WorldWideScience

Sample records for monitor pgt activity

  1. Inhibition of the Prostaglandin Transporter PGT Lowers Blood Pressure in Hypertensive Rats and Mice.

    Directory of Open Access Journals (Sweden)

    Yuling Chi

    Full Text Available Inhibiting the synthesis of endogenous prostaglandins with nonsteroidal anti-inflammatory drugs exacerbates arterial hypertension. We hypothesized that the converse, i.e., raising the level of endogenous prostaglandins, might have anti-hypertensive effects. To accomplish this, we focused on inhibiting the prostaglandin transporter PGT (SLCO2A1, which is the obligatory first step in the inactivation of several common PGs. We first examined the role of PGT in controlling arterial blood pressure blood pressure using anesthetized rats. The high-affinity PGT inhibitor T26A sensitized the ability of exogenous PGE2 to lower blood pressure, confirming both inhibition of PGT by T26A and the vasodepressor action of PGE2 T26A administered alone to anesthetized rats dose-dependently lowered blood pressure, and did so to a greater degree in spontaneously hypertensive rats than in Wistar-Kyoto control rats. In mice, T26A added chronically to the drinking water increased the urinary excretion and plasma concentration of PGE2 over several days, confirming that T26A is orally active in antagonizing PGT. T26A given orally to hypertensive mice normalized blood pressure. T26A increased urinary sodium excretion in mice and, when added to the medium bathing isolated mouse aortas, T26A increased the net release of PGE2 induced by arachidonic acid, inhibited serotonin-induced vasoconstriction, and potentiated vasodilation induced by exogenous PGE2. We conclude that pharmacologically inhibiting PGT-mediated prostaglandin metabolism lowers blood pressure, probably by prostaglandin-induced natriuresis and vasodilation. PGT is a novel therapeutic target for treating hypertension.

  2. The outer membrane protease PgtE of Salmonella enterica interferes with the alternative complement pathway by cleaving factors B and H

    Directory of Open Access Journals (Sweden)

    Rauna eRiva

    2015-02-01

    Full Text Available The virulence factor PgtE is an outer membrane protease (omptin of the zoonotic pathogen Salmonella enterica that causes diseases ranging from gastroenteritis to severe enteric fever. It is surface exposed in bacteria that have a short-chain, i.e. rough LPS, as observed e.g. in bacteria residing inside macrophages or just emerging from them. We investigated whether PgtE cleaves the complement factors B (B and H (H, key proteins controlling formation and inactivation of the complement protein C3b and thereby the activity of the complement system. S. enterica serovar Typhimurium or omptin-expressing recombinant E. coli bacteria were incubated with purified human complement proteins or recombinant H fragments. PgtE cleaved both B and H, whereas its close homolog Pla of Yersinia pestis cleaved only H. H was cleaved at both N- and C-termini, while the central region resisted proteolysis. Because of multiple effects of PgtE on complement components (cleavage of C3, C3b, B and H we assessed its effect on the opsonophagocytosis of Salmonella. In human serum, C3 cleavage was dependent on proteolytically active PgtE. Human neutrophils interacted less with serum-opsonized FITC-stained S. enterica 14028R than with the isogenic ΔpgtE strain, as analyzed by flow cytometry. In conclusion, cleavage of B and H by PgtE, together with C3 cleavage, affects the C3-mediated recognition of S. enterica by human neutrophils, thus thwarting the immune protection against Salmonella.

  3. Inhibition of Prostaglandin Transporter (PGT Promotes Perfusion and Vascularization and Accelerates Wound Healing in Non-Diabetic and Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Zhongbo Liu

    Full Text Available Peripheral ischemia, resulting from diminished arterial flow and defective local vascularization, is one of the main causes of impaired wound healing in diabetes. Vasodilatory prostaglandins (PGs, including PGE2 and PGI2, regulate blood flow in peripheral tissues. PGs also stimulate angiogenesis by inducing vascular endothelial growth factor. However, PG levels are reduced in diabetes mainly due to enhanced degradation. We hypothesized that inhibition of the prostaglandin transporter (PGT (SLCO2A1, which mediates the degradation of PGs, would increase blood flow and stimulate vascularization, thereby mitigating peripheral ischemia and accelerating wound healing in diabetes. Here we report that inhibiting PGT with intravenously injected PGT inhibitor, T26A, increased blood flow in ischemic hind limbs created in non-diabetic rats and streptozotocin induced diabetic rats. Systemic, or combined with topical, T26A accelerated closure of cutaneous wounds. Immunohistochemical examination revealed that inhibition of PGT enhanced vascularization (marked by larger numbers of vessels formed by CD34+ cells, and accelerated re-epithelialization of cutaneous wounds. In cultured primary human bone marrow CD34+ cells and human epidermal keratinocytes (HEKs either inhibiting or silencing PGT increased migration in both cell lines. Thus PGT directly regulates mobilization of endothelial progenitor cells (EPCs and HEKs, which could contribute to PGT-mediated vascularization and re-epithelialization. At the molecular level, systemic inhibition of PGT raised circulating PGE2. Taken together, our data demonstrate that PGT modulates arterial blood flow, mobilization of EPCs and HEKs, and vascularization and epithelialization in wound healing by regulating vasodilatory and pro-angiogenic PGs.

  4. The effects of somatic hypermutation on neutralization and binding in the PGT121 family of broadly neutralizing HIV antibodies.

    Directory of Open Access Journals (Sweden)

    Devin Sok

    Full Text Available Broadly neutralizing HIV antibodies (bnAbs are typically highly somatically mutated, raising doubts as to whether they can be elicited by vaccination. We used 454 sequencing and designed a novel phylogenetic method to model lineage evolution of the bnAbs PGT121-134 and found a positive correlation between the level of somatic hypermutation (SHM and the development of neutralization breadth and potency. Strikingly, putative intermediates were characterized that show approximately half the mutation level of PGT121-134 but were still capable of neutralizing roughly 40-80% of PGT121-134 sensitive viruses in a 74-virus panel at median titers between 15- and 3-fold higher than PGT121-134. Such antibodies with lower levels of SHM may be more amenable to elicitation through vaccination while still providing noteworthy coverage. Binding characterization indicated a preference of inferred intermediates for native Env binding over monomeric gp120, suggesting that the PGT121-134 lineage may have been selected for binding to native Env at some point during maturation. Analysis of glycan-dependent neutralization for inferred intermediates identified additional adjacent glycans that comprise the epitope and suggests changes in glycan dependency or recognition over the course of affinity maturation for this lineage. Finally, patterns of neutralization of inferred bnAb intermediates suggest hypotheses as to how SHM may lead to potent and broad HIV neutralization and provide important clues for immunogen design.

  5. Somatic populations of PGT135-137 HIV-1-neutralizing antibodies identified by 454 pyrosequencing and bioinformatics

    Directory of Open Access Journals (Sweden)

    Jiang eZhu

    2012-09-01

    Full Text Available Select HIV-1-infected individuals develop sera capable of neutralizing diverse viral strains. The molecular basis of this neutralization is currently being deciphered by the isolation of HIV-1-neutralizing antibodies. In one infected donor, three neutralizing antibodies, PGT135-137, were identified by assessment of neutralization from individually sorted B cells and found to recognize an epitope containing an N-linked glycan at residue 332 on HIV-1 gp120. Here we use deep sequencing and bioinformatics methods to interrogate the B cell record of this donor to gain a more complete understanding of the humoral immune response. PGT135-137-gene family-specific primers were used to amplify heavy and light chain-variable domain sequences. 454 pyrosequencing produced 141,298 heavy-chain sequences of IGHV4-39 origin and 87,229 light-chain sequences of IGKV3-15 origin. A number of heavy and light chain sequences of ~90% identity to PGT137, several to PGT136, and none of high identity to PGT135 were identified. After expansion of these sequences to include close phylogenetic relatives, a total of 202 heavy-chain sequences and 72 light-chain sequences were identified. These sequences were clustered into populations of 95% identity comprising 15 for heavy chain and 10 for light chain, and a select sequence from each population was synthesized and reconstituted with a PGT137-partner chain. Reconstituted antibodies showed varied neutralization phenotypes for HIV-1 clade A and D isolates. Sequence diversity of the antibody population represented by these tested sequences was notably higher than observed with a 454 pyrosequencing-control analysis on 10 antibodies of defined sequence, suggesting that this diversity results primarily from somatic maturation. Our results thus provide an example of how pathogens like HIV-1 are opposed by a varied humoral immune response, derived from intrinsic mechanisms of antibody development, and embodied by somatic populations

  6. Value activity monitoring

    OpenAIRE

    de Alencar Silva, P.

    2013-01-01

    Abstract: Current value modeling ontologies are grounded on the economic premise that profit sharing is a critical condition to be assessed during the configuration of a value constellation. Such a condition ought to be reinforced through a monitoring mechanism design, since a value model expresses only promises (but not assurances) of value creation. Hence there is a need to extend current value modeling ontologies with a monitoring ontology. This ontology will enable business practitioners ...

  7. Value activity monitoring

    NARCIS (Netherlands)

    de Alencar Silva, P.

    2013-01-01

    Current value modeling ontologies are grounded on the economic premise that profit sharing is a critical condition to be assessed during the configuration of a value constellation. Such a condition ought to be reinforced through a monitoring mechanism design, since a value model expresses only promi

  8. Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Julien

    Full Text Available New broad and potent neutralizing HIV-1 antibodies have recently been described that are largely dependent on the gp120 N332 glycan for Env recognition. Members of the PGT121 family of antibodies, isolated from an African donor, neutralize ∼70% of circulating isolates with a median IC50 less than 0.05 µg ml(-1. Here, we show that three family members, PGT121, PGT122 and PGT123, have very similar crystal structures. A long 24-residue HCDR3 divides the antibody binding site into two functional surfaces, consisting of an open face, formed by the heavy chain CDRs, and an elongated face, formed by LCDR1, LCDR3 and the tip of the HCDR3. Alanine scanning mutagenesis of the antibody paratope reveals a crucial role in neutralization for residues on the elongated face, whereas the open face, which accommodates a complex biantennary glycan in the PGT121 structure, appears to play a more secondary role. Negative-stain EM reconstructions of an engineered recombinant Env gp140 trimer (SOSIP.664 reveal that PGT122 interacts with the gp120 outer domain at a more vertical angle with respect to the top surface of the spike than the previously characterized antibody PGT128, which is also dependent on the N332 glycan. We then used ITC and FACS to demonstrate that the PGT121 antibodies inhibit CD4 binding to gp120 despite the epitope being distal from the CD4 binding site. Together, these structural, functional and biophysical results suggest that the PGT121 antibodies may interfere with Env receptor engagement by an allosteric mechanism in which key structural elements, such as the V3 base, the N332 oligomannose glycan and surrounding glycans, including a putative V1/V2 complex biantennary glycan, are conformationally constrained.

  9. Contamination monitoring activities in Kanupp

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, S.S. [Karachi Nuclear Power Plant (Pakistan)

    1997-06-01

    The Karachi Nuclear Power Plant (Kanupp) is a 137 MWe pressurized heavy water reactor, designed and erected by the Canadian General Electric Company as a turn key project. The plant is in operation since it was commissioned in the year 1972. It is located at the Arabian Sea Coast about 15 miles to the west of Karachi. During its more than two decades of operation, the plant has generated about 8 billion units of electricity with an average life time availability factor of 60%. In Kanupp, radioactive contamination may exit due to the release of fission product, activation products etc., which may somehow escape from its confinement and may contaminate surface or other media such as air, water etc. In this paper, following items are described: main aspects of contamination, status of contamination monitoring, need of contamination monitoring, radiation protection activity, instruments, contamination, current status of contamination survey materials and their disposal, and environmental monitoring. (G.K.)

  10. Active Job Monitoring in Pilots

    Science.gov (United States)

    Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas

    2015-12-01

    Recent developments in high energy physics (HEP) including multi-core jobs and multi-core pilots require data centres to gain a deep understanding of the system to monitor, design, and upgrade computing clusters. Networking is a critical component. Especially the increased usage of data federations, for example in diskless computing centres or as a fallback solution, relies on WAN connectivity and availability. The specific demands of different experiments and communities, but also the need for identification of misbehaving batch jobs, requires an active monitoring. Existing monitoring tools are not capable of measuring fine-grained information at batch job level. This complicates network-aware scheduling and optimisations. In addition, pilots add another layer of abstraction. They behave like batch systems themselves by managing and executing payloads of jobs internally. The number of real jobs being executed is unknown, as the original batch system has no access to internal information about the scheduling process inside the pilots. Therefore, the comparability of jobs and pilots for predicting run-time behaviour or network performance cannot be ensured. Hence, identifying the actual payload is important. At the GridKa Tier 1 centre a specific tool is in use that allows the monitoring of network traffic information at batch job level. This contribution presents the current monitoring approach and discusses recent efforts and importance to identify pilots and their substructures inside the batch system. It will also show how to determine monitoring data of specific jobs from identified pilots. Finally, the approach is evaluated.

  11. The outer membrane protease PgtE of Salmonella enterica interferes with the alternative complement pathway by cleaving factors B and H

    OpenAIRE

    Rauna eRiva; Korhonen, Timo K.; Seppo eMeri

    2015-01-01

    The virulence factor PgtE is an outer membrane protease (omptin) of the zoonotic pathogen Salmonella enterica that causes diseases ranging from gastroenteritis to severe enteric fever. It is surface exposed in bacteria that have a short-chain, i.e., rough LPS, as observed e.g., in bacteria residing inside macrophages or just emerging from them. We investigated whether PgtE cleaves the complement factors B (B) and H (H), key proteins controlling formation and inactivation of the complement pro...

  12. 7 CFR 800.216 - Activities that shall be monitored.

    Science.gov (United States)

    2010-01-01

    ... merchandising activities identified in this section shall be monitored in accordance with the instructions. (b) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with...) Recordkeeping activities. Elevator and merchandising recordkeeping activities subject to monitoring...

  13. Monitoring Biological Activity at Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  14. Technology of remote monitoring for nuclear activity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kwack, Ehn Ho; Kim, Jong Soo; Yoon, Wan Ki; Park, Sung Sik; Na, Won Woo; An, Jin Soo; Cha, Hong Ryul; Kim, Jung Soo

    2000-05-01

    In a view of safeguards monitoring at nuclear facilities, the monitoring is changing to remote method so that this report is described to remote monitoring(RM) applying on commercial NPP in Korea. To enhance IAEA safeguards efficiency and effectiveness, IAEA is taking into account of remote monitoring system(RMS) and testing as a field trial. IRMP(International Remote Monitoring Project) in participating many nations for development of RMS is proceeding their project such as technical exchange and research etc. In case of our country are carrying out the research relevant RM since acceptance RMS at 7th ROK-IAEA safeguards implementation review meeting. With a view to enhancement the RMS, installation location and element technology of the RM equipment are evaluated in a view of safeguards in Korea LWRs, and proposed a procedure for national inspection application through remote data evaluation from Younggwang-3 NPP. These results are large valuable to use of national inspection at time point extending installation to all Korea PWR NPP. In case of CANDU, neutron, gamma measurement and basic concept of network using optical fiber scintillating detector as remote verification method for dry storage canister are described. Also RM basic design of spent fuel transfer campaign is described that unattended RM without inspector instead of performing in participating together with IAEA and national inspector. The transfer campaign means the spent fuel storage pond to dry storage canister for about two months every year. Therefore, positively participation of IAEA strength safeguards project will be increased transparency for our nuclear activity as well as contributed to national relevant industry.

  15. Performance evaluation of salivary amylase activity monitor.

    Science.gov (United States)

    Yamaguchi, Masaki; Kanemori, Takahiro; Kanemaru, Masashi; Takai, Noriyasu; Mizuno, Yasufumi; Yoshida, Hiroshi

    2004-10-15

    In order to quantify psychological stress and to distinguish eustress and distress, we have been investigating the establishment of a method that can quantify salivary amylase activity (SMA). Salivary glands not only act as amplifiers of a low level of norepinephrine, but also respond more quickly and sensitively to psychological stress than cortisol levels. Moreover, the time-course changes of the salivary amylase activity have a possibility to distinguish eustress and distress. Thus, salivary amylase activity can be utilized as an excellent index for psychological stress. However, in dry chemistry system, a method for quantification of the enzymatic activity still needs to be established that can provide with sufficient substrate in a testing tape as well as can control enzymatic reaction time. Moreover, it is necessary to develop a method that has the advantages of using saliva, such as ease of collection, rapidity of response, and able to use at any time. In order to establish an easy method to monitor the salivary amylase activity, a salivary transcription device was fabricated to control the enzymatic reaction time. A fabricated salivary amylase activity monitor consisted of three devices, the salivary transcription device, a testing-strip and an optical analyzer. By adding maltose as a competitive inhibitor to a substrate Ga1-G2-CNP, a broad-range activity testing-strip was fabricated that could measure the salivary amylase activity with a range of 0-200 kU/l within 150 s. The calibration curve of the monitor for the salivary amylase activity showed R2=0.941, indicating that it was possible to use this monitor for the analysis of the salivary amylase activity without the need to determine the salivary volume quantitatively. In order to evaluate the assay variability of the monitor, salivary amylase activity was measured using Kraepelin psychodiagnostic test as a psychological stressor. A significant difference of salivary amylase activity was recognized

  16. Active system monitoring applied on wind turbines

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad; Parbo, Henrik

    2009-01-01

    A concept for active system monitoring (ASM) applied on wind turbines is presented in this paper. The concept is based on an injection of a small periodic auxiliary signal in the system. An investigation of the signature from the auxiliary input in residual (error) signals can then be applied...

  17. Wireless system for seismic activity monitoring

    OpenAIRE

    Безвесільна, Олена Миколаївна; Козько, Констянтин Сергійович

    2014-01-01

    The article examines the concepts and principles of sensor networks operations, especially the one that is used to monitor seismic activity and potential natural disasters. It also describes the operating principle of the geographically distributed wireless system, represented by block diagrams of typical sensor nodes and base station, as well as constructive electrical circuit sensor node and the frequency generator radio transmissions the base station and sensor nodes, we formulate to calcu...

  18. Monitoring active volcanoes: The geochemical approach

    Directory of Open Access Journals (Sweden)

    Takeshi Ohba

    2011-06-01

    Full Text Available

    The geochemical surveillance of an active volcano aims to recognize possible signals that are related to changes in volcanic activity. Indeed, as a consequence of the magma rising inside the volcanic "plumbing system" and/or the refilling with new batches of magma, the dissolved volatiles in the magma are progressively released as a function of their relative solubilities. When approaching the surface, these fluids that are discharged during magma degassing can interact with shallow aquifers and/or can be released along the main volcano-tectonic structures. Under these conditions, the following main degassing processes represent strategic sites to be monitored.

    The main purpose of this special volume is to collect papers that cover a wide range of topics in volcanic fluid geochemistry, which include geochemical characterization and geochemical monitoring of active volcanoes using different techniques and at different sites. Moreover, part of this volume has been dedicated to the new geochemistry tools.

  19. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, T.P.

    1994-10-20

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans.

  20. A new neutron monitor with silver activation

    CERN Document Server

    Luszik-Bhadra, M; Hohmann, E

    2010-01-01

    A moderator-type neutron monitor has been developed, which registers delayed beta rays from neutron-induced silver activation and which is able to measure dose equivalent in pulsed fields with peak dose rates of several thousand Sv h(-1). The monitor uses four silicon diodes in the centre of a polyethylene moderator, 30 cm in diameter. Two of the diodes are covered by natural silver foils and two of them by tin foils. The latter are used to subtract photon-induced pulses. For registering signals, a pulse height threshold is set at 662 key, which minimizes the effect of Cs-137 and lower energy radiation and - in addition - enhances the detection of beta rays from the shorter half-life silver isotope Ag-110 (25 s) as compared to the longer half-life isotope Ag-108 (144 s). The results of measurements in neutron and photon calibration fields, of MCNPX neutron response calculations and of first measurements in a high-intensity pulsed field at the PSI accelerator are shown. (c) 2010 Elsevier Ltd. All rights reserv...

  1. Assessing physical activity using wearable monitors: measures of physical activity

    National Research Council Canada - National Science Library

    Butte, Nancy F; Ekelund, Ulf; Westerterp, Klaas R

    2012-01-01

    .... Six main categories of wearable monitors are currently available to investigators: pedometers, load transducers/foot-contact monitors, accelerometers, HR monitors, combined accelerometer and HR monitors, and multiple sensor systems...

  2. How consumer physical activity monitors could transform human physiology research.

    Science.gov (United States)

    Wright, Stephen P; Hall Brown, Tyish S; Collier, Scott R; Sandberg, Kathryn

    2017-03-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O2, and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing.

  3. Nordic monitoring on diet, physical activity and overweight

    DEFF Research Database (Denmark)

    Fagt, Sisse; Andersen, Lene Frost; Anderssen, Sigmund A.;

    In 2007, a Nordic working group was established with the aim to describe a future Nordic monitoring system on diet, physical activity and overweight. The monitoring system should be simple and at relatively low cost. Therefore it has been decided to conduct the moni-toring as a telephone interview...

  4. Instructional physical activity monitor video in english and spanish

    Science.gov (United States)

    The ActiGraph activity monitor is a widely used method for assessing physical activity. Compliance with study procedures in critical. A common procedure is for the research team to meet with participants and demonstrate how and when to attach and remove the monitor and convey how many wear-days are ...

  5. Monitoring bat activity at the Dutch EEZ in 2014

    NARCIS (Netherlands)

    Lagerveld, S.; Jonge Poerink, B.; Vries, de P.

    2015-01-01

    IMARES conducted studies in 2012 and 2013 to monitor offshore bat activity with passive acoustic ultrasonic recorders. In the follow-up project reported here, more data on the offshore occurrence of bats was collected in 2014. Using the same methodology as in 2012 and 2013, bat activity was monitore

  6. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs.

  7. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Valerie A J Block

    Full Text Available To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps.Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures, energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined.137 studies met inclusion criteria in multiple sclerosis (MS (61 studies; stroke (41; Parkinson's Disease (PD (20; dementia (11; traumatic brain injury (2 and ataxia (1. Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering.These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability.

  8. Complete epitopes for vaccine design derived from a crystal structure of the broadly neutralizing antibodies PGT128 and 8ANC195 in complex with an HIV-1 Env trimer.

    Science.gov (United States)

    Kong, Leopold; Torrents de la Peña, Alba; Deller, Marc C; Garces, Fernando; Sliepen, Kwinten; Hua, Yuanzi; Stanfield, Robyn L; Sanders, Rogier W; Wilson, Ian A

    2015-10-01

    The HIV-1 envelope gp160 glycoprotein (Env) is a trimer of gp120 and gp41 heterodimers that mediates cell entry and is the primary target of the humoral immune response. Broadly neutralizing antibodies (bNAbs) to HIV-1 have revealed multiple epitopes or sites of vulnerability, but mapping of most of these sites is incomplete owing to a paucity of structural information on the full epitope in the context of the Env trimer. Here, a crystal structure of the soluble BG505 SOSIP gp140 trimer at 4.6 Å resolution with the bNAbs 8ANC195 and PGT128 reveals additional interactions in comparison to previous antibody-gp120 structures. For 8ANC195, in addition to previously documented interactions with gp120, a substantial interface with gp41 is now elucidated that includes extensive interactions with the N637 glycan. Surprisingly, removal of the N637 glycan did not impact 8ANC195 affinity, suggesting that the antibody has evolved to accommodate this glycan without loss of binding energy. PGT128 indirectly affects the N262 glycan by a domino effect, in which PGT128 binds to the N301 glycan, which in turn interacts with and repositions the N262 glycan, thereby illustrating the important role of neighboring glycans on epitope conformation and stability. Comparisons with other Env trimer and gp120 structures support an induced conformation for glycan N262, suggesting that the glycan shield is allosterically modified upon PGT128 binding. These complete epitopes of two broadly neutralizing antibodies on the Env trimer can now be exploited for HIV-1 vaccine design.

  9. Monitoring of FR Cnc Flaring Activity

    CERN Document Server

    Golovin, A; Pavlenko, E; Kuznyetsova, Yu; Krushevska, V; Sergeev, A

    2007-01-01

    Being excited by the detection of the first ever-observed optical flare in FR Cnc, we decided to continue photometrical monitoring of this object. The observations were carried out at Crimean Astrophysical Observatory (Crimea, Ukraine; CrAO - hereafter) and at the Terskol Observatory (Russia, Northern Caucasus). The obtained lightcurves are presented and discussed. No distinguishable flares were detected that could imply that flares on FR Cnc are very rare event.

  10. Monitoring activities review of the Radiological Environmental Surveillance Program

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, P.D.

    1992-03-01

    The 1992 Monitoring Activities Review (MAR) is directed at the Radiological Environment Surveillance Program (RESP) activities at the Radioactive Waste Management Complex (RWMC) of Idaho Engineering Laboratory (INEL). MAR panelists studied RESP documents and discussed their concerns with Environmental Monitoring Unit (EMU) staff and other panel members. These concerns were subsequently consolidated into a collection of recommendations with supporting discussions. Recommendations focus on specific monitoring activities, as well as the overall program. The MAR report also contains pertinent comments that should not require further action.

  11. [The sociological monitoring as a tool to evaluate preventive activities].

    Science.gov (United States)

    Mazus, A I; Leven, I I; Vinogradova, O V; Zelenev, V V; Makarenko, O V

    2009-01-01

    The monitoring of conditions of HIV-infection spreading includes qualitative research methods to reveal specified information from people relating immediately to the problem of HIV-infection prevalence. The acquired information can be used both for monitoring of the conditions of HIV-infection spreading (morbidity, prevalence, mortality) and adjustment of preventive activities at the level of specific administrative territory.

  12. DEVELOPMENT ANALYZERS TRANSACTIONS IN MONITORING THE BUSINESS ACTIVITIES OF ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    L. E. Sovik

    2013-01-01

    Full Text Available In the article there are marked the features and prerequisites of implementation in food production technologies devoted to monitor business activity in the realtime. The methodical approach to the development of analyzers transactional business processes of the organization is offered, monitoring scheme for one of the basic types of business events in the procurement process is constructed.

  13. Brain Activity Monitoring for Assessing Satisfaction

    Directory of Open Access Journals (Sweden)

    Paola Johanna Rodríguez Carrillo

    2015-06-01

    Full Text Available Satisfaction is a dimension of usability for which quantitative metrics cannot be calculated during user interactions. Measurement is subjective and depends on the ability to interpret questionnaires and on the memory of the user. This paper represents an attempt to develop an automatic quantitative metric of satisfaction, developed using a Brain Computer Interface to monitor the mental states (Attention/Meditation of users. Based on these results, we are able to establish a correlation between the state of Attention and the users' level of satisfaction.

  14. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Marlon Navia

    2015-09-01

    Full Text Available Several systems have been proposed to monitor wireless sensor networks (WSN. These systems may be active (causing a high degree of intrusion or passive (low observability inside the nodes. This paper presents the implementation of an active hybrid (hardware and software monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART, serial peripheral interface (SPI, and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference, about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature.

  15. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    Science.gov (United States)

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-09-18

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature.

  16. Active imaging for monitoring and technical diagnostics

    Directory of Open Access Journals (Sweden)

    Marek Piszczek

    2014-08-01

    Full Text Available The article presents the results of currently running work in the field of active imaging. The term active refers to both the image acquisition methods, so-called methods of the spatio-temporal framing and active visualization method applying augmented reality. Also results of application of the HMD and 6DoF modules as well as the experimental laser photography device are given. The device works by methods of spatio-temporal framing and it has been developed at the IOE WAT. In terms of image acquisition - active imaging involves the use of illumination of the observed scene. In the field of information visualization - active imaging directly concerns the issues of interaction human-machine environment. The results show the possibility of using the described techniques, among others, rescue (fire brigade, security of mass events (police or the protection of critical infrastructure as well as broadly understood diagnostic problems. Examples presented in the article show a wide range of possible uses of the methods both in observational techniques and measurement. They are relatively innovative solutions and require elaboration of series of hardware and algorithmic issues. However, already at this stage it is clear that active acquisition and visualization methods indicate a high potential for this type of information solutions.[b]Keywords[/b]: active imaging, augmented reality, digital image processing

  17. Management plan for Facility Effluent Monitoring Plan activities

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, J.M.; Pratt, D.R.

    1991-08-01

    The DOE/RL 89-19, United States Department of Energy-Richland Operations Office Environmental Protection Implementation Plan (1989), requires the Hanford Site to prepare an Environmental Monitoring Plan (EMP) by November 9, 1991. The DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (1991), provides additional guidance and requires implementation of the EMP within 36 months of the effective data of the rule. DOE Order 5400.1, General Environmental Protection Program, requires each US Department of Energy (DOE) site, facility, or activity that uses, generates, releases, or manages significant quantities of hazardous materials to prepare an EMP. This EMP is to identify and discuss two major activities: (1) effluent monitoring and (2) environmental surveillance. At the Hanford Site, the site-wide EMP will consist of the following elements: (1) A conceptual plan addressing effluent monitoring and environmental surveillance; (2) Pacific Northwest Laboratory (PNL) site-wide environmental surveillance program; (3) Westinghouse Hanford Company (Westinghouse Hanford) effluent monitoring program consisting of the near-field operations environmental monitoring activities and abstracts of each Facility Effluent Monitoring Plan (FEMP). This management plan addresses the third of these three elements of the EMP, the FEMPs.

  18. Evaluation of Activity Recognition Algorithms for Employee Performance Monitoring

    OpenAIRE

    2012-01-01

    Successful Human Resource Management plays a key role in success of any organization. Traditionally, human resource managers rely on various information technology solutions such as Payroll and Work Time Systems incorporating RFID and biometric technologies. This research evaluates activity recognition algorithms for employee performance monitoring. An activity recognition algorithm has been implemented that categorized the activity of employee into following in to classes: job activities and...

  19. The methodical statutes monitoring of activity by innovative structures

    OpenAIRE

    Stoianovskii, Andrii; Baranovska, Sofia; Stoianovska, Iryna

    2012-01-01

    In the article it is suggested to perfect methodical recommendations in relation to monitoring of activity of innovative structures, which, among other, allow to mark off the results of activity of leading organ of management and contractors of innovative projects, registered in her limits an innovative structure.

  20. Fabric-based integrated energy devices for wearable activity monitors.

    Science.gov (United States)

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics.

  1. Evaluation of Activity Recognition Algorithms for Employee Performance Monitoring

    Directory of Open Access Journals (Sweden)

    Mehreen Mumtaz

    2012-09-01

    Full Text Available Successful Human Resource Management plays a key role in success of any organization. Traditionally, human resource managers rely on various information technology solutions such as Payroll and Work Time Systems incorporating RFID and biometric technologies. This research evaluates activity recognition algorithms for employee performance monitoring. An activity recognition algorithm has been implemented that categorized the activity of employee into following in to classes: job activities and non-job related activities. Finally, the algorithm will compute the time which employee spent in job related and non-job related activities. This paper presents a novel architecture based upon video analytics that can facilitate Human Resource Managers in real time.

  2. Activity monitoring in sleep research, medicine and psychopharmacology.

    Science.gov (United States)

    Klösch, G; Gruber, G; Anderer, P; Saletu, B

    2001-04-17

    Motor activity as a diagnostic parameter has become an important feature in many fields of medicine and psychology. The concept of mobility and immobility implies the assumption that mental and behaviour disorders involve abnormal activity that can be measured to characterise the disorder itself, to diagnose its presence and to document the impact of treatment. In sleep research, activity monitoring by wrist actigraphs has proven its usefulness as an efficient method to assess the rest-activity cycle over long time periods and to estimate sleep-related features such as sleep efficiency and total sleep time. But like many other techniques and devices, activity monitoring has some limitations and drawbacks. This paper describes the basic features of wrist actigraphy in measuring nocturnal and daytime motor activity.

  3. An overview of existing raptor contaminant monitoring activities in Europe.

    Science.gov (United States)

    Gómez-Ramírez, P; Shore, R F; van den Brink, N W; van Hattum, B; Bustnes, J O; Duke, G; Fritsch, C; García-Fernández, A J; Helander, B O; Jaspers, V; Krone, O; Martínez-López, E; Mateo, R; Movalli, P; Sonne, C

    2014-06-01

    Biomonitoring using raptors as sentinels can provide early warning of the potential impacts of contaminants on humans and the environment and also a means of tracking the success of associated mitigation measures. Examples include detection of heavy metal-induced immune system impairment, PCB-induced altered reproductive impacts, and toxicity associated with lead in shot game. Authorisation of such releases and implementation of mitigation is now increasingly delivered through EU-wide directives but there is little established pan-European monitoring to quantify outcomes. We investigated the potential for EU-wide coordinated contaminant monitoring using raptors as sentinels. We did this using a questionnaire to ascertain the current scale of national activity across 44 European countries. According to this survey, there have been 52 different contaminant monitoring schemes with raptors over the last 50years. There were active schemes in 15 (predominantly western European) countries and 23 schemes have been running for >20years; most monitoring was conducted for >5years. Legacy persistent organic compounds (specifically organochlorine insecticides and PCBs), and metals/metalloids were monitored in most of the 15 countries. Fungicides, flame retardants and anticoagulant rodenticides were also relatively frequently monitored (each in at least 6 countries). Common buzzard (Buteo buteo), common kestrel (Falco tinnunculus), golden eagle (Aquila chrysaetos), white-tailed sea eagle (Haliaeetus albicilla), peregrine falcon (Falco peregrinus), tawny owl (Strix aluco) and barn owl (Tyto alba) were most commonly monitored (each in 6-10 countries). Feathers and eggs were most widely analysed although many schemes also analysed body tissues. Our study reveals an existing capability across multiple European countries for contaminant monitoring using raptors. However, coordination between existing schemes and expansion of monitoring into Eastern Europe is needed. This would enable

  4. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    Energy Technology Data Exchange (ETDEWEB)

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  5. Continuous gravity monitoring of geothermal activity; Renzoku juryoku sokutei ni yoru chinetsu katsudo no monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sugihara, M. [Geological Survey of Japan, Tsukuba (Japan)

    1997-05-27

    To clarify the geothermal activity in the geothermal fields in New Zealand, gravity monitoring was conducted using SCINTREX automatic gravimeter. The measurements were conducted between the end of January and the beginning of March, 1996. Firstly, continuous monitoring was conducted at the standard point for about ten days, and the tidal components were estimated from the records. After that, continuous monitoring was conducted at Waimangu area for several days. Continuous monitoring was repeated at the standard point, again. At the Waimangu area, three times of changes in the pulse-shape amplitude of 0.01 mgal having a width of several hours were observed. For the SCINTREX gravimeter, the inclination of gravimeter is also recorded in addition to the change of gravity. During the monitoring, the gravimeter was also inclined with the changes of gravity. This inclination was useful not only for the correction of gravity measured, but also for evaluating the ground fluctuation due to the underground pressure source. It is likely that the continuous gravity monitoring is the relatively conventional technique which is effective for prospecting the change of geothermal reservoir. 2 figs.

  6. Embedded Triboelectric Active Sensors for Real-Time Pneumatic Monitoring.

    Science.gov (United States)

    Fu, Xian Peng; Bu, Tian Zhao; Xi, Feng Ben; Cheng, Ting Hai; Zhang, Chi; Wang, Zhong Lin

    2017-09-20

    Pneumatic monitoring sensors have great demands for power supply in cylinder systems. Here, we present an embedded sliding triboelectric nanogenerator (TENG) in air cylinder as active sensors for position and velocity monitoring. The embedded TENG is composed of a circular poly(tetrafluoroethylene) polymer and a triangular copper electrode. The working mechanism as triboelectric active sensors and electric output performance are systematically investigated. By integrating into the pneumatic system, the embedded triboelectric active sensors have been used for real-time air pressure/flow monitoring and energy storage. Air pressures are measured from 0.04 to 0.12 MPa at a step of 0.02 MPa with a sensitivity of 49.235 V/MPa, as well as airflow from 50 to 250 L/min at a step of 50 L/min with a sensitivity of 0.002 μA·min/L. This work has first demonstrated triboelectric active sensors for pneumatic monitoring and may promote the development of TENG in intelligent pneumatic system.

  7. Applied research of environmental monitoring using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Sam; Moon, Jong Hwa; Chung, Young Ju

    1997-08-01

    This technical report is written as a guide book for applied research of environmental monitoring using Instrumental Neutron Activation Analysis. The contents are as followings; sampling and sample preparation as a airborne particulate matter, analytical methodologies, data evaluation and interpretation, basic statistical methods of data analysis applied in environmental pollution studies. (author). 23 refs., 7 tabs., 9 figs.

  8. Leisure Time Activities, Parental Monitoring and Drunkenness in Adolescents

    NARCIS (Netherlands)

    Tomcikova, Zuzana; Veselska, Zuzana; Geckova, Andrea Madarasova; van Dijk, Jitse P.; Reijneveld, Sijmen A.

    2013-01-01

    Background: The aim of this cross-sectional study was to explore the association between adolescent drunkenness and participation in risky leisure time activities and parental monitoring. Methods: A sample of 3,694 Slovak elementary school students (mean age 14.5 years; 49.0% males) was assessed for

  9. Leisure time activities, parental monitoring and drunkenness in adolescents

    NARCIS (Netherlands)

    Tomcikova, Z.; Veselska, Z.; Madarasova Geckova, A.; van Dijk, J.P.; Reijneveld, S.A.

    2012-01-01

    Background: The aim of this cross-sectional study was to explore the association between adolescent drunkenness and participation in risky leisure time activities and parental monitoring. Methods: A sample of 3,694 Slovak elementary school students (mean age 14.5 years; 49.0% males) was assessed for

  10. Permanent Infrasound Monitoring of Active Volcanoes in Ecuador

    Science.gov (United States)

    Ruiz, M. C.; Yepes, H. A.; Steele, A.; Segovia, M.; Vaca, S.; Cordova, A.; Enriquez, W.; Vaca, M.; Ramos, C.; Arrais, S.; Tapa, I.; Mejia, F.; Macias, C.

    2013-12-01

    Since 2006, infrasound monitoring has become a permanent tool for observing, analyzing and understanding volcanic activity in Ecuador. Within the framework of a cooperative project between the Japanese International Cooperation Agency (JICA) and the Instituto Geofísico to enhance volcano monitoring capabilities within the country, 10 infrasound sensors were deployed in conjunction with broadband seismic stations at Cotopaxi and Tungurahua volcanoes. Each station comprises 1 ACO microphone (model 7144) and an amplifier with a flat response down to 0.1 Hz. At Tungurahua, between July 2006 and July 2013, the network recorded more than 5,500 explosion events with peak-to-peak pressure amplitudes larger than 45 Pa at station Mason (BMAS) which is located ~ 5.5 km from the active crater. This includes 3 explosions with pressure amplitudes larger than 1,000 Pa and which all have exhibited clear shock wave components. Two seismic and infrasound arrays were also installed in 2006 under the Acoustic Surveillance for Hazardous Eruptions (ASHE) project, used in volcano monitoring at Tungurahua, Sangay, and Reventador. This venture was led by the Geological Survey of Canada and the University of Hawaii. Through the SENESCYT-IGEPN project, the Instituto Geofísico is currently installing a regional network of MB2005 microbarometers with the aim to enhance monitoring of active and potentially active volcanoes that include Reventador, Guagua Pichincha, Chimborazo, Antisana, Sangay, and Volcán Chico in the Galapagos Islands. Through the infrasound monitoring station at Volcán Chico it is also possible to extend observations to any activity initiated from Sierra Negra, Fernandina, Cerro Azul, and Alcedo volcanoes. During the past decade, a series of temporary acoustic arrays have also been deployed around Ecuador's most active volcanoes, helping to aid in short term volcanic monitoring and/or used in a series of research projects aimed at better understanding volcanic systems

  11. Therapeutic Drug Monitoring in the Treatment of Active Tuberculosis

    Directory of Open Access Journals (Sweden)

    Aylin Babalik

    2011-01-01

    Full Text Available Therapeutic drug monitoring ensures optimal dosing while aiming to reduce toxicity. However, due to the high costs and complexity of testing, therapeutic drug monitoring is not routinely used in the treatment of individuals with active tuberculosis, despite the efficacy demonstrated in several randomized trials. This study reviewed data spanning five years regarding the frequency of finding low drug levels in patients with tuberculosis, the dosing adjustments that were required to achieve adequate levels and the factors associated with low drug levels.

  12. On-line Monitoring and Active Control for Transformer Noise

    Science.gov (United States)

    Liang, Jiabi; Zhao, Tong; Tian, Chun; Wang, Xia; He, Zhenhua; Duan, Lunfeng

    This paper introduces the system for on-line monitoring and active noise control towards the transformer noise based on LabVIEW and the hardware equipment including the hardware and software. For the hardware part, it is mainly focused on the composition and the role of hardware devices, as well as the mounting location in the active noise control experiment. And the software part introduces the software flow chats, the measurement and analysis module for the sound pressure level including A, B, C weighting methods, the 1/n octave spectrum and the power spectrum, active noise control module and noise data access module.

  13. Remote monitoring of biodynamic activity using electric potential sensors

    Energy Technology Data Exchange (ETDEWEB)

    Harl, C J; Prance, R J; Prance, H [Centre for Physical Electronics and Quantum Technology, Department of Engineering and Design, School of Science and Technology, University of Sussex, Brighton, BN1 9QT (United Kingdom)], E-mail: c.j.harland@sussex.ac.uk

    2008-12-01

    Previous work in applying the electric potential sensor to the monitoring of body electrophysiological signals has shown that it is now possible to monitor these signals without needing to make any electrical contact with the body. Conventional electrophysiology makes use of electrodes which are placed in direct electrical contact with the skin. The electric potential sensor requires no cutaneous electrical contact, it operates by sensing the displacement current using a capacitive coupling. When high resolution body electrophysiology is required a strong (capacitive) coupling is used to maximise the collected signal. However, in remote applications where there is typically an air-gap between the body and the sensor only a weak coupling can be achieved. In this paper we demonstrate that the electric potential sensor can be successfully used for the remote sensing and monitoring of bioelectric activity. We show examples of heart-rate measurements taken from a seated subject using sensors mounted in the chair. We also show that it is possible to monitor body movements on the opposite side of a wall to the sensor. These sensing techniques have biomedical applications for non-contact monitoring of electrophysiological conditions and can be applied to passive through-the-wall surveillance systems for security applications.

  14. Sentinel-1 Contribution to Monitoring Maritime Activity in the Arctic

    Science.gov (United States)

    Santamaria, Carlos; Greidanus, Harm; Fournier, Melanie; Eriksen, Torkild; Vespe, Michele; Alvarez, Marlene; Arguedas, Virginia Fernandez; Delaney, Conor; Argentieri, Pietro

    2016-08-01

    This paper presents results on the use of Sentinel-1 combined with satellite AIS to monitor maritime activity in the Arctic. Such activities are expected to increase, even if not uniformly across the Arctic, as the ice cover in the region retreats due to changes in climate. The objectives of monitoring efforts in the region can vary from country to country, but are generally related to increasing awareness on non- cooperative, small and cruise ships, fisheries, safety at sea, and Search and Rescue. A ship monitoring study has been conducted, involving more than 2,000 Sentinel-1 images acquired during one year in the central Arctic, where the ship densities are high. The main challenges to SAR-based monitoring in this area are described, solutions for some of them are proposed, and analyses of the results are shown. With the high detection thresholds needed to prevent false alarms from sea ice, 16% of the ships detected overall in the Sentinel-1 images have not been correlated to AIS- transmitting ships, and 48% of the AIS-transmitting ships are not correlated to ships detected in the images.

  15. QA/QC activities and ecological monitoring in the Acid Deposition Monitoring Network in East Asia (EANET

    Directory of Open Access Journals (Sweden)

    Ueda H

    2009-01-01

    Full Text Available An overview is presented of Quality assurance/Quality control QA/QC activities and current features of the ecological monitoring in the frame of the Acid Deposition Monitoring Network in East Asia EANET. It is stressed that standardization of the methodologies applicable for new topics, such as the catchment analysis and ozone impacts, should be investigated for future monitoring.

  16. Active Geophysical Monitoring in Oil and Gas Industry

    Science.gov (United States)

    Bakulin, A.; Calvert, R.

    2005-12-01

    Effective reservoir management is a Holy Grail of the oil and gas industry. Quest for new technologies is never ending but most often they increase effectiveness and decrease the costs. None of the newcomers proved to be a silver bullet in such a key metric of the industry as average oil recovery factor. This factor is still around 30 %, meaning that 70 % of hydrocarbon reserves are left in the ground in places where we already have expensive infrastructure (platforms, wells) to extract them. Main reason for this inefficiency is our inability to address realistic reservoir complexity. Most of the time we fail to properly characterize our reservoirs before production. As a matter of fact, one of the most important parameters -- permeability -- can not be mapped from remote geophysical methods. Therefore we always start production blind even though reservoir state before production is the simplest one. Once first oil is produced, we greatly complicate the things and quickly become unable to estimate the state and condition of the reservoir (fluid, pressures, faults etc) or oilfield hardware (wells, platforms, pumps) to make a sound next decision in the chain of reservoir management. Our modeling capabilities are such that if we know true state of the things - we can make incredibly accurate predictions and make extremely efficient decisions. Thus the bottleneck is our inability to properly describe the state of the reservoirs in real time. Industry is starting to recognize active monitoring as an answer to this critical issue. We will highlight industry strides in active geophysical monitoring from well to reservoir scale. It is worth noting that when one says ``monitoring" production technologists think of measuring pressures at the wellhead or at the pump, reservoir engineers think of measuring extracted volumes and pressures, while geophysicist may think of change in elastic properties. We prefer to think of monitoring as to measuring those parameters of the

  17. Integrated active sensor system for real time vibration monitoring.

    Science.gov (United States)

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  18. Human psychophysiological activity monitoring methods using fiber optic sensors

    Science.gov (United States)

    Zyczkowski, M.; Uzieblo-Zyczkowska, B.

    2010-10-01

    The paper presents the concept of fiber optic sensor system for human psycho-physical activity detection. A fiber optic sensor that utilizes optical phase interferometry or intensity in modalmetric to monitor a patient's vital signs such as respiration cardiac activity, blood pressure and body's physical movements. The sensor, which is non-invasive, comprises an optical fiber interferometer that includes an optical fiber proximately situated to the patient so that time varying acusto-mechanical signals from the patient are coupled into the optical fiber. The system can be implemented in embodiments ranging form a low cost in-home to a high end product for in hospital use.

  19. Limited Activity Monitoring in Toddlers with Autism Spectrum Disorder

    OpenAIRE

    Shic, Frederick; Bradshaw, Jessica; Klin, Ami; Scassellati, Brian; Chawarska, Katarzyna

    2010-01-01

    This study used eye-tracking to examine how 20-month old toddlers with autism spectrum disorder (ASD) (N=28), typical development (TD) (N=34), and non-autistic developmental delays (DD) (N=16) monitored the activities occurring in a context of an adult-child play interaction. Toddlers with ASD, in comparison to control groups, showed less attention to the activities of others and focused more on background objects (e.g. toys). In addition, while all groups spent the same time overall looking ...

  20. Advanced Performance Modeling with Combined Passive and Active Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dovrolis, Constantine [Georgia Inst. of Technology, Atlanta, GA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-04-15

    To improve the efficiency of resource utilization and scheduling of scientific data transfers on high-speed networks, the "Advanced Performance Modeling with combined passive and active monitoring" (APM) project investigates and models a general-purpose, reusable and expandable network performance estimation framework. The predictive estimation model and the framework will be helpful in optimizing the performance and utilization of networks as well as sharing resources with predictable performance for scientific collaborations, especially in data intensive applications. Our prediction model utilizes historical network performance information from various network activity logs as well as live streaming measurements from network peering devices. Historical network performance information is used without putting extra load on the resources by active measurement collection. Performance measurements collected by active probing is used judiciously for improving the accuracy of predictions.

  1. AAL Middleware Infrastructure for Green Bed Activity Monitoring

    Directory of Open Access Journals (Sweden)

    Filippo Palumbo

    2013-01-01

    Full Text Available This paper describes a service-oriented middleware platform for ambient assisted living and its use in two different bed activity services: bedsore prevention and sleeping monitoring. A detailed description of the middleware platform, its elements and interfaces, as well as a service that is able to classify some typical user's positions in the bed is presented. Wireless sensor networks are supposed to be widely deployed in indoor settings and on people's bodies in tomorrow's pervasive computing environments. The key idea of this work is to leverage their presence by collecting the received signal strength measured among fixed general-purpose wireless sensor devices, deployed in the environment, and wearable ones. The RSS measurements are used to classify a set of user's positions in the bed, monitoring the activities of the user, and thus supporting the bedsores and the sleep monitoring issues. Moreover, the proposed services are able to decrease the energy consumption by exploiting the context information coming from the proposed middleware.

  2. LANDSLIDE ACTIVITY MONITORING WITH THE HELP OF UNMANNED AERIAL VEHICLE

    Directory of Open Access Journals (Sweden)

    V. Peterman

    2015-08-01

    Full Text Available This paper presents a practical example of a landslide monitoring through the use of a UAV - tracking and monitoring the movements of the Potoska Planina landslide located above the village of Koroska Bela in the western Karavanke Mountains in north-western Slovenia. Past geological research in this area indicated slope landmass movement of more than 10 cm per year. However, much larger movements have been detected since - significant enough to be observed photogrammetrically with the help of a UAV. With the intention to assess the dynamics of the landslide we have established a system of periodic observations carried out twice per year – in mid-spring and mid-autumn. This paper offers an activity summary along with the presentation of data acquisition, data processing and results.

  3. Landslide Activity Monitoring with the Help of Unmanned Aerial Vehicle

    Science.gov (United States)

    Peterman, V.

    2015-08-01

    This paper presents a practical example of a landslide monitoring through the use of a UAV - tracking and monitoring the movements of the Potoska Planina landslide located above the village of Koroska Bela in the western Karavanke Mountains in north-western Slovenia. Past geological research in this area indicated slope landmass movement of more than 10 cm per year. However, much larger movements have been detected since - significant enough to be observed photogrammetrically with the help of a UAV. With the intention to assess the dynamics of the landslide we have established a system of periodic observations carried out twice per year - in mid-spring and mid-autumn. This paper offers an activity summary along with the presentation of data acquisition, data processing and results.

  4. Ambulation monitoring of transtibial amputation subjects with patient activity monitor versus pedometer.

    Science.gov (United States)

    Dudek, Nancy L; Khan, Omar D; Lemaire, Edward D; Marks, Meridith B; Saville, Leyana

    2008-01-01

    Our study aimed to compare the accuracy of step count and ambulation distance determined with the Yamax Digi-Walker SW-700 pedometer (DW) and the Ossur patient activity monitor (PAM) in 20 transtibial amputation subjects who were functioning at the K3 Medicare Functional Classification Level. Subjects completed four simulated household tasks in an apartment setup and a gymnasium walking course designed to simulate outdoor walking without the presence of environmental barriers or varied terrain. The mean step count accuracy of the DW and the PAM was equivalent for both the household activity (75.3% vs 70.6%) and the walking course (93.8% vs 94.0%). The mean distance measurement accuracy was better with the DW than with the PAM (household activity: 72.8% vs 0%, walking course: 92.5% vs 86.3%; p < 0.05). With acceptable step count accuracy, both devices are appropriate for assessing relatively continuous ambulation. The DW may be preferred for its more accurate distance measurements. Neither device is ideal for monitoring in-home ambulation.

  5. Long term continuous radon monitoring in a seismically active area

    CERN Document Server

    Piersanti, A; Galli, G

    2015-01-01

    We present the results of a long term, continuous radon monitoring experiment started in April 2010 in a seismically active area, affected during the 2010-2013 data acquisition time window by an intense micro seismic activity and by several small seismic events. We employed both correlation and cross-correlation analyses in order to investigate possible relationship existing between the collected radon data, seismic events and meteorological parameters. Our results do not support the feasibility of a robust one-to-one association between the small magnitude earthquakes characterizing the local seismic activity and single radon measurement anomalies, but evidence significant correlation patterns between the spatio-temporal variations of seismic moment release and soil radon emanations, the latter being anyway dominantly modulated by meteorological parameters variations.

  6. Ferroelectric thin-film active sensors for structural health monitoring

    Science.gov (United States)

    Lin, Bin; Giurgiutiu, Victor; Yuan, Zheng; Liu, Jian; Chen, Chonglin; Jiang, Jiechao; Bhalla, Amar S.; Guo, Ruyan

    2007-04-01

    Piezoelectric wafer active sensors (PWAS) have been proven a valuable tool in structural health monitoring. Piezoelectric wafer active sensors are able to send and receive guided Lamb/Rayleigh waves that scan the structure and detect the presence of incipient cracks and structural damage. In-situ thin-film active sensor deposition can eliminate the bonding layer to improve the durability issue and reduce the acoustic impedance mismatch. Ferroelectric thin films have been shown to have piezoelectric properties that are close to those of single-crystal ferroelectrics but the fabrication of ferroelectric thin films on structural materials (steel, aluminum, titanium, etc.) has not been yet attempted. In this work, in-situ fabrication method of piezoelectric thin-film active sensors arrays was developed using the nano technology approach. Specification for the piezoelectric thin-film active sensors arrays was based on electro-mechanical-acoustical model. Ferroelectric BaTiO3 (BTO) thin films were successfully deposited on Ni tapes by pulsed laser deposition under the optimal synthesis conditions. Microstructural studies by X-ray diffractometer and transmission electron microscopy reveal that the as-grown BTO thin films have the nanopillar structures with an average size of approximately 80 nm in diameter and the good interface structures with no inter-diffusion or reaction. The dielectric and ferroelectric property measurements exhibit that the BTO films have a relatively large dielectric constant, a small dielectric loss, and an extremely large piezoelectric response with a symmetric hysteresis loop. The research objective is to develop the fabrication and optimum design of thin-film active sensor arrays for structural health monitoring applications. The short wavelengths of the micro phased arrays will permit the phased-array imaging of smaller parts and smaller damage than is currently not possible with existing technology.

  7. Passive and Active Sensing Technologies for Structural Health Monitoring

    Science.gov (United States)

    Do, Richard

    A combination of passive and active sensing technologies is proposed as a structural health monitoring solution for several applications. Passive sensing is differentiated from active sensing in that with the former, no energy is intentionally imparted into the structure under test; sensors are deployed in a pure detection mode for collecting data mined for structural health monitoring purposes. In this thesis, passive sensing using embedded fiber Bragg grating optical strain gages was used to detect varying degrees of impact damage using two different classes of features drawn from traditional spectral analysis and auto-regressive time series modeling. The two feature classes were compared in detail through receiver operating curve performance analysis. The passive detection problem was then augmented with an active sensing system using ultrasonic guided waves (UGWs). This thesis considered two main challenges associated with UGW SHM including in-situ wave propagation property determination and thermal corruption of data. Regarding determination of wave propagation properties, of which dispersion characteristics are the most important, a new dispersion curve extraction method called sparse wavenumber analysis (SWA) was experimentally validated. Also, because UGWs are extremely sensitive to ambient temperature changes on the structure, it significantly affects the wave propagation properties by causing large errors in the residual error in the processing of the UGWs from an array. This thesis presented a novel method that compensates for uniform temperature change by considering the magnitude and phase of the signal separately and applying a scalable transformation.

  8. Automated monitoring of activated sludge using image analysis

    OpenAIRE

    Motta, Maurício da; M. N. Pons; Roche, N; A.L. Amaral; Ferreira, E. C.; Alves, M.M.; Mota, M.; Vivier, H.

    2000-01-01

    An automated procedure for the characterisation by image analysis of the morphology of activated sludge has been used to monitor in a systematic manner the biomass in wastewater treatment plants. Over a period of one year, variations in terms mainly of the fractal dimension of flocs and of the amount of filamentous bacteria could be related to rain events affecting the plant influent flow rate and composition. Grand Nancy Council. Météo-France. Brasil. Ministério da Ciênc...

  9. Anoxic Activated Sludge Monitoring with Combined Nitrate and Titrimetric Measurements

    DEFF Research Database (Denmark)

    Petersen, B.; Gernaey, Krist; Vanrolleghem, P.A.

    2002-01-01

    An experimental procedure for anoxic activated sludge monitoring with combined nitrate and titrimetric measurements is proposed and evaluated successfully with two known carbon sources, (-)acetate and dextrose. For nitrate measurements an ion-selective nitrate electrode is applied to allow...... was with the carbon source in excess, since excess nitrate provoked nitrite build-up thereby complicating the data interpretation. A conceptual model could quantitatively describe the experimental observations and thus link the experimentally measured proton production with the consumption of electron acceptor...... and carbon source during denitrification....

  10. Noncontact monitoring of cardiorespiratory activity by electromagnetic coupling.

    Science.gov (United States)

    Teichmann, Daniel; Foussier, Jérôme; Jia, Jing; Leonhardt, Steffen; Walter, Marian

    2013-08-01

    In this paper, the method of noncontact monitoring of cardiorespiratory activity by electromagnetic coupling with human tissue is investigated. Two measurement modalities were joined: an inductive coupling sensor based on magnetic eddy current induction and a capacitive coupling sensor based on displacement current induction. The system's sensitivity to electric tissue properties and its dependence on motion are analyzed theoretically as well as experimentally for the inductive and capacitive coupling path. The potential of both coupling methods to assess respiration and pulse without contact and a minimum of thoracic wall motion was verified by laboratory experiments. The demonstrator was embedded in a chair to enable recording from the back part of the thorax.

  11. Monitoring rice farming activities in the Mekong Delta region

    Science.gov (United States)

    Nguyen, S. T.; Chen, C. F.; Chen, C. R.; Chiang, S. H.; Chang, L. Y.; Khin, L. V.

    2015-12-01

    Half of the world's population depends on rice for survival. Rice agriculture thus plays an important role in the developing world's economy. Vietnam is one of the largest rice producers and suppliers on earth and more than 80% of the exported rice was produced from the Mekong Delta region, which is situated in the southwestern Vietnam and encompasses approximately 40,000 km2. Changes in climate conditions could likely trigger the increase of insect populations and rice diseases, causing the potential loss of rice yields. Monitoring rice-farming activities through crop phenology detection can provide policymakers with timely strategies to mitigate possible impacts on the potential yield as well as rice grain exports to ensure food security for the region. The main objective of this study is to develop a logistic-based algorithm to investigate rice sowing and harvesting activities from the multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS)-Landsat fusion data. We processed the data for two main cropping seasons (i.e., winter-spring and summer-autumn seasons) through a three-step procedure: (1) MODIS-Landsat data fusion, (2) construction of the time-series enhanced vegetation index 2 (EVI2) data, (3) rice crop phenology detection. The EVI2 data derived from the fusion results between MODIS and Landsat data were compared with that of Landsat data indicated close correlation between the two datasets (R2 = 0.93). The time-series EVI2 data were processed using the double logistic method to detect the progress of sowing and harvesting activities in the region. The comparisons between the estimated sowing and harvesting dates and the field survey data revealed the root mean squared error (RMSE) values of 8.4 and 5.5 days for the winter-spring crop and 9.4 and 12.8 days for the summer-autumn crop, respectively. This study demonstrates the effectiveness of the double logistic-based algorithm for rice crop monitoring from temporal MODIS-Landsat fusion data

  12. Monitoring Active Volcanos Using Aerial Images and the Orthoview Tool

    Directory of Open Access Journals (Sweden)

    Maria Marsella

    2014-12-01

    Full Text Available In volcanic areas, where it can be difficult to perform direct surveys, digital photogrammetry techniques are rarely adopted for routine volcano monitoring. Nevertheless, they have remarkable potentialities for observing active volcanic features (e.g., fissures, lava flows and the connected deformation processes. The ability to obtain accurate quantitative data of definite accuracy in short time spans makes digital photogrammetry a suitable method for controlling the evolution of rapidly changing large-area volcanic phenomena. The systematic acquisition of airborne photogrammetric datasets can be adopted for implementing a more effective procedure aimed at long-term volcano monitoring and hazard assessment. In addition, during the volcanic crisis, the frequent acquisition of oblique digital images from helicopter allows for quasi-real-time monitoring to support mitigation actions by civil protection. These images are commonly used to update existing maps through a photo-interpretation approach that provide data of unknown accuracy. This work presents a scientific tool (Orthoview that implements a straightforward photogrammetric approach to generate digital orthophotos from single-view oblique images provided that at least four Ground Control Points (GCP and current Digital Elevation Models (DEM are available. The influence of the view geometry, of sparse and not-signalized GCP and DEM inaccuracies is analyzed for evaluating the performance of the developed tool in comparison with other remote sensing techniques. Results obtained with datasets from Etna and Stromboli volcanoes demonstrate that 2D features measured on the produced orthophotos can reach sub-meter-level accuracy.

  13. Validity of physical activity monitors in adults participating in free-living activities

    DEFF Research Database (Denmark)

    Berntsen, S; Hageberg, R; Aandstad, A

    2010-01-01

    Background For a given subject, time in moderate to very vigorous intensity physical activity (MVPA) varies substantially among physical activity monitors. Objective In the present study, the primary objective, whether time in MVPA recorded with SenseWear Pro(2) Armband (Armband; BodyMedia...

  14. Stress monitoring versus microseismic ruptures in an active deep mine

    Science.gov (United States)

    Tonnellier, Alice; Bouffier, Christian; Bigarré, Pascal; Nyström, Anders; Österberg, Anders; Fjellström, Peter

    2015-04-01

    monitoring data coming from the mine in quasi-real time and facilitates information exchanges and decision making for experts and stakeholders. On the basis of these data acquisition and sharing, preliminary analysis has been started to highlight whether stress variations and seismic sources behaviour might be directly bound with mine working evolution and could improve the knowledge on the equilibrium states inside the mine. Knowing such parameters indeed will be a potential solution to understand better the response of deep mining activities to the exploitation solicitations and to develop, if possible, methods to prevent from major hazards such as rock bursts and other ground failure phenomena.

  15. Active sensors for health monitoring of aging aerospace structures

    Energy Technology Data Exchange (ETDEWEB)

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-02-29

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  16. Active Volcano Monitoring using a Space-based Hyperspectral Imager

    Science.gov (United States)

    Cipar, J. J.; Dunn, R.; Cooley, T.

    2010-12-01

    Active volcanoes occur on every continent, often in close proximity to heavily populated areas. While ground-based studies are essential for scientific research and disaster mitigation, remote sensing from space can provide rapid and continuous monitoring of active and potentially active volcanoes [Ramsey and Flynn, 2004]. In this paper, we report on hyperspectral measurements of Kilauea volcano, Hawaii. Hyperspectral images obtained by the US Air Force TacSat-3/ARTEMIS sensor [Lockwood et al, 2006] are used to obtain estimates of the surface temperatures for the volcano. ARTEMIS measures surface-reflected light in the visible, near-infrared, and short-wave infrared bands (VNIR-SWIR). The SWIR bands are known to be sensitive to thermal radiation [Green, 1996]. For example, images from the NASA Hyperion hyperspectral sensor have shown the extent of wildfires and active volcanoes [Young, 2009]. We employ the methodology described by Dennison et al, (2006) to obtain an estimate of the temperature of the active region of Kilauea. Both day and night-time images were used in the analysis. To improve the estimate, we aggregated neighboring pixels. The active rim of the lava lake is clearly discernable in the temperature image, with a measured temperature exceeding 1100o C. The temperature decreases markedly on the exterior of the summit crater. While a long-wave infrared (LWIR) sensor would be ideal for volcano monitoring, we have shown that the thermal state of an active volcano can be monitored using the SWIR channels of a reflective hyperspectral imager. References: Dennison, Philip E., Kraivut Charoensiri, Dar A. Roberts, Seth H. Peterson, and Robert O. Green (2006). Wildfire temperature and land cover modeling using hyperspectral data, Remote Sens. Environ., vol. 100, pp. 212-222. Green, R. O. (1996). Estimation of biomass fire temperature and areal extent from calibrated AVIRIS spectra, in Summaries of the 6th Annual JPL Airborne Earth Science Workshop, Pasadena, CA

  17. Passive and Active Monitoring on a High Performance Research Network.

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Warren

    2001-05-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10{sup 12}). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge has arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not!) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data.

  18. Drought monitoring with soil moisture active passive (SMAP) measurements

    Science.gov (United States)

    Mishra, Ashok; Vu, Tue; Veettil, Anoop Valiya; Entekhabi, Dara

    2017-09-01

    Recent launch of space-borne systems to estimate surface soil moisture may expand the capability to map soil moisture deficit and drought with global coverage. In this study, we use Soil Moisture Active Passive (SMAP) soil moisture geophysical retrieval products from passive L-band radiometer to evaluate its applicability to forming agricultural drought indices. Agricultural drought is quantified using the Soil Water Deficit Index (SWDI) based on SMAP and soil properties (field capacity and available water content) information. The soil properties are computed using pedo-transfer function with soil characteristics derived from Harmonized World Soil Database. The SMAP soil moisture product needs to be rescaled to be compatible with the soil parameters derived from the in situ stations. In most locations, the rescaled SMAP information captured the dynamics of in situ soil moisture well and shows the expected lag between accumulations of precipitation and delayed increased in surface soil moisture. However, the SMAP soil moisture itself does not reveal the drought information. Therefore, the SMAP based SWDI (SMAP_SWDI) was computed to improve agriculture drought monitoring by using the latest soil moisture retrieval satellite technology. The formulation of SWDI does not depend on longer data and it will overcome the limited (short) length of SMAP data for agricultural drought studies. The SMAP_SWDI is further compared with in situ Atmospheric Water Deficit (AWD) Index. The comparison shows close agreement between SMAP_SWDI and AWD in drought monitoring over Contiguous United States (CONUS), especially in terms of drought characteristics. The SMAP_SWDI was used to construct drought maps for CONUS and compared with well-known drought indices, such as, AWD, Palmer Z-Index, sc-PDSI and SPEI. Overall the SMAP_SWDI is an effective agricultural drought indicator and it provides continuity and introduces new spatial mapping capability for drought monitoring. As an

  19. Activity monitor intervention to promote physical activity of physicians-in-training: randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Anne N Thorndike

    Full Text Available BACKGROUND: Physicians are expected to serve as role models for healthy lifestyles, but long work hours reduce time for healthy behaviors. A hospital-based physical activity intervention could improve physician health and increase counseling about exercise. METHODS: We conducted a two-phase intervention among 104 medical residents at a large hospital in Boston, Massachusetts. Phase 1 was a 6-week randomized controlled trial comparing daily steps of residents assigned to an activity monitor displaying feedback about steps and energy consumed (intervention or to a blinded monitor (control. Phase 2 immediately followed and was a 6-week non-randomized team steps competition in which all participants wore monitors with feedback. Phase 1 outcomes were: 1 median steps/day and 2 proportion of days activity monitor worn. The Phase 2 outcome was mean steps/day on days monitor worn (≥500 steps/day. Physiologic measurements were collected at baseline and study end. Median steps/day were compared using Wilcoxon rank-sum tests. Mean steps were compared using repeated measures regression analyses. RESULTS: In Phase 1, intervention and control groups had similar activity (6369 vs. 6063 steps/day, p = 0.16 and compliance with wearing the monitor (77% vs. 77% of days, p = 0.73. In Phase 2 (team competition, residents recorded more steps/day than during Phase 1 (CONTROL: 7,971 vs. 7,567, p = 0.002; INTERVENTION: 7,832 vs. 7,739, p = 0.13. Mean compliance with wearing the activity monitor decreased for both groups during Phase 2 compared to Phase 1 (60% vs. 77%, p<0.001. Mean systolic blood pressure decreased (p = 0.004 and HDL cholesterol increased (p<0.001 among all participants at end of study compared to baseline. CONCLUSIONS: Although the activity monitor intervention did not have a major impact on activity or health, the high participation rates of busy residents and modest changes in steps, blood pressure, and HDL suggest that more

  20. Nanosensors for a Monitoring System in Intelligent and Active Packaging

    Directory of Open Access Journals (Sweden)

    Guillermo Fuertes

    2016-01-01

    Full Text Available A theoretical wireless nanosensor network (WNSN system that gives information about the food packaging condition is proposed. The protection effectiveness is estimated by measuring many factors, such as the existence of microorganisms, bacteria, gases, and contaminants. This study is focused on the detection of an antimicrobial agent (AA attached on a polymer forming an active integrated package. All monitoring technologies for food conservation are analyzed. Nanobiosensor nanomachine (NM, which converts biological or chemical signals into electrical signals, is used. A mathematical model, which describes the constituent’s emigration from the package to food, is programmed in MatLab software. The results show three nanobiosensors forming a WNSN. The nanobiosensors are able to carry out the average concentration for different spots in the package. This monitoring system shows reading percentages in three degrees and different colors: excellent (green, good (cyan, and lacking (red. To confirm the utility of the model, different simulations are performed. Using the WNSNs, results of AA existing in food package (FP through time were successfully obtained.

  1. Performance Assessment and Active System Monitoring for Refrigeration Systems

    DEFF Research Database (Denmark)

    Green, Torben

    for algorithms that ensures or improves the performance of the system. A supermarket refrigeration system is usually a complex and distributed control system, and it can therefore be difficult to assess the performance without a formal method. The main interest for a supermarket, with respect...... of the refrigeration system has been addressed in the project. The proposed methods for improvement relies on a minimum of detailed knowledge about the refrigeration system. In addition, since a refrigeration system often operates in steady state an active system monitoring setup has been proposed, to enable...... a method for assessing the operational performance at a plan-wide level and is therefore providing a tool for improving the plant-wide performance. The performance function has been used in dierent setups to improve the performance of the refrigeration system. Static and the dynamic performance...

  2. The MAGNUM (Multicolor Active Galactic NUclei Monitoring) Project

    Science.gov (United States)

    Yoshii, Y.; Kobayashi, Y.; Minezaki, T.

    2003-05-01

    The MAGNUM Project is designed to carry out long-term monitoring observations of hundreds of active galactic nuclei in the visible and near-infrared wavelength regions. In order to obtain these observations, we built a new 2m optical-infrared telescope, and located it near the Haleakala summit at a height of 3050m within the area of the University of Hawaii's Haleakala Observatory on the Hawaiian Island of Maui. The Project was funded in 1995 and preliminary observations were started early in 2001. We are working toward the realization of an unmanned, automated observatory which is suitable to relatively simple and stable observations over many years. We present an overview of the Project and its current status.

  3. Automated observatory for multicolor active galactic nuclei monitoring (MAGNUM)

    Science.gov (United States)

    Kobayashi, Yukiyasu; Yoshii, Yuzuru; Minezaki, Takeo; Enya, Keigo; Aoki, Tsutomu; Suganuma, Masahiro; Tomita, Hiroyuki; Doi, Mamoru; Motohara, Kentaro; Peterson, Bruce A.; Smith, Craig H.; Little, John K.; Greene, Ben

    2003-02-01

    We present the outline and the current status of the MAGNUM automated observation system. The operational objective of the MAGNUM Project is to carry out long-term multi-color monitoring observations of active galactic nuclei in the visible and near-infrared wavelength regions. In order to obtain these observations, we built a new 2 m optical-infrared telescope, and sited it at the University of Hawaii's Haleakala Observatory on the Hawaiian Island of Maui. Preliminary observations were started early in 2001. We are working toward the final form of the MAGNUM observation system, which is an unmanned, automated observatory. This system requirement was set by considering that the observation procedures are relatively simple, and the targets must be observed consistently over many years.

  4. Aerial monitoring in active mud volcano by UAV technique

    Science.gov (United States)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  5. Marsh Bird Monitoring Activities in Vermont in 1999

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report outlines a continuation of the black tern monitoring which was initiated in 1990, as well as the marsh bird monitoring program which was started in 1996....

  6. Panel Endorses Active Monitoring for Low-Risk Prostate Cancer

    Science.gov (United States)

    An independent panel convened this week by NIH has concluded that many men with localized, low-risk prostate cancer should be closely monitored, permitting treatment to be delayed until warranted by disease progression. However, monitoring strategies—such

  7. Active Learning Framework for Non-Intrusive Load Monitoring: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin

    2016-05-16

    Non-Intrusive Load Monitoring (NILM) is a set of techniques that estimate the electricity usage of individual appliances from power measurements taken at a limited number of locations in a building. One of the key challenges in NILM is having too much data without class labels yet being unable to label the data manually for cost or time constraints. This paper presents an active learning framework that helps existing NILM techniques to overcome this challenge. Active learning is an advanced machine learning method that interactively queries a user for the class label information. Unlike most existing NILM systems that heuristically request user inputs, the proposed method only needs minimally sufficient information from a user to build a compact and yet highly representative load signature library. Initial results indicate the proposed method can reduce the user inputs by up to 90% while still achieving similar disaggregation performance compared to a heuristic method. Thus, the proposed method can substantially reduce the burden on the user, improve the performance of a NILM system with limited user inputs, and overcome the key market barriers to the wide adoption of NILM technologies.

  8. Targeted Proteomics Approaches To Monitor Microbial Activity In Basalt Aquifer

    Science.gov (United States)

    Paszczynski, A. J.; Paidisetti, R.

    2007-12-01

    Microorganisms play a major role in biogeochemical cycles of the Earth. Information regarding microbial community composition can be very useful for environmental monitoring since the short generation times of microorganisms allows them to respond rapidly to changing environmental conditions. Microbial mediated attenuation of toxic chemicals offers great potential for the restoration of contaminated environments in an ecologically acceptable manner. Current knowledge regarding the structure and functional activities of microbial communities is limited, but more information is being acquired every day through many genomic- and proteomic- based methods. As of today, only a small fraction of the Earth's microorganisms has been cultured, and so most of the information regarding the biodegradation and therapeutic potentials of these uncultured microorganisms remains unknown. Sequence analysis of DNA and/or RNA has been used for identifying specific microorganisms, to study the community composition, and to monitor gene expression providing limited information about metabolic state of given microbial system. Proteomic studies can reveal information regarding the real-time metabolic state of the microbial communities thereby aiding in understanding their interaction with the environment. In research described here the involvement of microbial communities in the degradation of anthropogenic contaminants such as trichloroethylene (TCE) was studied using mass spectrometry-based proteomics. The co- metabolic degradation of TCE in the groundwater of the Snake River Plain Aquifer at the Test Area North (TAN) site of Idaho National Laboratory (INL) was monitored by the characterization of peptide sequences of enzymes such as methane monooxygenases (MMOs). MMOs, expressed by methanotrophic bacteria are involved in the oxidation of methane and non-specific co-metabolic oxidation of TCE. We developed a time- course cell lysis method to release proteins from complex microbial

  9. Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity

    Science.gov (United States)

    Ardic, Fusun; Göcer, Esra

    2016-01-01

    Abstract The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer. A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland–Altman analyses were performed to show the relationship and agreement between the results of 2 devices. Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P PEDO and YX200 pedometer in the Bland–Altman analysis. Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a desired speed. PMID:26962822

  10. Monitoring daily function in persons with transfemoral amputations using a commercial activity monitor: a feasibility study.

    Science.gov (United States)

    Albert, Mark V; Deeny, Sean; McCarthy, Cliodhna; Valentin, Juliana; Jayaraman, Arun

    2014-12-01

    To assess in a feasibility study the mobility of persons with transfemoral amputations using data collected from a popular, consumer-oriented activity monitor (Fitbit). Observational cohort study. Research hospital outpatient evaluation. Nine subjects with transfemoral amputations (4 women and 5 men, ages 21-64 years) and Medicare functional assessments (K level) of K3 (n = 7), K2 (n = 1), and K4 (n = 1). One-week monitoring of physical activity using the Fitbit One activity monitor. Daily estimates of step counts, distance walked, floors/stairs climbed, calories burned, and proprietary Fitbit activity scores. For each day, the amount of time in each of the following levels of activity was also reported: sedentary, lightly active, fairly active, and highly active. The percentage of movement time above the fairly active level had a predictable relationship to the designated K level. The average activity measures show decreased levels of activity for obese subjects (body mass index >30). Estimated step counts were highly predictive/redundant with estimated miles walked without setting individual stride lengths. Using linear regression prediction models, calorie estimates were found to be highly dependent on subject age, height, and weight, whereas the proprietary activity score was independent of all 3 demographic factors. This feasibility study demonstrates that the Fitbit activity monitor estimates the activity of subjects with transfemoral amputations, producing results that correlate with their K-level functional activity classifications. The Fitbit activity score is independent of individual variations in age, weight, and height compared with estimated calories for this small sample size. These tools may provide useful insights into prosthetic use in an at-home environment. Copyright © 2014 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  11. Reliability and validity of the Mywellness Key physical activity monitor

    Directory of Open Access Journals (Sweden)

    Sieverdes JC

    2013-01-01

    of physical activity.Keywords: physical activity, accelerometer, health monitor

  12. Geophysical Monitoring of Microbial Activity within a Wetland Soil

    Science.gov (United States)

    O'Brien, M.; Zhang, C.; Ntarlagiannis, D.; Slater, L.; Yee, N.

    2007-05-01

    We performed Induced Polarization (IP) and Self Potential (SP) measurements to record the geoelectrical signatures of microbial activity within a wetland soil. The experiment was conducted in laboratory, utilizing an open flow column set up. Soil samples from Kearny Marsh (KM), a shallow water wetland, were collected and stored at 4o Celsius prior to the start of the experiment. Two columns were dry packed with a mix of KM soil and sterile Ottawa sand (50% by weight). One column was sterilized and used as a control while the other column retained the biologically active soil sample. Both columns were saturated with a minimal salts medium capable of supporting microbial life; after saturation, a steady flow rate of one pore volume per day was maintained throughout the experiment. Ambient temperature and pressure changes (at the inflow and outflow of each column) were continuously monitored throughout the experiment. Common geochemical parameters, such as Eh, pH, and fluid conductivity were measured at the inflow and outflow of each column at regular intervals. IP and SP responses were continuously recorded on both columns utilizing a series of electrodes along the column length; additionally for the SP measurements we used a reference electrode at the inflow tube. Strong SP anomalies were observed for all the locations along the active column. Black visible mineral precipitant also formed in the active column. The observed precipitation coincided with the times that SP anomalies developed at each electrode position. These responses are associated with microbial induced sulfide mineralization. We interpret the SP signal as the result of redox processes associated with this mineralization driven by gradients in ionic concentration and mobility within the column, similar to a galvanic cell mechanism. IP measurements show no correlation with these visual and SP responses. Destructive analysis of the samples followed the termination of the experiment. Scanning electron

  13. Monitoring activities in the Dutch National Air Quality Monitoring Network in 2000 and 2001

    NARCIS (Netherlands)

    Elzakker BG van; LLO

    2001-01-01

    The Dutch National Air Quality Monitoring Network (LML in Dutch) is one of the responsibilities of the Air Research Laboratory of the National Institute of Public Health and the Environment. The main objectives of the LML are to monitor ambient air quality, facilitate implementation of air quality

  14. Monitoring activities in the Dutch National Air Quality Monitoring Network in 2000 and 2001

    NARCIS (Netherlands)

    Elzakker BG van; LLO

    2001-01-01

    The Dutch National Air Quality Monitoring Network (LML in Dutch) is one of the responsibilities of the Air Research Laboratory of the National Institute of Public Health and the Environment. The main objectives of the LML are to monitor ambient air quality, facilitate implementation of air quality s

  15. Active versus passive radon monitoring at the Yucca Mountain site

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, M.D. [Science Applications International Corp., Las Vegas, NV (United States)

    1994-12-31

    Federal Regulations have mandated that a baseline assessment for the Yucca Mountain Site be performed. This includes the detection and monitoring of specific radionuclides present at the site. These radionuclides include radon 222, a decay progeny of naturally occurring uranium. Two radon monitoring systems are utilized at the Yucca Mountain site to detect ambient levels of radon. The first is a passive time integrated system, and the second is a continuous radon monitoring (CRM) system.

  16. Validation of a two-axis accelerometer for monitoring patient activity during blood pressure or ECG holter monitoring.

    Science.gov (United States)

    Wetzler, Marie-Laure; Borderies, Jean René; Bigaignon, Odile; Guillo, Pascal; Gosse, Philippe

    2003-12-01

    The aim of the study was to evaluate the efficiency of a position/activity monitoring system based on a dual-axis accelerometer strapped to the subject's thigh and a position sensor located within a monitor placed on the subject's belt. Twenty-six subjects wearing two monitors (one accelerometer on each thigh) were submitted to various activities and positions under the control of an observer. An analysis of each tracing was performed both manually by a technician and automatically by dedicated software before being compared with the information gathered during the study. The accelerometer allowed accurate discrimination between the standing versus the sitting and lying positions. The sitting and lying positions were correctly detected by the built-in position sensor provided the unit was firmly attached. Walking was adequately detected by the accelerometer. The activity score was well correlated with treadmill speed. Changes in position and activity were detected with a mean error of less than 3 s. The combination of an accelerometer placed on the subject's thigh and a position sensor located at the subject's waist appeared to be a suitable system for position/activity monitoring during ambulatory ECG and blood pressure monitoring.

  17. Home uterine activity monitoring: the role of medical evidence.

    Science.gov (United States)

    Reichmann, James P

    2008-08-01

    The current paradigm in obstetrics has shifted toward evidence-based medicine, and yet in clinical practice physicians continue to use interventions for which there exists no credible evidence. This article examines the U.S. Food and Drug Administration (FDA) status of home uterine activity monitoring (HUAM) and the published clinical trials examining HUAM for the management of current preterm labor. The use of HUAM was introduced into clinical practice and heavily marketed without benefit of scientific rigor. Gradually, HUAM use migrated primarily for patients diagnosed (or misdiagnosed) with preterm labor in the current pregnancy who are stabilized and sent home with or without a tocolytic. This clinical intervention has not been cleared by the FDA, has virtually no scientific support, and constitutes a gross deviation from evidence-based medicine. As obstetricians accept the role of medical evidence steering clinical practice, HUAM clearly has no clinical value and therefore should not be used to manage patients outside of a randomized controlled clinical trial.

  18. Apollo Director Phillips Monitors Apollo 11 Pre-Launch Activities

    Science.gov (United States)

    1969-01-01

    From the Kennedy Space Flight Center (KSC) control room, Apollo Program Director Lieutenant General Samuel C. Phillips monitors pre-launch activities for Apollo 11. The Apollo 11 mission, the first lunar landing mission, launched from the KSC in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  19. Jovian Dust Streams: A monitor of Io's volcanic plume activity

    CERN Document Server

    Krüger, H; Horányi, M; Graps, A L; Kempf, S; Srama, R; Moragas-Klostermeyer, G; Moissl, R; Johnson, T V; Grün, E; Krueger, Harald; Geissler, Paul; Horanyi, Mihaly; Graps, Amara L.; Kempf, Sascha; Srama, Ralf; Moragas-Klostermeyer, Georg; Moissl, Richard; Johnson, Torrence V.; Gruen, Eberhard

    2003-01-01

    Streams of high speed dust particles originate from Jupiter's innermost Galilean moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over $\\rm 200 km s^{-1}$. Galileo, which was the first orbiter spacecraft of Jupiter, has continuously monitored the dust streams during 34 revolutions about the planet between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between $10^{-3}$ and $\\mathrm{10} \\rm kg s^{-1}$, and is typically in the range of 0.1 to $\\rm 1 kg s^{-1}$. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes.

  20. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Science.gov (United States)

    2010-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  1. Individual Self-monitoring &Peer-monitoring In One Classroom in Writing Activities: Who Is at Disadvantage?

    Directory of Open Access Journals (Sweden)

    Zohreh Zare Toofan

    2014-02-01

    Full Text Available Writing is an important experience through which we are able to share ideas, arouse feelings, persuade and convince other people (white & Arndt, 1991. It is important to view writing not solely as the product of an individual, but as a cognitive, social and cultural act. Writing is an act that takes place within a context, that accomplishes a particular purpose and that is appropriately shaped for its intended audience (Hamplyones & Condon, 1989. Here, the present research considers the significance effects of two important independent variables self-monitoring and peer-monitoring in writing activities on Iranian EFL learners. In this research it was supposed to study new effects of two Meta cognitive strategies self-monitoring and peer-monitoring on 173 male and female learners' writing activities whose age ranged between the age 16-27, and they had a composing description writing paragraph as pre & post test in the same conditions. Although many studies have been conducted on the effects of self-monitoring with a variety of students across a variety of settings (Amato-Zech, Hoff, & Doepke, 2006 Cooper et al., 2007, Dunlap, Dunlap, Koegel, & Koegel 1991. But goal of this study was to increase the participant’s on-task behavior in self & peer-monitoring (E. Johnson, 2007, Self &Peer-monitoring added. Although both of them were useful for providing challengeable students, and became useful for prosocial life, but self-monitoring helped them to become awareness of their weaknesses and strengths to increase positive way of the quality and quantity of their learning in written task, and peer-monitoring occurred when the students achieved recognition level to evaluate the other peers' behavior, and it was obviously understood that it needed more training time to arrive at the level of recognition of each others' behavior.

  2. Step detection and activity recognition accuracy of seven physical activity monitors.

    Directory of Open Access Journals (Sweden)

    Fabio A Storm

    Full Text Available The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts, Up (Jawbone, One (Fitbit, ActivPAL (PAL Technologies Ltd., Nike+ Fuelband (Nike Inc., Tractivity (Kineteks Corp. and Sensewear Armband Mini (Bodymedia. Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications.

  3. Marsh Bird Monitoring Activities in Vermont in 1998

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Marsh bird studies performed in 1998 were primarily a continuation of the basic population monitoring started in previous years. A complete census of known black...

  4. Marsh Bird Monitoring Activities in Vermont in 1997

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Marsh bird studies performed in 1997 were primarily a continuation of the basic population monitoring started in previous years. A complete census of known black...

  5. GRID based Thermal Images Processing for volcanic activity monitoring

    Science.gov (United States)

    Mangiagli, S.; Coco, S.; Drago, L.; Laudani, A.,; Lodato, L.; Pollicino, G.; Torrisi, O.

    2009-04-01

    Since 2001, the Catania Section of the National Institute of Geophysics and Volcanology (INGV) has been running the video stations recording the volcanic activity of Mount Etna, Stromboli and the Fossa Crater of Vulcano island. The video signals of 11 video cameras (seven operating in the visible band and four in infrared) are sent in real time to INGV Control Centre where they are visualized on monitors and archived on a dedicated NAS storage. The video surveillance of the Sicilian volcanoes, situated near to densely populated areas, helps the volcanologists providing the Civil Protection authorities with updates in real time on the on-going volcanic activity. In particular, five video cameras are operating on Mt. Etna and they record the volcano from the south and east sides 24 hours a day. During emergencies, mobile video stations may also be used to better film the most important phases of the activity. Single shots are published on the Catania Section intranet and internet websites. On June 2006 a A 40 thermal camera was installed in Vulcano La Fossa Crater. The location was in the internal and opposite crater flank (S1), 400 m distant from the fumarole field. The first two-year of data on temperature distribution frequency were recorded with this new methodology of acquisition, and automatically elaborated by software at INGV Catania Section. In fact a dedicated software developed in IDL, denominated Volcano Thermo Analysis (VTA), was appositely developed in order to extract a set of important features, able to characterize with a good approssimation the volcanic activity. In particular the program first load and opportunely convert the thermal images, then according to the Region Of Interest (ROI) and the temperature ranges defined by the user provide to automatic spatial and statistic analysis. In addition the VTA is able to analysis all the temporal series of images available in order to achieve the time-event analysis and the dynamic of the volcanic

  6. Relationship between balance and physical activity measured by an activity monitor in elderly COPD patients.

    Science.gov (United States)

    Iwakura, Masahiro; Okura, Kazuki; Shibata, Kazuyuki; Kawagoshi, Atsuyoshi; Sugawara, Keiyu; Takahashi, Hitomi; Shioya, Takanobu

    2016-01-01

    Little is known regarding the relationship between balance impairments and physical activity in COPD. There has been no study investigating the relationship between balance and objectively measured physical activity. Here we investigated the association between balance and physical activity measured by an activity monitor in elderly COPD patients. Twenty-two outpatients with COPD (mean age, 72±7 years; forced expiratory volume in 1 second, 53%±21% predicted) and 13 age-matched healthy control subjects (mean age, 72±6 years) participated in the study. We assessed all 35 subjects' balance (one-leg standing test [OLST] times, Short Physical Performance Battery total scores, standing balance test scores, 4 m gait speed, and five-times sit-to-stand test [5STST]) and physical activity (daily steps and time spent in moderate-to-vigorous physical activity per day [MV-PA]). Possible confounders were assessed in the COPD group. The between-group differences in balance test scores and physical activity were analyzed. A correlation analysis and multivariate regression analysis were conducted in the COPD group. The COPD patients exhibited significant reductions in OLST times (P=0.033), Short Physical Performance Battery scores (P=0.013), 4 m gait speed (Pbalance test scores. The correlation and multivariate regression analyses revealed significant independent associations between OLST times and daily steps (Pbalance and reductions in physical activity were observed in the COPD group. Deficits in balance are independently associated with physical inactivity.

  7. Behavior Change Techniques Implemented in Electronic Lifestyle Activity Monitors: A Systematic Content Analysis

    Science.gov (United States)

    Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-01-01

    Background Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. Objective The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Methods Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. Results All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Conclusions Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which

  8. Results of the marine biota monitoring during drilling activity on Campos Basin, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Petta, Claudia Brigagao de; Bastos, Fabio; Danielski, Monica; Ferreira, Mariana; Gama, Mariana; Coelho, Ana Paula Athanazio; Maia, Decio [Aecom do Brasil Ltda, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The Environmental Monitoring Project (PMA) aims to report environmental changes arising from drilling activity, in relation to the marine fauna. This project can also help in the monitoring of accidental spills. Since the professionals spend six hours of the day monitoring the ocean around the rigs, they can locate and identify oil stains, notify the responsible onboard, and also help in the monitoring of the oil stain. Such Project has been developed onboard a drilling unit working in Campos Basin. The results presented here were collected during the drilling activity in Bijupira and Salema fields, by Shell Brasil Petroleo Ltda, from July 13th to October 8th, 2011.

  9. Relationship between balance and physical activity measured by an activity monitor in elderly COPD patients

    Directory of Open Access Journals (Sweden)

    Iwakura M

    2016-07-01

    Full Text Available Masahiro Iwakura,1,2 Kazuki Okura,2 Kazuyuki Shibata,1,2 Atsuyoshi Kawagoshi,2 Keiyu Sugawara,2 Hitomi Takahashi,2 Takanobu Shioya1 1Department of Rehabilitation, Akita City Hospital, 2Department of Physical Therapy, Akita University Graduate School of Health Sciences, Akita, Japan Background: Little is known regarding the relationship between balance impairments and physical activity in COPD. There has been no study investigating the relationship between balance and objectively measured physical activity. Here we investigated the association between balance and physical activity measured by an activity monitor in elderly COPD patients. Materials and methods: Twenty-two outpatients with COPD (mean age, 72±7 years; forced expiratory volume in 1 second, 53%±21% predicted and 13 age-matched healthy control subjects (mean age, 72±6 years participated in the study. We assessed all 35 subjects’ balance (one-leg standing test [OLST] times, Short Physical Performance Battery total scores, standing balance test scores, 4 m gait speed, and five-times sit-to-stand test [5STST] and physical activity (daily steps and time spent in moderate-to-vigorous physical activity per day [MV-PA]. Possible confounders were assessed in the COPD group. The between-group differences in balance test scores and physical activity were analyzed. A correlation analysis and multivariate regression analysis were conducted in the COPD group. Results: The COPD patients exhibited significant reductions in OLST times (P=0.033, Short Physical Performance Battery scores (P=0.013, 4 m gait speed (P<0.001, five-times sit-to-stand times (P=0.002, daily steps (P=0.003, and MV-PA (P=0.022 compared to the controls; the exception was the standing balance test scores. The correlation and multivariate regression analyses revealed significant independent associations between OLST times and daily steps (P<0.001 and between OLST times and MV-PA (P=0.014 in the COPD group after adjusting for

  10. Evaluation of the effect of signalment and body conformation on activity monitoring in companion dogs.

    Science.gov (United States)

    Brown, Dorothy Cimino; Michel, Kathryn E; Love, Molly; Dow, Caitlin

    2010-03-01

    To evaluate the effect of signalment and body conformation on activity monitoring in companion dogs. 104 companion dogs. While wearing an activity monitor, each dog was led through a series of standard activities: lying down, walking laps, trotting laps, and trotting up and down stairs. Linear regression analysis was used to determine which signalment and body conformation factors were associated with activity counts. There was no significant effect of signalment or body conformation on activity counts when dogs were lying down, walking laps, and trotting laps. However, when dogs were trotting up and down stairs, there was a significant effect of age and body weight such that, for every 1-kg increase in body weight, there was a 1.7% (95% confidence interval, 1.1% to 2.4%) decrease in activity counts and for every 1-year increase in age, there was a 4.2% (95% confidence interval, 1.4% to 6.9%) decrease in activity counts. When activity was well controlled, there was no significant effect of signalment or body conformation on activity counts recorded by the activity monitor. However, when activity was less controlled, older dogs and larger dogs had lower activity counts than younger and smaller dogs. The wide range in body conformation (eg, limb or body length) among dogs did not appear to significantly impact the activity counts recorded by the monitor, but age and body weight did and must be considered in analysis of data collected from the monitors.

  11. Relationship between balance and physical activity measured by an activity monitor in elderly COPD patients

    Science.gov (United States)

    Iwakura, Masahiro; Okura, Kazuki; Shibata, Kazuyuki; Kawagoshi, Atsuyoshi; Sugawara, Keiyu; Takahashi, Hitomi; Shioya, Takanobu

    2016-01-01

    Background Little is known regarding the relationship between balance impairments and physical activity in COPD. There has been no study investigating the relationship between balance and objectively measured physical activity. Here we investigated the association between balance and physical activity measured by an activity monitor in elderly COPD patients. Materials and methods Twenty-two outpatients with COPD (mean age, 72±7 years; forced expiratory volume in 1 second, 53%±21% predicted) and 13 age-matched healthy control subjects (mean age, 72±6 years) participated in the study. We assessed all 35 subjects’ balance (one-leg standing test [OLST] times, Short Physical Performance Battery total scores, standing balance test scores, 4 m gait speed, and five-times sit-to-stand test [5STST]) and physical activity (daily steps and time spent in moderate-to-vigorous physical activity per day [MV-PA]). Possible confounders were assessed in the COPD group. The between-group differences in balance test scores and physical activity were analyzed. A correlation analysis and multivariate regression analysis were conducted in the COPD group. Results The COPD patients exhibited significant reductions in OLST times (P=0.033), Short Physical Performance Battery scores (P=0.013), 4 m gait speed (P<0.001), five-times sit-to-stand times (P=0.002), daily steps (P=0.003), and MV-PA (P=0.022) compared to the controls; the exception was the standing balance test scores. The correlation and multivariate regression analyses revealed significant independent associations between OLST times and daily steps (P<0.001) and between OLST times and MV-PA (P=0.014) in the COPD group after adjusting for possible confounding factors. Conclusion Impairments in balance and reductions in physical activity were observed in the COPD group. Deficits in balance are independently associated with physical inactivity. PMID:27445470

  12. Comparison of Orbicularis Oculi Muscle Activity during Computer Work with Single and Dual Monitors

    OpenAIRE

    Yoo, Won-gyu

    2014-01-01

    [Purpose] This study compared the orbicularis oculi muscle activity during computer work with single and dual monitors. [Subjects] Ten computer workers 22–27 years of age were included in this study. [Methods] Subjects performed computer work with single or dual monitors, and the activity of the right orbicularis oculi muscle was measured with a MP150 system. [Results] The muscle activity of the orbicularis oculi under condition 1 was significantly decreased compared with that under condition...

  13. Synthetic Training Data Generation for Activity Monitoring and Behavior Analysis

    Science.gov (United States)

    Monekosso, Dorothy; Remagnino, Paolo

    This paper describes a data generator that produces synthetic data to simulate observations from an array of environment monitoring sensors. The overall goal of our work is to monitor the well-being of one occupant in a home. Sensors are embedded in a smart home to unobtrusively record environmental parameters. Based on the sensor observations, behavior analysis and modeling are performed. However behavior analysis and modeling require large data sets to be collected over long periods of time to achieve the level of accuracy expected. A data generator - was developed based on initial data i.e. data collected over periods lasting weeks to facilitate concurrent data collection and development of algorithms. The data generator is based on statistical inference techniques. Variation is introduced into the data using perturbation models.

  14. Ambulatory measurement of knee motion and physical activity: preliminary evaluation of a smart activity monitor

    Directory of Open Access Journals (Sweden)

    Malchau Henrik

    2006-09-01

    Full Text Available Abstract Background There is currently a paucity of devices available for continuous, long-term monitoring of human joint motion. Non-invasive, inexpensive devices capable of recording human activity and joint motion have many applications for medical research. Such a device could be used to quantify range of motion outside the gait laboratory. The purpose of this study was to test the accuracy of the modified Intelligent Device for Energy Expenditure and Activity (IDEEA in measuring knee flexion angles, to detect different physical activities, and to quantify how often healthy subjects use deep knee flexion in the ambulatory setting. Methods We compared Biomotion Laboratory (BML "gold standard" data to simultaneous IDEEA measures of knee motion and gait, step up/down, and stair descent in 5 healthy subjects. In addition, we used a series of choreographed physical activities outside the BML to confirm the IDEEA's ability to accurately measure 7 commonly-performed physical activities. Subjects then continued data collection during ordinary activities outside the gait laboratory. Results Pooled correlations between the BML and IDEEA knee flexion angles were .97 +/- .03 for step up/down, .98 +/- .02 for stair descent, and .98 +/- .01 for gait. In the BML protocol, the IDEEA accurately identified gait, but was less accurate in identifying step up/down and stair descent. During sampling outside the BML, the IDEEA accurately detected walking, running, stair ascent, stair descent, standing, lying, and sitting. On average, subjects flexed their knees >120° for 0.17% of their data collection periods outside the BML. Conclusion The modified IDEEA system is a useful clinical tool for evaluating knee motion and multiple physical activities in the ambulatory setting. These five healthy subjects rarely flexed their knees >120°.

  15. Validity of Activity Monitor Step Detection Is Related to Movement Patterns.

    Science.gov (United States)

    Hickey, Amanda; John, Dinesh; Sasaki, Jeffer E; Mavilia, Marianna; Freedson, Patty

    2016-02-01

    There is a need to examine step-counting accuracy of activity monitors during different types of movements. The purpose of this study was to compare activity monitor and manually counted steps during treadmill and simulated free-living activities and to compare the activity monitor steps to the StepWatch (SW) in a natural setting. Fifteen participants performed laboratory-based treadmill (2.4, 4.8, 7.2 and 9.7 km/h) and simulated free-living activities (eg, cleaning room) while wearing an activPAL, Omron HJ720-ITC, Yamax Digi- Walker SW-200, 2 ActiGraph GT3Xs (1 in "low-frequency extension" [AGLFE] and 1 in "normal-frequency" mode), an ActiGraph 7164, and a SW. Participants also wore monitors for 1-day in their free-living environment. Linear mixed models identified differences between activity monitor steps and the criterion in the laboratory/free-living settings. Most monitors performed poorly during treadmill walking at 2.4 km/h. Cleaning a room had the largest errors of all simulated free-living activities. The accuracy was highest for forward/rhythmic movements for all monitors. In the free-living environment, the AGLFE had the largest discrepancy with the SW. This study highlights the need to verify step-counting accuracy of activity monitors with activities that include different movement types/directions. This is important to understand the origin of errors in step-counting during free-living conditions.

  16. Permafrost and Active Layer Monitoring in the Maritime Antarctic: A Contribution to TSP and ANTPAS projects

    Science.gov (United States)

    Vieira, G.; Ramos, M.; Batista, V.; Caselli, A.; Correia, A.; Fragoso, M.; Gruber, S.; Hauck, C.; Kenderova, R.; Lopez-Martinez, J.; Melo, R.; Mendes-Victor, L. A.; Miranda, P.; Mora, C.; Neves, M.; Pimpirev, C.; Rocha, M.; Santos, F.; Blanco, J. J.; Serrano, E.; Trigo, I.; Tome, D.; Trindade, A.

    2008-12-01

    Permafrost and active layer monitoring in the Maritime Antarctic (PERMANTAR) is a Portuguese funded International Project that, in cooperation with the Spanish project PERMAMODEL, will assure the installation and the maintenance of a network of boreholes and active layer monitoring sites, in order to characterize the spatial distribution of the physical and thermal properties of permafrost, as well as the periglacial processes in Livingston and Deception Islands (South Shetlands). The project is part of the International Permafrost Association IPY projects Thermal State of Permafrost (TSP) and Antarctic and Sub-Antarctic Permafrost, Soils and Periglacial Environments (ANTPAS). It contributes to GTN-P and CALM-S networks. The PERMANTAR-PERMAMODEL permafrost and active layer monitoring network includes several boreholes: Reina Sofia hill (since 2000, 1.1m), Incinerador (2000, 2.3m), Ohridski 1 (2008, 5m), Ohridski 2 (2008, 6m), Gulbenkian-Permamodel 1 (2008, 25m) and Gulbenkian- Permamodel 2 (2008, 15m). For active layer monitoring, several CALM-S sites have been installed: Crater Lake (2006), Collado Ramos (2007), Reina Sofia (2007) and Ohridski (2007). The monitoring activities are accompanied by detailed geomorphological mapping in order to identify and map the geomorphic processes related to permafrost or active layer dynamics. Sites will be installed in early 2009 for monitoring rates of geomorphological activity in relation to climate change (e.g. solifluction, rockglaciers, thermokarst). In order to analyse the spatial distribution of permafrost and its ice content, electrical resistivity tomography (ERT), and seismic refraction surveys have been performed and, in early 2009, continuous ERT surveying instrumentation will be installed for monitoring active layer evolution. The paper presents a synthesis of the activities, as well as the results obtained up to the present, mainly relating to ground temperature monitoring and from permafrost characteristics and

  17. Active structural health monitoring of composite plates and sandwiches

    Directory of Open Access Journals (Sweden)

    Sadílek P.

    2013-12-01

    Full Text Available The aim of presented work is to design, assemble and test a functional system, that is able to reveal damage from impact loading. This is done by monitoring of change of spectral characteristics on a damaged structure that is caused by change of mechanical properties of material or by change of structure’s geometry. Excitation and monitoring of structures was done using piezoelectric patches. Unidirectional composite plate was tested for eigenfrequencies using chirp signal. The eigenfrequencies were compared to results from experiments with an impact hammer and consequently with results from finite element method. Same method of finding eigenfrequencies was used on a different unidirectional composite specimen. Series of impacts were performed. Spectrum of eigenfrequencies was measured on undamaged plate and then after each impact. Measurements of the plate with different level of damage were compared. Following experiments were performed on sandwich materials where more different failures may happen. Set of sandwich beams (cut out from one plate made of two outer composite layers and a foam core was investigated and subjected to several impacts. Several samples were impacted in the same manner to get comparable results. The impacts were performed with growing impact energy.

  18. Home uterine activity monitoring: an evidence review of its utility in multiple gestations.

    Science.gov (United States)

    Reichmann, James P

    2009-09-01

    To examine the medical evidence regarding the application of home uterine activity monitoring for multiple gestations. All of the published peer-reviewed articles on the topic were assembled and assigned a level of evidence based on research design. The search uncovered 9 articles, including 3 Level I randomized, controlled trials; 1 level II matched cohort trial; and 5 level III case series. The first 5 trials all showed promising results for home uterine activity monitoring applied to multiple gestations. Ultimately, however, 14 years after the introduction of home uterine activity monitoring, the largest randomized, controlled trial was published, and it demonstrated that pregnancy outcomes were identical for patients with home uterine activity monitoring and patients receiving weekly calls from a nurse. A subsequent National Institute of Child Health and Human Development published trial may provide a clue as to why the large, randomized, controlled trial demonstrated no difference. Contractions in multiple gestations are not predictive of preterm birth.

  19. 24-h monitoring of calcineurin phosphatase activity in healthy subjects

    DEFF Research Database (Denmark)

    Koefoed-Nielsen, P.B.; Karamperis, N.; Jørgensen, Kaj Anker

    2005-01-01

    a phosphorylated peptide. Activity of the 32P was quantitated by liquid scintillation and results converted to units CaN utilizing a calibration curve. We found no circadian variation in CaN activity and no difference between the two sexes. The clinical importance of these findings is that blood samples...

  20. Probes to monitor activity of the paracaspase MALT1.

    Science.gov (United States)

    Hachmann, Janna; Edgington-Mitchell, Laura E; Poreba, Marcin; Sanman, Laura E; Drag, Marcin; Bogyo, Matthew; Salvesen, Guy S

    2015-01-22

    The human paracaspase mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) plays a central role in nuclear factor-κB (NF-κB) signaling as both a protease and scaffolding protein. Knocking out MALT1 leads to impaired NF-κB signaling and failure to mount an effective immune response. However, it is unclear to which degree it is the scaffolding function versus the proteolytic activity of MALT1 that is essential. Previous work involving a MALT1 inhibitor with low selectivity suggests that the enzymatic function plays an important role in different cell lines. To help elucidate this proteolytic role of MALT1, we have designed activity-based probes that inhibit its proteolytic activity. The probes selectively label active enzyme and can be used to inhibit MALT1 and trace its activity profile, helping to create a better picture of the significance of the proteolytic function of MALT1.

  1. Fibrinolytic and procoagulant activities of Yersinia pestis and Salmonella enterica.

    Science.gov (United States)

    Korhonen, T K

    2015-06-01

    Pla of the plague bacterium Yersinia pestis and PgtE of the enteropathogen Salmonella enterica are surface-exposed, transmembrane β-barrel proteases of the omptin family that exhibit a complex array of interactions with the hemostatic systems in vitro, and both proteases are established virulence factors. Pla favors fibrinolysis by direct activation of plasminogen, inactivation of the serpins plasminogen activator inhibitor-1 and α2-antiplasmin, inactivation of the thrombin-activable fibrinolysis inhibitor, and activation of single-chain urokinase. PgtE is structurally very similar but exhibits partially different functions and differ in expression control. PgtE proteolysis targets control aspects of fibrinolysis, and mimicry of matrix metalloproteinases enhances cell migration that should favor the intracellular spread of the bacterium. Enzymatic activity of both proteases is strongly influenced by the environment-induced variations in lipopolysaccharide that binds to the β-barrel. Both proteases cleave the tissue factor pathway inhibitor and thus also express procoagulant activity. © 2015 International Society on Thrombosis and Haemostasis.

  2. Validity of activity monitors in health and chronic disease : a systematic review

    NARCIS (Netherlands)

    Van Remoortel, Hans; Giavedoni, Santiago; Raste, Yogini; Burtin, Chris; Louvaris, Zafeiris; Gimeno-Santos, Elena; Langer, Daniel; Glendenning, Alastair; Hopkinson, Nicholas S; Vogiatzis, Ioannis; Peterson, Barry T; Wilson, Frederick; Mann, Bridget; Rabinovich, Roberto; Puhan, Milo A; Troosters, Thierry; de Jong, Corina

    2012-01-01

    The assessment of physical activity in healthy populations and in those with chronic diseases is challenging. The aim of this systematic review was to identify whether available activity monitors (AM) have been appropriately validated for use in assessing physical activity in these groups. Following

  3. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Science.gov (United States)

    2010-07-01

    ... activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1330 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet...

  4. Validity of activity monitors in health and chronic disease : a systematic review

    NARCIS (Netherlands)

    Van Remoortel, Hans; Giavedoni, Santiago; Raste, Yogini; Burtin, Chris; Louvaris, Zafeiris; Gimeno-Santos, Elena; Langer, Daniel; Glendenning, Alastair; Hopkinson, Nicholas S; Vogiatzis, Ioannis; Peterson, Barry T; Wilson, Frederick; Mann, Bridget; Rabinovich, Roberto; Puhan, Milo A; Troosters, Thierry; de Jong, Corina

    2012-01-01

    The assessment of physical activity in healthy populations and in those with chronic diseases is challenging. The aim of this systematic review was to identify whether available activity monitors (AM) have been appropriately validated for use in assessing physical activity in these groups. Following

  5. Fluorescence-Based Sensor for Monitoring Activation of Lunar Dust

    Science.gov (United States)

    Wallace, William T.; Jeevarajan, Antony S.

    2012-01-01

    This sensor unit is designed to determine the level of activation of lunar dust or simulant particles using a fluorescent technique. Activation of the surface of a lunar soil sample (for instance, through grinding) should produce a freshly fractured surface. When these reactive surfaces interact with oxygen and water, they produce hydroxyl radicals. These radicals will react with a terephthalate diluted in the aqueous medium to form 2-hydroxyterephthalate. The fluorescence produced by 2-hydroxyterephthalate provides qualitative proof of the activation of the sample. Using a calibration curve produced by synthesized 2-hydroxyterephthalate, the amount of hydroxyl radicals produced as a function of sample concentration can also be determined.

  6. Monitoring the Activation of the DNA Damage Response Pathway in a 3D Spheroid Model.

    Science.gov (United States)

    Mondesert, Odile; Frongia, Céline; Clayton, Olivia; Boizeau, Marie-Laure; Lobjois, Valérie; Ducommun, Bernard

    2015-01-01

    Monitoring the DNA-Damage Response (DDR) activated pathway in multicellular tumor spheroid models is an important challenge as these 3D models have demonstrated their major relevance in pharmacological evaluation. Herein we present DDR-Act-FP, a fluorescent biosensor that allows detection of DDR activation through monitoring of the p21 promoter p53-dependent activation. We show that cells expressing the DDR-Act-FP biosensor efficiently report activation of the DDR pathway after DNA damage and its pharmacological manipulation using ATM kinase inhibitors. We also report the successful use of this assay to screen a small compound library in order to identify activators of the DDR response. Finally, using multicellular spheroids expressing the DDR-Act-FP we demonstrate that DDR activation and its pharmacological manipulation with inhibitory and activatory compounds can be efficiently monitored in live 3D spheroid model. This study paves the way for the development of innovative screening and preclinical evaluation assays.

  7. Contamination monitoring in radiation protection activities in Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    Thin, K.T.; Htoon, S. [Yangon Univ. (Myanmar). Dept. of Physics

    1997-06-01

    The radioactive contamination in rainwater, seawater, air, milk powder and other eatables were measured with low level counter assembly. The measured activities are found to be very low and well within the maximum permissible level. (author)

  8. Ultrafast chiroptical spectroscopy: Monitoring optical activity in quick time

    Directory of Open Access Journals (Sweden)

    Hanju Rhee

    2011-12-01

    Full Text Available Optical activity spectroscopy provides rich structural information of biologically important molecules in condensed phases. However, a few intrinsic problems of conventional method based on electric field intensity measurement scheme prohibited its extension to time domain technique. We have recently developed new types of optical activity spectroscopic methods capable of measuring chiroptical signals with femtosecond pulses. It is believed that these novel approaches will be applied to a variety of ultrafast chiroptical studies.

  9. Monitoring

    Science.gov (United States)

    ... a sample of how to record your hourly activities, eating and medication so you can see patterns based on your tests – ... a Diabetes Educator Diabetes Goal Tracker App Tip Sheets and Handouts AADE7 Self-Care ...

  10. Monitoring leptin activity using the chicken leptin receptor.

    Science.gov (United States)

    Hen, Gideon; Yosefi, Sera; Ronin, Ana; Einat, Paz; Rosenblum, Charles I; Denver, Robert J; Friedman-Einat, Miriam

    2008-05-01

    We report on the construction of a leptin bioassay based on the activation of chicken leptin receptor in cultured cells. A human embryonic kidney (HEK)-293 cell line, stably transfected with the full-length cDNA of chicken leptin receptor together with a STAT3-responsive reporter gene specifically responded to recombinant human and Xenopus leptins. The observed higher sensitivity of chicken leptin receptor to the former is in agreement with the degree of sequence similarity among these species (about 60 and 38% identical amino acids between humans and chickens, and between humans and Xenopus respectively). The specific activation of signal transduction through the chicken leptin receptor, shown here for the first time, suggests that the transition of Gln269 (implicated in the Gln-to-Pro Zucker fatty mutation in rats) to Glu in chickens does not impair its activity. Analysis of leptin-like activity in human serum samples of obese and lean subjects coincided well with leptin levels determined by RIA. Serum samples of pre- and post partum cows showed a tight correlation with the degree of adiposity. However, specific activation of the chicken leptin receptor in this assay was not observed with serum samples from broiler or layer chickens (representing fat and lean phenotypes respectively) or with those from turkey. Similar leptin receptor activation profiles were observed with cells transfected with human leptin receptor. Further work is needed to determine whether the lack of leptin-like activity in the chicken serum samples is due to a lack of leptin in this species or simply to a serum level of leptin that is below the detection threshold.

  11. Monitoring and validating active site redox states in protein crystals.

    Science.gov (United States)

    Antonyuk, Svetlana V; Hough, Michael A

    2011-06-01

    High resolution protein crystallography using synchrotron radiation is one of the most powerful tools in modern biology. Improvements in resolution have arisen from the use of X-ray beamlines with higher brightness and flux and the development of advanced detectors. However, it is increasingly recognised that the benefits brought by these advances have an associated cost, namely deleterious effects of X-ray radiation on the sample (radiation damage). In particular, X-ray induced reduction and damage to redox centres has been shown to occur much more rapidly than other radiation damage effects, such as loss of resolution or damage to disulphide bridges. Selection of an appropriate combination of in-situ single crystal spectroscopies during crystallographic experiments, such as UV-visible absorption and X-ray absorption spectroscopy (XAFS), allows for effective monitoring of redox states in protein crystals in parallel with structure determination. Such approaches are also essential in cases where catalytic intermediate species are generated by exposure to the X-ray beam. In this article, we provide a number of examples in which multiple single crystal spectroscopies have been key to understanding the redox status of Fe and Cu centres in crystal structures. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.

  12. Subsidence monitoring network: an Italian example aimed at a sustainable hydrocarbon E&P activity

    Science.gov (United States)

    Dacome, M. C.; Miandro, R.; Vettorel, M.; Roncari, G.

    2015-11-01

    According to the Italian law in order to start-up any new hydrocarbon exploitation activity, an Environmental Impact Assessment study has to be presented, including a monitoring plan, addressed to foresee, measure and analyze in real time any possible impact of the project on the coastal areas and on those ones in the close inland located. The occurrence of subsidence, that could partly be related to hydrocarbon production, both on-shore and off-shore, can generate great concern in those areas where its occurrence may have impacts on the local environment. ENI, following the international scientific community recommendations on the matter, since the beginning of 90's years, implemented a cutting-edge monitoring network, with the aim to prevent, mitigate and control geodynamics phenomena generated in the activity areas, with a particular attention to conservation and protection of environmental and territorial equilibrium, taking care of what is known as "sustainable development". The current ENI implemented monitoring surveys can be divided as: - Shallow monitoring: spirit levelling surveys, continuous GPS surveys in permanent stations, SAR surveys, assestimeter subsurface compaction monitoring, ground water level monitoring, LiDAR surveys, bathymetrical surveys. - Deep monitoring: reservoir deep compaction trough radioactive markers, reservoir static (bottom hole) pressure monitoring. All the information, gathered through the monitoring network, allow: 1. to verify if the produced subsidence is evolving accordingly with the simulated forecast. 2. to provide data to revise and adjust the prediction compaction models 3. to put in place the remedial actions if the impact exceeds the threshold magnitude originally agreed among the involved parties. ENI monitoring plan to measure and monitor the subsidence process, during field production and also after the field closure, is therefore intended to support a sustainable field development and an acceptable exploitation

  13. Monitoring Affect States during Effortful Problem Solving Activities

    Science.gov (United States)

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  14. Monitoring activity in neural circuits with genetically encoded indicators

    Directory of Open Access Journals (Sweden)

    Gerard Joseph Broussard

    2014-12-01

    Full Text Available Recent developments in genetically encoded indicators of neural activity (GINAs have greatly advanced the field of systems neuroscience. As they are encoded by DNA, GINAs can be targeted to genetically defined cellular populations. Combined with fluorescence microscopy, most notably multi-photon imaging, GINAs allow chronic simultaneous optical recordings from large populations of neurons or glial cells in awake, behaving mammals, particularly rodents. This large-scale recording of neural activity at multiple temporal and spatial scales has greatly advanced our understanding of the dynamics of neural circuitry underlying behavior—a critical first step toward understanding the complexities of brain function, such as sensorimotor integration and learning.Here, we summarize the recent development and applications of the major classes of GINAs. In particular, we take an in-depth look at the design of available GINA families with a particular focus on genetically encoded calcium indicators, sensors probing synaptic activity, and genetically encoded voltage indicators. Using the family of the genetically encoded calcium indicator GCaMP as an example, we review established sensor optimization pipelines. We also discuss practical considerations for end users of GINAs about experimental methods including approaches for gene delivery, imaging system requirements, and data analysis techniques. With the growing toolbox of GINAs and with new microscopy techniques pushing beyond their current limits, the age of light can finally achieve the goal of broad and dense sampling of neuronal activity across time and brain structures to obtain a dynamic picture of brain function.

  15. Monitoring Social Media: Students Satisfaction with University Administration Activities

    Science.gov (United States)

    Koshkin, Andrey Petrovich; Rassolov, Ilya Mihajlovich; Novikov, Andrey Vadimovich

    2017-01-01

    The paper presents an original method of identifying satisfaction of students with the activities of their university administration based on studying the content of comments on the social networks. The analysis of student opinions revealed areas of concern and priority areas in the work of the university administration. The paper characterizes…

  16. Hemispheric Asymmetries in the Activation and Monitoring of Memory Errors

    Science.gov (United States)

    Giammattei, Jeannette; Arndt, Jason

    2012-01-01

    Previous research on the lateralization of memory errors suggests that the right hemisphere's tendency to produce more memory errors than the left hemisphere reflects hemispheric differences in semantic activation. However, all prior research that has examined the lateralization of memory errors has used self-paced recognition judgments. Because…

  17. Monitoring active filters under automotive aging scenarios with embedded instrument

    NARCIS (Netherlands)

    Wan, Jinbo; Kerkhoff, Hans G.

    2012-01-01

    In automotive mixed-signal SoCs, the analogue/mixed-signal front-ends are of particular interest with regard to dependability. Because of the many electrical disturbances at the front-end, often (active) filters are being used. Due to the harsh environments, in some cases, degradation of these filte

  18. A review of market monitoring activities at U.S. independent system operators

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, Bernard C.; Goldman, Charles; Bartholomew, Emily

    2004-01-01

    Policymakers have increasingly recognized the structural impediments to effective competition in electricity markets, which has resulted in a renewed emphasis on the need for careful market design and market monitoring in wholesale and retail electricity markets. In this study, we review the market monitoring activities of four Independent System Operators in the United States, focusing on such topics as the organization of an independent market monitoring unit (MMU), the role and value of external market monitors, performance metrics and indices to aid in market analysis, issues associated with access to confidential market data, and market mitigation and investigation authority. There is consensus across the four ISOs that market monitoring must be organizationally independent from market participants and that ISOs should have authority to apply some degree of corrective actions on the market, though scope and implementation differ across the ISOs. Likewise, current practices regarding access to confidential market data by state energy regulators varies somewhat by ISO. Drawing on our interviews and research, we present five examples that illustrate the impact and potential contribution of ISO market monitoring activities to enhance functioning of wholesale electricity markets. We also discuss several key policy and implementation issues that Western state policymakers and regulators should consider as market monitoring activities evolve in the West.

  19. A comparison of energy expenditure estimation of several physical activity monitors.

    Science.gov (United States)

    Dannecker, Kathryn L; Sazonova, Nadezhda A; Melanson, Edward L; Sazonov, Edward S; Browning, Raymond C

    2013-11-01

    Accurately and precisely estimating free-living energy expenditure (EE) is important for monitoring energy balance and quantifying physical activity. Recently, single and multisensor devices have been developed that can classify physical activities, potentially resulting in improved estimates of EE. This study aimed to determine the validity of EE estimation of a footwear-based physical activity monitor and to compare this validity against a variety of research and consumer physical activity monitors. Nineteen healthy young adults (10 men, 9 women) completed a 4-h stay in a room calorimeter. Participants wore a footwear-based physical activity monitor as well as Actical, ActiGraph, IDEEA, DirectLife, and Fitbit devices. Each individual performed a series of postures/activities. We developed models to estimate EE from the footwear-based device, and we used the manufacturer's software to estimate EE for all other devices. Estimated EE using the shoe-based device was not significantly different than measured EE (mean ± SE; 476 ± 20 vs 478 ± 18 kcal, respectively) and had a root-mean-square error of 29.6 kcal (6.2%). The IDEEA and the DirectLlife estimates of EE were not significantly different than the measured EE, but the ActiGraph and the Fitbit devices significantly underestimated EE. Root-mean-square errors were 93.5 (19%), 62.1 kcal (14%), 88.2 kcal (18%), 136.6 kcal (27%), 130.1 kcal (26%), and 143.2 kcal (28%) for Actical, DirectLife, IDEEA, ActiGraph, and Fitbit, respectively. The shoe-based physical activity monitor provides a valid estimate of EE, whereas the other physical activity monitors tested have a wide range of validity when estimating EE. Our results also demonstrate that estimating EE based on classification of physical activities can be more accurate and precise than estimating EE based on total physical activity.

  20. Monitoring Monitoring Evolving Activity at Popocatepetl Volcano, Mexico, 2000-2001

    Science.gov (United States)

    Martin-DelPozzo, A.; Aceves, F.; Bonifaz, R.; Humberto, S.

    2001-12-01

    After 6 years of small eruptions, activity at Mexico's 5,452m high Popocatepetl Volcano in central Mexico, peaked in the December 2000-January 2001 eruptions. Precursors included an important increase in seismicity as well as in magmatic components of spring water and small scale deformation which resulted in growth of a new crater dome from January 16 on. Evacuation of the towns nearest the volcano over Christmas was decided because of the possibility of pyroclastic flows. During the previous years, crater dome growth, contraction and explosive clearing has dominated the activity. The January 22 eruption produced an eruption column approximately 17km high with associated pyroclastic flows. Ejecta was composed of both basic and evolved scoria and pumice and dome lithics. A large proportion of the juvenile material was intermediate between these 2 endmenbers (59-63percent SiO2 and 3.5 to 5.5 MgO) consistent with a small basic pulse entering a more evolved larger batch of magma. The January eruption left a large pit which has been partially infilled by another crater dome this August 2001.

  1. Phosphate-Modified Nucleotides for Monitoring Enzyme Activity.

    Science.gov (United States)

    Ermert, Susanne; Marx, Andreas; Hacker, Stephan M

    2017-04-01

    Nucleotides modified at the terminal phosphate position have been proven to be interesting entities to study the activity of a variety of different protein classes. In this chapter, we present various types of modifications that were attached as reporter molecules to the phosphate chain of nucleotides and briefly describe the chemical reactions that are frequently used to synthesize them. Furthermore, we discuss a variety of applications of these molecules. Kinase activity, for instance, was studied by transfer of a phosphate modified with a reporter group to the target proteins. This allows not only studying the activity of kinases, but also identifying their target proteins. Moreover, kinases can also be directly labeled with a reporter at a conserved lysine using acyl-phosphate probes. Another important application for phosphate-modified nucleotides is the study of RNA and DNA polymerases. In this context, single-molecule sequencing is made possible using detection in zero-mode waveguides, nanopores or by a Förster resonance energy transfer (FRET)-based mechanism between the polymerase and a fluorophore-labeled nucleotide. Additionally, fluorogenic nucleotides that utilize an intramolecular interaction between a fluorophore and the nucleobase or an intramolecular FRET effect have been successfully developed to study a variety of different enzymes. Finally, also some novel techniques applying electron paramagnetic resonance (EPR)-based detection of nucleotide cleavage or the detection of the cleavage of fluorophosphates are discussed. Taken together, nucleotides modified at the terminal phosphate position have been applied to study the activity of a large diversity of proteins and are valuable tools to enhance the knowledge of biological systems.

  2. Optogenetic Monitoring of Synaptic Activity with Genetically Encoded Voltage Indicators

    Science.gov (United States)

    Nakajima, Ryuichi; Jung, Arong; Yoon, Bong-June; Baker, Bradley J.

    2016-01-01

    The age of genetically encoded voltage indicators (GEVIs) has matured to the point that changes in membrane potential can now be observed optically in vivo. Improving the signal size and speed of these voltage sensors has been the primary driving forces during this maturation process. As a result, there is a wide range of probes using different voltage detecting mechanisms and fluorescent reporters. As the use of these probes transitions from optically reporting membrane potential in single, cultured cells to imaging populations of cells in slice and/or in vivo, a new challenge emerges—optically resolving the different types of neuronal activity. While improvements in speed and signal size are still needed, optimizing the voltage range and the subcellular expression (i.e., soma only) of the probe are becoming more important. In this review, we will examine the ability of recently developed probes to report synaptic activity in slice and in vivo. The voltage-sensing fluorescent protein (VSFP) family of voltage sensors, ArcLight, ASAP-1, and the rhodopsin family of probes are all good at reporting changes in membrane potential, but all have difficulty distinguishing subthreshold depolarizations from action potentials and detecting neuronal inhibition when imaging populations of cells. Finally, we will offer a few possible ways to improve the optical resolution of the various types of neuronal activities. PMID:27547183

  3. Monitoring Thermal Activity of Eastern Anatolian Volcanoes Using MODIS Images

    Science.gov (United States)

    Diker, Caner; Ulusoy, Inan

    2014-05-01

    T data. Determination of a threshold value for STA/LTA curve has a potential for volcano monitoring. This method could be a useful and low cost tool to detect low temperature anomalies on volcanoes. Keywords: Eastern Anatolia, MODIS, thermal, volcano, surface temperature, Turkey

  4. Continued monitoring of aeolian activity within Herschel Crater, Mars

    Science.gov (United States)

    Cardinale, Marco; Pozzobon, Riccardo; Michaels, Timothy; Bourke, Mary C.; Okubo, Chris H.; Chiara Tangari, Anna; Marinangeli, Lucia

    2017-04-01

    In this work, we study a dark dune field on the western side of Herschel crater, a 300 km diameter impact basin located near the Martian equator (14.4°S, 130°E), where the ripple and dune motion reflects the actual atmospheric wind conditions. We develop an integrated analysis using (1) automated ripple mapping that yields ripple orientations and evaluates the spatial variation of actual atmospheric wind conditions within the dunes, (2) an optical cross-correlation that allows us to quantify an average ripple migration rate of 0.42 m per Mars year, and (3) mesoscale climate modeling with which we compare the observed aeolian changes with modeled wind stresses and directions. Our observations are consistent with previous work [1] [2] that detected aeolian activity in the western part of the crater. It also demonstrates that not only are the westerly Herschel dunes movable, but that predominant winds from the north are able to keep the ripples and dunes active within most (if not all) of Herschel crater in the current atmospheric conditions. References: [1] Cardinale, M., Silvestro, S., Vaz, D.A., Michaels, T., Bourke, M.C., Komatsu, G., Marinangeli, L., 2016. Present-day aeolian activity in Herschel Crater, Mars. Icarus 265, 139-148. doi:10.1016/j.icarus.2015.10.022. [2] Runyon, K.D., Bridges, N.T., Ayoub, F., Newman, C.E. and Quade, J.J., 2017. An integrated model for dune morphology and sand fluxes on Mars. Earth and Planetary Science Letters, 457, pp.204-212.

  5. Non-Contact Cardiac Activity Monitoring using Pulsed Laser Vibrometer

    Directory of Open Access Journals (Sweden)

    Chen Chia WANG

    2014-01-01

    Full Text Available We demonstrate experimentally the detection of detailed human cardiac mechanical activity in a remote, non-contacting, and non-ionizing manner using a pulsed laser vibrometer. The highly sensitive pulsed laser vibrometer allows the detection of the temporally-phased mechanical events occurring in individual cardiac cycles even from the surface of clothing-covered extremities of the subjects. Fine structures of the detected cardiac traces are identified with their meanings assigned and corroborated using accelerometer and electrocardiogram measurements obtained concurrently with the pulsed laser vibrometer studies.

  6. Accuracy of 2 activity monitors in detecting steps in people with stroke and traumatic brain injury.

    Science.gov (United States)

    Fulk, George D; Combs, Stephanie A; Danks, Kelly A; Nirider, Coby D; Raja, Bhavana; Reisman, Darcy S

    2014-02-01

    Advances in sensor technologies and signal processing techniques provide a method to accurately measure walking activity in the home and community. Activity monitors geared toward consumer or patient use may be an alternative to more expensive monitors designed for research to measure stepping activity. The objective of this study was to examine the accuracy of 2 consumer/patient activity monitors, the Fitbit Ultra and the Nike+ Fuelband, in identifying stepping activity in people with stroke and traumatic brain injury (TBI). Secondarily, the study sought to compare the accuracy of these 2 activity monitors with that of the StepWatch Activity Monitor (SAM) and a pedometer, the Yamax Digi-Walker SW-701 pedometer (YDWP). A cross-sectional design was used for this study. People with chronic stroke and TBI wore the 4 activity monitors while they performed the Two-Minute Walk Test (2MWT), during which they were videotaped. Activity monitor estimated steps taken were compared with actual steps taken counted from videotape. Accuracy and agreement between activity monitor estimated steps and actual steps were examined using intraclass correlation coefficients (ICC [2,1]) and the Bland-Altman method. The SAM demonstrated the greatest accuracy (ICC [2,1]=.97, mean difference between actual steps and SAM estimated steps=4.7 steps) followed by the Fitbit Ultra (ICC [2,1]=.73, mean difference between actual steps and Fitbit Ultra estimated steps=-9.7 steps), the YDWP (ICC [2,1]=.42, mean difference between actual steps and YDWP estimated steps=-28.8 steps), and the Nike+ Fuelband (ICC [2,1]=.20, mean difference between actual steps and Nike+ Fuelband estimated steps=-66.2 steps). Walking activity was measured over a short distance in a closed environment, and participants were high functioning ambulators, with a mean gait speed of 0.93 m/s. The Fitbit Ultra may be a low-cost alternative to measure the stepping activity in level, predictable environments of people with stroke

  7. Wearable monitors criterion validity for energy expenditure in sedentary and light activities

    Directory of Open Access Journals (Sweden)

    Florez-Pregonero Alberto

    2017-03-01

    Conclusion: None of the WMs tested in this study were equivalent with the criterion measure (VO2 in estimating sedentary-to-light activities; however, the activPAL had greater overall accuracy in measuring SB and LPA than did the ActiGraph and SenseWear 2 monitors.

  8. An activity monitoring system for elderly care using generative and discriminative models

    NARCIS (Netherlands)

    van Kasteren, T.L.M.; Englebienne, G.; Kröse, B.J.A.

    2010-01-01

    An activity monitoring system allows many applications to assist in care giving for elderly in their homes. In this paper we present a wireless sensor network for unintrusive observations in the home and show the potential of generative and discriminative models for recognizing activities from such

  9. An Index (PC) Aimed at Monitoring the (P)olar (C)ap for Magnetic Activity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — PC is an index for magnetic activity in the (P)olar (C)ap. It is based on data from a single nearpole station, and aimed to monitor the polar cap magnetic activity...

  10. FRAME DESIGN OF REMOTE SENSING MONITORING FOR VOLCANIC ACTIVITIES IN CHANGBAI MOUNTAINS

    Institute of Scientific and Technical Information of China (English)

    BO Li-qun; ZHAO Yun-ping; HUA Ren-kui

    2003-01-01

    Volcanic eruption is one of the most serious geological disasters, however, a host of facts have proven that the Changbai Mountains volcano is a modem dormant one and has ever erupted disastrously. With the rapid development of remote sensing technology, space monitoring of volcanic activities has already become possible, particularly in the application of thermal infrared remote sensing. The paper, through the detailed analysis of geothermal anomaly factors such as heat radiation, heat conduction and convection, depicts the monitoring principles by which volcano activities would be monitored efficiently and effectively. Reasons for abrupt geothermal anomaly are mainly analyzed, and transmission mechanism of geothermal anomaly in the volcanic regions is explained. Also, a variety of noises disturbing the transmission of normal geothermal anomaly are presented. Finally, some clues are given based on discussing thermal infrared remote sensing monitoring mechanism toward the volcanic areas.

  11. Monitoring gross alpha and beta activity in liquids by using ZnS(Ag) scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Stevanato, L.; Cester, D.; Filippi, D.; Lunardon, M.; Mistura, G.; Moretto, S.; Viesti, G. [Department of Physics and Astronomy ' Galileo Galilei' , University of Padova, (Italy); Badocco, D.; Pastore, P.; Romanini, F. [Department of Chemical Sciences, University of Padova, (Italy)

    2015-07-01

    In this work the possibility of monitoring gross alpha and beta activity in liquids using EJ-444 was investigated. Specific tests were carried out to determine the change of the detector properties in water tests. Possible protecting coating is also proposed and tested. Alpha/beta real-time monitoring in liquids is a goal of the EU project TAWARA{sub R}TM. (authors)

  12. Individual differences in epistemic motivation and brain conflict monitoring activity.

    Science.gov (United States)

    Kossowska, Małgorzata; Czarnek, Gabriela; Wronka, Eligiusz; Wyczesany, Miroslaw; Bukowski, Marcin

    2014-06-06

    It is well documented that motivation toward closure (NFC), defined as a desire for a quick and unambiguous answer to a question and an aversion to uncertainty, is linked to more structured, rigid, and persistent cognitive styles. However, the neurocognitive correlates of NFC have never been tested. Thus, using event-related potentials, we examined the hypothesis that NFC is associated with the neurocognitive process for detecting discrepancies between response tendencies and higher level intentions. We found that greater NFC is associated with lower conflict-related anterior cingulate activity, suggesting lower sensitivity to cues for altering a habitual response pattern and lower sensitivity to committing errors. This study provides evidence that high NFC acts as a bulwark against anxiety-producing uncertainty and minimizes the experience of error.

  13. High Accuracy Human Activity Monitoring using Neural network

    CERN Document Server

    Sharma, Annapurna; Chung, Wan-Young

    2011-01-01

    This paper presents the designing of a neural network for the classification of Human activity. A Triaxial accelerometer sensor, housed in a chest worn sensor unit, has been used for capturing the acceleration of the movements associated. All the three axis acceleration data were collected at a base station PC via a CC2420 2.4GHz ISM band radio (zigbee wireless compliant), processed and classified using MATLAB. A neural network approach for classification was used with an eye on theoretical and empirical facts. The work shows a detailed description of the designing steps for the classification of human body acceleration data. A 4-layer back propagation neural network, with Levenberg-marquardt algorithm for training, showed best performance among the other neural network training algorithms.

  14. ATLAS off-Grid sites (Tier 3) monitoring. From local fabric monitoring to global overview of the VO computing activities

    CERN Document Server

    PETROSYAN, A; The ATLAS collaboration; BELOV, S; ANDREEVA, J; KADOCHNIKOV, I

    2012-01-01

    The ATLAS Distributed Computing activities have so far concentrated in the "central" part of the experiment computing system, namely the first 3 tiers (the CERN Tier0, 10 Tier1 centers and over 60 Tier2 sites). Many ATLAS Institutes and National Communities have deployed (or intend to) deploy Tier-3 facilities. Tier-3 centers consist of non-pledged resources, which are usually dedicated to data analysis tasks by the geographically close or local scientific groups, and which usually comprise a range of architectures without Grid middleware. Therefore a substantial part of the ATLAS monitoring tools which make use of Grid middleware, cannot be used for a large fraction of Tier3 sites. The presentation will describe the T3mon project, which aims to develop a software suite for monitoring the Tier3 sites, both from the perspective of the local site administrator and that of the ATLAS VO, thereby enabling the global view of the contribution from Tier3 sites to the ATLAS computing activities. Special attention in p...

  15. ActivityAware: An App for Real-Time Daily Activity Level Monitoring on the Amulet Wrist-Worn Device.

    Science.gov (United States)

    Boateng, George; Batsis, John A; Halter, Ryan; Kotz, David

    2017-03-01

    Physical activity helps reduce the risk of cardiovascular disease, hypertension and obesity. The ability to monitor a person's daily activity level can inform self-management of physical activity and related interventions. For older adults with obesity, the importance of regular, physical activity is critical to reduce the risk of long-term disability. In this work, we present ActivityAware, an application on the Amulet wrist-worn device that measures daily activity levels (sedentary, moderate and vigorous) of individuals, continuously and in real-time. The app implements an activity-level detection model, continuously collects acceleration data on the Amulet, classifies the current activity level, updates the day's accumulated time spent at that activity level, logs the data for later analysis, and displays the results on the screen. We developed an activity-level detection model using a Support Vector Machine (SVM). We trained our classifiers using data from a user study, where subjects performed the following physical activities: sit, stand, lay down, walk and run. With 10-fold cross validation and leave-one-subject-out (LOSO) cross validation, we obtained preliminary results that suggest accuracies up to 98%, for n=14 subjects. Testing the ActivityAware app revealed a projected battery life of up to 4 weeks before needing to recharge. The results are promising, indicating that the app may be used for activity-level monitoring, and eventually for the development of interventions that could improve the health of individuals.

  16. Physical Activity Monitoring in Extremely Obese Adolescents from the Teen-LABS Study

    Science.gov (United States)

    Jeffries, Renee M.; Inge, Thomas H.; Jenkins, Todd M; King, Wendy; Oruc, Vedran; Douglas, Andrew D.

    2016-01-01

    Background The accuracy of physical activity (PA) monitors to discriminate between PA, sedentary behavior, and non-wear in extremely obese (EO) adolescents is unknown. Methods Twenty-five subjects (9 male/16 female; age=16.5±2.0 y; BMI=51±8 kg/m2) wore three activity monitors (StepWatch [SAM], Actical [AC], Actiheart [AH]) during a 400 meter walk test (400MWT), two standardized PA bouts of varying duration, and one sedentary bout. Results For the 400MWT, percent error between observed and monitor recorded steps was 5.5±7.1% and 82.1±38.6% for the SAM and AC steps, respectively (observed vs. SAM steps: −17.2±22.2 steps; observed vs. AC steps: −264.5±124.8 steps). All activity monitors were able to differentiate between PA and sedentary bouts but only SAM steps and AH heart rate were significantly different between sedentary behavior and non-wear (ptested, the SAM was most accurate in terms of counting steps and differentiating levels of PA, and thus, most appropriate for EO adolescents. The ability to accurately characterize PA intensity in EO adolescents critically depends on activity monitor selection. PMID:25205688

  17. The validity and reliability of a novel activity monitor as a measure of walking.

    Science.gov (United States)

    Ryan, C G; Grant, P M; Tigbe, W W; Granat, M H

    2006-09-01

    The accurate measurement of physical activity is crucial to understanding the relationship between physical activity and disease prevention and treatment. The primary purpose of this study was to investigate the validity and reliability of the activPAL physical activity monitor in measuring step number and cadence. The ability of the activPAL monitor to measure step number and cadence in 20 healthy adults (age 34.5+/-6.9 years; BMI 26.8+/-4.8 (mean+/-SD)) was evaluated against video observation. Concurrently, the accuracy of two commonly used pedometers, the Yamax Digi-Walker SW-200 and the Omron HJ-109-E, was compared to observation for measuring step number. Participants walked on a treadmill at five different speeds (0.90, 1.12, 1.33, 1.56, and 1.78 m/s) and outdoors at three self selected speeds (slow, normal, and fast). At all speeds, inter device reliability was excellent for the activPAL (ICC (2,1)> or =0.99) for both step number and cadence. The absolute percentage error for the activPAL was <1.11% for step number and cadence regardless of walking speed. The accuracy of the pedometers was adversely affected by slow walking speeds. The activPAL monitor is a valid and reliable measure of walking in healthy adults. Its accuracy is not influenced by walking speed. The activPAL may be a useful device in sports medicine.

  18. Active safety monitoring of newly marketed medications in a distributed data network: application of a semi-automated monitoring system

    Science.gov (United States)

    Gagne, Joshua J.; Glynn, Robert J.; Rassen, Jeremy A.; Walker, Alexander M.; Daniel, Gregory W.; Sridhar, Gayathri; Schneeweiss, Sebastian

    2014-01-01

    We developed a semi-automated active monitoring system that uses sequential matched-cohort analyses to assess drug safety across a distributed network of longitudinal electronic healthcare data. In a retrospective analysis, we showed that the system would have identified cerivastatin-induced rhabdomyolysis. In this study, we evaluated whether the system would generate alerts for three drug-outcome pairs: rosuvastatin and rhabdomyolysis (known null association), rosuvastatin and diabetes mellitus, and telithromycin and hepatotoxicity (two examples for which alerting would be questionable). During >5 years of monitoring, rate differences (RDs) comparing rosuvastatin to atorvastatin were -0.1 cases of rhabdomyolysis per 1,000 person-years (95% CI, -0.4, 0.1) and -2.2 diabetes cases per 1,000 person-years (95% CI, -6.0, 1.6). The RD for hepatotoxicity comparing telithromycin to azithromycin was 0.3 cases per 1,000 person-years (95% CI, -0.5, 1.0). In a setting in which false positivity is a major concern, the system did not generate alerts for three drug-outcome pairs. PMID:22588606

  19. Computerized monitoring of physical activity and sleep in postoperative abdominal surgery patients

    DEFF Research Database (Denmark)

    Bisgaard, T; Kjaersgaard, M; Bernhard, A;

    1999-01-01

    OBJECTIVE: Assessment of early postoperative activity is important in the documentation of improvements of peri-operative care. This study was designed to validate computerized activity-based monitoring of physical activity and sleep (actigraphy) in patients after abdominal surgery. METHODS...... physical activity and sleep-wake cycles after major abdominal surgery.......: The study included twelve hospitalized patients after major abdominal surgery studied on day 2 to 4 after operation and twelve unhospitalized healthy volunteers. Measurements were performed for 24 consecutive hours. The actigraphy measurements were compared with self-reported activity- and sleep...

  20. Probability-Based Diagnostic Imaging Technique Using Error Functions for Active Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Rahim Gorgin,

    2014-07-01

    Full Text Available This study presents a novel probability-based diagnostic imaging (PDI technique using error functions for active structural health monitoring (SHM. To achieve this, first the changes between baseline and current signals of each sensing path are measured, and by taking the root mean square of such changes, the energy of the scattered signal at different times can be calculated. Then, for different pairs of signal acquisition paths, an error function based on the energy of the scattered signals is introduced. Finally, the resultant error function is fused to the final estimation of the probability of damage presence in the monitoring area. As for applications, developed methods were employed to various damage identification cases, including cracks located in regions among an active sensor network with different configurations (pulse-echo and pitch-catch, and holes located in regions outside active network sensors with pitch-catch configuration. The results identified using experimental Lamb wave signals at different central frequencies corroborated that the developed PDI technique using error functions is capable of monitoring structural damage, regardless of its shape, size and location. The developed method doesn’t need direct interpretation of overlaid and dispersed lamb wave components for damage identification and can monitor damage located anywhere in the structure. These bright advantages, qualify the above presented PDI method for online structural health monitoring.

  1. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration

    Directory of Open Access Journals (Sweden)

    Dmitry Solovei

    2015-01-01

    Full Text Available A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes’ coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed.

  2. Geochemical monitoring of thermal waters in Slovenia: relationships to seismic activity.

    Science.gov (United States)

    Zmazek, B; Italiano, F; Zivcić, M; Vaupotic, J; Kobal, I; Martinelli, G

    2002-12-01

    Thermally anomalous fluids released in seismic areas in Slovenia were the subjects of geochemical monitoring. Thermal waters were surveyed from the seismically active area of Posocje (Bled and Zatolmin; NW Slovenia) and from Rogaska Slatina in eastern Slovenia. Continuous monitoring of geochemical parameters (radon concentration, electrical conductivity, and water temperature) was performed with discrete gas sampling for their (3)He/(4)He ratio. The observed values were correlated with meteorological parameters (rainfall, barometric pressure and air temperature) and with seismic activity. Only a few earthquakes occurred in the vicinity of the measuring sites during the monitoring period. Nevertheless, changes in radon concentration, water temperature, electrical conductivity and helium isotopic ratio were detected at the three thermal springs in the periods preceding the earthquakes. A close correlation was also observed of both water temperature and electrical conductivity with the Earth tide, making the observations in the selected sites a promising tool for addressing the widely debated question of earthquake prediction.

  3. Influence of social connectedness, communication and monitoring on adolescent sexual activity in Ghana.

    Science.gov (United States)

    Kumi-Kyereme, Akwasi; Awusabo-Asare, Kofi; Biddlecom, Ann; Tanle, Augustine

    2007-12-01

    This paper examines connectedness to, communication with and monitoring of unmarried adolescents in Ghana by parents, other adults, friends and key social institutions and the roles these groups play with respect to adolescent sexual activity. The paper draws on 2004 nationally-representative survey data and qualitative evidence from focus group discussions and in-depth interviews with adolescents in 2003. Adolescents show high levels of connectedness to family, adults, friends, school and religious groups. High levels of adult monitoring are also observed, but communication with family about sex-related matters was not as high as with non-family members. The qualitative data highlight gender differences in communication. Multivariate analysis of survey data shows a strong negative relationship between parental monitoring and recent sexual activity for males and females, and limited effects of communication. Creating a supportive environment and showing interest in the welfare of adolescents appear to promote positive sexual and reproductive health outcomes.

  4. Pattern of active and inactive sequences of diabetes self-monitoring in mobile phone and paper diary users.

    Science.gov (United States)

    Padhye, Nikhil S; Jing Wang

    2015-01-01

    In a pilot randomized controlled trial involving overweight or obese participants with type 2 diabetes, we find that smartphone users have sharply higher adherence to self-monitoring of diet, physical activity, blood glucose, and body weight, as compared to paper diary users. By characterizing the pattern of adherence with the probability of continuation of active and inactive sequences of self-monitoring, we find that smartphone users have longer active sequences of self-monitoring of all four behaviors that were being monitored. Smartphone users are also quicker to resume self-monitoring of diet and physical activity after a lapse in self-monitoring, whereas paper diary users have shorter inactive sequences for monitoring blood glucose and body weight. The findings are informative for data collection methodology in this burgeoning area of research.

  5. In-plane shear piezoelectric wafer active sensor phased arrays for structural health monitoring

    Science.gov (United States)

    Wang, Wentao; Zhou, Wensong; Wang, Peng; Wang, Chonghe; Li, Hui

    2016-04-01

    This paper proposes a new way for guided wave structural health monitoring using in-plane shear (d36 type) piezoelectric wafer active sensors phased arrays. Conventional piezoelectric wafer active sensors phased arrays based on inducing into specific Lamb wave modes (d31 type) has already widely used for health monitoring of the thin-wall structures. Rather than Lamb wave modes, the in-plane shear piezoelectric wafer active sensors phased arrays induces in-plane shear horizontal (SH) guided waves. The SH guided waves are distinct with the Lamb waves with simple waveform and less additional converted wave modes and the zero symmetric mode (SH0) is non-dispersive. In this paper, the advantage of the shear horizontal wave and the in-plane shear piezoelectric wafers capability to generate SH waves is first reviewed. Then finite element analysis of a 4-in-plane shear wafer active sensors phased array embedded on a rectangular aluminium plate is performed. In addition, numerical simulations with respect to creaks with different sizes as well as locations are implemented by the in-plane shear wafer active sensors phased array. For comparison purposes, the same numerical simulations using the conventional piezoelectric wafer active sensors phased arrays are also employed at the same time. Results indicate that the in-plane shear (d36 type) piezoelectric wafer active sensors phased arrays has the potential to identify damage location and assess damage severity in structural health monitoring.

  6. Quantitative impedimetric NPY-receptor activation monitoring and signal pathway profiling in living cells.

    Science.gov (United States)

    te Kamp, Verena; Lindner, Ricco; Jahnke, Heinz-Georg; Krinke, Dana; Kostelnik, Katja B; Beck-Sickinger, Annette G; Robitzki, Andrea A

    2015-05-15

    Label-free and non-invasive monitoring of receptor activation and identification of the involved signal pathways in living cells is an ongoing analytic challenge and a great opportunity for biosensoric systems. In this context, we developed an impedance spectroscopy-based system for the activation monitoring of NPY-receptors in living cells. Using an optimized interdigital electrode array for sensitive detection of cellular alterations, we were able for the first time to quantitatively detect the NPY-receptor activation directly without a secondary or enhancer reaction like cAMP-stimulation by forskolin. More strikingly, we could show that the impedimetric based NPY-receptor activation monitoring is not restricted to the Y1-receptor but also possible for the Y2- and Y5-receptor. Furthermore, we could monitor the NPY-receptor activation in different cell lines that natively express NPY-receptors and proof the specificity of the observed impedimetric effect by agonist/antagonist studies in recombinant NPY-receptor expressing cell lines. To clarify the nature of the observed impedimetric effect we performed an equivalent circuit analysis as well as analyzed the role of cell morphology and receptor internalization. Finally, an antagonist based extensive molecular signal pathway analysis revealed small alterations of the actin cytoskeleton as well as the inhibition of at least L-type calcium channels as major reasons for the observed NPY-induced impedance increase. Taken together, our novel impedance spectroscopy based NPY-receptor activation monitoring system offers the opportunity to identify signal pathways as well as for novel versatile agonist/antagonist screening systems for identification of novel therapeutics in the field of obesity and cancer.

  7. Activity Learning as a Foundation for Security Monitoring in Smart Homes.

    Science.gov (United States)

    Dahmen, Jessamyn; Thomas, Brian L; Cook, Diane J; Wang, Xiaobo

    2017-03-31

    Smart environment technology has matured to the point where it is regularly used in everyday homes as well as research labs. With this maturation of the technology, we can consider using smart homes as a practical mechanism for improving home security. In this paper, we introduce an activity-aware approach to security monitoring and threat detection in smart homes. We describe our approach using the CASAS smart home framework and activity learning algorithms. By monitoring for activity-based anomalies we can detect possible threats and take appropriate action. We evaluate our proposed method using data collected in CASAS smart homes and demonstrate the partnership between activity-aware smart homes and biometric devices in the context of the CASAS on-campus smart apartment testbed.

  8. Accelerometry-based monitoring of daily physical activity in children with juvenile idiopathic arthritis

    DEFF Research Database (Denmark)

    Nørgaard, M; Twilt, M; Andersen, L B

    2015-01-01

    Objectives: Juvenile idiopathic arthritis (JIA) may cause functional impairment, reduced participation in physical activity (PA) and, over time, physical deconditioning. The aim of this study was to objectively monitor daily free-living PA in 10-16-year-old children with JIA using accelerometry...... with regard to disease activity and physical variables and to compare the data with those from healthy age- and gender-matched controls.Method: Patients underwent an evaluation of disease activity, functional ability, physical capacity, and pain. Accelerometer monitoring was assessed using the GT1M Acti...... range of motion (ROM). No correlation was found between PA and pain scores, functional ability, and hypermobility. Patients with involvement of ankles or hips demonstrated significantly lower levels of PA.Conclusions: Children with JIA are less physically active and have lower physical capacity...

  9. Monitoring the activity variations of galactic X-ray sources with WATCH on EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, N.

    1995-01-01

    sources the observation periods extended over more than 100 days. A number of X-ray transients with durations between one and five days were discovered, and, additionally two long duration X-ray transients (GRS 1915+10 and GRO J0422+32) were active and could be monitored. Towards the end of the mission...

  10. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Active monitoring of conduct and evaluation of clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE INVESTIGATIONAL NEW DRUG APPLICATION Drugs Intended to Treat Life-threatening...

  11. Eliciting caregivers’ needs for remote activity monitoring in early dementia at home

    NARCIS (Netherlands)

    Boerema, S.T.; Brul, M.; Willems, C.; Hermens, H.J.

    2013-01-01

    INTRODUCTION: With an increasing prevalence of dementia in the Netherlands from 235.000 in 2008 (1 per 70 inhabitants) up to an estimated 500.000 in 2050 (1 per 34 inhabitants), assisting technologies are needed to support care delivery in the home environment. Remote activity monitoring systems sho

  12. IDEA Fiscal Monitoring and Support Activities 2011-2012 Quick Reference Document

    Science.gov (United States)

    Regional Resource Center Program, 2011

    2011-01-01

    This Quick Reference Document is being distributed by the Regional Resource Center Program ARRA/Fiscal Priority Team to provide RRCP state liaisons and other (Technical Assistance) TA providers with a summary of critical fiscal monitoring and support activities they may be involved in during calendar years 2011 and 2012. Like other documents in…

  13. Employing Magnetic Levitation to Monitor Reaction Kinetics and Measure Activation Energy

    Science.gov (United States)

    Benz, Lauren; Cesafsky, Karen E.; Le, Tran; Park, Aileen; Malicky, David

    2012-01-01

    This article describes a simple and inexpensive undergraduate-level kinetics experiment that uses magnetic levitation to monitor the progress and determine the activation energy of a condensation reaction on a polymeric solid support. The method employs a cuvette filled with a paramagnetic solution positioned between two strong magnets. The…

  14. Exercise Therapy for Management of Type 2 Diabetes Mellitus: Superior Efficacy of Activity Monitors over Pedometers

    Science.gov (United States)

    Umezono, Tomoya; Fukagawa, Masafumi

    2016-01-01

    We compared the efficacy of activity monitor (which displays exercise intensity and number of steps) versus that of pedometer in exercise therapy for patients with type 2 diabetes. The study subjects were divided into the activity monitor group (n = 92) and pedometer group (n = 95). The primary goal was improvement in hemoglobin A1c (HbA1c). The exercise target was set at 8,000 steps/day and 20 minutes of moderate-intensity exercise (≥3.5 metabolic equivalents). The activity monitor is equipped with a triple-axis accelerometer sensor capable of measuring medium-intensity walking duration, number of steps, walking distance, calorie consumption, and total calorie consumption. The pedometer counts the number of steps. Blood samples for laboratory tests were obtained during the visits. The first examination was conducted at the start of the study and repeated at 2 and 6 months. A significant difference in the decrease in HbA1c level was observed between the two groups at 2 months. The results suggest that the use of activity level monitor that displays information on exercise intensity, in addition to the number of steps, is useful in exercise therapy as it enhances the concept of exercise therapy and promotes lowering of HbA1c in diabetic patients. PMID:27761471

  15. Exercise Therapy for Management of Type 2 Diabetes Mellitus: Superior Efficacy of Activity Monitors over Pedometers

    Directory of Open Access Journals (Sweden)

    Masaaki Miyauchi

    2016-01-01

    Full Text Available We compared the efficacy of activity monitor (which displays exercise intensity and number of steps versus that of pedometer in exercise therapy for patients with type 2 diabetes. The study subjects were divided into the activity monitor group (n=92 and pedometer group (n=95. The primary goal was improvement in hemoglobin A1c (HbA1c. The exercise target was set at 8,000 steps/day and 20 minutes of moderate-intensity exercise (≥3.5 metabolic equivalents. The activity monitor is equipped with a triple-axis accelerometer sensor capable of measuring medium-intensity walking duration, number of steps, walking distance, calorie consumption, and total calorie consumption. The pedometer counts the number of steps. Blood samples for laboratory tests were obtained during the visits. The first examination was conducted at the start of the study and repeated at 2 and 6 months. A significant difference in the decrease in HbA1c level was observed between the two groups at 2 months. The results suggest that the use of activity level monitor that displays information on exercise intensity, in addition to the number of steps, is useful in exercise therapy as it enhances the concept of exercise therapy and promotes lowering of HbA1c in diabetic patients.

  16. OLAM: A wearable, non-contact sensor for continuous heart-rate and activity monitoring.

    Science.gov (United States)

    Albright, Ryan K; Goska, Benjamin J; Hagen, Tory M; Chi, Mike Y; Cauwenberghs, G; Chiang, Patrick Y

    2011-01-01

    A wearable, multi-modal sensor is presented that can non-invasively monitor a patient's activity level and heart function concurrently for more than a week. The 4 in(2) sensor incorporates both a non-contact heartrate sensor and a 5-axis inertial measurement unit (IMU), allowing simultaneous heart, respiration, and movement monitoring without requiring physical contact with the skin [1]. Hence, this Oregon State University Life and Activity Monitor (OLAM) provides the unique opportunity to combine motion data with heart-rate information, enabling assessment of actual physical activity beyond conventional movement sensors. OLAM also provides a unique platform for non-contact sensing, enabling the filtering of movement artifacts generated by the non-contact capacitive interface, using the IMU data as a movement noise channel. Intended to be used in clinical trials for weeks at a time with no physician intervention, the OLAM allows continuous non-invasive monitoring of patients, providing the opportunity for long-term observation into a patient's physical activity and subtle longitudinal changes.

  17. Quality assurance project plan for ground water monitoring activities managed by Westinghouse Hanford Company. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, M.

    1995-11-01

    This quality assurance project plan (QAPP) applies specifically to the field activities and laboratory analysis performed for all RCRA groundwater projects conducted by Hanford Technical Services. This QAPP is generic in approach and shall be implemented in conjunction with the specific requirements of individual groundwater monitoring plans.

  18. Employing Magnetic Levitation to Monitor Reaction Kinetics and Measure Activation Energy

    Science.gov (United States)

    Benz, Lauren; Cesafsky, Karen E.; Le, Tran; Park, Aileen; Malicky, David

    2012-01-01

    This article describes a simple and inexpensive undergraduate-level kinetics experiment that uses magnetic levitation to monitor the progress and determine the activation energy of a condensation reaction on a polymeric solid support. The method employs a cuvette filled with a paramagnetic solution positioned between two strong magnets. The…

  19. Physical Activity Monitoring: Gadgets and Uses. Article #6 in a 6-Part Series

    Science.gov (United States)

    Mears, Derrick

    2010-01-01

    An early 15th century drawing by Leonardo da Vinci depicted a device that used gears and a pendulum that moved in synchronization with the wearer as he or she walked. This is believed to be the early origins of today's physical activity monitoring devices. Today's devices have vastly expanded on da Vinci's ancient concept with a myriad of options…

  20. Interrupt-Based Step-Counting to Extend Battery Life in an Activity Monitor

    Directory of Open Access Journals (Sweden)

    Seung Young Kim

    2016-01-01

    Full Text Available Most activity monitors use an accelerometer and gyroscope sensors to characterize the wearer’s physical activity. The monitor measures the motion by polling an accelerometer or gyroscope sensor or both every 20–30 ms and frequent polling affects the battery life of a wearable device. One of the key features of a commercial daily-activity monitoring device is longer battery life so that the user can keep track of his or her activity for a week or so without recharging the battery of the monitoring device. Many low-power approaches for a step-counting system use either a polling-based algorithm or an interrupt-based algorithm. In this paper, we propose a novel approach that uses the tap interrupt of an accelerometer to count steps while consuming low power. We compared the accuracy of step counting and measured system-level power consumption to a periodic sensor-reading algorithm. Our tap interrupt approach shows a battery lifetime that is 175% longer than that of a 30 ms polling method without gyroscope. The battery lifetime can be extended up to 863% with a gyroscope by putting both the processor and the gyroscope into sleep state during the majority of operation time.

  1. Wearable systems for monitoring mobility-related activities in older people : a systematic review

    NARCIS (Netherlands)

    de Bruin, Eling D.; Hartmann, Antonia; Uebelhart, Daniel; Murer, Kurt; Zijlstra, Wiebren

    2008-01-01

    Objective: The use of wearable motion-sensing technology offers important advantages over conventional methods for obtaining measures of physical activity and/or physical functioning in aged individuals. This review aims to identify the actual state of applying wearable systems for monitoring mobili

  2. High-throughput metabarcoding of eukaryotic diversity for environmental monitoring of offshore oil-drilling activities.

    Science.gov (United States)

    Lanzén, Anders; Lekang, Katrine; Jonassen, Inge; Thompson, Eric M; Troedsson, Christofer

    2016-09-01

    As global exploitation of available resources increases, operations extend towards sensitive and previously protected ecosystems. It is important to monitor such areas in order to detect, understand and remediate environmental responses to stressors. The natural heterogeneity and complexity of communities means that accurate monitoring requires high resolution, both temporally and spatially, as well as more complete assessments of taxa. Increased resolution and taxonomic coverage is economically challenging using current microscopy-based monitoring practices. Alternatively, DNA sequencing-based methods have been suggested for cost-efficient monitoring, offering additional insights into ecosystem function and disturbance. Here, we applied DNA metabarcoding of eukaryotic communities in marine sediments, in areas of offshore drilling on the Norwegian continental shelf. Forty-five samples, collected from seven drilling sites in the Troll/Oseberg region, were assessed, using the small subunit ribosomal RNA gene as a taxonomic marker. In agreement with results based on classical morphology-based monitoring, we were able to identify changes in sediment communities surrounding oil platforms. In addition to overall changes in community structure, we identified several potential indicator taxa, responding to pollutants associated with drilling fluids. These included the metazoan orders Macrodasyida, Macrostomida and Ceriantharia, as well as several ciliates and other protist taxa, typically not targeted by environmental monitoring programmes. Analysis of a co-occurrence network to study the distribution of taxa across samples provided a framework for better understanding the impact of anthropogenic activities on the benthic food web, generating novel, testable hypotheses of trophic interactions structuring benthic communities.

  3. Activity Concentration Monitoring for Alpha Radioactive Aerosol in CRARL after Reprocessing Experiments

    Institute of Scientific and Technical Information of China (English)

    WANG; Xiang-li; LIU; Ning; WANG; Xiao-rong; BAI; Yang; JIAO; Xiao-yan; XU; Xin; MA; Hao-ran

    2015-01-01

    The activity concentration for alpha radioactive aerosol in CRARL after reprocessing experiments was analyzed.Through the decay method of activity concentration monitoring,the processed result shows the background is 3.05×10-3 s-1,σ(0)=2.25×10-3,LC=2.33×10-3 Bq/m3,LD=4.66×10-3 Bq/m3.The result indicated

  4. Human Daily Activities Indexing in Videos from Wearable Cameras for Monitoring of Patients with Dementia Diseases

    CERN Document Server

    Karaman, Svebor; Mégret, Rémi; Dovgalecs, Vladislavs; Dartigues, Jean-François; Gaëstel, Yann

    2010-01-01

    Our research focuses on analysing human activities according to a known behaviorist scenario, in case of noisy and high dimensional collected data. The data come from the monitoring of patients with dementia diseases by wearable cameras. We define a structural model of video recordings based on a Hidden Markov Model. New spatio-temporal features, color features and localization features are proposed as observations. First results in recognition of activities are promising.

  5. Wearable Systems for Monitoring Mobility-Related Activities in Chronic Disease: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Eling D. de Bruin

    2010-10-01

    Full Text Available The use of wearable motion sensing technology offers important advantages over conventional methods for obtaining measures of physical activity and/or physical functioning in individuals with chronic diseases. This review aims to identify the actual state of applying wearable systems for monitoring mobility-related activity in individuals with chronic disease conditions. In this review we focus on technologies and applications, feasibility and adherence aspects, and clinical relevance of wearable motion sensing technology. PubMed (Medline since 1990, PEdro, and reference lists of all relevant articles were searched. Two authors independently reviewed randomised trials systematically. The quality of selected articles was scored and study results were summarised and discussed. 163 abstracts were considered. After application of inclusion criteria and full text reading, 25 articles were taken into account in a full text review. Twelve of these papers evaluated walking with pedometers, seven used uniaxial accelerometers to assess physical activity, six used multiaxial accelerometers, and two papers used a combination approach of a pedometer and a multiaxial accelerometer for obtaining overall activity and energy expenditure measures. Seven studies mentioned feasibility and/or adherence aspects. The number of studies that use movement sensors for monitoring of activity patterns in chronic disease (postural transitions, time spent in certain positions or activities is nonexistent on the RCT level of study design. Although feasible methods for monitoring human mobility are available, evidence-based clinical applications of these methods in individuals with chronic diseases are in need of further development.

  6. Considerations when using the activPAL monitor in field-based research with adult populations

    Institute of Scientific and Technical Information of China (English)

    Charlotte L. Edwardson; Elisabeth A.H. Winkler; Danielle H. Bodicoat; Tom Yates; Melanie J. Davies; David W. Dunstan; Genevieve N. Healy

    2017-01-01

    Research indicates that high levels of sedentary behavior (sitting or lying with low energy expenditure) are adversely associated with health. A key factor in improving our understanding of the impact of sedentary behavior (and patterns of sedentary time accumulation) on health is the use of objective measurement tools that collect date and time-stamped activity information. One such tool is the activPAL monitor. This thigh-worn device uses accelerometer-derived information about thigh position to determine the start and end of each period spent sitting/lying, standing, and stepping, as well as stepping speed, step counts, and postural transitions. The activPAL is increasingly being used within field-based research for its ability to measure sitting/lying via posture. We summarise key issues to consider when using the activPAL in physical activity and sedentary behavior field-based research with adult populations. It is intended that the findings and discussion points be informative for researchers who are currently using activPAL monitors or are intending to use them. Pre-data collection decisions, monitor preparation and distribution, data collection considerations, and manual and automated data processing possibilities are presented using examples from current literature and experiences from 2 research groups from the UK and Australia.

  7. Response of thunderstorm activity in data of neutron monitoring at Tien Shan

    Science.gov (United States)

    Antonova, Valentina; Kryukov, Sergey; Lutsenko, Vadim

    2015-04-01

    We present results of the study of data of the monitoring of high-energy and thermal neutrons at Tien Shan at different stages of thunderstorm activity. The data of the neutron monitoring were used taking into account the barometric effect. The intensity of the neutron component of cosmic rays is recorded in seven energy ranges. The electric field has values of ~ 100 V/m under fair weather conditions. Standard deviation of minute values of the neutron monitor data at the high altitude station does not exceed 0.5-0.6 %. Found that the standard deviation of the data during thunderstorms always exceeds these values. We selected events during the passage of thunderstorm clouds over the high altitude station without lightning discharges or with a small number of them. It was found that the particle rate of the neutron monitor changes in antiphase with the electric field changes. Atmospheric electric field of positive polarity decreases the count rate of the neutron monitor, and negative polarity - increases. Change of the count rate occurs at values of electric field ≥ 10-15 kV/m and reaches 2 %. The neutron monitor at the high-altitude station has the ability to measure the energy of recorded particles through determination of their multiplicity. We experimentally established that the sensitivity of the detected particles to change in Ez increases with decreasing their energy. The upper energy threshold of sensitivity of neutrons to change electric field is ~10 GeV. The physical mechanism of effect is based on lead nucleus capture of soft negative muons with the subsequent generation of neutrons. It is known that 7% of the neutron monitor count rate caused by negative muons. Absence of this effect in thermal neutrons data confirms the conclusion since the main difference of the thermal neutrons detector from the neutron monitor is the absence of the lead. In the active phase of a thunderstorm in the formed thundercloud the picture of distribution of charges is

  8. Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review

    Science.gov (United States)

    Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart JH; Esliger, Dale W

    2016-01-01

    Background It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. Objective The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. Methods To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. Results The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time

  9. Nanoreactors for simultaneous remote thermal activation and optical monitoring of chemical reactions.

    Science.gov (United States)

    Vázquez-Vázquez, Carmen; Vaz, Belén; Giannini, Vincenzo; Pérez-Lorenzo, Moisés; Alvarez-Puebla, Ramon A; Correa-Duarte, Miguel A

    2013-09-18

    We report herein the design of plasmonic hollow nanoreactors capable of concentrating light at the nanometer scale for the simultaneous performance and optical monitoring of thermally activated reactions. These reactors feature the encapsulation of plasmonic nanoparticles on the inner walls of a mesoporous silica capsule. A Diels-Alder cycloaddition reaction was carried out in the inner cavities of these nanoreactors to evidence their efficacy. Thus, it is demonstrated that reactions can be accomplished in a confined volume without alteration of the temperature of the bulk solvent while allowing real-time monitoring of the reaction progress.

  10. Monitoring activities of daily living based on wearable wireless body sensor network.

    Science.gov (United States)

    Kańtoch, E; Augustyniak, P; Markiewicz, M; Prusak, D

    2014-01-01

    With recent advances in microprocessor chip technology, wireless communication, and biomedical engineering it is possible to develop miniaturized ubiquitous health monitoring devices that are capable of recording physiological and movement signals during daily life activities. The aim of the research is to implement and test the prototype of health monitoring system. The system consists of the body central unit with Bluetooth module and wearable sensors: the custom-designed ECG sensor, the temperature sensor, the skin humidity sensor and accelerometers placed on the human body or integrated with clothes and a network gateway to forward data to a remote medical server. The system includes custom-designed transmission protocol and remote web-based graphical user interface for remote real time data analysis. Experimental results for a group of humans who performed various activities (eg. working, running, etc.) showed maximum 5% absolute error compared to certified medical devices. The results are promising and indicate that developed wireless wearable monitoring system faces challenges of multi-sensor human health monitoring during performing daily activities and opens new opportunities in developing novel healthcare services.

  11. Interest of Monitoring Diaphragmatic Electrical Activity in the Pediatric Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Laurence Ducharme-Crevier

    2013-01-01

    Full Text Available The monitoring of electrical activity of the diaphragm (EAdi is a new minimally invasive bedside technology that was developed for the neurally adjusted ventilatory assist (NAVA mode of ventilation. In addition to its role in NAVA ventilation, this technology provides the clinician with previously unavailable and essential information on diaphragm activity. In this paper, we review the clinical interests of EAdi in the pediatric intensive care setting. Firstly, the monitoring of EAdi allows the clinician to tailor the ventilatory settings on an individual basis, avoiding frequent overassistance leading potentially to diaphragmatic atrophy. Increased inspiratory EAdi levels can also suggest insufficient support, while a strong tonic activity may reflect the patient efforts to increase its lung volume. EAdi monitoring also allows detection of patient-ventilator asynchrony. It can play a role in evaluation of extubation readiness. Finally, EAdi monitoring provides the clinician with better understanding of the ventilatory capacity of patients with acute neuromuscular disease. Further studies are warranted to evaluate the clinical impact of these potential benefits.

  12. THORON-SCOUT - first diffusion based active Radon and Thoron monitor

    Science.gov (United States)

    Wagner, W.; Streil, T.; Oeser, V.; Horak, G.; Duzynski, M.

    2016-10-01

    THORON-SCOUT is a stand-alone diffusion based active Radon and Thoron monitor for long term indoor measurements to evaluate the human health risk due to activity concentration in the breathing air. Alpha-particle spectroscopy of Po isotopes, being the progeny of the decay of the radioactive noble gas Radon, is applied to separately monitor activity contributions of 222Rn and 220Rn (Thoron) as well. In this work we show that the portion of Thoron (Tn) may locally be remarkable and even dominating and cannot be neglected as often has been assumed up to now. Along with tobacco consumption, Rn radioactivity turned out to be a dangerous cause of lung cancer, especially in older badly vented buildings situated in regions of radioactive geological formations. THORON-SCOUT allows a precise examination of the indoor atmosphere with respect to Rn and Inactivity concentration and, therefore, a realistic evaluation of corresponding health risk.

  13. Consecutive monitoring of faecal calprotectin during mesalazine suppository therapy for active rectal inflammation in ulcerative colitis.

    Science.gov (United States)

    Yamamoto, T; Shimoyama, T; Matsumoto, K

    2015-09-01

    No studies have monitored the levels of faecal calprotectin (FC) during mesalazine suppository therapy for proctitis in ulcerative colitis (UC). To evaluate the value of consecutive monitoring of FC in patients with UC during mesalazine suppository therapy. One hundred and sixty patients with active inflammation limited to the rectum were treated with mesalazine 1 g suppository once daily for 8 weeks. Patients who achieved clinical remission were advised to maintain the treatment, and were followed up for further 40 weeks. FC levels were measured every 8 weeks during the study. At week 8, 118 patients (74%) went into clinical remission, of whom 88 achieved endoscopic healing. The median FC level significantly decreased in patients with clinical and endoscopic remission (both P suppositories. Serial monitoring of faecal calprotectin appears to be valuable for the prediction and early diagnosis of relapse during maintenance therapy. © 2015 John Wiley & Sons Ltd.

  14. Continuous monitoring of functional activities using wearable, wireless gyroscope and accelerometer technology.

    Science.gov (United States)

    Wagenaar, Robert C; Sapir, Inbal; Zhang, Yuting; Markovic, Stacey; Vaina, Lucia M; Little, Thomas D C

    2011-01-01

    The development of functional activity monitors (FAMs) will allow rehabilitation researchers and clinicians to evaluate treatment efficacy, to monitor compliance to exercise instructions, and to provide real time feedback in the treatment of movement disorders during the performance of daily activities. The purpose of the present study was to develop and test a small sized wearable FAM system comprised of three sensors positioned on the sternum and both thighs, wireless Bluetooth transmission capability to a smartphone, and computationally efficient activity detection algorithms for the accurate detection of functional activities. Each sensor was composed of a tri-axial accelerometer and a tri-axial gyroscope. Computationally efficient activity recognition algorithms were developed, using a sliding window of 1 second, the variability of the tilt angle time series and power spectral analysis. In addition, it includes a decision tree that identifies postures such as sitting, standing and lying, walking at comfortable, slow and fast speeds, transitions between these functional activities (e.g, sit-to-stand and stand-to-sit), activity duration and step frequency. In a research lab setting the output of the FAM system, video recordings and a 3D motion analysis system were compared in 10 healthy young adults. The results show that the agreement between the FAM system and the video recordings ranged from 98.10% to 100% for all postures, transfers and walking periods. There were no significant differences in activity durations and step frequency between measurement instruments.

  15. ELISPOT Assay for Monitoring Cytotoxic T Lymphocytes (CTL Activity in Cancer Vaccine Clinical Trials

    Directory of Open Access Journals (Sweden)

    Thomas J. Sayers

    2012-05-01

    Full Text Available The profiling and monitoring of immune responses are key elements in the evaluation of the efficacy and development of new biotherapies, and a number of assays have been introduced for analyzing various immune parameters before, during, and after immunotherapy. The choice of immune assays for a given clinical trial depends on the known or suggested immunomodulating mechanisms associated with the tested therapeutic modality. Cell-mediated cytotoxicity represents a key mechanism in the immune response to various pathogens and tumors. Therefore, the selection of monitoring methods for the appropriate assessment of cell-mediated cytotoxicity is thought to be crucial. Assays that can detect both cytotoxic T lymphocytes (CTL frequency and function, such as the IFN-γ enzyme-linked immunospot assay (ELISPOT have gained increasing popularity for monitoring clinical trials and in basic research. Results from various clinical trials, including peptide and whole tumor cell vaccination and cytokine treatment, have shown the suitability of the IFN-γ ELISPOT assay for monitoring T cell responses. However, the Granzyme B ELISPOT assay and Perforin ELISPOT assay may represent a more direct analysis of cell-mediated cytotoxicity as compared to the IFN-γ ELISPOT, since Granzyme B and perforin are the key mediators of target cell death via the granule-mediated pathway. In this review we analyze our own data and the data reported by others with regard to the application of various modifications of ELISPOT assays for monitoring CTL activity in clinical vaccine trials.

  16. Studies of a proton phase beam monitor for range verification in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Werner, T.; Golnik, C.; Enghardt, W.; Petzoldt, J.; Kormoll, T.; Pausch, G. [Technische Universitaet Dresden, OncoRay, PF 41, 01307 Dresden, (Germany); Straessner, A. [Technische Universitaet Dresden, Institute for Nuclear and Particle Physics, Zellescher Weg 19, 01069 Dresden, (Germany); Roemer, K.; Dreyer, A.; Hueso-Gonzalez, F.; Enghardt, W. [Helmholtz-Zentrum Dresden-Rossendorf, PF 510 119, 01314 Dresden, (Germany)

    2015-07-01

    A primary subject of the present research in particle therapy is to ensure the precise irradiation of the target volume. The prompt gamma timing (PGT) method provides one possibility for in vivo range verification during the irradiation of patients. Prompt gamma rays with high energies are emitted promptly due to nuclear reactions of protons with tissue. The arrival time of these gammas to the detector reflects the stopping process of the primary protons in tissue and are directly correlated to the range. Due to the time resolution of the detector and the proton bunch time spread, as well as drifts of the bunch phase with respect to the accelerator frequency, timing spectra are smeared out and compromise the accuracy of range information intended for future clinical applications. Nevertheless, counteracting this limitation and recovering range information from the PGT measured spectra, corrections using a phase beam monitor can be performed. A first prototype of phase beam monitor was tested at GSI Darmstadt, where measurements of the energy profile of the ion bunches were performed. At the ELBE accelerator Helmholtz-Zentrum Dresden-Rossendorf (HZDR), set up to provide bremsstrahlung photons in very short pulses, a constant fraction algorithm for the incoming digital signals was evaluated, which is used for optimizing the time resolution. Studies of scattering experiments with different thin targets and detector positions are accomplished at Oncoray Dresden, where a clinical proton beam is available. These experiments allow a basic characterization of the proton bunch structure and the detection yield. (authors)

  17. Studies of a Proton Bunch Phase Monitor for Range Verification in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Werner, T.; Golnik, C.; Enghardt, W.; Petzoldt, J.; Kormoll, T.; Pausch, G. [Technische Universitaet Dresden, OncoRay, PF 41, 01307 Dresden (Germany); Straessner, A. [Technische Universitaet Dresden, Institute for Nuclear and Particle Physics, Zellescher Weg 19, 01069 Dresden (Germany); Roemer, K.; Dreyer, A.; Hueso-Gonzalez, F.; Enghardt, W. [Helmholtz-Zentrum Dresden-Rossendorf, PF 510 119, 01314 Dresden (Germany)

    2015-07-01

    A primary subject of the present research in particle therapy is to ensure the precise irradiation of the target volume. The prompt gamma timing (PGT) method provides one possibility for in vivo range verification during the irradiation of patients. Prompt gamma rays with high energies are emitted promptly due to nuclear reactions of protons with tissue. The arrival time of these gammas to the detector reflects the stopping process of the primary protons in tissue and is directly correlated to the range. Due to the time resolution of the detector and the proton bunch time spread, as well as drifts of the bunch phase with respect to the accelerator frequency, timing spectra are smeared out and compromise the accuracy of range information intended for future clinical applications. Nevertheless, counteracting this limitation and recovering range information from the PGT measured spectra, corrections using a bunch phase monitor can be performed. A first prototype of bunch phase monitor was tested at GSI Darmstadt, where measurements of the energy correlation profile of the ion bunches were performed. At the ELBE accelerator at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), set up to provide bremsstrahlung photons in very short pulses, a constant fraction algorithm for the incoming digital signals was evaluated, which is used for optimizing the time resolution. Studies of scattering experiments with different thin targets and detector positions are accomplished at Onco Ray Dresden, where a clinical proton beam is available. These experiments allow a basic characterization of the proton bunch structure and the detection yield. (authors)

  18. Automated swimming activity monitor for examining temporal patterns of toxicant effects on individual Daphnia magna.

    Science.gov (United States)

    Bahrndorff, Simon; Michaelsen, Thomas Yssing; Jensen, Anne; Marcussen, Laurits Faarup; Nielsen, Majken Elley; Roslev, Peter

    2016-07-01

    Aquatic pollutants are often biologically active at low concentrations and impact on biota in combination with other abiotic stressors. Traditional toxicity tests may not detect these effects, and there is a need for sensitive high-throughput methods for detecting sublethal effects. We have evaluated an automated infra-red (IR) light-based monitor for recording the swimming activity of Daphnia magna to establish temporal patterns of toxicant effects on an individual level. Activity was recorded for 48 h and the sensitivity of the monitor was evaluated by exposing D. magna to the reference chemicals K2 Cr2 O7 at 15, 20 and 25 °C and 2,4-dichlorophenol at 20 °C. Significant effects (P swimming activity remained unchanged for 48 h at sublethal concentrations of K2 Cr2 O7 whereas activity at 20 and 25 °C was more biphasic with decreases in activity occurring after 12-18 h. A similar biphasic pattern was observed after 2,4-dichlorophenol exposure at 20 °C. EC50 values for 2,4-dichlorophenol and K2 Cr2 O7 determined from automated recording of swimming activity showed increasing toxicity with time corresponding to decreases in EC50 of 0.03-0.07 mg l(-1) h(-1) . EC50 values determined after 48 h were comparable or lower than EC50 values based on visual inspection according to ISO 6341. The results demonstrated that the swimming activity monitor is capable of detecting sublethal behavioural effects that are toxicant and temperature dependent. The method allows EC values to be established at different time points and can serve as a high-throughput screening tool in toxicity testing. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Memory monitoring performance and PFC activity are associated with 5-HTTLPR genotype in older adults

    Science.gov (United States)

    Pacheco, Jennifer; Beevers, Christopher G.; McGeary, John E.; Schnyer, David M.

    2012-01-01

    Older adults show extensive variability in cognitive performance, including episodic memory. A portion of this variability could potentially be explained by genetic factors. Recent literature shows that the neurotransmitter serotonin plays an important role in memory processes, as enhancements of brain serotonin have led to memory improvement. Here, we have begun to explore genetic contributions to the performance and underlying brain activity associated with source memory monitoring. Using a source recognition memory task during fMRI scanning, this study offers evidence that older adults who carry a short allele (S-car) of the serotonin transporter linked polymorphic region (5-HTTLPR) in the SLC6A4 gene show specific deficits in source memory monitoring relative to older adults who are homozygous for the long allele (LL). These deficits are accompanied by less neural activity in regions of prefrontal cortex that have been shown to support accurate memory monitoring. Moreover, while the older adult LL group’s behavioral performance does not differ from younger adults, their brain activation reveals evidence of compensatory activation that likely supports their higher performance level. These results provide preliminary evidence that the long-allele homozygous profile is cognitively beneficial to older adults, particularly for memory functioning. PMID:22705442

  20. Mechanical and free living comparisons of four generations of the Actigraph activity monitor

    Directory of Open Access Journals (Sweden)

    Ried-Larsen Mathias

    2012-09-01

    Full Text Available Abstract Background More studies include multiple generations of the Actigraph activity monitor. So far no studies have compared the output including the newest generation and investigated the impact on the output of the activity monitor when enabling the low frequency extension (LFE option. The aims were to study the responses of four generations (AM7164, GT1M, GT3X and GT3X+ of the Actigraph activity monitor in a mechanical setup and a free living environment with and without enabling the LFE option. Methods The monitors were oscillated in a mechanical setup using two radii in the frequency range 0.25-3.0 Hz. Following the mechanical study a convenience sample (N = 20 wore three monitors (one AM7164 and two GT3X for 24 hours. Results The AM7164 differed from the newer generations across frequencies (p -1 were attenuated (p > 0.05 for differences between generations thus attenuated the difference in mean PA (p > 0.05 when the LFE option was enabled. However, it did not attenuate the difference in time spend in vigorous PA and it introduced a difference in time spend in moderate PA (+ 3.0 min (95% CI 0.4 to 5.6 between the generations. Conclusion We observed significant differences between the AM7164 and the newer Actigraph GT-generations (GT1M, GT3X and GT3X+ in a mechanical setup and in free-living. Enabling the LFE option attenuated the differences in mean PA completely, but induced a bias in the moderate PA intensities.

  1. An automatic continuous monitoring station for groundwater geochemistry at an active fault zone in SW Taiwan

    Science.gov (United States)

    Lai, Chun-Wei; Yang, Tsanyao F.; Fu, Ching-Chou; Hilton, David R.; Liu, Tsung-Kwei; Walia, Vivek; Lai, Tzu-Hua

    2015-04-01

    Previous studies have revealed that gas compositions of fluid samples collected from southwestern Taiwan where many hot springs and mud volcanoes are distributed along tectonic sutures show significant variation prior to and after some disaster seismic events. Such variations, including radon activity, CH4/CO2, CO2/3He and 3He/4He ratios of gas compositions, are considered to be precursors of earthquakes in this area. To validate the relationship between fluid compositions and local earthquakes, a continuous monitoring station has been established at Yun-Shui, which is an artesian well located at an active fault zone in SW Taiwan. It is equipped with a radon detector and a quadrupole mass spectrometer (QMS) for in-situ measurement of the dissolved gas composition. Data is telemetered to Taipei so we are able to monitor variations of gas composition in real time. Furthermore, we also installed a syringe pump apparatus for the retrieval and temporal analysis of helium (SPARTAH) at this station. From the SPARTAH samples, we can obtain detailed time series records of H-O isotopic compositions, DIC concentration and δ13C isotopic ratios, and anion concentration of the water samples at this station. After continuous monitoring for about one year, some anomalies occurred prior to some local earthquakes. It demonstrates that this automated system is feasible for long-term continuous seismo-geochemical research in this area. Keywords: monitoring; geochemistry; isotope; dissolved gases; pre-seismic signal.

  2. Engineering the development of systems for multisensory monitoring and activity interpretation

    Science.gov (United States)

    Gascueña, José Manuel; Castillo, José Carlos; Navarro, Elena; Fernández-Caballero, Antonio

    2014-04-01

    Multisensory monitoring and activity interpretation systems are being increasingly used as a suitable means to detect situations and make decisions in an intelligent manner. However, there is a lack of formalised processes that guide the stakeholders in their development. Most of the current proposals focus on the implementation and evaluation of low-level algorithms. In order to overcome this lack, a process called INT3-SDP that guides stakeholders in the development of systems capable of carrying out multisensory monitoring and INTerpretation of behaviours and situations for an INTelligent INTervention in complex and dynamic environments is described in this paper. In this work, it is described how INT3-SDP provides the analysts with the guidelines and models necessary for the description of the environment to be monitored and the sensors to be installed, as well as in the implementation of the software components that perform the monitoring and activity interpretation tasks. Moreover, a case study is also presented in order to illustrate how INT3-SDP is put into practice.

  3. Flexible piezoelectric nanogenerator in wearable self-powered active sensor for respiration and healthcare monitoring

    Science.gov (United States)

    Liu, Z.; Zhang, S.; Jin, Y. M.; Ouyang, H.; Zou, Y.; Wang, X. X.; Xie, L. X.; Li, Z.

    2017-06-01

    A wearable self-powered active sensor for respiration and healthcare monitoring was fabricated based on a flexible piezoelectric nanogenerator. An electrospinning poly(vinylidene fluoride) thin film on silicone substrate was polarized to fabricate the flexible nanogenerator and its electrical property was measured. When periodically stretched by a linear motor, the flexible piezoelectric nanogenerator generated an output open-circuit voltage and short-circuit current of up to 1.5 V and 400 nA, respectively. Through integration with an elastic bandage, a wearable self-powered sensor was fabricated and used to monitor human respiration, subtle muscle movement, and voice recognition. As respiration proceeded, the electrical output signals of the sensor corresponded to the signals measured by a physiological signal recording system with good reliability and feasibility. This self-powered, wearable active sensor has significant potential for applications in pulmonary function evaluation, respiratory monitoring, and detection of gesture and vocal cord vibration for the personal healthcare monitoring of disabled or paralyzed patients.

  4. Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body.

    Science.gov (United States)

    Arif, Muhammad; Kattan, Ahmed

    2015-01-01

    Monitoring physical activities by using wireless sensors is helpful for identifying postural orientation and movements in the real-life environment. A simple and robust method based on time domain features to identify the physical activities is proposed in this paper; it uses sensors placed on the subjects' wrist, chest and ankle. A feature set based on time domain characteristics of the acceleration signal recorded by acceleration sensors is proposed for the classification of twelve physical activities. Nine subjects performed twelve different types of physical activities, including sitting, standing, walking, running, cycling, Nordic walking, ascending stairs, descending stairs, vacuum cleaning, ironing clothes and jumping rope, and lying down (resting state). Their ages were 27.2 ± 3.3 years and their body mass index (BMI) is 25.11 ± 2.6 Kg/m2. Classification results demonstrated a high validity showing precision (a positive predictive value) and recall (sensitivity) of more than 95% for all physical activities. The overall classification accuracy for a combined feature set of three sensors is 98%. The proposed framework can be used to monitor the physical activities of a subject that can be very useful for the health professional to assess the physical activity of healthy individuals as well as patients.

  5. Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body.

    Directory of Open Access Journals (Sweden)

    Muhammad Arif

    Full Text Available Monitoring physical activities by using wireless sensors is helpful for identifying postural orientation and movements in the real-life environment. A simple and robust method based on time domain features to identify the physical activities is proposed in this paper; it uses sensors placed on the subjects' wrist, chest and ankle. A feature set based on time domain characteristics of the acceleration signal recorded by acceleration sensors is proposed for the classification of twelve physical activities. Nine subjects performed twelve different types of physical activities, including sitting, standing, walking, running, cycling, Nordic walking, ascending stairs, descending stairs, vacuum cleaning, ironing clothes and jumping rope, and lying down (resting state. Their ages were 27.2 ± 3.3 years and their body mass index (BMI is 25.11 ± 2.6 Kg/m2. Classification results demonstrated a high validity showing precision (a positive predictive value and recall (sensitivity of more than 95% for all physical activities. The overall classification accuracy for a combined feature set of three sensors is 98%. The proposed framework can be used to monitor the physical activities of a subject that can be very useful for the health professional to assess the physical activity of healthy individuals as well as patients.

  6. Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body

    Science.gov (United States)

    2015-01-01

    Monitoring physical activities by using wireless sensors is helpful for identifying postural orientation and movements in the real-life environment. A simple and robust method based on time domain features to identify the physical activities is proposed in this paper; it uses sensors placed on the subjects’ wrist, chest and ankle. A feature set based on time domain characteristics of the acceleration signal recorded by acceleration sensors is proposed for the classification of twelve physical activities. Nine subjects performed twelve different types of physical activities, including sitting, standing, walking, running, cycling, Nordic walking, ascending stairs, descending stairs, vacuum cleaning, ironing clothes and jumping rope, and lying down (resting state). Their ages were 27.2 ± 3.3 years and their body mass index (BMI) is 25.11 ± 2.6 Kg/m2. Classification results demonstrated a high validity showing precision (a positive predictive value) and recall (sensitivity) of more than 95% for all physical activities. The overall classification accuracy for a combined feature set of three sensors is 98%. The proposed framework can be used to monitor the physical activities of a subject that can be very useful for the health professional to assess the physical activity of healthy individuals as well as patients. PMID:26203909

  7. Development of a real time activity monitoring Android application utilizing SmartStep.

    Science.gov (United States)

    Hegde, Nagaraj; Melanson, Edward; Sazonov, Edward

    2016-08-01

    Footwear based activity monitoring systems are becoming popular in academic research as well as consumer industry segments. In our previous work, we had presented developmental aspects of an insole based activity and gait monitoring system-SmartStep, which is a socially acceptable, fully wireless and versatile insole. The present work describes the development of an Android application that captures the SmartStep data wirelessly over Bluetooth Low energy (BLE), computes features on the received data, runs activity classification algorithms and provides real time feedback. The development of activity classification methods was based on the the data from a human study involving 4 participants. Participants were asked to perform activities of sitting, standing, walking, and cycling while they wore SmartStep insole system. Multinomial Logistic Discrimination (MLD) was utilized in the development of machine learning model for activity prediction. The resulting classification model was implemented in an Android Smartphone. The Android application was benchmarked for power consumption and CPU loading. Leave one out cross validation resulted in average accuracy of 96.9% during model training phase. The Android application for real time activity classification was tested on a human subject wearing SmartStep resulting in testing accuracy of 95.4%.

  8. Active and passive electrical and seismic time-lapse monitoring of earthen embankments

    Science.gov (United States)

    Rittgers, Justin Bradley

    In this dissertation, I present research involving the application of active and passive geophysical data collection, data assimilation, and inverse modeling for the purpose of earthen embankment infrastructure assessment. Throughout the dissertation, I identify several data characteristics, and several challenges intrinsic to characterization and imaging of earthen embankments and anomalous seepage phenomena, from both a static and time-lapse geophysical monitoring perspective. I begin with the presentation of a field study conducted on a seeping earthen dam, involving static and independent inversions of active tomography data sets, and self-potential modeling of fluid flow within a confined aquifer. Additionally, I present results of active and passive time-lapse geophysical monitoring conducted during two meso-scale laboratory experiments involving the failure and self-healing of embankment filter materials via induced vertical cracking. Identified data signatures and trends, as well as 4D inversion results, are discussed as an underlying motivation for conducting subsequent research. Next, I present a new 4D acoustic emissions source localization algorithm that is applied to passive seismic monitoring data collected during a full-scale embankment failure test. Acoustic emissions localization results are then used to help spatially constrain 4D inversion of collocated self-potential monitoring data. I then turn to time-lapse joint inversion of active tomographic data sets applied to the characterization and monitoring of earthen embankments. Here, I develop a new technique for applying spatiotemporally varying structural joint inversion constraints. The new technique, referred to as Automatic Joint Constraints (AJC), is first demonstrated on a synthetic 2D joint model space, and is then applied to real geophysical monitoring data sets collected during a full-scale earthen embankment piping-failure test. Finally, I discuss some non-technical issues related to

  9. Using Activity Monitors to Measure Sit-to-Stand Transitions in Overweight/Obese Youth.

    Science.gov (United States)

    Mitchell, Tarrah; Borner, Kelsey; Finch, Jonathan; Kerr, Jacqueline; Carlson, Jordan A

    2017-08-01

    Reducing sedentary behavior has emerged as an important health intervention strategy. Although hip-worn, and more recently wrist-worn, accelerometers are commonly used for measuring physical activity and sedentary behavior, they may not provide accurate measures of postural changes. The current study examined the validity of commonly used hip- and wrist-worn accelerometer cut points and the thigh-worn activPAL activity monitor for measuring sit-to-stand transitions as compared with direct observation in youth with overweight and obesity. Nine children wore three activity monitors while being directly observed. The monitors included a hip- and wrist-worn ActiGraph and thigh-worn activPAL. The hip-worn ActiGraph was processed with the normal- and low-frequency filters and the inclinometer function. Cut points of ≤25 counts per 15-s epoch for the hip and ≤105 counts per 15-s epoch for the wrist were applied to the vertical axis to identify sit-to-stand transitions. Epoch-level absolute agreement, Bland-Altman plots, mixed-effects linear regression, and intraclass correlation coefficients (ICC) were investigated. The hip and wrist accelerometer cut points and the hip inclinometer function overestimated the number of hourly sit-to-stand transitions by approximately triple as compared with direct observation. ICC values between the ActiGraph methods and the direct observation were all Sit-to-stand transitions assessed from activPAL were within 17% of direct observation; ICC was 0.26. Despite the common use of the 100-count hip-worn accelerometer cut point for assessing sedentary time, these processing decisions should be used with caution for assessing sit-to-stand transitions. Future research should investigate other processing methods for ActiGraph data, and studies investigating postural changes should consider including devices such as activPAL.

  10. Effects of passive computer use time and non-computer work time on the performance of electronic activity monitoring.

    Science.gov (United States)

    Hwang, Yaw-Huei; Chen, Yen-Ting; Yeh, Jao-Yu; Liang, Huey-Wen

    2010-10-01

    This study aimed to examine the effects of passive and non-computer work time on the estimation of computer use times by electronic activity monitoring. A total of 20 subjects with computers were monitored for 3 h. Average relative error for total computer use time estimation was about 4%, given that non-computer work time was 20% of the 3-h monitored period. No significant impact of passive computer use time was found in this study. Non-computer work time of 40% or less is suggested as criteria for the application of electronic activity monitoring to ensure reliability in the physical work loading assessment. Statement of Relevance: This research studied the criteria of non-computer work time for the appropriate use of electronic activity monitoring to ensure reliability in the assessment of physical work loading. It is suggested that it should be set to 40% or less of the 3-h monitoring period.

  11. Comparison of Raw Acceleration from the GENEA and ActiGraph™ GT3X+ Activity Monitors

    Directory of Open Access Journals (Sweden)

    Dinesh John

    2013-10-01

    Full Text Available Purpose: To compare raw acceleration output of the ActiGraph™ GT3X+ and GENEA activity monitors. Methods: A GT3X+ and GENEA were oscillated in an orbital shaker at frequencies ranging from 0.7 to 4.0 Hz (ten 2-min trials/frequency on a fixed radius of 5.08 cm. Additionally, 10 participants (age = 23.8 ± 5.4 years wore the GT3X+ and GENEA on the dominant wrist and performed treadmill walking (2.0 and 3.5 mph and running (5.5 and 7.5 mph and simulated free-living activities (computer work, cleaning a room, vacuuming and throwing a ball for 2-min each. A linear mixed model was used to compare the mean triaxial vector magnitude (VM from the GT3X+ and GENEA at each oscillation frequency. For the human testing protocol, random forest machine-learning technique was used to develop two models using frequency domain (FD and time domain (TD features for each monitor. We compared activity type recognition accuracy between the GT3X+ and GENEA when the prediction model was fit using one monitor and then applied to the other. Z-statistics were used to compare the proportion of accurate predictions from the GT3X+ and GENEA for each model. Results: GENEA produced significantly higher (p < 0.05, 3.5 to 6.2% mean VM than GT3X+ at all frequencies during shaker testing. Training the model using TD input features on the GENEA and applied to GT3X+ data yielded significantly lower (p < 0.05 prediction accuracy. Prediction accuracy was not compromised when interchangeably using FD models between monitors. Conclusions: It may be inappropriate to apply a model developed on the GENEA to predict activity type using GT3X+ data when input features are TD attributes of raw acceleration.

  12. Comparison of Raw Acceleration from the GENEA and ActiGraph™ GT3X+ Activity Monitors

    Science.gov (United States)

    John, Dinesh; Sasaki, Jeffer; Staudenmayer, John; Mavilia, Marianna; Freedson, Patty S.

    2013-01-01

    Purpose: To compare raw acceleration output of the ActiGraph™ GT3X+ and GENEA activity monitors. Methods: A GT3X+ and GENEA were oscillated in an orbital shaker at frequencies ranging from 0.7 to 4.0 Hz (ten 2-min trials/frequency) on a fixed radius of 5.08 cm. Additionally, 10 participants (age = 23.8 ± 5.4 years) wore the GT3X+ and GENEA on the dominant wrist and performed treadmill walking (2.0 and 3.5 mph) and running (5.5 and 7.5 mph) and simulated free-living activities (computer work, cleaning a room, vacuuming and throwing a ball) for 2-min each. A linear mixed model was used to compare the mean triaxial vector magnitude (VM) from the GT3X+ and GENEA at each oscillation frequency. For the human testing protocol, random forest machine-learning technique was used to develop two models using frequency domain (FD) and time domain (TD) features for each monitor. We compared activity type recognition accuracy between the GT3X+ and GENEA when the prediction model was fit using one monitor and then applied to the other. Z-statistics were used to compare the proportion of accurate predictions from the GT3X+ and GENEA for each model. Results: GENEA produced significantly higher (p < 0.05, 3.5 to 6.2%) mean VM than GT3X+ at all frequencies during shaker testing. Training the model using TD input features on the GENEA and applied to GT3X+ data yielded significantly lower (p < 0.05) prediction accuracy. Prediction accuracy was not compromised when interchangeably using FD models between monitors. Conclusions: It may be inappropriate to apply a model developed on the GENEA to predict activity type using GT3X+ data when input features are TD attributes of raw acceleration. PMID:24177727

  13. Exploring the Use of Activity Patterns for Smart Monitoring of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Karen Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-10

    The world is at an inflection point where our ability to collect data now far outpaces our ability to make use of it. LANL has a number of efforts to help us pull more meaningful insights out of our data and target resources to where they will be most impactful. We are exploring an approach to recognizing activity patterns across disparate data streams for a more holistic view of nuclear facility monitoring.

  14. Confidence-based multiclass AdaBoost for physical activity monitoring

    OpenAIRE

    Reiss, Attila; Hendeby, Gustaf; Stricker, Didier

    2013-01-01

    Physical activity monitoring has recently become an important topic in wearable computing, motivated by e.g. healthcare applications. However, new benchmark results show that the difficulty of the complex classification problems exceeds the potential of existing classifiers. Therefore, this paper proposes the ConfAdaBoost.M1 algorithm. The proposed algorithm is a variant of the AdaBoost.M1 that incorporates well established ideas for confidence based boosting. The method is compared to the mo...

  15. Activity-monitor accuracy in measuring step number and cadence in community-dwelling older adults.

    Science.gov (United States)

    Grant, P Margaret; Dall, Philippa M; Mitchell, Sarah L; Granat, Malcolm H

    2008-04-01

    The primary purpose of this study was to investigate the accuracy of the activPAL physical activity monitor in measuring step number and cadence in older adults. Two pedometers (New-Lifestyles Digi-Walker SW-200 and New-Lifestyles NL2000) used in clinical practice to count steps were simultaneously evaluated. Observation was the criterion measure. Twenty-one participants (65-87 yr old) recruited from community-based exercise classes walked on a treadmill at 5 speeds (0.67, 0.90, 1.12, 1.33, and 1.56 m/s) and outdoors at 3 self-selected speeds (slow, normal, and fast). The absolute percentage error of the activPAL was <1% for all treadmill and outdoor conditions for measuring steps and cadence. With the exception of the slowest treadmill speed, the NL-2000 error was <2%. The SW-200 was the least accurate device, particularly at slower walking speeds. The activPAL monitor accurately recorded step number and cadence. Combined with its ability to identify primary postures, the activPAL might be a useful and versatile device for measuring activity in older adults.

  16. Genetically encoded optical sensors for monitoring of intracellular chloride and chloride-selective channel activity

    Directory of Open Access Journals (Sweden)

    Piotr Bregestovski

    2009-12-01

    Full Text Available This review briefly discusses the main approaches for monitoring chloride (Cl−, the most abundant physiological anion. Noninvasive monitoring of intracellular Cl− ([Cl−]i is a challenging task owing to two main difficulties: (i the low transmembrane ratio for Cl−, approximately 10:1; and (ii the small driving force for Cl−, as the Cl− reversal potential (ECl is usually close to the resting potential of the cells. Thus, for reliable monitoring of intracellular Cl−, one has to use highly sensitive probes. From several methods for intracellular Cl− analysis, genetically encoded chloride indicators represent the most promising tools. Recent achievements in the development of genetically encoded chloride probes are based on the fact that yellow fluorescent protein (YFP exhibits Cl−-sensitivity. YFP-based probes have been successfully used for quantitative analysis of Cl− transport in different cells and for high-throughput screening of modulators of Cl−-selective channels. Development of a ratiometric genetically encoded probe, Clomeleon, has provided a tool for noninvasive estimation of intracellular Cl− concentrations. While the sensitivity of this protein to Cl− is low (EC50 about 160 mM, it has been successfully used for monitoring intracellular Cl− in different cell types. Recently a CFP–YFP-based probe with a relatively high sensitivity to Cl− (EC50 about 30 mM has been developed. This construct, termed Cl-Sensor, allows ratiometric monitoring using the fluorescence excitation ratio. Of particular interest are genetically encoded probes for monitoring of ion channel distribution and activity. A new molecular probe has been constructed by introducing into the cytoplasmic domain of the Cl−-selective glycine receptor (GlyR channel the CFP–YFP-based Cl-Sensor. This construct, termed BioSensor-GlyR, has been successfully expressed in cell lines. The new genetically encoded chloride probes offer means of screening

  17. A label-free bioluminescent sensor for real-time monitoring polynucleotide kinase activity.

    Science.gov (United States)

    Du, Jiao; Xu, Qinfeng; Lu, Xiaoquan; Zhang, Chun-yang

    2014-08-19

    Polynucleotide kinase (PNK) plays a crucial role in maintaining the genomic stability of cells and is becoming a potential target in the radio-therapeutic treatment of cancers. The fluorescent method is usually used to measure the PNK activity, but it is impossible to obtain the real-time monitoring without the employment of the labeled DNA probes. Here, we report a label-free bioluminescent sensor for PNK activity assay through real-time monitoring of the phosphorylation-dependent DNA ligation reaction. In this bioluminescent sensor, two hairpin DNA probes with 5'-protruding terminal are designed as the phosphate acceptor, and the widely used phosphate donor of ATP is substituted by dCTP. In the absence of PNK, the ligation reaction cannot be triggered due to the lack of 5'-phosphoryl groups in the probes, and the background signal is negligible. With the addition of PNK, the phosphorylation-ligation reaction of the probes is initiated with the release of AMP, and the subsequent conversion of AMP to ATP leads to the generation of distinct bioluminescence signal. The PNK activity assay can be performed in real time by continuously monitoring the bioluminescence signal. This bioluminescent sensor is much simpler, label-free, cost-effective, and free from the autofluorescence interference of biological matrix, and can be further used for quantitative, kinetic, and inhibition assay.

  18. A bioluminescence reporter mouse that monitors expression of constitutively active β-catenin

    Science.gov (United States)

    Kommagani, Ramakrishna; Peavey, Mary C.; Hai, Lan; Lonard, David M.; Lydon, John P.

    2017-01-01

    This short technical report describes the generation and characterization of a bioluminescence reporter mouse that is engineered to detect and longitudinally monitor the expression of doxycycline-induced constitutively active β-catenin. The new responder transgenic mouse contains the TetO-ΔN89β-CatTMILA transgene, which consists of the tet-operator followed by a bicistronic sequence encoding a stabilized form of active β-catenin (ΔN89β-catenin), an internal ribosome entry site, and the firefly luciferase gene. To confirm that the transgene operates as designed, TetO-ΔN89β-CatTMILA transgenic mouse lines were crossed with an effector mouse that harbors the mouse mammary tumor virus-reverse tetracycline transactivator (MMTV-rtTA) transgene (termed MTB hereon), which primarily targets rtTA expression to the mammary epithelium. Following doxycycline administration, the resultant MTB/CatTMILA bigenic reporter exhibited precocious lobuloalveologenesis, ductal hyperplasia, and mammary adenocarcinomas, which were visualized and monitored by in vivo bioluminescence detection. Therefore, we predict that the TetO-ΔN89β-CatTMILA transgenic responder mouse—when crossed with the appropriate effector transgenic—will have wide-applicability to non-invasively monitor the influence of constitutively active β-catenin expression on cell-fate specification, proliferation, differentiation, and neoplastic transformation in a broad spectrum of target tissues. PMID:28253313

  19. Sensor Monitoring of Physical Activity to Improve Glucose Management in Diabetic Patients: A Review

    Directory of Open Access Journals (Sweden)

    Sandrine Ding

    2016-04-01

    Full Text Available Diabetic individuals need to tightly control their blood glucose concentration. Several methods have been developed for this purpose, such as the finger-prick or continuous glucose monitoring systems (CGMs. However, these methods present the disadvantage of being invasive. Moreover, CGMs have limited accuracy, notably to detect hypoglycemia. It is also known that physical exercise, and even daily activity, disrupt glucose dynamics and can generate problems with blood glucose regulation during and after exercise. In order to deal with these challenges, devices for monitoring patients’ physical activity are currently under development. This review focuses on non-invasive sensors using physiological parameters related to physical exercise that were used to improve glucose monitoring in type 1 diabetes (T1DM patients. These devices are promising for diabetes management. Indeed they permit to estimate glucose concentration either based solely on physical activity parameters or in conjunction with CGM or non-invasive CGM (NI-CGM systems. In these last cases, the vital signals are used to modulate glucose estimations provided by the CGM and NI-CGM devices. Finally, this review indicates possible limitations of these new biosensors and outlines directions for future technologic developments.

  20. Validity of an Accelerometer-Based Activity Monitor System for Measuring Physical Activity in Frail Elderly

    NARCIS (Netherlands)

    Hollewand, Anne M; Spijkerman, Anouk G; Bilo, Henk J; Kleefstra, Nanne; Kamsma, Yvo; van Hateren, Kornelis J

    2016-01-01

    This study aimed to investigate the validity of the accelerometer-based DynaPort system to detect physical activity in frail elderly subjects. Eighteen home-dwelling subjects (Groningen Frailty Indicator (GFI) score ≥4, ≥75 years) were included. Activities in their home environment were simultaneous

  1. Ambulatory activity monitoring: Progress in measurement of activity, posture, and specific motion patterns in daily life

    NARCIS (Netherlands)

    J.B.J. Bussmann (Hans); U.W. Ebner-Priemer (Ulrich); J. Fahrenberg (Jochen)

    2009-01-01

    textabstractBehavior is central to psychology in almost any definition. Although observable activity is a core aspect of behavior, assessment strategies have tended to focus on emotional, cognitive, or physiological responses. When physical activity is assessed, it is done so mostly with questionnai

  2. Ambulatory activity monitoring: Progress in measurement of activity, posture, and specific motion patterns in daily life

    NARCIS (Netherlands)

    J.B.J. Bussmann (Hans); U.W. Ebner-Priemer (Ulrich); J. Fahrenberg (Jochen)

    2009-01-01

    textabstractBehavior is central to psychology in almost any definition. Although observable activity is a core aspect of behavior, assessment strategies have tended to focus on emotional, cognitive, or physiological responses. When physical activity is assessed, it is done so mostly with questionnai

  3. Model-based design and experimental verification of a monitoring concept for an active-active electromechanical aileron actuation system

    Science.gov (United States)

    Arriola, David; Thielecke, Frank

    2017-09-01

    Electromechanical actuators have become a key technology for the onset of power-by-wire flight control systems in the next generation of commercial aircraft. The design of robust control and monitoring functions for these devices capable to mitigate the effects of safety-critical faults is essential in order to achieve the required level of fault tolerance. A primary flight control system comprising two electromechanical actuators nominally operating in active-active mode is considered. A set of five signal-based monitoring functions are designed using a detailed model of the system under consideration which includes non-linear parasitic effects, measurement and data acquisition effects, and actuator faults. Robust detection thresholds are determined based on the analysis of parametric and input uncertainties. The designed monitoring functions are verified experimentally and by simulation through the injection of faults in the validated model and in a test-rig suited to the actuation system under consideration, respectively. They guarantee a robust and efficient fault detection and isolation with a low risk of false alarms, additionally enabling the correct reconfiguration of the system for an enhanced operational availability. In 98% of the performed experiments and simulations, the correct faults were detected and confirmed within the time objectives set.

  4. Real-time Prescription Surveillance and its Application to Monitoring Seasonal Influenza Activity in Japan

    Science.gov (United States)

    Ohkusa, Yasushi; Ibuka, Yoko; Kawanohara, Hirokazu; Taniguchi, Kiyosu; Okabe, Nobuhiko

    2012-01-01

    Background Real-time surveillance is fundamental for effective control of disease outbreaks, but the official sentinel surveillance in Japan collects information related to disease activity only weekly and updates it with a 1-week time lag. Objective To report on a prescription surveillance system using electronic records related to prescription drugs that was started in 2008 in Japan, and to evaluate the surveillance system for monitoring influenza activity during the 2009–2010 and 2010–2011 influenza seasons. Methods We developed an automatic surveillance system using electronic records of prescription drug purchases collected from 5275 pharmacies through the application service provider’s medical claims service. We then applied the system to monitoring influenza activity during the 2009–2010 and 2010–2011 influenza seasons. The surveillance system collected information related to drugs and patients directly and automatically from the electronic prescription record system, and estimated the number of influenza cases based on the number of prescriptions of anti-influenza virus medication. Then it shared the information related to influenza activity through the Internet with the public on a daily basis. Results During the 2009–2010 influenza season, the number of influenza patients estimated by the prescription surveillance system between the 28th week of 2009 and the 12th week of 2010 was 9,234,289. In the 2010–2011 influenza season, the number of influenza patients between the 36th week of 2010 and the 12th week of 2011 was 7,153,437. The estimated number of influenza cases was highly correlated with that predicted by the official sentinel surveillance (r = .992, P prescription surveillance system produced a good approximation of activity patterns. Conclusions Our prescription surveillance system presents great potential for monitoring influenza activity and for providing early detection of infectious disease outbreaks. PMID:22249906

  5. Direct monitoring of the strand passage reaction of DNA topoisomerase II triggers checkpoint activation.

    Directory of Open Access Journals (Sweden)

    Katherine L Furniss

    Full Text Available By necessity, the ancient activity of type II topoisomerases co-evolved with the double-helical structure of DNA, at least in organisms with circular genomes. In humans, the strand passage reaction of DNA topoisomerase II (Topo II is the target of several major classes of cancer drugs which both poison Topo II and activate cell cycle checkpoint controls. It is important to know the cellular effects of molecules that target Topo II, but the mechanisms of checkpoint activation that respond to Topo II dysfunction are not well understood. Here, we provide evidence that a checkpoint mechanism monitors the strand passage reaction of Topo II. In contrast, cells do not become checkpoint arrested in the presence of the aberrant DNA topologies, such as hyper-catenation, that arise in the absence of Topo II activity. An overall reduction in Topo II activity (i.e. slow strand passage cycles does not activate the checkpoint, but specific defects in the T-segment transit step of the strand passage reaction do induce a cell cycle delay. Furthermore, the cell cycle delay depends on the divergent and catalytically inert C-terminal region of Topo II, indicating that transmission of a checkpoint signal may occur via the C-terminus. Other, well characterized, mitotic checkpoints detect DNA lesions or monitor unattached kinetochores; these defects arise via failures in a variety of cell processes. In contrast, we have described the first example of a distinct category of checkpoint mechanism that monitors the catalytic cycle of a single specific enzyme in order to determine when chromosome segregation can proceed faithfully.

  6. Smart interactive electronic system for monitoring the electromagnetic activities of biological systems

    Science.gov (United States)

    Popa, Sorin G.; Shahinpoor, Mohsen

    2001-08-01

    A novel electronic device capable of sensing and monitoring the myoelectric, polarization wave and electromagnetic activities of the biological systems and in particular the human body is presented. It is known that all the physical and chemical processes within biological systems are associated with polarization, depolarization waves from the brain, neural signals and myoelectric processes that manifest themselves in ionic and dipole motion. The technology developed in our laboratory is based on certain charge motion sensitive electronics. The electronic system developed is capable of sensing the electromagnetic activities of biological systems. The information obtained is then processed by specialized software in order to interpret it from physical and chemical point of view.

  7. MONITORING AND MODELING OF THE MAIN TRENDS IN THE DEVELOPMENT OF SCIENTIFIC ACTIVITY IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Marina U. Archipova

    2014-01-01

    Full Text Available This article is devoted to monitoring of the scientific sphere in Russia in comparison to thedeveloped countries. Attention is paid especially to analysis of interrelation between scientifi c researches costs and the results of scientifi c activity,as well as to the modeling of innovative activityin Russia on the based on the systems of therecursive simultaneous equations. The conductedresearch allows to follow the diffusion of scientific knowledge and their influence on innovative activity in the country.

  8. Comparison of Raw Acceleration from the GENEA and ActiGraph™ GT3X+ Activity Monitors

    OpenAIRE

    Dinesh John; Jeffer Sasaki; John Staudenmayer; Marianna Mavilia; Freedson, Patty S

    2013-01-01

    Purpose: To compare raw acceleration output of the ActiGraph™ GT3X+ and GENEA activity monitors. Methods: A GT3X+ and GENEA were oscillated in an orbital shaker at frequencies ranging from 0.7 to 4.0 Hz (ten 2-min trials/frequency) on a fixed radius of 5.08 cm. Additionally, 10 participants (age = 23.8 ± 5.4 years) wore the GT3X+ and GENEA on the dominant wrist and performed treadmill walking (2.0 and 3.5 mph) and running (5.5 and 7.5 mph) and simulated free-living activities (computer work, ...

  9. Scour Monitoring System for Subsea Pipeline Based on Active Thermometry: Numerical and Experimental Studies

    Directory of Open Access Journals (Sweden)

    Jun Du

    2013-01-01

    Full Text Available A scour monitoring system for subsea pipeline based on active thermometry is proposed in this paper. The temperature reading of the proposed system is based on a distributed Brillouin optical fiber sensing technique. A thermal cable acts as the main component of the system, which consists of a heating belt, armored optical fibers and heat-shrinkable tubes which run parallel to the pipeline. The scour-induced free span can be monitored through different heat transfer behaviors of in-water and in-sediment scenarios during heating and cooling processes. Two sets of experiments, including exposing different lengths of the upper surface of the pipeline to water and creating free spans of various lengths, were carried out in laboratory. In both cases, the scour condition was immediately detected by the proposed monitoring system, which confirmed the system is robust and very sensitive. Numerical study of the method was also investigated by using the finite element method (FEM with ANSYS, resulting in reasonable agreement with the test data. This brand new system provides a promising, low cost, highly precise and flexible approach for scour monitoring of subsea pipelines.

  10. Chronic monitoring of lower urinary tract activity via a sacral dorsal root ganglia interface

    Science.gov (United States)

    Khurram, Abeer; Ross, Shani E.; Sperry, Zachariah J.; Ouyang, Aileen; Stephan, Christopher; Jiman, Ahmad A.; Bruns, Tim M.

    2017-06-01

    Objective. Our goal is to develop an interface that integrates chronic monitoring of lower urinary tract (LUT) activity with stimulation of peripheral pathways. Approach. Penetrating microelectrodes were implanted in sacral dorsal root ganglia (DRG) of adult male felines. Peripheral electrodes were placed on or in the pudendal nerve, bladder neck and near the external urethral sphincter. Supra-pubic bladder catheters were implanted for saline infusion and pressure monitoring. Electrode and catheter leads were enclosed in an external housing on the back. Neural signals from microelectrodes and bladder pressure of sedated or awake-behaving felines were recorded under various test conditions in weekly sessions. Electrodes were also stimulated to drive activity. Main results. LUT single- and multi-unit activity was recorded for 4-11 weeks in four felines. As many as 18 unique bladder pressure single-units were identified in each experiment. Some channels consistently recorded bladder afferent activity for up to 41 d, and we tracked individual single-units for up to 23 d continuously. Distension-evoked and stimulation-driven (DRG and pudendal) bladder emptying was observed, during which LUT sensory activity was recorded. Significance. This chronic implant animal model allows for behavioral studies of LUT neurophysiology and will allow for continued development of a closed-loop neuroprosthesis for bladder control.

  11. International Collaboration on Building Local Technical Capacities for Monitoring Volcanic Activity at Pacaya Volcano, Guatemala.

    Science.gov (United States)

    Escobar-Wolf, R. P.; Chigna, G.; Morales, H.; Waite, G. P.; Oommen, T.; Lechner, H. N.

    2015-12-01

    Pacaya volcano is a frequently active and potentially dangerous volcano situated in the Guatemalan volcanic arc. It is also a National Park and a major touristic attraction, constituting an important economic resource for local municipality and the nearby communities. Recent eruptions have caused fatalities and extensive damage to nearby communities, highlighting the need for risk management and loss reduction from the volcanic activity. Volcanic monitoring at Pacaya is done by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), instrumentally through one short period seismic station, and visually by the Parque Nacional Volcan de Pacaya y Laguna de Calderas (PNVPLC) personnel. We carry out a project to increase the local technical capacities for monitoring volcanic activity at Pacaya. Funding for the project comes from the Society of Exploration Geophysicists through the Geoscientists Without Borders program. Three seismic and continuous GPS stations will be installed at locations within 5 km from the main vent at Pacaya, and one webcam will aid in the visual monitoring tasks. Local educational and outreach components of the project include technical workshops on data monitoring use, and short thesis projects with the San Carlos University in Guatemala. A small permanent exhibit at the PNVPLC museum or visitor center, focusing on the volcano's history, hazards and resources, will also be established as part of the project. The strategy to involve a diverse group of local collaborators in Guatemala aims to increase the chances for long term sustainability of the project, and relies not only on transferring technology but also the "know-how" to make that technology useful. Although not a primary research project, it builds on a relationship of years of joint research projects at Pacaya between the participants, and could be a model of how to increase the broader impacts of such long term collaboration partnerships.

  12. POSSIBILITIES OF USING THE SENSEWEAR MOBILE MONITOR IN THE ASSESSMENT OF THE PHYSICAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Dariusz Włodarek

    2013-06-01

    Full Text Available The aim of the presented case study analysis was to present the possibilities of using the SenseWear PRO3 Armband mobile monitor in the assessment of physical activities. During the measurement, the SenseWear PRO3 Armband recorded the following parameters: total energy expenditure [kcal], average METs (for the whole analyzed period [-], number of steps [-], active energy expenditure [kcal], lying down duration [min], sleep duration [min], sedentary physical activity duration [min], physical activity duration [min], including moderate physical activity duration [min], vigorous physical activity duration [min] and very vigorous physical activity duration [min]. The results for chosen participant were analyzed – in various periods of time (for the 24 on-body hours sessions of wearing the SenseWear PRO3 Armband and the whole session, as well as for basic and broaden analysis. The graphical reports from the session were also presented. It was concluded that the SenseWear PRO3 Armband device is a valuable tool in everyday medical practice to specify the physical activity of individuals and to verify their declarations. For users, the SenseWear PRO3 Armband device is easy to handle, while measurement is not onerous and does not disturb typical activities.

  13. Monitoring of immune activation using biochemical changes in a porcine model of cardiac arrest

    Directory of Open Access Journals (Sweden)

    Anton Amann

    2001-01-01

    Full Text Available In animal models, immune activation is often difficult to assess because of the limited availability of specific assays to detect cytokine activities. In human monocytes/macrophages, interferon-γ induces increased production of neopterin and an enhanced activity of indoleamine 2,3-dioxygenase, which degrades tryptophan via the kynurenine pathway. Therefore, monitoring of neopterin concentrations and of tryptophan degradation can serve to detect the extent of T helper cell 1-type immune activation during cellular immune response in humans. In a porcine model of cardiac arrest, we examined the potential use of neopterin measurements and determination of the tryptophan degradation rate as a means of estimating the extent of immune activation. Urinary neopterin concentrations were measured with high-performance liquid chromatography (HPLC and radioimmunoassay (RIA (BRAHMS Diagnostica, Berlin, Germany. Serum and plasma tryptophan and kynurenine concentrations were also determined using HPLC. Serum and urine neopterin concentrations were not detectable with HPLC in these specimens, whereas RIA gave weakly (presumably false positive results. The mean serum tryptophan concentration was 39.0 Ī 6.2 μmol/l, and the mean kynurenine concentration was 0.85 Ī 0.33 μmol/l. The average kynurenine-per-tryptophan quotient in serum was 21.7Ī 8.4 nmol/μmol, and that in plasma was 20.7Ī 9.5 nmol/μmol (n = 7, which corresponds well to normal values in humans. This study provides preliminary data to support the monitoring of tryptophan degradation but not neopterin concentrations as a potential means of detecting immune activation in a porcine model. The kynurenine-per-tryptophan quotient may serve as a short-term measurement of immune activation and hence permit an estimate of the extent of immune activation.

  14. Smartphone-Based Patients' Activity Recognition by Using a Self-Learning Scheme for Medical Monitoring.

    Science.gov (United States)

    Guo, Junqi; Zhou, Xi; Sun, Yunchuan; Ping, Gong; Zhao, Guoxing; Li, Zhuorong

    2016-06-01

    Smartphone based activity recognition has recently received remarkable attention in various applications of mobile health such as safety monitoring, fitness tracking, and disease prediction. To achieve more accurate and simplified medical monitoring, this paper proposes a self-learning scheme for patients' activity recognition, in which a patient only needs to carry an ordinary smartphone that contains common motion sensors. After the real-time data collection though this smartphone, we preprocess the data using coordinate system transformation to eliminate phone orientation influence. A set of robust and effective features are then extracted from the preprocessed data. Because a patient may inevitably perform various unpredictable activities that have no apriori knowledge in the training dataset, we propose a self-learning activity recognition scheme. The scheme determines whether there are apriori training samples and labeled categories in training pools that well match with unpredictable activity data. If not, it automatically assembles these unpredictable samples into different clusters and gives them new category labels. These clustered samples combined with the acquired new category labels are then merged into the training dataset to reinforce recognition ability of the self-learning model. In experiments, we evaluate our scheme using the data collected from two postoperative patient volunteers, including six labeled daily activities as the initial apriori categories in the training pool. Experimental results demonstrate that the proposed self-learning scheme for activity recognition works very well for most cases. When there exist several types of unseen activities without any apriori information, the accuracy reaches above 80 % after the self-learning process converges.

  15. Active Seismic Monitoring of Crack Initiation, Propagation, and Coalescence in Rock

    Science.gov (United States)

    Modiriasari, Anahita; Bobet, Antonio; Pyrak-Nolte, Laura J.

    2017-09-01

    Active seismic monitoring was used to detect and characterize crack initiation, crack propagation and crack coalescence in pre-cracked rock specimens. Uniaxial compression tests were conducted on Indiana limestone specimens with two parallel pre-existing cracks. During the experiments, the mechanically induced cracks around the flaw tips were monitored by measuring surface displacements using digital image correlation (DIC). Transmitted and reflected compressional and shear waves through the specimens were also recorded during the loading to detect any damage or cracking phenomena. The amplitude of transmitted compressional and shear waves decreased with uniaxial compression. However, the rate of decrease of the amplitude of the transmitted waves intensified well before the initiation of tensile cracks. In addition, a distinct minimum in the amplitude of transmitted waves occurred close to coalescence. The normalized amplitude of waves reflecting from the new cracks increased before new tensile and shear cracks initiated around the flaw tips. In addition, the location of new cracks could be identified using the traveling time of the reflected waves. The experimental results indicate that changes in normalized amplitude of transmitted and reflected signals associated with crack initiation and crack coalescence were detected much earlier than with DIC, at a load of about 80-90% of the load at which the cracks appeared on the surface. The tests show conclusively that active wave monitoring is an effective tool to detect damage and new cracks in rock, as well as to estimate the location of the new cracks.

  16. Monitoring and descriptive analysis of radon in relation to seismic activity of Northern Pakistan.

    Science.gov (United States)

    Jilani, Zeeshan; Mehmood, Tahir; Alam, Aftab; Awais, Muhammad; Iqbal, Talat

    2017-06-01

    Earthquakes are one of the major causes of natural disasters and its forecasting is challenging task. Some precursory phenomenon exists in theory in relation to earthquakes occurrence. The emission of radioactive gas named 'radon' before the earthquakes is a potential earthquake precursory candidate. The study aims to monitor and to analyze the radon in relation to seismic activity in Northern Pakistan. For this purpose RTM-2200 has been used to monitor the changes in radon concentration from August 01, 2014 to January 31, 2015 in Northern Pakistan. Significant temporal variations has been observed in radon concentration. The bivariate analysis of radon with other variables manifests its positive relationship with air pressure and relative humidity and negative relationship with temperature. 2σ upper control limit on monthly basis are computed for detection of anomalous trends in the data. Overall increasing trend is detected in radon concentration. Five earthquakes from August 01, 2014 to January 31, 2015 have been selected from earthquake catalogue, depending upon their magnitude and distance from monitoring station and out of which radon concentration can be associated with only two earthquakes correlated with tectonic effect of radon concentration. Both of events have same magnitude 5.5 and occurred on September 13 and October 14, 2014 respectively. Very large variations have been observed in radon for the last two months of the study period, which may be occurred due to some other geological and environmental changes, but are not related to the earthquake activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Active landslide monitoring using remote sensing data, GPS measurements and cameras on board UAV

    Science.gov (United States)

    Nikolakopoulos, Konstantinos G.; Kavoura, Katerina; Depountis, Nikolaos; Argyropoulos, Nikolaos; Koukouvelas, Ioannis; Sabatakakis, Nikolaos

    2015-10-01

    An active landslide can be monitored using many different methods: Classical geotechnical measurements like inclinometer, topographical survey measurements with total stations or GPS and photogrammetric techniques using airphotos or high resolution satellite images. As the cost of the aerial photo campaign and the acquisition of very high resolution satellite data is quite expensive the use of cameras on board UAV could be an identical solution. Small UAVs (Unmanned Aerial Vehicles) have started their development as expensive toys but they currently became a very valuable tool in remote sensing monitoring of small areas. The purpose of this work is to demonstrate a cheap but effective solution for an active landslide monitoring. We present the first experimental results of the synergistic use of UAV, GPS measurements and remote sensing data. A six-rotor aircraft with a total weight of 6 kg carrying two small cameras has been used. Very accurate digital airphotos, high accuracy DSM, DGPS measurements and the data captured from the UAV are combined and the results are presented in the current study.

  18. Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications.

    Science.gov (United States)

    Denny, Ellen G; Gerst, Katharine L; Miller-Rushing, Abraham J; Tierney, Geraldine L; Crimmins, Theresa M; Enquist, Carolyn A F; Guertin, Patricia; Rosemartin, Alyssa H; Schwartz, Mark D; Thomas, Kathryn A; Weltzin, Jake F

    2014-05-01

    Phenology offers critical insights into the responses of species to climate change; shifts in species' phenologies can result in disruptions to the ecosystem processes and services upon which human livelihood depends. To better detect such shifts, scientists need long-term phenological records covering many taxa and across a broad geographic distribution. To date, phenological observation efforts across the USA have been geographically limited and have used different methods, making comparisons across sites and species difficult. To facilitate coordinated cross-site, cross-species, and geographically extensive phenological monitoring across the nation, the USA National Phenology Network has developed in situ monitoring protocols standardized across taxonomic groups and ecosystem types for terrestrial, freshwater, and marine plant and animal taxa. The protocols include elements that allow enhanced detection and description of phenological responses, including assessment of phenological "status", or the ability to track presence-absence of a particular phenophase, as well as standards for documenting the degree to which phenological activity is expressed in terms of intensity or abundance. Data collected by this method can be integrated with historical phenology data sets, enabling the development of databases for spatial and temporal assessment of changes in status and trends of disparate organisms. To build a common, spatially, and temporally extensive multi-taxa phenological data set available for a variety of research and science applications, we encourage scientists, resources managers, and others conducting ecological monitoring or research to consider utilization of these standardized protocols for tracking the seasonal activity of plants and animals.

  19. Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications

    Science.gov (United States)

    Denny, Ellen G.; Gerst, Katharine L.; Miller-Rushing, Abraham J.; Tierney, Geraldine L.; Crimmins, Theresa M.; Enquist, Carolyn A. F.; Guertin, Patricia; Rosemartin, Alyssa H.; Schwartz, Mark D.; Thomas, Kathryn A.; Weltzin, Jake F.

    2014-05-01

    Phenology offers critical insights into the responses of species to climate change; shifts in species' phenologies can result in disruptions to the ecosystem processes and services upon which human livelihood depends. To better detect such shifts, scientists need long-term phenological records covering many taxa and across a broad geographic distribution. To date, phenological observation efforts across the USA have been geographically limited and have used different methods, making comparisons across sites and species difficult. To facilitate coordinated cross-site, cross-species, and geographically extensive phenological monitoring across the nation, the USA National Phenology Network has developed in situ monitoring protocols standardized across taxonomic groups and ecosystem types for terrestrial, freshwater, and marine plant and animal taxa. The protocols include elements that allow enhanced detection and description of phenological responses, including assessment of phenological "status", or the ability to track presence-absence of a particular phenophase, as well as standards for documenting the degree to which phenological activity is expressed in terms of intensity or abundance. Data collected by this method can be integrated with historical phenology data sets, enabling the development of databases for spatial and temporal assessment of changes in status and trends of disparate organisms. To build a common, spatially, and temporally extensive multi-taxa phenological data set available for a variety of research and science applications, we encourage scientists, resources managers, and others conducting ecological monitoring or research to consider utilization of these standardized protocols for tracking the seasonal activity of plants and animals.

  20. Context-dependent olfactory learning monitored by activities of salivary neurons in cockroaches.

    Science.gov (United States)

    Matsumoto, Chihiro Sato; Matsumoto, Yukihisa; Watanabe, Hidehiro; Nishino, Hiroshi; Mizunami, Makoto

    2012-01-01

    Context-dependent discrimination learning, a sophisticated form of nonelemental associative learning, has been found in many animals, including insects. The major purpose of this research is to establish a method for monitoring this form of nonelemental learning in rigidly restrained insects for investigation of underlying neural mechanisms. We report context-dependent olfactory learning (occasion-setting problem solving) of salivation, which can be monitored as activity changes of salivary neurons in immobilized cockroaches, Periplaneta americana. A group of cockroaches was trained to associate peppermint odor (conditioned stimulus, CS) with sucrose solution reward (unconditioned stimulus, US) while vanilla odor was presented alone without pairing with the US under a flickering light condition (1.0 Hz) and also trained to associate vanilla odor with sucrose reward while peppermint odor was presented alone under a steady light condition. After training, the responses of salivary neurons to the rewarded peppermint odor were significantly greater than those to the unrewarded vanilla odor under steady illumination and those to the rewarded vanilla odor was significantly greater than those to the unrewarded peppermint odor in the presence of flickering light. Similar context-dependent responses were observed in another group of cockroaches trained with the opposite stimulus arrangement. This study demonstrates context-dependent olfactory learning of salivation for the first time in any vertebrate and invertebrate species, which can be monitored by activity changes of salivary neurons in restrained cockroaches. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications

    Science.gov (United States)

    Denny, Ellen G.; Gerst, Katharine L.; Miller-Rushing, Abraham J.; Tierney, Geraldine L.; Crimmins, Theresa M.; Enquist, Carolyn A.F.; Guertin, Patricia; Rosemartin, Alyssa H.; Schwartz, Mark D.; Thomas, Kathryn A.; Weltzin, Jake F.

    2014-01-01

    Phenology offers critical insights into the responses of species to climate change; shifts in species’ phenologies can result in disruptions to the ecosystem processes and services upon which human livelihood depends. To better detect such shifts, scientists need long-term phenological records covering many taxa and across a broad geographic distribution. To date, phenological observation efforts across the USA have been geographically limited and have used different methods, making comparisons across sites and species difficult. To facilitate coordinated cross-site, cross-species, and geographically extensive phenological monitoring across the nation, the USA National Phenology Network has developed in situ monitoring protocols standardized across taxonomic groups and ecosystem types for terrestrial, freshwater, and marine plant and animal taxa. The protocols include elements that allow enhanced detection and description of phenological responses, including assessment of phenological “status”, or the ability to track presence–absence of a particular phenophase, as well as standards for documenting the degree to which phenological activity is expressed in terms of intensity or abundance. Data collected by this method can be integrated with historical phenology data sets, enabling the development of databases for spatial and temporal assessment of changes in status and trends of disparate organisms. To build a common, spatially, and temporally extensive multi-taxa phenological data set available for a variety of research and science applications, we encourage scientists, resources managers, and others conducting ecological monitoring or research to consider utilization of these standardized protocols for tracking the seasonal activity of plants and animals.

  2. POST-LAUNCHING MONITORING ACTIVITIES FOR NEW TRANSACTIONAL BANKING PRODUCTS ADDRESSED TO SMES (CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    Giuca Simona-Mihaela

    2014-07-01

    Full Text Available The current paper has the aim to provide guidelines for post-launching monitoring activities and steps related to new transactional banking products addressed to SMEs. While the pre-launching activities have the purpose of accurately defining the objectives, assumptions and estimations, the purpose of the post-launching plan is to identify: if the final objectives of a product launching have been met, on one hand, to analyze results in the sense of identifying an efficient action plan in order to overcome the lack of results (if case, but most important, to identify opportunities for optimizing the products and for communicating properly the value proposition. This paper also presents schemes for monitoring the results from a business case and for motivating the sales force, as an essential step in increasing the sales. Therefore, alternatives of incentive campaigns are presented, as sustainable campaigns with to purpose to achieve an expected success rate. As an additional support guideline for the sales force, some scenarios and post-sales actions are presented, together with an example of portfolio analysis considering potential per client. Considering the methods and details presented in the current paper, one can identify the importance and find out how to monitor the results after launching a new transactional product addressed to SMEs, can understand and design an incentive scheme and also define actions to be taken in order to increase revenues from a newly launched transactional product.

  3. Chemistry of ash-leachates to monitor volcanic activity: An application to Popocatepetl volcano, central Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Armienta, M.A., E-mail: victoria@geofisica.unam.mx [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico); De la Cruz-Reyna, S. [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico); Soler, A. [Grup de Mineralogia Aplicada i Medi Ambient, Dep. Cristal.lografia, Mineralogia i Diposits Minerals, Fac. Geologia, Universidad de Barcelona (Spain); Cruz, O.; Ceniceros, N.; Aguayo, A. [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico)

    2010-08-15

    Monitoring volcanic activity and assessing volcanic risk in an on-going eruption is a problem that requires the maximum possible independent data to reduce uncertainty. A quick, relatively simple and inexpensive method to follow the development of an eruption and to complement other monitoring parameters is the chemical analysis of ash leachates, particularly in the case of eruptions related to dome emplacement. Here, the systematic analysis of SO{sub 4}{sup 2-}, Cl{sup -} and F{sup -} concentrations in ash leachates is proposed as a valuable tool for volcanic activity monitoring. However, some results must be carefully assessed, as is the case for S/Cl ratios, since eruption of hydrothermally altered material may be confused with degassing of incoming magma. Sulfur isotopes help to identify SO{sub 4} produced by hydrothermal processes from magmatic SO{sub 2}. Lower S isotopic values correlated with higher F{sup -} percentages represent a better indicator of fresh magmatic influence that may lead to stronger eruptions and emplacement of new lava domes. Additionally, multivariate statistical analysis helps to identify different eruption characteristics, provided that the analyses are made over a long enough time to sample different stages of an eruption.

  4. Antifactor Xa levels versus activated partial thromboplastin time for monitoring unfractionated heparin.

    Science.gov (United States)

    Vandiver, Jeremy W; Vondracek, Thomas G

    2012-06-01

    Intravenous unfractionated heparin (UFH) remains an important therapeutic agent, particularly in the inpatient setting, for anticoagulation. Historically, the activated partial thromboplastin time (aPTT) has been the primary laboratory test used to monitor and adjust UFH. The aPTT test has evolved since the 1950s, and the historical goal range of 1.5-2.5 times the control aPTT, which first gained favor in the 1970s, has fallen out of favor due to a high degree of variability in aPTT readings from one laboratory to another, and even from one reagent to another. As a result, it is now recommended that the aPTT goal range be based on a corresponding heparin concentration of 0.2-0.4 unit/ml by protamine titration or 0.3-0.7 unit/ml by antifactor Xa assay. Given that several biologic factors can influence the aPTT independent of the effects of UFH, many institutions have transitioned to monitoring heparin with antifactor Xa levels, rather than the aPTT. Clinical data from the last 10-20 years have begun to show that a conversion from aPTT to antifactor Xa monitoring may offer a smoother dose-response curve, such that levels remain more stable, requiring fewer blood samples and dosage adjustments. Given the minimal increased acquisition cost of the antifactor Xa reagents, it can be argued that the antifactor Xa is a cost-effective method for monitoring UFH. In this review, we discuss the relative advantages and disadvantages of the aPTT, antifactor Xa, and protamine titration tests, and provide a clinical framework to guide practitioners who are seeking to optimize UFH monitoring within their own institutions.

  5. Field and Laboratory GPR Monitoring of Biological Activity in Saturated Porous Media

    Science.gov (United States)

    Tsoflias, Georgios; Schillig, Peter; McGlashan, Michael; Roberts, Jennifer; Devlin, J. F.

    2010-05-01

    Recent studies of the geophysical signatures of biological processes in earth environments have resulted in the emergent field of "biogeophysics". The ability to monitor remotely and to quantify active biological processes in the subsurface can have transformative implications to a wide range of investigations, including the bioremediation of contaminated sites. Previous studies have demonstrated that ground-penetrating radar (GPR) can be used to detect the products of microbial activity in the subsurface, such as changes in bulk electrical conductivity, mineral dissolution and precipitation, and the formation of biogenic gas. We present a field study and a laboratory experiment that offer insights to the response of GPR signals to microbial activity. In the field, time-lapse borehole radar tomography was used to monitor biodegradation of a hydrocarbon plume over a period of two years. A dense grid of fourteen borehole pairs monitoring the bioactive region showed radar wave velocity changes of +/-4% and signal attenuation changes of +/-25%. These GPR observations correlated spatially and temporally to independent measurements of groundwater velocity and geochemical variations that occurred in response to microbial activity. The greatest relative changes in radar wave velocity of propagation and attenuation were observed in the region of enhanced bacterial stimulation where biomass growth was the greatest. Radar wave velocity and attenuation decreased during periods of enhanced biostimulation. Three competing mechanisms are postulated to cause the changes observed in the radar data: 1) biogenic gas production, 2) mineral dissolution, and 3) biomass growth. However, due to the inherent complexity and uncertainties associated with field experimentation, the relative effect of each mechanism on the GPR signal could not be confirmed. To overcome the limitations of field observations in assessing the response of GPR signals to biomass formation, a 90-day laboratory

  6. Preliminary study on activity monitoring using an android smart-watch.

    Science.gov (United States)

    Ahanathapillai, Vijayalakshmi; Amor, James D; Goodwin, Zoe; James, Christopher J

    2015-02-01

    The global trend for increasing life expectancy is resulting in aging populations in a number of countries. This brings to bear a pressure to provide effective care for the older population with increasing constraints on available resources. Providing care for and maintaining the independence of an older person in their own home is one way that this problem can be addressed. The EU Funded Unobtrusive Smart Environments for Independent Living (USEFIL) project is an assistive technology tool being developed to enhance independent living. As part of USEFIL, a wrist wearable unit (WWU) is being developed to monitor the physical activity (PA) of the user and integrate with the USEFIL system. The WWU is a novel application of an existing technology to the assisted living problem domain. It combines existing technologies and new algorithms to extract PA parameters for activity monitoring. The parameters that are extracted include: activity level, step count and worn state. The WWU, the algorithms that have been developed and a preliminary validation are presented. The results show that activity level can be successfully extracted, that worn state can be correctly identified and that step counts in walking data can be estimated within 3% error, using the controlled dataset.

  7. Robot-assisted motor activation monitored by time-domain optical brain imaging

    Science.gov (United States)

    Steinkellner, O.; Wabnitz, H.; Schmid, S.; Steingräber, R.; Schmidt, H.; Krüger, J.; Macdonald, R.

    2011-07-01

    Robot-assisted motor rehabilitation proved to be an effective supplement to conventional hand-to-hand therapy in stroke patients. In order to analyze and understand motor learning and performance during rehabilitation it is desirable to develop a monitor to provide objective measures of the corresponding brain activity at the rehabilitation progress. We used a portable time-domain near-infrared reflectometer to monitor the hemodynamic brain response to distal upper extremity activities. Four healthy volunteers performed two different robot-assisted wrist/forearm movements, flexion-extension and pronation-supination in comparison with an unassisted squeeze ball exercise. A special headgear with four optical measurement positions to include parts of the pre- and postcentral gyrus provided a good overlap with the expected activation areas. Data analysis based on variance of time-of-flight distributions of photons through tissue was chosen to provide a suitable representation of intracerebral signals. In all subjects several of the four detection channels showed a response. In some cases indications were found of differences in localization of the activated areas for the various tasks.

  8. Use of cholinesterase activity in monitoring organophosphate pesticide exposure of cattle produced in tropical areas.

    Science.gov (United States)

    Pardío, V T; Ibarra, N; Rodríguez, M A; Waliszewski, K N

    2001-12-01

    The use of cholinesterase activity as a biochemical method for monitoring organophosphate pesticide exposure in cattle is described herein. Determination of cholinesterase activity of whole blood, erythrocyte, and plasma was carried out according to the Ellman modified kinetic method. The mean baseline acetylcholinesterase activities of 9.549 +/- 3.619 IU/mL in whole blood, 9.444 +/- 3.006 IU/mL in erythrocytes, and 0.149 +/- 0.063 IU/mL in plasma were estimated for steers from the control group. Results of multivariate analysis showed that the general responses between the control and experimental groups (in vivo, monitoring and case studies) treated with Coumaphos and Fenthion were statistically different, and the general responses of these experimental groups were statistically different over time as well. Among the fractions that were analyzed, the erythrocyte acetylcholinesterase activity could be adequate for the diagnosis of exposure or acute poisoning in cattle as it showed a good within-run and between-run precision with CVs <10% better than those in plasma.

  9. Methods of InSAR atmosphere correction for volcano activity monitoring

    Science.gov (United States)

    Gong, W.; Meyer, F.; Webley, P.W.; Lu, Zhiming

    2011-01-01

    When a Synthetic Aperture Radar (SAR) signal propagates through the atmosphere on its path to and from the sensor, it is inevitably affected by atmospheric effects. In particular, the applicability and accuracy of Interferometric SAR (InSAR) techniques for volcano monitoring is limited by atmospheric path delays. Therefore, atmospheric correction of interferograms is required to improve the performance of InSAR for detecting volcanic activity, especially in order to advance its ability to detect subtle pre-eruptive changes in deformation dynamics. In this paper, we focus on InSAR tropospheric mitigation methods and their performance in volcano deformation monitoring. Our study areas include Okmok volcano and Unimak Island located in the eastern Aleutians, AK. We explore two methods to mitigate atmospheric artifacts, namely the numerical weather model simulation and the atmospheric filtering using Persistent Scatterer processing. We investigate the capability of the proposed methods, and investigate their limitations and advantages when applied to determine volcanic processes. ?? 2011 IEEE.

  10. Monitoring and Analyzing of Circadian and Ultradian Locomotor Activity Based on Raspberry-Pi

    Directory of Open Access Journals (Sweden)

    Vittorio Pasquali

    2016-09-01

    Full Text Available A new device based on the Raspberry-Pi to monitor the locomotion of Arctic marine invertebrates and to analyze chronobiologic data has been made, tested and deployed. The device uses infrared sensors to monitor and record the locomotor activity of the animals, which is later analyzed. The software package consists of two separate scripts: the first designed to manage the acquisition and the evolution of the experiment, the second designed to generate actograms and perform various analyses to detect periodicity in the data (e.g., Fourier power spectra, chi-squared periodograms, and Lomb–Scargle periodograms. The data acquisition hardware and the software has been previously tested during an Arctic mission with an arctic marine invertebrate.

  11. Research on an active and continuous monitoring system for human respiratory system

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Continuous and dynamic measurements of human respiratory parameters are very important for vital diseases of respiratory system during mechanical ventilation. This paper analyzed the structure and mechanical properties of the human respiratory system, and designed an active intervening monitoring micro system for it. The mobile mechanism of the micro system is soft and earthworm-like movement actuated by pneumatic rubber actuator, the measurement and therapy unit of the system is an extensible mechanism with sensors in the front. The micro monitoring system can move in respiratory tract and measure the respiratory parameters in bronchium continuously. Experiments had been done in swine's respiratory tract,the results proved that the micro robot system could measure the respiratory parameters in real-time successfully and its movement was smooth in swine's respiratory tract.

  12. Combining GPS with heart rate monitoring to measure physical activity in children: A feasibility study.

    Science.gov (United States)

    Duncan, J Scott; Badland, Hannah M; Schofield, Grant

    2009-09-01

    The recent development of global positioning system (GPS) receivers with integrated heart rate (HR) monitoring has provided a new method for estimating the energy expenditure associated with children's movement. The purpose of this feasibility study was to trial a combination of GPS surveillance and HR monitoring in 39 primary-aged children from New Zealand. Spatial location and HR data were recorded during a school lunch break using an integrated GPS/HR receiver (1Hz). Children averaged a total distance of 1.10+/-0.56km at speeds ranging from 0 to 18.6kmh(-1). Activity patterns were characterised by short bursts of moderate to high speeds followed by longer periods of slow speeds. In addition, boys averaged higher speeds than girls (1.77+/-0.62kmh(-1) and 1.36+/-0.50kmh(-1), respectively; p=0.003). The percentage of time spent at 0kmh(-1) (stationary) ranged from 0.1% to 21.3% with a mean of 6.4+/-4.6%. These data suggest that while children were relatively active during the lunch period, they spent a substantial portion of time engaged in slow or stationary physical activities. Furthermore, associations between HR, average speed, and stationary time demonstrated that children who moved at faster speeds expended more energy than those who moved at slower speeds. We conclude that the combined approach of GPS and HR monitoring is a promising new method for investigating children's play-related energy expenditure. There is also scope to integrate GPS data with geographic information systems to examine where children play and accumulate physical activity.

  13. VEPP Exercise: Volcanic Activity and Monitoring of Pu`u `O`o, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Rodriguez, L. A.

    2010-12-01

    A 10-week project will be tested during the Fall semester 2010, for a Volcanic Hazards elective course, for undergraduate Geology students of the University of Puerto Rico at Mayaguez. This exercise was developed during the Volcanoes Exploration Project: Pu`u `O`o (VEPP) Workshop, held on the Big Island of Hawaii in July 2010. For the exercise the students will form groups (of 2-4 students), and each group will be assigned a monitoring technique or method, among the following: seismic (RSAM data), deformation (GPS and tilt data), observations (webcam and lava flow maps), gas and thermal monitoring. The project is designed for Geology undergraduates who have a background in introductory geology, types of volcanoes and eruptions, magmatic processes, characteristics of lava flows, and other related topics. It is divided in seven tasks, starting with an introduction and demonstration of the VEPP website and the VALVE3 software, which is used to access monitoring data from the current eruption of Pu`u `O`o, Kilauea volcano, Hawaii. The students will also familiarize themselves with the history of Kilauea volcano and its current eruption. At least weekly the groups will acquire data (mostly near-real-time) from the different monitoring techniques, in the form of time series, maps, videos, and images, in order to identify trends in the data. The groups will meet biweekly in the computer laboratory to work together in the analysis and interpretation of the data, with the support of the instructor. They will give reports on the progress of the exercise, and will get feedback from the instructor and from the other expert groups. All groups of experts will relate their findings to the recent and current activity of Kilauea volcano, and the importance of their specific type of monitoring. The activity will culminate with a written report and an oral presentation. The last task of the project consists of a wrap-up volcano monitoring exercise, in which the students will

  14. Solar activity monitoring and forecasting capabilities at Big Bear Solar Observatory

    Directory of Open Access Journals (Sweden)

    P. T. Gallagher

    Full Text Available The availability of full-disk, high-resolution Ha images from Big Bear Solar Observatory (USA, Kanzelhöhe Solar Observatory (Austria, and Yunnan Astronomical Observatory (China allows for the continual monitoring of solar activity with unprecedented spatial and temporal resolution. Typically, this Global Ha Network (GHN provides almost uninterrupted Ha images with a cadence of 1 min and an image scale of 1'' per pixel. 

    Every hour, GHN images are transferred to the web-based BBSO Active Region Monitor (ARM; www.bbso.njit.edu/arm, which includes the most recent EUV, continuum, and magnetogram data from the Solar and Heliospheric Observatory, together with magnetograms from the Global Oscillation Network Group. ARM also includes a variety of active region properties from the National Oceanic and Atmospheric Administration’s Space Environment Center, such as up-to-date active region positions, GOES 5-min X-ray data, and flare identification. Stokes I, V, Q, and U images are available from the recently operational BBSO Digital Vector Magnetograph and the Vector Magnetograph at the Huairou Solar Observing Station of Beijing Observatory. Vector magnetograms provide complete information on the photospheric magnetic field, and allow for magnetic flux gradients, electric currents, and shear forces to be calculated: these measurements are extremely sensitive to conditions resulting in flaring activity. Furthermore, we have developed a Flare Prediction System which estimates the probability for each region to produce C-, M-, or X-class flares based on nearly eight years of NOAA data from cycle 22. This, in addition to BBSO’s daily solar activity reports, has proven a useful resource for activity forecasting.

    Key words. Solar physics, astronomy and astrophysics (flares and mass ejections; instruments and techniques

  15. A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring

    Directory of Open Access Journals (Sweden)

    Che-Chang Yang

    2010-08-01

    Full Text Available Characteristics of physical activity are indicative of one’s mobility level, latent chronic diseases and aging process. Accelerometers have been widely accepted as useful and practical sensors for wearable devices to measure and assess physical activity. This paper reviews the development of wearable accelerometry-based motion detectors. The principle of accelerometry measurement, sensor properties and sensor placements are first introduced. Various research using accelerometry-based wearable motion detectors for physical activity monitoring and assessment, including posture and movement classification, estimation of energy expenditure, fall detection and balance control evaluation, are also reviewed. Finally this paper reviews and compares existing commercial products to provide a comprehensive outlook of current development status and possible emerging technologies.

  16. A computerized system for the simultaneous monitoring of place conditioning and locomotor activity in rats.

    Science.gov (United States)

    Brockwell, N T; Ferguson, D S; Beninger, R J

    1996-02-01

    Place conditioning is one of the most popular behavioral methods for assessing the rewarding properties of various substances. Many substances that are rewarding also influence motor activity. This report describes a computerized system designed to simultaneously monitor both place conditioning and locomotor activity. The system consists of 4 independent conditioning boxes, each equipped with 6 pairs of photosensors connected to an Experiment Controller, an electronic board containing a microprocessor, a programable timer, and 16 K of RAM used to store both instructions and data. The effects of the stimulant (+)-amphetamine were assessed using this system and found to produce a place preference comparable to that obtained from a previously utilized mechanical timer system. The computerized system also demonstrated that amphetamine increased unconditioned activity. There are a number of advantages and broader applications of the new methodology.

  17. Objective evaluation of stress with the blind by the monitoring of autonomic nervous system activity.

    Science.gov (United States)

    Massot, Bertrand; Baltenneck, Nicolas; Gehin, Claudine; Dittmar, Andre; McAdams, Eric

    2010-01-01

    Accessibility for the blind in an urban space must be studied under real conditions in their daily environment. A new approach for evaluating the impact of environmental conditions on blind pedestrians is the objective measure of stress by the monitoring of the autonomic nervous system (ANS) activity. Original techniques of data analysis and spatial representation are proposed for the detection of the ANS activity through the assessment of the electrodermal activity. Skin resistance was recorded with an EmoSense system on 10 blind subjects who followed a charted course independently. The course was 1065 meters long and consisted of various environmental conditions in an urban space. The spatial frequency of the non-specific skin resistance responses was used to provide a more relevant representation of geographic hotspots. Results of statistical analysis based on this new parameter are discussed to conclude on phenomena causing mental stress with the blind moving in an urban space.

  18. 78 FR 57668 - U.S. Nuclear Regulatory Commission Planned for Monitoring Activities for the Saltstone Disposal...

    Science.gov (United States)

    2013-09-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION U.S. Nuclear Regulatory Commission Planned for Monitoring Activities for the Saltstone Disposal... availability of ``U.S. Nuclear Regulatory Commission Plan for Monitoring Disposal Actions Taken by the...

  19. Monitoring seasonal bat activity on a coastal barrier island in Maryland, USA.

    Science.gov (United States)

    Johnson, Joshua B; Gates, J Edward; Zegre, Nicolas P

    2011-02-01

    Research on effects of wind turbines on bats has increased dramatically in recent years because of significant numbers of bats killed by rotating wind turbine blades. Whereas most research has focused on the Midwest and inland portions of eastern North America, bat activity and migration on the Atlantic Coast has largely been unexamined. We used three long-term acoustic monitoring stations to determine seasonal bat activity patterns on the Assateague Island National Seashore, a barrier island off the coast of Maryland, from 2005 to 2006. We recorded five species, including eastern red bats (Lasiurus borealis), big brown bats (Eptesicus fuscus), hoary bats (Lasiurus cinereus), tri-colored bats (Perimyotis subflavus), and silver-haired bats (Lasionycteris noctivagans). Seasonal bat activity (number of bat passes recorded) followed a cosine function and gradually increased beginning in April, peaked in August, and declined gradually until cessation in December. Based on autoregressive models, inter-night bat activity was autocorrelated for lags of seven nights or fewer but varied among acoustic monitoring stations. Higher nightly temperatures and lower wind speeds positively affected bat activity. When autoregressive model predictions were fitted to the observed nightly bat pass totals, model residuals>2 standard deviations from the mean existed only during migration periods, indicating that periodic increases in bat activity could not be accounted for by seasonal trends and weather variables alone. Rather, the additional bat passes were attributable to migrating bats. We conclude that bats, specifically eastern red, hoary, and silver-haired bats, use this barrier island during migration and that this phenomenon may have implications for the development of near and offshore wind energy.

  20. Monitoring CD27 expression to evaluate Mycobacterium tuberculosis activity in HIV-1 infected individuals in vivo.

    Science.gov (United States)

    Schuetz, Alexandra; Haule, Antelmo; Reither, Klaus; Ngwenyama, Njabulo; Rachow, Andrea; Meyerhans, Andreas; Maboko, Leonard; Koup, Richard A; Hoelscher, Michael; Geldmacher, Christof

    2011-01-01

    The level of bacterial activity is only poorly defined during asymptomatic Mycobacterium tuberculosis (MTB) infection. The objective was to study the capacity of a new biomarker, the expression of the T cell maturation marker CD27 on MTB-specific CD4 T cells, to identify active tuberculosis (TB) disease in subjects from a MTB and HIV endemic region. The frequency and CD27 expression of circulating MTB-specific CD4 T cells was determined in 96 study participants after stimulation with purified protein derivative (PPD) using intracellular cytokine staining for IFNgamma (IFNγ). Subjects were then stratified by their TB and HIV status. Within PPD responders, a CD27(-) phenotype was associated with active TB in HIV(-) (p = 0.0003) and HIV(+) (p = 0.057) subjects, respectively. In addition, loss of CD27 expression preceded development of active TB in one HIV seroconverter. Interestingly, in contrast to HIV(-) subjects, MTB-specific CD4 T cell populations from HIV(+) TB-asymptomatic subjects were often dominated by CD27(-) cells. These data indicate that down-regulation of CD27 on MTB-specific CD4 T cell could be used as a biomarker of active TB, potentially preceding clinical TB disease. Furthermore, these data are consistent with the hypothesis that late, chronic HIV infection is frequently associated with increased mycobacterial activity in vivo. The analysis of T cell maturation and activation markers might thus be a useful tool to monitor TB disease progression.

  1. Monitoring CD27 expression to evaluate Mycobacterium tuberculosis activity in HIV-1 infected individuals in vivo.

    Directory of Open Access Journals (Sweden)

    Alexandra Schuetz

    Full Text Available The level of bacterial activity is only poorly defined during asymptomatic Mycobacterium tuberculosis (MTB infection. The objective was to study the capacity of a new biomarker, the expression of the T cell maturation marker CD27 on MTB-specific CD4 T cells, to identify active tuberculosis (TB disease in subjects from a MTB and HIV endemic region. The frequency and CD27 expression of circulating MTB-specific CD4 T cells was determined in 96 study participants after stimulation with purified protein derivative (PPD using intracellular cytokine staining for IFNgamma (IFNγ. Subjects were then stratified by their TB and HIV status. Within PPD responders, a CD27(- phenotype was associated with active TB in HIV(- (p = 0.0003 and HIV(+ (p = 0.057 subjects, respectively. In addition, loss of CD27 expression preceded development of active TB in one HIV seroconverter. Interestingly, in contrast to HIV(- subjects, MTB-specific CD4 T cell populations from HIV(+ TB-asymptomatic subjects were often dominated by CD27(- cells. These data indicate that down-regulation of CD27 on MTB-specific CD4 T cell could be used as a biomarker of active TB, potentially preceding clinical TB disease. Furthermore, these data are consistent with the hypothesis that late, chronic HIV infection is frequently associated with increased mycobacterial activity in vivo. The analysis of T cell maturation and activation markers might thus be a useful tool to monitor TB disease progression.

  2. Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs).

    Science.gov (United States)

    Wheelock, Craig E; Phillips, Bryn M; Anderson, Brian S; Miller, Jeff L; Miller, Mike J; Hammock, Bruce D

    2008-01-01

    This review has examined a number of issues surrounding the use of carboxylesterase activity in environmental monitoring. It is clear that carboxylesterases are important enzymes that deserve increased study. This class of enzymes appears to have promise for employment in environmental monitoring with a number of organisms and testing scenarios, and it is appropriate for inclusion in standard monitoring assays. Given the ease of most activity assays, it is logical to report carboxylesterase activity levels as well as other esterases (e.g., acetylcholinesterase). Although it is still unclear as to whether acetylcholinesterase or carboxylesterase is the most "appropriate" biomarker, there are sufficient data to suggest that at the very least further studies should be performed with carboxylesterases. Most likely, data will show that it is optimal to measure activity for both enzymes whenever possible. Acetylcholinesterase has the distinct advantage of a clear biological function, whereas the endogenous role of carboxylesterases is still unclear. However, a combination of activity measurements for the two enzyme systems will provide a much more detailed picture of organism health and insecticide exposure. The main outstanding issues are the choice of substrate for activity assays and which tissues/organisms are most appropriate for monitoring studies. Substrate choice is very important, because carboxylesterase activity consists of multiple isozymes that most likely fluctuate on an organism- and tissue-specific basis. It is therefore difficult to compare work in one organism with a specific substrate with work performed in a different organism with a different substrate. An attempt should therefore be made to standardize the method. The most logical choice is PNPA (p-nitrophenyl acetate), as this substrate is commercially available, requires inexpensive optics for assay measurements, and has been used extensively in the literature. However, none of these beneficial

  3. High-resolution seismic monitoring of geomorphic activity in a catchment

    Science.gov (United States)

    Burtin, A.; Hovius, N.; Turowski, J.; McArdell, B.; Vergne, J.

    2012-04-01

    Continuous survey of the surface activity in a river catchment is essential for the understanding of the landscape dynamics. In steep mountain catchments, a detailed spatial and temporal monitoring of geomorphic processes is generally impossible. The classic techniques (imagery and in situ channel approaches) are not adapted to the extreme conditions that occur during strong rainstorms. There is a real need to develop a method and to define the procedures that will allow the study of surface processes without any environmental dependency. Nowadays, more and more studies explore the use of the seismic instruments to survey the catchment activity. Seismometers can be deployed in sheltered area, which allow us to record in continuous the ground vibrations induced by surface processes, like the sediment transport and mass movements. To continue the exploration of this potential, we deployed a dense array of 10 seismometers in the Illgraben, a 10-km2 catchment in the Swiss Alps, during the summer 2011. This catchment is highly prone to hillslope and debris flow activity, so almost every summer convective storms trigger geomorphic events. The network was designed to monitor the spatial and temporal features of every type of surface activity. Thus during rainstorms, the stations located along the main stream well record the channel activity like the passage of sediment flows, while the instruments installed around the catchment reveal the occurrences of many rockfalls. These latter events show a spectral seismic signature at high frequencies (> 1 Hz), whereas the channel activity is dominant between 10 and 30 Hz. For the largest debris flow of the summer, we are able to identify the location of its initiation from the hillslope. Then, we can map the secondary events, which were triggered by the propagation of the debris flow. With these preliminary results, we demonstrate that the use of a dense seismic array is relevant to map in real time the landscape dynamics at the

  4. A Monitoring Network to Map and Assess Landslide Activity in a Highly Anthropized Area

    Directory of Open Access Journals (Sweden)

    Giulia Bossi

    2016-09-01

    Full Text Available Mapping landslide activity in a highly anthropized area entails specific problems. The integration of different monitoring techniques in order to measure the displacements rate within the slope is mandatory. We describe our activity for the Mortisa landslide which is located on the western flank of the Cortina d’Ampezzo valley (northeastern Italy in a highly anthropized area in the heart of the Dolomites, a UNESCO world heritage site. The mass movement threatens some houses, an important national road, and part of the area that will be the venue for the upcoming 2021 Alpine Skiing World Championship. The hazardous context along with its prestigious location makes the construction of new settlements and infrastructure very challenging. Owing to that, precise mapping and assessment of the activity of the Mortisa landslide is extremely important. To achieve this task, multitemporal aerial photo interpretation, A-DInSAR analysis, Global Navigation Satellite System (GNSS surveys, and inclinometric measurements were performed. Through the integration of the monitoring data and geomorphological interpretation, a hazard map of the Mortisa area was produced with the intent to assist the local authorities in the definition of the new urban development plan.

  5. Geochemical monitoring of volcanic lakes. A generalized box model for active crater lakes

    Directory of Open Access Journals (Sweden)

    Franco Tassi

    2011-06-01

    Full Text Available

    In the past, variations in the chemical contents (SO42−, Cl−, cations of crater lake water have not systematically demonstrated any relationships with eruptive activity. Intensive parameters (i.e., concentrations, temperature, pH, salinity should be converted into extensive parameters (i.e., fluxes, changes with time of mass and solutes, taking into account all the internal and external chemical–physical factors that affect the crater lake system. This study presents a generalized box model approach that can be useful for geochemical monitoring of active crater lakes, as highly dynamic natural systems. The mass budget of a lake is based on observations of physical variations over a certain period of time: lake volume (level, surface area, lake water temperature, meteorological precipitation, air humidity, wind velocity, input of spring water, and overflow of the lake. This first approach leads to quantification of the input and output fluxes that contribute to the actual crater lake volume. Estimating the input flux of the "volcanic" fluid (Qf- kg/s –– an unmeasurable subsurface parameter –– and tracing its variations with time is the major focus during crater lake monitoring. Through expanding the mass budget into an isotope and chemical budget of the lake, the box model helps to qualitatively characterize the fluids involved. The (calculated Cl− content and dD ratio of the rising "volcanic" fluid defines its origin. With reference to continuous monitoring of crater lakes, the present study provides tips that allow better calculation of Qf in the future. At present, this study offers the most comprehensive and up-to-date literature review on active crater lakes.

  6. An inductively powered telemetry system for temperature, EKG, and activity monitoring

    Science.gov (United States)

    Fryer, T. B.; Lund, G. F.; Williams, B. A.

    1978-01-01

    An implant telemetry system for the simultaneous monitoring of temperature, activity, and EKG from small animals, such as rats, was designed with the feature that instead of a battery the system is energized by an inductive field. A 250 kHz resonant coil surrounds the cage (30 x 30 x 20 cm) and provides the approximately 100 microns of power required to operate the implant transmitter while allowing the animal unrestrained movement in the cage. The implant can also be battery operated if desired. RF transmission is in the 8-10 MHz band, which allows the use of a simple, essentially single IC chip, receiver.

  7. Photometric Monitoring of Active Galactic Nuclei in the Center for Automated Space Science: Preliminary Results

    Science.gov (United States)

    Culler, Ryan; Deckard, Monica; Guilaran, Fonsie; Watson, Casey; Carini, Michael; Gelderman, Richard; Neely, William

    1997-02-01

    In this paper, we will present preliminary results of our program to photometrically monitor a set of Active Galactic Nuclei (AGN) known as Blazars. Using CCDs as N-star photometers and a technique known as aperture photometry, we can achieve close to 0.02 magnitude precision with small to midsize telescopes. Blazars are highly luminous and highly variable; studying these variations provides insight into the central engines producing the high luminosities. we report on our reduction and analysis of CCD data obtained at one of our collaborating institutions, the NF Observatory at Western New Mexico University. CCD data obtained at the Western Kentucky University 24 inch telescope will also be discussed.

  8. JEM spotlight: Nuclear desalination--environmental impacts and implications for planning and monitoring activities.

    Science.gov (United States)

    Anastasov, Vladimir; Khamis, Ibrahim

    2010-01-01

    Nuclear desalination has been identified as an option since the 1960s, but only recently, as climate change intensifies, has it gained interest again. Although environmental impacts of nuclear desalination have not been paid a lot of attention in the few implemented projects, now more than ever, it is essential to provide an overview of their nature and magnitude. The gathered information and basic analysis allow for a general comparison of a 200,000 m(3)/d nuclear desalination facility using a once-through cooling system as a reference case, with alternative co-location options. Results of the review indicate that the potential for marine impacts requires careful planning and monitoring. They also reveal that adverse coastal, atmospheric and socio-economic impacts are minor in comparison with other co-location alternatives. The issues regarding public health are discussed and experiences presented. Nuclear desalination facilities are expected to show a better environmental performance than other co-located power/desalination options. Environmental planning and monitoring activities are thus much simpler and their scope smaller, with the most important monitoring parameters listed. In conclusion, the application of nuclear desalination is recommended as a less environmentally harmful option.

  9. Non-invasive imaging of tumors by monitoring autotaxin activity using an enzyme-activated near-infrared fluorogenic substrate.

    Directory of Open Access Journals (Sweden)

    Damian Madan

    Full Text Available Autotaxin (ATX, an autocrine motility factor that is highly upregulated in metastatic cancer, is a lysophospholipase D enzyme that produces the lipid second messenger lysophosphatidic acid (LPA from lysophosphatidylcholine (LPC. Dysregulation of the lysolipid signaling pathway is central to the pathophysiology of numerous cancers, idiopathic pulmonary fibrosis, rheumatoid arthritis, and other inflammatory diseases. Consequently, the ATX/LPA pathway has emerged as an important source of biomarkers and therapeutic targets. Herein we describe development and validation of a fluorogenic analog of LPC (AR-2 that enables visualization of ATX activity in vivo. AR-2 exhibits minimal fluorescence until it is activated by ATX, which substantially increases fluorescence in the near-infrared (NIR region, the optimal spectral window for in vivo imaging. In mice with orthotopic ATX-expressing breast cancer tumors, ATX activated AR-2 fluorescence. Administration of AR-2 to tumor-bearing mice showed high fluorescence in the tumor and low fluorescence in most healthy tissues with tumor fluorescence correlated with ATX levels. Pretreatment of mice with an ATX inhibitor selectively decreased fluorescence in the tumor. Together these data suggest that fluorescence directly correlates with ATX activity and its tissue expression. The data show that AR-2 is a non-invasive and selective tool that enables visualization and quantitation of ATX-expressing tumors and monitoring ATX activity in vivo.

  10. Monitoring Groundwater-Storage Change and Land Subsidence in the Tucson Active Management Area, Arizona

    Science.gov (United States)

    Kahler, E.; Carruth, R. L.; Conway, B. D.

    2016-12-01

    The U.S. Geological Survey monitors groundwater-storage change and land subsidence caused by groundwater withdrawal in the Tucson Basin and Avra Valley—the two most populated alluvial basins within the Tucson Active Management Area. The primary management goal of the Tucson Active Management Area is safe-yield by the year 2025. A number of hydrogeologic investigations are ongoing including 1) monitoring groundwater-storage change and land subsidence at a network of stations in the Tucson Basin and Avra Valley, 2) maintaining a network of vertical extensometers for continuous monitoring aquifer compaction and water level, and 3) microgravity and GPS surveys every 1-3 years from 1997 to the present, with the addition of annual InSAR data beginning in 2000. Temporal microgravity surveys are used to detect local changes in the gravitational field of the Earth through time. The gravity changes are used to infer groundwater-storage change in Tucson Basin and Avra Valley where significant variations in pore-space (water mass) storage occur—this results from groundwater mining, artificial recharge, and periodic natural recharge events. Groundwater-storage change is an important, but typically poorly quantified component of the groundwater budget in alluvial basins, including Tucson Basin and Avra Valley. In areas where water-level elevation data are available, estimates of aquifer-storage properties also are estimated by dividing the volume of aquifer-storage change (measured with gravity methods) by the water-level elevation change in the aquifer. Results of the monitoring show that while increases in gravity and water-level rise occur following large natural recharge events and near areas where artificial recharge is occurring, overall declining gravity reflects general overdraft conditions. However, the rate of overdraft has decreased from 25,000-50,000 acre-feet per year from 2000 to 2006, to less than 25,000 acre- feet per year from 2006 to the present

  11. Diagnosis and characterization of mania: Quantifying increased energy and activity in the human behavioral pattern monitor.

    Science.gov (United States)

    Perry, William; McIlwain, Meghan; Kloezeman, Karen; Henry, Brook L; Minassian, Arpi

    2016-06-30

    Increased energy or activity is now an essential feature of the mania of Bipolar Disorder (BD) according to DSM-5. This study examined whether objective measures of increased energy can differentiate manic BD individuals and provide greater diagnostic accuracy compared to rating scales, extending the work of previous studies with smaller samples. We also tested the relationship between objective measures of energy and rating scales. 50 hospitalized manic BD patients were compared to healthy subjects (HCS, n=39) in the human Behavioral Pattern Monitor (hBPM) which quantifies motor activity and goal-directed behavior in an environment containing novel stimuli. Archival hBPM data from 17 schizophrenia patients were used in sensitivity and specificity analyses. Manic BD patients exhibited higher motor activity than HCS and higher novel object interactions. hBPM activity measures were not correlated with observer-rated symptoms, and hBPM activity was more sensitive in accurately classifying hospitalized BD subjects than observer ratings. Although the findings can only be generalized to inpatient populations, they suggest that increased energy, particularly specific and goal-directed exploration, is a distinguishing feature of BD mania and is best quantified by objective measures of motor activity. A better understanding is needed of the biological underpinnings of this cardinal feature.

  12. Cardio-respiratory and daily activity monitor based on FMCW Doppler radar embedded in a wheelchair.

    Science.gov (United States)

    Postolache, Octavian; Girão, Pedro Silva; Postolache, Gabriela; Gabriel, Joaquim

    2011-01-01

    Unobtrusive monitoring of the cardio-respiratory and daily activity for wheelchair users became nowadays an important challenge, considering population aging phenomena and the increasing of the elderly with chronic diseases that affect their motion capabilities. This work reports the utilization of FMCW (frequency modulated continuous wave) Doppler radar sensors embedded in a manual wheelchair to measure the cardiac and respiratory activities and the physical activity of the wheelchair user. Another radar sensor is included in the system in order to quantify the motor activity through the wheelchair traveled distance, when the user performs the manual operation of the wheelchair. A conditioning circuit including active filters and a microcontroller based primary processing module was designed and implemented to deliver the information through Bluetooth communication protocol to an Android OS tablet computer. The main capabilities of the software developed using Android SDK and Java were the signal processing of Doppler radar measurement channel signals, graphical user interface, data storage and Wi-Fi data synchronization with remote physiological and physical activity database.

  13. Consumer-Based Physical Activity Monitor as a Practical Way to Measure Walking Intensity During Inpatient Stroke Rehabilitation.

    Science.gov (United States)

    Klassen, Tara D; Semrau, Jennifer A; Dukelow, Sean P; Bayley, Mark T; Hill, Michael D; Eng, Janice J

    2017-09-01

    Identifying practical ways to accurately measure exercise intensity and dose in clinical environments is essential to advancing stroke rehabilitation. This is especially relevant in monitoring walking activity during inpatient rehabilitation where recovery is greatest. This study evaluated the accuracy of a readily available consumer-based physical activity monitor during daily inpatient stroke rehabilitation physical therapy sessions. Twenty-one individuals admitted to inpatient rehabilitation were monitored for a total of 471 one-hour physical therapy sessions which consisted of walking and nonwalking therapeutic activities. Participants wore a consumer-based physical activity monitor (Fitbit One) and the gold standard for assessing step count (StepWatch Activity Monitor) during physical therapy sessions. Linear mixed modeling was used to assess the relationship of the step count of the Fitbit to the StepWatch Activity Monitor. Device accuracy is reported as the percent error of the Fitbit compared with the StepWatch Activity Monitor. A strong relationship (slope=0.99; 95% confidence interval, 0.97-1.01) was found between the number of steps captured by the Fitbit One and the StepWatch Activity Monitor. The Fitbit One had a mean error of 10.9% (5.3) for participants with walking velocities 0.8 m/s. This study provides preliminary evidence that the Fitbit One, when positioned on the nonparetic ankle, can accurately measure walking steps early after stroke during inpatient rehabilitation physical therapy sessions. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01915368. © 2017 American Heart Association, Inc.

  14. Active safety monitoring of new medical products using electronic healthcare data: Selecting alerting rules

    Science.gov (United States)

    Gagne, Joshua J.; Rassen, Jeremy A.; Walker, Alexander M.; Glynn, Robert J.; Schneeweiss, Sebastian

    2012-01-01

    BACKGROUND Active medical-product-safety surveillance systems are being developed to monitor many products and outcomes simultaneously in routinely collected longitudinal electronic healthcare data. These systems will rely on algorithms to generate alerts about potential safety concerns. METHODS We compared the performance of five classes of algorithms in simulated data using a sequential matched-cohort framework, and applied the results to two electronic healthcare databases to replicate monitoring of cerivastatin-induced rhabdomyolysis. We generated 600,000 simulated scenarios with varying expected event frequency in the unexposed, alerting threshold, and outcome risk in the exposed, and compared the alerting algorithms in each scenario type using an event-based performance metric. RESULTS We observed substantial variation in algorithm performance across the groups of scenarios. Relative performance varied by the event frequency and by user-defined preferences for sensitivity versus specificity. Type I error-based statistical testing procedures achieved higher event-based performance than other approaches in scenarios with few events, whereas statistical process control and disproportionality measures performed relatively better with frequent events. In the empirical data, we observed 6 cases of rhabdomyolysis among 4,294 person-years of follow-up, with all events occurring among cerivastatin-treated patients. All selected algorithms generated alerts before the drug was withdrawn from the market. CONCLUSION For active medical-product-safety monitoring in a sequential matched cohort framework, no single algorithm performed best in all scenarios. Alerting algorithm selection should be tailored to particular features of a product-outcome pair, including the expected event frequencies and trade-offs between false-positive and false-negative alerting. PMID:22266893

  15. Development of a compact tritium activity monitor and first tritium measurements

    Energy Technology Data Exchange (ETDEWEB)

    Röllig, M., E-mail: marco.roellig@kit.edu; Ebenhöch, S.; Niemes, S.; Priester, F.; Sturm, M.

    2015-11-15

    Highlights: • We report about experimental results of a new tritium activity monitoring system using the BIXS method. • The system is compact and easy to implement. It has a small dead volume of about 28 cm{sup 3} and can be used in a flow-through mode. • Gold coated surfaces are used to improve significantly count rate stability of the system and to reduce stored inventory. - Abstract: To develop a convenient tool for in-line tritium gas monitoring, the TRitium Activity Chamber Experiment (TRACE) was built and commissioned at the Tritium Laboratory Karlsruhe (TLK). The detection system is based on beta-induced X-ray spectrometry (BIXS), which observes the bremsstrahlung X-rays generated by tritium decay electrons in a gold layer. The setup features a measuring chamber with a gold-coated beryllium window and a silicon drift detector. Such a detection system can be used for accountancy and process control in tritium processing facilities like the Karlsruhe Tritium Neutrino Experiment (KATRIN). First characterization measurements with tritium were performed. The system demonstrates a linear response between tritium partial pressure and the integral count rate in a pressure range of 1 Pa up to 60 Pa. Within 100 s measurement time the lower detection limit for tritium is (143.63 ± 5.06) · 10{sup 4} Bq. The system stability of TRACE is limited by a linear decrease of integral count rate of 0.041 %/h. This decrease is most probably due to exchange interactions between tritium and the stainless steel walls. By reducing the interaction surface with stainless steel, the decrease of the integral count rate was reduced to 0.008 %/h. Based on the first results shown in this paper it can be concluded that TRACE is a promising complement to existing tritium monitoring tools.

  16. Monitoring activities of teenagers to comprehend their habits: study protocol for a mixed-methods cohort study

    OpenAIRE

    Bélanger, Mathieu; Caissie, Isabelle; Beauchamp, Jacinthe; O’Loughlin, Jennifer; Sabiston, Catherine; Mancuso, Michelina

    2013-01-01

    Background Efforts to increase physical activity in youth need to consider which activities are most likely to be sustained over time in order to promote lifelong participation in physical activity. The Monitoring Activities of Teenagers to Comprehend their Habits (MATCH) study is a prospective cohort study that uses quantitative and qualitative methods to develop new knowledge on the sustainability of specific physical activities. Methods/design Eight hundred and forty-three grade 5 and 6 st...

  17. Use of biological activities to monitor the removal of fuel contaminants - perspective for monitoring hydrocarbon contamination: A review

    CSIR Research Space (South Africa)

    Maila, MP

    2005-01-01

    Full Text Available Moderately sensitive Kandeler et al. (1994) Batteries? of bioindicators Microbial bioluminescence, earthwormand seed germination Creosote, heavy, medium and light crude oils. Moderately sensitive. Earthworm4seed germination4 bioluminescence 25?17; 400 mggC01.... However, microbial bioluminescence, microbial biomass/counts and soil respiration have been evaluated as potential tools for monitoring of hydrocarbons (Delistraty, 1984; Kandeler et al., 1994; Steinberg et al., 1995; Van Beelen and Doelman, 1997; Phillips...

  18. Monitoring of disease biomarkers activity and immunophenotyping as important factors in SLE clinical management.

    Science.gov (United States)

    Subasic, Djemo; Karamehic, Jasenko; Delic-Sarac, Marina; Kasumovic, Mersija; Mekic, Mevludin; Eminovic, Izet; Hasanagic, Nermina

    2012-01-01

    The highly specific biomarkers for monitoring of SLE disease activity are not yet defined up to date, due to existing of different clinical SLE phenotypes caused by individual genetic variation. Basically, numerous clinical complications follow SLE patients such as nephritis, atherosclerosis and cardial, CNS, gastrointestinal and ophthalmological complications, as well. Their monitoring in clinical SLE management can be evaluated by analysing of specific biochemical parameters and require permanent clinical observation. The presence of ANAs and anti-ds-DNAs are usual diagnostic SLE autoimmunity parameters, while SLE disease activity biomarkers are C3 and C4 level, anticardiolipin antibodies, anti-Sm/RNPs and, recently level of CD4 and CD8 lymphocytes. However, the number of TCR molecules on the T-cells surface at SLE patients is lower then in normal condition, and otherwise for these receptors CD molecules make specific connection. On the other hand, the T lymphocytes can be also, therapeutical targets at SLE patients, because of their clear direct involving in SLE pathogenesis. The SLE phenotypes are characterized by double CD negativity ( CD3 +/-, CD4-) caused by abnormal level of IL-2 and IL-17. T-lymphocytes have usually alpha-beta and gamma-delta TCR receptors, but for SLE patients is characteristic lower number gama-delta TCR molecules, detected in the peripheral blood specimens. Taking into account all of the facts, we investigated the level of specific usual SLE activity biomarkers (anti-ds-DNAs, C3, C4, anticardiolipin antibodies (beta-2-IgG, beta-2-IgM, ACA-G, ACA-M, CD4 and CD8 level) in serum specimens of SLE patients who underwent to the corresponding chemotherapy in combination with other biochemical and clinical parameters. Once again proved to be, that SLE biomarker monitoring, could be useful aproach for SLE activity disease and prediction organ damage, as well. In our investigation we used the following methods: immunofluorescence microscopy (IFA

  19. FM-CW radar sensors for vital signs and motor activity monitoring

    Directory of Open Access Journals (Sweden)

    Octavian Adrian Postolache

    2011-12-01

    Full Text Available The article summarizes on-going research on vital signs and motor activity monitoring based on radar sensors embedded in wheelchairs, walkers and crutches for in home rehabilitation. Embedded sensors, conditioning circuits, real-time platforms that perform data acquisition, auto-identification, primary data processing and data communication contribute to convert daily used objects in home rehabilitation into smart objects that can be accessed by caregivers during the training sessions through human–machine interfaces expressed by the new generation of smart phones or tablet computers running Android OS or iOS operating systems. The system enables the management of patients in home rehabilitation by providing more accurate and up-to-date information using pervasive computing of vital signs and motor activity records.

  20. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano

    Science.gov (United States)

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-01-01

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards. PMID:26892716

  1. Active fire monitoring and fire danger potential detection from space: A review

    Institute of Scientific and Technical Information of China (English)

    John J. QU; Wanting WANG; Swarvanu DASGUPTA; Xianjun HAO

    2008-01-01

    Wildland fire is both one of the major natural hazards and a natural process for ecosystem persistence. Accurate assessment of fire danger potential and timely detection of active fires are critical for fire fighting and fuel management. Space-borne measurements have become the primary approaches for these efforts. Many research works have been conducted and some data pro-ducts have been generated for practical applications. This paper presents a review of the major sensors and algo-rithms for active fire monitoring and fire danger potential detection from space. Major sensors and their character-istics, physical principles of the major algorithms are sum-marized. Limitations of these algorithms and future improvements are also discussed.

  2. Experimental Validation of Condition Monitoring for Electrically Activated Shape Memory Alloys for an Unlocking Device

    Science.gov (United States)

    Rathmann, Christian; Theren, Benedict; Fleczok, Benjamin; Kuhlenkötter, Bernd

    2017-06-01

    Shape memory alloys (SMA) belong to the group functional materials which can be activated thermally. Along with a phase transformation, they can remember a previously imprinted shape and have a special resistance behavior. Therefore, they can also be used as a sensor and may be capable of detecting various system states in technical systems. This paper makes a contribution by evaluating the measurability of measured variables by SMA elements. Furthermore, it investigates the technically relevant states of “blockade” and “activation” of electrically activated shape memory actuators. It develops and validates an algorithm which is able to detect a possible “blockade”. Moreover, this work presents a hardware concept for a condition monitoring system of shape memory actuators.

  3. Activities of the US-Japan Safety Monitor Joint Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Richard L. Savercool; Lee C. Cadwallader

    2004-09-01

    This paper documents the activities of the US-Japan exchange in the area of personnel safety at magnetic and laser fusion experiments. A near-miss event with a visiting scientist to the US in 1992 was the impetus for forming the Joint Working Group on Fusion Safety. This exchnge has been under way for over ten years and has provided many safety insights for both US and Japanese facility personnel at national institutes and at universities. The background and activities of the Joint Working Group are described, including the facilities that have been visited for safety walkthroughs, the participants from both countries, and the main safety issues examined during visits. Based on these visits, some operational safety ideas to enhance experiment safety are given. The near-term future plans of the Safety Monitor Joint Working group are also discussed.

  4. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano.

    Science.gov (United States)

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-02-19

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards.

  5. A glasses-type wearable device for monitoring the patterns of food intake and facial activity

    Science.gov (United States)

    Chung, Jungman; Chung, Jungmin; Oh, Wonjun; Yoo, Yongkyu; Lee, Won Gu; Bang, Hyunwoo

    2017-01-01

    Here we present a new method for automatic and objective monitoring of ingestive behaviors in comparison with other facial activities through load cells embedded in a pair of glasses, named GlasSense. Typically, activated by subtle contraction and relaxation of a temporalis muscle, there is a cyclic movement of the temporomandibular joint during mastication. However, such muscular signals are, in general, too weak to sense without amplification or an electromyographic analysis. To detect these oscillatory facial signals without any use of obtrusive device, we incorporated a load cell into each hinge which was used as a lever mechanism on both sides of the glasses. Thus, the signal measured at the load cells can detect the force amplified mechanically by the hinge. We demonstrated a proof-of-concept validation of the amplification by differentiating the force signals between the hinge and the temple. A pattern recognition was applied to extract statistical features and classify featured behavioral patterns, such as natural head movement, chewing, talking, and wink. The overall results showed that the average F1 score of the classification was about 94.0% and the accuracy above 89%. We believe this approach will be helpful for designing a non-intrusive and un-obtrusive eyewear-based ingestive behavior monitoring system.

  6. Liquid crystal based sensors monitoring lipase activity: a new rapid and sensitive method for cytotoxicity assays.

    Science.gov (United States)

    Hussain, Zakir; Zafiu, Christian; Küpcü, Seta; Pivetta, Lucineia; Hollfelder, Nadine; Masutani, Akira; Kilickiran, Pinar; Sinner, Eva-Kathrin

    2014-06-15

    In this work we present liquid crystal (LC) based sensor devices to monitor cell viability. The sensing layer is composed by the LC and a planar monolayer of phospholipids. In the presence of minute traces of phospholipases, which hydrolyze enzymatically phospholipids, the LC-lipid interface is disintegrated. This event causes a change in orientation of the LC, which was followed in a polarized microscope. The lipase activity can be used to measure the cell viability, since members of this enzyme family are released by cells, as they undergo necrosis. The described sensor was used to monitor the presence of the lipases released from three different cell lines, which were either exposed to highly cytotoxic model compounds (sodium azide and paracetamol) or subjected to freeze-thaw cycles to induce cell death by a non-chemical based inducer for apoptosis, such as temperature. Finally, the comparison of lipase activity detected by a state-of-the-art fluorescence assay to the LC based system resulted in the superiority of the LC system concerning incubation time and sensitivity.

  7. Activity monitoring reflects cardiovascular and metabolic variations in COPD patients across GOLD stages II to IV.

    Science.gov (United States)

    Kortianou, E A; Louvaris, Z; Vasilopoulou, M; Nasis, I; Kaltsakas, G; Koulouris, N G; Vogiatzis, I

    2013-12-01

    We investigated whether activity monitoring reliably reflects variations in oxygen transport and utilization during walking in COPD patients. Forty-two patients (14 in each GOLD stage II, III and IV) performed an incremental treadmill protocol to the limit of tolerance. Breath-by-breath gas exchange, central hemodynamic variables and activity monitoring were simultaneously recorded. Physiological variables and accelerometer outputs rose linearly with walking speeds. Strong correlations (r[interquartile range, IQR]) were found between treadmill walking intensity (WI: range 0.8-2.0 ms(-2)) and oxygen consumption (0.95 [IQR 0.87-0.97]), (range 7.6-15.5 ml kg(-1)min(-1)); minute ventilation (0.95 [IQR 0.86-0.98]), (range 20-37 l min(-1)); cardiac output (0.89 [IQR 0.73-0.94]), (range 6.8-11.5 l min(-1)) and arteriovenous oxygen concentration difference (0.84 [IQR 0.76-0.90]), (range 7.7-12.1 ml O2100 ml(-1)). Correlations between WI and gas exchange or central hemodynamic parameters were not different across GOLD stages. In conclusion, central hemodynamic, respiratory and muscle metabolic variations during incremental treadmill exercise are tightly associated to changes in walking intensity as recorded by accelerometry across GOLD stages II to IV. Interestingly, the magnitude of these associations is not different across GOLD stages.

  8. Validity of activity monitors in health and chronic disease: a systematic review

    Directory of Open Access Journals (Sweden)

    Van Remoortel Hans

    2012-07-01

    Full Text Available Abstract The assessment of physical activity in healthy populations and in those with chronic diseases is challenging. The aim of this systematic review was to identify whether available activity monitors (AM have been appropriately validated for use in assessing physical activity in these groups. Following a systematic literature search we found 134 papers meeting the inclusion criteria; 40 conducted in a field setting (validation against doubly labelled water, 86 in a laboratory setting (validation against a metabolic cart, metabolic chamber and 8 in a field and laboratory setting. Correlation coefficients between AM outcomes and energy expenditure (EE by the criterion method (doubly labelled water and metabolic cart/chamber and percentage mean differences between EE estimation from the monitor and EE measurement by the criterion method were extracted. Random-effects meta-analyses were performed to pool the results across studies where possible. Types of devices were compared using meta-regression analyses. Most validation studies had been performed in healthy adults (n = 118, with few carried out in patients with chronic diseases (n = 16. For total EE, correlation coefficients were statistically significantly lower in uniaxial compared to multisensor devices. For active EE, correlations were slightly but not significantly lower in uniaxial compared to triaxial and multisensor devices. Uniaxial devices tended to underestimate TEE (−12.07 (95%CI; -18.28 to −5.85 % compared to triaxial (−6.85 (95%CI; -18.20 to 4.49 %, p = 0.37 and were statistically significantly less accurate than multisensor devices (−3.64 (95%CI; -8.97 to 1.70 %, p

  9. Observing Campaign to Monitor Magnetically-Active Dwarfs for Long-Term Variability

    Science.gov (United States)

    Templeton, Matthew R.

    2009-10-01

    Dr. Styliani (Stella) Kafka of the Department of Terrestrial Magnetism, Carnegie Institute of Washington, requests AAVSO observers to perform long-term photometric monitoring on a number of magnetically active dwarf stars, with an observing frequency of one observation every three days taken with one or more filters. When multiple filters are available, the preferred observations are (in order of precedence): Rc, V, Ic, and B. Please observe such that you obtain a signal to noise of at least 50 (100 or higher is preferred). These objects are all nearby dwarfs known or suspected to have magnetic activity, primarily of the UV Ceti (flare star) or BY Draconis subtypes. Long-term photometric monitoring of these objects will be used in conjunction with other multiwavelength observations from ground-based facilities including the Magellan 6.5-meter and DuPont 2.5-meter telescopes in Chile to understand the long-term magnetic activity cycles of these stars. Such a study can reveal information about the physical natures of these stars, but also about their near space environments and habitability for life. These objects are red, and the variability amplitudes are low, often well below 0.1 magnitudes. The long-term variability due to stellar activity cycles may be much lower. Photometric accuracy rather than the number of observations are key to the success of this project. Unaccounted-for atmospheric effects such as extinction will likely overwhelm any long-term signal from these stars. Observers are strongly urged to fully calibrate their systems and to carefully reduce and transform their photometry to standard photometric passbands, including corrections for airmass/atmospheric extinction. Parameters for 40 objects are given. Observations should be submitted to the AAVSO International Database.

  10. Estimating youth locomotion ground reaction forces using an accelerometer-based activity monitor.

    Directory of Open Access Journals (Sweden)

    Jennifer M Neugebauer

    Full Text Available To address a variety of questions pertaining to the interactions between physical activity, musculoskeletal loading and musculoskeletal health/injury/adaptation, simple methods are needed to quantify, outside a laboratory setting, the forces acting on the human body during daily activities. The purpose of this study was to develop a statistically based model to estimate peak vertical ground reaction force (pVGRF during youth gait. 20 girls (10.9 ± 0.9 years and 15 boys (12.5 ± 0.6 years wore a Biotrainer AM over their right hip. Six walking and six running trials were completed after a standard warm-up. Average AM intensity (g and pVGRF (N during stance were determined. Repeated measures mixed effects regression models to estimate pVGRF from Biotrainer activity monitor acceleration in youth (girls 10-12, boys 12-14 years while walking and running were developed. Log transformed pVGRF had a statistically significant relationship with activity monitor acceleration, centered mass, sex (girl, type of locomotion (run, and locomotion type-acceleration interaction controlling for subject as a random effect. A generalized regression model without subject specific random effects was also developed. The average absolute differences between the actual and predicted pVGRF were 5.2% (1.6% standard deviation and 9% (4.2% standard deviation using the mixed and generalized models, respectively. The results of this study support the use of estimating pVGRF from hip acceleration using a mixed model regression equation.

  11. Fluorescence-based monitoring of in vivo neural activity using a circuit-tracing pseudorabies virus.

    Directory of Open Access Journals (Sweden)

    Andrea E Granstedt

    Full Text Available The study of coordinated activity in neuronal circuits has been challenging without a method to simultaneously report activity and connectivity. Here we present the first use of pseudorabies virus (PRV, which spreads through synaptically connected neurons, to express a fluorescent calcium indicator protein and monitor neuronal activity in a living animal. Fluorescence signals were proportional to action potential number and could reliably detect single action potentials in vitro. With two-photon imaging in vivo, we observed both spontaneous and stimulated activity in neurons of infected murine peripheral autonomic submandibular ganglia (SMG. We optically recorded the SMG response in the salivary circuit to direct electrical stimulation of the presynaptic axons and to physiologically relevant sensory stimulation of the oral cavity. During a time window of 48 hours after inoculation, few spontaneous transients occurred. By 72 hours, we identified more frequent and prolonged spontaneous calcium transients, suggestive of neuronal or tissue responses to infection that influence calcium signaling. Our work establishes in vivo investigation of physiological neuronal circuit activity and subsequent effects of infection with single cell resolution.

  12. Quantitative rest activity in ambulatory monitoring as a physiological marker of restless legs syndrome: a controlled study.

    Science.gov (United States)

    Tuisku, Katinka; Holi, Matti Mikael; Wahlbeck, Kristian; Ahlgren, Aulikki Johanna; Lauerma, Hannu

    2003-04-01

    An objective marker of restless legs syndrome (RLS) is needed for developing diagnostic tools and monitoring symptoms. Actometric ambulatory monitoring of 15 RLS patients and 15 healthy controls was undertaken in order to differentiate between RLS-related motor symptoms and normal motor activity. Nocturnal lower-limb activity per minute differentiated and discriminated between groups with no overlap, whereas the periodic limb movement index and the controlled rest activity during sitting showed less discriminative power. The naturalistic recording of nocturnal activity by actometry may prove useful for assessing the severity of RLS and for finding an objective marker to support the diagnosis of RLS. Copyright 2002 Movement Disorder Society

  13. Physical activity intensity can be accurately monitored by smartphone global positioning system 'app'.

    Science.gov (United States)

    Gordon, Brett Ashley; Bruce, Lyndell; Benson, Amanda Clare

    2016-08-01

    Monitoring physical activity is important to better individualise health and fitness benefits. This study assessed the concurrent validity of a smartphone global positioning system (GPS) 'app' and a sport-specific GPS device with a similar sampling rate, to measure physical activity components of speed and distance, compared to a higher sampling sport-specific GPS device. Thirty-eight (21 female, 17 male) participants, mean age of 24.68, s = 6.46 years, completed two 2.400 km trials around an all-weather athletics track wearing GPSports Pro™ (PRO), GPSports WiSpi™ (WISPI) and an iPhone™ with a Motion X GPS™ 'app' (MOTIONX). Statistical agreement, assessed using t-tests and Bland-Altman plots, indicated an (mean; 95% LOA) underestimation of 2% for average speed (0.126 km·h(-1); -0.389 to 0.642; p < .001), 1.7% for maximal speed (0.442 km·h(-1); -2.676 to 3.561; p = .018) and 1.9% for distance (0.045 km; -0.140 to 0.232; p < .001) by MOTIONX compared to that measured by PRO. In contrast, compared to PRO, WISPI overestimated average speed (0.232 km·h(-1); -0.376 to 0.088; p < .001) and distance (0.083 km; -0.129 to -0.038; p < .001) by 3.5% whilst underestimating maximal speed by 2.5% (0.474 km·h(-1); -1.152 to 2.099; p < .001). Despite the statistically significant difference, the MOTIONX measures intensity of physical activity, with a similar error as WISPI, to an acceptable level for population-based monitoring in unimpeded open-air environments. This presents a low-cost, minimal burden opportunity to remotely monitor physical activity participation to improve the prescription of exercise as medicine.

  14. Validation of MODIS and SEVIRI Active Fire Monitoring products over Western Romania. Case study: Arad County

    Science.gov (United States)

    Oanea, Lavinia; Alina Ristea, Mihaela

    2014-05-01

    At the national level, the issue of wildfire monitoring represents a long debated topic. However, in the present situation, fire management requires various improvements in terms of detection, monitoring and post-fire analysis. The objectives of this study are to validate the data provided by MODIS (Terra and Aqua) Active Fire Monitoring and SEVIRI (MSG) FIR (Active Fire Monitoring) satellite products, with wildfires field data from The Romanian General Inspectorate for Emergency Situations (IGSU) (1), to chart the efficiency of satellite products in locating fires and study their strengths and weaknesses using a SWOT analysis (2). This is the initial step of a larger project that aims to implement an online Geographic Information System for fire management that will ease wildfire data manipulation and facilitate the decision making process. In order to do so, the current study objectives must be achieved. Our general strategy is to determine the consistency of direct (field measurements) and indirect (satellite data) observations. Depending on the amount of field information, the fire characteristics (location, frequency, extension area, moment of occurrence, type of fire, and others) will be studied through a statistical analysis. The products show some peculiar restrictiveness like spatial and temporal resolution. Specifically, we will process and interpret satellite products to identify wildfires according to the data from IGSU using specialized software. The case study for the application of these procedures is a set of fire events from Arad county - Romania, that occurred between 2007 and 2013. In order to do so, it is important to compare results from different sensors with field information through various methods and to use only consistent results. The results will play an important role in achieving the above mentioned informational system, which will integrate field information, satellite data and values of parameters that influence the evolution of

  15. Integrated Interpretation of Geophysical, Geotechnical, and Environmental Monitoring Data to Define Precursors for Landslide Activation

    Science.gov (United States)

    Uhlemann, S.; Chambers, J.; Merritt, A.; Wilkinson, P.; Meldrum, P.; Gunn, D.; Maurer, H.; Dixon, N.

    2014-12-01

    To develop a better understanding of the failure mechanisms leading to first time failure or reactivation of landslides, the British Geological Survey is operating an observatory on an active, shallow landslide in North Yorkshire, UK, which is a typical example of slope failure in Lias Group mudrocks. This group and the Whitby Mudstone Formation in particular, show one of the highest landslide densities in the UK. The observatory comprises geophysical (i.e., ERT and self-potential monitoring, P- and S-wave tomography), geotechnical (i.e. acoustic emission and inclinometer), and hydrological and environmental monitoring (i.e. weather station, water level, soil moisture, soil temperature), in addition to movement monitoring using real-time kinematic GPS. In this study we focus on the reactivation of the landslide at the end of 2012, after an exceptionally wet summer. We present an integrated interpretation of the different data streams. Results show that the two lobes (east and west), which form the main focus of the observatory, behave differently. While water levels, and hence pore pressures, in the eastern lobe are characterised by a continuous increase towards activation resulting in significant movement (i.e. metres), water levels in the western lobe are showing frequent drainage events and thus lower pore pressures and a lower level of movement (i.e. tens of centimetres). This is in agreement with data from the geoelectrical monitoring array. During the summer season, resistivities generally increase due to decreasing moisture levels. However, during the summer of 2012 this seasonal pattern was interrupted, with the reactivated lobe displaying strongly decreasing resistivities (i.e. increasing moisture levels). The self-potential and soil moisture data show clear indications of moisture accumulation prior to the reactivation, followed by continuous discharge towards the base of the slope. Using the different data streams, we present 3D volumetric images of

  16. Monitoring soil moisture through assimilation of active microwave remote sensing observation into a hydrologic model

    Science.gov (United States)

    Liu, Qian; Zhao, Yingshi

    2015-08-01

    Soil moisture can be estimated from point measurements, hydrologic models, and remote sensing. Many researches indicated that the most promising approach for soil moisture is the integration of remote sensing surface soil moisture data and computational modeling. Although many researches were conducted using passive microwave remote sensing data in soil moisture assimilation with coarse spatial resolution, few researches were carried out using active microwave remote sensing observation. This research developed and tested an operational approach of assimilation for soil moisture prediction using active microwave remote sensing data ASAR (Advanced Synthetic Aperture Radar) in Heihe Watershed. The assimilation was based on ensemble Kalman filter (EnKF), a forward radiative transfer model and the Distributed Hydrology Soil Vegetation Model (DHSVM). The forward radiative transfer model, as a semi-empirical backscattering model, was used to eliminate the effect of surface roughness and vegetation cover on the backscatter coefficient. The impact of topography on soil water movement and the vertical and lateral exchange of soil water were considered. We conducted experiments to assimilate active microwave remote sensing data (ASAR) observation into a hydrologic model at two field sites, which had different underlying conditions. The soil moisture ground-truth data were collected through the field Time Domain Reflectometry (TDR) tools, and were used to assess the assimilation method. The temporal evolution of soil moisture measured at point-based monitoring locations were compared with EnKF based model predictions. The results indicated that the estimate of soil moisture was improved through assimilation with ASAR observation and the soil moisture based on data assimilation can be monitored in moderate spatial resolution.

  17. A STRUCTURED TRAINING PROGRAM FOR PATIENTS WITH RHEUMATOID ARTHRITIS TO SELF-MONITOR DISEASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Elena V Lygina

    2014-01-01

    Full Text Available Objective. To develop a structured training program for patients with rheumatoid arthritis (RA to self-monitor disease activity and to assess effectiveness of this program.Material and Methods. The study included 60 patients with definite diagnosis of RA according to the ACR/EULAR 2010 diagnostic criteria (52 females and 8 males, mean age 58.8 ± 10.4 years, the median duration of RA was 5 [2.75; 12] years. Patients were trained using the original method Structured Program of Training Patients with RA to Self-Monitor Disease Activity during the first visit and one month later (second visit. Skill acquisition was controlled by estimating the number of painful (NPJ and swollen (NSJ joints in parallel by a physician and the patient during the second visit and 2 months after the first visit (the third visit. Statistical significance was analyzed using the McNemar’s test (differences are considered to be significant when p <0.05.Results. Absolute coincidence of NSJ as assessed in parallel by a physician and the patient was observed in 26 (43% cases during the second visit and 41 (68% cases during the third visit (p = 0.018. Results of NPJ assessment by a physician and the patient coincided in 20 (33% cases during the second visit and 36 (60% cases during the third visit (p = 0.003.Conclusion. The structured program allows RA patients to correctly determine the painfullness of joints in 60% of cases and joint swelling in 68 % of cases, which is important for self-control of the disease activity.

  18. Geophysical Monitoring of Active Infiltration Experiments for Recharge Estimation: Gains and Pains

    Science.gov (United States)

    Noell, U.; Lamparter, A.; Houben, G.; Koeniger, P.; Stoeckl, L.; Guenther, T.

    2014-12-01

    Drinking water supply on the island of Langeoog, North Sea, solely depends on groundwater from a freshwater lens. The correct estimation of the recharge rate is critical for a sustainable use of the resource. Extensive hydrogeological and geophysical studies have revealed differences in groundwater recharge by a factor of two and more between the top of the dunes and the dune valleys. The most convincing proof of these differences in recharge is based on isotope analysis (age dating) but boreholes are scarce and a direct proof of recharge is desired. For this purpose active infiltration experiments are performed and geophysically monitored. Former applications of this method in sand and loess soil gave evidence for the applicability of the geophysical observation when combined with tensiometers installed in situ at depth. These results showed firstly that in sandy soil the water reaches the groundwater table quicker than anticipated due to the water repellent characteristic of the dry sand, inhibiting the lateral spreading of the water. The studies also revealed that in loess preferential flow is initiated by ponding and that sprinkling caused very slow movement of water within the unsaturated zone and the water remained near the surface. On the island of Langeoog field experiments underlined the importance of water repellency on the dune surface, indicating that the rain water runs off superficially into the dune valleys where higher recharge is found. The active infiltration zone of the experiment covers an area of some 7m² and includes steeper parts of the dune. The infiltration will vary depending on rainfall intensity and duration, original water content and vegetation cover. What results can we reliably expect from the active experiment and what additional measurements are required to back up the findings? Results are ambiguous with regard to the quantitative assessment but the processes can be visualized by geophysical monitoring in situ.

  19. Backscattering characteristics Analyses of winter wheat covered area and Drought Monitoring Based on active microwave

    Science.gov (United States)

    Zhang, C., Sr.; Li, L.

    2015-12-01

    The advantage of active microwave remote sensing on the sensitivity of polarization characteristic, backscatter intensity and phase characteristics to soil moisture demonstrates its potential to map and monitor relative soil moisture changes and drought information with high spatial resolution. However, the existence of soil surface condition and vegetation effects confounds the retrieval of soil moisture from active microwave, and therefore limits its applications on soil moisture retrieval and drought monitoring. To research how to reduce the effect of soil roughness and wheat cover with multi- incident angles and multi polarization active microwave remote sensing data, MIMICS and AIEM models were used to simulate the backscattering coefficient of winter wheat covered field. The interaction between winter wheat at main growth stages and microwave was analyzed. The effects of surface roughness and physical parameters of wheat on the backscattering characteristics and the variation of different incident angles and different polarization conditions are simulated and analyzed emphatically. Then scattering coefficient information of winter wheat covered area at different wheat growth stage was measured with a C band ground-based scattering meter. At the same time, biomass, leaf area index and soil rough degree, soil water content and other related parameters are collected. After comparing and analyzing the measured data and the simulated data at different incident angles and different polarization modes, we propose an approach of using multi polarization and multi angle data to eliminate the soil roughness and wheat vegetation effects and performing the inversion of soil moisture. Using the Radarsat2 satellite SAR data and ground-based scatter data gotten at the same period in 2012, soil moisture information of greater area is obtained, and then the drought information is obtained, which is consistent with the measured results.

  20. Non-intrusive load monitoring based on low frequency active power measurements

    Directory of Open Access Journals (Sweden)

    Chinthaka Dinesh

    2016-03-01

    Full Text Available A Non-Intrusive Load Monitoring (NILM method for residential appliances based on active power signal is presented. This method works effectively with a single active power measurement taken at a low sampling rate (1 s. The proposed method utilizes the Karhunen Loéve (KL expansion to decompose windows of active power signals into subspace components in order to construct a unique set of features, referred to as signatures, from individual and aggregated active power signals. Similar signal windows were clustered in to one group prior to feature extraction. The clustering was performed using a modified mean shift algorithm. After the feature extraction, energy levels of signal windows and power levels of subspace components were utilized to reduce the number of possible appliance combinations and their energy level combinations. Then, the turned on appliance combination and the energy contribution from individual appliances were determined through the Maximum a Posteriori (MAP estimation. Finally, the proposed method was modified to adaptively accommodate the usage patterns of appliances at each residence. The proposed NILM method was validated using data from two public databases: tracebase and reference energy disaggregation data set (REDD. The presented results demonstrate the ability of the proposed method to accurately identify and disaggregate individual energy contributions of turned on appliance combinations in real households. Furthermore, the results emphasise the importance of clustering and the integration of the usage behaviour pattern in the proposed NILM method for real households.

  1. An automated method to quantify microglia morphology and application to monitor activation state longitudinally in vivo.

    Directory of Open Access Journals (Sweden)

    Cleopatra Kozlowski

    Full Text Available Microglia are specialized immune cells of the brain. Upon insult, microglia initiate a cascade of cellular responses including a characteristic change in cell morphology. To study the dynamics of microglia immune response in situ, we developed an automated image analysis method that enables the quantitative assessment of microglia activation state within tissue based solely on cell morphology. Per cell morphometric analysis of fluorescently labeled microglia is achieved through local iterative threshold segmentation, which reduces errors caused by signal-to-noise variation across large volumes. We demonstrate, utilizing systemic application of lipopolysaccharide as a model of immune challenge, that several morphological parameters, including cell perimeter length, cell roundness and soma size, quantitatively distinguish resting versus activated populations of microglia within tissue comparable to traditional immunohistochemistry methods. Furthermore, we provide proof-of-concept data that monitoring soma size enables the longitudinal assessment of microglia activation in the mouse neocortex imaged via 2-photon in vivo microscopy. The ability to quantify microglia activation automatically by shape alone allows unbiased and rapid analysis of both fixed and in vivo central nervous system tissue.

  2. Label-free molecular beacon for real-time monitoring of DNA polymerase activity.

    Science.gov (United States)

    Ma, Changbei; Liu, Haisheng; Wang, Jun; Jin, Shunxin; Wang, Kemin

    2016-05-01

    Traditional methods for assaying DNA polymerase activity are discontinuous, time consuming, and laborious. Here, we report a new approach for label-free and real-time monitoring of DNA polymerase activity using a Thioflavin T (ThT) probe. In the presence of DNA polymerase, the DNA primer could be elongated through polymerase reaction to open MB1, leading to the release of the G-quartets. These then bind to ThT to form ThT/G-quadruplexes with an obvious fluorescence generation. It exhibits a satisfying detection result for the activity of DNA polymerase with a low detection limit of 0.05 unit/ml. In addition, no labeling with a fluorophore or a fluorophore-quencher pair is required; this method is fairly simple, fast, and low cost. Furthermore, the proposed method was also applied to assay the inhibition of DNA polymerase activity. This approach may offer potential applications in drug screening, clinical diagnostics, and some other related biomedical research.

  3. Neuronal processes involved in subjective feeling emergence: oscillatory activity during an emotional monitoring task.

    Science.gov (United States)

    Dan Glauser, Elise S; Scherer, Klaus R

    2008-06-01

    Subjective feeling, defined as the conscious experience of emotion and measured by self-report, is generally used as a manipulation check in studying emotional processes, rather than being the primary focus of research. In this paper, we report a first investigation into the processes involved in the emergence of a subjective feeling. We hypothesized that the oscillatory brain activity presumed to underlie the emergence of a subjective feeling can be measured by electroencephalographic (EEG) frequency band activity, similar to what has been shown in the literature for the conscious representation of objects. Emotional reactions were induced in participants using static visual stimuli. Episodes for which participants reported a subjective feeling were compared to those that did not lead to a conscious emotional experience, in order to identify potential differences between these two kinds of reactions at the oscillatory level. Discrete wavelet transforms of the EEG signal in gamma (31-63 Hz) and beta (15-31 Hz) bands showed significant differences between these two types of reactions. In addition, whereas beta band activities were widely distributed, differences in gamma band activity were predominantly observed in the frontal and prefrontal regions. The results are interpreted and discussed in terms of the complexity of the processes required to perform the affective monitoring task. It is suggested that future work on coherent mental representation of multimodal reaction patterns leading to the emergence of conscious emotional experience should include modifications in the time window examined and an extension of the frequency range to be considered.

  4. Monitoring of posture allocations and activities by a shoe-based wearable sensor.

    Science.gov (United States)

    Sazonov, Edward S; Fulk, George; Hill, James; Schutz, Yves; Browning, Raymond

    2011-04-01

    Monitoring of posture allocations and activities enables accurate estimation of energy expenditure and may aid in obesity prevention and treatment. At present, accurate devices rely on multiple sensors distributed on the body and thus may be too obtrusive for everyday use. This paper presents a novel wearable sensor, which is capable of very accurate recognition of common postures and activities. The patterns of heel acceleration and plantar pressure uniquely characterize postures and typical activities while requiring minimal preprocessing and no feature extraction. The shoe sensor was tested in nine adults performing sitting and standing postures and while walking, running, stair ascent/descent and cycling. Support vector machines (SVMs) were used for classification. A fourfold validation of a six-class subject-independent group model showed 95.2% average accuracy of posture/activity classification on full sensor set and over 98% on optimized sensor set. Using a combination of acceleration/pressure also enabled a pronounced reduction of the sampling frequency (25 to 1 Hz) without significant loss of accuracy (98% versus 93%). Subjects had shoe sizes (US) M9.5-11 and W7-9 and body mass index from 18.1 to 39.4 kg/m2 and thus suggesting that the device can be used by individuals with varying anthropometric characteristics.

  5. Electrodic voltages in the presence of dissolved sulfide: Implications for monitoring natural microbial activity

    Energy Technology Data Exchange (ETDEWEB)

    Slater, L.; Ntarlagiannis, D.; Yee, N.; O' Brien, M.; Zhang, C.; Williams, K. H.

    2008-10-01

    There is growing interest in the development of new monitoring strategies for obtaining spatially extensive data diagnostic of microbial processes occurring in the earth. Open-circuit potentials arising from variable redox conditions in the fluid local-to-electrode surfaces (electrodic potentials) were recorded for a pair of silver-silver chloride electrodes in a column experiment, whereby a natural wetland soil containing a known community of sulfate reducers was continuously fed with a sulfate-rich nutrient medium. Measurements were made between five electrodes equally spaced along the column and a reference electrode placed on the column inflow. The presence of a sulfate reducing microbial population, coupled with observations of decreasing sulfate levels, formation of black precipitate (likely iron sulfide),elevated solid phase sulfide, and a characteristic sulfurous smell, suggest microbial-driven sulfate reduction (sulfide generation) in our column. Based on the known sensitivity of a silver electrode to dissolved sulfide concentration, we interpret the electrodic potentials approaching 700 mV recorded in this experiment as an indicator of the bisulfide (HS-) concentration gradients in the column. The measurement of the spatial and temporal variation in these electrodic potentials provides a simple and rapid method for monitoring patterns of relative HS- concentration that are indicative of the activity of sulfate-reducing bacteria. Our measurements have implications both for the autonomous monitoring of anaerobic microbial processes in the subsurface and the performance of self-potential electrodes, where it is critical to isolate, and perhaps quantify, electrochemical interfaces contributing to observed potentials.

  6. A Smart Washer for Bolt Looseness Monitoring Based on Piezoelectric Active Sensing Method

    Directory of Open Access Journals (Sweden)

    Heyue Yin

    2016-10-01

    Full Text Available Piezoceramic based active sensing methods have been researched to monitor preload on bolt connections. However, there is a saturation problem involved with this type of method. The transmitted energy is sometimes saturated before the maximum preload which is due to it coming into contact with flat surfaces. When it comes to flat contact surfaces, the true contact area will easily saturate with the preload. The design of a new type of bolt looseness monitoring sensor, a smart washer, is to mitigate the saturation problem. The smart washer is composed of two annular disks with contact surfaces that are machined into convex and concave respectively, to eliminate the complete flat contact surfaces and to reduce the saturation effect. One piezoelectric patch is bonded on the non-contact surface of each annular disk. These two mating annular disks form a smart washer. One of the two piezoelectric patches serves as an actuator to generate an ultrasonic wave that propagates through the contact surface; the other one serves as a sensor to detect the propagated waves. The wave energy propagated through the contact surface is proportional to the true contact area which is determined by the bolt preload. The time reversal method is used to extract the peak of the focused signal as the index of the transmission wave energy; then, the relationship between the signal peak and bolt preload is obtained. Experimental results show that the focused signal peak value changes with the bolt preload and presents an approximate linear relationship when the saturation problem is experienced. The proposed smart washer can monitor the full range of the rated preload.

  7. Monitoring microbial growth and activity using spectral induced polarization and low-field nuclear magnetic resonance

    Science.gov (United States)

    Zhang, Chi; Keating, Kristina; Revil, Andre

    2015-04-01

    Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A

  8. Active Monitoring of Travelers Arriving from Ebola-Affected Countries - New York City, October 2014-April 2015.

    Science.gov (United States)

    Millman, Alexander J; Chamany, Shadi; Guthartz, Seth; Thihalolipavan, Sayone; Porter, Michael; Schroeder, Andrew; Vora, Neil M; Varma, Jay K; Starr, David

    2016-01-01

    The Ebola virus disease (Ebola) outbreak in West Africa has claimed approximately 11,300 lives (1), and the magnitude and course of the epidemic prompted many nonaffected countries to prepare for Ebola cases imported from affected countries. In October 2014, CDC and the Department of Homeland Security (DHS) implemented enhanced entry risk assessment and management at five U.S. airports: John F. Kennedy (JFK) International Airport in New York City (NYC), O'Hare International Airport in Chicago, Newark Liberty International Airport in New Jersey, Hartsfield-Jackson International Airport in Atlanta, and Dulles International Airport in Virginia (2). Enhanced entry risk assessment began at JFK on October 11, 2014, and at the remaining airports on October 16 (3). On October 21, DHS exercised its authority to direct all travelers flying into the United States from an Ebola-affected country to arrive at one of the five participating airports. At the time, the Ebola-affected countries included Guinea, Liberia, Mali, and Sierra Leone. On October 27, CDC issued updated guidance for monitoring persons with potential Ebola virus exposure (4), including recommending daily monitoring of such persons to ascertain the presence of fever or symptoms for a period of 21 days (the maximum incubation period of Ebola virus) after the last potential exposure; this was termed "active monitoring." CDC also recommended "direct active monitoring" of persons with a higher risk for Ebola virus exposure, including health care workers who had provided direct patient care in Ebola-affected countries. Direct active monitoring required direct observation of the person being monitored by the local health authority at least once daily (5). This report describes the operational structure of the NYC Department of Health and Mental Hygiene's (DOHMH) active monitoring program during its first 6 months (October 2014-April 2015) of operation. Data collected on persons who required direct active monitoring

  9. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    Directory of Open Access Journals (Sweden)

    R. F. M. Michel

    2014-07-01

    Full Text Available International attention to the climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of the this paper is to present active layer temperature data for one CALM-S site located at Fildes Peninsula, King George Island, Maritime Antarctica over an fifth seven month period (2008–2012. The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ± 0.2 °C, arranged vertically with probes at different depths, recording data at hourly intervals in a~high capacity data logger. A series of statistical analysis were performed to describe the soil temperature time series, including a linear fit in order to identify global trend and a series of autoregressive integrated moving average (ARIMA models were tested in order to define the best fit for the data. The controls of weather on the thermal regime of the active layer have been identified, providing insights about the influence of climate chance over the permafrost. The active layer thermal regime in the studied period was typical of periglacial environment, with extreme variation at the surface during summer resulting in frequent freeze and thaw cycles. The active layer thickness (ALT over the studied period showed variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model was considered appropriate to treat the dataset, enabling more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and active layer thickness over the studied period, no warming trend was detected.

  10. Monitoring off-gas O2/CO2 to predict nitrification performance in activated sludge processes.

    Science.gov (United States)

    Leu, Shao-Yuan; Libra, Judy A; Stenstrom, Michael K

    2010-06-01

    Nitrification/denitrification (NDN) processes are the most widely used technique to remove nitrogenous pollutants from municipal wastewater. The performance of nitrogen removal in the NDN process depends on the metabolism of nitrifying bacteria, and is dependent on adequate oxygen supply. Off-gas testing is a convenient and popular method for measuring oxygen transfer efficiency (OTE) under process conditions and can be performed in real-time. Since carbon dioxide is produced by carbonaceous oxidizing organism and not by nitrifiers, it should be possible to use the off-gas carbon dioxide mole fraction to estimate nitrification performance independently of the oxygen uptake rate (OUR) or OTE. This paper used off-gas data with a dynamic model to estimate nitrifying efficiency for various activated sludge process conditions. The relationship among nitrification, oxygen transfer, carbon dioxide production, and pH change was investigated. Experimental results of an online off-gas monitoring for a full-scale treatment plant were used to validate the model. The results showed measurable differences in OUR and carbon dioxide transfer rate (CTR) and the simulations successfully predicted the effluent ammonia by using the measured CO(2) and O(2) contents in off-gas as input signal. Carbon dioxide in the off-gas could be a useful technique to control aeration and to monitor nitrification rate.

  11. A Sensor Web and Web Service-Based Approach for Active Hydrological Disaster Monitoring

    Directory of Open Access Journals (Sweden)

    Xi Zhai

    2016-09-01

    Full Text Available Rapid advancements in Earth-observing sensor systems have led to the generation of large amounts of remote sensing data that can be used for the dynamic monitoring and analysis of hydrological disasters. The management and analysis of these data could take advantage of distributed information infrastructure technologies such as Web service and Sensor Web technologies, which have shown great potential in facilitating the use of observed big data in an interoperable, flexible and on-demand way. However, it remains a challenge to achieve timely response to hydrological disaster events and to automate the geoprocessing of hydrological disaster observations. This article proposes a Sensor Web and Web service-based approach to support active hydrological disaster monitoring. This approach integrates an event-driven mechanism, Web services, and a Sensor Web and coordinates them using workflow technologies to facilitate the Web-based sharing and processing of hydrological hazard information. The design and implementation of hydrological Web services for conducting various hydrological analysis tasks on the Web using dynamically updating sensor observation data are presented. An application example is provided to demonstrate the benefits of the proposed approach over the traditional approach. The results confirm the effectiveness and practicality of the proposed approach in cases of hydrological disaster.

  12. Prioritization methodology for the monitoring of active pharmaceutical ingredients in hospital effluents.

    Science.gov (United States)

    Daouk, Silwan; Chèvre, Nathalie; Vernaz, Nathalie; Bonnabry, Pascal; Dayer, Pierre; Daali, Youssef; Fleury-Souverain, Sandrine

    2015-09-01

    The important number of active pharmaceutical ingredients (API) available on the market along with their potential adverse effects in the aquatic ecosystems, lead to the development of prioritization methods, which allow choosing priority molecules to monitor based on a set of selected criteria. Due to the large volumes of API used in hospitals, an increasing attention has been recently paid to their effluents as a source of environmental pollution. Based on the consumption data of a Swiss university hospital, about hundred of API has been prioritized following an OPBT approach (Occurrence, Persistence, Bioaccumulation and Toxicity). In addition, an Environmental Risk Assessment (ERA) allowed prioritizing API based on predicted concentrations and environmental toxicity data found in the literature for 71 compounds. Both prioritization approaches were compared. OPBT prioritization results highlight the high concern of some non steroidal anti-inflammatory drugs and antiviral drugs, whereas antibiotics are revealed by ERA as potentially problematic to the aquatic ecosystems. Nevertheless, according to the predicted risk quotient, only the hospital fraction of ciprofloxacin represents a risk to the aquatic organisms. Some compounds were highlighted as high-priority with both methods: ibuprofen, trimethoprim, sulfamethoxazole, ritonavir, gabapentin, amoxicillin, ciprofloxacin, raltegravir, propofol, etc. Analyzing consumption data and building prioritization lists helped choosing about 15 API to be monitored in hospital wastewaters. The API ranking approach adopted in this study can be easily transposed to any other hospitals, which have the will to look at the contamination of their effluents.

  13. Comparison of hip and low back worn Axivity AX3 and GT3X+ activity monitors

    DEFF Research Database (Denmark)

    Brønd, Jan Christian; Arvidsson, Daniel; Møller, Niels Christian

    the validity and comparability of the PA measure. Bibliography A 9 subject convenient sample was selected for wearing an Actigraph GT3X+ with an Axivity AX3 glued back to back in an elastic belt at the hip and an Axivity AX3 on the low back using adhesive tape. All monitors were worn during free living for 24...... Hours. The Actigraph GT3X + monitors was initialized to record 30 Hz raw and the Axivity AX3 was initialized to record 100Hz +-8g. The AX3 data was downloaded, resampled and calibrated (1) using the AX3 OMGUI (V1.0.0.28) and further resampled using Matlab into 30 Hz to account for the potential sample...... frequency dependency (4). After manually aligning the 30 Hz raw data it was saved into GT3X+ binary files for PA processing. All AX3 and GT3X+ data were processed into 10 seconds epoch activity counts using Actilife V.6.11.4. Statistical analysis and post data processing was done in Matlab (V8.5.0 R2015a...

  14. Forest ecosystem monitoring in Tuscany (Italy: past activities, present status and future perspectives

    Directory of Open Access Journals (Sweden)

    Claudio LEONZIO

    2002-09-01

    Full Text Available Since 1987 the Region of Tuscany has been actively monitoring crown status in its forests, in order to protect them from atmospheric pollution, biotic factors and environmental change. Over this period the Region has performed periodical inventories on crown condition in publicly-owned forests (Level I network and established a network of permanent plots (MON.I.TO., Level II – III to study long-term changes occurring in forest ecosystems. Some of these permanent plots were later included in the national programme CONECOFOR, managed by the Ministry for Policy in Agriculture and Forest. Currently a further development of MON.I.TO. is being implemented, called MONITO III – TOpModel, the aim of which is to broaden the information potential of the monitoring system to include carbon stocks and biodiversity evaluation. This paper provides an up-to-date report on the status of the various surveys and recommends a closer connection between MON.I.TO. and the other regional information systems, especially the Regional Forest Inventory, in order to produce information that may be useful in forest planning and in Sustainable Forest Management.

  15. Rapid monitoring of RNA degradation activity in vivo for mammalian cells.

    Science.gov (United States)

    Tani, Hidenori; Sato, Hiroaki; Torimura, Masaki

    2017-04-01

    We have developed a rapid fluorescence assay based on fluorescence resonance energy transfer (FRET) for the monitoring of RNA degradation activity in mammalian cells. In this technique, double-stranded RNA (dsRNA) fluorescent probes are used. The dsRNA fluorescent probes consist of a 5' fluorophore-labeled strand hybridized to a 3' quencher-labeled strand, and the fluorescent dye is quenched by a quencher dye. When the dsRNA is degraded by nascent RNases in cells, the fluorescence emission of the fluorophore is induced following the degradation of the double strands. The degradation rates of the dsRNA are decelerated in response to chemical or environmental toxicity; therefore, in the case of cellular toxicity, the dsRNA is not degraded and remains intact, thus quenching the fluorescence. Unlike in conventional cell-counting assays, this new assay eliminates time-consuming steps, and can be used to simply evaluate the cellular toxicity via a single reaction. Our results demonstrate that this assay can rapidly quantify the RNA degradation rates in vivo within 4 h for three model chemicals. We propose that this assay will be useful for monitoring cellular toxicity in high-throughput applications.

  16. Laser measurement of respiration activity in preterm infants: Monitoring of peculiar events

    Science.gov (United States)

    Scalise, L.; Marchionni, P.; Ercoli, I.; Tomasini, E. P.

    2012-09-01

    The Neonatal Intensive Care Unit (NICU) is a part of a pediatric hospital dedicated to the care of ill or pre-term patients . NICU's patients are underweight and most of the time they need cardiac and respiratory support therapies; they are placed in incubators or in cribs maintaining target environmental and body temperatures and protecting patients from bacteria and virus. Patients are continuously monitored for long period of time (days or weeks) due to their possible several health conditions. the most common vital signs monitored are: respiration rate, heart rate, body temperature, blood saturation, etc. Most of the devices used for transducing such quantities in electronic signals - like spirometer or electrocardiogram (ECG) - are in direct contact with the patient and results, also in consideration of the specific patient, largely invasive. In this paper, we propose a novel measurement system for non-contact and non-invasive assessment of the respiration activity, with particular reference to the detection of peculiar respiration events of extreme interest in intensive care units, such as: irregular inspiration/expiration acts, hiccups and apneas. The sensing device proposed is the Laser Doppler Vibrometer (LDVi) which is an non contact, optical measurement system for the assessment of a surface velocity and displacement. In the past it has been demonstrated to be suitable to measure heart rate (HR) and respiration rate (RR) in adult and in preterm infant trough chest-wall displacements. The measurement system is composed by a LDVi system and a data acquisition board installed on a PC, with no direct contact with the patient. Tests have been conducted on 20 NICU patients, for a total of 7219 data sampled. Results show very high correlation (R=0.99) with the reference instrument used for the patient monitoring (mechanical ventilator), with an uncertainty < ±7 ms (k=2). Moreover, during the tests, some peculiar respiration events, have been recorded on 6 of

  17. Induced modifications on algae photosynthetic activity monitored by pump-and-probe technique

    Energy Technology Data Exchange (ETDEWEB)

    Barbini, R.; Colao, F.; Fantoni, R.; Palucci, A.; Ribezzo, S. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Tarzillo, G.; Carlozzi, P.; Pelosi, E. [CNR, Florence (Italy). Centro Studi Microorganismi Autotrofi

    1995-12-01

    The lidar fluorosensor system available at ENEA Frascati has been used for a series of laboratory measurements on brackish-water and marine phytoplankton grown in laboratory with the proper saline solution. The system, already used to measure the laser induced fluorescence spectra of different algae species and their detection limits, has been upgraded with a short pulse Nd:YAG laser and rearranged to test a new technique based on laser pump and probe excitation. Results of this new technique for remote monitoring of the in-vivo photosynthetic activity will be presented, as measured during a field campaign carried out in Florence during the Autumn 1993, where the effects of an actinic saturating light and different chemicals have also been checked.

  18. Monitoring of Landslide Activity in Slovakia Territory Using Multi-Temporal InSAR Techniques

    Science.gov (United States)

    Bakon, M.; Papco, J.; Perissin, D.; Lazecky, M.; Sousa, J. J.; Hlavacova, I.; Batorova, K.; Ondrejka, P.; Liscak, P.; Paudits, P.; Real, N.

    2015-05-01

    Slope deformations are the most important geohazards in Slovakia which annually cause an extensive economic damage of significant influence. About 22000 slope deformations have been registered so far, covering an area of almost 2600 km2 . Since 2010, 639 new slope failures have been witnessed and their activation was driven mainly by the climatic anomalies such as extraordinary rainfalls. Many of these landslides currently represent a direct threat to the lives, health and property of the residents in the affected areas. The landslide Nizna Mysla is considered to be the second most catastrophic landslide in the history of Slovakia. Damages to buildings and engineering networks had not been identified in the ‘90s of the last century when the first problems with the slope stability appeared. Up-to-now monitoring techniques has currently been reassessed to account for the results from satellite Synthetic Aperture Radar (SAR) techniques.

  19. The roar of Yasur: Handheld audio recorder monitoring of Vanuatu volcanic vent activity

    Science.gov (United States)

    Lorenz, Ralph D.; Turtle, Elizabeth P.; Howell, Robert; Radebaugh, Jani; Lopes, Rosaly M. C.

    2016-08-01

    We describe how near-field audio recording using a pocket digital sound recorder can usefully document volcanic activity, demonstrating the approach at Yasur, Vanuatu in May 2014. Prominent emissions peak at 263 Hz, interpreted as an organ-pipe mode. High-pass filtering was found to usefully discriminate volcano vent noise from wind noise, and autocorrelation of the high pass acoustic power reveals a prominent peak in exhalation intervals of 2.5, 4 and 8 s, with a number of larger explosive events at 200 s intervals. We suggest that this compact and inexpensive audio instrumentation can usefully supplement other field monitoring such as seismic or infrasound. A simple estimate of acoustic power interpreted with a dipole jet noise model yielded vent velocities too low to be compatible with pyroclast emission, suggesting difficulties with this approach at audio frequencies (perhaps due to acoustic absorption by volcanic gases).

  20. Energy expenditure prediction via a footwear-based physical activity monitor: Accuracy and comparison to other devices

    Science.gov (United States)

    Dannecker, Kathryn

    2011-12-01

    Accurately estimating free-living energy expenditure (EE) is important for monitoring or altering energy balance and quantifying levels of physical activity. The use of accelerometers to monitor physical activity and estimate physical activity EE is common in both research and consumer settings. Recent advances in physical activity monitors include the ability to identify specific activities (e.g. stand vs. walk) which has resulted in improved EE estimation accuracy. Recently, a multi-sensor footwear-based physical activity monitor that is capable of achieving 98% activity identification accuracy has been developed. However, no study has compared the EE estimation accuracy for this monitor and compared this accuracy to other similar devices. Purpose . To determine the accuracy of physical activity EE estimation of a footwear-based physical activity monitor that uses an embedded accelerometer and insole pressure sensors and to compare this accuracy against a variety of research and consumer physical activity monitors. Methods. Nineteen adults (10 male, 9 female), mass: 75.14 (17.1) kg, BMI: 25.07(4.6) kg/m2 (mean (SD)), completed a four hour stay in a room calorimeter. Participants wore a footwear-based physical activity monitor, as well as three physical activity monitoring devices used in research: hip-mounted Actical and Actigraph accelerometers and a multi-accelerometer IDEEA device with sensors secured to the limb and chest. In addition, participants wore two consumer devices: Philips DirectLife and Fitbit. Each individual performed a series of randomly assigned and ordered postures/activities including lying, sitting (quietly and using a computer), standing, walking, stepping, cycling, sweeping, as well as a period of self-selected activities. We developed branched (i.e. activity specific) linear regression models to estimate EE from the footwear-based device, and we used the manufacturer's software to estimate EE for all other devices. Results. The shoe

  1. Satellite observations of fumarole activity at Aluto volcano, Ethiopia: Implications for geothermal monitoring and volcanic hazard

    Science.gov (United States)

    Braddock, Mathilde; Biggs, Juliet; Watson, Iain M.; Hutchison, William; Pyle, David M.; Mather, Tamsin A.

    2017-07-01

    Fumaroles are the surface manifestation of hydrothermal circulation and can be influenced by magmatic, hydrothermal, hydrological and tectonic processes. This study investigates the temporal changes in fumarole temperatures and spatial extent on Aluto, a restless volcano in the Main Ethiopian Rift (MER), in order to better understand the controls on fluid circulation and the interaction between the magmatic and hydrothermal systems. Thermal infrared (TIR) satellite images, acquired by the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) over the period of 2004 to 2016, are used to generate time series of the fumarole temperatures and areas. The thermal anomalies identified in the ASTER images coincide with known fumaroles with temperatures > 80 °C and are located on or close to fault structures, which provide a pathway for the rising fluids. Most of the fumaroles, including those along the major zone of hydrothermal upwelling, the Artu Jawe Fault Zone, have pixel-integrated temperature variations of only 2 ± 1.5 °C. The exception are the Bobesa fumaroles located on a hypothesised caldera ring fault which show pixel-integrated temperature changes of up to 9 °C consistent with a delayed response of the hydrothermal system to precipitation. We conclude that fumaroles along major faults are strongly coupled to the magmatic-hydrothermal system and are relatively stable with time, whereas those along shallower structures close to the rift flank are more strongly influenced by seasonal variations in groundwater flow. The use of remote sensing data to monitor the thermal activity of Aluto provides an important contribution towards understanding the behaviour of this actively deforming volcano. This method could be used at other volcanoes around the world for monitoring and geothermal exploration.

  2. Monitoring Solution Structures of Peroxisome Proliferator-Activated Receptor β/δ upon Ligand Binding

    Science.gov (United States)

    Schwarz, Rico; Tänzler, Dirk; Ihling, Christian H.; Sinz, Andrea

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) have been intensively studied as drug targets to treat type 2 diabetes, lipid disorders, and metabolic syndrome. This study is part of our ongoing efforts to map conformational changes in PPARs in solution by a combination of chemical cross-linking and mass spectrometry (MS). To our best knowledge, we performed the first studies addressing solution structures of full-length PPAR-β/δ. We monitored the conformations of the ligand-binding domain (LBD) as well as full-length PPAR-β/δ upon binding of two agonists. (Photo-) cross-linking relied on (i) a variety of externally introduced amine- and carboxyl-reactive linkers and (ii) the incorporation of the photo-reactive amino acid p-benzoylphenylalanine (Bpa) into PPAR-β/δ by genetic engineering. The distances derived from cross-linking experiments allowed us to monitor conformational changes in PPAR-β/δ upon ligand binding. The cross-linking/MS approach proved highly advantageous to study nuclear receptors, such as PPARs, and revealed the interplay between DBD (DNA-binding domain) and LDB in PPAR-β/δ. Our results indicate the stabilization of a specific conformation through ligand binding in PPAR-β/δ LBD as well as full-length PPAR-β/δ. Moreover, our results suggest a close distance between the N- and C-terminal regions of full-length PPAR-β/δ in the presence of GW1516. Chemical cross-linking/MS allowed us gaining detailed insights into conformational changes that are induced in PPARs when activating ligands are present. Thus, cross-linking/MS should be added to the arsenal of structural methods available for studying nuclear receptors. PMID:26992147

  3. Long-Term Monitoring of Dolphin Biosonar Activity in Deep Pelagic Waters of the Mediterranean Sea.

    Science.gov (United States)

    Caruso, Francesco; Alonge, Giuseppe; Bellia, Giorgio; De Domenico, Emilio; Grammauta, Rosario; Larosa, Giuseppina; Mazzola, Salvatore; Riccobene, Giorgio; Pavan, Gianni; Papale, Elena; Pellegrino, Carmelo; Pulvirenti, Sara; Sciacca, Virginia; Simeone, Francesco; Speziale, Fabrizio; Viola, Salvatore; Buscaino, Giuseppa

    2017-06-28

    Dolphins emit short ultrasonic pulses (clicks) to acquire information about the surrounding environment, prey and habitat features. We investigated Delphinidae activity over multiple temporal scales through the detection of their echolocation clicks, using long-term Passive Acoustic Monitoring (PAM). The Istituto Nazionale di Fisica Nucleare operates multidisciplinary seafloor observatories in a deep area of the Central Mediterranean Sea. The Ocean noise Detection Experiment collected data offshore the Gulf of Catania from January 2005 to November 2006, allowing the study of temporal patterns of dolphin activity in this deep pelagic zone for the first time. Nearly 5,500 five-minute recordings acquired over two years were examined using spectrogram analysis and through development and testing of an automatic detection algorithm. Echolocation activity of dolphins was mostly confined to nighttime and crepuscular hours, in contrast with communicative signals (whistles). Seasonal variation, with a peak number of clicks in August, was also evident, but no effect of lunar cycle was observed. Temporal trends in echolocation corresponded to environmental and trophic variability known in the deep pelagic waters of the Ionian Sea. Long-term PAM and the continued development of automatic analysis techniques are essential to advancing the study of pelagic marine mammal distribution and behaviour patterns.

  4. Real-time spectroscopic monitoring of photocatalytic activity promoted by graphene in a microfluidic reactor

    Science.gov (United States)

    Li, Yifan; Lin, Beichen; Ge, Likai; Guo, Hongchen; Chen, Xinyi; Lu, Miao

    2016-06-01

    Photocatalytic microreactors have been utilized as rapid, versatile platforms for the characterization of photocatalysts. In this work, a photocatalytic microreactor integrated with absorption spectroscopy was proposed for the real-time monitoring of photocatalytic activity using different catalysts. The validity of this method was investigated by the rapid screening on the photocatalytic performance of a titanium oxide (TiO2)-decorated graphene oxide (GO) sheet for the degradation of methylene blue under monochromatic visible irradiation. The sampling interval time could be minimized to 10 s for achieving real-time detection. The best photocatalytic activity was observed for an optimized TiO2/GO weight mixing ratio of 7:11, with a reaction rate constant up to 0.067 min‑1. The addition of GO into TiO2 enhances photocatalytic activity and adsorption of MB molecules. The synthetic reaction rate constant was up to approximately 0.11 min‑1, which was also the highest among the catalysts. The microreactor exhibited good sensitivity and reproducibility without weakening the performance of the photocatalysts. Consequently, the photocatalytic microreactor is promising as a simple, portable, and rapid screening tool for new photocatalysts.

  5. High-power fiber optic cable with integrated active sensors for live process monitoring

    Science.gov (United States)

    Blomster, Ola; Blomqvist, Mats; Bergstrand, Hans; Pålsson, Magnus

    2012-03-01

    In industrial applications using high-brilliance lasers at power levels up to and exceeding 20 kW and similarly direct diode lasers of 10 kW, there is an increasing demand to continuously monitor component status even in passive components such as fiber-optic cables. With fiber-optic cables designed according to the European Automotive Industry fiber standard interface there is room for integrating active sensors inside the connectors. In this paper we present the integrated active sensors in the new Optoskand QD fiber-optic cable designed to handle extreme levels of power losses, and how these sensors can be employed in industrial manufacturing. The sensors include photo diodes for detection of scattered light inside the fiber connector, absolute temperature of the fiber connector, difference in temperature of incoming and outgoing cooling water, and humidity measurement inside the fiber connector. All these sensors are connected to the fiber interlock system, where interlock break enable functions can be activated when measured signals are higher than threshold levels. It is a very fast interlock break system as the control of the signals is integrated in the electronics inside the fiber connector. Also, since all signals can be logged it is possible to evaluate what happened inside the connector before the interlock break instance. The communication to the fiber-optic connectors is via a CAN interface. Thus it is straightforward to develop the existing laser host control to also control the CAN-messages from the QD sensors.

  6. Knock-in Luciferase Reporter Mice for In Vivo Monitoring of CREB Activity.

    Directory of Open Access Journals (Sweden)

    Dmitry Akhmedov

    Full Text Available The cAMP response element binding protein (CREB is induced during fasting in the liver, where it stimulates transcription of rate-limiting gluconeogenic genes to maintain metabolic homeostasis. Adenoviral and transgenic CREB reporters have been used to monitor hepatic CREB activity non-invasively using bioluminescence reporter imaging. However, adenoviral vectors and randomly inserted transgenes have several limitations. To overcome disadvantages of the currently used strategies, we created a ROSA26 knock-in CREB reporter mouse line (ROSA26-CRE-luc. cAMP-inducing ligands stimulate the reporter in primary hepatocytes and myocytes from ROSA26-CRE-luc animals. In vivo, these animals exhibit little hepatic CREB activity in the ad libitum fed state but robust induction after fasting. Strikingly, CREB was markedly stimulated in liver, but not in skeletal muscle, after overnight voluntary wheel-running exercise, uncovering differential regulation of CREB in these tissues under catabolic states. The ROSA26-CRE-luc mouse line is a useful resource to study dynamics of CREB activity longitudinally in vivo and can be used as a source of primary cells for analysis of CREB regulatory pathways ex vivo.

  7. Real-time corrosion monitoring of steel influenced by microbial activity (SRB) under controlled seawater injection conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Russell D. [InterCorr International, Inc., 14503 Bammel N. Houston Road, Suite 300, Houston, TX 77019 (United States); Campbell, Scott [Commercial Microbiology Inc., 10400 Westoffice Drive Suite 107, Houston, TX 77042 (United States)

    2004-07-01

    An experimental study of microbiologically influenced corrosion (MIC) was conducted involving online, real-time monitoring of a bio-film loop under controlled conditions simulating oil field water handling and injection. Bio-film growth, MIC and biocide efficacy were monitored using an automated, multi-technique monitoring system including linear polarization resistance, electrochemical noise and harmonic distortion analysis. This data was correlated with conventional off-line methods to differentiate conditions of varying MIC activity in real-time to facilitate quick assessment and operator intervention. (authors)

  8. Non-invasive monitoring of functionally distinct muscle activations during swallowing.

    Science.gov (United States)

    McKeown, Martin J; Torpey, Dana C; Gehm, Wendy C

    2002-03-01

    Dysphagia is an important consequence of many diseases. As some of the muscles of deglutition tend to be deep to the surface, needle electrodes are typically used, but this limits the number of muscles that can be simultaneously recorded. Since control of swallowing involves central pattern generators (CPGs) which distribute commands to several muscles, monitoring several muscles simultaneously is desirable. Here we describe a novel method, based on computing the independent components (ICs) of the simultaneous sEMG recordings (Muscle Nerve Suppl 9 (2000) 9) to detect the underlying functional muscle activations during swallowing using only surface EMG (sEMG) electrodes. Seven normal subjects repeatedly swallowed liquids of varying consistency while sEMG was recorded from 15 electrodes from the face and throat. Active areas of EMG were excised from the recordings and the ICs of the sEMG were calculated. The ICs demonstrated less swallow-to-swallow variability than the raw sEMG. The ICs, each consisting of a unique temporal waveform and a spatial distribution, provided a means to segregate the complex sequence of muscle activation into rigorously defined separate functional units. The temporal profiles of the ICs and their spatial distribution were consistent with prior needle EMG studies of the cricopharyngeal, superior pharyngeal constrictor, submental and possibly arytenoid muscles. Other components appeared to correspond to EKG artifact contaminating the EMG recordings, laryngeal excursion, tongue movement and activation of the buccal and/or masseter musculature At least two of the components were affected by the consistency of the liquids swallowed. Re-testing one subject a week later demonstrated good intertrial reliability. We propose that the ICs of the sEMG provide a non-invasive means to assess the complex muscle sequence activation of deglutition.

  9. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae.

    Science.gov (United States)

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-12-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host-pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.

  10. In vivo optoacoustic monitoring of calcium activity in the brain (Conference Presentation)

    Science.gov (United States)

    Deán-Ben, Xose Luís.; Gottschalk, Sven; Sela, Gali; Lauri, Antonella; Kneipp, Moritz; Ntziachristos, Vasilis; Westmeyer, Gil G.; Shoham, Shy; Razansky, Daniel

    2017-03-01

    Non-invasive observation of spatio-temporal neural activity of large neural populations distributed over the entire brain of complex organisms is a longstanding goal of neuroscience [1,2]. Recently, genetically encoded calcium indicators (GECIs) have revolutionized neuroimaging by enabling mapping the activity of entire neuronal populations in vivo [3]. Visualization of these powerful sensors with fluorescence microscopy has however been limited to superficial regions while deep brain areas have so far remained unreachable [4]. We have developed a volumetric multispectral optoacoustic tomography platform for imaging neural activation deep in scattering brains [5]. The developed methodology can render 100 volumetric frames per second across scalable fields of view ranging between 50-1000 mm3 with respective spatial resolution of 35-150µm. Experiments performed in immobilized and freely swimming larvae and in adult zebrafish brains expressing the genetically-encoded calcium indicator GCaMP5G demonstrated, for the first time, the fundamental ability to directly track neural dynamics using optoacoustics while overcoming the depth barrier of optical imaging in scattering brains [6]. It was further possible to monitor calcium transients in a scattering brain of a living adult transgenic zebrafish expressing GCaMP5G calcium indicator [7]. Fast changes in optoacoustic traces associated to GCaMP5G activity were detectable in the presence of other strongly absorbing endogenous chromophores, such as hemoglobin. The results indicate that the optoacoustic signal traces generally follow the GCaMP5G fluorescence dynamics and further enable overcoming the longstanding optical-diffusion penetration barrier associated to scattering in biological tissues [6]. The new functional optoacoustic neuroimaging method can visualize neural activity at penetration depths and spatio-temporal resolution scales not covered with the existing neuroimaging techniques. Thus, in addition to the well

  11. Use of Plasma Renin Activity to Monitor Mineralocorticoid Treatment in Dogs with Primary Hypoadrenocorticism: Desoxycorticosterone Versus Fludrocortisone

    OpenAIRE

    Baumstark, M E; Nussberger, J.; Boretti, F S; Baumstark, M W; Riond, B.; Reusch, C.E.; Sieber‐Ruckstuhl, N.S.

    2014-01-01

    Background Measurement of plasma renin activity (PRA) is the gold standard for monitoring mineralocorticoid treatment in humans with primary hypoadrenocorticism (PH). Objectives To compare PRA in dogs with newly diagnosed PH, dogs with diseases mimicking PH, and healthy dogs, and evaluate measurement of PRA to monitor therapeutic effects in dogs with PH treated with different mineralocorticoids. Animals Eleven dogs with newly diagnosed PH (group 1), 10 dogs with diseases mimicking PH (group 2...

  12. Final Report Real Time Monitoring of Rates of Subsurface Microbial Activity Associated with Natural Attenuation and Electron Donor Availability

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R. [Univ. of Massachusetts, Amherst, MA (United States)

    2016-03-22

    The project was successful in developing new sensing technologies for monitoring rates of microbial activity in soils and sediments and also developed a novel proof-of-concept for monitoring the presence of bioavailable concentrations of a diversity of metabolites and toxic components in sedimentary environments. These studies led not only to publications in the peer-reviewed literature, but also two patent applications and a start-up company.

  13. Monitoring of growth and physiological activities of biofilm during succession on polystyrene from activated sludge under aerobic and anaerobic conditions.

    Science.gov (United States)

    Naz, Iffat; Batool, Syeda Ain-ul; Ali, Naeem; Khatoon, Nazia; Atiq, Niama; Hameed, Abdul; Ahmed, Safia

    2013-08-01

    The present research work monitored the successive biofilm development and its catabolic role in the degradation of polystyrene (PS). PS material was artificially colonized with biofilm by incubating it with activated sludge under aerobic and anaerobic conditions. Biofilm formation was monitored by gravimetric weight analysis, spectrophotometric absorbance technique, heterotrophic plate count, and scanning electron microscopy under aerobic and anaerobic conditions. The wet weight (1.59 and 1.17 g) and dry weight (0.41 and 0.08 g) of a biofilm showed a significant constant increase under aerobic and anaerobic conditions, respectively, from first till 9 weeks of incubation. Plate count of the selected bacteria (Escherichia coli, Salmonella typhimurium, Shigella dysenteriae, Pseudomonas aeruginosa) considerably declined (90-99 %) in the biofilm after seventh and fifth weeks of incubation under aerobic and anaerobic conditions, respectively, indicating a positive shift from pathogenic to beneficial microbial community. While most probable number index of fecal coliforms and E. coli in the sludge showed more reduction (98 and 99 %) under aerobic as compare to anaerobic conditions (86 and 91 %) after 9 weeks of biofilm formation on PS cubes. Correspondingly, the decreasing levels of chemical oxygen demand and biochemical oxygen demand (up to 73 %) showed signs of sludge digestion. Scanning electron microscope coupled with energy dispersive X-ray spectroscope revealed nature of PS media containing high carbon content. However, biofilm development proved to be involved in the biochemical transformation of the PS medium as indicated by Fourier transform infrared spectroscopy.

  14. Robot Vision to Monitor Structures in Invisible Fog Environments Using Active Imaging Technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seungkyu; Park, Nakkyu; Baik, Sunghoon; Choi, Youngsoo; Jeong, Kyungmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Active vision is a direct visualization technique using a highly sensitive image sensor and a high intensity illuminant. Range-gated imaging (RGI) technique providing 2D and 3D images is one of emerging active vision technologies. The RGI technique extracts vision information by summing time sliced vision images. In the RGI system, objects are illuminated for ultra-short time by a high intensity illuminant and then the light reflected from objects is captured by a highly sensitive image sensor with the exposure of ultra-short time. The RGI system provides 2D and 3D image data from several images and it moreover provides clear images from invisible fog and smoke environment by using summing of time-sliced images. Nowadays, the Range-gated (RG) imaging is an emerging technology in the field of surveillance for security applications, especially in the visualization of invisible night and fog environment. Although RGI viewing was discovered in the 1960's, this technology is, nowadays, more and more applicable by virtue of the rapid development of optical and sensor technologies, such as highly sensitive imaging sensor and ultra-short pulse laser light. In contrast to passive vision systems, this technology enables operation even in harsh environments like fog and smoke. During the past decades, several applications of this technology have been applied in target recognition and in harsh environments, such as fog, underwater vision. Also, this technology has been demonstrated 3D imaging based on range-gated imaging. In this paper, a robot system to monitor structures in invisible fog environment is developed using an active range-gated imaging technique. The system consists of an ultra-short pulse laser device and a highly sensitive imaging sensor. The developed vision system is carried out to monitor objects in invisible fog environment. The experimental result of this newly approach vision system is described in this paper. To see invisible objects in fog

  15. Monitoring polio supplementary immunization activities using an automated short text messaging system in Karachi, Pakistan

    Science.gov (United States)

    Murtaza, A; Khoja, S; Zaidi, AK; Ali, SA

    2014-01-01

    Abstract Problem Polio remains endemic in many areas of Pakistan, including large urban centres such as Karachi. Approach During each of seven supplementary immunization activities against polio in Karachi, mobile phone numbers of the caregivers of a random sample of eligible children were obtained. A computer-based system was developed to send two questions – as short message service (SMS) texts – automatically to each number after the immunization activity: “Did the vaccinator visit your house?” and “Did the enrolled child in your household receive oral polio vaccine?” Persistent non-responders were phoned directly by an investigator. Local setting A cluster sampling technique was used to select representative samples of the caregivers of young children in Karachi in general and of such caregivers in three of the six “high-risk” districts of the city where polio cases were detected in 2011. Relevant changes In most of the supplementary immunization activities investigated, vaccine coverages estimated using the SMS system were very similar to those estimated by interviewing by phone those caregivers who never responded to the SMS messages. In the high-risk districts investigated, coverages estimated using the SMS system were also similar to those recorded – using lot quality assurance sampling – by the World Health Organization. Lessons learnt For the monitoring of coverage in supplementary immunization activities, automated SMS-based systems appear to be an attractive and relatively inexpensive option. Further research is needed to determine if coverage data collected by SMS-based systems provide estimates that are sufficiently accurate. Such systems may be useful in other large-scale immunization campaigns. PMID:24700982

  16. Evaluation of an activity monitor for the objective measurement of free-living physical activity in children with cerebral palsy.

    Science.gov (United States)

    Tang, Kit Tzu; Richardson, Alison M; Maxwell, Douglas; Spence, William D; Stansfield, Benedict W

    2013-12-01

    To explore the use of an activity monitor (AM) to objectively characterize free-living physical activity (F-LPA) in children with mobility impairment resulting from cerebral palsy (CP). First, a validation study compared outcomes from the AM with video evidence. Second, multiday F-LPA was characterized. Relationships between laboratory measures and F-LPA were explored. The evaluation study was conducted in a laboratory environment. F-LPA monitoring was conducted in the participants' free-living environment. Convenience sample of ambulatory children (N=15; 11 boys, 4 girls) aged 5 to 17 years with CP undergoing gait analysis. Not applicable. Accuracy of the AM for sitting/lying time, upright time, stepping time, and strides taken. Daily volumes of F-LPA of children with CP. AM outcomes in comparison with video-based analysis were (mean ± SD) 97.4%±2.7%, 101.1%±1.5%, 99.5%±6.6%, 105.6%±15.8%, and 103.8%±10.1% for sitting/lying time, upright time, standing time, stepping time, and stride count, respectively. Participants' daily F-LPA demonstrated considerable variation: mean standing time ± SD, 2.33±.96h/d; mean stepping time ± SD, 1.68±.86h/d; mean steps per day ± SD, 8477±4528; and mean sit-to-stand transitions per day ± SD, 76±49. Laboratory-measured cadence and mobility level were related to F-LPA, but not directly. The AM demonstrated excellent ability to determine sitting/lying and upright times in children with CP. Stepping time and stride count had lower levels of agreement with video-based analysis but were comparable to findings in previous studies. Crouch gait and toe walking had an adverse effect on outcomes. The F-LPA data provided additional information on children's performance not related to laboratory measures, demonstrating the added value of using this objective measurement technique. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. A multi-biomarker disease activity score for monitoring rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Hirata S

    2015-10-01

    physicians with a convenient measurement tool to monitor patients in a clinical setting and support rapid treatment adjustment and tighter disease control. This article examines peer-reviewed publications cited in PubMed that describe the multi-biomarker disease activity score, its development and validation, and its applications as an objective disease assessment tool in patients with RA. Keywords: algorithm, multi-biomarker disease activity score, disease activity, rheumatoid arthritis, Vectra DA

  18. Stress-induced traveltime variations at SAFOD revealed by continuous cross-well active source monitoring

    Science.gov (United States)

    Yang, C.; Niu, F.; Daley, T. M.; Taira, T.

    2016-12-01

    The time-varying stress/strain field at seismogenic depths is arguable the single most important property controlling the sequencing and nucleation of seismic events. The measurement of stress, however, is notoriously difficult, particularly at seismogenic depths. Seismic imaging, in principle, has the capability to provide this critical depth component. Numerous laboratory studies over the last few decades have shown that the elastic properties of crustal rocks clearly exhibit stress dependence. Such dependence is attributed to the opening/closing of fluid-filled cracks in response to changes in the stress normal to the crack surface. Temporal changes in stress are thus, in principle, measurable through seismic imaging of changes in elastic properties, such as seismic velocity field. We have been conducting continuous cross-well active source experiments utilizing the SAFOD (San Andreas Fault Observatory at Depth) pilot and main holes to develop a seismic stress meter to monitor the subsurface stress field by exploring the velocity-stress sensitivity. In a two-month period in 2005-2006, we found a 0.3% change in the average S-wave velocity, which shows a good correlation with barometric pressure, corresponding to a stress sensitivity of 2.4x10-7Pa-1. We also observed two large excursions in the delay time measurement, corresponding to 0.55% and 0.15% decreases of seismic velocity, that are coincident with two earthquakes that are among those predicted to produce the largest coseismic stress changes. The two excursions started approximately 10 and 2 hours before the events, respectively, suggesting that they may be related to pre-rupture stress induced changes in crack properties, as observed in early laboratory studies. We repeated the experiment in early 2010 with a slightly different experiment configuration, and collected 40-days data. The new data confirmed the negative correlation between traveltime and barometric pressure. The estimated stress sensitivity is

  19. Accuracy of energy expenditure estimation by activity monitors differs with ethnicity.

    Science.gov (United States)

    Brazeau, A-S; Suppere, C; Strychar, I; Belisle, V; Demers, S-P; Rabasa-Lhoret, R

    2014-09-01

    The aim of this project is to explore the accuracy of 2 activity monitors (SenseWear Armband & Actical) to estimate energy expenditure during rest and light to moderate intensity exercises in 2 ethnic groups. 18 Caucasian and 20 Black adults (age: 26.8±5.2 years; body mass index: 23.9±3.0 kg/m(2)) wore the 2 devices simultaneously during 3 standardised activities: 30-min rest, 45-min of treadmill at 40% of their V˙O2peak and 45-min of stationary cycling at 50% of their V˙O2peak. Energy estimated with the 2 devices was compared to indirect calorimetry measurements. Both devices overestimated energy expenditure during rest (SenseWear: 36% in Black vs. 16% in Caucasian; Actical: 26% vs. 11%, p<0.01 between groups) and treadmill (SenseWear: 50% vs. 25%; Actical: 67% vs. 32%, p<0.01 between groups). Both devices significantly underestimated energy expenditure during stationary cycling (SenseWear: 24% vs. 26%; Actical: 58% vs. 70%, p=NS between groups). Equations used to estimate energy expenditure from accelerometer data is less precise among Black adults than Caucasian adults. Ethnic-specific formulas are probably required.

  20. Geochemical and geophysical monitoring of thermal waters in Sloveniain relation to seismic activity

    Directory of Open Access Journals (Sweden)

    T. Dolenec

    2005-06-01

    Full Text Available Pre-seismic related strains in the Earth s crust are the main cause of the observed geophysical and geochemical anomalies in ground waters preceding an earthquake. Posoc?je Region, situated along the Soc?a River, is one of the most seismically active areas of Slovenia. Our measuring stations close to the Posoc?je Region were installed in the thermal springs at Bled in 1998 and at Zatolmin in 1999. Since the beginning of our survey, radon concentration, electrical conductivity and water temperature have been measured continuously once every hour. In May 2002, the number of geochemical parameters monitored was extended to ionic concentration, pH and Eh, which are analysed once a month. Before seeking a correlation between geochemical and geophysical anomalies with seismic events, the influence of meteorological (atmospheric precipitation, barometric pressure and hydrological (water table of the Tolminka River factors on observed anomalies were studied. Results at Zatolmin showed that some radon variation during the period from June to October 2002 may be related to seismic activity and not only to meteorological effects.

  1. A step towards seascape scale conservation: using vessel monitoring systems (VMS to map fishing activity.

    Directory of Open Access Journals (Sweden)

    Matthew J Witt

    Full Text Available BACKGROUND: Conservation of marine ecosystems will require a holistic understanding of fisheries with concurrent spatial patterns of biodiversity. METHODOLOGY/PRINCIPAL FINDINGS: Using data from the UK Government Vessel Monitoring System (VMS deployed on UK-registered large fishing vessels we investigate patterns of fisheries activity on annual and seasonal scales. Analysis of VMS data shows that regions of the UK European continental shelf (i.e. Western Channel and Celtic Sea, Northern North Sea and the Goban Spur receive consistently greater fisheries pressure than the rest of the UK continental shelf fishing zone. CONCLUSIONS/SIGNIFICANCE: VMS provides a unique and independent method from which to derive patterns of spatially and temporally explicit fisheries activity. Such information may feed into ecosystem management plans seeking to achieve sustainable fisheries while minimising putative risk to non-target species (e.g. cetaceans, seabirds and elasmobranchs and habitats of conservation concern. With multilateral collaboration VMS technologies may offer an important solution to quantifying and managing ecosystem disturbance, particularly on the high-seas.

  2. Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity

    Directory of Open Access Journals (Sweden)

    S. Uyeda

    2001-01-01

    Full Text Available Regular monitoring of some geophysical parameters in association with seismicity has been carried out since last year at the Japan-Russian Complex Geophysical Observatory in the Kamchatka region. This observatory was organized in connection with the ISTC project in Russia and was motivated by the results of the FRONTIER/RIKEN and FRONTIER/NASDA research projects in Japan. The main purpose of the observations is to investigate the electromagnetic and acoustic phenomena induced by the lithosphere processes (especially by seismic activity. The seismicity of the Kamchatka area is analyzed and a description of the observatory equipment is presented. At present, the activity of the observatory includes the seismic (frequency range ∆F = 0.5 – 40 Hz and meteorological recordings, together with seismo-acoustic (∆F = 30 – 1000 Hz and electromagnetic observations: three-component magnetic ULF variations ( ∆F = 0.003 – 30 Hz, three-component electric potential variations ( ∆F 1.0 Hz, and VLF transmitter’s signal perturbations ( ∆F ~ 10 – 40 kHz.

  3. Electrical Resistivity Monitoring of an Active Hydrothermal Degassing Area at Solfatara, Phlegrean Fields.

    Science.gov (United States)

    Vandemeulebrouck, J.; Byrdina, S.; Grangeon, J.; Lebourg, T.; Bascou, P.; Mangiacapra, A.

    2015-12-01

    Campi Flegrei caldera (CFc) is an active volcanic complex covering a ~100 km² densely populated area in the western part of Naples (Italy) that is presently showing clear signs of unrest. Solfatara volcano, a tuff cone crater formed ~4000 yrs B.P. ago by phreato-magmatic eruptions represents the main degassing outflow of CFc. Magmatic gases which are exsolved from a ~8 km deep magmatic reservoir mix at 4 km depth with meteoric hydrothermal fluids then reach the surface in the Solfatara area. These hydrothermal and magmatic gases, mainly H2O and CO2, are released through both diffuse degassing structures and fumaroles. In the frame of the MedSuv (Mediterranean Supervolcanoes) FP7 european project , we are performing a time-lapse electrical resistivity monitoring of an active degassing area of Solfatara. Using a 500-m-long cable and 48 electrodes, an electrical resistivity tomography (ERT) is performed on a two-day basis since May 2013. The time-lapse inversion of the ERT gives an image of the temporal variations of resistivity up to 100 m depth that can be compared with the variations of ground deformation, CO2 flux, soil temperature and seismic ambient noise. Resistivity variations can originate from fluid composition, gas ratio and temperature. For example, the abrupt change of resistivity that was observed mid-2014 during a period of uplift and gas flux increase, could be associated with the rise of hydrothermal fluids.

  4. An Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.H.; Nevin, K.P.; Franks, A.; Englert, A.; Long, P.E.; Lovley, D.R.

    2009-11-15

    Current production by microorganisms colonizing subsurface electrodes and its relationship to substrate availability and microbial activity was evaluated in an aquifer undergoing bioremediation. Borehole graphite anodes were installed downgradient from a region of acetate injection designed to stimulate bioreduction of U(VI); cathodes consisted of graphite electrodes embedded at the ground surface. Significant increases in current density ({<=}50 mA/m{sup 2}) tracked delivery of acetate to the electrodes, dropping rapidly when acetate inputs were discontinued. An upgradient control electrode not exposed to acetate produced low, steady currents ({<=}0.2 mA/m{sup 2}). Elevated current was strongly correlated with uranium removal but minimal correlation existed with elevated Fe(II). Confocal laser scanning microscopy of electrodes revealed firmly attached biofilms, and analysis of 16S rRNA gene sequences indicated the electrode surfaces were dominated (67-80%) by Geobacter species. This is the first demonstration that electrodes can produce readily detectable currents despite long-range (6 m) separation of anode and cathode, and these results suggest that oxidation of acetate coupled to electron transfer to electrodes by Geobacter species was the primary source of current. Thus it is expected that current production may serve as an effective proxy for monitoring in situ microbial activity in a variety of subsurface anoxic environments.

  5. Reusable electrical activity of the heart monitoring patch for mobile/ubiquitous healthcare.

    Science.gov (United States)

    Lee, Jeong-Whan; Lee, Kang-Hwi; Lee, Young-Jae; Hong, Lee-Yon; Kim, Dong-Jun; Kim, Kyeong-Seop; Lee, Bongsoo; Lee, Myoungho

    2009-02-01

    In order to monitor electrical activity of the heart during daily life, we present an electrode of a medical instrument system which is able to measure the body surface potential difference by minimizing the electrode distance. The designed electrode is composed of concentric circles. It was made from the basis of the Laplacian equation, and implemented on PCB coated with gold. So that it does not cause the uncomfortable feeling of contact and possible skin troubles which are typical shortcoming of the conventional ECG measurement. The suggested method utilized three concentric circles on FR-4 substrate, so new amplifier design regarding measuring of small biological signal, is considered which has the characteristics of asymmetric input impedance since the area of concentric circular ring electrodes is not identical. Thereby, electrical activity of the heart was obtained successfully. However, its signal quality is a little bit degraded and the motion artifact still remains as a major problem as is in conventional electrocardiography measurement. Certainly stable measurement setup was needed to reduce the motion artifact originated from variation in static electricity between skin and electrode interfaces.

  6. Activated charcoal based diffusive gradients in thin films for in situ monitoring of bisphenols in waters.

    Science.gov (United States)

    Zheng, Jian-Lun; Guan, Dong-Xing; Luo, Jun; Zhang, Hao; Davison, William; Cui, Xin-Yi; Wang, Lian-Hong; Ma, Lena Q

    2015-01-06

    Widespread use of bisphenols (BPs) in our daily life results in their elevated concentrations in waters and the need to study their environmental impact, which demands reliable and robust measurement techniques. Diffusive gradients in thin films (DGT) is an in situ passive sampling approach which provides time-integrated data. In this study we developed a new methodology, based on DGT with activated charcoal (AC) as a binding agent, for measuring three BPs (BPA, BPB, and BPF) which incorporated and tested its performance characteristics. Consistent elution efficiencies were obtained using methanol when concentrations of BPs were low and a methanol-NaOH mixture at high concentrations. The diffusion coefficients of BPA, BPB, and BPF in the diffusive gel, measured using an independent diffusion cell, were 5.03 × 10(-6), 5.64 × 10(-6), and 4.44 × 10(-6) cm(2) s(-1) at 25 °C, respectively. DGT with an AC binding gel had a high capacity for BPA, BPB, and BPF at 192, 140, and 194 μg/binding gel disk, respectively, and the binding performance did not deteriorate with time, up to 254 d after production. Time-integrated concentrations of BPs measured in natural waters using DGT devices with AC gels deployed in situ for 7 d were comparable to concentrations measured by an active sampling method. This study demonstrates that AC-based DGT is an effective tool for in situ monitoring of BPs in waters.

  7. Are physical activity studies in Hispanics meeting reporting guidelines for continuous monitoring technology? A systematic review.

    Science.gov (United States)

    Layne, Charles S; Parker, Nathan H; Soltero, Erica G; Rosales Chavez, José; O'Connor, Daniel P; Gallagher, Martina R; Lee, Rebecca E

    2015-09-18

    Continuous monitoring technologies such as accelerometers and pedometers are the gold standard for physical activity (PA) measurement. However, inconsistencies in use, analysis, and reporting limit the understanding of dose-response relationships involving PA and the ability to make comparisons across studies and population subgroups. These issues are particularly detrimental to the study of PA across different ethnicities with different PA habits. This systematic review examined the inclusion of published guidelines involving data collection, processing, and reporting among articles using accelerometers or pedometers in Hispanic or Latino populations. English (PubMed; EbscoHost) and Spanish (SCIELO; Biblioteca Virtual en Salud) articles published between 2000 and 2013 using accelerometers or pedometers to measure PA among Hispanics or Latinos were identified through systematic literature searches. Of the 253 abstracts which were initially reviewed, 57 met eligibility criteria (44 accelerometer, 13 pedometer). Articles were coded and reviewed to evaluate compliance with recommended guidelines (N = 20), and the percentage of accelerometer and pedometer articles following each guideline were computed and reported. On average, 57.1 % of accelerometer and 62.2 % of pedometer articles reported each recommended guideline for data collection. Device manufacturer and model were reported most frequently, and provision of instructions for device wear in Spanish was reported least frequently. On average, 29.6 % of accelerometer articles reported each guideline for data processing. Definitions of an acceptable day for inclusion in analyses were reported most frequently, and definitions of an acceptable hour for inclusion in analyses were reported least frequently. On average, 18.8 % of accelerometer and 85.7 % of pedometer articles included each guideline for data reporting. Accelerometer articles most frequently included average number of valid days and least frequently

  8. Regional passive seismic monitoring reveals dynamic glacier activity on Spitsbergen, Svalbard

    Directory of Open Access Journals (Sweden)

    Andreas Köhler

    2015-12-01

    Full Text Available Dynamic glacier activity is increasingly observed through passive seismic monitoring. We analysed near-regional-scale seismicity on the Arctic archipelago of Svalbard to identify seismic icequake signals and to study their spatial–temporal distribution within the 14-year period from 2000 until 2013. This is the first study that uses seismic data recorded on permanent broadband stations to detect and locate icequakes in different regions of Spitsbergen, the main island of the archipelago. A temporary local seismic network and direct observations of glacier calving and surging were used to identify icequake sources. We observed a high number of icequakes with clear spectral peaks between 1 and 8 Hz in different parts of Spitsbergen. Spatial clusters of icequakes could be associated with individual grounded tidewater glaciers and exhibited clear seasonal variability each year with more signals observed during the melt season. Locations at the termini of glaciers, and correlation with visual calving observations in situ at Kronebreen, a glacier in the Kongsfjorden region, show that these icequakes were caused dominantly by calving. Indirect evidence for glacier surging through increased calving seismicity was found in 2003 at Tunabreen, a glacier in central Spitsbergen. Another type of icequake was observed in the area of the Nathorstbreen glacier system. Seismic events occurred upstream of the glacier within a short time period between January and May 2009 during the initial phase of a major glacier surge. This study is the first step towards the generation and implementation of an operational seismic monitoring strategy for glacier dynamics in Svalbard.

  9. Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity: A Pilot Study.

    Science.gov (United States)

    Ardic, Fusun; Göcer, Esra

    2016-03-01

    The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer.A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland-Altman analyses were performed to show the relationship and agreement between the results of 2 devices.Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P PEDO and YX200 pedometer in the Bland-Altman analysis.Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a desired speed.

  10. Development and Integration of Hardware and Software for Active-Sensors in Structural Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Overly, Timothy G.S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2007-01-01

    Structural Health Monitoring (SHM) promises to deliver great benefits to many industries. Primarily among them is a potential for large cost savings in maintenance of complex structures such as aircraft and civil infrastructure. However, several large obstacles remain before widespread use on structures can be accomplished. The development of three components would address many of these obstacles: a robust sensor validation procedure, a low-cost active-sensing hardware and an integrated software package for transition to field deployment. The research performed in this thesis directly addresses these three needs and facilitates the adoption of SHM on a larger scale, particularly in the realm of SHM based on piezoelectric (PZT) materials. The first obstacle addressed in this thesis is the validation of the SHM sensor network. PZT materials are used for sensor/actuators because of their unique properties, but their functionality also needs to be validated for meaningful measurements to be recorded. To allow for a robust sensor validation algorithm, the effect of temperature change on sensor diagnostics and the effect of sensor failure on SHM measurements were classified. This classification allowed for the development of a sensor diagnostic algorithm that is temperature invariant and can indicate the amount and type of sensor failure. Secondly, the absence of a suitable commercially-available active-sensing measurement node is addressed in this thesis. A node is a small compact measurement device used in a complete system. Many measurement nodes exist for conventional passive sensing, which does not actively excite the structure, but there are no measurement nodes available that both meet the active-sensing requirements and are useable outside the laboratory. This thesis develops hardware that is low-power, active-sensing and field-deployable. This node uses the impedance method for SHM measurements, and can run the sensor diagnostic algorithm also developed here

  11. Older Adults’ Experiences Using a Commercially Available Monitor to Self-Track Their Physical Activity

    Science.gov (United States)

    2016-01-01

    Background Physical activity contributes to older adults’ autonomy, mobility, and quality of life as they age, yet fewer than 1 in 5 engage in activities as recommended. Many older adults track their exercise using pencil and paper, or their memory. Commercially available physical activity monitors (PAM) have the potential to facilitate these tracking practices and, in turn, physical activity. An assessment of older adults’ long-term experiences with PAM is needed to understand this potential. Objective To assess short and long-term experiences of adults >70 years old using a PAM (Fitbit One) in terms of acceptance, ease-of-use, and usefulness: domains in the technology acceptance model. Methods This prospective study included 95 community-dwelling older adults, all of whom received a PAM as part of randomized controlled trial piloting a fall-reducing physical activity promotion intervention. Ten-item surveys were administered 10 weeks and 8 months after the study started. Survey ratings are described and analyzed over time, and compared by sex, education, and age. Results Participants were mostly women (71/95, 75%), 70 to 96 years old, and had some college education (68/95, 72%). Most participants (86/95, 91%) agreed or strongly agreed that the PAM was easy to use, useful, and acceptable both 10 weeks and 8 months after enrolling in the study. Ratings dropped between these time points in all survey domains: ease-of-use (median difference 0.66 points, P=.001); usefulness (median difference 0.16 points, P=.193); and acceptance (median difference 0.17 points, P=.032). Differences in ratings by sex or educational attainment were not statistically significant at either time point. Most participants 80+ years of age (28/37, 76%) agreed or strongly agreed with survey items at long-term follow-up, however their ratings were significantly lower than participants in younger age groups at both time points. Conclusions Study results indicate it is feasible for older

  12. A new method for monitoring the extracellular proteolytic activity of wine yeasts during alcoholic fermentation of grape must.

    Science.gov (United States)

    Chasseriaud, Laura; Miot-Sertier, Cécile; Coulon, Joana; Iturmendi, Nerea; Moine, Virginie; Albertin, Warren; Bely, Marina

    2015-12-01

    The existing methods for testing proteolytic activity are time consuming, quite difficult to perform, and do not allow real-time monitoring. Proteases have attracted considerable interest in winemaking and some yeast species naturally present in grape must, such as Metschnikowia pulcherrima, are capable of expressing this activity. In this study, a new test is proposed for measuring proteolytic activity directly in fermenting grape must, using azocasein, a chromogenic substrate. Several yeast strains were tested and differences in proteolytic activity were observed. Moreover, analysis of grape must proteins in wines revealed that protease secreted by Metschnikowia strains may be active against wine proteins.

  13. Monitoring of aphid flight activities in seed potato crops in Serbia

    Directory of Open Access Journals (Sweden)

    Andja Vucetic

    2013-07-01

    Full Text Available Aphid flight activities in seed potato fields have been studied by the yellow water traps. It is a good method for monitoring aphids as vectors of viruses, but this study also showed it is a suitable method for insect-diversity research. During the four-year studies, over 11.500 specimens were collected and a total of 107 different taxa of aphids were identified. The most abundant species were polyphagous species, such as: Acyrthosiphon pisum (Haris, Aphis fabae Scopoli, Aphis gossypii Glover and Brachycaudus helichrysi (Kaltenbach. The results of the studies show that diversity of aphids in different regions of Serbia is similar regardless of the altitude and the diversity of terrain. At most sites it ranged from 2 to 3. The highest value was recorded in Begeč, locality in northern part of Serbia, in year 2008, and it was 2.92. The maximum values of the Shannon-Weaver diversity index at all sites were recorded in the first weeks of the monitoring of aphid flight activities. Morisita-Horn similarity index shows no significant differences between sites regardless of altitudes. The sites are grouped by year, not by similarity of relief. In spite of these results, the Chi-square analysis showed highly significant difference in vector frequencies among seasons and sites with more pronounced differences for PVY. As a consequence of differences in vector frequencies, the vector pressure index in some regions was different also. The number of vectors and vector pressure index vary depending on the altitude of localities. At localities at altitudes under 1000 m, they were high. The highest index was at Kotraža, locality in central part of Serbia, in 2007, when PVY index exceeded the value of 180, while for PLRV it was 60. At high altitudes on mountain Golija, above 1100 m, the number of aphids was low, as well as the vector pressure index which indicates that these regions are suitable for producing virus-free seed potato.

  14. Continuous monitoring of dissolved gases with membrane inlet mass spectrometry to fingerprint river biochemical activity

    Science.gov (United States)

    Vautier, Camille; Chatton, Eliot; Abbott, Benjamin; Harjung, Astrid; Labasque, Thierry; Guillou, Aurélie; Pannard, Alexandrine; Piscart, Christophe; Laverman, Anniet; Kolbe, Tamara; Massé, Stéphanie; de Dreuzy, Jean-Raynald; Thomas, Zahra; Aquilina, Luc; Pinay, Gilles

    2017-04-01

    Water quality in rivers results from biogeochemical processes in contributing hydrological compartments (soils, aquifers, hyporheic and riparian zones) and biochemical activity in the river network itself. Consequently, chemical fluxes fluctuate on multiple spatial and temporal scales, leading eventually to complex concentration signals in rivers. We characterized these fluctuations with innovative continuous monitoring of dissolved gases, to quantify transport and reaction processes occurring in different hydrological compartments. We performed stream-scale experiments in two headwater streams in Brittany, France. Factorial injections of inorganic nitrogen (NH4NO3), inorganic phosphate (P2O5) and multiple sources of labile carbon (acetate, tryptophan) were implemented in the two streams. We used a new field application of membrane inlet mass spectrometry to continuously monitor dissolved gases for multiple day-night periods (Chatton et al., 2016). Quantified gases included He, O2, N2, CO2, CH4, N2O, and 15N of dissolved N2 and N2O. We calibrated and assessed the methodology with well-established complementary techniques including gas chromatography and high-frequency water quality sensors. Wet chemistry and radon analysis complemented the study. The analyses provided several methodological and ecological insights and demonstrated that high frequency variations linked to background noise can be efficiently determined and filtered to derive effective fluxes. From a more fundamental point of view, the tested stream segments were fully characterized with extensive sampling of riverbeds and laboratory experiments, allowing scaling of point-level microbial and invertebrate diversity and activity on in-stream processing. This innovative technology allows fully-controlled in-situ experiments providing rich information with a high signal to noise ratio. We present the integrated nutrient demand and uptake and discuss limiting processes and elements at the reach and

  15. Error Negativity Does Not Reflect Conflict: A Reappraisal of Conflict Monitoring and Anterior Cingulate Cortex Activity

    OpenAIRE

    2008-01-01

    Our ability to detect and correct errors is essential for our adaptive behavior. The conflict-loop theory states that the anterior cingulate cortex (ACC) plays a key role in detecting the need to increase control through conflict monitoring. Such monitoring is assumed to manifest itself in an electroencephalographic (EEG) component, the "error negativity" (Ne or "error-related negativity" [ERN]). We have directly tested the hypothesis that the ACC monitors conflict through simulation and expe...

  16. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J. [INP-Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Börner, K.; Burlacov, I.; Spies, H.-J. [TU Bergakademie Freiberg, Institute of Materials Engineering, Gustav-Zeuner-Str. 5, 09599 Freiberg (Germany); Strämke, M.; Strämke, S. [ELTRO GmbH, Arnold-Sommerfeld-Ring 3, 52499 Baesweiler (Germany)

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.

  17. A Sensor Fault Detection Methodology applied to Piezoelectric Active Systems in Structural Health Monitoring Applications

    Science.gov (United States)

    Tibaduiza, D.; Anaya, M.; Forero, E.; Castro, R.; Pozo, F.

    2016-07-01

    Damage detection is the basis of the damage identification task in Structural Health Monitoring. A good damage detection process can ensure the adequate work of a SHM System because allows to know early information about the presence of a damage in a structure under evaluation. However this process is based on the premise that all sensors are well installed and they are working properly, however, it is not true all the time. Problems such as debonding, cuts and the use of the sensors under different environmental and operational conditions result in changes in the vibrational response and a bad functioning in the SHM system. As a contribution to evaluate the state of the sensors in a SHM system, this paper describes a methodology for sensor fault detection in a piezoelectric active system. The methodology involves the use of PCA for multivariate analysis and some damage indices as pattern recognition technique and is tested in a blade from a wind turbine where different scenarios are evaluated including sensor cuts and debonding.

  18. Integrated Wearable System for Monitoring Heart Rate and Step during Physical Activity

    Directory of Open Access Journals (Sweden)

    Eka Adi Prasetyo Joko Prawiro

    2016-01-01

    Full Text Available This paper integrates a heart rate (HR monitoring system with step counter for use during physical activities. Novel step counter algorithm has been developed to enable the highly accurate detection of step. The proposed system comprises a wireless wearable device, a smartphone, and a remote server. Data transmission between a wearable device and a smartphone is conducted via Bluetooth low energy (BLE. An indirect contact measurement method has also been devised to eliminate the need for direct contact electrodes and likelihood of skin irritation. The proposed system is compact, lightweight, and comfortable to wear. A smartphone application provides the interface for the display of data related to HR, step count (SC, exercise intensity, speed, distance, and calories burned, as well as waveforms related to ECG and step cycle. ECG peak detection algorithm achieved accuracy of 99.7% using the MIT-BIH ST Change Database. Accuracy of 98.89% was achieved for HR and 98.96% for SC at treadmill speeds of 1.8 to 9.0 km/h.

  19. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Science.gov (United States)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  20. Infrasound Monitoring of the Volcanic Activities of Japanese Volcanoes in Korea

    Science.gov (United States)

    Lee, H. I.; Che, I. Y.; Shin, J. S.

    2015-12-01

    Since 1999 when our first infrasound array station(CHNAR) has been installed at Cheolwon, Korea Institute of Geoscience and Mineral Resources(KIGAM) is continuously observing infrasound signals with an infrasound array network, named KIN(Korean Infrasound Network). This network is comprised of eight seismo-acoustic array stations(BRDAR, YPDAR, KMPAR, CHNAR, YAGAR, KSGAR, ULDAR, TJIAR). The aperture size of the smallest array is 300m and the largest is about 1.4km. The number of infrasound sensors are between 4(TJIAR) and 18(YAGAR), and 1~5 seismometers are collocated with infrasound sensors. Many interesting infrasound signals associated with different type of sources, such as blasting, large earthquake, bolide, volcanic explosion are detected by KIN in the past 15 years. We have analyzed the infrasound signals possibly associated with the japanese volcanic explosions with reference to volcanic activity report published by Japanese Meteorological Agency. Analysis results of many events, for example, Asama volcano explosion in 2004 and Shinmoe volcano in 2011, are well matched with the official report. In some cases, however, corresponding infrasound signals are not identified. By comparison of the infrasound signals from different volcanoes, we also found that the characteristics of signals are distinguishing. It may imply that the specific volcano has its own unique fingerprint in terms of infrasound signal. It might be investigated by long-term infrasound monitoring for a specific volcano as a ground truth generating repetitive infrasound signal.

  1. Monitoring Integrated Activity of Individual Neurons Using FRET-Based Voltage-Sensitive Dyes.

    Science.gov (United States)

    Briggman, Kevin L; Kristan, William B; González, Jesús E; Kleinfeld, David; Tsien, Roger Y

    2015-01-01

    Pairs of membrane-associated molecules exhibiting fluorescence resonance energy transfer (FRET) provide a sensitive technique to measure changes in a cell's membrane potential. One of the FRET pair binds to one surface of the membrane and the other is a mobile ion that dissolves in the lipid bilayer. The voltage-related signal can be measured as a change in the fluorescence of either the donor or acceptor molecules, but measuring their ratio provides the largest and most noise-free signal. This technology has been used in a variety of ways; three are documented in this chapter: (1) high throughput drug screening, (2) monitoring the activity of many neurons simultaneously during a behavior, and (3) finding synaptic targets of a stimulated neuron. In addition, we provide protocols for using the dyes on both cultured neurons and leech ganglia. We also give an updated description of the mathematical basis for measuring the coherence between electrical and optical signals. Future improvements of this technique include faster and more sensitive dyes that bleach more slowly, and the expression of one of the FRET pair genetically.

  2. Active electrode IC for EEG and electrical impedance tomography with continuous monitoring of contact impedance.

    Science.gov (United States)

    Guermandi, Marco; Cardu, Roberto; Franchi Scarselli, Eleonora; Guerrieri, Roberto

    2015-02-01

    The IC presented integrates the front-end for EEG and Electrical Impedance Tomography (EIT) acquisition on the electrode, together with electrode-skin contact impedance monitoring and EIT current generation, so as to improve signal quality and integration of the two techniques for brain imaging applications. The electrode size is less than 2 cm(2) and only 4 wires connect the electrode to the back-end. The readout circuit is based on a Differential Difference Amplifier and performs single-ended amplification and frequency division multiplexing of the three signals that are sent to the back-end on a single wire which also provides power supply. Since the system's CMRR is a function of each electrode's gain accuracy, an analysis is performed on how this is influenced by mismatches in passive and active components. The circuit is fabricated in 0.35 μm CMOS process and occupies 4 mm(2), the readout circuit consumes 360 μW, the input referred noise for bipolar EEG signal acquisition is 0.56 μVRMS between 0.5 and 100 Hz and almost halves if only EEG signal is acquired.

  3. Fiber Bragg grating strain sensors to monitor and study active volcanoes

    Science.gov (United States)

    Sorrentino, Fiodor; Beverini, Nicolò; Carbone, Daniele; Carelli, Giorgio; Francesconi, Francesco; Gambino, Salvo; Giacomelli, Umberto; Grassi, Renzo; Maccioni, Enrico; Morganti, Mauro

    2016-04-01

    Stress and strain changes are among the best indicators of impending volcanic activity. In volcano geodesy, borehole volumetric strain-meters are mostly utilized. However, they are not easy to install and involve high implementation costs. Advancements in opto-electronics have allowed the development of low-cost sensors, reliable, rugged and compact, thus particularly suitable for field application. In the framework of the EC FP7 MED-SUV project, we have developed strain sensors based on the fiber Bragg grating (FBG) technology. In comparison with previous implementation of the FBG technology to study rock deformations, we have designed a system that is expected to offer a significantly higher resolution and accuracy in static measurements and a smooth dynamic response up to 100 Hz, implying the possibility to observe seismic waves. The system performances are tailored to suit the requirements of volcano monitoring, with special attention to power consumption and to the trade-off between performance and cost. Preliminary field campaigns were carried out on Mt. Etna (Italy) using a prototypal single-axis FBG strain sensor, to check the system performances in out-of-the-lab conditions and in the harsh volcanic environment (lack of mains electricity for power, strong diurnal temperature changes, strong wind, erosive ash, snow and ice during the winter time). We also designed and built a FBG strain sensor featuring a multi-axial configuration which was tested and calibrated in the laboratory. This instrument is suitable for borehole installation and will be tested on Etna soon.

  4. Preliminary Analysis of Two Years of the Massive Collision Monitoring Activity

    Science.gov (United States)

    McKnight, Darren; Matney, Mark; Walbert, Kris; Behrend, Sophie; Casey, Patrick; Speaks, Seth

    2017-01-01

    It is hypothesized that the interactions between many of the most massive derelicts in low Earth orbit are more frequent than modeled by the traditional combination of kinetic theory of gases and Poisson probability distribution function. This is suggested by the fact that there are clusters of derelicts where members' inclinations are nearly identical and their apogees/perigees overlap significantly resulting in periodic synchronization of the objects' orbits. In order to address this proposition, an experiment was designed and conducted over the last two years. Results from this monitoring and characterization experiment are presented with implications for proposed debris remediation strategies. Four separate clusters of massive derelicts were examined that are centered around 775km, 850km, 975km, and 1500km, respectively. In aggregate, the constituents of these clusters contain around 500 objects and about 800,000kg of mass; this equates to a third of all derelict mass in LEO. Preliminary analysis indicates that encounter rates over this time period for these objects are greater than is estimated by traditional techniques. Hypothesized dependencies between latitude of encounter, relative velocity, frequency of encounters, inclination, and differential semi-major axis were established and verified. This experiment also identified specific repeatable cluster dynamics that may reduce the cost/risk and enhance the effectiveness of debris remediation activities and also enable new operational debris remediation options.

  5. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen.

    Science.gov (United States)

    Hamann, S; Börner, K; Burlacov, I; Spies, H-J; Strämke, M; Strämke, S; Röpcke, J

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  6. Usability testing of a monitoring and feedback tool to stimulate physical activity

    Directory of Open Access Journals (Sweden)

    van der Weegen S

    2014-03-01

    Full Text Available Sanne van der Weegen,1 Renée Verwey,1,2 Huibert J Tange,3 Marieke D Spreeuwenberg,1 Luc P de Witte1,2 1Department of Health Services Research, CAPHRI School for Public Health and Primary Care, Faculty of Health Medicine and Life Sciences, Maastricht University, the Netherlands; 2Research Centre Technology in Care, Zuyd University of Applied Sciences, Heerlen, the Netherlands; 3Department of General Practice, CAPHRI School for Public Health and Primary Care, Faculty of Health Medicine and Life Sciences, Maastricht University, the Netherlands Introduction: A monitoring and feedback tool to stimulate physical activity, consisting of an activity sensor, smartphone application (app, and website for patients and their practice nurses, has been developed: the 'It's LiFe!' tool. In this study the usability of the tool was evaluated by technology experts and end users (people with chronic obstructive pulmonary disease or type 2 diabetes, with ages from 40–70 years, to improve the user interfaces and content of the tool. Patients and methods: The study had four phases: 1 a heuristic evaluation with six technology experts; 2 a usability test in a laboratory by five patients; 3 a pilot in real life wherein 20 patients used the tool for 3 months; and 4 a final lab test by five patients. In both lab tests (phases 2 and 4 qualitative data were collected through a thinking-aloud procedure and video recordings, and quantitative data through questions about task complexity, text comprehensiveness, and readability. In addition, the post-study system usability questionnaire (PSSUQ was completed for the app and the website. In the pilot test (phase 3, all patients were interviewed three times and the Software Usability Measurement Inventory (SUMI was completed. Results: After each phase, improvements were made, mainly to the layout and text. The main improvement was a refresh button for active data synchronization between activity sensor, app, and server

  7. Calcite precipitation on glass substrates and active stalagmites in Katerloch Cave (Austria): Constraints from environmental monitoring

    Science.gov (United States)

    Sakoparnig, Marlene; Boch, Ronny; Wang, Xianfeng; Lin, Ke; Spötl, Christoph; Leis, Albrecht; Gollowitsch, Anna; Dietzel, Martin

    2016-04-01

    Located near Graz at the SE-rim of the Alps Katerloch is well-known for its impressive dripstone decoration, e.g. several metres tall and relatively fast growing (0.2-0.7 mm/yr on average) candle-stick-type stalagmites. In the course of an ongoing multi-annual and partially high-resolution cave monitoring program we study modern (active) sites of carbonate deposition focusing on the site-specific growth dynamics and connection of modern regional and cave environmental conditions with petrographic, chemical and stable isotopic information captured in the speleothems. Fresh calcite precipitates on artificial (glass) substrates underneath active drip sites were collected continuously from 2006 to 2014 (eight years!). The samples (up to 7 mm thick) represent cave sections of different temperature and drip sites of partially different characteristics (e.g. drip rate). We also recovered short drill cores (up to 3 cm length, 1 cm diameter) from the top of active stalagmites probably representing the last decades to centuries of calcite crystallization. Moreover, an actively growing stalagmite (K10) comprising both modern and past calcite deposition was collected. 238U-234U-230Th dating using MC-ICP-MS of K10 (71 cm long) revealed several distinct growth intervals (separated by growth interruptions) starting at 129.1 ±1.2 kyr BP (Last Interglacial) up to now, mostly reflecting warm and humid climate intervals. High-resolution (100 μm) isotope profiles micromilled from the multi-annual modern calcite precipitates on artificial substrates revealed low δ13C values of -12.8 to -8.3 ‰ (VPDB) and relatively high δ18O of -6.9 to -4.9 ‰Ṫhe δ18O curves from all collection sites (different growth rate) record a pronounced decrease during their most recent growth period most likely corresponding to a significant decrease towards lower oxygen isotope values observed in drip waters collected in the year 2014 compared with samples from 2005 to 2007. Drip water δ2H /δ18O

  8. A pilot lifestyle intervention study: effects of an intervention using an activity monitor and Twitter on physical activity and body composition.

    Science.gov (United States)

    Nishiwaki, Masato; Nakashima, Nana; Ikegami, Yumi; Kawakami, Ryoko; Kurobe, Kazumichi; Matsumoto, Naoyuki

    2017-04-01

    This pilot study aimed to examine the effects of a lifestyle intervention comprising an activity monitor and the concurrent use of Twitter, on physical activity (PA) and body composition. Seventeen healthy volunteers (36±3 years) were randomly assigned to normal (N, N.=8) or Twitter (T, N.=9) intervention groups for six weeks. Participants in both groups wore an activity monitor but those in the T group also tweeted daily about their PA. An observer read the tweets from each participant and provided feedback. Body composition was determined using bioelectrical impedance analysis before and after the intervention. Significantly more daily steps and PA at an intensity of ≥3 metabolic equivalents (METs) were recorded by the T than the N during six weeks. The number of steps and PA did not significantly change over time in the N, but significantly increased in the T from weeks one to six (8170±1130 to 12,934±1400 steps/day and 2.6±0.5 to 5.0±0.8 METs·h/day). In addition, significantly more body fat was lost in the T, than in the N (-1.1±0.2 vs. -0.1±0.3 kg), and the changes in PA significantly correlated with the changes in body fat (r=-0.713). Lifestyle intervention can increase daily PA and reduce body fat more effectively when using an activity monitor and Twitter than an activity monitor alone.

  9. 78 FR 13712 - U.S. Nuclear Regulatory Commission Planned Monitoring Activities for F-Area Tank Farm at the...

    Science.gov (United States)

    2013-02-28

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION U.S. Nuclear Regulatory Commission Planned Monitoring Activities for F-Area Tank Farm at the Savannah River Site, Revision 0 AGENCY: Nuclear Regulatory Commission. ACTION: Document issuance....

  10. Real-time monitoring of nuclear factor kappaB activity in cultured cells and in animal models.

    Science.gov (United States)

    Badr, Christian E; Niers, Johanna M; Tjon-Kon-Fat, Lee-Ann; Noske, David P; Wurdinger, Thomas; Tannous, Bakhos A

    2009-01-01

    Nuclear factor kappaB (NF-kappaB) is a transcription factor that plays a major role in many human disorders, including immune diseases and cancer. We designed a reporter system based on NF-kappaB responsive promoter elements driving expression of the secreted Gaussia princeps luciferase (Gluc). We show that this bioluminescent reporter is a highly sensitive tool for noninvasive monitoring of the kinetics of NF-kappaB activation and inhibition over time, both in conditioned medium of cultured cells and in the blood and urine of animals. NF-kappaB activation was successfully monitored in real time in endothelial cells in response to tumor angiogenic signaling, as well as in monocytes in response to inflammation. Further, we demonstrated dual blood monitoring of both NF-kappaB activation during tumor development as correlated to tumor formation using the NF-kappaB Gluc reporter, as well as the secreted alkaline phosphatase reporter. This NF-kappaB reporter system provides a powerful tool for monitoring NF-kappaB activity in real time in vitro and in vivo.

  11. Basophil activation test in the diagnosis and monitoring of mastocytosis patients with wasp venom allergy on immunotherapy

    NARCIS (Netherlands)

    Bidad, Katayoon; Nawijn, Martijn C.; van Oosterhout, Antoon J. M.; van der Heide, Sicco; Oude Elberink, Joanne N. G.

    2014-01-01

    Background There is need for an accurate diagnostic test in mastocytosis patients with wasp venom allergy (WVA) and monitoring of these patients during immunotherapy (IT). In this study, we aimed to evaluate sensitivity and specificity of the Basophil Activation Test (BAT) as a diagnostic and monito

  12. Human Activity Recognition from Smart-Phone Sensor Data using a Multi-Class Ensemble Learning in Home Monitoring.

    Science.gov (United States)

    Ghose, Soumya; Mitra, Jhimli; Karunanithi, Mohan; Dowling, Jason

    2015-01-01

    Home monitoring of chronically ill or elderly patient can reduce frequent hospitalisations and hence provide improved quality of care at a reduced cost to the community, therefore reducing the burden on the healthcare system. Activity recognition of such patients is of high importance in such a design. In this work, a system for automatic human physical activity recognition from smart-phone inertial sensors data is proposed. An ensemble of decision trees framework is adopted to train and predict the multi-class human activity system. A comparison of our proposed method with a multi-class traditional support vector machine shows significant improvement in activity recognition accuracies.

  13. Applications of MODIS Fluorescent Line Height Measurements to Monitor Water Quality Trends and Algal Bloom Activity

    Science.gov (United States)

    Fischer, Andrew; Moreno-Mardinan, Max; Ryan, John P.

    2012-01-01

    Recent advances in satellite and airborne remote sensing, such as improvements in sensor and algorithm calibrations, processing techniques and atmospheric correction procedures have provided for increased coverage of remote-sensing, ocean-color products for coastal regions. In particular, for the Moderate Resolution Imaging Spectrometer (MODIS) sensor calibration updates, improved aerosol retrievals and new aerosol models has led to improved atmospheric correction algorithms for turbid waters and have improved the retrieval of ocean color in coastal waters. This has opened the way for studying ocean phenomena and processes at finer spatial scales, such as the interactions at the land-sea interface, trends in coastal water quality and algal blooms. Human population growth and changes in coastal management practices have brought about significant changes in the concentrations of organic and inorganic, particulate and dissolved substances entering the coastal ocean. There is increasing concern that these inputs have led to declines in water quality and have increase local concentrations of phytoplankton, which cause harmful algal blooms. In two case studies we present MODIS observations of fluorescence line height (FLH) to 1) assess trends in water quality for Tampa Bay, Florida and 2) illustrate seasonal and annual variability of algal bloom activity in Monterey Bay, California as well as document estuarine/riverine plume induced red tide events. In a comprehensive analysis of long term (2003-2011) in situ monitoring data and satellite imagery from Tampa Bay we assess the validity of the MODIS FLH product against chlorophyll-a and a suite of water quality parameters taken in a variety of conditions throughout a large optically complex estuarine system. A systematic analysis of sampling sites throughout the bay is undertaken to understand how the relationship between FLH and in situ chlorophyll-a responds to varying conditions and to develop a near decadal trend in

  14. Monitoring Lipase/Esterase Activity by Stopped Flow in a Sequential Injection Analysis System Using p-Nitrophenyl Butyrate

    Directory of Open Access Journals (Sweden)

    Jorge Pliego

    2015-01-01

    Full Text Available Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05–1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed.

  15. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children

    Directory of Open Access Journals (Sweden)

    Aminian Saeideh

    2012-10-01

    Full Text Available Abstract Background Decreasing sedentary activities that involve prolonged sitting may be an important strategy to reduce obesity and other physical and psychosocial health problems in children. The first step to understanding the effect of sedentary activities on children’s health is to objectively assess these activities with a valid measurement tool. Purpose To examine the validity of the ActivPAL monitor in measuring sitting/lying, standing, and walking time, transition counts and step counts in children in a laboratory setting. Methods Twenty five healthy elementary school children (age 9.9 ± 0.3 years; BMI 18.2 ± 1.9; mean ± SD were randomly recruited across the Auckland region, New Zealand. Children were fitted with ActivPAL monitors and observed during simulated free-living activities involving sitting/lying, standing and walking, followed by treadmill and over-ground activities at various speeds (slow, normal, fast against video observation (criterion measure. The ActivPAL sit-to-stand and stand-to-sit transition counts and steps were also compared with video data. The accuracy of step counts measured by the ActivPAL was also compared against the New Lifestyles NL-2000 and the Yamax Digi-Walker SW-200 pedometers. Results We observed a perfect correlation between the ActivPAL monitor in time spent sitting/lying, standing, and walking in simulated free-living activities with direct observation. Correlations between the ActivPAL and video observation in total numbers of sit-to-stand and stand-to-sit transitions were high (r = 0.99 ± 0.01. Unlike pedometers, the ActivPAL did not misclassify fidgeting as steps taken. Strong correlations (r = 0.88-1.00 between ActivPAL step counts and video observation in both treadmill and over-ground slow and normal walking were also observed. During treadmill and over-ground fast walking and running, the correlations were low (r = 0.21-0.46. Conclusion The ActivPAL monitor is

  16. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children.

    Science.gov (United States)

    Aminian, Saeideh; Hinckson, Erica A

    2012-10-02

    Decreasing sedentary activities that involve prolonged sitting may be an important strategy to reduce obesity and other physical and psychosocial health problems in children. The first step to understanding the effect of sedentary activities on children's health is to objectively assess these activities with a valid measurement tool. To examine the validity of the ActivPAL monitor in measuring sitting/lying, standing, and walking time, transition counts and step counts in children in a laboratory setting. Twenty five healthy elementary school children (age 9.9 ± 0.3 years; BMI 18.2 ± 1.9; mean ± SD) were randomly recruited across the Auckland region, New Zealand. Children were fitted with ActivPAL monitors and observed during simulated free-living activities involving sitting/lying, standing and walking, followed by treadmill and over-ground activities at various speeds (slow, normal, fast) against video observation (criterion measure). The ActivPAL sit-to-stand and stand-to-sit transition counts and steps were also compared with video data. The accuracy of step counts measured by the ActivPAL was also compared against the New Lifestyles NL-2000 and the Yamax Digi-Walker SW-200 pedometers. We observed a perfect correlation between the ActivPAL monitor in time spent sitting/lying, standing, and walking in simulated free-living activities with direct observation. Correlations between the ActivPAL and video observation in total numbers of sit-to-stand and stand-to-sit transitions were high (r = 0.99 ± 0.01). Unlike pedometers, the ActivPAL did not misclassify fidgeting as steps taken. Strong correlations (r = 0.88-1.00) between ActivPAL step counts and video observation in both treadmill and over-ground slow and normal walking were also observed. During treadmill and over-ground fast walking and running, the correlations were low (r = 0.21-0.46). The ActivPAL monitor is a valid measurement tool for assessing time spent sitting/lying, standing, and walking, sit

  17. Wmo's activities on background atmospheric pollution and integrated monitoring and research.

    Science.gov (United States)

    Köhler, A

    1988-01-01

    As early as 1968, WMO decided to start a programme on atmospheric pollution. Consequently, a Panel of Experts on Meteorological Aspects of Atmospheric Pollution was established. It was also decided to operate a network of background air pollution monitoring stations. With increasing public concern on environmental pollution impacts, a growing number of WMO Members joined the programme. The Environmental Pollution Monitoring and Research Programme, as well as the World Climate Programme launched in the late seventies, will provide information on a possible influence of pollution on climate.When the network of background ait pollution monitoring started, some Members had already proposed to carry out multimedia monitoring at suitable stations. Later on, it became obvious that more information is required on levels and trends of pollutants in media interacting with the atmosphere and a project on integrated monitoring was established, the purpose of which is to define the objectives and uses of integrated monitoring and to establish procedures for routine standardized integrated monitoring of the of the environment.Pilot projects presently being carried out in a few Member countries are meant to provide most of the information required for the implementation of global background integrated environmental monitorting.

  18. Embedded ARM System for Volcano Monitoring in Remote Areas: Application to the Active Volcano on Deception Island (Antarctica

    Directory of Open Access Journals (Sweden)

    Luis Miguel Peci

    2014-01-01

    Full Text Available This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARMTM processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (DebianTM as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS described has been deployed on the active Deception Island (Antarctica volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis.

  19. Embedded ARM system for volcano monitoring in remote areas: application to the active volcano on Deception Island (Antarctica).

    Science.gov (United States)

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-02

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis.

  20. Recovery of physical activity levels in adolescents after lower limb fractures: a longitudinal, accelerometry-based activity monitor study

    Directory of Open Access Journals (Sweden)

    Ceroni Dimitri

    2012-07-01

    Full Text Available Abstract Background In adolescents, loss of bone mineral mass usually occurs during phases of reduced physical activity (PA, such as when an injured extremity spends several weeks in a cast. We recorded the PA of adolescents with lower limb fractures during the cast immobilization, at 6 and at 18 months after the fracture, and we compared these values with those of healthy controls. Methods Fifty adolescents with a first episode of limb fracture and a control group of 50 healthy cases were recruited for the study through an advertisement placed at the University Children’s Hospital of Geneva, Switzerland. PA was assessed during cast immobilization and at 6- and 18-month follow-up by accelerometer measurement (Actigraph® 7164, MTI, Fort Walton Beach, FL, USA. Patients and their healthy peers were matched for gender and age. Time spent in PA at each level of intensity was determined for each participant and expressed in minutes and as a percentage of total valid time. Results From the 50 initial teenagers with fractures, 44 sustained functional evaluations at 6 months follow-up, whereas only 38 patients were studied at 18 months. The total PA count (total number of counts/min was lower in patients with lower limb fractures (-62.4% compared with healthy controls (ppp Importantly, we observed that time spent in vigorous PA, which reflects high-intensity forces beneficial to skeletal health, returned to similar values between both groups from the six month follow-up in adolescents who sustained a fracture. However, a definitive reduction in time spent in moderate PA was observed among patients with a lower limb fracture at 18 months, when comparing with healthy controls values (p = 0.0174. Conclusions As cast immobilization and reduced PA are known to induce bone mineral loss, this study provides important information to quantify the decrease of skeletal loading in adolescents with limb fractures. The results of this study demonstrate

  1. Monitoring the multitask mechanism of DNase I activity using graphene nanoassemblies.

    Science.gov (United States)

    Robertson, Neil M; Hizir, Mustafa Salih; Balcioglu, Mustafa; Rana, Muhit; Yumak, Hasan; Ecevit, Ozgur; Yigit, Mehmet V

    2015-04-15

    Here we have demonstrated that graphene serves as a remarkable platform for monitoring the multitask activity of an enzyme with fluorescence spectroscopy. Our studies showed that four different simultaneous enzymatic tasks of DNase I can be observed and measured in a high throughput fashion using graphene oxide and oligonucleotide nanoassemblies. We have used phosphorothioate modified oligonucleotides to pinpoint the individual and highly specific functions of DNase I with single stranded DNA, RNA, and DNA/DNA and DNA/RNA duplexes. DNase I resulted in fluorescence recovery in the nanoassemblies and enhanced the intensity tremendously in the presence of sequence specific DNA or RNA molecules with different degrees of amplification. Our study enabled us to discover the sources of this remarkable signal enhancement, which has been used for biomedical applications of graphene for sensitive detection of specific oncogenes. The significant difference in the signal amplification observed for the detection of DNA and RNA molecules is a result of the positive and/or reductive signal generating events with the enzyme. In the presence of DNA there are four possible ways that the fluorescence reading is influenced, with two of them resulting in a gain in signal while the other two result in a loss. Since the observed signal is a summation of all the events together, the absence of the two fluorescence reduction events with RNA gives a greater degree of fluorescence signal enhancement when compared to target DNA molecules. Overall, our study demonstrates that graphene has powerful features for determining the enzymatic functions of a protein and reveals some of the unknowns observed in the graphene and oligonucleotide assemblies with DNase I.

  2. Neural activity based biofeedback therapy for Autism spectrum disorder through wearable wireless textile EEG monitoring system

    Science.gov (United States)

    Sahi, Ahna; Rai, Pratyush; Oh, Sechang; Ramasamy, Mouli; Harbaugh, Robert E.; Varadan, Vijay K.

    2014-04-01

    Mu waves, also known as mu rhythms, comb or wicket rhythms are synchronized patterns of electrical activity involving large numbers of neurons, in the part of the brain that controls voluntary functions. Controlling, manipulating, or gaining greater awareness of these functions can be done through the process of Biofeedback. Biofeedback is a process that enables an individual to learn how to change voluntary movements for purposes of improving health and performance through the means of instruments such as EEG which rapidly and accurately 'feedback' information to the user. Biofeedback is used for therapeutic purpose for Autism Spectrum Disorder (ASD) by focusing on Mu waves for detecting anomalies in brain wave patterns of mirror neurons. Conventional EEG measurement systems use gel based gold cup electrodes, attached to the scalp with adhesive. It is obtrusive and wires sticking out of the electrodes to signal acquisition system make them impractical for use in sensitive subjects like infants and children with ASD. To remedy this, sensors can be incorporated with skull cap and baseball cap that are commonly used for infants and children. Feasibility of Textile based Sensor system has been investigated here. Textile based multi-electrode EEG, EOG and EMG monitoring system with embedded electronics for data acquisition and wireless transmission has been seamlessly integrated into fabric of these items for continuous detection of Mu waves. Textile electrodes were placed on positions C3, CZ, C4 according to 10-20 international system and their capability to detect Mu waves was tested. The system is ergonomic and can potentially be used for early diagnosis in infants and planning therapy for ASD patients.

  3. Geodetic monitoring (TLS of a steel transport trestle bridge located in an active mining exploitation site

    Directory of Open Access Journals (Sweden)

    Skoczylas Arkadiusz

    2016-09-01

    Full Text Available Underground mining exploitation causes, in general, irregular vertical and horizontal shifts in the superficial layer of the rock mass. In the case of construction objects seated on this layer, a deformation of the object’s foundation can be observed. This leads to additional loads and deformations. Identification of surface geometry changes in construction objects located within the premises of underground mining exploitation areas is an important task as far as safety of mining sites is concerned. Surveys targeting shifts and deformations in engineering objects preformed with the use of classic methods are of a selective nature and do not provide the full image of the phenomenon being the subject of the observation. This paper presents possibilities of terrestrial laser scanning technology application in the monitoring of engineering objects that allows for a complete spatial documentation of an object subjected to the influence of an active mining exploitation. This paper describes an observation of a 100 m section of a steel transport trestle bridge located on the premises of hard coal mine Lubelski Węgiel “Bogdanka” S.A. carried out in 2015. Measurements were carried out using a Z+F Imager 5010C scanner at an interval of 3.5 months. Changes in the structure’s geometry were determined by comparing the point clouds recorded during the two measurement periods. The results of the analyses showed shifts in the trestle bridge towards the exploited coal wall accompanied by object deformation. The obtained results indicate the possibility of of terrestrial laser scanning application in studying the aftereffects of underground mining exploitation on surface engineering objects.

  4. Measuring of urban ultrafine aerosol as a part of regular air pollution monitoring activities

    Science.gov (United States)

    Hejkrlík, Libor; Plachá, Helena

    2015-04-01

    Number size distribution of UFP has been measured since June 2012 to present time (end of 2014) at a background urban site in Northern Bohemia in the frame of UltraSchwarz Project. The project sustainability guarantees at least five years further measuring thus this highly specific activity already becomes part of existing air pollution monitoring system of Czech Hydrometeorological Institute. Number concentrations of UFP were measured by SMPS in a diameter range of 10 to 800 nm in 7 channels with time resolution of 10 minutes. For the purposes of this study the data were re-arranged into series of one-hour means in three size categories: nucleation mode (10-30 nm), Aitken mode (30-100 nm) and accumulation mode (100-800 nm). At the same measuring site 7 other air pollutants (PM1-BC, NO, NOX, NO2, O3, PM10 and SO2) were measured with identical time resolution. The successive daily courses of submicron particles in three size modes as well as of seven other ambient air pollutants were drawn in the form of 3D surface diagrams expressing different behavior of specific substances in the course of 26 months of continuous measuring campaign, allowing for analysis of both diurnal and seasonal changes. The three modes of UFP manifest diverse pictures, the nucleation mode is apparent mainly during warm seasons, the particles in Aitken mode behave rather indifferently to the period of the year and the accumulation mode has close relationship to coarse particles. Month by month correlation analysis indicate that nucleation mode nanoparticles are positively correlated especially with increasing O3 and SO2 concentration and that there exists connection between Aitken and accumulation modes and nitrogen oxides. In order to better understand fine time patterns we plan to calculate moving correlation indices over shorter time periods. Good idea would also be to make use of large database of data from nearby stations of CHMI to analyze the role of meteorological conditions.

  5. Speed of sound estimation with active PZT element for thermal monitoring during ablation therapy: feasibility study

    Science.gov (United States)

    Kim, Younsu; Guo, Xiaoyu; Cheng, Alexis; Boctor, Emad M.

    2016-04-01

    Controlling the thermal dose during ablation therapy is instrumental to successfully removing the tumor while preserving the surrounding healthy tissue. In the practical scenario, surgeons must be able to determine the ablation completeness in the tumor region. Various methods have been proposed to monitor it, one of which uses ultrasound since it is a common intraoperative imaging modality due to its non-invasive, cost-effective, and convenient natures. In our approach, we propose to use time of flight (ToF) information to estimate speed of sound changes. Accurate speed of sound estimation is crucial because it is directly correlated with temperature change and subsequent determination of ablation completeness. We divide the region of interest in a circular fashion with a variable radius from the ablator tip. We introduce the concept of effective speed of sound in each of the sub-regions. Our active PZT element control system facilitates this unique approach by allowing us to acquire one-way ToF information between the PZT element and each of the ultrasound elements. We performed a simulation and an experiment to verify feasibility of this method. The simulation result showed that we could compute the effective speed of sound within 0.02m/s error in our discrete model. We also perform a sensitivity analysis for this model. Most of the experimental results had less than 1% error. Simulation using a Gaussian continuous model with multiple PZT elements is also demonstrated. We simulate the effect of the element location one the optimization result.

  6. Short communication. Platform for bee-hives monitoring based on sound analysis. A perpetual warehouse for swarms daily activity

    Energy Technology Data Exchange (ETDEWEB)

    Atauri Mezquida, D.; Llorente Martinez, J.

    2009-07-01

    Bees and beekeeping are suffering a global crisis. Constant information on swarms conditions would be a key to study new diseases like colony collapse disorder and to develop new beekeeping tools to improve the hive management and make it more efficient. A platform for beehives monitoring is presented. It is based on the analysis of the colonies buzz which is registered by a bunch of sensors sending the data to a common database. Data obtained through sound processing shows plenty of patterns and tendency lines related to colonies activities and their conditions. It shows the potential of the sound as a swarm activity gauge. The goal of the platform is the possibility to store information about the swarms activity. The objective is to build a global net of monitored hives covering apiaries with different climates, razes and managements. (Author) 21 refs.

  7. Carbohydrate Bis-acetal-Based Substrates as Tunable Fluorescence-Quenched Probes for Monitoring exo-Glycosidase Activity.

    Science.gov (United States)

    Cecioni, Samy; Vocadlo, David J

    2017-06-28

    Tunable Förster resonance energy transfer (FRET)-quenched substrates are useful for monitoring the activity of various enzymes within their relevant physiological environments. Development of FRET-quenched substrates for exo-glycosidases, however, has been hindered by their constrained pocket-shaped active sites. Here we report the design of a new class of substrate that overcomes this problem. These Bis-Acetal-Based Substrates (BABS) bear a hemiacetal aglycon leaving group that tethers fluorochromes in close proximity, also positioning them distant from the active site pocket. Following cleavage of the glycosidic bond, the liberated hemiacetal spontaneously breaks down, leading to separation of the fluorophore and quencher. We detail the synthesis and characterization of GlcNAc-BABS, revealing a striking 99.9% quenching efficiency. These substrates are efficiently turned over by the human exo-glycosidase O-GlcNAcase (OGA). We find the hemiacetal leaving group rapidly breaks down, enabling quantitative monitoring of OGA activity. We expect this strategy to be broadly useful for the development of substrate probes for monitoring exo-glycosidases, as well as a range of other enzymes having constrained pocket-shaped active sites.

  8. Using the Landsat Thematic Mapper to detect and monitor active volcanoes - An example from Lascar volcano, northern Chile

    Science.gov (United States)

    Francis, P. W.; Rothery, D. A.

    1987-01-01

    The Landsat Thematic Mapper (TM) offers a means of detecting and monitoring thermal features of active volcanoes. Using the TM, a prominent thermal anomaly has been discovered on Lascar volcano, northern Chile. Data from two short-wavelength infrared channels of the TM show that material within a 300-m-diameter pit crater was at a temperature of at least 380 C on two dates in 1985. The thermal anomaly closely resembles in size and radiant temperature the anomaly over the active lava lake at Erta'ale in Ethiopia. An eruption took place at Lascar on Sept. 16, 1986. TM data acquired on Oct. 27, 1986, revealed significant changes within the crater area. Lascar is in a much more active state than any other volcano in the central Andes, and for this reason it merits further careful monitoring. Studies show that the TM is capable of confidently identifying thermal anomalies less than 100 m in size, at temperatures of above 150 C, and thus it offers a valuable means of monitoring the conditions of active or potentially active volcanoes, particularly those in remote regions.

  9. The validity of the Computer Science and Applications activity monitor for use in coronary artery disease patients during level walking.

    Science.gov (United States)

    Ekelund, Ulf; Tingström, Pia; Kamwendo, Kitty; Krantz, Monica; Nylander, Eva; Sjöström, Michael; Bergdahl, Björn

    2002-07-01

    The principal aim of the present study was to examine the validity of the Computer Science and Applications (CSA) activity monitor during level walking in coronary artery disease (CAD) patients. As a secondary aim, we evaluated the usefulness of two previously published energy expenditure (EE) prediction equations. Thirty-four subjects (29 men and five women), all with diagnosed CAD, volunteered to participate. Oxygen uptake (VO2) was measured by indirect calorimetry during walking on a motorized treadmill at three different speeds (3.2, 4.8 and 6.4 km h-1). Physical activity was measured simultaneously using the CSA activity monitor, secured directly to the skin on the lower back (i.e. lumbar vertebrae 4-5) with an elastic belt. The mean (+/- SD) activity counts were 1208 +/- 429, 3258 +/- 753 and 5351 +/- 876 counts min-1, at the three speeds, respectively (P < 0.001). Activity counts were significantly correlated to speed (r = 0.92; P < 0.001), VO2 (ml kg-1 min-1; r = 0.87; P < 0.001) and EE (kcal min-1; r = 0.85, P < 0.001). A stepwise linear regression analysis showed that activity counts and body weight together explained 75% of the variation in EE. Predicted EE from previously published equations differed significantly when used in this group of CAD patients. In conclusion, the CSA activity monitor is a valid instrument for assessing the intensity of physical activity during treadmill walking in CAD patients. Energy expenditure can be predicted from body weight and activity counts.

  10. Topographic analysis of the development of individual activation patterns during performance monitoring in medial frontal cortex

    National Research Council Canada - National Science Library

    Perkins, Suzanne C; Welsh, Robert C; Stern, Emily R; Taylor, Stephan F; Fitzgerald, Kate D

    2013-01-01

    ...., performance on task). In this study, 22 youth (ages 8-17 years) and 21 adults (ages 23-51 years) underwent functional magnetic resonance imaging during a performance monitoring task examining interference and errors...

  11. Monitoring pacific walrus and Steller sea lion haulout activity at Cape Nevenham, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — We monitored the number and timing of Pacific walruses (Odobenus rosmarus divergens) and Steller sea lions (Eumetopias jubatus) hauling out on beaches near Cape...

  12. GlobVolcano pre-operational services for global monitoring active volcanoes

    Science.gov (United States)

    Tampellini, Lucia; Ratti, Raffaella; Borgström, Sven; Seifert, Frank Martin; Peltier, Aline; Kaminski, Edouard; Bianchi, Marco; Branson, Wendy; Ferrucci, Fabrizio; Hirn, Barbara; van der Voet, Paul; van Geffen, J.

    2010-05-01

    The GlobVolcano project (2007-2010) is part of the Data User Element programme of the European Space Agency (ESA). The project aims at demonstrating Earth Observation (EO) based integrated services to support the Volcano Observatories and other mandate users (e.g. Civil Protection) in their monitoring activities. The information services are assessed in close cooperation with the user organizations for different types of volcano, from various geographical areas in various climatic zones. In a first phase, a complete information system has been designed, implemented and validated, involving a limited number of test areas and respective user organizations. In the currently on-going second phase, GlobVolcano is delivering pre-operational services over 15 volcanic sites located in three continents and as many user organizations are involved and cooperating with the project team. The set of GlobVolcano offered EO based information products is composed as follows: Deformation Mapping DInSAR (Differential Synthetic Aperture Radar Interferometry) has been used to study a wide range of surface displacements related to different phenomena (e.g. seismic faults, volcanoes, landslides) at a spatial resolution of less than 100 m and cm-level precision. Permanent Scatterers SAR Interferometry method (PSInSARTM) has been introduced by Politecnico of Milano as an advanced InSAR technique capable of measuring millimetre scale displacements of individual radar targets on the ground by using multi-temporal data-sets, estimating and removing the atmospheric components. Other techniques (e.g. CTM) have followed similar strategies and have shown promising results in different scenarios. Different processing approaches have been adopted, according to data availability, characteristic of the area and dynamic characteristics of the volcano. Conventional DInSAR: Colima (Mexico), Nyiragongo (Congo), Pico (Azores), Areanal (Costa Rica) PSInSARTM: Piton de la Fournaise (La Reunion Island

  13. A comparison of red blood cell transfusion utilization between anti-activated factor X and activated partial thromboplastin monitoring in patients receiving unfractionated heparin.

    Science.gov (United States)

    Belk, K W; Laposata, M; Craver, C

    2016-11-01

    Essentials Anti-activated factor X (Anti-Xa) monitoring is more precise than activated partial thromboplastin (aPTT). 20 804 hospitalized cardiovascular patients monitored with Anti-Xa or aPTT were analyzed. Adjusted transfusion rates were significantly lower for patients monitored with Anti-Xa. Adoption of Anti-Xa protocols could reduce transfusions among cardiovascular patients in the US. Background Anticoagulant activated factor X protein (Anti-Xa) has been shown to be a more precise monitoring tool than activated partial thromboplastin time (aPTT) for patients receiving unfractionated heparin (UFH) anticoagulation therapy. Objectives To compare red blood cell (RBC) transfusions between patients receiving UFH who are monitored with Anti-Xa and those monitored with aPTT. Patients/Methods A retrospective cohort study was conducted on patients diagnosed with acute coronary syndrome (ACS) (N = 14 822), diagnosed with ischemic stroke (STK) (N = 1568) or with a principal diagnosis of venous thromboembolism (VTE) (N = 4414) in the MedAssets data from January 2009 to December 2013. Anti-Xa and aPTT groups were identified from hospital billing details, with both brand and generic name as search criteria. Propensity score techniques were used to match Anti-Xa cases to aPTT controls. RBC transfusions were identified from hospital billing data. Multivariable logistic regression was used to identify significant drivers of transfusions. Results Anti-Xa patients had fewer RBC transfusions than aPTT patients in the ACS population (difference 17.5%; 95% confidence interval [CI] 16.4-18.7%), the STK population (difference 8.2%; 95% CI 4.4-11.9%), and the VTE population (difference 4.7%; 95% CI 3.3-6.1%). After controlling for patient age and gender, diagnostic risks (e.g. anemia, renal insufficiency, and trauma), and invasive procedures (e.g. cardiac catheterization, hemodialysis, and coronary artery bypass graft), Anti-Xa patients were less likely to have a transfusion while

  14. A Novel Approach based on GPS/GNSS Surveying to Monitor Excessive Active Landslide: A Case Study of Intepe Landslide

    Science.gov (United States)

    Güngördü, Deniz; Cuneyt Erenoǧlu, R.; Akcay, Özgün; Erenoǧlu, Oya

    2016-04-01

    Landslide is the down-slope of soil, rock and organic material under the influence of gravity and they leave deep scars in the topography and occur quite fast in a short time, are one of the most dangerous types of natural disasters. Geology, geotechnics and geodesy sciences had implemented many kind of technique which is many usefully and early warning systems with increasing of technologically events for monitoring. In last decades, the Global Positioning System (GPS/GNSS) technology has shown that it is capable to monitor sub-centimeter landslide deformations. In this study, it is imposed to represent the area under investigation by a number of GPS/GNSS sites in order to monitor the landslide phenomena. After the landslide occured in February 2015 in Intepe, Canakkale (NW Turkey), some sites are used to define a stable reference frame and remaining stations are the monitoring points situated in the deformation area. In this way, these sites were surveyed for 6 days using rapid-static GPS/GNSS technique. Then, a series of deformation analysis was performed between consecutive days. Finally, the determination of the significant movement of these sites was done relatively to the reference ones, e.g. the movement was 3.5 cm per a day averagely. This paper therefore highlights an investigation of landslide motions to discover the characteristics of mass movement for the excessive active landslide. Keywords: GPS/GNSS, landslide, deformation monitoring, Intepe, Turkey

  15. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    Science.gov (United States)

    Jeevarajan, A.S.; Wallace, W.T.

    2009-01-01

    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 m in diameter) was found to produce several problems with astronaut s suits and helmets, mechanical seals and equipment, and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent of the lunar module from the lunar surface to rendezvous with the command module, much of the major portions of the contaminating soil and dust began to float, irritating the astronaut s eyes and being inhaled into their lungs. Our goal has been to understand some of the properties of lunar dust that could lead to possible hazards for humans. Due to the lack of an atmosphere, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to activate the soil, or produce reactive surface species. In order to understand the possible toxic effects of the reactive dust, it is necessary to reactivate the dust, as samples returned during the Apollo missions were exposed to the atmosphere of the Earth. We have used grinding and UV exposure to mimic some of the processes occurring on the Moon. The level of activation has been monitored using two methods: fluorescence spectroscopy and electron paramagnetic resonance spectroscopy (EPR). These techniques allow the monitoring of hydroxyl radical production in solution. We have found that grinding of lunar dust produces 2-3 times the concentration of hydroxyl radicals as lunar simulant and 10 times that of quartz. Exposure

  16. Water balance of rice plots under three different water treatments: monitoring activity and experimental results

    Science.gov (United States)

    Chiaradia, Enrico Antonio; Romani, Marco; Facchi, Arianna; Gharsallah, Olfa; Cesari de Maria, Sandra; Ferrari, Daniele; Masseroni, Daniele; Rienzner, Michele; Battista Bischetti, Gian; Gandolfi, Claudio

    2014-05-01

    In the agricultural seasons 2012 and 2013, a broad monitoring activity was carried out at the Rice Research Centre of Ente Nazionale Risi (CRR-ENR) located in Castello d'Agogna (PV, Italy) with the purpose of comparing the water balance components of paddy rice (Gladio cv.) under different water regimes and assessing the possibility of reducing the high water inputs related to the conventional practice of continuous submergence. The experiments were laid out in six plots of about 20 m x 80 m each, with two replicates for each of the following water regimes: i) continuous flooding with wet-seeded rice (FLD), ii) continuous flooding from around the 3-leaf stage with dry-seeded rice (3L-FLD), and iii) surface irrigation every 7-10 days with dry-seeded rice (IRR). One out of the two replicates of each treatment was instrumented with: water inflow and outflow meters, set of piezometers, set of tensiometers and multi-sensor moisture probes. Moreover, an eddy covariance station was installed on the bund between the treatments FLD and IRR. Data were automatically recorded and sent by a wireless connection to a PC, so as to be remotely controlled thanks to the development of a Java interface. Furthermore, periodic measurements of crop biometric parameters (LAI, crop height and rooting depth) were performed in both 2012 and 2013 (11 and 14 campaigns respectively). Cumulative water balance components from dry-seeding (3L-FLD and IRR), or flooding (FLD), to harvest were calculated for each plot by either measurements (i.e. rainfall, irrigation and surface drainage) or estimations (i.e. difference in the field water storage, evaporation from both the soil and the water surface and transpiration), whereas the sum of percolation and capillary rise (i.e. the 'net percolation') was obtained as the residual term of the water balance. Incidentally, indices of water application efficiency (evapotranspiration over net water input) and water productivity (grain production over net water

  17. Monitoring the performances of a real scale municipal solid waste composting and a biodrying facility using respiration activity indices.

    Science.gov (United States)

    Evangelou, Alexandros; Gerassimidou, Spyridoula; Mavrakis, Nikitas; Komilis, Dimitrios

    2016-05-01

    Objective of the work was to monitor two full-scale commingled municipal solid waste (MSW) mechanical and biological pretreatment (MBT) facilities in Greece, namely a biodrying and a composting facility. Monitoring data from a 1.5-year sampling period is presented, whilst microbial respiration indices were used to monitor the decomposition process and the stability status of the wastes in both facilities during the process. Results showed that in the composting facility, the organic matter reduced by 35 % after 8 weeks of combined composting/curing. Material exiting the biocells had a moisture content of less than 30 % (wb) indicating a moisture limitation during the active composting process. The static respiration indexes indicated that some stabilization occurred during the process, but the final material could not be characterized as stable compost. In the biodrying facility, the initial and final moisture contents were 50 % and less than 20 % wb, respectively, and the biodrying index was equal to 4.1 indicating effective biodrying. Lower heating values at the inlet and outlet were approximately 5.5 and 10 MJ/wet kg, respectively. The organic matter was reduced by 20 % during the process and specifically from a range of 63-77 % dw (inlet) to a range of 61-70 % dw. A significant respiration activity reduction was observed for some of the biodrying samples. A statistically significant correlation among all three respiration activity indices was recorded, with the two oxygen related activity indices (CRI7 and SRI24) observing the highest correlation.

  18. Monitoring volcanic activity with satellite remote sensing to reduce aviation hazard and mitigate the risk: application to the North Pacific

    Science.gov (United States)

    Webley, P. W.; Dehn, J.

    2012-12-01

    Volcanic activity across the North Pacific (NOPAC) occurs on a daily basis and as such monitoring needs to occur on a 24 hour, 365 days a year basis. The risk to the local population and aviation traffic is too high for this not to happen. Given the size and remoteness of the NOPAC region, satellite remote sensing has become an invaluable tool to monitor the ground activity from the regions volcanoes as well as observe, detect and analyze the volcanic ash clouds that transverse across the Pacific. Here, we describe the satellite data collection, data analysis, real-time alert/alarm systems, observational database and nearly 20-year archive of both automated and manual observations of volcanic activity. We provide examples of where satellite remote sensing has detected precursory activity at volcanoes, prior to the volcanic eruption, as well as different types of eruptive behavior that can be inferred from the time series data. Additionally, we illustrate how the remote sensing data be used to detect volcanic ash in the atmosphere, with some of the pro's and con's to the method as applied to the NOPAC, and how the data can be used with other volcano monitoring techniques, such as seismic monitoring and infrasound, to provide a more complete understanding of a volcanoes behavior. We focus on several large volcanic events across the region, since our archive started in 1993, and show how the system can detect both these large scale events as well as the smaller in size but higher in frequency type events. It's all about how to reduce the risk, improve scenario planning and situational awareness and at the same time providing the best and most reliable hazard assessment from any volcanic activity.

  19. Technologies for physical activity self-monitoring: a study of differences between users and non-users

    Science.gov (United States)

    Åkerberg, Anna; Söderlund, Anne; Lindén, Maria

    2017-01-01

    Background Different kinds of physical activity (PA) self-monitoring technologies are used today to monitor and motivate PA behavior change. The user focus is essential in the development process of this technology, including potential future users such as representatives from the group of non-users. There is also a need to study whether there are differences between the groups of users and non-users. The aims of this study were to investigate possible differences between users and non-users regarding their opinions about PA self-monitoring technologies and to investigate differences in demographic variables between the groups. Materials and methods Participants were randomly selected from seven municipalities in central Sweden. In total, 107 adults responded to the Physical Activity Products Questionnaire, which consisted of 22 questions. Results Significant differences between the users and non-users were shown for six of the 20 measurement-related items: measures accurately (p=0.007), measures with high precision (p=0.024), measures distance (p=0.020), measures speed (p=0.003), shows minutes of activity (p=0.004), and shows geographical position (p=0.000). Significant differences between the users and non-users were also found for two of the 29 encouragement items: measures accurately (p=0.001) and has long-term memory (p=0.019). Significant differences between the groups were also shown for level of education (p=0.030) and level of physical exercise (p=0.037). Conclusion With a few exceptions, the users and the non-users in this study had similar opinions about PA self-monitoring technologies. Because this study showed significant differences regarding level of education and level of physical exercise, these demographic variables seemed more relevant to investigate than differences in opinions about the PA self-monitoring technologies.

  20. Can systemically generated reactive oxygen species help to monitor disease activity in generalized vitiligo? A pilot study

    Directory of Open Access Journals (Sweden)

    Richeek Pradhan

    2014-01-01

    Full Text Available Background: Generalized vitiligo is a disease with unpredictable bursts of activity, goal of treatment during the active phase being to stabilize the lesions. This emphasizes the need for a prospective marker for monitoring disease activity to help decide the duration of therapy. Aims and Objectives: In the present study, we examined whether reactive oxygen species (ROS generated in erythrocytes can be translated into a marker of activity in vitiligo. Materials and Methods: Level of intracellular ROS was measured flow cytometrically in erythrocytes from venous blood of 21 patients with generalized vitiligo and 21 healthy volunteers using the probe dichlorodihydrofluorescein diacetate. Results: The levels of ROS differed significantly between patients and healthy controls, as well as between active versus stable disease groups. In the active disease group, ROS levels were significantly lower in those being treated with systemic steroids than those that were not. ROS levels poorly correlated with disease duration or body surface area involved. Conclusion: A long-term study based on these findings can be conducted to further validate the potential role of ROS in monitoring disease activity vitiligo.

  1. Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, Joseph; Ingeman-Nielsen, Thomas; Christiansen, Anders V.

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP...... and subsurface temperatures supplemented the DC-IP measurements. A time-lapse DC-IP monitoring system has been acquiring at least six datasets per day on a 42-electrode profile with 0.5. m electrode spacing since July 2013. Remote control of the data acquisition system enables interactive adaptation...... of the measurement schedule, which is critically important to acquire data in the winter months, where extremely high contact resistances increase the demands on the resistivity meter. Data acquired during the freezing period of October 2013 to February 2014 clearly image the soil freezing as a strong increase...

  2. Applicability of rapid and on-site measured enzyme activity for surface water quality monitoring in an agricultural catchment

    Science.gov (United States)

    Stadler, Philipp; Farnleitner, Andreas H.; Sommer, Regina; Kumpan, Monika; Zessner, Matthias

    2014-05-01

    For the near real time and on-site detection of microbiological fecal pollution of water, the measurement of beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter and has been already successfully operated for water quality monitoring of ground water resources (Ryzinska-Paier et al. 2014). Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the fecal indication capacity of GLUC (specificity, sensitivity, persistence, etc.) in relation to potential pollution sources and catchment conditions (Cabral 2010, Ryzinska-Paier et al. 2014). Furthermore surface waters are a big challenge for automated detection devices in a technical point of view due to the high sediment load during event conditions. This presentation shows results gained form two years of monitoring in an experimental catchment (HOAL) dominated by agricultural land use. Two enzymatic measurement devices are operated parallel at the catchment outlet to test the reproducibility and precision of the method. Data from continuous GLUC monitoring under both base flow and event conditions is compared with reference samples analyzed by standardized laboratory methods for fecal pollution detection (e.g. ISO 16649-1, Colilert18). It is shown that rapid enzymatic on-site GLUC determination can successfully be operated from a technical point of view for surface water quality monitoring under the observed catchment conditions. The comparison of enzyme activity with microbiological standard analytics reveals distinct differences in the dynamic of the signals during event conditions. Cabral J. P. S. (2010) "Water Microbiology. Bacterial Pathogens and Water" International Journal of

  3. Performance of a Low Activity Beta-Sensitive SR{sup 90} Water Monitor for Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Zickefoose, J.; Bronson, F.; Ilie, G.; Jaderstrom, H.; Venkataraman, R. [Canberra Industries Inc. (United States)

    2015-07-01

    shield to reduce contributions from external sources to an acceptable level. Data acquisition is accomplished through customized application-specific software that allows for long counting times to attain a low MDC, but also simultaneously provides alarms on short averaging times to achieve a fast response to sudden changes in activity concentration. Multiple monitors are then linked to supervisory software where real time data and alarms are available for analysis in remote locations. The system also allows for remote operation of the unit; check sources, background checks, systems settings and more may be accessed remotely. Testing of the production devices has shown that we can achieve the 10 Bk/kg MDC requirement for Sr{sup 90} in equilibrium with Y{sup 90} with a count time of approximately 20 minutes. (authors)

  4. Quantitative monitoring of an activated sludge reactor using on-line UV-visible and near-infrared spectroscopy.

    Science.gov (United States)

    Sarraguça, Mafalda C; Paulo, Ana; Alves, Madalena M; Dias, Ana M A; Lopes, João A; Ferreira, Eugénio C

    2009-10-01

    The performance of an activated sludge reactor can be significantly enhanced through use of continuous and real-time process-state monitoring, which avoids the need to sample for off-line analysis and to use chemicals. Despite the complexity associated with wastewater treatment systems, spectroscopic methods coupled with chemometric tools have been shown to be powerful tools for bioprocess monitoring and control. Once implemented and optimized, these methods are fast, nondestructive, user friendly, and most importantly, they can be implemented in situ, permitting rapid inference of the process state at any moment. In this work, UV-visible and NIR spectroscopy were used to monitor an activated sludge reactor using in situ immersion probes connected to the respective analyzers by optical fibers. During the monitoring period, disturbances to the biological system were induced to test the ability of each spectroscopic method to detect the changes in the system. Calibration models based on partial least squares (PLS) regression were developed for three key process parameters, namely chemical oxygen demand (COD), nitrate concentration (N-NO(3)(-)), and total suspended solids (TSS). For NIR, the best results were achieved for TSS, with a relative error of 14.1% and a correlation coefficient of 0.91. The UV-visible technique gave similar results for the three parameters: an error of approximately 25% and correlation coefficients of approximately 0.82 for COD and TSS and 0.87 for N-NO(3)(-) . The results obtained demonstrate that both techniques are suitable for consideration as alternative methods for monitoring and controlling wastewater treatment processes, presenting clear advantages when compared with the reference methods for wastewater treatment process qualification.

  5. Apps for People With Rheumatoid Arthritis to Monitor Their Disease Activity: A Review of Apps for Best Practice and Quality.

    Science.gov (United States)

    Grainger, Rebecca; Townsley, Hermaleigh; White, Bonnie; Langlotz, Tobias; Taylor, William J

    2017-02-21

    Rheumatoid arthritis (RA) is a chronic inflammatory arthritis requiring long-term treatment with regular monitoring by a rheumatologist to achieve good health outcomes. Since people with RA may wish to monitor their own disease activity with a smartphone app, it is important to understand the functions and quality of apps for this purpose. The aim of our study was to assess the features and quality of apps to assist people to monitor their RA disease activity by (1) summarizing the available apps, particularly the instruments used for measurement of RA disease activity; (2) comparing the app features with American College of Rheumatology and European League against Rheumatism (ACR and EULAR) guidelines for monitoring of RA disease activity; and (3) rating app quality with the Mobile App Rating Scale (MARS). Systematic searches of the New Zealand iTunes and Google Play app stores were used to identify all apps for monitoring of RA disease activity that could be used by people with RA. The apps were described by both key metadata and app functionality. App adherence with recommendations for monitoring of RA disease activity in clinical practice was evaluated by identifying whether apps included calculation of a validated composite disease activity measure and recorded results for future retrieval. App quality was assessed by 2 independent reviewers using the MARS. The search identified 721 apps in the Google Play store and 216 in the iTunes store, of which 19 unique apps met criteria for inclusion (8 from both app stores, 8 iTunes, and 3 Google Play). In total, 14 apps included at least one validated instrument measuring RA disease activity; 7 of 11 apps that allowed users to enter a joint count used the standard 28 swollen and tender joint count; 8 apps included at least one ACR and EULAR-recommended RA composite disease activity (CDA) measure; and 10 apps included data storage and retrieval. Only 1 app, Arthritis Power, included both an RA CDA measure and tracked

  6. Apps for People With Rheumatoid Arthritis to Monitor Their Disease Activity: A Review of Apps for Best Practice and Quality

    Science.gov (United States)

    Townsley, Hermaleigh; White, Bonnie; Langlotz, Tobias; Taylor, William J

    2017-01-01

    Background Rheumatoid arthritis (RA) is a chronic inflammatory arthritis requiring long-term treatment with regular monitoring by a rheumatologist to achieve good health outcomes. Since people with RA may wish to monitor their own disease activity with a smartphone app, it is important to understand the functions and quality of apps for this purpose. Objective The aim of our study was to assess the features and quality of apps to assist people to monitor their RA disease activity by (1) summarizing the available apps, particularly the instruments used for measurement of RA disease activity; (2) comparing the app features with American College of Rheumatology and European League against Rheumatism (ACR and EULAR) guidelines for monitoring of RA disease activity; and (3) rating app quality with the Mobile App Rating Scale (MARS). Methods Systematic searches of the New Zealand iTunes and Google Play app stores were used to identify all apps for monitoring of RA disease activity that could be used by people with RA. The apps were described by both key metadata and app functionality. App adherence with recommendations for monitoring of RA disease activity in clinical practice was evaluated by identifying whether apps included calculation of a validated composite disease activity measure and recorded results for future retrieval. App quality was assessed by 2 independent reviewers using the MARS. Results The search identified 721 apps in the Google Play store and 216 in the iTunes store, of which 19 unique apps met criteria for inclusion (8 from both app stores, 8 iTunes, and 3 Google Play). In total, 14 apps included at least one validated instrument measuring RA disease activity; 7 of 11 apps that allowed users to enter a joint count used the standard 28 swollen and tender joint count; 8 apps included at least one ACR and EULAR-recommended RA composite disease activity (CDA) measure; and 10 apps included data storage and retrieval. Only 1 app, Arthritis Power, included

  7. Interweaving monitoring activities and model development towards enhancing knowledge of the soil-plant-atmosphere continuum

    NARCIS (Netherlands)

    Romano, N.; Angulo-Jaramillo, M.; Javaux, M.; Ploeg, van der M.J.

    2012-01-01

    The guest editors summarize the advances and challenges associated with monitoring and modeling of the soil–plant–atmosphere continuum. They introduce the contributions in the special section, with an emphasis on the scale addressed in each study. The study of water pathways from the soil to the

  8. Monitoring of Computing Resource Use of Active Software Releases in ATLAS

    CERN Document Server

    Limosani, Antonio; The ATLAS collaboration

    2016-01-01

    The LHC is the world's most powerful particle accelerator, colliding protons at centre of mass energy of 13 TeV. As the energy and frequency of collisions has grown in the search for new physics, so too has demand for computing resources needed for event reconstruction. We will report on the evolution of resource usage in terms of CPU and RAM in key ATLAS offline reconstruction workflows at the Tier0 at CERN and on the WLCG. Monitoring of workflows is achieved using the ATLAS PerfMon package, which is the standard ATLAS performance monitoring system running inside Athena jobs. Systematic daily monitoring has recently been expanded to include all workflows beginning at Monte Carlo generation through to end user physics analysis, beyond that of event reconstruction. Moreover, the move to a multiprocessor mode in production jobs has facilitated the use of tools, such as "MemoryMonitor", to measure the memory shared across processors in jobs. Resource consumption is broken down into software domains and displayed...

  9. Interweaving monitoring activities and model development towards enhancing knowledge of the soil-plant-atmosphere continuum

    NARCIS (Netherlands)

    Romano, N.; Angulo-Jaramillo, M.; Javaux, M.; Ploeg, van der M.J.

    2012-01-01

    The guest editors summarize the advances and challenges associated with monitoring and modeling of the soil–plant–atmosphere continuum. They introduce the contributions in the special section, with an emphasis on the scale addressed in each study. The study of water pathways from the soil to the atm

  10. High Prf Metal Vapor Laser Active Media For Visual And Optical Monitoring

    Science.gov (United States)

    Torgaev, S. N.; Trigub, M. V.; Evtushenko, G. S.; Evtushenko, T. G.

    2016-01-01

    In this paper the feasibility of using metal vapor lasers for visual and optical monitoring of fast processes is discussed. The theoretical calculations consistent with the experimental study have been performed. The possibility of visualizing objects with pulse repetition frequency of the brightness amplifier up to 60 kHz has been demonstrated. The visualization results of the corona discharge are also given.

  11. SE83-9 'Chix in Space' student experimenter monitors STS-29 onboard activity

    Science.gov (United States)

    1989-01-01

    Student experimenter John C. Vellinger watches monitor in the JSC Mission Control Center (MCC) Bldg 30 Customer Support Room (CSR) during the STS-29 mission. Crewmembers are working with his Student Experiment (SE) 83-9 Chicken Embryo Development in Space or 'Chix in Space' onboard Discovery, Orbiter Vehicle (OV) 103. The student's sponsor is Kentucky Fried Chicken (KFC).

  12. A Wearable Contactless Sensor Suitable for Continuous Simultaneous Monitoring of Respiration and Cardiac Activity

    Directory of Open Access Journals (Sweden)

    Gaetano D. Gargiulo

    2015-01-01

    Full Text Available A reliable system that can simultaneously and accurately monitor respiration and cardiac output would have great utility in healthcare applications. In this paper we present a novel approach to creating such a system. This noninvasive, low power, low cost, contactless sensor is suitable for continuous monitoring of respiration (tidal volume and cardiac stroke volume. Furthermore, it is capable of delivering this data in true volume (i.e., mL. The current embodiment, specifically designed for sleep monitoring applications, requires only 100 mW when powered by a 4.8 V battery pack and is based on the use of a single electroresistive band embedded in a T-shirt. Here, we describe the implementation of the device, explaining the rational and design choices for the electronic circuit and the physical garment together with the preliminary tests performed using one volunteer subject. Comparison of the device with a commercially available spirometer demonstrates that tidal volume can be monitored over extended periods with a precision of ±10%. We further demonstrate the utility of the device to measure cardiac output and respiration effort.

  13. Monitoring of Computing Resource Use of Active Software Releases at ATLAS

    CERN Document Server

    Limosani, Antonio; The ATLAS collaboration

    2017-01-01

    The LHC is the world's most powerful particle accelerator, colliding protons at centre of mass energy of 13 TeV. As the energy and frequency of collisions has grown in the search for new physics, so too has demand for computing resources needed for event reconstruction. We will report on the evolution of resource usage in terms of CPU and RAM in key ATLAS offline reconstruction workflows at the Tier0 at CERN and on the WLCG. Monitoring of workflows is achieved using the ATLAS PerfMon package, which is the standard ATLAS performance monitoring system running inside Athena jobs. Systematic daily monitoring has recently been expanded to include all workflows beginning at Monte Carlo generation through to end user physics analysis, beyond that of event reconstruction. Moreover, the move to a multiprocessor mode in production jobs has facilitated the use of tools, such as "MemoryMonitor", to measure the memory shared across processors in jobs. Resource consumption is broken down into software domains and displayed...

  14. Direct current (DC) resistivity and Induced Polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, J.; Fiandaca, G.; Ingeman-Nielsen, Thomas;

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP...... the soil freezing as a strong increase in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below...

  15. Clinical validation of a body-fixed 3D accelerometer and algorithm for activity monitoring in orthopaedic patients

    Directory of Open Access Journals (Sweden)

    Matthijs Lipperts

    2017-10-01

    Conclusion: Activity monitoring of orthopaedic patients by counting and timing a large set of relevant daily life events is feasible in a user- and patient-friendly way and at high clinical validity using a generic three-dimensional accelerometer and algorithms based on empirical and physical methods. The algorithms performed well for healthy individuals as well as patients recovering after total joint replacement in a challenging validation set-up. With such a simple and transparent method real-life activity parameters can be collected in orthopaedic practice for diagnostics, treatments, outcome assessment, or biofeedback.

  16. Surgery versus Active Monitoring in Intermittent Exotropia (SamExo): study protocol for a pilot randomised controlled trial.

    Science.gov (United States)

    Buck, Deborah; McColl, Elaine; Powell, Christine J; Shen, Jing; Sloper, John; Steen, Nick; Taylor, Robert; Tiffin, Peter; Vale, Luke; Clarke, Michael P

    2012-10-16

    Childhood intermittent exotropia [X(T)] is a type of strabismus (squint) in which one eye deviates outward at times, usually when the child is tired. It may progress to a permanent squint, loss of stereovision and/or amblyopia (reduced vision). Treatment options for X(T) include eye patches, glasses, surgery and active monitoring. There is no consensus regarding how this condition should be managed, and even when surgery is the preferred option clinicians disagree as to the optimal timing. Reports on the natural history of X(T) are limited, and there is no randomised controlled trial (RCT) evidence on the effectiveness or efficiency of surgery compared with active monitoring. The SamExo (Surgery versus Active Monitoring in Intermittent Exotropia) pilot study has been designed to test the feasibility of such a trial in the UK. an external pilot patient randomised controlled trial. four UK secondary ophthalmology care facilities at Newcastle NHS Hospitals Foundation Trust, Sunderland Eye Infirmary, Moorfields Eye Hospital and York NHS Trust. children aged between 6 months and 16 years referred with suspected and subsequently diagnosed X(T). Recruitment target is a total of 144 children over a 9-month period, with 120 retained by 9-month outcome visit.Randomisation: permuted blocks stratified by collaborating centre, age and severity of X(T). initial clinical assessment; randomisation (eye muscle surgery or active monitoring); 3-, 6- and 9-month (primary outcome) clinical assessments; participant/proxy completed questionnaire covering time and travel costs, health services use and quality of life (Intermittent Exotropia Questionnaire); qualitative interviews with parents to establish reasons for agreeing or declining participation in the pilot trial. recruitment and retention rates; nature and extent of participation bias; nature and extent of biases arising from crossover or loss to follow-up; reasons for agreeing/declining participation; variability of cure rates

  17. Surgery versus Active Monitoring in Intermittent Exotropia (SamExo: study protocol for a pilot randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Buck Deborah

    2012-10-01

    Full Text Available Abstract Background Childhood intermittent exotropia [X(T] is a type of strabismus (squint in which one eye deviates outward at times, usually when the child is tired. It may progress to a permanent squint, loss of stereovision and/or amblyopia (reduced vision. Treatment options for X(T include eye patches, glasses, surgery and active monitoring. There is no consensus regarding how this condition should be managed, and even when surgery is the preferred option clinicians disagree as to the optimal timing. Reports on the natural history of X(T are limited, and there is no randomised controlled trial (RCT evidence on the effectiveness or efficiency of surgery compared with active monitoring. The SamExo (Surgery versus Active Monitoring in Intermittent Exotropia pilot study has been designed to test the feasibility of such a trial in the UK. Methods Design: an external pilot patient randomised controlled trial. Setting: four UK secondary ophthalmology care facilities at Newcastle NHS Hospitals Foundation Trust, Sunderland Eye Infirmary, Moorfields Eye Hospital and York NHS Trust. Participants: children aged between 6 months and 16 years referred with suspected and subsequently diagnosed X(T. Recruitment target is a total of 144 children over a 9-month period, with 120 retained by 9-month outcome visit. Randomisation: permuted blocks stratified by collaborating centre, age and severity of X(T. Interventions: initial clinical assessment; randomisation (eye muscle surgery or active monitoring; 3-, 6- and 9-month (primary outcome clinical assessments; participant/proxy completed questionnaire covering time and travel costs, health services use and quality of life (Intermittent Exotropia Questionnaire; qualitative interviews with parents to establish reasons for agreeing or declining participation in the pilot trial. Outcomes: recruitment and retention rates; nature and extent of participation bias; nature and extent of biases arising from crossover or

  18. Radon surveys and monitoring at active volcanoes: an open window on deep hydrothermal systems and their dynamics

    Science.gov (United States)

    Cigolini, Corrado; Laiolo, Marco; Coppola, Diego

    2017-04-01

    The behavior of fluids in hydrothermal systems is critical in volcano monitoring and geothermal prospecting. Analyzing the time series of radon emissions on active volcanoes is strategic for detecting and interpreting precursory signals of changes in volcanic activity, eventually leading to eruptions. Radon is a radioactive gas generated from the decay of U bearing rocks, soils and magmas. Although radon has been regarded as a potential precursor of earthquakes, radon anomalies appear to be better suited to forecast volcanic eruptions since we know where paroxysms may occur and we can follow the evolution of volcanic activity. Radon mapping at active volcanoes is also a reliable tool to assess diffuse and concentrated degassing as well as efficiently detecting earthquake-volcano interactions. Systematic radon monitoring has been shown to be a key factor for evaluating the rise of volcanic and hydrothermal fluids. In fact, the decay properties of radon, the duration of radon anomalies together with sampling rates may be cross-checked with the chemistry of hydrothermal fluids (and their transport properties) to constrain fluids ascent rates and to infer the permeability and porosity of rocks in sectors surrounding the active conduits. We hereby further discuss the data of radon surveys and monitoring at Somma-Vesuvius, Stromboli and La Soufrière (Guadeloupe, Lesser Antilles). The integrated analysis of seismic and geochemical data, including radon emissions, may be successfully used in testing temperature distributions and variations of porosity and permeability in volcanic hydrothermal systems and can be used as a proxy to analyze geothermal reservoirs.

  19. Size-selective QD@MOF core-shell nanocomposites for the highly sensitive monitoring of oxidase activities.

    Science.gov (United States)

    Wang, Ke; Li, Nan; Zhang, Jing; Zhang, Zhiqi; Dang, Fuquan

    2017-01-15

    In this work, we proposed a novel and facile method to monitor oxidase activities based on size-selective fluorescent quantum dot (QD)@metal-organic framework (MOF) core-shell nanocomposites (CSNCPs). The CSNCPs were synthesized from ZIF-8 and CdTe QDs in aqueous solution in 40min at room temperature with stirring. The prepared CdTe@ZIF-8 CSNCPs , which have excellent water dispersibility and stability, displays distinct fluorescence responses to hole scavengers of different molecular sizes (e.g., H2O2, substrate, and oxidase) due to the aperture limitation of the ZIF-8 shell. H2O2 can efficiently quench the fluorescence of CdTe@ZIF-8 CSNCPs over a linearity range of 1-100nM with a detection limit of 0.29nM, whereas large molecules such as substrate and oxidase have very little effect on its fluorescence. Therefore, the highly sensitive detection of oxidase activities was achieved by monitoring the fluorescence quenching of CdTe@ZIF-8 CSNCPs by H2O2 produced in the presence of substrate and oxidase, which is proportional to the oxidase activities. The linearity ranges of the uricase and glucose oxidase activity are 0.1-50U/L and 1-100U/L, respectively, and their detection limits are 0.024U/L and 0.26U/L, respectively. Therefore, the current QD@MOF CSNCPs based sensing system is a promising, widely applicable means of monitoring oxidase activities in biochemical research.

  20. Functionalized Carbon Quantum Dots with Dopamine for Tyrosinase Activity Monitoring and Inhibitor Screening: In Vitro and Intracellular Investigation.

    Science.gov (United States)

    Chai, Lujing; Zhou, Jin; Feng, Hui; Tang, Cong; Huang, Yuanyuan; Qian, Zhaosheng

    2015-10-28

    Sensitive assay of tyrosinase (TYR) activity is in urgent demand for both fundamental research and practical application, but the exploration of functional materials with good biocompatibility for its activity evaluation at the intracellular level is still challenging until now. In this work, we develop a convenient and real-time assay with high sensitivity for TYR activity/level monitoring and its inhibitor screening based on biocompatible dopamine functionalized carbon quantum dots (Dopa-CQDs). Dopamine with redox property was functionalized on the surface of carbon quantum dots to construct a Dopa-CQDs conjugate with strong bluish green fluorescence. When the dopamine moiety in Dopa-CQDs conjugate was oxidized to a dopaquinone derivative under specific catalysis of TYR, an intraparticle photoinduced electron transfer (PET) process between CQDs and dopaquinone moiety took place, and then the fluorescence of the conjugate could be quenched simultaneously. Quantitative evaluation of TYR activity was established in terms of the relationship between fluorescence quenching efficiency and TYR activity. The assay covered a broad linear range of up to 800 U/L with a low detection limit of 7.0 U/L. Arbutin, a typical inhibitor of TYR, was chosen as an example to assess its function of inhibitor screening, and positive results were observed that fluorescence quenching extent of the probe was reduced in the presence of arbutin. It is also demonstrated that Dopa-CQD conjugate possesses excellent biocompatibility, and can sensitively monitor intracellular tyrosinase level in melanoma cells and intracellular pH changes in living cells, which provides great potential in application of TYR/pH-associated disease monitoring and medical diagnostics.

  1. Can we detect, monitor, and characterize volcanic activity using 'off the shelf' webcams and low-light cameras?

    Science.gov (United States)

    Harrild, M.; Webley, P. W.; Dehn, J.

    2015-12-01

    The ability to detect and monitor precursory events, thermal signatures, and ongoing volcanic activity in near-realtime is an invaluable tool. Volcanic hazards often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash to aircraft cruise altitudes. Using ground based remote sensing to detect and monitor this activity is essential, but the required equipment is often expensive and difficult to maintain, which increases the risk to public safety and the likelihood of financial impact. Our investigation explores the use of 'off the shelf' cameras, ranging from computer webcams to low-light security cameras, to monitor volcanic incandescent activity in near-realtime. These cameras are ideal as they operate in the visible and near-infrared (NIR) portions of the electromagnetic spectrum, are relatively cheap to purchase, consume little power, are easily replaced, and can provide telemetered, near-realtime data. We focus on the early detection of volcanic activity, using automated scripts that capture streaming online webcam imagery and evaluate each image according to pixel brightness, in order to automatically detect and identify increases in potentially hazardous activity. The cameras used here range in price from 0 to 1,000 and the script is written in Python, an open source programming language, to reduce the overall cost to potential users and increase the accessibility of these tools, particularly in developing nations. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures to be correlated to pixel brightness. Data collected from several volcanoes; (1) Stromboli, Italy (2) Shiveluch, Russia (3) Fuego, Guatemala (4) Popcatépetl, México, along with campaign data from Stromboli (June, 2013), and laboratory tests are presented here.

  2. A miniaturized video system for monitoring the locomotor activity of walking Drosophila melanogaster in space and terrestrial settings.

    Science.gov (United States)

    Inan, Omer T; Etemadi, Mozziyar; Sanchez, Max E; Marcu, Oana; Bhattacharya, Sharmila; Kovacs, Gregory T A

    2009-02-01

    A novel method is presented for monitoring movement of Drosophila melanogaster (the fruit fly) in space. Transient fly movements were captured by a $60, 2.5-cm-cubed monochrome video camera imaging flies illuminated by a uniform light source. The video signal from this camera was bandpass filtered (0.3-10 Hz) and amplified by an analog circuit to extract the average light changes as a function of time. The raw activity signal output of this circuit was recorded on a computer and digitally processed to extract the fly movement "events" from the waveform. These events corresponded to flies entering and leaving the image and were used for extracting activity parameters such as interevent duration. The efficacy of the system in quantifying locomotor activity was evaluated by varying environmental temperature and measuring the activity level of the flies. The results of this experiment matched those reported in the literature.

  3. Pipeline Structural Health Monitoring Using Macro-fiber Composite Active Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Thien, Andrew B. [Univ. of Cincinnati, OH (United States)

    2006-01-10

    The United States economy is heavily dependent upon a vast network of pipeline systems to transport and distribute the nation's energy resources. As this network of pipelines continues to age, monitoring and maintaining its structural integrity remains essential to the nation's energy interests. Numerous pipeline accidents over the past several years have resulted in hundreds of fatalities and billions of dollars in property damages. These accidents show that the current monitoring methods are not sufficient and leave a considerable margin for improvement. To avoid such catastrophes, more thorough methods are needed. As a solution, the research of this thesis proposes a structural health monitoring (SHM) system for pipeline networks. By implementing a SHM system with pipelines, their structural integrity can be continuously monitored, reducing the overall risks and costs associated with current methods. The proposed SHM system relies upon the deployment of macro-fiber composite (MFC) patches for the sensor array. Because MFC patches are flexible and resilient, they can be permanently mounted to the curved surface of a pipeline's main body. From this location, the MFC patches are used to monitor the structural integrity of the entire pipeline. Two damage detection techniques, guided wave and impedance methods, were implemented as part of the proposed SHM system. However, both techniques utilize the same MFC patches. This dual use of the MFC patches enables the proposed SHM system to require only a single sensor array. The presented Lamb wave methods demonstrated the ability to correctly identify and locate the presence of damage in the main body of the pipeline system, including simulated cracks and actual corrosion damage. The presented impedance methods demonstrated the ability to correctly identify and locate the presence of damage in the flanged joints of the pipeline system, including the loosening of bolts on the flanges. In addition to damage

  4. Comparison of three generations of ActiGraph activity monitors under free-living conditions

    DEFF Research Database (Denmark)

    Grydeland, May; Hansen, Bjørge Herman; Ried-Larsen, M.

    2014-01-01

    + in children in free-living conditions. The generations GT1M and GT3X+ provided comparable outputs. The differences between the old and the newer monitors were more complex when investigating time spent at different intensities. Comparisons of data assessed by the AM7164 with data assessed by newer generations......BACKGROUND: A recent review concludes that the agreement of data across ActiGraph accelerometer models for children and youth still is uncertain. The aim of this study was to evaluate the agreement of three generations of ActiGraph accelerometers in children in a free-living condition. METHODS......: Sixteen 9-year-olds wore the ActiGraph AM7164, GT1M and GT3X+ simultaneously for three consecutive days. We compared mean counts per minute (mcpm) and time spent at different intensities from the three generations of monitors, and the agreement of outputs were evaluated by intra-class correlation...

  5. A Sensor Web and Web Service-Based Approach for Active Hydrological Disaster Monitoring

    OpenAIRE

    Xi Zhai; Peng Yue; Mingda Zhang

    2016-01-01

    Rapid advancements in Earth-observing sensor systems have led to the generation of large amounts of remote sensing data that can be used for the dynamic monitoring and analysis of hydrological disasters. The management and analysis of these data could take advantage of distributed information infrastructure technologies such as Web service and Sensor Web technologies, which have shown great potential in facilitating the use of observed big data in an interoperable, flexible and on-demand way....

  6. Rumination in major depressive disorder is associated with impaired neural activation during conflict monitoring.

    Science.gov (United States)

    Alderman, Brandon L; Olson, Ryan L; Bates, Marsha E; Selby, Edward A; Buckman, Jennifer F; Brush, Christopher J; Panza, Emily A; Kranzler, Amy; Eddie, David; Shors, Tracey J

    2015-01-01

    Individuals with major depressive disorder (MDD) often ruminate about past experiences, especially those with negative content. These repetitive thoughts may interfere with cognitive processes related to attention and conflict monitoring. However, the temporal nature of these processes as reflected in event-related potentials (ERPs) has not been well-described. We examined behavioral and ERP indices of conflict monitoring during a modified flanker task and the allocation of attention during an attentional blink (AB) task in 33 individuals with MDD and 36 healthy controls, and whether their behavioral performance and ERPs varied with level of rumination. N2 amplitude elicited by the flanker task was significantly reduced in participants with MDD compared to healthy controls. Level of self-reported rumination was also correlated with N2 amplitude. In contrast, P3 amplitude during the AB task was not significantly different between groups, nor was it correlated with rumination. No significant differences were found in behavioral task performance measures between groups or by rumination levels. These findings suggest that rumination in MDD is associated with select deficits in cognitive control, particularly related to conflict monitoring.

  7. Scheduling structural health monitoring activities for optimizing life-cycle costs and reliability of wind turbines

    Science.gov (United States)

    Hanish Nithin, Anu; Omenzetter, Piotr

    2017-04-01

    Optimization of the life-cycle costs and reliability of offshore wind turbines (OWTs) is an area of immense interest due to the widespread increase in wind power generation across the world. Most of the existing studies have used structural reliability and the Bayesian pre-posterior analysis for optimization. This paper proposes an extension to the previous approaches in a framework for probabilistic optimization of the total life-cycle costs and reliability of OWTs by combining the elements of structural reliability/risk analysis (SRA), the Bayesian pre-posterior analysis with optimization through a genetic algorithm (GA). The SRA techniques are adopted to compute the probabilities of damage occurrence and failure associated with the deterioration model. The probabilities are used in the decision tree and are updated using the Bayesian analysis. The output of this framework would determine the optimal structural health monitoring and maintenance schedules to be implemented during the life span of OWTs while maintaining a trade-off between the life-cycle costs and risk of the structural failure. Numerical illustrations with a generic deterioration model for one monitoring exercise in the life cycle of a system are demonstrated. Two case scenarios, namely to build initially an expensive and robust or a cheaper but more quickly deteriorating structures and to adopt expensive monitoring system, are presented to aid in the decision-making process.

  8. Rumination in major depressive disorder is associated with impaired neural activation during conflict monitoring

    Directory of Open Access Journals (Sweden)

    Brandon L Alderman

    2015-05-01

    Full Text Available Individuals with major depressive disorder (MDD often ruminate about past experiences, especially those with negative content. These repetitive thoughts may interfere with cognitive processes related to attention and conflict monitoring. However, the temporal nature of these processes as reflected in event-related potentials (ERPs has not been well described. We examined behavioral and ERP indices of conflict monitoring during a modified flanker task and the allocation of attention during an attentional blink (AB task in 33 individuals with MDD and 36 healthy controls, and whether their behavioral performance and ERPs varied with level of rumination. N2 amplitude elicited by the flanker task was significantly reduced in participants with MDD compared to healthy controls. Level of self-reported rumination was also correlated with N2 amplitude. In contrast, P3 amplitude during the AB task was not significantly different between groups, nor was it correlated with rumination. No significant differences were found in behavioral task performance measures between groups or by rumination levels. These findings suggest that rumination in MDD is associated with select deficits in cognitive control, particularly related to conflict monitoring.

  9. Monitoring exposure of northern cardinals, Cardinalis cardinalis, to cholinesterase-inhibiting pesticides: enzyme activity, reactivations, and indicators of environmental stress.

    Science.gov (United States)

    Maul, Jonathan D; Farris, Jerry L

    2005-07-01

    Northern cardinals (Cardinalis cardinalis) frequently use agricultural field edges in northeast Arkansas, USA, and may be at risk of exposure to cholinesterase (ChE)-inhibiting pesticides. We monitored northern cardinal exposure to ChE-inhibiting pesticides by comparing plasma total ChE (TChE) activity to reference-derived benchmarks and TChE reactivations. Total ChE and acetylcholinesterase (AChE) were measured for 128 plasma samples from 104 northern cardinals from nine study sites. Of birds sampled from sites treated with ChE-inhibiting pesticides, 4.3% of the samples had TChE activities below the diagnostic threshold (2 standard deviations [SD] below the reference mean) and 8.7% of the samples had TChE reactivations. No difference was found in TChE (p = 0.553) and AChE (p = 0.288) activity between treated and reference sites; however, activity varied among treated sites (p = 0.003). These data do not suggest uniform exposure to individuals, but rather exposure was variable and likely influenced by mitigating factors at individual and site scales. Furthermore, monitoring of TChE reactivation appeared to be a more sensitive indicator of exposure than the diagnostic threshold. Fluctuating asymmetry (FA) was greater at agricultural sites than reference sites (p = 0.016), supporting the hypothesis that FA may be useful for assessing a combination of habitat- and contaminant-related environmental stress.

  10. Highly stretchable strain sensor based on SWCNTs/CB synergistic conductive network for wearable human-activity monitoring and recognition

    Science.gov (United States)

    Guo, Xiaohui; Huang, Ying; Zhao, Yunong; Mao, Leidong; Gao, Le; Pan, Weidong; Zhang, Yugang; Liu, Ping

    2017-09-01

    Flexible, stretchable, and wearable strain sensors have attracted significant attention for their potential applications in human movement detection and recognition. Here, we report a highly stretchable and flexible strain sensor based on a single-walled carbon nanotube (SWCNTs)/carbon black (CB) synergistic conductive network. The fabrication, synergistic conductive mechanism, and characterization of the sandwich-structured strain sensor were investigated. The experimental results show that the device exhibits high stretchability (120%), excellent flexibility, fast response (∼60 ms), temperature independence, and superior stability and reproducibility during ∼1100 stretching/releasing cycles. Furthermore, human activities such as the bending of a finger or elbow and gestures were monitored and recognized based on the strain sensor, indicating that the stretchable strain sensor based on the SWCNTs/CB synergistic conductive network could have promising applications in flexible and wearable devices for human motion monitoring.

  11. Use of an Activity Monitor and GPS Device to Assess Community Activity and Participation in Transtibial Amputees

    Directory of Open Access Journals (Sweden)

    Brenton Hordacre

    2014-03-01

    Full Text Available This study characterized measures of community activity and participation of transtibial amputees based on combined data from separate accelerometer and GPS devices. The relationship between community activity and participation and standard clinical measures was assessed. Forty-seven participants were recruited (78% male, mean age 60.5 years. Participants wore the accelerometer and GPS devices for seven consecutive days. Data were linked to assess community activity (community based step counts and community participation (number of community visits. Community activity and participation were compared across amputee K-level groups. Forty-six participants completed the study. On average each participant completed 16,645 (standard deviation (SD 13,274 community steps and 16 (SD 10.9 community visits over seven days. There were differences between K-level groups for measures of community activity (F(2,45 = 9.4, p < 0.001 and participation (F(2,45 = 6.9, p = 0.002 with lower functioning K1/2 amputees demonstrating lower levels of community activity and participation than K3 and K4 amputees. There was no significant difference between K3 and K4 for community activity (p = 0.28 or participation (p = 0.43. This study demonstrated methodology to link accelerometer and GPS data to assess community activity and participation in a group of transtibial amputees. Differences in K-levels do not appear to accurately reflect actual community activity or participation in higher functioning transtibial amputees.

  12. Use of an activity monitor and GPS device to assess community activity and participation in transtibial amputees.

    Science.gov (United States)

    Hordacre, Brenton; Barr, Christopher; Crotty, Maria

    2014-03-25

    This study characterized measures of community activity and participation of transtibial amputees based on combined data from separate accelerometer and GPS devices. The relationship between community activity and participation and standard clinical measures was assessed. Forty-seven participants were recruited (78% male, mean age 60.5 years). Participants wore the accelerometer and GPS devices for seven consecutive days. Data were linked to assess community activity (community based step counts) and community participation (number of community visits). Community activity and participation were compared across amputee K-level groups. Forty-six participants completed the study. On average each participant completed 16,645 (standard deviation (SD) 13,274) community steps and 16 (SD 10.9) community visits over seven days. There were differences between K-level groups for measures of community activity (F(2,45) = 9.4, p participation (F(2,45) = 6.9, p = 0.002) with lower functioning K1/2 amputees demonstrating lower levels of community activity and participation than K3 and K4 amputees. There was no significant difference between K3 and K4 for community activity (p = 0.28) or participation (p = 0.43). This study demonstrated methodology to link accelerometer and GPS data to assess community activity and participation in a group of transtibial amputees. Differences in K-levels do not appear to accurately reflect actual community activity or participation in higher functioning transtibial amputees.

  13. Evaluation of the ability of three physical activity monitors to predict weight change and estimate energy expenditure.

    Science.gov (United States)

    Correa, John B; Apolzan, John W; Shepard, Desti N; Heil, Daniel P; Rood, Jennifer C; Martin, Corby K

    2016-07-01

    Activity monitors such as the Actical accelerometer, the Sensewear armband, and the Intelligent Device for Energy Expenditure and Activity (IDEEA) are commonly validated against gold standards (e.g., doubly labeled water, or DLW) to determine whether they accurately measure total daily energy expenditure (TEE) or activity energy expenditure (AEE). However, little research has assessed whether these parameters or others (e.g., posture allocation) predict body weight change over time. The aims of this study were to (i) test whether estimated energy expenditure or posture allocation from the devices was associated with weight change during and following a low-calorie diet (LCD) and (ii) compare free-living TEE and AEE predictions from the devices against DLW before weight change. Eighty-seven participants from 2 clinical trials wore 2 of the 3 devices simultaneously for 1 week of a 2-week DLW period. Participants then completed an 8-week LCD and were weighed at the start and end of the LCD and 6 and 12 months after the LCD. More time spent walking at baseline, measured by the IDEEA, significantly predicted greater weight loss during the 8-week LCD. Measures of posture allocation demonstrated medium effect sizes in their relationships with weight change. Bland-Altman analyses indicated that the Sensewear and the IDEEA accurately estimated TEE, and the IDEEA accurately measured AEE. The results suggest that the ability of energy expenditure and posture allocation to predict weight change is limited, and the accuracy of TEE and AEE measurements varies across activity monitoring devices, with multi-sensor monitors demonstrating stronger validity.

  14. Determination of ATP-activity as a useful tool for monitoring microbial load in aqueous humidifier samples.

    Science.gov (United States)

    Liebers, Verena; Bachmann, Dieter; Franke, Gabriele; Freundt, Susanne; Stubel, Heike; Düser, Maria; Kendzia, Benjamin; Böckler, Margret; Brüning, Thomas; Raulf, Monika

    2015-03-01

    Air humidifier water tanks are potential sources of microbial contaminants. Aerosolization of these contaminants is associated with the development of airway and lung diseases; therefore, implementation of preventive strategies including monitoring of the microbial contamination is recommended. So far, culture-based methods that include measuring colony forming units (CFU) are widely used to monitor microbial load. However, these methods are time consuming and have considerable drawbacks. As a result, alternative methods are needed which provide not only clear and accurate results concerning microbial load in water samples, but are also rapid and easy to use in the field. This paper reports on a rapid test for ATP quantification as an alternative method for microbial monitoring, including its implementation, validation and application in the field. For this purpose, 186 water samples were characterized with different methods, which included ATP analysis, culture-based methods, endotoxin activity (common and rapid test), pyrogenic activity and number of particles. Half of the samples was measured directly in the field and the other half one day later in the laboratory. The results of both tests are highly correlated. Furthermore, to check how representative the result from one sample of a water source is, a second sample of the same water tank were collected and measured. Bioluminescence results of the undiluted samples covered a range between 20 and 25,000 relative light units (RLU) and correlated with the results obtained using the other methods. The highest correlation was found between bioluminescence and endotoxin activity (rs=0.79) as well as pyrogenic activity (rs=0.75). Overall, the results of this study indicate that ATP measurement using bioluminescence is a suitable tool to obtain rapid, reproducible and sensitive information on the microbial load of water samples, and is suitable to use in the field. However, to use ATP measurement as an indicator of

  15. Fluorescent peptide biosensor for monitoring CDK4/cyclin D kinase activity in melanoma cell extracts, mouse xenografts and skin biopsies.

    Science.gov (United States)

    Prével, Camille; Pellerano, Morgan; González-Vera, Juan A; Henri, Pauline; Meunier, Laurent; Vollaire, Julien; Josserand, Véronique; Morris, May C

    2016-11-15

    Melanoma constitutes the most aggressive form of skin cancer, which further metastasizes into a deadly form of cancer. The p16(INK4a)-Cyclin D-CDK4/6-pRb pathway is dysregulated in 90% of melanomas. CDK4/Cyclin D kinase hyperactivation, associated with mutation of CDK4, amplification of Cyclin D or loss of p16(INK4a) leads to increased risk of developing melanoma. This kinase therefore constitutes a key biomarker in melanoma and an emerging pharmacological target, however there are no tools enabling direct detection or quantification of its activity. Here we report on the design and application of a fluorescent peptide biosensor to quantify CDK4 activity in melanoma cell extracts, skin biopsies and melanoma xenografts. This biosensor provides sensitive means of comparing CDK4 activity between different melanoma cell lines and further responds to CDK4 downregulation by siRNA or small-molecule inhibitors. By affording means of monitoring CDK4 hyperactivity consequent to cancer-associated molecular alterations in upstream signaling pathways that converge upon this kinase, this biosensor offers an alternative to immunological identification of melanoma-specific biomarkers, thereby constituting an attractive tool for diagnostic purposes, providing complementary functional information to histological analysis, of particular utility for detection of melanoma onset in precancerous lesions. This is indeed the first fluorescent peptide biosensor which has been successfully implemented to monitor kinase activity in skin samples and melanoma tumour xenografts. Moreover by enabling to monitor response to CDK4 inhibitors, this biosensor constitutes an attractive companion assay to identify compounds of therapeutic relevance for melanoma.

  16. Summary of Activities for Health Monitoring of Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Russell, Rick; Skow, Miles

    2013-01-01

    This three-year project (FY12-14) will design and demonstrate the ability of new Magnetic Stress Gages for the measurement of stresses on the inner diameter of a Composite Overwrapped Pressure Vessel overwrap. The sensors are being tested at White Sands Testing Facility (WSTF) where the results will be correlated with a known nondestructive technique acoustic emission. The gages will be produced utilizing Meandering Winding Magnetometer (MWM) and/or MWM array eddy current technology. The ultimate goal is to utilize this technology for the health monitoring of Composite Overwrapped Pressure Vessels for all future flight programs. The first full-scale pressurization test was performed at WSTF in June 2012. The goals of this test were to determine adaptations of the magnetic stress gauge instrumentation that would be necessary to allow multiple sensors to monitor the vessel's condition simultaneously and to determine how the sensor response changes with sensor selection and orientation. The second full scale pressurization test was performed at WSTF in August 2012. The goals of this test were to monitor the vessel's condition with multiple sensors simultaneously, to determine the viability of the multiplexing units (MUX) for the application, and to determine if the sensor responses in different orientations are repeatable. For both sets of tests the vessel was pressured up to 6,000 psi to simulate maximum operating pressure. Acoustic events were observed during the first pressurization cycle. This suggested that the extended storage period prior to use of this bottle led to a relaxation of the residual stresses imparted during auto-frettage. The pressurization tests successfully demonstrated the use of multiplexers with multiple MWM arrays to monitor a vessel. It was discovered that depending upon the sensor orientation, the frequencies, and the sense element, the MWM arrays can provide a variety of complementary information about the composite overwrapped pressure

  17. Monitoring population disability: Evaluation of a new Global Activity Limitation Indicator (GALI)

    NARCIS (Netherlands)

    Oyen, H. van; Heyden, J.; Perenboom, R.; Jagger, C.

    2006-01-01

    Objective: To evaluate a single item instrument, the Global Activity Limitation Indicator (GALI), to measure long-standing health related activity limitations, against several health indicators: a composite morbidity indicator, instruments measuring mental health (SCL-90R, GHQ-12), physical

  18. A Mobile Application for Easy Design and Testing of Algorithms to Monitor Physical Activity in the Workplace

    Directory of Open Access Journals (Sweden)

    Susanna Spinsante

    2016-01-01

    Full Text Available This paper addresses approaches to Human Activity Recognition (HAR with the aim of monitoring the physical activity of people in the workplace, by means of a smartphone application exploiting the available on-board accelerometer sensor. In fact, HAR via a smartphone or wearable sensor can provide important information regarding the level of daily physical activity, especially in situations where a sedentary behavior usually occurs, like in modern workplace environments. Increased sitting time is significantly associated with severe health diseases, and the workplace is an appropriate intervention setting, due to the sedentary behavior typical of modern jobs. Within this paper, the state-of-the-art components of HAR are analyzed, in order to identify and select the most effective signal filtering and windowing solutions for physical activity monitoring. The classifier development process is based upon three phases; a feature extraction phase, a feature selection phase, and a training phase. In the training phase, a publicly available dataset is used to test among different classifier types and learning methods. A user-friendly Android-based smartphone application with low computational requirements has been developed to run field tests, which allows to easily change the classifier under test, and to collect new datasets ready for use with machine learning APIs. The newly created datasets may include additional information, like the smartphone position, its orientation, and the user’s physical characteristics. Using the mobile tool, a classifier based on a decision tree is finally set up and enriched with the introduction of some robustness improvements. The developed approach is capable of classifying six activities, and to distinguish between not active (sitting and active states, with an accuracy near to 99%. The mobile tool, which is going to be further extended and enriched, will allow for rapid and easy benchmarking of new algorithms based

  19. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Science.gov (United States)

    2010-07-01

    ... activated carbon? 60.1820 Section 60.1820 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet three requirements: (a) Select a carbon injection system...

  20. A context-aware adaptive feedback agent for activity monitoring and coaching

    NARCIS (Netherlands)

    op den Akker, Harm; Jones, Valerie M.; Moualed, L.S.; Hermens, Hermanus J.

    2012-01-01

    A focus in treatment of chronic diseases is optimizing levels of physical activity. At Roessingh Research and Development, a system was developed, consisting of a Smartphone and an activity sensor, that can measure a patient’s daily activity behavior and provide motivational feedback messages. We ar

  1. User experiences of wearable activity monitor among 3-6-year-old preschool children – Are children willing to wear monitor 7 days 24 hours per day?

    Directory of Open Access Journals (Sweden)

    Suvi Määttä

    2015-10-01

    This study was conducted as a part of long-term DAGIS project that aims to improve the health behaviors and diminish socioeconomic inequalities in health behaviors among preschool children in Finland. A large cross-sectional survey is conducted in autumn 2015. Children (N=800, aged 3-6 years wear Actigraph WGT3X-BT accelerometer for seven days, 24 hours per day. Simultaneously with accelerometer use, parents fill in diary with informing the user experiences of accelerometer and possible non-wearing times. Parents are advised that the child wears accelerometer 24 hours and remove the belt only when in water (e.g. in shower. The accelerometer data are checked straight after data collection. Choi (2011 wear time analyses are conducted for data. The device acceptability, compliance for wearing times and reported barriers for using accelerometer 24 hours in seven days among 3-6-year-old children are reported. Conclusions This study provides new information about the usability of wearable activity monitors among 3-6-year-old children, an age group that is less studied.

  2. Application of MODIS-Derived Active Fire Radiative Energy to Fire Disaster and Smoke Pollution Monitoring

    Science.gov (United States)

    Ichoku, Charles; Kaufman, Yoram J.; Hao, Wei Min; Habib, Shahid

    2004-01-01

    The radiative energy emitted by large fires and the corresponding smoke aerosol loading are simultaneously measured from the MODIS sensor from both the Terra and Aqua satellites. Quantitative relationships between the rates of emission of fire radiative energy and smoke are being developed for different fire-prone regions of the globe. Preliminary results are presented. When fully developed, the system will enable the use of MODIS direct broadcast fire data for near real-time monitoring of fire strength and smoke emission as well as forecasting of fire progression and smoke dispersion, several hours to a few days in advance.

  3. A new device for monitoring individual activity rhythms of honey bees reveals critical effects of the social environment on behavior.

    Science.gov (United States)

    Beer, Katharina; Steffan-Dewenter, Ingolf; Härtel, Stephan; Helfrich-Förster, Charlotte

    2016-08-01

    Chronobiological studies of individual activity rhythms in social insects can be constrained by the artificial isolation of individuals from their social context. We present a new experimental set-up that simultaneously measures the temperature rhythm in a queen-less but brood raising mini colony and the walking activity rhythms of singly kept honey bees that have indirect social contact with it. Our approach enables monitoring of individual bees in the social context of a mini colony under controlled laboratory conditions. In a pilot experiment, we show that social contact with the mini colony improves the survival of monitored young individuals and affects locomotor activity patterns of young and old bees. When exposed to conflicting Zeitgebers consisting of a light-dark (LD) cycle that is phase-delayed with respect to the mini colony rhythm, rhythms of young and old bees are socially synchronized with the mini colony rhythm, whereas isolated bees synchronize to the LD cycle. We conclude that the social environment is a stronger Zeitgeber than the LD cycle and that our new experimental set-up is well suited for studying the mechanisms of social entrainment in honey bees.

  4. The monitoring of transient regimes on machine tools based on speed, acceleration and active electric power absorbed by motors

    Science.gov (United States)

    Horodinca, M.

    2016-08-01

    This paper intend to propose some new results related with computer aided monitoring of transient regimes on machine-tools based on the evolution of active electrical power absorbed by the electric motor used to drive the main kinematic chains and the evolution of rotational speed and acceleration of the main shaft. The active power is calculated in numerical format using the evolution of instantaneous voltage and current delivered by electrical power system to the electric motor. The rotational speed and acceleration of the main shaft are calculated based on the signal delivered by a sensor. Three real-time analogic signals are acquired with a very simple computer assisted setup which contains a voltage transformer, a current transformer, an AC generator as rotational speed sensor, a data acquisition system and a personal computer. The data processing and analysis was done using Matlab software. Some different transient regimes were investigated; several important conclusions related with the advantages of this monitoring technique were formulated. Many others features of the experimental setup are also available: to supervise the mechanical loading of machine-tools during cutting processes or for diagnosis of machine-tools condition by active electrical power signal analysis in frequency domain.

  5. Microfluidic setup for on-line SERS monitoring using laser induced nanoparticle spots as SERS active substrate

    Directory of Open Access Journals (Sweden)

    Oana-M. Buja

    2017-01-01

    Full Text Available A microfluidic setup which enables on-line monitoring of residues of malachite green (MG using surface-enhanced Raman scattering (SERS is reported. The SERS active substrate was prepared via laser induced synthesis of silver or gold nanoparticles spot on the bottom of a 200 μm inner dimension glass capillary, by focusing the laser beam during a continuous flow of a mixture of silver nitrate or gold chloride and sodium citrate. The described microfluidic setup enables within a few minutes the monitoring of several processes: the synthesis of the SERS active spot, MG adsorption to the metal surface, detection of the analyte when saturation of the SERS signal is reached, and finally, the desorption of MG from the spot. Moreover, after MG complete desorption, the regeneration of the SERS active spot was achieved. The detection of MG was possible down to 10−7 M concentration with a good reproducibility when using silver or gold spots as SERS substrate.

  6. Status of contamination monitoring in radiation activities of National Atomic Energy Agency (NAEA) in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Suhariyono, Gatot [National Atomic Energy Agency, Jakarta (Indonesia)

    1997-06-01

    National Atomic Energy Agency (NAEA) or Badan Tenaga Atom Nasional (BATAN) is a non departmental governmental agency, headed by a Director General who is directly responsible to the President. Center for Standardization and Radiation Safety Research (CSRSR) is one of the research centers within the deputy for the assessment of nuclear science and technology of the NAEA. The main task of the CSRSR is to implement research and development program, development and services in the field of radiation safety, standardization, dosimetry, radiation health as well as the application of nuclear techniques in medicine, according to the policy confirmed by the director general of BATAN. Task of radiation protection division is to set up programs and to develop radiation protection, personal monitoring system and radiation level of the working areas and their surroundings as well as dose limitation system, to carry out technical up grading of radiation protection officials skill and to help coping with radiation accident. The key factor on contamination monitoring is to reduce human error and mechanical failures. These problems can be achieved to the highest degree by developing knowledge and skill of staffs via trainings or courses on contamination and decontamination, so that they are hoped to become trained and qualified staffs. (G.K.)

  7. Microseismic Monitoring of Strainburst Activities in Deep Tunnels at the Jinping II Hydropower Station, China

    Science.gov (United States)

    Xu, N. W.; Li, T. B.; Dai, F.; Zhang, R.; Tang, C. A.; Tang, L. X.

    2016-03-01

    Rockbursts were frequently encountered during the construction of deep tunnels at the Jinping II hydropower station, Southwest China. Investigations of the possibility of rockbursts during tunnel boring machine (TBM) and drilling and blasting (D&B) advancement are necessary to guide the construction of tunnels and to protect personnel and TBM equipment from strainburst-related accidents. A real-time, movable microseismic monitoring system was installed to forecast strainburst locations ahead of the tunnel faces. The spatiotemporal distribution evolution of microseismic events prior to and during strainbursts was recorded and analysed. The concentration of microseismic events prior to the occurrence of strainbursts was found to be a significant precursor to strainbursts in deep rock tunnelling. During a 2-year microseismic investigation of strainbursts in the deep tunnels at the Jinping II hydropower station, a total of 2240 strainburst location forecasts were issued, with 63 % correctly forecasting the locations of strainbursts. The successful forecasting of strainburst locations proved that microseismic monitoring is essential for the assessment and mitigation of strainburst hazards, and can be used to minimise damage to equipment and personnel. The results of the current study may be valuable for the construction management and safety assessment of similar underground rock structures under high in situ stress.

  8. Final report on fiscal year 1992 activities for the environmental monitors line-loss study

    Energy Technology Data Exchange (ETDEWEB)

    Kenoyer, J.L. [Science Applications International Corp., Richland, WA (United States)

    1993-12-09

    The work performed on this Environmental Monitors Line-Loss Study has been performed under Contract Numbers MLW-SVV-073750 and MFH-SVV-207554. Work on the task was initiated mid-December 1991, and this report documents and summarizes the work performed through January 18, 1993. The sections included in this report summarize the work performed on the Environmental Monitors Line-Loss Study. The sections included in this report are arranged to reflect individual sub-tasks and include: descriptions of measurement systems and procedures used to obtain cascade impactor samples and laser spectrometer measurements from multiple stacks and locations; information on data acquisition, analyses, assessment, and software; discussion of the analyses and measurement results from the cascade impactor and laser spectrometer systems and software used; discussion on the development of general test methods and procedures for line-loss determinations; an overall summary and specific conclusions that can be made with regard to efforts performed on this task during FY 1992 and FY 1993. Supporting information for these sections is included in this report as appendices.

  9. Remote monitoring of weak aftershock activity with waveform cross correlation: the case of the DPRK September 9, 2016 underground test

    CERN Document Server

    Bobrov, Dmitry; Rozhkov, Mikhail

    2016-01-01

    The method of waveform cross correlation (WCC) allows remote monitoring of weak seismic activity induced by underground tests. This type of monitoring is considered as a principal task of on-site inspection under the Comprehensive nuclear-test-ban treaty. On September 11, 2016, a seismic event with body wave magnitude 2.1 was found in automatic processing near the epicenter of the underground explosion conducted by the DPRK on September 9, 2016. This event occurred approximately two days after the test. Using the WCC method, two array stations of the International Monitoring System (IMS), USRK and KSRS, detected Pn-wave arrivals, which were associated with a unique event. Standard automatic processing at the International Data Centre (IDC) did not create an event hypothesis, but in the following interactive processing based on WCC detections, an IDC analyst was able to create a two-station event . Location and other characteristics of this small seismic source indicate that it is likely an aftershock of the p...

  10. Motivation and semantic context affect brain error-monitoring activity: an event-related brain potentials study.

    Science.gov (United States)

    Ganushchak, Lesya Y; Schiller, Niels O

    2008-01-01

    During speech production, we continuously monitor what we say. In situations in which speech errors potentially have more severe consequences, e.g. during a public presentation, our verbal self-monitoring system may pay special attention to prevent errors than in situations in which speech errors are more acceptable, such as a casual conversation. In an event-related potential study, we investigated whether or not motivation affected participants' performance using a picture naming task in a semantic blocking paradigm. Semantic context of to-be-named pictures was manipulated; blocks were semantically related (e.g., cat, dog, horse, etc.) or semantically unrelated (e.g., cat, table, flute, etc.). Motivation was manipulated independently by monetary reward. The motivation manipulation did not affect error rate during picture naming. However, the high-motivation condition yielded increased amplitude and latency values of the error-related negativity (ERN) compared to the low-motivation condition, presumably indicating higher monitoring activity. Furthermore, participants showed semantic interference effects in reaction times and error rates. The ERN amplitude was also larger during semantically related than unrelated blocks, presumably indicating that semantic relatedness induces more conflict between possible verbal responses.

  11. Evaluation of the Finis Swimsense® and the Garmin Swim™ activity monitors for swimming performance and stroke kinematics analysis

    Science.gov (United States)

    Mooney, Robert; Corley, Gavin; Godfrey, Alan; Osborough, Conor; ÓLaighin, Gearóid

    2017-01-01

    Aims The study aims were to evaluate the validity of two commercially available swimming activity monitors for quantifying temporal and kinematic swimming variables. Methods Ten national level swimmers (5 male, 5 female; 15.3±1.3years; 164.8±12.9cm; 62.4±11.1kg; 425±66 FINA points) completed a set protocol comprising 1,500m of swimming involving all four competitive swimming strokes. Swimmers wore the Finis Swimsense and the Garmin Swim activity monitors throughout. The devices automatically identified stroke type, swim distance, lap time, stroke count, stroke rate, stroke length and average speed. Video recordings were also obtained and used as a criterion measure to evaluate performance. Results A significant positive correlation was found between the monitors and video for the identification of each of the four swim strokes (Garmin: X2 (3) = 31.292, p<0.05; Finis:X2 (3) = 33.004, p<0.05). No significant differences were found for swim distance measurements. Swimming laps performed in the middle of a swimming interval showed no significant difference from the criterion (Garmin: bias -0.065, 95% confidence intervals -3.828–6.920; Finis bias -0.02, 95% confidence intervals -3.095–3.142). However laps performed at the beginning and end of an interval were not as accurately timed. Additionally, a statistical difference was found for stroke count measurements in all but two occasions (p<0.05). These differences affect the accuracy of stroke rate, stroke length and average speed scores reported by the monitors, as all of these are derived from lap times and stroke counts. Conclusions Both monitors were found to operate with a relatively similar performance level and appear suited for recreational use. However, issues with feature detection accuracy may be related to individual variances in stroke technique. It is reasonable to expect that this level of error would increase when the devices are used by recreational swimmers rather than elite swimmers. Further

  12. Evaluation of the Finis Swimsense® and the Garmin Swim™ activity monitors for swimming performance and stroke kinematics analysis.

    Science.gov (United States)

    Mooney, Robert; Quinlan, Leo R; Corley, Gavin; Godfrey, Alan; Osborough, Conor; ÓLaighin, Gearóid

    2017-01-01

    The study aims were to evaluate the validity of two commercially available swimming activity monitors for quantifying temporal and kinematic swimming variables. Ten national level swimmers (5 male, 5 female; 15.3±1.3years; 164.8±12.9cm; 62.4±11.1kg; 425±66 FINA points) completed a set protocol comprising 1,500m of swimming involving all four competitive swimming strokes. Swimmers wore the Finis Swimsense and the Garmin Swim activity monitors throughout. The devices automatically identified stroke type, swim distance, lap time, stroke count, stroke rate, stroke length and average speed. Video recordings were also obtained and used as a criterion measure to evaluate performance. A significant positive correlation was found between the monitors and video for the identification of each of the four swim strokes (Garmin: X2 (3) = 31.292, pswim distance measurements. Swimming laps performed in the middle of a swimming interval showed no significant difference from the criterion (Garmin: bias -0.065, 95% confidence intervals -3.828-6.920; Finis bias -0.02, 95% confidence intervals -3.095-3.142). However laps performed at the beginning and end of an interval were not as accurately timed. Additionally, a statistical difference was found for stroke count measurements in all but two occasions (p<0.05). These differences affect the accuracy of stroke rate, stroke length and average speed scores reported by the monitors, as all of these are derived from lap times and stroke counts. Both monitors were found to operate with a relatively similar performance level and appear suited for recreational use. However, issues with feature detection accuracy may be related to individual variances in stroke technique. It is reasonable to expect that this level of error would increase when the devices are used by recreational swimmers rather than elite swimmers. Further development to improve accuracy of feature detection algorithms, specifically for lap time and stroke count, would also

  13. [TTC-ETS activity monitoring of A2/O process for combined sewage treatment].

    Science.gov (United States)

    Gao, Yan; Dai, Xing-Chun; Chen, Xi; Huang, Min-Sheng; Zhu, Yong; Huang, Yan; Wang, Guo-Hua

    2009-06-15

    The influences of variations of temperature and F/M on the TTC-ETS activity have been experimentally studied. The correlation between TTC-ETS activity and COD degradation was also analyzed. Comparing TTC-ETS activities with physical and chemical indexes when high C/N ratio impacted A2/O process, the advantages and disadvantages of using TTC-ETS activity to characterize the status of A2/O process were illustrated. The results showed that both temperature and F/M were positively correlated with TTC-ETS activity. TC-ETS activity was in the range of 13.2-48.3 mg/(g x h) and the maximum value was 60 mg/(g x h) which had a significant relationship with COD removal rate. In this system, abnormal state was pre-warned by TTC-ETS activity. The highest removal rate of COD appeared when TTC-ETS activity was 41.0 mg/(g x h).

  14. Long-term monitoring of soil microbiological activities in two forest sites in South tyrol in the italian alps.

    Science.gov (United States)

    Margesin, Rosa; Minerbi, Stefano; Schinner, Franz

    2014-09-17

    We monitored microbiological properties in two forest sites over a period of 17 years (1993-2010) within the International Cooperative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems (ICP IM). The two study sites were located in South Tyrol in the Italian Alps at altitudes of 1,737 m a.s.l. (subalpine site IT01) and 570 m a.s.l. (submontane site IT02). Soil samples were collected in the late spring and autumn of 1993, 2000, and 2010, and were characterized by measuring respiration, key enzyme activities involved in the C, N, P, and S cycles and litter degradation, and the abundance of viable bacterial and fungal populations. Over the study period, an increase in mean annual air temperatures at both sites (+0.6°C and +0.8°C at IT01 and IT02, respectively) was calculated from trendlines. Significantly lower mean annual air temperatures, higher temperature fluctuations, and higher annual precipitation rates were observed at site IT01 than at site IT02. Subalpine site IT01 was characterized by significantly lower microbial activity (respiration, enzymes) and abundance than those at submontane site IT02. The year of sampling had a significant effect on all the parameters investigated, except for nitrification. Fungal abundance decreased consistently over the study period, while no consistent trend was noted among the other parameters investigated. Season only affected a few of the measured microbiological parameters: respiration and bacterial numbers were significantly higher in the spring than in the autumn, while the opposite was noted for xylanase and phosphatase activities. Soil fungi contributed essentially to xylanase and protease activities, while soil bacteria were mainly involved in degradation processes that required the activity of sulfatase.

  15. Ultrasonic Monitoring of Enzyme Catalysis; Enzyme Activity in Formulations for Lactose-Intolerant Infants.

    Science.gov (United States)

    Altas, Margarida C; Kudryashov, Evgeny; Buckin, Vitaly

    2016-05-03

    The paper introduces ultrasonic technology for real-time, nondestructive, precision monitoring of enzyme-catalyzed reactions in solutions and in complex opaque media. The capabilities of the technology are examined in a comprehensive analysis of the effects of a variety of diverse factors on the performance of enzyme β-galactosidase in formulations for reduction of levels of lactose in infant milks. These formulations are added to infant's milk bottles prior to feeding to overcome the frequently observed intolerance to lactose (a milk sugar), a serious issue in healthy development of infants. The results highlight important impediments in the development of these formulations and also illustrate the capability of the described ultrasonic tools in the assessment of the performance of enzymes in complex reaction media and in various environmental conditions.

  16. Monitoring of an active landslide in chaotic clay shales (Emilia Romagna region, Northern Apennines)

    Science.gov (United States)

    Squarzoni, Gabriela; Bertello, Lara; Guerriero, Luigi; Berti, Matteo

    2017-04-01

    Sassi Neri landslide is located in the Farini area (North Apennines), about 40 kilometers southwest of Piacenza city. The geology of the area is quite complex, with strongly tectonically deformed shales (Palombini Shales formation) thrusting over an arenaceous-pelitic flysch (Bettola Flysch formation). Starting from '50s, the landslide has been subjected to many reactivations developed as earthflows, the last one in the period between November 2013 and January 2014. The landslide is about 700 m long with a maximum width of about 200 m and a slip surface lying at a depth varying from 5 m to 15 m (Pizziolo et al 2014). In early fall 2016, Sassi Neri landslide seemed starting to move again; hence, a monitoring system has been installed in order to study the landslide's displacements and displacement rates and their correlation with rainfall events, pore water pressure and shear wave velocity (Vs) variations. The monitoring system consists of: 1) a CR1000 datalogger (Campbell Scientific), 2) a charge controller STECA SOLSUM 88F, 3) two time lapse cameras (Brinno TLC200 pro), 4) a pore water pressure sensor (buried at a depth of almost 1 meter), 5) a rain gauge and 6) four vertical polarized geophones at 4.5 Hz. The geophones are placed at intervals of 2 m and are acquiring the ambient seismic noise (passive mode) with a sampling frequency of 300 Hz for 2min every hours and all the data are collected in a Flash Memory Drive (SC115). The information about the displacements are collected analyzing the time-lapse video and using the free software Tracker. Preliminary collected data are presented here and their possible correlation is analyzed.

  17. THE PROCESS OF MONITORING AND CONTROLLING WITH REFERENCE TO THE BANKING ACTIVITY

    Directory of Open Access Journals (Sweden)

    RĂDUCAN LAURA – RAMONA

    2012-05-01

    Full Text Available During the last decades, the banking financial sector has evolved. Beginning with the evolution of the products offered by banks, the risks at which a bank is exposed have diversified. By taking into consideration the risks that appeared and the necessity of dealing with them in an efficient way, the banking institutions have had to embrace a strategic approach of their activities on the named markets.The present paper speaks about the audit activities, the external banking audit, and the internal banking audit as well as about the main features of the audit in the banking activity.

  18. Active and passive seismic methods for characterization and monitoring of unstable rock masses: field surveys, laboratory tests and modeling.

    Science.gov (United States)

    Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio

    2016-04-01

    Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous

  19. An Interactive Geospatial Database and Visualization Approach to Early Warning Systems and Monitoring of Active Volcanoes: GEOWARN

    Science.gov (United States)

    Gogu, R. C.; Schwandner, F. M.; Hurni, L.; Dietrich, V. J.

    2002-12-01

    Large parts of southern and central Europe and the Pacific rim are situated in tectonically, seismic and volcanological extremely active zones. With the growth of population and tourism, vulnerability and risk towards natural hazards have expanded over large areas. Socio-economical aspects, land use, tourist and industrial planning as well as environmental protection increasingly require needs of natural hazard assessment. The availability of powerful and reliable satellite, geophysical and geochemical information and warning systems is therefore increasingly vital. Besides, once such systems have proven to be effective, they can be applied for similar purposes in other European areas and worldwide. Technologies today have proven that early warning of volcanic activity can be achieved by monitoring measurable changes in geophysical and geochemical parameters. Correlation between different monitored data sets, which would improve any prediction, is very scarce or missing. Visualisation of all spatial information and integration into an "intelligent cartographic concept" is of paramount interest in order to develop 2-, 3- and 4-dimensional models to approach the risk and emergency assessment as well as environmental and socio-economic planning. In the framework of the GEOWARN project, a database prototype for an Early Warning System (EWS) and monitoring of volcanic activity in case of hydrothermal-explosive and volcanic reactivation has been designed. The platform-independent, web-based, JAVA-programmed, interactive multidisciplinary multiparameter visualization software being developed at ETH allows expansion and utilization to other volcanoes, world-wide databases of volcanic unrest, or other types of natural hazard assessment. Within the project consortium, scientific data have been acquired on two pilot sites: Campi Flegrei (Italy) and Nisyros Greece, including 2&3D Topography and Bathymetry, Elevation (DEM) and Landscape models (DLM) derived from conventional

  20. Planning the improvement of a seismic network for monitoring active volcanic areas: the experience on Mt. Etna

    Science.gov (United States)

    D'Alessandro, A.; Scarfì, L.; Scaltrito, A.; Di Prima, S.; Rapisarda, S.

    2013-10-01

    Seismology and geodesy are generally seen as the most reliable diagnostic tools for monitoring highly active or erupting volcanoes, like Mt. Etna. From the early 1980's, seismic activity was monitored at Mt. Etna by a permanent seismic network, progressively improved in the following years. This network has been considerably enhanced since 2005 by 24-bit digital stations equipped with broad-band (40 s) sensors. Today, thanks to a configuration of 33 broad-band and 12 short-period stations, we have a good coverage of the volcanic area as well as a high quality of the collected data. In the framework of the VULCAMED project a workgroup of Istituto Nazionale di Geofisica e Vulcanologia has taken on the task of developing the seismic monitoring system, through the installation of other seismic stations. The choice of optimal sites must be clearly made through a careful analysis of the geometry of the existing seismic network. In this paper, we applied the Seismic Network Evaluation through Simulation in order to evaluate the performance of the Etna Seismic Network before and after the addition of the stations in the candidate sites. The main advantage of the adopted method is that we can evaluate the improvement of the network before the actual installation of the stations. Our analysis has permitted to identify some critical issues of the current permanent seismic network related to the lack of stations in the southern sector of the volcano, which is nevertheless affected by a number of seismogenic structures. We have showed that the addition of stations at the candidate sites would greatly extend the coverage of the network to the south by significantly reducing the errors in the hypocenter parameters estimation.

  1. A Broadly-Based Training Program in Volcano Hazards Monitoring at the Center for the Study of Active Volcanoes

    Science.gov (United States)

    Thomas, D. M.; Bevens, D.

    2015-12-01

    The Center for the Study of Active Volcanoes, in cooperation with the USGS Volcano Hazards Program at HVO and CVO, offers a broadly based volcano hazards training program targeted toward scientists and technicians from developing nations. The program has been offered for 25 years and provides a hands-on introduction to a broad suite of volcano monitoring techniques, rather than detailed training with just one. The course content has evolved over the life of the program as the needs of the trainees have changed: initially emphasizing very basic monitoring techniques (e.g. precise leveling, interpretation of seismic drum records, etc.) but, as the level of sophistication of the trainees has increased, training in more advanced technologies has been added. Currently, topics of primary emphasis have included volcano seismology and seismic networks; acquisition and modeling of geodetic data; methods of analysis and monitoring of gas geochemistry; interpretation of volcanic deposits and landforms; training in LAHARZ, GIS mapping of lahar risks; and response to and management of volcanic crises. The course also provides training on public outreach, based on CSAV's Hawaii-specific hazards outreach programs, and volcano preparedness and interactions with the media during volcanic crises. It is an intensive eight week course with instruction and field activities underway 6 days per week; it is now offered in two locations, Hawaii Island, for six weeks, and the Cascades volcanoes of the Pacific Northwest, for two weeks, to enable trainees to experience field conditions in both basaltic and continental volcanic environments. The survival of the program for more than two decades demonstrates that a need for such training exists and there has been interaction and contribution to the program by the research community, however broader engagement with the latter continues to present challenges. Some of the reasons for this will be discussed.

  2. Clinical Performance of a Salivary Amylase Activity Monitor During Hemodialysis Treatment

    Directory of Open Access Journals (Sweden)

    Masaru Shimazaki

    2008-01-01

    Full Text Available The hemodialysis procedure is thought to be a physical stressor in the majority of hemodialyzed patients. Previous studies suggest that elevated salivary amylase level may correlate with increased plasma norepinephrine level under psychological and physical stress conditions. In this study, we investigated biological stress reactivity during hemodialysis treatment using salivary amylase activity as a biomarker. Seven patients (male/female = 5/2, age:67.7+ /− 5.9 years who had been receiving regular 4 h hemodialysis were recruited. Salivary amylase activity was measured using a portable analyzer every hour during the hemodialysis session. Salivary amylase activity was shown to be relatively stable and constant throughout hemodialysis, whereas there were significant changes in systolic blood pressure and pulse rate associated with blood volume reduction. Our results show that hemodialysis treatment per se dose not affect salivary amylase activity.

  3. On the use of physical activity monitoring for estrus detection in dairy cows

    DEFF Research Database (Denmark)

    Løvendahl, P; Chagunda, M

    2010-01-01

    activity data and to apply the algorithm to activity data from an experimental herd. The herd comprised of Holstein (n = 211), Jersey (n = 126), and Red Dane (n = 178) cattle, with virgin heifers (n = 132) and lactating cows in the first 4 parities; n = 895 cow-parities, with a total of 3,674 activity....... Rates of estrus detection and error rate depended on the chosen threshold level. At a threshold giving 74.6% detection rate, daily error rate was 1.3%. When applied to a subset of the complete data where milk progesterone was also available, concordance of days to first activity-detected estrus...

  4. Monitoring Animal Activity Rhythms in the Laboratory: Four Easily Assembled Devices.

    Science.gov (United States)

    Merritt, Sheridan V.

    1989-01-01

    The use of actographs for studying animal activity is discussed. Described are running recorders for rodents, perching and feeding recorders for birds, and tilting box recorders for studying the movement of reptiles, amphibians, and arthropods. (CW)

  5. Environmental Contaminants Monitoring in Selected Wetlands of Wyoming: Biologically Active Elements Study

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment, water and biota were collected from selected wetlands in Wyoming for the Biologically Active Elements (BAE) Study in 1988, 1989 and 1990 to identify...

  6. In-line localized monitoring of catalyst activity in selective catalytic NO.sub.x reduction systems

    Science.gov (United States)

    Muzio, Lawrence J.; Smith, Randall A.

    2009-12-22

    Localized catalyst activity in an SCR unit for controlling emissions from a boiler, power plant, or any facility that generates NO.sub.x-containing flue gases is monitored by one or more modules that operate on-line without disrupting the normal operation of the facility. Each module is positioned over a designated lateral area of one of the catalyst beds in the SCR unit, and supplies ammonia, urea, or other suitable reductant to the catalyst in the designated area at a rate that produces an excess of the reductant over NO.sub.x on a molar basis through the designated area. Sampling probes upstream and downstream of the designated area draw samples of the gas stream for NO.sub.x analysis, and the catalyst activity is determined from the difference in NO.sub.x levels between the two probes.

  7. A vote for robustness: Monitoring serum enzyme activity by thin-layer chromatography of dabsylated bradykinin products.

    Science.gov (United States)

    Bayer, Malte; König, Simone

    2017-09-05

    High-end analytical methods provide excellent data but may lack the robustness required in large analytical studies. In particular complex chemical matrices may cause difficulties and increase the need for extensive sample preparation. For screening of patients we thus developed a low-tech assay to monitor bradykinin degradation by serum proteases. The bradykinin concentration mirrors the activity of angiotensin-converting enzyme (ACE). Dabsylated bradykinin (DBK) and its labeled fragments DBK1-8 and DBK1-5 were visualized by thin-layer chromatography using only 3μL of serum. Lower DBK1-5 levels indicated reduced ACE activity due to medication (ACE-inhibitors) or disease. Provided that purified DBK is available, the assay protocol itself is very simple and does not require any expensive high-end equipment. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Measurement of the activation cross section for the (p,xn) reactions in niobium with potential applications as monitor reactions

    Energy Technology Data Exchange (ETDEWEB)

    Avila-Rodriguez, M.A. [Edmonton PET Centre, Cross Cancer Institute, Edmonton, AB, T6G 1Z2 (Canada)], E-mail: miguel.avila-rodriguez@utu.fi; Wilson, J.S. [Edmonton PET Centre, Cross Cancer Institute, Edmonton, AB, T6G 1Z2 (Canada); Schueller, M.J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); McQuarrie, S.A. [Edmonton PET Centre, Cross Cancer Institute, Edmonton, AB, T6G 1Z2 (Canada)

    2008-08-15

    Excitation functions of the {sup 93}Nb(p,n){sup 93m}Mo, {sup 93}Nb(p,pn){sup 92m}Nb and {sup 93}Nb(p,{alpha}n){sup 89}Zr nuclear reactions were measured up to 17.4 MeV by the conventional activation method using the stacked-foil technique. Stacks were irradiated at different incident energies on the TR19/9 cyclotron at the Edmonton PET Centre. The potential of the measured excitation functions for use as monitor reactions was evaluated and tested by measuring activity ratios at a different facility. Single Nb foils were irradiated at incident energies in the range from 12 to 19 MeV on the TR19/9 cyclotron at Brookhaven National Laboratory. Results are compared with the published data and with theoretical values as determined by the nuclear reaction model code EMPIRE.

  9. An Assessment of the Capabilities of the ERS Satellites' Active Microwave Instruments for Monitoring Soil Moisture Change

    Directory of Open Access Journals (Sweden)

    K. Blyth

    1997-01-01

    Full Text Available The launch of the European Remote sensing Satellite (ERS-1 in July 1991 represented an important turning point in the development of Earth observation as it was the first of a series of satellites which would carry high resolution active microwave (radar sensors which could operate through the thickest cloudeover and provide continuity of data for at least a decade. This was of particular relevance to hydrological applications, such as soil moisture monitoring, which generally require frequent satellite observations to monitor changes in state. ERS-1 and its successor ERS-2 carry the active microwave instrument (AMI which operates in 3 modes (synthetic aperture radar, wind scatterometer and wave seatterometer together with the radar altimeter which may all be useful for the observation of soil moisture. This paper assesses the utility of these sensors through a comprehensive review of work in this field. Two approaches to soil moisture retrieval are identified: 1 inversion modelling, where the physical effects of vegetation and soil roughness on radar backscatter are quantified through the use of multi-frequency and/or multi-polarization sensors and 2 change detection where these effects are normalized through frequent satellite observation, the residual effects being attributed to short-term changes in soil moisture. Both approaches will be better supported by the future European Envisat-l satellite which will provide both multi-polarization SAR and low resolution products which should facilitate more frequent temporal observation.

  10. Assessment of Objective Ambulation in Lower Extremity Sarcoma Patients with a Continuous Activity Monitor: Rationale and Validation

    Directory of Open Access Journals (Sweden)

    Kenneth R. Gundle

    2014-01-01

    Full Text Available In addition to patient reported outcome measures, accelerometers may provide useful information on the outcome of sarcoma patients treated with limb salvage. The StepWatch (SW Activity Monitor (SAM is a two-dimensional accelerometer worn on the ankle that records an objective measure of walking performance. The purpose of this study was to validate the SW in a cross-sectional population of adult patients with lower extremity sarcoma treated with limb salvage. The main outcome was correlation of total steps with the Toronto Extremity Salvage Score (TESS. In a sample of 29 patients, a mean of 12 days of SW data was collected per patient (range 6–16, with 2767 average total steps (S.D. 1867; range 406–7437. There was a moderate positive correlation between total steps and TESS (r=0.56,  P=0.002. Patients with osseous tumors walked significantly less than those with soft tissue sarcoma (1882 versus 3715, P<0.01. This study supports the validity of the SAM as an activity monitor for the objective assessment of real world physical function in sarcoma patients.

  11. Optimal Parameter Exploration for Online Change-Point Detection in Activity Monitoring Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Naveed Khan

    2016-10-01

    Full Text Available In recent years, smart phones with inbuilt sensors have become popular devices to facilitate activity recognition. The sensors capture a large amount of data, containing meaningful events, in a short period of time. The change points in this data are used to specify transitions to distinct events and can be used in various scenarios such as identifying change in a patient’s vital signs in the medical domain or requesting activity labels for generating real-world labeled activity datasets. Our work focuses on change-point detection to identify a transition from one activity to another. Within this paper, we extend our previous work on multivariate exponentially weighted moving average (MEWMA algorithm by using a genetic algorithm (GA to identify the optimal set of parameters for online change-point detection. The proposed technique finds the maximum accuracy and F_measure by optimizing the different parameters of the MEWMA, which subsequently identifies the exact location of the change point from an existing activity to a new one. Optimal parameter selection facilitates an algorithm to detect accurate change points and minimize false alarms. Results have been evaluated based on two real datasets of accelerometer data collected from a set of different activities from two users, with a high degree of accuracy from 99.4% to 99.8% and F_measure of up to 66.7%.

  12. Fish biomarkers for environmental monitoring: An integrated model supporting enzyme activity and histopathological lesions

    Science.gov (United States)

    Neta, Raimunda Nonata Fortes Carvalho; Torres Junior, Audalio Rebelo

    2014-10-01

    We present a mathematical model describing the association between glutathione-S-transferase activity and brachial lesions in the catfish, Sciades herzbergii (Ariidae) from a polluted port. The catfish were sampled from a port known to be contaminated with heavy metals and organic compounds and from a natural reserve in São Marcos Bay, Brazil. Two biomarkers, hepatic glutathione S-transferase (GST) activity and histopathological lesions, in gills tissue were measured. The values for GST activity were modeled with the occurrence of branchial lesions by fitting a third order polynomial. Results from the mathematical model indicate that GST activity has a strong polynomial relationship with the occurrence of branchial lesions in both the wet and the dry seasons, but only at the polluted port site. The model developed in this study indicates that branchial and hepatic lesions are initiated when GST activity reaches 2.15 μmol min-1 mg protein-1. Beyond this limit, GST activity decreased to very low levels and irreversible histopathological lesions occurred. This mathematical model provides a realistic approach to analyze predictive biomarkers of environmental health status.

  13. Monitoring of gross alpha, gross beta and actinides activities in exhaust air released from the waste isolation pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, P., E-mail: pthakur@cemrc.org [Carlsbad Environmental Monitoring and Research Center, 1400 University Drive, Carlsbad, New Mexico 88220 (United States); Mulholland, G.P. [Carlsbad Environmental Monitoring and Research Center, 1400 University Drive, Carlsbad, New Mexico 88220 (United States)

    2011-09-15

    The simultaneous measurements of gross alpha and beta activities is one of the simplest radioanalytical technique used as a method for screening samples of both high and low activities of alpha and beta emitting radionuclides in environmental and bioassay samples. Such measurements are of great interest from both a radiological, waste disposal viewpoint, and to establish a trend of radioactivity based on long term monitoring. At the WIPP (Waste Isolation Pilot Plant) site, unfiltered exhaust air from the underground repository is the most important effluent. As part of its monitoring program, the particulates from WIPP exhaust air are collected everyday at a location typically called the Fixed Air Sampler (FAS) site or Station A, this site is located at the release point for aerosol effluents from the underground to the environment. The measurements of gross alpha and beta activity on air filter samples were performed using an ultra low level counter, PIC-MPC 9604-{alpha}/{beta}, from Protean Instrument Corporation. The high sensitivity of the gross alpha and beta instrument enables detection of low value activity from the air filters. In 2009, the values of gross alpha and beta activity concentrations ranged from Simultaneous measurements of gross alpha and gross beta activities in the particulates from WIPP exhaust air were performed. > Ultra low level counter, PIC-MPC 9604-{alpha}/{beta} counter was used for the measurements. > Values of gross alpha activity concentrations ranged from Values of gross beta activity concentrations ranged from

  14. Physical activity monitoring in stroke: SenseWear Pro2 activity accelerometer versus Yamax Digi-Walker SW-200 pedometer.

    Science.gov (United States)

    Vanroy, Christel; Vissers, Dirk; Cras, Patrick; Beyne, Saskia; Feys, Hilde; Vanlandewijck, Yves; Truijen, Steven

    2014-01-01

    Determine validity and reliability of SenseWear Pro2 Armband (SWP2A) and Yamax Digi-Walker SW-200 Pedometer (YDWP) in stroke and healthy adults. Fifteen stroke patients and 15 healthy participants wore SWP2A on upper arm and YDWP at hip/knee. Different activities were performed: treadmill walking, walking up/down a step, cycling and walking on an even surface. Steps and Energy Expenditure (EE) were measured and compared to steps counted manually and indirect calorimetry. Repeated measurements were compared to determine reliability of both devices. Spearman correlation coefficients between knee-worn YDWP and counted steps while walking on an even surface was ≥0.89 in healthy and ≥0.95 in stroke. Treadmill walking revealed high Spearman correlation coefficients in healthy individuals (rs ≥ 0.90) and at 1.5 km/h in stroke (rs = 0.69). During other activities YDWP often underestimated steps. SWP2A data revealed inconsistent results in EE and steps. Reliability tested by repeated measurements varied between 0.66 and 0.98 for YDWP and 0.61 and 0.97 for SWP2A. YDWP and SWP2A are both reliable. Only knee-worn YDWP is a valid device to measure steps except high intensity walking in stroke. YDWP systematically undercounts steps during other activities of short duration. This study could not demonstrate valid measurement of steps/EE in stroke using SWP2A. Implications for Rehabilitation Stroke is a disabling disease with residual neurologic deficits, which impairs mobility and predisposes them to sedentary behavior. A Yamax Digi-Walker SW-200 knee-worn pedometer showed to be a valid and reliable technique to measure ambulatory activity in stroke. A valid instrument to measure energy expenditure in stroke needs to be explored.

  15. Volcview: A Web-Based Platform for Satellite Monitoring of Volcanic Activity and Eruption Response

    Science.gov (United States)

    Schneider, D. J.; Randall, M.; Parker, T.

    2014-12-01

    The U.S. Geological Survey (USGS), in cooperation with University and State partners, operates five volcano observatories that employ specialized software packages and computer systems to process and display real-time data coming from in-situ geophysical sensors and from near-real-time satellite sources. However, access to these systems both inside and from outside the observatory offices are limited in some cases by factors such as software cost, network security, and bandwidth. Thus, a variety of Internet-based tools have been developed by the USGS Volcano Science Center to: 1) Improve accessibility to data sources for staff scientists across volcano monitoring disciplines; 2) Allow access for observatory partners and for after-hours, on-call duty scientists; 3) Provide situational awareness for emergency managers and the general public. Herein we describe VolcView (volcview.wr.usgs.gov), a freely available, web-based platform for display and analysis of near-real-time satellite data. Initial geographic coverage is of the volcanoes in Alaska, the Russian Far East, and the Commonwealth of the Northern Mariana Islands. Coverage of other volcanoes in the United States will be added in the future. Near-real-time satellite data from NOAA, NASA and JMA satellite systems are processed to create image products for detection of elevated surface temperatures and volcanic ash and SO2 clouds. VolcView uses HTML5 and the canvas element to provide image overlays (volcano location and alert status, annotation, and location information) and image products that can be queried to provide data values, location and measurement capabilities. Use over the past year during the eruptions of Pavlof, Veniaminof, and Cleveland volcanoes in Alaska by the Alaska Volcano Observatory, the National Weather Service, and the U.S. Air Force has reinforced the utility of shared situational awareness and has guided further development. These include overlay of volcanic cloud trajectory and

  16. A 160 μW 8-Channel Active Electrode System for EEG Monitoring.

    Science.gov (United States)

    Jiawei Xu; Yazicioglu, R F; Grundlehner, B; Harpe, P; Makinwa, K A A; Van Hoof, C

    2011-12-01

    This paper presents an active electrode system for gel-free biopotential EEG signal acquisition. The system consists of front-end chopper amplifiers and a back-end common-mode feedback (CMFB) circuit. The front-end AC-coupled chopper amplifier employs input impedance boosting and digitally-assisted offset trimming. The former increases the input impedance of the active electrode to 2 GΩ at 1 Hz and the latter limits the chopping induced output ripple and residual offset to 2 mV and 20 mV, respectively. Thanks to chopper stabilization, the active electrode achieves 0.8 μVrms (0.5-100 Hz) input referred noise. The use of a back-end CMFB circuit further improves the CMRR of the active electrode readout to 82 dB at 50 Hz. Both front-end and back-end circuits are implemented in a 0.18 μm CMOS process and the total current consumption of an 8-channel readout system is 88 μA from 1.8 V supply. EEG measurements using the proposed active electrode system demonstrate its benefits compared to passive electrode systems, namely reduced sensitivity to cable motion artifacts and mains interference.

  17. Microfluidic electrochemical sensor for on-line monitoring of aerosol oxidative activity.

    Science.gov (United States)

    Sameenoi, Yupaporn; Koehler, Kirsten; Shapiro, Jeff; Boonsong, Kanokporn; Sun, Yele; Collett, Jeffrey; Volckens, John; Henry, Charles S

    2012-06-27

    Particulate matter (PM) air pollution has a significant impact on human morbidity and mortality; however, the mechanisms of PM-induced toxicity are poorly defined. A leading hypothesis states that airborne PM induces harm by generating reactive oxygen species in and around human tissues, leading to oxidative stress. We report here a system employing a microfluidic electrochemical sensor coupled directly to a particle-into-liquid sampler (PILS) system to measure aerosol oxidative activity in an on-line format. The oxidative activity measurement is based on the dithiothreitol (DTT) assay, where, after being oxidized by PM, the remaining reduced DTT is analyzed by the microfluidic sensor. The sensor consists of an array of working, reference, and auxiliary electrodes fabricated in a poly(dimethylsiloxane)-based microfluidic device. Cobalt(II) phthalocyanine-modified carbon paste was used as the working electrode material, allowing selective detection of reduced DTT. The electrochemical sensor was validated off-line against the traditional DTT assay using filter samples taken from urban environments and biomass burning events. After off-line characterization, the sensor was coupled to a PILS to enable on-line sampling/analysis of aerosol oxidative activity. Urban dust and industrial incinerator ash samples were aerosolized in an aerosol chamber and analyzed for their oxidative activity. The on-line sensor reported DTT consumption rates (oxidative activity) in good correlation with aerosol concentration (R(2) from 0.86 to 0.97) with a time resolution of approximately 3 min.

  18. CRITERIA AND DIAGNOSTIC TOOLS FOR MONITORING QUALITY ASSESSMENT OF PRE-SERVICE TEACHERS’ TRAINING FOR PRACTICE-ORIENTED RESEARCH ACTIVITY

    Directory of Open Access Journals (Sweden)

    Tamara А. Strokova

    2016-01-01

    Full Text Available The purpose of the present publication is to disclose the contents of the monitoring initial stage including theoretical understanding of observed object, comprehension of its essence, definition of assessment criteria, the choice of diagnostic means and sources of information. Methods. The problem analysis of scientific prerequisites for pedagogical interpretation of education quality phenomenon, comparison and assessment of various approaches in definition of its essence are carried out from the system approach; the author’s understanding of quality of future teachers training to research activity and criteria of its assessment is proved. The studying and analysis of official documents, educational programs and scientific publications, systematization, substantial generalization, structuring, differentiation and expert assessment are used while the problem solution of main research actions for scientific and pedagogical search selection, which are essential result of high school training. Results. Criteria and estimated complex of quality of learners training to research activity, developed according to requirements of the monitoring assessment, reflecting its intrinsic properties (quality of educational process, quality of its conditions, quality of the received results and their specific indicators are proposed. Stage-by-stage procedure of research actions selection is developed. Diagnostic means and sources of information are defined. Scientific novelty. Definition of the concepts «education quality», in terms of its understanding as a set of intrinsic aspect characteristics and the quality principle of process and its conditions quality reflection (A. I. Subetto, and the «practice-oriented research activity» defined as a set of the research actions reflecting its subject contents which are carried out in the context of the scientific solution of actual professional and pedagogical tasks is given. The list of research actions for

  19. Monitoring of biofilm formation and activity in drinking water distribution networks under oligotrophic conditions

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Martiny, Adam Camillo; Arvin, Erik

    2003-01-01

    In this study, the construction a model distribution system suitable for studies of attached and suspended microbial activity in drinking water under controlled circumstances is outlined. The model system consisted of two loops connected in series with a total of 140 biofilm sampling points....... The biofilm from the system was studied using 11 different microbial methods and the results were compared and discussed. The methods were used for biomass quantification (AODC, HPC and ATP determination), visualisation of structure (CLSM), activity measurement (leucine incorporation, AOC removal rate...

  20. Toward an objective indexing system for ADHD-screening using children's activity monitoring.

    Science.gov (United States)

    Kam, Hye Jin; Choi, Jong Pil; Park, Rae Woong

    2008-11-06

    Signs of ADHD are discernible in specific situations, and usually assessed according to subjective impre