughly 300 flows and employs data of about 200 measurements. Main advantages of the data reconciliation are: - reconciled data are consistent with the model, - reconciled data are more precise than data directly measured with consequence that the thermal power of steam generators is determined with substantially lower uncertainty than before - data reconciliation represents a solid basis for detection and identification of data corrupted by gross errors. Simulation is performed with a different analytical model of plant components configured into secondary side. The model has been developed by I and C Energo. Main purposes of simulation

  19. [Monitoring system on prison health: feasibility and recommendations].

    Science.gov (United States)

    Develay, Aude-Emmanuelle; Verdot, Charlotte; Grémy, Isabelle

    2015-01-01

    This article presents the results of two studies designed to define the feasibility and framework of the future prison health monitoring system in France. The objective of the first study was to obtain the points of view of professionals involved in prison health and the second study was designed to assess the feasibility of using prisoner's medical files for epidemiological purposes. The point of view of various professionals was collected by questionnaire sent to 43 randomly selected prison physicians and by 22 semi-directive interviews. The feasibility study was based on analysis of the medical files of 330 randomly selected prisoners in eleven prisons chosen in order to reflect the diversity of correctional settings and prison populations. Additional interviews were conducted with the medical staff of these prison facilities. There is a consensus on the need to monitor prison health, but there are contrasting views on data collection methods (surveys or routinely collected data]. The feasibility study also showed that the implementation of a prison health monitoring system based on routinely collected data from prisoner's medical records was not feasible at the present time in France. In the light of these findings, it is recommended to initially develop a monitoring system based on regular nationwide surveys, while pursuing computerization and standardization of health data in prison.

  20. PSAD-a monitoring and aid to diagnosis system participating in saving on maintenance and operation costs and for plant life extension

    International Nuclear Information System (INIS)

    Brasseur, S.; Morel, J.; Joussellin, A.

    1997-01-01

    Monitoring nuclear plants components enable to save on operation and maintenance costs by reducing incidents gravity and casual plant stoppages thank to early detection and fast diagnosis. Improving the knowledge of the behaviour of the plant will also allow to optimize maintenance and to increase plant life. In order to improve monitoring and diagnosis capabilities in nuclear power plants. Electricite de France (EDF) is extending the existing data processing chains towards automatic aided interpretation and diagnosis. Therefore, EDF has designed an integrated monitoring and diagnosis assistance system: PSAD-Poste de Surveillance et d'Aide au Diagnostic, including several monitoring functions of the main components. It integrates on-line monitoring, off-line diagnosis and knowledge based systems. PSAD stations provide homogeneous aids to diagnosis which enable plant personnel to pinpoint the mechanical behaviour of plant equipment. The objective of PSAD is to provide them with high-efficiency and user-friendly tools which can considerabily free them from routine tasks. The first version of the prototype is working on a French Plant. This version includes the software host structure and two monitoring functions: the Reactor Coolant Pumps and the Turbo-generator Monitoring functions. Internal Structures Monitoring function and Loose Parts Detection are still under development and should be integrated into PSAD prototype in 1998

  1. Report on the Biological Monitoring Program at Paducah Gaseous Diffusion Plant December 1992--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Hinzman, R.L.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1995-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The goals of BMP are to demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, characterize potential health and environmental impacts, document the effects of pollution abatement facilities on stream biota, and recommend any program improvements that would increase effluent treatability. The BMP for PGDP consists of three major tasks: effluent and ambient toxicity monitoring, bioaccumulation studies, and ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1992 to December 1993, although activities conducted outside this time period are included as appropriate.

  2. Forest health monitoring in the United States: focus on national reports

    Science.gov (United States)

    Kurt Riitters; Kevin Potter

    2013-01-01

    The health and sustainability of United States forests have been monitored for many years from several different perspectives. The national Forest Health Monitoring (FHM) Program was established in 1990 by Federal and State agencies to develop a national system for monitoring and reporting on the status and trends of forest ecosystem health. We describe and illustrate...

  3. Framework for ensuring appropriate maintenance of baseline PSA and risk monitor models in a nuclear power plant

    International Nuclear Information System (INIS)

    Vrbanic, I.; Sorman, J.

    2005-01-01

    The necessity of observing both long term and short term risk changes many times imposes the need for a nuclear power plant to have a baseline PSA model to produce an estimate of long term averaged risk and a risk monitor to produce a time-dependent risk curve and/or safety functions status at points in time or over a shorter time period of interest. By nature, a baseline PSA reflects plant systems and operation in terms of average conditions and provides time-invariant quantitative risk metrics. Risk monitor, on the other hand, requires condition-specific modeling to produce a quantitative and/or qualitative estimate of plant's condition-specific risk metrics. While risk monitor is used for computing condition-specific risk metrics over time, a baseline PSA model is needed for variety of other risk oriented applications, such as assessments of proposed design modifications or risk ranking of equipment. Having in mind their importance and roles, it is essential that both models, i.e. baseline PSA model and risk monitor are maintained in the way that they represent, as accurately as practically achievable, the actual plant status (e.g. systems' design and plant's procedures in effect) and its history (e.g. numbers of equipment failures and demands that influence relevant PSA parameters). Paper discusses the requirements for appropriate maintenance of plant's baseline PSA model and risk monitor model and presents the framework for plant's engineering and administrative procedures that would ensure they are met. (author)

  4. Public and private roles in plant health management

    NARCIS (Netherlands)

    Oude Lansink, A.G.J.M.

    2011-01-01

    World-wide, government institutions play an important role in the management of plant health. This paper develops a conceptual framework in which suppliers and demanders jointly determine the optimal level of plant health in a hypothetical market. Next this paper argues that this market falls short

  5. Forest health monitoring: 2007 national technical report

    Science.gov (United States)

    Barbara L. Conkling

    2011-01-01

    The Forest Health Monitoring Program produces an annual technical report that has two main objectives. The first objective is to present information about forest health from a national perspective. The second objective is to present examples of useful techniques for analyzing forest health data new to the annual national reports and new applications of techniques...

  6. Forest health monitoring: 2009 national technical report

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2012-01-01

    The annual national technical report of the Forest Health Monitoring Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introduces new techniques for analyzing forest health data, and summarizes results of recently completed Evaluation...

  7. Meteorological monitoring Program in the location to the Juragua Nuclear Power Plant

    International Nuclear Information System (INIS)

    Linares Gonzalez, M.E.; Ramos Biltres, E.O.; Prendes Alonso, M.

    1998-01-01

    The objective gives the work it is to present the meteorological Monitoring program in the Juragua nuclear power plant, which you makes according to the standards settled down by the OIEA, the standards give the World meteorological organization and the demands to the content and elaboration gives the Nuclear Power Plant security documents DTN-1.03.91

  8. Health impacts of power-exporting plants in northern Mexico

    International Nuclear Information System (INIS)

    Blackman, Allen; Chandru, Santosh; Mendoza-Domínguez, Alberto; Russell, A.G.

    2012-01-01

    In the past two decades, rapid population and economic growth on the U.S.–Mexico border has spurred a dramatic increase in electricity demand. In response, American energy multinationals have built power plants just south of the border that export most of their electricity to the U.S. This development has stirred considerable controversy because these plants effectively skirt U.S. air pollution regulations in a severely degraded international airshed. Yet to our knowledge, this concern has not been subjected to rigorous scrutiny. This paper uses a suite of air dispersion, health impacts, and valuation models to assess the human health damages in the U.S. and Mexico caused by air emissions from two power-exporting plants in Mexicali, Baja California. We find that these emissions have limited but nontrivial health impacts, mostly by exacerbating particulate pollution in the U.S., and we value these damages at more than half a million dollars per year. These findings demonstrate that power-exporting plants can have cross-border health effects and bolster the case for systematically evaluating their environmental impacts. - Highlights: ► We estimate the health effects of emissions from Mexican electric power plants exporting to the U.S. ► The plants have limited but nontrivial effects, mostly from particulate pollution in the U.S. ► We value these damages at more than half a million dollars per year. ► Hence, power-exporting plants can have significant cross-border health effects.

  9. Hyperspectral remote sensing application for monitoring and preservation of plant ecosystems

    Science.gov (United States)

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas; Petrov, Nikolay; Stoev, Antoniy

    Remote sensing technologies have advanced significantly at last decade and have improved the capability to gather information about Earth’s resources and environment. They have many applications in Earth observation, such as mapping and updating land-use and cover, weather forecasting, biodiversity determination, etc. Hyperspectral remote sensing offers unique opportunities in the environmental monitoring and sustainable use of natural resources. Remote sensing sensors on space-based platforms, aircrafts, or on ground, are capable of providing detailed spectral, spatial and temporal information on terrestrial ecosystems. Ground-based sensors are used to record detailed information about the land surface and to create a data base for better characterizing the objects which are being imaged by the other sensors. In this paper some applications of two hyperspectral remote sensing techniques, leaf reflectance and chlorophyll fluorescence, for monitoring and assessment of the effects of adverse environmental conditions on plant ecosystems are presented. The effect of stress factors such as enhanced UV-radiation, acid rain, salinity, viral infections applied to some young plants (potato, pea, tobacco) and trees (plums, apples, paulownia) as well as of some growth regulators were investigated. Hyperspectral reflectance and fluorescence data were collected by means of a portable fiber-optics spectrometer in the visible and near infrared spectral ranges (450-850 nm and 600-900 nm), respectively. The differences between the reflectance data of healthy (control) and injured (stressed) plants were assessed by means of statistical (Student’s t-criterion), first derivative, and cluster analysis and calculation of some vegetation indices in four most informative for the investigated species regions: green (520-580 nm), red (640-680 nm), red edge (690-720 nm) and near infrared (720-780 nm). Fluorescence spectra were analyzed at five characteristic wavelengths located at the

  10. Possibility of continuous monitoring of environment around the nuclear plant using satellite remote sensing

    International Nuclear Information System (INIS)

    Sasaki, Takanori; Tanabu, Yoshimine; Fujita, Shigetaka; Zhao Wenhui

    2008-01-01

    Interest in nuclear power generation is increasing by rising of power demand and environmental concern. It is important more and more to confirm and show the safety operation of nuclear plants, which is useful to remove anxiety of residents. Satellite remote sensing is one of the way of it. Large observation width and long and continuous observation period are advantage of satellite remote sensing. In addition, it is very important to be able to monitor without visitation on the site. We have continued local area environmental analysis using various satellites. MODIS on Terra and Aqua which are NASA satellites received by Hachinohe Institute of Technology is mainly used. According to these results, we have shown that combined analysis of various information parameters such as land surface temperature, geographical changes, vegetation, etc. is very effective to monitor environmental changes. In these analyses, error detection is very important. Therefore, enough storage data with continuously monitoring in usual state is necessary. Moreover, it is thought that the confirmation of stable operation of plants by means of continuous monitoring can contribute to reduce residents' anxiety of nuclear power plant. Additionally, in the case that the change of influence on surroundings is detected, it is possible to grasp the situation and take measure in early stage by error detection. In this paper, as an possible example of continuous monitoring using satellite remote sensing, we introduce the result of analysis and investigation of which changes of sea surface temperature and chlorophyll concentration on the sea around power plant. (author)

  11. New technologies in nuclear power plant monitoring and diagnosis

    International Nuclear Information System (INIS)

    Tuerkcan, E.; Ciftcioglu, Oe.

    1996-05-01

    The content of the present paper is as follows. In Sec. 2, the Kalman filtering is briefly described and its relevance to conventional time series analysis methods has been emphasized. In this respect, its NPP monitoring and fault diagnosis implementations are given and the important features are pointed out. In Sec. 3, the NN technology is briefly described and the scope is focused on the NPP monitoring and fault diagnosis implementations. The potentialities of this technology are pointed out. In Sec. 4, the wavelet technology is briefly described and the utilization of this technology in Nuclear Technology is demonstrated. In this respect, also the prospective role of this technology for real-time monitoring and fault diagnosis is revealed. Finally, the influence of the new technologies in reliable and cost effective plant operation viewpoint is discussed. (orig./WL)

  12. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant

    Science.gov (United States)

    Moreno-Garcia, Isabel M.; Palacios-Garcia, Emilio J.; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J.; Varo-Martinez, Marta; Real-Calvo, Rafael J.

    2016-01-01

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid. PMID:27240365

  13. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant

    Directory of Open Access Journals (Sweden)

    Isabel M. Moreno-Garcia

    2016-05-01

    Full Text Available There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.

  14. Infrared thermography inspection and monitoring in oil and gas and petrochemical plant industry

    International Nuclear Information System (INIS)

    Shamsudin Sin Deraman

    2003-01-01

    Infrared thermography is an electronic technique that quite literally allows us to see thermal energy. The technique allows for the monitoring of temperatures and thermal patterns while the equipment is online and running under full load. Armed with guidelines of allowable operating temperature limits of the equipment, the technique may enhances company's, ?ability to predict equipment failure and plan corrective action before a costly shutdown, equipment damage, or personal injury occurs. Infrared thermography is an excellent condition monitoring tool to assist in the reduction of maintenance costs on mechanical, electrical and equipment. With this new capability plant maintenance personnel have recognized infrared thermography as one of the most versatile and effective condition monitoring tools available today. Infrared can be used on a wide variety of equipment including pumps, motors, bearings, pulleys, fans, drives, conveyors etc. This paper will explain the benefits of Infrared Thermography as a condition monitoring tool for plant equipment and mechanical systems and some examples of infrared thermography application is discussed. (Author)

  15. Monitored Natural Attenuation as a Remediation Strategy for Nuclear Power Plant Applications

    Science.gov (United States)

    Kim, K.; Bushart, S.

    2009-12-01

    A NRC Information Notice (IN 2006-13) was produced to inform holders of nuclear operating licenses “of the occurrence of radioactive contamination of ground water at multiple facilities due to undetected leakage from facility structures, systems, or components (SSCs) that contain or transport radioactive fluids” so that they could consider actions, as appropriate, to avoid similar problems. To reinforce their commitment to environmental stewardship the nuclear energy industry has committed to improving management of situations that have the potential to lead to the inadvertent release of radioactive fluids. This Industry Groundwater Protection Initiative, finalized in June 2007 as [NEI 07-07], calls for implementation and improvement of on-site groundwater monitoring programs and enhanced communications with stakeholders and regulators about situations related to inadvertent releases. EPRI developed its Groundwater Protection Program to provide the nuclear energy industry with the technical support needed to implement the Industry Groundwater Initiative. An objective of the EPRI Groundwater Protection Program is to provide the nuclear industry with technically sound guidance for implementing and enhancing on-site groundwater monitoring programs. EPRI, in collaboration with the EPRI Groundwater Protection Committee of utility members, developed the EPRI Groundwater Protection Guidelines for Nuclear Power Plants (EPRI Report 1015118, November 2007), which provides site-specific guidance for implementing a technically sound groundwater monitoring program. The guidance applies a graded approach for nuclear plants to tailor a technically effective and cost efficient groundwater monitoring program to the site’s hydrogeology and risk for groundwater contamination. As part of the Groundwater Protection Program, EPRI is also investigating innovative remediation technologies for addressing low-level radioactive contamination in soils and groundwater at nuclear power

  16. A synthesis of evaluation monitoring projects by the forest health monitoring program (1998-2007)

    Science.gov (United States)

    William A. Bechtold; Michael J. Bohne; Barbara L. Conkling; Dana L. Friedman

    2012-01-01

    The national Forest Health Monitoring Program of the Forest Service, U.S. Department of Agriculture, has funded over 200 Evaluation Monitoring projects. Evaluation Monitoring is designed to verify and define the extent of deterioration in forest ecosystems where potential problems have been identified. This report is a synthesis of results from over 150 Evaluation...

  17. Facility Effluent Monitoring Plan for the Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    FRAZIER, T.P.

    1999-01-01

    A facility effluent monitoring plan is required by the U. S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. To ensure the long-range integrity of the effluent monitoring systems, an update to this facility effluent monitoring plan is required whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document is reviewed annually even if there are no operational changes, and is updated, at a minimum, every 3 years

  18. Concept of a new method for fatigue monitoring of nuclear power plant components

    International Nuclear Information System (INIS)

    Zafosnik, M.; Cizelj, L.

    2007-01-01

    Fatigue is one of the well-understood aging mechanisms affecting mechanical components in many industrial facilities including nuclear power plants. Operational experience of nuclear power plants worldwide to date confirmed adequate design of safety related components against fatigue. In some cases however, for example when the plant life extension is envisioned, it may be very useful to monitor the remaining fatigue life of safety related components. Nuclear power plants components are classified into safety classes regarding their importance in mitigating the consequences of hypothetic accidents. Service life of components subjected to fatigue loading can be estimated with Usage Factor uk. A concept of the new method aiming both at monitoring the current state of the component and predicting its remaining lifetime in the life-extension conditions is presented. The method is based on determination of partial Usage Factor of components in which operating transients will be considered and compared to design transients. (author)

  19. Monitoring intervention coverage in the context of universal health coverage.

    Directory of Open Access Journals (Sweden)

    Ties Boerma

    2014-09-01

    Full Text Available Monitoring universal health coverage (UHC focuses on information on health intervention coverage and financial protection. This paper addresses monitoring intervention coverage, related to the full spectrum of UHC, including health promotion and disease prevention, treatment, rehabilitation, and palliation. A comprehensive core set of indicators most relevant to the country situation should be monitored on a regular basis as part of health progress and systems performance assessment for all countries. UHC monitoring should be embedded in a broad results framework for the country health system, but focus on indicators related to the coverage of interventions that most directly reflect the results of UHC investments and strategies in each country. A set of tracer coverage indicators can be selected, divided into two groups-promotion/prevention, and treatment/care-as illustrated in this paper. Disaggregation of the indicators by the main equity stratifiers is critical to monitor progress in all population groups. Targets need to be set in accordance with baselines, historical rate of progress, and measurement considerations. Critical measurement gaps also exist, especially for treatment indicators, covering issues such as mental health, injuries, chronic conditions, surgical interventions, rehabilitation, and palliation. Consequently, further research and proxy indicators need to be used in the interim. Ideally, indicators should include a quality of intervention dimension. For some interventions, use of a single indicator is feasible, such as management of hypertension; but in many areas additional indicators are needed to capture quality of service provision. The monitoring of UHC has significant implications for health information systems. Major data gaps will need to be filled. At a minimum, countries will need to administer regular household health surveys with biological and clinical data collection. Countries will also need to improve the

  20. Wearable Health Monitoring Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing a wearable health monitoring system for the human body that is functional, comfortable,...

  1. Wearable Health Monitoring Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing a wearable health monitoring system for the human body that is functional, comfortable,...

  2. Application of near field communication for health monitoring in daily life.

    Science.gov (United States)

    Strömmer, Esko; Kaartinen, Jouni; Pärkkä, Juha; Ylisaukko-Oja, Arto; Korhonen, Ilkka

    2006-01-01

    We study the possibility of applying an emerging RFID-based communication technology, NFC (Near Field Communication), to health monitoring. We suggest that NFC is, compared to other competing technologies, a high-potential technology for short-range connectivity between health monitoring devices and mobile terminals. We propose practices to apply NFC to some health monitoring applications and study the benefits that are attainable with NFC. We compare NFC to other short-range communication technologies such as Bluetooth and IrDA, and study the possibility of improving the usability of health monitoring devices with NFC. We also introduce a research platform for technical evaluation, applicability study and application demonstrations of NFC.

  3. Development of new plant monitoring and control system with advanced man-machine interfaces NUCAMM-80

    International Nuclear Information System (INIS)

    Sato, Hideyuki; Joge, Toshio; Miyake, Masao; Kishi, Shoichi

    1981-01-01

    BWR type nuclear power stations are the typical plants adopting central monitoring system in view of the size of the scale of system and the prevention of radiation exposure. Central control boards became large as much informations and many operating tools are concentrated on them. Recently, the unit capacity has increased, and the safety has been strengthened, therefore more improvement of the man-machine interface is required concerning the monitoring of plant operation. Hitachi Ltd. developed the central monitoring and control system for nuclear power stations ''NUCAMM-80'', concentrating related fundamental techniques such as the collection of plant informations, the expansion of automatic operation, the ergonomic re-evaluation of the arrangement of panels and subsystems, and the effective use of functional hardwares such as controlling computers and cathode ray tubes, for the purposes of improving the reliability of plant operation and the rate of operation, the reduction of the burden of operators and drastic labor saving. The fundamental policy of the development, the construction of the system, panel layout and the collection of informations, the development of the system for plant automation, the development of plant diagnosis and prevention systems, computer system and the merits of this system are described. (Kako, I.)

  4. Development of a monitoring system for a PV solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Forero, N. [Licenciatura en Fisica, Universidad Distrital, Bogota (Colombia); Hernandez, J. [Departamento de Ingenieria Electrica, Universidad Nacional de Colombia, Bogota (Colombia); Gordillo, G. [Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)

    2006-09-15

    The aim of this paper is to introduce a system developed for monitoring PV solar plants using a novel procedure based on virtual instrumentation. The measurements and processing of the data are made using high precision I/O modular field point (FP) devices as hardware, a data acquisition card as software and the package of graphic programming, LabVIEW. The system is able to store and display both the collected data of the environmental variables and the PV plant electrical output parameters, including the plant I-V curve. A relevant aspect of this work is the development of a unit that allows automatic measuring of the solar plant I-V curve using a car battery as power supply. The system has been in operation during the last two years and all its units have functioned well. (author)

  5. Development of a monitoring system for a PV solar plant

    International Nuclear Information System (INIS)

    Forero, N.; Hernandez, J.; Gordillo, G.

    2006-01-01

    The aim of this paper is to introduce a system developed for monitoring PV solar plants using a novel procedure based on virtual instrumentation. The measurements and processing of the data are made using high precision I/O modular field point (FP) devices as hardware, a data acquisition card as software and the package of graphic programming, LabVIEW. The system is able to store and display both the collected data of the environmental variables and the PV plant electrical output parameters, including the plant I-V curve. A relevant aspect of this work is the development of a unit that allows automatic measuring of the solar plant I-V curve using a car battery as power supply. The system has been in operation during the last two years and all its units have functioned well

  6. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    Science.gov (United States)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  7. Monitoring of structures: review of technologies

    International Nuclear Information System (INIS)

    2013-01-01

    Structural Health Monitoring (SHM) aims at monitoring the integrity of structures either in a continuous way or periodically. SHM is used for the monitoring of big civil works like bridges, dams, railways or critical structures like nuclear power plants or chemical plants. The sensors fixed on the structure allow an in-service monitoring. SHM gathers various technologies like ultrasound, acoustic emission, vibrations, Foucault currents...A technology based on guided ultrasonic waves (Lamb waves) appears promising for monitoring large structures made of composite materials. Another technology based on optical fibers can be used in very harsh environment and the optic fiber does not require any more sensors, the optical fiber itself being the sensor. The optical fiber is generally integrated to the structure during the construction phase. (A.C.)

  8. A technical system to improve the operational monitoring of the Zaporozhye nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, M; Carl, H; Nowak, K [Technischer Ueberwachungsverein Rheinland, Koeln (Germany). Inst. for Nuclear Engineering and Radiation Protection; Schumann, P; Seidel, A; Weiss, F P; Zschau, J

    1998-10-01

    As part of the programme implemented by the German Ministry of Environment, Nature Conservation and Reactor Safety to cooperate with the Central and Eastern European States (CEES) and the Commonwealth of Independent States (CIS) in the area of nuclear safety, a technical system to improve operational monitoring has been designed, specified and established since 1992 as a pilot project in the Zaporozhye/Ukraine nuclear power plant by Forschungszentrum Rossendorf and Technischer Ueberwachungsverein Rheinland with a significant contribution from the State Scientific and Technical Centre of the Ukrainian supervisory authority. The technical system complements existing operational checking and monitoring facilities by including modern means of information technology. It enables a continuous monitoring of the state of unit 5 in normal operation and in cases of anomalies or incidents so that when recognisable deviations from the regular plant operation occur, the Ukrainian supervisory authority can immediately inquire and if necessary impose conditions on the operator. The radiological and meteorological parameters at the nuclear power plant location are monitored to the extent necessary to assess the current radiation situation and to implement efficient emergency management measures. (orig.)

  9. A technical system to improve the operational monitoring of the Zaporozhye nuclear power plant

    International Nuclear Information System (INIS)

    Beyer, M.; Carl, H.; Nowak, K.; Schumann, P.; Seidel, A.; Weiss, F.P.; Zschau, J.

    1998-01-01

    As part of the programme implemented by the German Ministry of Environment, Nature Conservation and Reactor Safety to cooperate with the Central and Eastern European States (CEES) and the Commonwealth of Independent States (CIS) in the area of nuclear safety, a technical system to improve operational monitoring has been designed, specified and established since 1992 as a pilot project in the Zaporozhye/Ukraine nuclear power plant by Forschungszentrum Rossendorf and Technischer Ueberwachungsverein Rheinland with a significant contribution from the State Scientific and Technical Centre of the Ukrainian supervisory authority. The technical system complements existing operational checking and monitoring facilities by including modern means of information technology. It enables a continuous monitoring of the state of unit 5 in normal operation and in cases of anomalies or incidents so that when recognisable deviations from the regular plant operation occur, the Ukrainian supervisory authority can immediately inquire and if necessary impose conditions on the operator. The radiological and meteorological parameters at the nuclear power plant location are monitored to the extent necessary to assess the current radiation situation and to implement efficient emergency management measures. (orig.)

  10. A technical system to improve the operational monitoring of the Zaporozh'ye nuclear power plant

    International Nuclear Information System (INIS)

    Beyer, M.; Carl, H.; Schumann, P.; Seidel, A.; Weiss, F.-P.; Zschau, J.; Nowak, K.

    1997-01-01

    As part of a programme of cooperation with Central and Eastern European states, a technical system has been established for the Zaporozhe nuclear power plant, which complements existing operational checking and monitoring facilities with modern means of information technology. It makes it possible to continuously monitor the state of the units in normal operation and in cases of anomalies or incidents. The parameters selected for monitoring are listed, and the system of automatic evaluation at the power plant site is described in detail. Test operation of the technical system started in late 1995 and the industrial testing phase in mid-1996. (A.K.)

  11. Design and analysis of aquatic monitoring programs at nuclear power plants

    International Nuclear Information System (INIS)

    McKenzie, D.H.; Kannberg, L.D.; Gore, K.L.; Arnold, E.M.; Watson, D.G.

    1977-11-01

    This report addresses some of the problems of designing, conducting, and analyzing aquatic environmental monitoring programs for impact assessment of nuclear power plants. The concepts discussed are applicable to monitoring the effects of chemical, radioactive, or thermal effluents. The concept of control and treatment station pairs is the fundamental basis for the experimental method proposed. This concept is based on the hypothesis that the relationship between the two stations forming the pair can be estimated from the preoperational period and that this relationship holds during the operational period. Any changes observed in this relationship during the operational period are assumed to be the result of the power plant impacts. Thus, it is important that station pairs are selected so it can be assumed that they respond to natural environmental changes in a manner that maintains that relationship. The major problem in establishing the station pairs will be the location of the control station. The universal heterogeneity in the environment will prevent the establishment of identical station pairs. The requirement that the control station remain unaffected by the operation of the power plant dictates a spacial separation with its associated differences in habitat. Thus, selection of the control station will be based upon balancing the following two criteria: (1) far enough away from the plant site to be beyond the plant influence, and (2) close enough to the treatment station that the biological communities will respond to natural environmental changes consistently in the same manner

  12. Monitoring 'monitoring' and evaluating 'evaluation': an ethical framework for monitoring and evaluation in public health.

    Science.gov (United States)

    Gopichandran, Vijayaprasad; Indira Krishna, Anil Kumar

    2013-01-01

    Monitoring and evaluation (M&E) is an essential part of public health programmes. Since M&E is the backbone of public health programmes, ethical considerations are important in their conduct. Some of the key ethical considerations are avoiding conflicts of interest, maintaining independence of judgement, maintaining fairness, transparency, full disclosure, privacy and confidentiality, respect, responsibility, accountability, empowerment and sustainability. There are several ethical frameworks in public health, but none focusing on the monitoring and evaluation process. There is a need to institutionalise the ethical review of M&E proposals. A theoretical framework for ethical considerations is proposed in this paper. This proposed theoretical framework can act as the blueprint for building the capacity of ethics committees to review M&E proposals. A case study is discussed in this context. After thorough field testing, this practical and field-based ethical framework can be widely used by donor agencies, M&E teams, institutional review boards and ethics committees.

  13. Vibration monitoring of pressure vessel in Atucha-1 power plant

    International Nuclear Information System (INIS)

    Belinco, C.; Pastorini, A.; Martin Ghiselli, A.; Sacchi, M.

    1994-01-01

    The Vibration Monitoring Systems are described to obtain information about the mechanical state of different components in the main coolant system of nuclear power plants to ensure that changes in the mechanical integrity of this components are detected at an early point in time, even during operation. 9 figs

  14. Experiments with the living dead: Plants as monitors and recorders of Biosphere Geosphere interactions.

    Science.gov (United States)

    Lomax, Barry; Fraser, Wesley

    2016-04-01

    Understanding variations in the Earth's climate history will enhance our understanding of and capacity to predict future climate change. Importantly this information can then be used to reduce uncertainty around future climate change predictions. However to achieve this, it is necessary to develop well constrained and robustly tested palaeo-proxies. Plants are innately coupled to the atmosphere requiring both sunlight and CO2 to drive photosynthesis and carbon assimilation. When combined with their resilience and persistence, the study of plant responses to climate change in concert with the analysis of fossil plants offer the opportunity to monitor past atmospheric conditions and infer palaeoclimate change. In this presentation we highlight how this approach is leading to the development of mechanistic palaeoproxies tested on palaeobotanically relevant extant species showing that plant fossils can be used as both monitors and geochemical recorders of atmospheric changes.

  15. Assessing the value of structural health monitoring

    DEFF Research Database (Denmark)

    Thöns, S.; Faber, Michael Havbro

    2013-01-01

    Structural Health Monitoring (SHM) systems are designed for assisting owners and operators with information and forecasts concerning the fitness for purpose of structures and building systems. The benefit associated with the implementation of SHM may in some cases be intuitively anticipated...... as their responses and performances over their life-cycle. In addition, the quality of monitoring and the performance of possible remedial actions triggered by monitoring results are modeled probabilistically.The consequences accounted for, in principle include all consequences associated with the performance...

  16. Playing Chemical Plant Environmental Protection Games with Historical Monitoring Data.

    Science.gov (United States)

    Zhu, Zhengqiu; Chen, Bin; Reniers, Genserik; Zhang, Laobing; Qiu, Sihang; Qiu, Xiaogang

    2017-09-29

    The chemical industry is very important for the world economy and this industrial sector represents a substantial income source for developing countries. However, existing regulations on controlling atmospheric pollutants, and the enforcement of these regulations, often are insufficient in such countries. As a result, the deterioration of surrounding ecosystems and a quality decrease of the atmospheric environment can be observed. Previous works in this domain fail to generate executable and pragmatic solutions for inspection agencies due to practical challenges. In addressing these challenges, we introduce a so-called Chemical Plant Environment Protection Game (CPEP) to generate reasonable schedules of high-accuracy air quality monitoring stations (i.e., daily management plans) for inspection agencies. First, so-called Stackelberg Security Games (SSGs) in conjunction with source estimation methods are applied into this research. Second, high-accuracy air quality monitoring stations as well as gas sensor modules are modeled in the CPEP game. Third, simplified data analysis on the regularly discharging of chemical plants is utilized to construct the CPEP game. Finally, an illustrative case study is used to investigate the effectiveness of the CPEP game, and a realistic case study is conducted to illustrate how the models and algorithms being proposed in this paper, work in daily practice. Results show that playing a CPEP game can reduce operational costs of high-accuracy air quality monitoring stations. Moreover, evidence suggests that playing the game leads to more compliance from the chemical plants towards the inspection agencies. Therefore, the CPEP game is able to assist the environmental protection authorities in daily management work and reduce the potential risks of gaseous pollutants dispersion incidents.

  17. Playing Chemical Plant Environmental Protection Games with Historical Monitoring Data

    Science.gov (United States)

    Reniers, Genserik; Zhang, Laobing; Qiu, Xiaogang

    2017-01-01

    The chemical industry is very important for the world economy and this industrial sector represents a substantial income source for developing countries. However, existing regulations on controlling atmospheric pollutants, and the enforcement of these regulations, often are insufficient in such countries. As a result, the deterioration of surrounding ecosystems and a quality decrease of the atmospheric environment can be observed. Previous works in this domain fail to generate executable and pragmatic solutions for inspection agencies due to practical challenges. In addressing these challenges, we introduce a so-called Chemical Plant Environment Protection Game (CPEP) to generate reasonable schedules of high-accuracy air quality monitoring stations (i.e., daily management plans) for inspection agencies. First, so-called Stackelberg Security Games (SSGs) in conjunction with source estimation methods are applied into this research. Second, high-accuracy air quality monitoring stations as well as gas sensor modules are modeled in the CPEP game. Third, simplified data analysis on the regularly discharging of chemical plants is utilized to construct the CPEP game. Finally, an illustrative case study is used to investigate the effectiveness of the CPEP game, and a realistic case study is conducted to illustrate how the models and algorithms being proposed in this paper, work in daily practice. Results show that playing a CPEP game can reduce operational costs of high-accuracy air quality monitoring stations. Moreover, evidence suggests that playing the game leads to more compliance from the chemical plants towards the inspection agencies. Therefore, the CPEP game is able to assist the environmental protection authorities in daily management work and reduce the potential risks of gaseous pollutants dispersion incidents. PMID:28961188

  18. Playing Chemical Plant Environmental Protection Games with Historical Monitoring Data

    Directory of Open Access Journals (Sweden)

    Zhengqiu Zhu

    2017-09-01

    Full Text Available The chemical industry is very important for the world economy and this industrial sector represents a substantial income source for developing countries. However, existing regulations on controlling atmospheric pollutants, and the enforcement of these regulations, often are insufficient in such countries. As a result, the deterioration of surrounding ecosystems and a quality decrease of the atmospheric environment can be observed. Previous works in this domain fail to generate executable and pragmatic solutions for inspection agencies due to practical challenges. In addressing these challenges, we introduce a so-called Chemical Plant Environment Protection Game (CPEP to generate reasonable schedules of high-accuracy air quality monitoring stations (i.e., daily management plans for inspection agencies. First, so-called Stackelberg Security Games (SSGs in conjunction with source estimation methods are applied into this research. Second, high-accuracy air quality monitoring stations as well as gas sensor modules are modeled in the CPEP game. Third, simplified data analysis on the regularly discharging of chemical plants is utilized to construct the CPEP game. Finally, an illustrative case study is used to investigate the effectiveness of the CPEP game, and a realistic case study is conducted to illustrate how the models and algorithms being proposed in this paper, work in daily practice. Results show that playing a CPEP game can reduce operational costs of high-accuracy air quality monitoring stations. Moreover, evidence suggests that playing the game leads to more compliance from the chemical plants towards the inspection agencies. Therefore, the CPEP game is able to assist the environmental protection authorities in daily management work and reduce the potential risks of gaseous pollutants dispersion incidents.

  19. Evaluation of Haddam Neck (Connecticut Yankee) Nuclear Power Plant, environmental impact prediction, based on monitoring programs

    International Nuclear Information System (INIS)

    Gore, K.L.; Thomas, J.M.; Kannberg, L.D.; Mahaffey, J.A.; Waton, D.G.

    1976-12-01

    A study was undertaken by the U.S. Nuclear Regulatory Commission (NRC) to evaluate the nonradiological environmental data obtained from three nuclear power plants operating for a period of one year or longer. The document presented reports the second of three nuclear power plants to be evaluated in detail by Battelle, Pacific Northwest Laboratories. Haddam Neck (Connecticut Yankee) Nuclear Power Plant nonradiological monitoring data were assessed to determine their effectiveness in the measurement of environmental impacts. Efforts were made to determine if: (1) monitoring programs, as designed, can detect environmental impacts, (2) appropriate statistical analyses were performed and if they were sensitive enough to detect impacts, (3) predicted impacts could be verified by monitoring programs, and (4) monitoring programs satisfied the requirements of the Environmental Technical Specifications. Both preoperational and operational monitoring data were examined to test the usefulness of baseline information in evaluating impacts. This included an examination of the methods used to measure ecological, chemical, and physical parameters, and an assessment of sampling periodicity and sensitivity where appropriate data sets were available. From this type of analysis, deficiencies in both preoperational and operational monitoring programs may be identified and provide a basis for suggested improvement

  20. Environmental monitoring in Finland 2006-2008

    International Nuclear Information System (INIS)

    Niemi, J.

    2006-01-01

    This publication presents environmental monitoring carried out in Finland in 2006-2008. It is a summary of the environmental monitoring activities of the following national institutes: Geological Survey of Finland, Finnish Meteorological Institute, National Public Health Institute, Plant Production Inspection Centre, Finnish Museum of Natural History, Agrifood Research Finland, Finnish Institute of Marine Research, Finnish Forest Research Institute, Information Centre of the Ministry of Agriculture and Forestry, Finnish Game and Fisheries Research Institute, Radiation and Nuclear Safety Authority, Ministry of Social Affairs and Health, Statistics Finland, Finnish Environment Institute, and Regional Environment Centres. Monitoring of natural resources, environmental pressures, state of the environment, water and health, land use and environmental policy are presented. The objective was to compile the information on national environmental monitoring and to activate information exchange and cooperation in this field. (orig.)

  1. Environmental monitoring report, 1978: Pinellas Plant

    International Nuclear Information System (INIS)

    1979-04-01

    Effluent and environmental monitoring programs maintained by the Pinellas Plant are designed to determine efficiencies of treatment and control mechanisms; to provide measurements of discharge concentrations for comparison with applicable standards; and to assess the concentrations of these discharges in the environment. Small quantities of tritium gas, tritium oxide and krypton-85 gas were released from the plant during the year. Average maximum ground level concentrations of these radioisotopes were all significantly less than 1/10 of 1 percent of the recommended guide for continuous nonoccupational exposure. Off-site releases of liquid effluents were analyzed for compliance with NPDES permit issues for this site by the U.S. Environmental protection Agency. Analyses were performed fo biochemical oxygen demand, suspended solids, fecal coliform bacteria, pH, nitrogen, phosphorus, arsenic, chlorides, chromium, copper, cyanides, detergents, fluorides, iron, lead, mercury, oil plus greases, phenols, turbidity and zinc. All results with the exception of suspended solids were well within permit limits. Site perimeter and off-site air samples for tritium gas and tritium oxide, as well as off-site surface water samples obtained to distances of 9.6 kilometers from the plant site and analyzed for tritium content, showed levels significantly less than 1/10 of 1 percent of the recommended guide for continuous nonoccupational exposure. Calculations were made to determine the radiation doses resulting from releases of tritium oxide and krypton-85 to: an individual at the site boundary; individuals in the closest residential area; and the population within 80 kilometers of the plant site. Calculated doses are exceedingly small when compared to the recommended standards. The total dose commitment to the population residing within 80 kilometers was determined to be 0.40 man-rem as compared to annual dose from natural radiation of 210,747 man-rem

  2. Environmental monitoring report, 1980: Pinellas Plant

    International Nuclear Information System (INIS)

    1981-03-01

    Results of the monitoring program at the Pinellas Plant are described. Small quantities of tritium gas, tritium oxide, carbon-14 labeled solvent and krypton-85 gas were released from the plant during the year. Average maximum ground level concentrations of these radioisotopes were all significantly less than 0.1% of the recommended guide for continuous nonoccupational exposure. Off-site releases of liquid effluents were analyzed for compliance with the National Pollutant Discharge Elimination System (NPDES). Analyses were performed for biochemical oxygen demand, suspended solids, fecal coliform bacteria, pH, nitrogen, phosphorus, arsenic, chlorides, chromium, copper, cyanides, detergents, fluorides, iron, lead, mercury, oil plus greases, phenols, turbidity, and zinc. In addition to the non-radioactive parameters listed above, a small quantity of radioactive tritium oxide was released in the effluent. Analyses showed the average concentration was 0.20% of the nonoccupational exposure guide. Site perimeter and off-site air samples for tritium gas and tritium oxide, as well as off-site surface water samples obtained to distance of 9.6 kilometers (6 miles) from the plant site and analyzed for tritium content, showed levels significantly less than 0.1% of the recommended guide for continuous nonoccupational exposure. Small sealed plutonium sources containing approximately 80% plutonium-238 oxide and 20% plutonium-239 oxide and other isotopes, are utilized at this site. No plutonium was released to the environment.Calculations were made to determine the radiation doses resulting from releases of tritium oxide, 85 Kr, and 14 C to: an individual at the site boundary; individuals in the closest residential area; and the population within 80 kilometers (50 miles) of the plant site. The total dose commitment to the population residing within 80 kilometers was determined to be 0.55 man-rem as compared to the annual dose from natural radiation of 223,165 man-rem

  3. Pinellas Plant environmental monitoring report, 1981

    International Nuclear Information System (INIS)

    1982-03-01

    The effluent and environmental monitoring programs maintained by the Pinellas Plant are designed to determine the efficiencies of treatment and control mechanisms, to provide measurements of discharge concentrations for comparison with applicable standards, and to assess the concentrations of these discharges in the environment. Small quantities of tritium gas, tritium oxide, carbon-14 labeled solvent and krypton-85 gas were released from the plant during the year. Average maximum ground level concentrations of these radioisotopes were all significantly less than 1/10 of 1% of the standard for continuous nonoccupational exposure. Off-site releases of liquid effluents were analyzed for compliance with the National Pollutant Discharge Elimination System (NPDES) permit issued for this site. Analyses were performed for biochemical oxygen demand, suspended solids, fecal coliform bacteria, pH, nitrogen, phosphorus, arsenic, chlorides, chromium, copper, cyanides, detergents, fluorides, iron, lead, mercury, oil plus greases, phenols, turbidity and zinc. Excursions above permit limits were experienced in the results for suspended solids, fecal coliforms, iron and mercury. In addition to the non-radioactive parameters listed, a small quantity of radioactive tritium oxide was released in the effluent. Analyses showed the average concentration was 0.43% of the nonoccupational standard. Site perimeter and off-site air samples for tritium gas and tritium oxide, as well as off-site surface water samples obtained to distance of 9.6 kilometers from the plant site and analyzed for tritium content, showed levels significantly less than 1/10 of 1% of the standard for continuous nonoccupational exposure. Calculation were made to determine the radiation doses resulting from releases of tritium oxide, krypton-85 and carbon-14 to: an individual at the site boundary; individuals in the closest residential area; and the population within 80 kilometers (50 miles) of the plant site

  4. Mobile Patient Monitoring: the MobiHealth System

    NARCIS (Netherlands)

    Konstantas, D.; van Halteren, Aart; Bults, Richard G.A.; Wac, K.E.; Widya, I.A.; Dokovski, N.T.; Jones, Valerie M.; Dokovsky, Nicolai; Koprinkov, G.T.; Herzog, Rainer; Bos, L.; Laxminarayan, S.

    2004-01-01

    The forthcoming wide availability of high bandwidth public wireless networks will give rise to new mobile health care services. Towards this direction the MobiHealth1 project has developed and trialed a highly customisable vital signals’ monitoring system based on a Body Area Network (BAN) and an

  5. Scoping review: national monitoring frameworks for social determinants of health and health equity

    Directory of Open Access Journals (Sweden)

    Leo Pedrana

    2016-02-01

    Full Text Available Background: The strategic importance of monitoring social determinants of health (SDH and health equity and inequity has been a central focus in global discussions around the 2011 Rio Political Declaration on SDH and the Millennium Development Goals. This study is part of the World Health Organization (WHO equity-oriented analysis of linkages between health and other sectors (EQuAL project, which aims to define a framework for monitoring SDH and health equity. Objectives: This review provides a global summary and analysis of the domains and indicators that have been used in recent studies covering the SDH. These studies are considered here within the context of indicators proposed by the WHO EQuAL project. The objectives are as follows: to describe the range of international and national studies and the types of indicators most frequently used; report how they are used in causal explanation of the SDH; and identify key priorities and challenges reported in current research for national monitoring of the SDH. Design: We conducted a scoping review of published SDH studies in the PubMed® database to obtain evidence of socio-economic indicators. We evaluated, selected, and extracted data from national scale studies published from 2004 to 2014. The research included papers published in English, Italian, French, Portuguese, and Spanish. Results: The final sample consisted of 96 articles. SDH monitoring is well reported in the scientific literature independent of the economic level of the country and magnitude of deprivation in population groups. The research methods were mostly quantitative and many papers used multilevel and multivariable statistical analyses and indexes to measure health inequalities and SDH. In addition to the usual economic indicators, a high number of socio-economic indicators were used. The indicators covered a broad range of social dimensions, which were given consideration within and across different social groups. Many

  6. Scoping review: national monitoring frameworks for social determinants of health and health equity.

    Science.gov (United States)

    Pedrana, Leo; Pamponet, Marina; Walker, Ruth; Costa, Federico; Rasella, Davide

    2016-01-01

    The strategic importance of monitoring social determinants of health (SDH) and health equity and inequity has been a central focus in global discussions around the 2011 Rio Political Declaration on SDH and the Millennium Development Goals. This study is part of the World Health Organization (WHO) equity-oriented analysis of linkages between health and other sectors (EQuAL) project, which aims to define a framework for monitoring SDH and health equity. This review provides a global summary and analysis of the domains and indicators that have been used in recent studies covering the SDH. These studies are considered here within the context of indicators proposed by the WHO EQuAL project. The objectives are as follows: to describe the range of international and national studies and the types of indicators most frequently used; report how they are used in causal explanation of the SDH; and identify key priorities and challenges reported in current research for national monitoring of the SDH. We conducted a scoping review of published SDH studies in the PubMed(®) database to obtain evidence of socio-economic indicators. We evaluated, selected, and extracted data from national scale studies published from 2004 to 2014. The research included papers published in English, Italian, French, Portuguese, and Spanish. The final sample consisted of 96 articles. SDH monitoring is well reported in the scientific literature independent of the economic level of the country and magnitude of deprivation in population groups. The research methods were mostly quantitative and many papers used multilevel and multivariable statistical analyses and indexes to measure health inequalities and SDH. In addition to the usual economic indicators, a high number of socio-economic indicators were used. The indicators covered a broad range of social dimensions, which were given consideration within and across different social groups. Many indicators included in the WHO EQuAL framework were not

  7. Fissile material holdup monitoring in the PREPP [Process Experimental Pilot Plant] process

    International Nuclear Information System (INIS)

    Becker, G.K.; Pawelko, R.J.

    1989-01-01

    The Process Experimental Pilot Plant (PREPP) is an incineration system designed to thermally process mixed transuranic (TRU) waste and TRU contaminated low-level waste. The TRU isotopic composition is that of weapons grade plutonium (Pu) which necessitates that criticality prevention measures by incorporated into the plant design and operation. Criticality safety in the PREPP process is assured through the utilization of mass and moderation control in conjunction with favorable vessel geometries. The subject of this paper concerns the Pu mass holdup instrumentation system which is an integral part of the inprocess mass control strategy. Plant vessels and components requiring real-time mass holdup measurements were selected based on their evaluated potential for achieving physically credible Pu mass loadings and associated parameters which could lead to a criticality event. If the parameters requisite to a criticality occurrence could not physically be achieved under credible plant conditions, the particular location only required periodic portable holdup monitoring. Based on these analyses five real-time holdup monitoring locations were identified for criticality assurance purposes. An additional real-time instrument is part of the system but serves primarily in the capacity of providing operational support data. 1 fig

  8. Efficient color correction method for smartphone camera-based health monitoring application.

    Science.gov (United States)

    Duc Dang; Chae Ho Cho; Daeik Kim; Oh Seok Kwon; Jo Woon Chong

    2017-07-01

    Smartphone health monitoring applications are recently highlighted due to the rapid development of hardware and software performance of smartphones. However, color characteristics of images captured by different smartphone models are dissimilar each other and this difference may give non-identical health monitoring results when the smartphone health monitoring applications monitor physiological information using their embedded smartphone cameras. In this paper, we investigate the differences in color properties of the captured images from different smartphone models and apply a color correction method to adjust dissimilar color values obtained from different smartphone cameras. Experimental results show that the color corrected images using the correction method provide much smaller color intensity errors compared to the images without correction. These results can be applied to enhance the consistency of smartphone camera-based health monitoring applications by reducing color intensity errors among the images obtained from different smartphones.

  9. Detection and monitoring of invasive exotic plants: a comparison of four sampling methods

    Science.gov (United States)

    Cynthia D. Huebner

    2007-01-01

    The ability to detect and monitor exotic invasive plants is likely to vary depending on the sampling method employed. Methods with strong qualitative thoroughness for species detection often lack the intensity necessary to monitor vegetation change. Four sampling methods (systematic plot, stratified-random plot, modified Whittaker, and timed meander) in hemlock and red...

  10. Prototype equipment status monitor for plant operational configuration management

    International Nuclear Information System (INIS)

    DeVerno, M.; Trask, D.; Groom, S.

    1998-01-01

    CANDU plants, such as the Point Lepreau GS, have tens of thousands of operable devices. The status of each operable device must be immediately available to plan and execute future changes to the plant. Historically, changes to the plant's operational configuration have been controlled using manual and administrative methods where the status of each operable device is maintained on operational flowsheets located in the work control area of the main control room. The operational flowsheets are used to plan and develop Operating Orders (OOs) or Order-to-Operate (OTOs) and the control centre work processes are used to manage their execution. After performing each OO procedure, the operational flowsheets are updated to reflect the new plant configuration. This process can be very time consuming, and due to the manual processes, can lead to the potential for time lags and errors in the recording of the current plant configuration. Through a cooperative research and development program, Canadian CANDU utilities and Atomic Energy of Canada Limited, the design organization, have applied modern information technologies to develop a prototype Equipment Status Monitor (ESM) to address processes and information flow for efficient operational configuration management. The ESM integrates electronic operational flowsheets, equipment databases, engineering and work management systems, and computerized procedures to assess, plan, execute, track, and record changes to the plant's operational configuration. This directly leads to improved change control, more timely and accurate plant status information, fewer errors, and better decision making regarding future changes. These improvements to managing the plant's operational configuration are essential to increasing plant safety, achieving a high plant availability, and maintaining high capability and capacity factors. (author)

  11. Integrating Social Media Monitoring Into Public Health Emergency Response Operations.

    Science.gov (United States)

    Hadi, Tamer A; Fleshler, Keren

    2016-10-01

    Social media monitoring for public health emergency response and recovery is an essential response capability for any health department. The value of social media for emergency response lies not only in the capacity to rapidly communicate official and critical incident information, but as a rich source of incoming data that can be gathered to inform leadership decision-making. Social media monitoring is a function that can be formally integrated into the Incident Command System of any response agency. The approach to planning and required resources, such as staffing, logistics, and technology, is flexible and adaptable based on the needs of the agency and size and scope of the emergency. The New York City Department of Health and Mental Hygiene has successfully used its Social Media Monitoring Team during public health emergency responses and planned events including major Ebola and Legionnaires' disease responses. The concepts and implementations described can be applied by any agency, large or small, interested in building a social media monitoring capacity. (Disaster Med Public Health Preparedness. 2016;page 1 of 6).

  12. Nuclear power plant monitoring and control system software: verification and validation

    International Nuclear Information System (INIS)

    Kaneda, M.; Niki, K.; Shibata, K.

    1986-01-01

    The design philosophy, configuration, and production of process computer system software used for the monitoring and control of nuclear power plants are presented in detail. To achieve a very complex software system that not only has excellent performance, high reliability, and full fail safe protection, but also is easy to produce, verify, and validate, and has flexibility for future modifications, we developed the following software production system to support safe operation of nuclear power stations. The fundamental design philosophy of our monitoring and control system software is the complete separation of program logic from the data base. The logic section is highly standardized and applicable to a wide range of power generation plant computer application systems. The plant-unique properties and characteristics are all described in the data base. This separation of logic and data base has a dramatic effect on the reliability and productivity of the software system. One of the main features of the data base system is the use of easy-to-learn, easy-to-use, problem-oriented language that enables non-programmers to build up the data base using simple fill-in-the-blank type tables. The generation of these tables is fully automated, and the full set of online table editing utility software, which runs on the target plant process computer, has proven very effective in incorporation of changes and modifications at the site. (author)

  13. Architectures of Remote Monitoring Systems for a Nuclear Power Plant

    International Nuclear Information System (INIS)

    Choi, Yoo Rark; Lee, Jae Cheol; Kim, Jae Hee

    2006-01-01

    Aina(Artificial Intelligence for Nuclear Applications) have developed remote monitoring systems since the 1990's. We have been interested in the safety of reactor vessel, steam generator, pipes, valves and pumps. We have developed several remote inspection systems and will develop some remote care systems for a nuclear power plant. There were critical problems for building remote monitoring systems for mass data processing and remote user interface techniques in the middle of the 1990's. The network capacity wasn't sufficient to transfer the monitoring data to a remote computer. Various computer operating systems require various remote user interfaces. Java provides convenient and powerful interface facilities and the network transfer speed was increased greatly in the 2000's. Java is a good solution for a remote user interface but it can't work standalone in remote monitoring applications. The restrictions of Java make it impossible to build real time based applications. We use Java and a traditional language to improve this problem. We separate the remote user interface and the monitoring application

  14. Radiation exposure control by estimation of multiplication factors for online remote radiation monitoring systems at vitrification plant

    International Nuclear Information System (INIS)

    Deokar, U.V.; Kulkarni, V.V.; Khot, A.R.; Mathew, P.; Kamlesh; Purohit, R.G.; Sarkar, P.K.

    2012-01-01

    Vitrification Plant is commissioned for vitrification of high level liquid waste (HLW) generated in nuclear fuel cycle operations by using Joule Heated Ceramic Melter first time in India. Exposure control is a major concern in operating plant. Therefore in addition to installed monitors, we have developed online remote radiation monitoring system to minimize number of entries in amber areas and to reduce the exposure to the surveyor and operator. This also helped in volume reduction of secondary waste. The reliability and accuracy of the online monitoring system is confirmed with actual measurements and by theoretical shielding calculations. The multiplication factors were estimated for remote on line monitoring of Melter Off Gas (MOG) filter, Hood filter, three exhaust filter banks, and over-pack monitoring. This paper summarizes - how the online remote monitoring system helped in saving of 128.52 person-mSv collective dose (14.28% of budgeted dose). The system also helped in the reduction of 2.6 m 3 of Cat-I waste. Our online remote monitoring system has helped the plant management to plan in advance for replacement of these filters, which resulted in considerable saving in collective dose and secondary waste

  15. Device-based monitoring in physical activity and public health research

    International Nuclear Information System (INIS)

    Bassett, David R

    2012-01-01

    Measurement of physical activity is important, given the vital role of this behavior in physical and mental health. Over the past quarter of a century, the use of small, non-invasive, wearable monitors to assess physical activity has become commonplace. This review is divided into three sections. In the first section, a brief history of physical activity monitoring is provided, along with a discussion of the strengths and weaknesses of different devices. In the second section, recent applications of physical activity monitoring in physical activity and public health research are discussed. Wearable monitors are being used to conduct surveillance, and to determine the extent and distribution of physical activity and sedentary behaviors in populations around the world. They have been used to help clarify the dose–response relation between physical activity and health. Wearable monitors that provide feedback to users have also been used in longitudinal interventions to motivate research participants and to assess their compliance with program goals. In the third section, future directions for research in physical activity monitoring are discussed. It is likely that new developments in wearable monitors will lead to greater accuracy and improved ease-of-use. (paper)

  16. Reliability analysis of operator's monitoring behavior in digital main control room of nuclear power plants and its application

    International Nuclear Information System (INIS)

    Zhang Li; Hu Hong; Li Pengcheng; Jiang Jianjun; Yi Cannan; Chen Qingqing

    2015-01-01

    In order to build a quantitative model to analyze operators' monitoring behavior reliability of digital main control room of nuclear power plants, based on the analysis of the design characteristics of digital main control room of a nuclear power plant and operator's monitoring behavior, and combining with operators' monitoring behavior process, monitoring behavior reliability was divided into three parts including information transfer reliability among screens, inside-screen information sampling reliability and information detection reliability. Quantitative calculation model of information transfer reliability among screens was established based on Senders's monitoring theory; the inside screen information sampling reliability model was established based on the allocation theory of attention resources; and considering the performance shaping factor causality, a fuzzy Bayesian method was presented to quantify information detection reliability and an example of application was given. The results show that the established model of monitoring behavior reliability gives an objective description for monitoring process, which can quantify the monitoring reliability and overcome the shortcomings of traditional methods. Therefore, it provides theoretical support for operator's monitoring behavior reliability analysis in digital main control room of nuclear power plants and improves the precision of human reliability analysis. (authors)

  17. 9 CFR 113.6 - Animal and Plant Health Inspection Service testing.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Animal and Plant Health Inspection Service testing. 113.6 Section 113.6 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Applicability § 113.6 Animal and Plant Health Inspection Service testing. A...

  18. Environmental monitoring in the vicinity of the Savannah River Plant. Annual report, 1974

    International Nuclear Information System (INIS)

    1974-01-01

    The results obtained from the environmental monitoring program at the Savannah River Plant during 1974 are presented. An inventory of radioactive materials released to the environment, and data on radioactivity in samples of surface air, surface waters, soil, plants, and food are included. Data are also included on pesticides in Savannah River sediment. (U.S.)

  19. Development of a Wireless Sensor Network for Individual Monitoring of Panels in a Photovoltaic Plant

    Directory of Open Access Journals (Sweden)

    Miguel J. Prieto

    2014-01-01

    Full Text Available With photovoltaic (PV systems proliferating in the last few years due to the high prices of fossil fuels and pollution issues, among others, it is extremely important to monitor the efficiency of these plants and optimize the energy production process. This will also result in improvements related to the maintenance and security of the installation. In order to do so, the main parameters in the plant must be continuously monitored so that the appropriate actions can be carried out. This monitoring should not only be carried out at a global level, but also at panel-level, so that a better understanding of what is actually happening in the PV plant can be obtained. This paper presents a system based on a wireless sensor network (WSN that includes all the components required for such monitoring as well as a power supply obtaining the energy required by the sensors from the photovoltaic panels. The system proposed succeeds in identifying all the nodes in the network and provides real-time monitoring while tracking efficiency, features, failures and weaknesses from a single cell up to the whole infrastructure. Thus, the decision-making process is simplified, which contributes to reducing failures, wastes and, consequently, costs.

  20. Development of a wireless sensor network for individual monitoring of panels in a photovoltaic plant.

    Science.gov (United States)

    Prieto, Miguel J; Pernía, Alberto M; Nuño, Fernando; Díaz, Juan; Villegas, Pedro J

    2014-01-30

    With photovoltaic (PV) systems proliferating in the last few years due to the high prices of fossil fuels and pollution issues, among others, it is extremely important to monitor the efficiency of these plants and optimize the energy production process. This will also result in improvements related to the maintenance and security of the installation. In order to do so, the main parameters in the plant must be continuously monitored so that the appropriate actions can be carried out. This monitoring should not only be carried out at a global level, but also at panel-level, so that a better understanding of what is actually happening in the PV plant can be obtained. This paper presents a system based on a wireless sensor network (WSN) that includes all the components required for such monitoring as well as a power supply obtaining the energy required by the sensors from the photovoltaic panels. The system proposed succeeds in identifying all the nodes in the network and provides real-time monitoring while tracking efficiency, features, failures and weaknesses from a single cell up to the whole infrastructure. Thus, the decision-making process is simplified, which contributes to reducing failures, wastes and, consequently, costs.

  1. Vibration monitoring and fault diagnostics of a thermal power plant

    International Nuclear Information System (INIS)

    Hafeez, T.; Ghani, R.; Chohan, G.Y.; Amir, M.

    2003-01-01

    A thermal power plant was monitored from HP-turbine to the generator end. The vibration data at different plant locations was obtained with the help of a data collector/analyzer. The spectra of-all locations generate the symptoms for different problems of moderate and high vibration levels like bent shaft, misalignment in the exciter rotor and three couplings, mechanical looseness on generator and exciter sides. The possible causes of these faults are discussed on the basis of presented vibration spectra in this paper. The faults were later on rectified on the basis of this diagnostics. (author)

  2. National Environmental Radiation Warning And Monitoring Network And Proposed Radiation Monitoring Programme For The 1st Nuclear Power Plant Ninth Thuan

    International Nuclear Information System (INIS)

    Vuong Thu Bac

    2011-01-01

    National Environmental Radiation Warning and Monitoring Network has been gradually setting up based on some of legislative documents which have been issued in recent years. Studies and surveys to build an environmental radiation monitoring program for nuclear power plant (NPP) have also been implemented. This paper aims to introduce National Environmental Radiation Warning and Monitoring Network in Vietnam which has been approved by the government, the draft program for environmental radiation monitoring Ninh Thuan NPP and some initial results of research about environmental radiation in the planning area for building first NPP in Vietnam. (author)

  3. Environmental monitoring at the Savannah River Plant. Annual report, 1979

    International Nuclear Information System (INIS)

    Ashley, C.; Zeigler, C.C.; Culp, P.A.; Smith, D.L.

    1982-11-01

    An extensive surveillance program has been maintained since 1951 to determine the concentrations of radionuclides in a 1200 square mile area in the environs of the plant and the radiation exposure of the population resulting from SRP operations. This document summarizes the 1979 results. The radiation dose at the plant perimeter and the population dose in the region from SRP operations are very small relative to the dose recieved from naturally occurring radiation. The annual average dose in 1979 from atmospheric releases of radioactive materials was 0.71 mrem at the perimeter (1% of natural background). The maximum dose at the plant perimeter was 0.97 mrem. Air and water are the major dispersal media for radioactive emissions. Samples representing most segments of the environment were monitored. Releases of radioactivity from SRP had a very small effect on living plants and animals and were too minute to be detectable, and with a few exceptions, concentrations outside the plant boundary were too low to distinguish from the natural radioactive background and continuing worldwide fallout from nuclear weapons tests. 40 figures, 60 tables. (MF)

  4. Evaluation of Millstone Nuclear Power Plant, Environmental Impact prediction, based on monitoring programs

    International Nuclear Information System (INIS)

    Gore, K.L.; Thomas, J.M.; Kannberg, L.D.; Watson, D.G.

    1977-02-01

    This report evaluates the nonradiological monitoring program at Millstone Nuclear Power Plant. Both operational as well as preoperational monitoring programs were analyzed to produce long-term (5 yr or longer) data sets, where possible. In order to determine the effectiveness of these monitoring programs, the appropriate data sets have to be analyzed by the appropriate statistical analysis. Thus, both open literature and current statistical analysis being developed at Pacific Northwest Laboratories (PNL) were employed in data analysis

  5. Evaluation of Millstone Nuclear Power Plant, Environmental Impact prediction, based on monitoring programs

    Energy Technology Data Exchange (ETDEWEB)

    Gore, K.L.; Thomas, J.M.; Kannberg, L.D.; Watson, D.G.

    1977-02-01

    This report evaluates the nonradiological monitoring program at Millstone Nuclear Power Plant. Both operational as well as preoperational monitoring programs were analyzed to produce long-term (5 yr or longer) data sets, where possible. In order to determine the effectiveness of these monitoring programs, the appropriate data sets have to be analyzed by the appropriate statistical analysis. Thus, both open literature and current statistical analysis being developed at Pacific Northwest Laboratories (PNL) were employed in data analysis.

  6. Three-Dimensional Health Monitoring of Sandwich Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project delivers a single-chip structural health-monitoring (SHM) system that uses the impedance method to monitor bulk interiors and wave propagation...

  7. Pinellas Plant environmental monitoring report, 1983

    International Nuclear Information System (INIS)

    1984-04-01

    The results of the effluent and environmental monitoring programs are presented. Small quantities of tritium gas, tritium oxide, carbon-14 labeled solvent and krypton-85 gas were released from the plant during the year. Average maximum ground level concentrations of these radioisotopes were all less than 3/10 of 1 percent of the standard for continuous nonoccupational exposure. The plant's combined sanitary and industrial liquid effluents were analyzed for arsenic, barium, biochemical oxygen demand, boron, cadmium, total chromium, trivalent chromium, hexavalent chromium, copper, cyanide, iron, lead, manganese, mercury, nickel, phenolics, selenium, silver, sulfides, suspended solids and zinc. Small quantities of radioactive tritium were released to the POTW and from the East Pond. Analyses showed the levels were less than 1/10 of one percent of the applicable standards. Site perimeter and off-site air samples for tritium gas and tritium oxide, as well as off-site surface water samples obtained to distance of 9.6 kilometers (6 miles) from the plant site and analyzed for tritium content, showed levels significantly less than 1/10 of 1 percent of the standard for continuous nonoccupational exposure. Calculations were made to determine the radiation doses resulting from releases of tritium oxide, krypton-85 and carbon-14. The calculated doses are exceedingly small when compared to the applicable standards. The total dose commitment to the population residing within 80 kilometers (50 miles) was determined to be 0.40 man-rem as compared to the annual dose from natural radiation of 243,117 man-rem. 10 references, 3 figures, 12 tables

  8. Smart Materials in Structural Health Monitoring, Control and Biomechanics

    CERN Document Server

    Soh, Chee-Kiong; Bhalla, Suresh

    2012-01-01

    "Smart Materials in Structural Health Monitoring, Control and Biomechanics" presents the latest developments in structural health monitoring, vibration control and biomechanics using smart materials. The book mainly focuses on piezoelectric, fibre optic and ionic polymer metal composite materials. It introduces concepts from the very basics and leads to advanced modelling (analytical/ numerical), practical aspects (including software/ hardware issues) and case studies spanning civil, mechanical and aerospace structures, including bridges, rocks and underground structures. This book is intended for practicing engineers, researchers from academic and R&D institutions and postgraduate students in the fields of smart materials and structures, structural health monitoring, vibration control and biomedical engineering. Professor Chee-Kiong Soh and Associate Professor Yaowen Yang both work at the School of Civil and Environmental Engineering, Nanyang Technological University, Singapore. Dr. Suresh Bhalla is an A...

  9. Forest health monitoring: 2005 national technical report

    Science.gov (United States)

    Mark J. Ambrose; Barbara L. Conkling

    2007-01-01

    The Forest Health Monitoring program's annual national technical report presents results of forest health analyses from a national perspective using data from a variety of sources. The report is organized according to the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests of the Santiago Declaration. The results...

  10. Forest health monitoring: 2006 national technical report

    Science.gov (United States)

    Mark J. Ambrose; Barbara L. Conkling

    2009-01-01

    The Forest Health Monitoring Program’s annual national technical report presents results of forest health analyses from a national perspective using data from a variety of sources. The report is organized according to the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests of the...

  11. Framework for Structural Online Health Monitoring of Aging and Degradation of Secondary Systems due to some Aspects of Erosion

    Energy Technology Data Exchange (ETDEWEB)

    Gribok, Andrei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Patnaik, Sobhan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williams, Christian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pattanaik, Marut [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kanakala, Raghunath [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants. The report also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real-time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long-range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.

  12. Framework for Structural Online Health Monitoring of Aging and Degradation of Secondary Systems due to some Aspects of Erosion

    International Nuclear Information System (INIS)

    Gribok, Andrei; Patnaik, Sobhan; Williams, Christian; Pattanaik, Marut; Kanakala, Raghunath

    2016-01-01

    This report describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants. The report also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real-time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long-range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.

  13. Intelligent Control and Health Monitoring. Chapter 3

    Science.gov (United States)

    Garg, Sanjay; Kumar, Aditya; Mathews, H. Kirk; Rosenfeld, Taylor; Rybarik, Pavol; Viassolo, Daniel E.

    2009-01-01

    Advanced model-based control architecture overcomes the limitations state-of-the-art engine control and provides the potential of virtual sensors, for example for thrust and stall margin. "Tracking filters" are used to adapt the control parameters to actual conditions and to individual engines. For health monitoring standalone monitoring units will be used for on-board analysis to determine the general engine health and detect and isolate sudden faults. Adaptive models open up the possibility of adapting the control logic to maintain desired performance in the presence of engine degradation or to accommodate any faults. Improved and new sensors are required to allow sensing at stations within the engine gas path that are currently not instrumented due in part to the harsh conditions including high operating temperatures and to allow additional monitoring of vibration, mass flows and energy properties, exhaust gas composition, and gas path debris. The environmental and performance requirements for these sensors are summarized.

  14. A demonstration of on-line plant corrosion monitoring using thin layer activation

    International Nuclear Information System (INIS)

    Asher, J.; Webb, J.W.; Wilkins, N.J.M.; Lawrence, P.F.; UKAEA Atomic Energy Research Establishment, Harwell. Materials Development Div.)

    1981-12-01

    The corrosion of a 1 inch water pipe in an evaporative cooling system has been monitored over three periods of plant operation using thin layer activation (TLA). The corrosion rate was followed at a sensitivity of about 1 μm and clearly reflected changes in plant operation. Examination of the test section after removal, both by autoradiography and metallography revealed the extent of corrosion and pitting over the active area. (author)

  15. Experience in monitoring ageing phenomena for improving nuclear power plant availability. Proceedings of a specialists' meeting. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    For more than thirty years nuclear power plants have been supplying electricity to national grids. Today, the nuclear power community is facing great challenges. The safe, reliable operation of existing nuclear power plants (NPPs) must continue to be ensured. From an economic viewpoint, because of the long lead times associated with bringing new plants into service, securing the continued operation of existing plants for their planned lifetimes and possible life extension will be very important in the near term for meeting electrical power demands. The IAEA programmes in nuclear power plant ageing and life extension and in control and instrumentation promote technical information exchange between Member States with new programmes, offers assistance to Member States with an interest in reliability of NPP components, in-service inspection methods and programmes using on-line techniques, component monitoring and special technological topics of nuclear reactors. Significant experience already exists in the nuclear industry in developing and applying the monitoring techniques for different nuclear power plant applications, especially in monitoring of ageing phenomena for improving NPP availability. The purpose of this Specialists' Meeting was to bring together experts from operations, design, research and development and licensing to share their experience in: ageing mechanics of key structural components, methods of monitoring such ageing, tools for cost-effective implementation of the methods and methodologies, life management approaches and examples from current reactors, future direction for monitoring of key structural components in nuclear power plants. The meeting was organized by the IAEA International Working Groups on Life Management of Nuclear Power Plants (IWG-LMNPP) and Nuclear Power Plant Control and Instrumentation (TWG-NPPCI) in co-operation with the Czechoslovak Atomic Energy Commission and Skoda concern. Around 40 participants from 10 countries.

  16. Experience in monitoring ageing phenomena for improving nuclear power plant availability. Proceedings of a specialists' meeting. Working material

    International Nuclear Information System (INIS)

    1992-01-01

    For more than thirty years nuclear power plants have been supplying electricity to national grids. Today, the nuclear power community is facing great challenges. The safe, reliable operation of existing nuclear power plants (NPPs) must continue to be ensured. From an economic viewpoint, because of the long lead times associated with bringing new plants into service, securing the continued operation of existing plants for their planned lifetimes and possible life extension will be very important in the near term for meeting electrical power demands. The IAEA programmes in nuclear power plant ageing and life extension and in control and instrumentation promote technical information exchange between Member States with new programmes, offers assistance to Member States with an interest in reliability of NPP components, in-service inspection methods and programmes using on-line techniques, component monitoring and special technological topics of nuclear reactors. Significant experience already exists in the nuclear industry in developing and applying the monitoring techniques for different nuclear power plant applications, especially in monitoring of ageing phenomena for improving NPP availability. The purpose of this Specialists' Meeting was to bring together experts from operations, design, research and development and licensing to share their experience in: ageing mechanics of key structural components, methods of monitoring such ageing, tools for cost-effective implementation of the methods and methodologies, life management approaches and examples from current reactors, future direction for monitoring of key structural components in nuclear power plants. The meeting was organized by the IAEA International Working Groups on Life Management of Nuclear Power Plants (IWG-LMNPP) and Nuclear Power Plant Control and Instrumentation (TWG-NPPCI) in co-operation with the Czechoslovak Atomic Energy Commission and Skoda concern. Around 40 participants from 10 countries

  17. Physical health care monitoring for people with serious mental illness.

    Science.gov (United States)

    Tosh, Graeme; Clifton, Andrew V; Xia, Jun; White, Margueritte M

    2014-01-17

    Current guidance suggests that we should monitor the physical health of people with serious mental illness, and there has been a significant financial investment over recent years to provide this. To assess the effectiveness of physical health monitoring, compared with standard care for people with serious mental illness. We searched the Cochrane Schizophrenia Group Trials Register (October 2009, update in October 2012), which is based on regular searches of CINAHL, EMBASE, MEDLINE and PsycINFO. All randomised clinical trials focusing on physical health monitoring versus standard care, or comparing i) self monitoring versus monitoring by a healthcare professional; ii) simple versus complex monitoring; iii) specific versus non-specific checks; iv) once only versus regular checks; or v) different guidance materials. Initially, review authors (GT, AC, SM) independently screened the search results and identified three studies as possibly fulfilling the review's criteria. On examination, however, all three were subsequently excluded. Forty-two additional citations were identified in October 2012 and screened by two review authors (JX and MW), 11 of which underwent full screening. No relevant randomised trials which assess the effectiveness of physical health monitoring in people with serious mental illness have been completed. We identified one ongoing study. There is still no evidence from randomised trials to support or refute current guidance and practice. Guidance and practice are based on expert consensus, clinical experience and good intentions rather than high quality evidence.

  18. Real-time health monitoring of civil infrastructure systems in Colombia

    Science.gov (United States)

    Thomson, Peter; Marulanda Casas, Johannio; Marulanda Arbelaez, Johannio; Caicedo, Juan

    2001-08-01

    Colombia's topography, climatic conditions, intense seismic activity and acute social problems place high demands on the nations deteriorating civil infrastructure. Resources that are available for maintenance of the road and railway networks are often misdirected and actual inspection methods are limited to a visual examination. New techniques for inspection and evaluation of safety and serviceability of civil infrastructure, especially bridges, must be developed. Two cases of civil structures with health monitoring systems in Colombia are presented in this paper. Construction of the Pereria-Dos Quebradas Viaduct was completed in 1997 with a total cost of 58 million dollars, including 1.5 million dollars in health monitoring instrumentation provided and installed by foreign companies. This health monitoring system is not yet fully operational due to the lack of training of national personnel in system operation and extremely limited technical documentation. In contrast to the Pereria-Dos Quebradas Viaduct monitoring system, the authors have proposed a relatively low cost health monitoring system via telemetry. This system has been implemented for real-time monitoring of accelerations of El Hormiguero Bridge spanning the Cauca River using the Colombian Southwest Earthquake Observatory telemetry systems. This two span metallic bridge, located along a critical road between the cities of Puerto Tejada and Cali in the Cauca Valley, was constructed approximately 50 years ago. Experiences with this system demonstrate how effective low cost systems can be used to remotely monitor the structural integrity of deteriorating structures that are continuously subject to high loading conditions.

  19. 'Virtual' monitoring in LabVIEW 8 and process simulation of the cryogenic pilot plant

    International Nuclear Information System (INIS)

    Moraru, Carmen Maria; Stefan, Iuliana; Balteanu, Ovidiu; Bucur, Ciprian; Stefan, Liviu; Bornea, Anisia; Stefanescu, Ioan

    2007-01-01

    Full text: The implementation of the new software and hardware's technologies for tritium processing nuclear plants, and especially those with an experimental character or of new technology developments shows a coefficient of complexity due to issues raised by the use of the performing instrumentation and equipment into a unitary monitoring system of the nuclear technological process of tritium removal. Keeping the system's flexibility is a demand of the nuclear experimental plants for which the change of configuration, process and parameters is something usual. The big amount of data that needs to be processed, stored and accessed for real time simulation and optimization demands the achievement of the virtual technologic platform where the data acquiring, control and analysis systems of the technological process can be integrated with a developed technological monitoring system. Thus, integrated computing and monitoring systems needed for the supervising of the technological process will be carried out, and continued with the optimization of the system, by choosing new and performing methods corresponding to the technological processes within the tritium removal processing nuclear plants. The developing software applications is carried out by means of the program packages dedicated to industrial processes and they will include acquisition and monitoring sub-modules, named 'virtual' as well as the storage sub-module of the process data later required for the software of optimization and simulation of the technological process for tritium removal. The system plays an important role in the environment protection and sustainable development through new technologies, that is - the reduction of and fight against industrial accidents in the case of tritium processing nuclear plants. Research for monitoring optimization of nuclear processes is also a major driving force for economic and social development. (authors)

  20. Diagnosis and on-line displacement monitoring for critical pipe of fossil power plant

    Energy Technology Data Exchange (ETDEWEB)

    Heo, J. S.; Hyun, J. S. [Korea Electric Power Corporation, Seoul (Korea, Republic of); Heo, J. R.; Lee, S. K.; Cho, S. Y. [Korea South-East Power Co., Ltd., Seoul (Korea, Republic of)

    2009-07-01

    High temperature steam pipes of fossil power plant are subject to a severe thermal range and usually operates well into the creep range. Cyclic operation of the plant subjects the piping system to mechanical and thermal fatigue mechanisms and poor or malfunctional support assemblies can impose massive loads or stress onto the piping system. In order to prevent the serious damage and failure of the critical pipe system, various inspection methods such as visual inspection, computational analysis and on-line piping displacement monitoring were developed. 3-Dimensional piping displacement monitoring system was developed with using he aluminum alloy rod and rotary encoder type sensors, this system was installed and operated on the 'Y' fossil power plant successfully. It is expected that this study will contribute to the safety of piping system, which could minimize stress and extend the actual life of critical piping.

  1. [Monitoring social determinants of health].

    Science.gov (United States)

    Espelt, Albert; Continente, Xavier; Domingo-Salvany, Antonia; Domínguez-Berjón, M Felicitas; Fernández-Villa, Tania; Monge, Susana; Ruiz-Cantero, M Teresa; Perez, Glòria; Borrell, Carme

    2016-11-01

    Public health surveillance is the systematic and continuous collection, analysis, dissemination and interpretation of health-related data for planning, implementation and evaluation of public health initiatives. Apart from the health system, social determinants of health include the circumstances in which people are born, grow up, live, work and age, and they go a long way to explaining health inequalities. A surveillance system of the social determinants of health requires a comprehensive and social overview of health. This paper analyses the importance of monitoring social determinants of health and health inequalities, and describes some relevant aspects concerning the implementation of surveillance during the data collection, compilation and analysis phases, as well as dissemination of information and evaluation of the surveillance system. It is important to have indicators from sources designed for this purpose, such as continuous records or periodic surveys, explicitly describing its limitations and strengths. The results should be published periodically in a communicative format that both enhances the public's ability to understand the problems that affect them, whilst at the same time empowering the population, with the ultimate goal of guiding health-related initiatives at different levels of intervention. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Smart homes and home health monitoring technologies for older adults: A systematic review.

    Science.gov (United States)

    Liu, Lili; Stroulia, Eleni; Nikolaidis, Ioanis; Miguel-Cruz, Antonio; Rios Rincon, Adriana

    2016-07-01

    Around the world, populations are aging and there is a growing concern about ways that older adults can maintain their health and well-being while living in their homes. The aim of this paper was to conduct a systematic literature review to determine: (1) the levels of technology readiness among older adults and, (2) evidence for smart homes and home-based health-monitoring technologies that support aging in place for older adults who have complex needs. We identified and analyzed 48 of 1863 relevant papers. Our analyses found that: (1) technology-readiness level for smart homes and home health monitoring technologies is low; (2) the highest level of evidence is 1b (i.e., one randomized controlled trial with a PEDro score ≥6); smart homes and home health monitoring technologies are used to monitor activities of daily living, cognitive decline and mental health, and heart conditions in older adults with complex needs; (3) there is no evidence that smart homes and home health monitoring technologies help address disability prediction and health-related quality of life, or fall prevention; and (4) there is conflicting evidence that smart homes and home health monitoring technologies help address chronic obstructive pulmonary disease. The level of technology readiness for smart homes and home health monitoring technologies is still low. The highest level of evidence found was in a study that supported home health technologies for use in monitoring activities of daily living, cognitive decline, mental health, and heart conditions in older adults with complex needs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Adaptive Multichannel Radiation Sensors for Plant Parameter Monitoring

    Science.gov (United States)

    Mollenhauer, Hannes; Remmler, Paul; Schuhmann, Gudrun; Lausch, Angela; Merbach, Ines; Assing, Martin; Mollenhauer, Olaf; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    Nutrients such as nitrogen are playing a key role in the plant life cycle. They are much needed for chlorophyll production and other plant cell components. Therefore, the crop yield is strongly affected by plant nutrient status. Due to the spatial and temporal variability of soil characteristics or swaying agricultural inputs the plant development varies within a field. Thus, the determination of these fluctuations in the plant development is valuable for a detection of stress conditions and optimization of fertilisation due to its high environmental and economic impact. Plant parameters play crucial roles in plant growth estimation and prediction since they are used as indicators of plant performance. Especially indices derived out of remote sensing techniques provide quantitative information about agricultural crops instantaneously, and above all, non-destructively. Due to the specific absorption of certain plant pigments, a characteristic spectral signature can be seen in the visible and IR part of the electromagnetic spectrum, known as narrow-band peaks. In an analogous manner, the presence and concentration of different nutrients cause a characteristic spectral signature. To this end, an adequate remote sensing monitoring concept is needed, considering heterogeneity and dynamic of the plant population and economical aspects. This work will present the development and field investigations of an inexpensive multichannel radiation sensor to observe the incoming and reflected specific parts or rather distinct wavelengths of the solar light spectrum on the crop and facilitate the determination of different plant indices. Based on the selected sensor wavelengths, the sensing device allows the detection of specific parameters, e.g. plant vitality, chlorophyll content or nitrogen content. Besides the improvement of the sensor characteristic, the simple wavelength adaption, and the price-performance ratio, the achievement of appropriate energy efficiency as well as a

  4. People, plants and health: a conceptual framework for assessing changes in medicinal plant consumption

    Directory of Open Access Journals (Sweden)

    Smith-Hall Carsten

    2012-11-01

    Full Text Available Abstract Background A large number of people in both developing and developed countries rely on medicinal plant products to maintain their health or treat illnesses. Available evidence suggests that medicinal plant consumption will remain stable or increase in the short to medium term. Knowledge on what factors determine medicinal plant consumption is, however, scattered across many disciplines, impeding, for example, systematic consideration of plant-based traditional medicine in national health care systems. The aim of the paper is to develop a conceptual framework for understanding medicinal plant consumption dynamics. Consumption is employed in the economic sense: use of medicinal plants by consumers or in the production of other goods. Methods PubMed and Web of Knowledge (formerly Web of Science were searched using a set of medicinal plant key terms (folk/peasant/rural/traditional/ethno/indigenous/CAM/herbal/botanical/phytotherapy; each search terms was combined with terms related to medicinal plant consumption dynamics (medicinal plants/health care/preference/trade/treatment seeking behavior/domestication/sustainability/conservation/urban/migration/climate change/policy/production systems. To eliminate studies not directly focused on medicinal plant consumption, searches were limited by a number of terms (chemistry/clinical/in vitro/antibacterial/dose/molecular/trial/efficacy/antimicrobial/alkaloid/bioactive/inhibit/antibody/purification/antioxidant/DNA/rat/aqueous. A total of 1940 references were identified; manual screening for relevance reduced this to 645 relevant documents. As the conceptual framework emerged inductively, additional targeted literature searches were undertaken on specific factors and link, bringing the final number of references to 737. Results The paper first defines the four main groups of medicinal plant users (1. Hunter-gatherers, 2. Farmers and pastoralists, 3. Urban and peri-urban people, 4. Entrepreneurs and

  5. People, plants and health: a conceptual framework for assessing changes in medicinal plant consumption.

    Science.gov (United States)

    Smith-Hall, Carsten; Larsen, Helle Overgaard; Pouliot, Mariève

    2012-11-13

    A large number of people in both developing and developed countries rely on medicinal plant products to maintain their health or treat illnesses. Available evidence suggests that medicinal plant consumption will remain stable or increase in the short to medium term. Knowledge on what factors determine medicinal plant consumption is, however, scattered across many disciplines, impeding, for example, systematic consideration of plant-based traditional medicine in national health care systems. The aim of the paper is to develop a conceptual framework for understanding medicinal plant consumption dynamics. Consumption is employed in the economic sense: use of medicinal plants by consumers or in the production of other goods. PubMed and Web of Knowledge (formerly Web of Science) were searched using a set of medicinal plant key terms (folk/peasant/rural/traditional/ethno/indigenous/CAM/herbal/botanical/phytotherapy); each search terms was combined with terms related to medicinal plant consumption dynamics (medicinal plants/health care/preference/trade/treatment seeking behavior/domestication/sustainability/conservation/urban/migration/climate change/policy/production systems). To eliminate studies not directly focused on medicinal plant consumption, searches were limited by a number of terms (chemistry/clinical/in vitro/antibacterial/dose/molecular/trial/efficacy/antimicrobial/alkaloid/bioactive/inhibit/antibody/purification/antioxidant/DNA/rat/aqueous). A total of 1940 references were identified; manual screening for relevance reduced this to 645 relevant documents. As the conceptual framework emerged inductively, additional targeted literature searches were undertaken on specific factors and link, bringing the final number of references to 737. The paper first defines the four main groups of medicinal plant users (1. Hunter-gatherers, 2. Farmers and pastoralists, 3. Urban and peri-urban people, 4. Entrepreneurs) and the three main types of benefits (consumer, producer

  6. Structural health monitoring an advanced signal processing perspective

    CERN Document Server

    Chen, Xuefeng; Mukhopadhyay, Subhas

    2017-01-01

    This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.

  7. Plasma, a plant safety monitoring and assessment system for VVER-440 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hornaes, A.; Hulsund, J. E. [Institutt for energiteknikk (IFE), OECD Halden Reactor Project, Halden (Norway); Lipcsei, S.; Major, Cs.; Racz, A.; Vegh, J. [KFKI, Atomic Energy Research Institute, Budapest (Hungary); Eiler, J. [Paks, Nuclear Power Plant Ltd, Paks (Hungary)

    1999-05-15

    The objective with the Plant Safety Monitoring and Assessment System (PLASMA) is to develop an operator support system to support the execution of new symptom-based Emergency Operating Procedures for application in VVER reactors, with the Paks NPP in Hungary as the target plant. Many of the VVER reactors are rewriting their EOPs to comply more with Western standards of symptom-based EOPs. In this connection it is desirable to improve the data validation, information integration and presentation for operators when executing the EOPs. The entry-point to a symptom-oriented procedure is defined by the occurrence of a well-defined reactor operation status, with all its symptoms. However, the application of the EOF benefits from an operator support system, which performs plant status and symptom identification reliably and accurately. The development of the PLASMA system is a joint venture between Institutt for energiteknikk (IFE) and KFKI with the NPP Paks as the target plant. The project has been initiated and partly funded by the Science and Technology Agency (STA), Japan through the OECD NEA assistance program. In Hungary, considerable effort has concentrated on the safety reassessment of the Paks NPP and new EOPs are being written, but no comprehensive Operator Support System (OSS) for plant safety assessment is installed. Some safety parameter display functions are incorporated into diverse operator support systems, but an online 'plant safety monitoring and assessment system' is still missing. The present project comprises designing, constructing, testing and installing such an OSS, which to a great extent could support plant operators in their safety assessment work (author) (ml)

  8. Panorama Image Processing for Condition Monitoring with Thermography in Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Byoung Joon; Kim, Tae Hwan; Kim, Soon Geol; Mo, Yoon Syub [UNETWARE, Seoul (Korea, Republic of); Kim, Won Tae [Kongju National University, Gongju (Korea, Republic of)

    2010-04-15

    In this paper, imaging processing study obtained from CCD image and thermography image was performed in order to treat easily thermographic data without any risks of personnel who conduct the condition monitoring for the abnormal or failure status occurrable in industrial power plants. This imaging processing is also applicable to the predictive maintenance. For confirming the broad monitoring, a methodology producting single image from the panorama technique was developed no matter how many cameras are employed, including fusion method for discrete configuration for the target. As results, image fusion from quick realtime processing was obtained and it was possible to save time to track the location monitoring in matching the images between CCTV and thermography

  9. Panorama Image Processing for Condition Monitoring with Thermography in Power Plant

    International Nuclear Information System (INIS)

    Jeon, Byoung Joon; Kim, Tae Hwan; Kim, Soon Geol; Mo, Yoon Syub; Kim, Won Tae

    2010-01-01

    In this paper, imaging processing study obtained from CCD image and thermography image was performed in order to treat easily thermographic data without any risks of personnel who conduct the condition monitoring for the abnormal or failure status occurrable in industrial power plants. This imaging processing is also applicable to the predictive maintenance. For confirming the broad monitoring, a methodology producting single image from the panorama technique was developed no matter how many cameras are employed, including fusion method for discrete configuration for the target. As results, image fusion from quick realtime processing was obtained and it was possible to save time to track the location monitoring in matching the images between CCTV and thermography

  10. Advanced health monitor for automated driving functions

    OpenAIRE

    Mikovski Iotov, I.

    2017-01-01

    There is a trend in the automotive domain where driving functions are taken from the driver by automated driving functions. In order to guarantee the correct behavior of these auto-mated driving functions, the report introduces an Advanced Health Monitor that uses Tem-poral Logic and Probabilistic Analysis to indicate the system’s health.

  11. Monitoring the radioactivity in the secondary systems of a nuclear power plant

    International Nuclear Information System (INIS)

    Labno, L.

    1979-01-01

    The direct water/steam circuit and the waste water and exhaust air systems of a nuclear power plant with boiling water reactor are slightly contaminated with radioactive nuclides during normal operation. In addition some auxiliary and subsidiary systems may show evidence of radioactivity as a result of leakages between the systems. These radioactive substances and those which are discharged to the environment in exhaust air or waste water - although present in quantities far below the admissible limits - still require supervision by a comprehensive activity monitoring system. The article sets out the concept and the technical solution adopted for the activity monitoring system for the secondary section of a nuclear power station. The system is so designed that it provides the information and performs the safety functions important for highly reliable plant operation. Particular importance has been attached to the reliability and dependability of the system, so that incorrect interpretations or reports, such as have been experienced, for example, in the nuclear power plants 'Brunsbuettel' (Federal Republic of Germany) and 'Three Mile Island', near Harrisburg (USA), will not be repeated. (Auth.)

  12. Gas-phase UF6 enrichment monitor for enrichment plant safeguards

    International Nuclear Information System (INIS)

    Strittmatter, R.B.; Tape, J.W.

    1980-03-01

    An in-line enrichment monitor is being developed to provide real-time enrichment data for the gas-phase UF 6 feed stream of an enrichment plant. The nondestructive gamma-ray assay method can be used to determine the enrichment of natural UF 6 with a relative precision of better than 1% for a wide range of pressures

  13. Plant operation monitoring method and device therefor

    International Nuclear Information System (INIS)

    Ando, Tsugio; Matsuki, Tsutomu.

    1997-01-01

    The present invention provides a method of and a device for monitoring the operation of a nuclear power plant during operation, which improves the safety and reliability of operation without increasing an operator's burden. Namely, a chief in charge orally instruct an operation to an operator upon the operation of a plant constituent equipment. The operator points the equipment and calls the name. Actual operation instruction for the equipment is inputted after confirmation by oral response. The voices of theses series of operation instruction/point-calling/response confirmation are taken into a voice recognition processing device. The processing device discriminates each of the person who calls, and discriminates the content of the calls and objective equipments to be operated. Then, the series of procedures and contents of the operation for the equipments previously disposed in the data base are compared with the order of inputted calls, discriminated contents and the objective equipments to be operated. If they are not agreed with each other, the operation instruction is blocked even if actual operation instructions are inputted. (I.S.)

  14. NOKIA - nuclear power plant monitoring system

    International Nuclear Information System (INIS)

    Anon.

    The monitoring system is described developed specially for the LOVIISA-1 and -2 nuclear power plants with two WWER-440 units. The multiprocessor system of the WWER-440 contains 3 identical main computers. The in core instrumentation is based on stationary self-powered neutron detectors and on thermocouples for measuring the coolant temperature. The system has equipment for the automatic control of the insulation resistance of the self-powered detectors. It is also equipped with a wide range of standard and special programmes. The standard programmes permit the recording of analog and digital data at different frequencies depending on the pre-set requirements. These data are processed and form data files which are accessible from all programmes. The heart of the special programme is a code for the determination of the power distribution in the core of the WWER-440 reactor. The main part of the programme is the algorithm for computing measured neutron fluxes derived from the signals of the self-powered detectors and the algorithm for deriving the global distribution of the neutron flux in the core. The computed power distribution is used for the determination of instantaneous thermal loads and the distribution of burnup in the core. The production programme of the FINNATOM company for nuclear power plants is listed. (B.S.)

  15. In situ health monitoring of piezoelectric sensors

    Science.gov (United States)

    Jensen, Scott L. (Inventor); Drouant, George J. (Inventor)

    2013-01-01

    An in situ health monitoring apparatus may include an exciter circuit that applies a pulse to a piezoelectric transducer and a data processing system that determines the piezoelectric transducer's dynamic response to the first pulse. The dynamic response can be used to evaluate the operating range, health, and as-mounted resonance frequency of the transducer, as well as the strength of a coupling between the transducer and a structure and the health of the structure.

  16. Do invasive plant species alter soil health?

    Science.gov (United States)

    Invasive species may alter soil characteristics or interact with the soil microbial community to yield a competitive advantage. Our objectives were to determine: if invasive plant species alter soil properties important to soil health; and the long-term effects of invasive plant species on soil pro...

  17. Monitoring equipment environment during nuclear plant operation at Salem and Hope Creek generating stations

    International Nuclear Information System (INIS)

    Blum, A.; Smith, R.J.

    1991-01-01

    Monitoring of environmental parameters has become a significant issue for operating nuclear power plants. While the long-term benefits of plant life extension programs are being pursued with comprehensive environmental monitoring programs, the potential effect of local hot spots at various plant locations needs to be evaluated for its effect on equipment degradation and shortening of equipment qualified life. A significant benefit can be experienced from temperature monitoring when a margin exists between the design versus actual operating temperature. This margin can be translated into longer equipment qualified life and significant reduction in maintenance activities. At PSE and G, the immediate need for monitoring environmental parameters is being accomplished via the use of a Logic Beach Bitlogger. The Bitlogger is a portable data loggings system consisting of a system base, input modules and a communication software package. Thermocouples are installed on selected electrical equipment and cables are run from the thermocouples to the input module of the Bitlogger. Temperature readings are taken at selected intervals, stored in memory, and downloaded periodically to a PC software program, i.e., Lotus. The data is formatted into tabular or graphical documents. Because of their versatility, Bitloggers are being used differently at the authors Nuclear facility. At the Salem Station (2 Units-4 loop Westinghouse PWR), a battery powered, fully portable, calibrated Bitlogger is located in an accessible area inside Containment where it monitors the temperature of various electrical equipment within the Pressurizer Enclosure. It is planned that close monitoring of the local hot spot temperatures in this area will allow them to adjust and reconcile the environmental qualification of the equipment

  18. System Identification of Wind Turbines for Structural Health Monitoring

    DEFF Research Database (Denmark)

    Perisic, Nevena

    Structural health monitoring is a multi-disciplinary engineering field that should allow the actual wind turbine maintenance programmes to evolve to the next level, hence increasing safety and reliability and decreasing turbines downtime. The main idea is to have a sensing system on the structure...... cases are considered, two practical problems from the wind industry are studied, i.e. monitoring of the gearbox shaft torque and the tower root bending moments. The second part of the thesis is focused on the influence of friction on the health of the wind turbine and on the nonlinear identification...... that monitors the system responses and notifies the operator when damages or degradations have been detected. However, some of the response signals that contain important information about the health of the wind turbine components cannot be directly measured, or measuring them is highly complex and costly...

  19. Regional Geographic Information Systems of Health and Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Kurolap Semen A.

    2016-12-01

    Full Text Available The article describes a new scientific and methodological approach to designing geographic information systems of health and environmental monitoring for urban areas. Geographic information systems (GIS are analytical tools of the regional health and environmental monitoring; they are used for an integrated assessment of the environmental status of a large industrial centre or a part of it. The authors analyse the environmental situation in Voronezh, a major industrial city, located in the Central Black Earth Region with a population of more than 1 million people. The proposed research methodology is based on modern approaches to the assessment of health risks caused by adverse environmental conditions. The research work was implemented using a GIS and multicriteria probabilistic and statistical evaluation to identify cause-and-effect links, a combination of action and reaction, in the dichotomy ‘environmental factors — public health’. The analysis of the obtained statistical data confirmed an increase in childhood diseases in some areas of the city. Environmentally induced diseases include congenital malformations, tumors, endocrine and urogenital pathologies. The main factors having an adverse impact on health are emissions of carcinogens into the atmosphere and the negative impact of transport on the environment. The authors identify and characterize environmentally vulnerable parts of the city and developed principles of creating an automated system of health monitoring and control of environmental risks. The article offers a number of measures aimed at the reduction of environmental risks, better protection of public health and a more efficient environmental monitoring.

  20. Introduction to: The Forest Health monitoring program

    Science.gov (United States)

    Barbara L. Conkling

    2011-01-01

    The National Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, produces an annual technical report on forest health as one of its products. The report is organized using the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests (Montréal Process Working Group 2007) as a...

  1. The condition monitoring system of turbine system components for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, Shigetoshi

    2013-01-01

    The thermal and nuclear power plants have been imposed a stable supply of electricity. To certainly achieve this, we built the plant condition monitoring system based on the heat and mass balance calculation. If there are some performance changes on the turbine system components of their power plants, the heat and mass balance of the turbine system will change. This system has ability to detect the abnormal signs of their components by finding the changes of the heat and mass balance. Moreover we note that this system is built for steam turbine cycle operating with saturated steam conditions. (author)

  2. Monitoring and Benchmarking eHealth in the Nordic Countries.

    Science.gov (United States)

    Nøhr, Christian; Koch, Sabine; Vimarlund, Vivian; Gilstad, Heidi; Faxvaag, Arild; Hardardottir, Gudrun Audur; Andreassen, Hege K; Kangas, Maarit; Reponen, Jarmo; Bertelsen, Pernille; Villumsen, Sidsel; Hyppönen, Hannele

    2018-01-01

    The Nordic eHealth Research Network, a subgroup of the Nordic Council of Ministers eHealth group, is working on developing indicators to monitor progress in availability, use and outcome of eHealth applications in the Nordic countries. This paper reports on the consecutive analysis of National eHealth policies in the Nordic countries from 2012 to 2016. Furthermore, it discusses the consequences for the development of indicators that can measure changes in the eHealth environment arising from the policies. The main change in policies is reflected in a shift towards more stakeholder involvement and intensified focus on clinical infrastructure. This change suggests developing indicators that can monitor understandability and usability of eHealth systems, and the use and utility of shared information infrastructure from the perspective of the end-users - citizens/patients and clinicians in particular.

  3. Microbiological Monitoring in Geothermal Plants

    Science.gov (United States)

    Alawi, M.; Lerm, S.; Linder, R.; Vetter, A.; Vieth-Hillebrand, A.; Miethling-Graff, R.; Seibt, A.; Wolfgramm, M.; Wuerdemann, H.

    2010-12-01

    In the scope of the research projects “AquiScreen” and “MiProTherm” we investigated geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. On one side an enhanced process understanding of engineered geothermal systems is mandatory to optimize plant reliability and economy, on the other side this study provides insights into the microbiology of terrestrial thermal systems. Geothermal systems located in the North German Basin and the Molasse Basin were analyzed by sampling of fluids and solid phases. The investigated sites were characterized by different temperatures, salinities and potential microbial substrates. The microbial population was monitored by the use of genetic fingerprinting techniques and PCR-cloning based on PCR-amplified 16S rRNA and dissimilatory sulfite reductase (DSR) genes. DNA-sequences of fingerprints and cloned PCR-products were compared to public databases and correlated with metabolic classes to provide information about the biogeochemical processes. In all investigated geothermal plants, covering a temperature range from 5° to 120°C, microorganisms were found. Phylogenetic gene analyses indicate a broad diversity of microorganisms adapted to the specific conditions in the engineered system. Beside characterized bacteria like Thermus scotoductus, Siderooxidans lithoautotrophicus and the archaeon Methanothermobacter thermoautotrophicus a high number of so far uncultivated microorganisms was detected. As it is known that - in addition to abiotic factors - microbes like sulfate-reducing bacteria (SRB) are involved in the processes of corrosion and scaling in plant components, we identified SRB by specific analyses of DSR genes. The SRB detected are closely related to thermotolerant and thermophilic species of Desulfotomaculum, Thermodesulfovibrio, Desulfohalobium and Thermodesulfobacterium, respectively. Overall, the detection of microbes known to be involved in biocorrosion and the

  4. Situation-assessment and decision-aid production-rule analysis system for nuclear plant monitoring and emergency preparedness

    International Nuclear Information System (INIS)

    Gvillo, D.; Ragheb, M.; Parker, M.; Swartz, S.

    1987-01-01

    A Production-Rule Analysis System is developed for Nuclear Plant Monitoring. The signals generated by the Zion-1 Plant are considered. A Situation-Assessment and Decision-Aid capability is provided for monitoring the integrity of the Plant Radiation, the Reactor Coolant, the Fuel Clad, and the Containment Systems. A total of 41 signals are currently fed as facts to an Inference Engine functioning in the backward-chaining mode and built along the same structure as the E-Mycin system. The Goal-Tree constituting the Knowledge Base was generated using a representation in the form of Fault Trees deduced from plant procedures information. The system is constructed in support of the Data Analysis and Emergency Preparedness tasks at the Illinois Radiological Emergency Assessment Center (REAC)

  5. Situation-Assessment And Decision-Aid Production-Rule Analysis System For Nuclear Plant Monitoring And Emergency Preparedness

    Science.gov (United States)

    Gvillo, D.; Ragheb, M.; Parker, M.; Swartz, S.

    1987-05-01

    A Production-Rule Analysis System is developed for Nuclear Plant Monitoring. The signals generated by the Zion-1 Plant are considered. A Situation-Assessment and Decision-Aid capability is provided for monitoring the integrity of the Plant Radiation, the Reactor Coolant, the Fuel Clad, and the Containment Systems. A total of 41 signals are currently fed as facts to an Inference Engine functioning in the backward-chaining mode and built along the same structure as the E-Mycin system. The Goal-Tree constituting the Knowledge Base was generated using a representation in the form of Fault Trees deduced from plant procedures information. The system is constructed in support of the Data Analysis and Emergency Preparedness tasks at the Illinois Radiological Emergency Assessment Center (REAC).

  6. Capacity building for health inequality monitoring in Indonesia: enhancing the equity orientation of country health information system.

    Science.gov (United States)

    Hosseinpoor, Ahmad Reza; Nambiar, Devaki; Tawilah, Jihane; Schlotheuber, Anne; Briot, Benedicte; Bateman, Massee; Davey, Tamzyn; Kusumawardani, Nunik; Myint, Theingi; Nuryetty, Mariet Tetty; Prasetyo, Sabarinah; Suparmi; Floranita, Rustini

    Inequalities in health represent a major problem in many countries, including Indonesia. Addressing health inequality is a central component of the Sustainable Development Goals and a priority of the World Health Organization (WHO). WHO provides technical support for health inequality monitoring among its member states. Following a capacity-building workshop in the WHO South-East Asia Region in 2014, Indonesia expressed interest in incorporating health-inequality monitoring into its national health information system. This article details the capacity-building process for national health inequality monitoring in Indonesia, discusses successes and challenges, and how this process may be adapted and implemented in other countries/settings. We outline key capacity-building activities undertaken between April 2016 and December 2017 in Indonesia and present the four key outcomes of this process. The capacity-building process entailed a series of workshops, meetings, activities, and processes undertaken between April 2016 and December 2017. At each stage, a range of stakeholders with access to the relevant data and capacity for data analysis, interpretation and reporting was engaged with, under the stewardship of state agencies. Key steps to strengthening health inequality monitoring included capacity building in (1) identification of the health topics/areas of interest, (2) mapping data sources and identifying gaps, (3) conducting equity analyses using raw datasets, and (4) interpreting and reporting inequality results. As a result, Indonesia developed its first national report on the state of health inequality. A number of peer-reviewed manuscripts on various aspects of health inequality in Indonesia have also been developed. The capacity-building process undertaken in Indonesia is designed to be adaptable to other contexts. Capacity building for health inequality monitoring among countries is a critical step for strengthening equity-oriented national health

  7. Monitoring of emissions and immissions from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, H J [Rheinisch-Westfaelisches Elektrizitaetswerk A.G., Biblis (Germany, F.R.). Betriebsverwaltung

    1977-02-01

    The measurement of the emission and immission of radionuclides from nuclear power stations has already been established with the inception of the peaceful uses of atomic energy. Since then it has been a firm feature of the monitoring of effects of nuclear power plants on the environment. The considerations and procedures on which the measurement programs are based are described. The ecological behaviour of radionuclides is illustrated with the aid of examples.

  8. Results and experiences from environmental monitoring at Rheinsberg nuclear power plant

    International Nuclear Information System (INIS)

    Ettenhuber, E.; Loennig, M.; Hoffmann, M.L.; Roehnsch, W.; Babenzien, C.; Lehmann, R.; Schreiter, W.D.

    1975-12-01

    The paper presents the routine monitoring program at the Rheinsberg nuclear power plant including the methods applied therein. On the basis of data gathered during 1966 to 1973 it is shown, that the impact of nuclear power plant operation on the radioactivity level of the examined environmental media was exceedingly small compared to that of global fallout. Therefore only by means of a system based on assessment of radiation exposure from effluent data and environmental surveillance is it possible to prove the observance of maximum permissible values to individual members of the public. (author)

  9. Morus nigra plant leaves as biomonitor for elemental air pollution monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Daud, M.; Khalid, N.; Waheed, S.; Wasim, M.; Arif, M.; Zaidi, J.H. [Pakistan Institute of Nuclear Science and Technology, Islamabad (Pakistan). Chemistry Div.

    2011-07-01

    The present paper deals with the determination of 36 elements in 120 leaf samples of Morus nigra plant to assess their potential as biomonitor for elemental air pollution monitoring. The elemental quantification was made by employing Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectrometric (AAS) techniques. The leaf samples were collected in spring, summer and winter seasons from various sites in Islamabad with different types of anthropogenic activities as well as from a reference site with minimum of such activities. Twenty four soil samples from the respective sites were also analyzed. The reliability of the adopted procedures was established by analyzing the certified reference materials, i.e., citrus leaves-1572 and soil-7, from NIST and IAEA, respectively, under identical experimental conditions and comparing the results obtained with the certified values which are in quite good agreement with each other. The enrichment values and Pollution Load Index (PLI) of the determined elements were computed and discussed accordingly. The elemental translocation from soil to roots, stem and leaves has also been studied by analyzing these parts of the same plant. The results indicated that the leaves of Morus nigra plant have promising potential to monitor the extent of air pollution in the vicinity of industrial as well as in high traffic areas. (orig.)

  10. Automated Leaf Tracking using Multi-view Image Sequences of Maize Plants for Leaf-growth Monitoring

    Science.gov (United States)

    Das Choudhury, S.; Awada, T.; Samal, A.; Stoerger, V.; Bashyam, S.

    2017-12-01

    Extraction of phenotypes with botanical importance by analyzing plant image sequences has the desirable advantages of non-destructive temporal phenotypic measurements of a large number of plants with little or no manual intervention in a relatively short period of time. The health of a plant is best interpreted by the emergence timing and temporal growth of individual leaves. For automated leaf growth monitoring, it is essential to track each leaf throughout the life cycle of the plant. Plants are constantly changing organisms with increasing complexity in architecture due to variations in self-occlusions and phyllotaxy, i.e., arrangements of leaves around the stem. The leaf cross-overs pose challenges to accurately track each leaf using single view image sequence. Thus, we introduce a novel automated leaf tracking algorithm using a graph theoretic approach by multi-view image sequence analysis based on the determination of leaf-tips and leaf-junctions in the 3D space. The basis of the leaf tracking algorithm is: the leaves emerge using bottom-up approach in the case of a maize plant, and the direction of leaf emergence strictly alternates in terms of direction. The algorithm involves labeling of the individual parts of a plant, i.e., leaves and stem, following graphical representation of the plant skeleton, i.e., one-pixel wide connected line obtained from the binary image. The length of the leaf is measured by the number of pixels in the leaf skeleton. To evaluate the performance of the algorithm, a benchmark dataset is indispensable. Thus, we publicly release University of Nebraska-Lincoln Component Plant Phenotyping dataset-2 (UNL-CPPD-2) consisting of images of the 20 maize plants captured by visible light camera of the Lemnatec Scanalyzer 3D high throughout plant phenotyping facility once daily for 60 days from 10 different views. The dataset is aimed to facilitate the development and evaluation of leaf tracking algorithms and their uniform comparisons.

  11. Internal exposure monitoring of personnel of a nuclear power plant with pressurized-water reactors

    International Nuclear Information System (INIS)

    Krueger, F.W.; Poulheim, K.F.; Rueger, G.; Schreiter, W.D.

    1982-01-01

    In the GDR a programme for monitoring the internal radiation exposure of personnel has been established in the Bruno Leuschner Nuclear Power Plant, Greifswald, which allows one to estimate the effective dose equivalent in the way recommended by the ICRP. The measuring equipment used, and the methods of calibration and of evaluation of results are described. At present about 400 persons are monthly monitored with a thorax monitor in the nuclear power plant. If an investigation level - corresponding to an effective dose equivalent of 0.3mSv/month - is exceeded, a more exact measurement is made in the whole-body counter at the National Board for Nuclear Safety and Radiation Protection of the GDR. In addition, a selected group of 50 persons is measured twice yearly in the whole-body counter. The measurements show the high effectiveness of the protective measures against radionuclide intake by workers in the nuclear power plant, resulting in a contribution of less than 1% to the collective dose of the personnel. A correlation has been found between external and internal exposure indicating that, in general, there will be a higher intake only under conditions resulting also in higher external exposures. The highest individual values of internal exposure found are below 0.5mSv/month and thus within the range of the lower detection limit of dosimeter films used for monitoring the external exposure. (author)

  12. Bridge health monitoring with consideration of environmental effects

    International Nuclear Information System (INIS)

    Kim, Yuhee; Kim, Hyunsoo; Shin, Soobong; Park, Jongchil

    2012-01-01

    Reliable response measurements are extremely important for proper bridge health monitoring but incomplete and unreliable data may be acquired due to sensor problems and environmental effects. In the case of a sensor malfunction, parts of the measured data can be missing so that the structural health condition cannot be monitored reliably. This means that the dynamic characteristics of natural frequencies can change as if the structure is damaged due to environmental effects, such as temperature variations. To overcome these problems, this paper proposes a systematic procedure of data analysis to recover missing data and eliminate the environmental effects from the measured data. It also proposed a health index calculated statistically using revised data to evaluate the health condition of a bridge. The proposed method was examined using numerically simulated data with a truss structure and then applied to a set of field data measured from a cable stayed bridge

  13. Bridge health monitoring with consideration of environmental effects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yuhee; Kim, Hyunsoo; Shin, Soobong [Inha Univ., Incheon (Korea, Republic of); Park, Jongchil [Korea Expressway Co., (Korea, Republic of)

    2012-12-15

    Reliable response measurements are extremely important for proper bridge health monitoring but incomplete and unreliable data may be acquired due to sensor problems and environmental effects. In the case of a sensor malfunction, parts of the measured data can be missing so that the structural health condition cannot be monitored reliably. This means that the dynamic characteristics of natural frequencies can change as if the structure is damaged due to environmental effects, such as temperature variations. To overcome these problems, this paper proposes a systematic procedure of data analysis to recover missing data and eliminate the environmental effects from the measured data. It also proposed a health index calculated statistically using revised data to evaluate the health condition of a bridge. The proposed method was examined using numerically simulated data with a truss structure and then applied to a set of field data measured from a cable stayed bridge.

  14. Remote sensing of gene expression in Planta: transgenic plants as monitors of exogenous stress perception in extraterrestrial environments

    Science.gov (United States)

    Manak, Michael S.; Paul, Anna-Lisa; Sehnke, Paul C.; Ferl, Robert J.

    2002-01-01

    Transgenic arabidopsis plants containing the alcohol dehydrogenase (Adh) gene promoter fused to the green fluorescent protein (GFP) reporter gene were developed as biological sensors for monitoring physiological responses to unique environments. Plants were monitored in vivo during exposure to hypoxia, high salt, cold, and abcissic acid in experiments designed to characterize the utility and responses of the Adh/GFP biosensors. Plants in the presence of environmental stimuli that induced the Adh promoter responded by expressing GFP, which in turn generated a detectable fluorescent signal. The GFP signal degraded when the inducing stimulus was removed. Digital imaging of the Adh/GFP plants exposed to each of the exogenous stresses demonstrated that the stress-induced gene expression could be followed in real time. The experimental results established the feasibility of using a digital monitoring system for collecting gene expression data in real time from Transgenic Arabidopsis Gene Expression System (TAGES) biosensor plants during space exploration experiments.

  15. Plant monitoring system

    International Nuclear Information System (INIS)

    Tamaoki, Tetsuo.

    1994-01-01

    The memory means of the present invention memorize conditions for analyzing a sampling period for inputting process signals and time sequential data of the process signals. The process signals are analyzed following after sampling period and the analysis conditions stored in the memory means preceding to monitoring. A monitoring condition setting means controls and subsequently updates the sampling period and the analysis conditions in the memory means based on the analysis data, to finally set monitoring conditions. With such procedures, analysis conditions such as optimum analysis frequency range, signal sampling period and correlational characteristics between process noise signals are automatically selected. (I.S.)

  16. Adaptive and Online Health Monitoring System for Autonomous Aircraft

    OpenAIRE

    Mokhtar, Maizura; Zapatel-Bayo, Sergio Z.; Hussein, Saed; Howe, Joe M.

    2012-01-01

    Good situation awareness is one of the key attributes required to maintain safe flight, especially for an Unmanned Aerial System (UAS). Good situation awareness can be achieved by incorporating an Adaptive Health Monitoring System (AHMS) to the aircraft. The AHMS monitors the flight outcome or flight behaviours of the aircraft based on its external environmental conditions and the behaviour of its internal systems. The AHMS does this by associating a health value to the aircraft's behaviour b...

  17. The use of PEANO for on-line monitoring of fossil power plants

    International Nuclear Information System (INIS)

    Fantoni, Paolo F.; Zanetta, Gian Antonio; Gregori, Luca

    2004-01-01

    This paper describes the results of the use of a combined approach of artificial neural network and fuzzy logic, implemented in the computer code PEANO, to the on-line monitoring of the steam-water cycle of a 320 MW fossil plant in Italy. First, a short review of the underlying theory is reported. Then some results are illustrated of data pre-processing, aimed at selecting the appropriate data and to address the neural networks architecture. Finally the simulation of continuous monitoring is documented and data reconciliation capability of the code is discussed in some detail. These results demonstrate that the approach provided by PEANO is very effective to validate measured signals and to track a process on-line, giving the plant operator an immediate insight of the evolution of a possible fault in sensors or system components. (Author)

  18. [What potential do geographic information systems have for population-wide health monitoring in Germany? : Perspectives and challenges for the health monitoring of the Robert Koch Institute].

    Science.gov (United States)

    Thißen, Martin; Niemann, Hildegard; Varnaccia, Gianni; Rommel, Alexander; Teti, Andrea; Butschalowsky, Hans; Manz, Kristin; Finger, Jonas David; Kroll, Lars Eric; Ziese, Thomas

    2017-12-01

    Geographic information systems (GISs) are computer-based systems with which geographical data can be recorded, stored, managed, analyzed, visualized and provided. In recent years, they have become an integral part of public health research. They offer a broad range of analysis tools, which enable innovative solutions for health-related research questions. An analysis of nationwide studies that applied geographic information systems underlines the potential this instrument bears for health monitoring in Germany. Geographic information systems provide up-to-date mapping and visualization options to be used for national health monitoring at the Robert Koch Institute (RKI). Furthermore, objective information on the residential environment as an influencing factor on population health and on health behavior can be gathered and linked to RKI survey data at different geographic scales. Besides using physical information, such as climate, vegetation or land use, as well as information on the built environment, the instrument can link socioeconomic and sociodemographic data as well as information on health care and environmental stress to the survey data and integrate them into concepts for analyses. Therefore, geographic information systems expand the potential of the RKI to present nationwide, representative and meaningful health-monitoring results. In doing so, data protection regulations must always be followed. To conclude, the development of a national spatial data infrastructure and the identification of important data sources can prospectively improve access to high quality data sets that are relevant for the health monitoring.

  19. Radioactivity monitoring programme of Krsko nuclear power plant

    International Nuclear Information System (INIS)

    Miklavzic, U.; Martincic, R.; Kanduc, M.; Lulic, S.; Kovac, J.; Breznik, B.

    1996-01-01

    As a successor to the preoperational surveillance programme, the regular offsite radioactivity monitoring programme (RMP) of the Krsko Nuclear Power Plant (NPP) was implemented in 1982, when the power plant formally commenced operating. Observations collected during the first years of its operation were later also the basis for setting up the official 'Regulatory guide on monitoring of nuclear installations', issued not earlier than in 1986. The basic criterion which governed the selection of measuring methods, sampling techniques and locations, was the extent to which the data obtained could serve for the realistic assessment of the committed dose to a member of the population, and later on to members of a representative (critical) group. To be able to differentiate the radioactivity released through the liquid and gaseous effluents of the NPP from other radiation sources (natural radioactivity, global contamination), and especially because of the varying radiotoxicity of different radionuclides, in principle monitoring in the environment, as at the source, had to provide activity data for each individual radionuclide appearing in the effluents. Therefore, as early as 1982 the programme attributed the main weight to high resolution gamma spectrometry, combined with specific radiochemical analytical methods (e.g. 90 Sr/ 89 Sr, 3 H, 14 C, alpha spectrometry of Pu isotopes) which together made feasible determination of individual specific activities of the most significant man-made and natural radionuclides. By weighting the specific activities of the radionuclides identified and measured in the media surveyed by dose factors for intake, the quantity 'B' - the so-called 'radiological burden', was calculated and introduced in the yearly-summary tables. Expressed in relative units, from which the committed dose could be readily calculated, the burden B very lucidly disclosed the relative importance of different artificial pollutants and natural radioactivity present in

  20. Computer handling of Savannah River Plant environmental monitoring data

    International Nuclear Information System (INIS)

    Zeigler, C.C.

    1975-12-01

    At the Savannah River Plant, computer programs are used to calculate, store, and retrieve radioactive and nonradioactive environmental monitoring data. Objectives are to provide daily, monthly, and annual summaries of all routine monitoring data; to calculate and tabulate releases according to radioisotopic species or nonradioactive pollutant, source point, and mode of entry to the environment (atmosphere, stream, or earthen seepage basins). The computer programs use a compatible numeric coding system for the data, and printouts are in the form required for internal and external reports. Data input and program maintenance are accomplished with punched cards, paper or magnetic tapes, and when applicable, with computer terminals. Additional aids for data evaluation provided by the programs are statistical counting errors, maximum and minimum values, standard deviations of averages, and other statistical analyses

  1. Structural health monitoring 2012. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Boller, Christian

    2012-01-01

    Structural Health Monitoring (SHM) is an emerging technology, dealing with the development and implementation of techniques and systems where monitoring, inspection and damage detection become an integral part of structures and thus a matter of automation. It further merges with a variety of techniques related to diagnostics and prognostics. SHM emerged from the field of smart structures and laterally encompasses disciplines such as structural dynamics, materials and structures, fatigue and fracture, non-destructive testing and evaluation, sensors and actuators, microelectronics, signal processing and much more. To be effective in the development of SHM systems, a multidisciplinary approach is therefore required. Without this global view it will be difficult for engineers to holistically manage the operation of an engineering structure through its life cycle in the future and to generate new breakthroughs in structural engineering. The second volume of the proceedings contains topics dealing with applications in the field of aeronautics, astronautic, civil engineering (bridges), energy (wind power), structural health monitoring (transportation), and poster presentations. Ten of the contributions are separately analyzed for the ENERGY database.

  2. Frequency Selective Surface for Structural Health Monitoring

    Science.gov (United States)

    Norlyana Azemi, Saidatul; Mustaffa, Farzana Hazira Wan; Faizal Jamlos, Mohd; Abdullah Al-Hadi, Azremi; Soh, Ping Jack

    2018-03-01

    Structural health monitoring (SHM) technologies have attained attention to monitor civil structures. SHM sensor systems have been used in various civil structures such as bridges, buildings, tunnels and so on. However the previous sensor for SHM is wired and encounter with problem to cover large areas. Therefore, wireless sensor was introduced for SHM to reduce network connecting problem. Wireless sensors for Structural Health monitoring are new technology and have many advantages to overcome the drawback of conventional and wired sensor. This project proposed passive wireless SHM sensor using frequency selective surface (FSS) as an alternative to conventional sensors. The electromagnetic wave characteristic of FSS will change by geometrical changes of FSS due to mechanical strain or structural failure. The changes feature is used as a sensing function without any connecting wires. Two type of design which are circular ring and square loop along with the transmission and reflection characteristics of SHM using FSS were discussed in this project. A simulation process has shown that incident angle characteristics can be use as a data for SHM application.

  3. Cotton Fabric Coated with Conducting Polymers and its Application in Monitoring of Carnivorous Plant Response

    Directory of Open Access Journals (Sweden)

    Václav Bajgar

    2016-04-01

    Full Text Available The paper describes the electrical plant response to mechanical stimulation monitored with the help of conducting polymers deposited on cotton fabric. Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers in aqueous medium. Thus, modified fabrics were again coated with polypyrrole or polyaniline, respectively, in order to investigate any synergetic effect between both polymers with respect to conductivity and its stability during repeated dry cleaning. The coating was confirmed by infrared spectroscopy. The resulting fabrics have been used as electrodes to collect the electrical response to the stimulation of a Venus flytrap plant. This is a paradigm of the use of conducting polymers in monitoring of plant neurobiology.

  4. Spectroscopic monitoring of NO traces in plants and human breath: applications and perspectives

    DEFF Research Database (Denmark)

    Cristescu, S M; Marchenko, D; Mandon, J

    2012-01-01

    monitoring of NO concentrations in exhaled breath, and from plants under pathogen attack. A simple hand-held breath sampling device that allows single breath collection at various exhalation flows (15, 50, 100 and 300mL/s, respectively) is developed for off-line measurements and validated in combination...... with the WMS-based sensor. Additionally, the capability of plants to remove environmental NO is presented....

  5. MONITORING KEMAJUAN PENGERJAAN PROYEK BELT CONVEYOR PLANT 14 HAMBALANG BERBASIS WEB

    Directory of Open Access Journals (Sweden)

    Juliana Juliana

    2018-04-01

    Full Text Available Kriteria yang harus dipenuhi produk yang dihasilkan dari proyek meliputi kriteria atau batasan waktu, batasan ruang lingkup, batasan biaya dan batasan kualitas. Untuk itu, maka perlu dilakukan monitoring untuk mengetahui kemajuan proyek sehingga keempat kriteria tersebut terpenuhi. Progress atau kemajuan proyek menjadi indikator dalam monitoring untuk menilai perkembangan pelaksanaan pekerjaan dibandingkan dengan rencana. Perkembangan pelaksanaan proyek harus dilaporkan secara periodik. Pada pelaksanaan proyek pembangunan belt conveyor plant 14 Hambalang, PT Unixindo Ekatama Sentana dalam melakukan monitoring perkembangan proyek belum ada sistem pelaporan yang terintegrasi dan pengolahan data masih dilakukan secara manual dengan menggunakan aplikasi Ms.Excel. Dalam penelitian ini dibangun sistem informasi monitoring pelaporan proyek untuk memudahkan monitoring kemajuan proyek. Aplikasi untuk monitoring kemajuan proyek yang dibangun dengan berbasis web menggunakan PHP dan MySQL. Tujuan dari penelitian yang dilakukan yaitu untuk menghasilkan sistem informasi untuk melakukan monitoring kemajuan proyek berbasis web dan tersedia sistem pelaporan kemajuan proyek yang terintegrasi sehingga memudahkanperusahaan dalam memonitoring proyek secara online. Manfaat yang diharapkan dari adanya sistem monitoring kemajuan proyek secara online adalah memudahkan proses monitoring kemajuan proyek yang dapat dilakukan secara online. Dari penelitian dihasilkan sistem informasi monitoring yang dibuat memudahkan pelaporan proyek di lapangan yang dilakukan secara online sehingga perusahaan dapat memonitor kemajuan proyek secara kontinyu dan dapat digunakan untuk menilai perkembangan pekerjaan proyek yang dibandingkan dengan perencanaan proyek sehingga dapat mengambil keputusan untuk melakukan perbaikan. Kata kunci: kemajuan proyek, pelaporan proyek, monitoring proyek berbasis web.

  6. Health monitoring of civil structures using fiber optic sensors

    International Nuclear Information System (INIS)

    Varma, Veto; Kumar, Praveen; Charan, J.J.; Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    2003-08-01

    During the lifetime of the reactor, the civil structure is subjected to many operational and environmental loads. Hence it is increasingly important to monitor the conditions of the structure and insure its safety and integrity. The conventional gauges have proved to be not sufficiently catering the problem of long term health monitoring of the structure because of its many limitations. Hence it is mandatory to develop a technique for the above purpose. Present study deals with the application of Fiber optic sensors (EFPI strain Gauges) in the civil structure for its health monitoring. Various experiments were undertaken and suitability of sensors was checked. A technique to embed the optical sensor inside the concrete is successfully developed and tested. (author)

  7. Bavarian pilot plants for te production of biogas. Results from five years of monitoring; Bayerische Pilotbetriebe zur Biogasproduktion. Ergebnisse aus fuenf Jahren Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Effenberger, Mathias; Ebertseder, Florian; Kissel, Rainer [Bayerische Landesanstalt fuer Landwirtschaft, Freising (Germany). Inst. fuer Landtechnik und Tierhaltung; Djatkov, Djordje [Novi Sad Univ. (Serbia). Lehrstuhl fuer Biosystemtechnik

    2012-11-15

    For more than five years, the Institute for Agricultural Engineering and Animal Husbandry (Freising, Federal Republic of Germany) performs a monitoring of agricultural biogas plants in Bavaria (Federal Republic of Germany). The results and experiences from the observations of already 21 so-called Bavarian pilot plants are a source of information for consultants, practitioners and scientists. The analysis of the development of individual plants over several years is particularly informative. In many cases, the power plants of the first campaign have an insufficient thermal utilization. Throughout the years, the concept of the thermal utilization was improved continuously improved. In connection with this, the performance of the biogas plants was improved often. Thereby it could be shown that such a repowering is a meaningful risk for the stability and efficiency of the fermentation process. Thus, the repowering should be planned carefully. The long-term monitoring of biogas plants delivers not only insights into the state f the art of agricultural biogas plants, but also especially the scientific fundament for the development of consulting support for a targeted increase of the plant efficiency. A method was developed in order to evaluate the efficiency of biogas plants due to the documented state of the art and expert knowledge. However, the key performance indicators of the plant have to be set carefully so that the consulting support is loadable. Under this aspect, this branch of industry should be sensitized within the background of an increasing and in partial authorized criticisms of the efficiency and environmental impact of biogas plants.

  8. Development of a remote monitoring and control system for nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Kim, Jong Hyun; Seong, Poong Hyun

    2002-01-01

    Nuclear Power Plants (NPPs) will be highly connected network enabled system and need to be monitored and controlled round the clock for high safety and availability. Using the network and web enabled tools, NPPs can be monitored remotely by operators at anytime from any place connected to the network via a general web browser. However, there are security and performance issues associated with such tools, as will be further discussed further. We developed a web-based Remote Monitoring and Control System (RMCS) that uses prevalent web technology. This work, as a preliminary study, performed the conceptual design of the web-based RMCS and developed the prototype

  9. Development of Core Monitoring System for Nuclear Power Plants (I)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.; Kim, Y.B.; Park, M.G; Lee, E.K.; Shin, H.C.; Lee, D.J. [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    1997-12-31

    1.Object and Necessity of the Study -The main objectives of this study are (1)conversion of APOLLO version BEACON system to HP-UX version core monitoring system, (2)provision of the technical bases to enhance the in-house capability of developing more advanced core monitoring system. 2.Results of the Study - In this study, the revolutionary core monitoring technologies such as; nodal analysis and isotope depletion calculation method, advanced schemes for power distribution control, and treatment of nuclear databank were established. The verification and validation work has been successfully performed by comparing the results with those of the design code and measurement data. The advanced graphic user interface and plant interface method have been implemented to ensure the future upgrade capability. The Unix shell scripts and system dependent software are also improved to support administrative functions of the system. (author). 14 refs., 112 figs., 52 tabs.

  10. Integrating structural health and condition monitoring

    DEFF Research Database (Denmark)

    May, Allan; Thöns, Sebastian; McMillan, David

    2015-01-01

    window’ allowing for the possible detection of faults up to 6 months in advance. The SHM system model uses a reduction in the probability of failure factor to account for lower modelling uncertainties. A case study is produced that shows a reduction in operating costs and also a reduction in risk......There is a large financial incentive to minimise operations and maintenance (O&M) costs for offshore wind power by optimising the maintenance plan. The integration of condition monitoring (CM) and structural health monitoring (SHM) may help realise this. There is limited work on the integration...

  11. Environmental monitoring around the Nuclear Power Plants (NPPs) in India

    International Nuclear Information System (INIS)

    Ravi, P.M.

    2014-01-01

    Environmental Survey Laboratories (ESLs) are established at all major nuclear installations before the commissioning of an installation. As per the lndian regulations, the environmental monitoring around NPPs are carried out by an independent body. Accordingly, Environmental Survey Laboratories (ESLs) under Health Physics Division, Bhabha Atomic Research Centre is entrusted with the responsibility. This paper presents the various aspects of environmental monitoring programmes being pursued around Indian NPPs

  12. Multi-metric model-based structural health monitoring

    Science.gov (United States)

    Jo, Hongki; Spencer, B. F.

    2014-04-01

    ABSTRACT The inspection and maintenance of bridges of all types is critical to the public safety and often critical to the economy of a region. Recent advanced sensor technologies provide accurate and easy-to-deploy means for structural health monitoring and, if the critical locations are known a priori, can be monitored by direct measurements. However, for today's complex civil infrastructure, the critical locations are numerous and often difficult to identify. This paper presents an innovative framework for structural monitoring at arbitrary locations on the structure combining computational models and limited physical sensor information. The use of multi-metric measurements is advocated to improve the accuracy of the approach. A numerical example is provided to illustrate the proposed hybrid monitoring framework, particularly focusing on fatigue life assessment of steel structures.

  13. Personalized Health Monitoring System for Managing Well-Being in Rural Areas.

    Science.gov (United States)

    Nedungadi, Prema; Jayakumar, Akshay; Raman, Raghu

    2017-12-14

    Rural India lacks easy access to health practitioners and medical centers, depending instead on community health workers. In these areas, common ailments that are easy to manage with medicines, often lead to medical escalations and even fatalities due to lack of awareness and delayed diagnosis. The introduction of wearable health devices has made it easier to monitor health conditions and to connect doctors and patients in urban areas. However, existing initiatives have not succeeded in providing adequate health monitoring to rural and low-literate patients, as current methods are expensive, require consistent connectivity and expect literate users. Our design considerations address these concerns by providing low-cost medical devices connected to a low-cost health platform, along with personalized guidance based on patient physiological parameters in local languages, and alerts to medical practitioners in case of emergencies. This patient-centric integrated healthcare system is designed to manage the overall health of villagers with real-time health monitoring of patients, to offer guidance on preventive care, and to increase health awareness and self-monitoring at an affordable price. This personalized health monitoring system addresses the health-related needs in remote and rural areas by (1) empowering health workers in monitoring of basic health conditions for rural patients in order to prevent escalations, (2) personalized feedback regarding nutrition, exercise, diet, preventive Ayurveda care and yoga postures based on vital parameters and (3) reporting of patient data to the patient's health center with emergency alerts to doctor and patient. The system supports community health workers in the diagnostic procedure, management, and reporting of rural patients, and functions well even with only intermittent access to Internet.

  14. Predictive based monitoring of nuclear plant component degradation using support vector regression

    International Nuclear Information System (INIS)

    Agarwal, Vivek; Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2015-01-01

    Nuclear power plants (NPPs) are large installations comprised of many active and passive assets. Degradation monitoring of all these assets is expensive (labor cost) and highly demanding task. In this paper a framework based on Support Vector Regression (SVR) for online surveillance of critical parameter degradation of NPP components is proposed. In this case, on time replacement or maintenance of components will prevent potential plant malfunctions, and reduce the overall operational cost. In the current work, we apply SVR equipped with a Gaussian kernel function to monitor components. Monitoring includes the one-step-ahead prediction of the component's respective operational quantity using the SVR model, while the SVR model is trained using a set of previous recorded degradation histories of similar components. Predictive capability of the model is evaluated upon arrival of a sensor measurement, which is compared to the component failure threshold. A maintenance decision is based on a fuzzy inference system that utilizes three parameters: (i) prediction evaluation in the previous steps, (ii) predicted value of the current step, (iii) and difference of current predicted value with components failure thresholds. The proposed framework will be tested on turbine blade degradation data.

  15. Regulatory approach of the monitoring the effectiveness of maintenance at nuclear power plants program

    International Nuclear Information System (INIS)

    Vajgel, Stefan

    2009-03-01

    The electrical power generation using nuclear power plants requires this installation being safety, reliable and available for the working periods. For this purpose, an adequate, effective and well conducted maintenance program makes an essential and useful tool to the owner of the plant. However, it is necessary to follow the regulatory requirements for this program implementation which monitories this maintenance effectiveness. There are Brazilian norms requirements which must be followed. The international regulatory guides establish these requirements in good details but it is necessary to verify if this methodology for implementing can be totally applied here in Brazil. Then, the american guide NUMARC 93-01 which details how can be implemented a program for this monitoring, shows some methods for using. In this thesis, the Delphi and Probabilistic Safety Analysis were briefly included because they were preferred for implementing this monitoring.in a Brazilian plant. The results which are being obtained show that, looking the regulatory aspects, the NUMARC 93-01 follows our regulations and gives good results for the plant management. (author)

  16. Guidance on the implementation of a risk based safety performance monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Sewell, R.T.; Kuritzky, A.S.; Khatib-Rahbar, M.

    1997-05-01

    The principal objective of the present study is to review and evaluate existing Performance Indicator (PI) monitoring programs, and to develop and demonstrate an overall PSA-based methodology and framework for the monitoring and use of risk-based PIs and SIs (Safety Indicator), that would enable: Identification of trends and patterns in safety performance at a specific plant and a population of plants; Assessment of the significance of the trends and patterns; Identification of precursors of accident sequences and safety reductions; Identification of the most critical functional areas of concern, especially as they relate to a defense-in-depth safety philosophy; Comparison of safety performance trends at a plant with those at comparable plants; Incorporation of the PIs and SIs into a risk- and performance-based decision process. To support the overall project objective, it is important that information needs and data collection procedures are clearly outlined. Of key significance in this regard is the premise that a performance monitoring system should not be burdened by an excessive number of low-level PIs that may have only a peripheral relationship to safety. Other supporting objectives of the study include: To identify and discuss other issues pertaining to the practical implementation of a safety performance monitoring system (outlining the databases and algorithms needed); and to demonstrate implementation of the preliminary guidance for monitoring and use of the selected set of PIs and SIs, within the proposed framework, via application to the operating history of a NPP having a PSA and readily available event data

  17. Experimental Research on Quick Structural Health Monitoring Technique for Bridges Using Smartphone

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhao

    2016-01-01

    Full Text Available In the recent years, with the development and popularization of smartphone, the utilization of smartphone in the Structural Health Monitoring (SHM has attracted increasing attention owing to its unique feature. Since bridges are of great importance to society and economy, bridge health monitoring has very practical significance during its service life. Furthermore, rapid damage assessment of bridge after an extreme event such as earthquake is very important in the recovery work. Smartphone-based bridge health monitoring and postevent damage evaluation have advantages over the conventional monitoring techniques, such as low cost, ease of installation, and convenience. Therefore, this study investigates the implementation feasibility of the quick bridge health monitoring technique using smartphone. A novel vision-based cable force measurement method using smartphone camera is proposed, and, then, its feasibility and practicality is initially validated through cable model test. An experiment regarding multiple parameters monitoring of one bridge scale model is carried out. Parameters, such as acceleration, displacement, and angle, are monitored using smartphone. The experiment results show that there is a good agreement between the reference sensor and smartphone measurements in both time and frequency domains.

  18. Correlation techniques in nuclear power plant monitoring

    International Nuclear Information System (INIS)

    Bastl, W.

    1976-01-01

    Ever increasing effects are recently being made to monitor the mechanical behaviour of the nuclear power plants during operation. For technical as well as economical reasons one is forced to make do with the smallest number of sensors. In order to still obtain efficient control systems, an attempt is made on the one hand to make use of the already existing operational instrumentation, on the other hand to obtain a maximum of information by specific use of few additional sensors. In both cases, correlation analysis plays a large role because an optimum positioning of the sensor is seldom possible and thus, as a rule, the interesting information must be separated from very noisy signals. (orig./LH) [de

  19. The plant phenology monitoring design for the National Ecological Observatory Network

    Science.gov (United States)

    Elmendorf, Sarah C; Jones, Katherine D; Cook, Benjamin I.; Diez, Jeffrey M.; Enquist, Carolyn A.F.; Hufft, Rebecca A.; Jones, Matthew O.; Mazer, Susan J.; Miller-Rushing, Abraham J.; Moore, David J. P.; Schwartz, Mark D.; Weltzin, Jake F.

    2016-01-01

    Phenology is an integrative science that comprises the study of recurring biological activities or events. In an era of rapidly changing climate, the relationship between the timing of those events and environmental cues such as temperature, snowmelt, water availability or day length are of particular interest. This article provides an overview of the plant phenology sampling which will be conducted by the U.S. National Ecological Observatory Network NEON, the resulting data, and the rationale behind the design. Trained technicians will conduct regular in situ observations of plant phenology at all terrestrial NEON sites for the 30-year life of the observatory. Standardized and coordinated data across the network of sites can be used to quantify the direction and magnitude of the relationships between phenology and environmental forcings, as well as the degree to which these relationships vary among sites, among species, among phenophases, and through time. Vegetation at NEON sites will also be monitored with tower-based cameras, satellite remote sensing and annual high-resolution airborne remote sensing. Ground-based measurements can be used to calibrate and improve satellite-derived phenometrics. NEON’s phenology monitoring design is complementary to existing phenology research efforts and citizen science initiatives throughout the world and will produce interoperable data. By collocating plant phenology observations with a suite of additional meteorological, biophysical and ecological measurements (e.g., climate, carbon flux, plant productivity, population dynamics of consumers) at 47 terrestrial sites, the NEON design will enable continentalscale inference about the status, trends, causes and ecological consequences of phenological change.

  20. Health effects in community residents near a uranium plant at Fernald, Ohio, USA

    International Nuclear Information System (INIS)

    Pinney, S.M.; Freyberg, R.W.; Levine, G.H.; Nasuta, J. M.; Brannen, D.E.; Mark, L.S.; Tebbe, C.D.; Buckoholz, J.M.; Wones, R.

    2003-01-01

    Health outcomes in persons who lived in the area surrounding a U.S. Department of Energy (DOE) uranium processing plant near Fernald, Ohio were evaluated using data of Fernald Medical Monitoring Program (FMMP) participants. Residential history information was used to identify participants who lived in close proximity to the plant (less than 2 miles), in the direction of groundwater runoff (south of the plant), or used a well or cistern as a drinking water source. Standardized prevalence ratios (SPRs) for certain disease endpoints were calculated using U.S. National Health Interview Survey (NHIS) and the National Heath and Nutrition Examination Survey (NHANES) data files for comparison rates. Findings suggest that prior living within the Fernald exposure domain is related to increased prevalence of urinary system disease. Statistically significant elevations of bladder disease (standardized prevalence ratio or SPR = 1.32) and kidney disease (SPR = 2.15), including sub-categories, kidney stones (SPR = 3.98) and chronic nephritis (SPR =2.03) wee noted, as well as increased rates for hematuria and urethral stricture. In regression analyses with adjustment for age and sex, serum creatine levels were increased in those who had lived close to the plant. Increased white blood cell count and hemoglobin levels, and decreased mean corpuscular volume were also found in those living less than 2 miles from the plant. Those who used a well or cistern for drinking water were found to have increased urinary microalbumin, red blood cell count and hematocrit. These preliminary findings will provide the basis for future hypothesis testing incorporating important determinants of exposure not included in this study, such as duration and calendar year of exposure, location relevant to prevailing wind direction, and age at exposure. (author)

  1. Environmental monitoring at the Savannah River Plant. Annual report, 1980

    International Nuclear Information System (INIS)

    Zeigler, C.C.; Culp, P.A.; Smith, D.L.

    1983-11-01

    The results of the 1980 Savannah River Plant environmental monitoring program are presented. Appendices contain data analysis and quality control information, minimum detectable levels, tabes of environmental sample analyses, and maps of sampling locations. Radioactive releases are divided into four categories for comparison with previous releases. The categories are: tritium, noble gases, beta and gamma emitters, and total alpha emitters. 34 figures, 58 tables

  2. Identification methods for structural health monitoring

    CERN Document Server

    Papadimitriou, Costas

    2016-01-01

    The papers in this volume provide an introduction to well known and established system identification methods for structural health monitoring and to more advanced, state-of-the-art tools, able to tackle the challenges associated with actual implementation. Starting with an overview on fundamental methods, introductory concepts are provided on the general framework of time and frequency domain, parametric and non-parametric methods, input-output or output only techniques. Cutting edge tools are introduced including, nonlinear system identification methods; Bayesian tools; and advanced modal identification techniques (such as the Kalman and particle filters, the fast Bayesian FFT method). Advanced computational tools for uncertainty quantification are discussed to provide a link between monitoring and structural integrity assessment. In addition, full scale applications and field deployments that illustrate the workings and effectiveness of the introduced monitoring schemes are demonstrated.

  3. A Review of Sensor Calibration Monitoring for Calibration Interval Extension in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Hashemian, Hash; Shumaker, Brent; Cummins, Dara

    2012-08-31

    Currently in the United States, periodic sensor recalibration is required for all safety-related sensors, typically occurring at every refueling outage, and it has emerged as a critical path item for shortening outage duration in some plants. Online monitoring can be employed to identify those sensors that require calibration, allowing for calibration of only those sensors that need it. International application of calibration monitoring, such as at the Sizewell B plant in United Kingdom, has shown that sensors may operate for eight years, or longer, within calibration tolerances. This issue is expected to also be important as the United States looks to the next generation of reactor designs (such as small modular reactors and advanced concepts), given the anticipated longer refueling cycles, proposed advanced sensors, and digital instrumentation and control systems. The U.S. Nuclear Regulatory Commission (NRC) accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no U.S. plants have been granted the necessary license amendment to apply it. This report presents a state-of-the-art assessment of online calibration monitoring in the nuclear power industry, including sensors, calibration practice, and online monitoring algorithms. This assessment identifies key research needs and gaps that prohibit integration of the NRC-approved online calibration monitoring system in the U.S. nuclear industry. Several needs are identified, including the quantification of uncertainty in online calibration assessment; accurate determination of calibration acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and assessment of the feasibility of using virtual sensor estimates to replace identified faulty sensors in order to extend operation to the next convenient maintenance opportunity. Understanding the degradation of sensors and the impact of this degradation on signals is key to

  4. Technology of Inspection and Real-time Displacement Monitoring on Critical Pipe for Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Jung Seob; Heo, Jae Sil [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Cho, Sun Young [KLES, Daejeon (Korea, Republic of); Heo, Jeong Yeol; Lee, Seong Kee [Korea South-East Power Co., Seoul (Korea, Republic of)

    2009-10-15

    High temperature steam pipes of thermal power plant are subject to a severe thermal range and usually operates well into the creep range. Cyclic operation of the plant subjects the piping system to mechanical and thermal fatigue damages. Also, poor or malfunctional supports can impose massive loads or stress onto the piping system. In order to prevent the serious damage and failure of the critical piping system, various inspection methods such as visual inspection, computational analysis and on-line piping displacement monitoring were developed. 3-dimensional piping displacement monitoring system was developed with using the aluminum alloy rod and rotary encoder sensors, this system was installed and operated on the high temperature steam piping of 'Y' thermal power plant successfully. It is expected that this study will contribute to the safety of piping system, which could minimize stress and extend the actual life of critical piping.

  5. 76 FR 55137 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants

    Science.gov (United States)

    2011-09-06

    ... the NRC Library at http://www.nrc.gov/reading-rm/doc-collections/ . Regulatory guides are not... Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; request for... comment draft regulatory guide (DG) DG-1278, ``Monitoring the Effectiveness of Maintenance at Nuclear...

  6. Radioactivity monitoring and import regulation of the contaminated foodstuffs in Japan following the Chernobyl nuclear power plant accident

    International Nuclear Information System (INIS)

    Izumo, Yoshiro

    1997-01-01

    Radioactivity monitoring and import regulation of the contaminated foodstuffs executed by Minstry of Health and Welfare following the Chernobyl nuclear plant accident were reviewed as follows; 1) background of socio-psychological effects and environmental radioactivity leading to the regulation (to may 3, 1986); 2) intial intervention for imported foodstuffs in Japan (may 8, '86), and 3) in european countries (to may 31, '86), immediately after the Accident, respectively; 4) determination of the interim driven intervention level for radionuclides in imported foodstuffs (( 134 Cs + 137 Cs): 370 Bq/Kg) and activation of the monitoring, 5) outline of the monitoring with elapsed time, number of foodstuffs monitored, number of foodstuffs exceeded radioactivity of the intervention level and re-exported; 6) guideline in international trade of radioactive contaminated foodstuffs adopted by CODEX Alimentarius Commission (FAO/WHO) and the intervention level recommended by ICRP following the Accident; 7) discussion for problems and scopes in future based on the results of monitoring. As the results, a number of imported foodstuffs (about 75,000 samples at present) has been monitored, 55 samples exceeding the interim intervention level were re-exported to each export's country, and socio-psychological doubts for radioactive contamination of imported foodstuffs have been dispersed. In addition, problems for several factors based on calculation of the interim intervention level, radioactivity level of foodstuffs exceeding about 50 Bq/Kg as radiocesiums and necessity of monitoring for the other radionuclides in foods except radiocesiums were also discussed. (author)

  7. Radioactivity monitoring and import regulation of the contaminated foodstuffs in Japan following the Chernobyl nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Izumo, Yoshiro [Institute of Public Health, Tokyo (Japan)

    1997-03-01

    Radioactivity monitoring and import regulation of the contaminated foodstuffs executed by Minstry of Health and Welfare following the Chernobyl nuclear plant accident were reviewed as follows; (1) background of socio-psychological effects and environmental radioactivity leading to the regulation (to may 3, 1986); (2) intial intervention for imported foodstuffs in Japan (may 8, `86), and (3) in european countries (to may 31, `86), immediately after the Accident, respectively; (4) determination of the interim driven intervention level for radionuclides in imported foodstuffs (({sup 134}Cs + {sup 137}Cs): 370 Bq/Kg) and activation of the monitoring, (5) outline of the monitoring with elapsed time, number of foodstuffs monitored, number of foodstuffs exceeded radioactivity of the intervention level and re-exported; (6) guideline in international trade of radioactive contaminated foodstuffs adopted by CODEX Alimentarius Commission (FAO/WHO) and the intervention level recommended by ICRP following the Accident; (7) discussion for problems and scopes in future based on the results of monitoring. As the results, a number of imported foodstuffs (about 75,000 samples at present) has been monitored, 55 samples exceeding the interim intervention level were re-exported to each export`s country, and socio-psychological doubts for radioactive contamination of imported foodstuffs have been dispersed. In addition, problems for several factors based on calculation of the interim intervention level, radioactivity level of foodstuffs exceeding about 50 Bq/Kg as radiocesiums and necessity of monitoring for the other radionuclides in foods except radiocesiums were also discussed. (author)

  8. Localizing the HL7 Personal Health Monitoring Record for Danish Telemedicine

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2014-01-01

    Telemedicine holds a promise of lowering cost in health care and improving the life quality of chronic ill patients by allowing monitoring in the home. The Personal Health Monitoring Record (PHMR) is an international HL7 standard data format for encoding measurements made by devices in the home...

  9. Monitoring heat and humid air emissions in the environment of large power plants

    International Nuclear Information System (INIS)

    Haessler, G.

    1976-01-01

    Environmental monitoring systems are installed for site evaluation purposes, the confirmation of predictions, to secure evidence, assess damage, for research and development purposes and in order to evaluate plant performance. (orig./RW) [de

  10. Continuous monitoring methods for assessment of structural integrity in nuclear power plants; Jatkuvan monitoroinnin menetelmaet rakenteiden eheyden varmistamiseen ydinvoimaloissa

    Energy Technology Data Exchange (ETDEWEB)

    Sarkimo, M

    1998-01-01

    This report is a review of the frequently used continuous monitoring methods that are applied or can possibly be applied in nuclear power plants. The methods covered include condition monitoring and non-destructive testing (NDT) techniques that can be used to detect flaws in components and the malfunction of machinery. The specific techniques for water chemistry monitoring are not covered by this report. The systems based on acoustic emission are considered to be suitable for continuous monitoring applications and these are discussed in greater detail compared to other methods. The loose parts monitoring and leak detection systems based on acoustic emission have practical applications in several nuclear power plants. The real-time monitoring of crack-tip movement using the ultrasonic method is also discussed. Some results are also referred to from the research and development work to monitor crack initiation and growth on the surface of high-speed rotating components using the electromagnetic method. Vibration measurements and analysis are mentioned as a usual tool for monitoring the condition of rotating machinery but also some special aspects of nuclear power plants are included. Finally the on-line fatigue and integrity monitoring systems are briefly discussed and given some considerations regarding the material property measurements using continuous non-destructive methods. (orig.). 34 refs.

  11. Vibration-based structural health monitoring of harbor caisson structure

    Science.gov (United States)

    Lee, So-Young; Lee, So-Ra; Kim, Jeong-Tae

    2011-04-01

    This study presents vibration-based structural health monitoring method in foundation-structure interface of harbor caisson structure. In order to achieve the objective, the following approaches are implemented. Firstly, vibration-based response analysis method is selected and structural health monitoring (SHM) technique is designed for harbor caisson structure. Secondly, the performance of designed SHM technique for harbor structure is examined by FE analysis. Finally, the applicability of designed SHM technique for harbor structure is evaluated by dynamic tests on a lab-scaled caisson structure.

  12. Groundwater Protection Program Calendar Year 1998 Groundwater Monitoring Report, U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained during calendar year (CY) 1998 by the Lockheed Martin Energy Systems, Inc. Y-12 Plant Groundwater Protection Program (GWPP) at the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant, Groundwater and surface water monitoring during CY 1998 was performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), and the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley (BCV), and the Chestnut Ridge Regime which is located south of the Y-12 Plant.

  13. Groundwater Protection Program Calendar Year 1998 Groundwater Monitoring Report, U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1999-01-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained during calendar year (CY) 1998 by the Lockheed Martin Energy Systems, Inc. Y-12 Plant Groundwater Protection Program (GWPP) at the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant, Groundwater and surface water monitoring during CY 1998 was performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), and the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley (BCV), and the Chestnut Ridge Regime which is located south of the Y-12 Plant

  14. 7 CFR 305.3 - Monitoring and certification of treatments.

    Science.gov (United States)

    2010-01-01

    ... inspector or an official from the national plant protection organization (NPPO) of the exporting country. If... 7 Agriculture 5 2010-01-01 2010-01-01 false Monitoring and certification of treatments. 305.3 Section 305.3 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH...

  15. On-Line Enrichment Monitor for UF{sub 6} Gas Centrifuge Enrichment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ianakiev, K. D.; Boyer, B.; Favalli, A.; Goda, J. M.; Hill, T.; Keller, C.; Lombardi, M.; Paffett, M.; MacArthur, D. W.; McCluskey, C.; Moss, C. E.; Parker, R.; Smith, M. K.; Swinhoe, M. T. [Los Alamos National Laboratory, Los Alamos (United States)

    2012-06-15

    This paper is a continuation of the Advanced Enrichment Monitoring Technology for UF{sub 6} Gas Centrifuge Enrichment Plant (GCEP) work, presented in the 2010 IAEA Safeguards Symposium. Here we will present the system architecture for a planned side-by-side field trial test of passive (186-keV line spectroscopy and pressure-based correction for UF{sub 6} gas density) and active (186-keV line spectroscopy and transmission measurement based correction for UF{sub 6} gas density) enrichment monitoring systems in URENCO's enrichment plant in Capenhurst. Because the pressure and transmission measurements of UF{sub 6} are complementary, additional information on the importance of the presence of light gases and the UF{sub 6} gas temperature can be obtained by cross-correlation between simultaneous measurements of transmission, pressure and 186-keV intensity. We will discuss the calibration issues and performance in the context of accurate, on-line enrichment measurement. It is hoped that a simple and accurate on-line enrichment monitor can be built using the UF{sub 6} gas pressure provided by the Operator, based on online mass spectrometer calibration, assuming a negligible (a small fraction of percent) contribution of wall deposits. Unaccounted-for wall deposits present at the initial calibration will lead to unwanted sensitivity to changes in theUF{sub 6} gas pressure and thus to error in the enrichment results. Because the accumulated deposits in the cascade header pipe have been identified as an issue for Go/No Go measurements with the Cascade Header Enrichment Monitor (CHEM) and Continuous Enrichment Monitor (CEMO), it is important to explore their effect. Therefore we present the expected uncertainty on enrichment measurements obtained by propagating the errors introduced by deposits, gas density, etc. and will discuss the options for a deposit correction during initial calibration of an On-Line Enrichment Monitor (OLEM).

  16. Ash fouling monitoring and key variables analysis for coal fired power plant boiler

    Directory of Open Access Journals (Sweden)

    Shi Yuanhao

    2015-01-01

    Full Text Available Ash deposition on heat transfer surfaces is still a significant problem in coal-fired power plant utility boilers. The effective ways to deal with this problem are accurate on-line monitoring of ash fouling and soot-blowing. In this paper, an online ash fouling monitoring model based on dynamic mass and energy balance method is developed and key variables analysis technique is introduced to study the internal behavior of soot-blowing system. In this process, artificial neural networks (ANN are used to optimize the boiler soot-blowing model and mean impact values method is utilized to determine a set of key variables. The validity of the models has been illustrated in a real case-study boiler, a 300MW Chinese power station. The results on same real plant data show that both models have good prediction accuracy, while the ANN model II has less input parameters. This work will be the basis of a future development in order to control and optimize the soot-blowing of the coal-fired power plant utility boilers.

  17. Improved methods of online monitoring and prediction in condensate and feed water system of nuclear power plant

    International Nuclear Information System (INIS)

    Wang, Hang; Peng, Min-jun; Wu, Peng; Cheng, Shou-yu

    2016-01-01

    Highlights: • Different methods for online monitoring and diagnosis are summarized. • Numerical simulation modeling of condensate and feed water system in nuclear power plant are done by FORTRAN programming. • Integrated online monitoring and prediction methods have been developed and tested. • Online monitoring module, fault diagnosis module and trends prediction module can be verified with each other. - Abstract: Faults or accidents may occur in a nuclear power plant (NPP), but it is hard for operators to recognize the situation and take effective measures quickly. So, online monitoring, diagnosis and prediction (OMDP) is used to provide enough information to operators and improve the safety of NPPs. In this paper, distributed conservation equation (DCE) and artificial immunity system (AIS) are proposed for online monitoring and diagnosis. On this basis, quantitative simulation models and interactive database are combined to predict the trends and severity of faults. The effectiveness of OMDP in improving the monitoring and prediction of condensate and feed water system (CFWS) was verified through simulation tests.

  18. Radiation exposure control by estimation of multiplication factors for online remote radiation monitoring systems at Vitrification Plant

    International Nuclear Information System (INIS)

    Deokar, Umesh V.; Kukarni, V.V.; Khot, A.R.; Mathew, P.; Kamlesh; Purohit, R.G.; Sarkar, P.K.

    2011-01-01

    Vitrification Plant is commissioned for vitrification of high-level liquid waste generated in Nuclear Fuel Cycle operations by using Joule Heated Ceramic Melter first time in India. Exposure control is a major concern in operating plant. Therefore, in addition to installed monitors, we have developed online remote radiation monitoring system to minimize number of entries in amber areas and to reduce the exposure to the surveyor and operator. This also helped in volume reduction of secondary waste. The reliability and accuracy of the online monitoring system is confirmed with actual measurements and by theoretical shielding calculations. The multiplication factors were estimated for remote online monitoring of Melter off Gas (MOG) filter, Hood filter, three exhaust filter banks, and overpack monitoring. This paper summarizes how the online remote monitoring system had helped in saving of 128.52 Person-mSv collective dose (14.28% of budgeted dose) and also there was 2.6 m 3 reduction in generation of Cat-I waste. (author)

  19. Condition monitoring and thermo economic optimization of operation for a hybrid plant using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Assadi, Mohsen; Fast, Magnus (Lund University, Dept. of Energy Sciences, Lund (Sweden))

    2008-05-15

    The project aim is to model the hybrid plant at Vaesthamnsverket in Helsingborg using artificial neural networks (ANN) and integrating the ANN models, for online condition monitoring and thermo economic optimization, on site. The definition of a hybrid plant is that it uses more than one fuel, in this case a natural gas fuelled gas turbine with heat recovery steam generator (HRSG) and a biomass fuelled steam boiler with steam turbine. The thermo economic optimization takes into account current electricity prices, taxes, fuel prices etc. and calculates the current production cost along with the 'predicted' production cost. The tool also has a built in feature of predicting when a compressor wash is economically beneficial. The user interface is developed together with co-workers at Vaesthamnsverket to ensure its usefulness. The user interface includes functions for warnings and alarms when possible deviations in operation occur and also includes a feature for plotting parameter trends (both measured and predicted values) in selected time intervals. The target group is the plant owners and the original equipment manufacturers (OEM). The power plant owners want to acquire a product for condition monitoring and thermo economic optimization of e.g. maintenance. The OEMs main interest lies in investigating the possibilities of delivering ANN models, for condition monitoring, along with their new gas turbines. The project has been carried out at Lund University, Department of Energy Sciences, with support from Vaesthamnsverket AB and Siemens Industrial Turbomachinery AB. Vaesthamnsverket has contributed with operational data from the plant as well as support in plant related questions. They have also been involved in the implementation of the ANN models in their computer system and the development of the user interface. Siemens have contributed with expert knowledge about their SGT800 gas turbine. The implementation of the ANN models, and the accompanying user

  20. Design of a DCS Based Model for Continuous Leakage Monitoring System of Rotary Air Preheater of a Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Madan BHOWMICK

    2011-01-01

    Full Text Available The leakage in rotary air preheater makes a considerable contribution to the reduced overall efficiency of fossil-fuel-fired thermal power plants and increase the effect on environment. Since it is normal phenomenon, continuous monitoring of leakage is generally omitted in most power plants. But for accurate analysis of the operation of the thermal power plant, this leakage monitoring plays a vital role. In the present paper, design of a DCS based model for continuous leakages monitoring of rotary air preheater has been described. In the proposed model, the existing DCS based instrumentation system has been modified and online leakage monitoring system has been developed. This model has been installed in a captive power plant with high capacity boilers and very much satisfactory operation of this system has been observed. The observed online data along with their analysis results are presented in this paper.

  1. To track or not to track: user reactions to concepts in longitudinal health monitoring.

    Science.gov (United States)

    Beaudin, Jennifer S; Intille, Stephen S; Morris, Margaret E

    2006-01-01

    Advances in ubiquitous computing, smart homes, and sensor technologies enable novel, longitudinal health monitoring applications in the home. Many home monitoring technologies have been proposed to detect health crises, support aging-in-place, and improve medical care. Health professionals and potential end users in the lay public, however, sometimes question whether home health monitoring is justified given the cost and potential invasion of privacy. The aim of the study was to elicit specific feedback from health professionals and laypeople about how they might use longitudinal health monitoring data for proactive health and well-being. Interviews were conducted with 8 health professionals and 26 laypeople. Participants were asked to evaluate mock data visualization displays that could be generated by novel home monitoring systems. The mock displays were used to elicit reactions to longitudinal monitoring in the home setting as well as what behaviors, events, and physiological indicators people were interested in tracking. Based on the qualitative data provided by the interviews, lists of benefits of and concerns about health tracking from the perspectives of the practitioners and laypeople were compiled. Variables of particular interest to the interviewees, as well as their specific ideas for applications of collected data, were documented. Based upon these interviews, we recommend that ubiquitous "monitoring" systems may be more readily adopted if they are developed as tools for personalized, longitudinal self-investigation that help end users learn about the conditions and variables that impact their social, cognitive, and physical health.

  2. The Department of Energy`s Rocky Flats Plant: A guide to record series useful for health-related research. Volume I, introduction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This guide consists of seven volumes which describe records useful for conducting health-related research at the DOE`s Rocky Flats Plant. Volume I is an introduction, and the remaining six volumes are arranged by the following categories: administrative and general, facilities and equipment, production and materials handling, waste management, workplace and environmental monitoring, and employee occupational exposure and health. Volume I briefly describes the Epidemiologic Records Project and provides information on the methodology used to inventory and describe the records series contained in subsequent volumes. Volume II describes records concerning administrative functions and general information. Volume III describes records series relating to the construction and routine maintenance of plant buildings and the purchase and installation of equipment. Volume IV describes records pertaining to the inventory and production of nuclear materials and weapon components. Records series include materials inventories, manufacturing specifications, engineering orders, transfer and shipment records, and War Reserve Bomb Books. Volume V describes records series pertaining to the storage, handling, treatment, and disposal of radioactive, chemical, or mixed materials produced or used at Rocky Flats. Volume VI describes records series pertaining to monitoring of the workplace and of the environment outside of buildings onsite and offsite. Volume VII describes records series pertaining to the health and occupational exposures of employees and visitors.

  3. R and D in support of CANDU plant life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Holt, R.A.

    1999-01-01

    One of the keys to the long-term success of CANDUs is a high capacity factor over the station design life. Considerable R and D in underway at AECL to develop technologies for assessing, monitoring and mitigating the effect of plant ageing and for improving plant performance and extending plant life. To achieve longer service life and to realize high capacity factor from CANDU stations, AECL is developing new technologies to enhance fuel channel and steam generator inspection capabilities, to monitor system health, and to allow preventive maintenance and cleaning (e.g., on-line chemical cleaning processes that produce small volumes of wastes). The life management strategy for fuel channels and steam generators requires a program to inspect components on a routine basis to identify mechanisms that could potentially affect fitness-for-service. In the case of fuel channels, the strategy includes inspections for dimensional changes, flaw detection, and deuterium concentration. New techniques are been developed to enhance these inspection capabilities; examples include accurate measurement of the gap between a pressure tube and its calandria tube and rapid full-length inspections of steam generator tubes for all known flaw types. Central to life management of components are Fitness-for-Service Guidelines (FFSG) that have been developed with the CANDU Owners Group (COG) that provide a standardized method to assess the potential for propagation of flaws detected during in-service inspections, and assessment of any change in fracture characteristics of the material. FFSG continue to be improved with the development of new technologies such as the capability to credit relaxation of stresses due to creep and non-rejectable flaws in pressure tubes. Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that system health is continually monitored and managed. AECL has developed a system Health Monitor

  4. Structure health monitoring system using internet and database technologies

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok

    2003-01-01

    Structural health monitoring system should developed to be based on internet and database technology in order to manage efficiently large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconvince.

  5. Structural health monitoring system using internet and database technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chi Yeop; Choi, Man Yong; Kwon, Il Bum; Lee, Seung Seok [Nonstructive Measurment Lab., KRISS, Daejeon (Korea, Republic of)

    2003-07-01

    Structure health monitoring system should develope to be based on internet and database technology in order to manage efficiency large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconviniences.

  6. Structure health monitoring system using internet and database technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok [Smart Measurment Group. Korea Resarch Institute of Standards and Science, Saejeon (Korea, Republic of)

    2003-05-15

    Structural health monitoring system should developed to be based on internet and database technology in order to manage efficiently large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconvince.

  7. Structural health monitoring system using internet and database technologies

    International Nuclear Information System (INIS)

    Kim, Chi Yeop; Choi, Man Yong; Kwon, Il Bum; Lee, Seung Seok

    2003-01-01

    Structure health monitoring system should develope to be based on internet and database technology in order to manage efficiency large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconviniences.

  8. Designing reliable wireless sensor network for nuclear power plant

    International Nuclear Information System (INIS)

    Fujiwara, Takeshi; Takahashi, Hiroyuki

    2007-01-01

    This study proposes an innovative method for the monitoring the nuclear power plant. In this field, false detection of the trouble, both 'false negative' and 'false positive' will become a serious problem. In the other hand, since nuclear power plant is such a complicated system, wireless is required for implementing into real field. Considering these backgrounds, we propose a new reliable health monitoring system for nuclear power plant. This is based on an idea, 'a network on a network', such as 'wireless global network' on 'local network with self-maintenance function.' (author)

  9. Biological monitoring of toxic metals - steel workers respiratory health survey

    International Nuclear Information System (INIS)

    Pinheiro, T.; Almeida, A. Bugalho de; Alves, L.; Freitas, M.C.; Moniz, D.; Alvarez, E.; Monteiro, P.; Reis, M.

    1999-01-01

    The aim of this work is to search for respiratory system aggressors to which workers are submitted in their labouring activity. Workers from one sector of a steel plant in Portugal, Siderurgia Nacional (SN), were selected according to the number of years of exposure and labouring characteristics. The work reports on blood elemental content alterations and lung function tests to determine an eventual bronchial hyper-reactivity. Aerosol samples collected permit an estimate of indoor air quality and airborne particulate matter characterisation to further check whether the elemental associations and alterations found in blood may derive from exposure. Blood and aerosol elemental composition was determined by PIXE and INAA. Respiratory affections were verified for 24% of the workers monitored. There are indications that the occurrence of affections can be associated with the total working years. The influence of long-term exposure, health status parameters, and lifestyle factors in blood elemental variations found was investigated

  10. Forest health monitoring: national status, trends, and analysis 2016

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2017-01-01

    The annual national report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introducesnew techniques for analyzing forest health data, and summarizes results of recently completed...

  11. Development of protocols to inventory or monitor wildlife, fish, or rare plants

    Science.gov (United States)

    David Vesely; Brenda C. McComb; Christina D. Vojta; Lowell H. Suring; Jurai Halaj; Richard S. Holthausen; Benjamin Zuckerberg; Patricia M. Manley

    2006-01-01

    The purpose of this technical guide (hereafter referred to as the Species Protocol Technical Guide) is to provide guidelines for developing inventory and monitoring (I&M) protocols for wildlife, fish, and rare plants (WFRP) using the U.S. Department of Agriculture (USDA) Forest Service technical guide format.

  12. Validity and reliability of the South African health promoting schools monitoring questionnaire.

    Science.gov (United States)

    Struthers, Patricia; Wegner, Lisa; de Koker, Petra; Lerebo, Wondwossen; Blignaut, Renette J

    2017-04-01

    Health promoting schools, as conceptualised by the World Health Organisation, have been developed in many countries to facilitate the health-education link. In 1994, the concept of health promoting schools was introduced in South Africa. In the process of becoming a health promoting school, it is important for schools to monitor and evaluate changes and developments taking place. The Health Promoting Schools (HPS) Monitoring Questionnaire was developed to obtain opinions of students about their school as a health promoting school. It comprises 138 questions in seven sections: socio-demographic information; General health promotion programmes; health related Skills and knowledge; Policies; Environment; Community-school links; and support Services. This paper reports on the reliability and face validity of the HPS Monitoring Questionnaire. Seven experts reviewed the questionnaire and agreed that it has satisfactory face validity. A test-retest reliability study was conducted with 83 students in three high schools in Cape Town, South Africa. The kappa-coefficients demonstrate mostly fair (κ-scores between 0.21 and 0.4) to moderate (κ-scores between 0.41 and 0.6) agreement between test-retest General and Environment items; poor (κ-scores up to 0.2) agreement between Skills and Community test-retest items, fair agreement between Policies items, and for most of the questions focussing on Services a fair agreement was found. The study is a first effort at providing a tool that may be used to monitor and evaluate students' opinions about changes in health promoting schools. Although the HPS Monitoring Questionnaire has face validity, the results of the reliability testing were inconclusive. Further research is warranted. © The Author 2016. Published by Oxford University Press.

  13. Development of a remote controlled robot system for monitoring nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hee Gon; Song, Myung Jae; Shin, Hyun Bum; Oh, Gil Hwan; Maeng, Sung Jun; Choi, Byung Jae; Chang, Tae Woo [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Lee, Bum Hee; Yoo, Jun; Choi, Myung Hwan; Go, Nak Yong; Lee, Kee Dong; Lee, Young Dae; Cho, Hae Kyeng; Nam, Yoon Suk [Electric and Science Research Center, (Korea, Republic of)

    1996-12-31

    It`s a final report of the development of remote controlled robot system for monitoring the facilities in nuclear power plant and contains as follows, -Studying the technologies in robot developments and analysing the requirements and working environments - Development of the test mobile robot system - Development of the mobile-robot - Development of the Mounted system on the Mobile robot - Development of the Monitoring system - Mobil-robot applications and future study. In this study we built the basic technologies and schemes for future robot developments and applications. (author). 20 refs., figs.

  14. Nuclear power plant monitoring method by neural network and its application to actual nuclear reactor

    International Nuclear Information System (INIS)

    Nabeshima, Kunihiko; Suzuki, Katsuo; Shinohara, Yoshikuni; Tuerkcan, E.

    1995-11-01

    In this paper, the anomaly detection method for nuclear power plant monitoring and its program are described by using a neural network approach, which is based on the deviation between measured signals and output signals of neural network model. The neural network used in this study has three layered auto-associative network with 12 input/output, and backpropagation algorithm is adopted for learning. Furthermore, to obtain better dynamical model of the reactor plant, a new learning technique was developed in which the learning process of the present neural network is divided into initial and adaptive learning modes. The test results at the actual nuclear reactor shows that the neural network plant monitoring system is successfull in detecting in real-time the symptom of small anomaly over a wide power range including reactor start-up, shut-down and stationary operation. (author)

  15. Forest Health Monitoring: national status, trends, and analysis 2014

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2015-01-01

    The annual national report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introduces new techniques for analyzing forest health data, and summarizes results of recently completed Evaluation...

  16. Forest health monitoring: national status, trends, and analysis 2013

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2015-01-01

    The annual national report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introduces new techniques for analyzing forest health data, and summarizes results of recently completed Evaluation...

  17. The Blend Down Monitoring System Demonstration at the Padijcah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Benton, J.; Close, D.; Johnson, W. Jr.; Kerr, P.; March-Leuba, J.; Mastal, E.; Moss, C.; Powell, D.; Sumner, J.; Uckan, T.; Vines, R.; Wright, P.D.

    1999-01-01

    Agreements between the governments of the US and the Russian Federation for the US purchase of low enriched uranium (LEU) derived from highly enriched uranium (HEU) from dismantled Russian nuclear weapons calls for the establishment of transparency measures to provide confidence that nuclear nonproliferation goals are being met. To meet these transparency goals, the agreements call for the installation of nonintrusive US instruments to monitor the down blending of HEU to LEU. The Blend Down Monitoring System (BDMS) has been jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor 235 U enrichments and mass flow rates at Russian blending facilities. Prior to its installation in Russian facilities, the BDMS was installed and operated in a UF 6 flow loop in the Paducah Gaseous Diffusion Plant simulating flow and enrichment conditions expected in a typical down-blending facility. A Russian delegation to the US witnessed the equipment demonstration in June, 1998. To conduct the demonstration in the Paducah Gaseous Diffusion Plant (PGDP), the BDMS was required to meet stringent Nuclear Regulatory Commission licensing, safety and operational requirements. The Paducah demonstration was an important milestone in achieving the operational certification for the BDMS use in Russian facilities

  18. Radioecological monitoring of the environment of a French nuclear power plant after 12 years in operation

    International Nuclear Information System (INIS)

    Foulquier, L.; Descamps, B.; Roussel, S.

    1992-01-01

    Taking Fessenheim Nuclear Power Plant as an example, this paper gives a description of various types of environmental test carried out under the responsibility of the Operator of Nuclear Power Plants in France: permanent monitoring of radioactivity, periodic radioecological assessments. The main results of measurements taken, show the effect of the Plant to be negligible. 8 refs., 1 fig., 4 tabs

  19. Smart sensor systems for human health breath monitoring applications.

    Science.gov (United States)

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  20. Condition monitoring of rotormachinery in nuclear power plants

    International Nuclear Information System (INIS)

    Suedmersen, U.; Runkel, J.; Vortriede, A.; Reimche, W.; Stegemann, D.

    1996-01-01

    Due to safety and economical reasons diagnostic and monitoring systems are of growing interest in nuclear power plants and other complex industrial productions. Key components of NPP's are rotating machineries of the primary and secondary loops like PWR main coolant pumps, BWR recirculation pumps, turbines, fresh water pumps and feed water pumps. Diagnostic systems are requested which detect, diagnose and localize faulty operation conditions at an early stage in order to prevent severe failures and to enable predictive and condition oriented maintenance. The knowledge of characteristical machine signatures and their time dependent behaviour are the basis of efficient condition monitoring of rotating machines. The performance of reference measurements are of importance for fault detection during operation by trend settings. The comparison with thresholds given by norms and standards is only a small section of available possibilities. Therefore, for each machinery own thresholds should be determined using statistical time values, spectra comparison, cepstrum analysis and correlation analysis for source localization corresponding to certain machine operation conditions. (author). 14 refs, 15 figs