WorldWideScience

Sample records for monitor mangrove deforestation

  1. Geochemical approach to evaluate deforest of mangroves

    OpenAIRE

    Ishiga, Hiroaki; Diallo, Ibrahima M'bemba; Bah Mamadou Lamine Malick,; Ngulimi. Faustine Miguta,; Magai. Paschal Justin,; Shati Samwel Stanley,

    2016-01-01

    Processes of mangrove deforest related human activities were examined. To evaluate changes of soil feature, multielements geochemical compositions of mangrove muds and soils of deforest were analyzed. To describe present situation of the mangrove, Conakry in Guinea, Dar es Salaam in Tanzania, Sundarbans of Bangladesh and Nago in Okinawa of Japan were selected. Soil samples of the forests were evaluated enrichment of biologically concentrated heavy metals such as Zn, Cu and Fe, and TS (total s...

  2. Utilizing NASA Earth Observations to Monitor, Map, and Forecast Mangrove Extent and Deforestation in Myanmar for Enhanced Conservation

    Science.gov (United States)

    Ferraro, C. P.; Jensen, D.; Disla, C.

    2013-12-01

    Mangrove ecosystems offer several significant services including providing habitat and spawning grounds for a diverse range of species, protecting coastal communities from storms and other natural disasters, and contributing resources and income for local residents. Currently, Myanmar is undergoing a period of rapid economic development which has led to increased pressure on the extensive mangrove habitat in the Ayeyarwady River Delta in southern Myanmar. In this study, we partnered with the Smithsonian Conservation Biology Institute to examine changes to mangrove extent between 1989 and 2013 using Landsat 4, 7, and 8 imagery in combination with a Digital Elevation Model (DEM) generated from ASTER stereoscopic imagery. Classification was performed using a Random Forests model and accuracy was assessed using higher resolution ASTER imagery and local expertise on mangrove distribution. Results show a large and consistent decline in mangrove cover during the study period. The data provided by this assessment was subsequently used to forecast potential vulnerability and changes to mangrove habitat up to 2030. A multi-layered perceptron was used to model transition potentials for vulnerability forecasting. Forest managers in Myanmar will be able to use the mangrove change maps and forecasts to evaluate current policies and focus future ones to maximize effectiveness. Data and methodology resulting from this project will be useful for future mangrove and land-cover mapping projects in this region.

  3. Rates and drivers of mangrove deforestation in Southeast Asia, 2000-2012.

    Science.gov (United States)

    Richards, Daniel R; Friess, Daniel A

    2016-01-12

    The mangrove forests of Southeast Asia are highly biodiverse and provide multiple ecosystem services upon which millions of people depend. Mangroves enhance fisheries and coastal protection, and store among the highest densities of carbon of any ecosystem globally. Mangrove forests have experienced extensive deforestation owing to global demand for commodities, and previous studies have identified the expansion of aquaculture as largely responsible. The proportional conversion of mangroves to different land use types has not been systematically quantified across Southeast Asia, however, particularly in recent years. In this study we apply a combined geographic information system and remote sensing method to quantify the key proximate drivers (i.e., replacement land uses) of mangrove deforestation in Southeast Asia between 2000 and 2012. Mangrove forests were lost at an average rate of 0.18% per year, which is lower than previously published estimates. In total, more than 100,000 ha of mangroves were removed during the study period, with aquaculture accounting for 30% of this total forest change. The rapid expansion of rice agriculture in Myanmar, and the sustained conversion of mangroves to oil palm plantations in Malaysia and Indonesia, are identified as additional increasing and under-recognized threats to mangrove ecosystems. Our study highlights frontiers of mangrove deforestation in the border states of Myanmar, on Borneo, and in Indonesian Papua. To implement policies that conserve mangrove forests across Southeast Asia, it is essential to consider the national and subnational variation in the land uses that follow deforestation.

  4. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012

    Science.gov (United States)

    Richards, Daniel R.; Friess, Daniel A.

    2016-01-01

    The mangrove forests of Southeast Asia are highly biodiverse and provide multiple ecosystem services upon which millions of people depend. Mangroves enhance fisheries and coastal protection, and store among the highest densities of carbon of any ecosystem globally. Mangrove forests have experienced extensive deforestation owing to global demand for commodities, and previous studies have identified the expansion of aquaculture as largely responsible. The proportional conversion of mangroves to different land use types has not been systematically quantified across Southeast Asia, however, particularly in recent years. In this study we apply a combined geographic information system and remote sensing method to quantify the key proximate drivers (i.e., replacement land uses) of mangrove deforestation in Southeast Asia between 2000 and 2012. Mangrove forests were lost at an average rate of 0.18% per year, which is lower than previously published estimates. In total, more than 100,000 ha of mangroves were removed during the study period, with aquaculture accounting for 30% of this total forest change. The rapid expansion of rice agriculture in Myanmar, and the sustained conversion of mangroves to oil palm plantations in Malaysia and Indonesia, are identified as additional increasing and under-recognized threats to mangrove ecosystems. Our study highlights frontiers of mangrove deforestation in the border states of Myanmar, on Borneo, and in Indonesian Papua. To implement policies that conserve mangrove forests across Southeast Asia, it is essential to consider the national and subnational variation in the land uses that follow deforestation. PMID:26712025

  5. Carbon accumulation and storage capacity in mangrove sediments three decades after deforestation within a eutrophic bay.

    Science.gov (United States)

    Pérez, A; Machado, W; Gutiérrez, D; Borges, A C; Patchineelam, S R; Sanders, C J

    2018-01-01

    A dated sediment core from an eutrophic mangrove area presented non-significant differences in carbon accumulation rates before (55.7±10.2gm -2 yr -1 ) and after three decades of deforestation (59.7±7.2gm -2 yr -1 ). Although eutrophication effects appear to compensate the loss of mangrove organic matter input, the results in this work show a threefold lower carbon accumulation than the global averages estimated for mangrove sediments. The effects of increasing eutrophication and enhanced sediment dry bulk density observed after deforestation (~30% higher) did not result in higher carbon stocks. Moreover, the lower TOC:OP (mangrove deforestation losses on carbon accumulation in mangrove ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Deforestation and reforestation analysis from land-use changes in North Sumatran Mangroves, 1990-2015

    Science.gov (United States)

    Basyuni, M.; Sulistiyono, N.

    2018-02-01

    Mangrove forest plays a critical role in the context of climate change in tropical and subtropical regions. The present study analyzed the deforestation and reforestation from land-use and land-cover changes from 1990, 2000, 2009 and 2015 in North Sumatran mangrove forest, Indonesia. The land-use/land-cover consists of thirteen classes namely, primary mangrove forest, secondary mangrove forest, shrub, swamp shrub, swamp, settlement, paddy field, oil palm plantation, aquaculture, dry land farming, mixed dry land farming, mining, and barren land. Results showed that primary mangrove forests significantly decreased 61.21% from 1990 to 2015, mostly deforestation was derived from 1990 to 2000 to be secondary mangrove forest and swamp shrub. During 25 years observed, no reforestation was noted in the primary mangrove forest. Similarly, secondary mangrove forest had been degraded from 56,128.75 ha in 1990 to only 35,768.48 ha in 2015. Drivers of deforestation found in secondary mangrove forests were aquaculture (43.32%), barren land (32.56%), swamp shrub (10.88%), and oil palm plantation (5.17%). On the other hand, reforested activity was occurred only 701.83 ha from 1990 to 2015, while the nonforest use has been increased. These data are likely to contribute towards coastal management planning, conservation, and rehabilitation of degraded mangrove forests.

  7. Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments

    Science.gov (United States)

    Sweetman, A.K.; Middelburg, J.J.; Berle, A.M.; Bernardino, A.F.; Schander, C.; Demopoulos, A.W.J.; Smith, C.R.

    2010-01-01

    To evaluate how mangrove invasion and removal can modify benthic carbon cycling processes and ecosystem functioning, we used stable-isotopically labelled algae as a deliberate tracer to quantify benthic respiration and C-flow through macrofauna and bacteria in sediments collected from (1) an invasive mangrove forest, (2) deforested mangrove sites 2 and 6 years after removal of above-sediment mangrove biomass, and (3) two mangrove-free, control sites in the Hawaiian coastal zone. Sediment oxygen consumption (SOC) rates were significantly greater in the mangrove and mangrove removal site experiments than in controls and were significantly correlated with total benthic (macrofauna and bacteria) biomass and sedimentary mangrove biomass (SMB). Bacteria dominated short-term C-processing of added microalgal-C and benthic biomass in sediments from the invasive mangrove forest habitat. In contrast, macrofauna were the most important agents in the short-term processing of microalgal-C in sediments from the mangrove removal and control sites. Mean faunal abundance and short term C-uptake rates in sediments from both removal sites were significantly higher than in control cores, which collectively suggest that community structure and short-term C-cycling dynamics in habitats where mangroves have been cleared can remain fundamentally different from un-invaded mudflat sediments for at least 6-yrs following above-sediment mangrove removal. In summary, invasion by mangroves can lead to large shifts in benthic ecosystem function, with sediment metabolism, benthic community structure and short-term C-remineralization dynamics being affected for years following invader removal. ?? 2010 Author(s).

  8. Making predictions of mangrove deforestation: a comparison of two methods in Kenya.

    Science.gov (United States)

    Rideout, Alasdair J R; Joshi, Neha P; Viergever, Karin M; Huxham, Mark; Briers, Robert A

    2013-11-01

    Deforestation of mangroves is of global concern given their importance for carbon storage, biogeochemical cycling and the provision of other ecosystem services, but the links between rates of loss and potential drivers or risk factors are rarely evaluated. Here, we identified key drivers of mangrove loss in Kenya and compared two different approaches to predicting risk. Risk factors tested included various possible predictors of anthropogenic deforestation, related to population, suitability for land use change and accessibility. Two approaches were taken to modelling risk; a quantitative statistical approach and a qualitative categorical ranking approach. A quantitative model linking rates of loss to risk factors was constructed based on generalized least squares regression and using mangrove loss data from 1992 to 2000. Population density, soil type and proximity to roads were the most important predictors. In order to validate this model it was used to generate a map of losses of Kenyan mangroves predicted to have occurred between 2000 and 2010. The qualitative categorical model was constructed using data from the same selection of variables, with the coincidence of different risk factors in particular mangrove areas used in an additive manner to create a relative risk index which was then mapped. Quantitative predictions of loss were significantly correlated with the actual loss of mangroves between 2000 and 2010 and the categorical risk index values were also highly correlated with the quantitative predictions. Hence, in this case the relatively simple categorical modelling approach was of similar predictive value to the more complex quantitative model of mangrove deforestation. The advantages and disadvantages of each approach are discussed, and the implications for mangroves are outlined. © 2013 Blackwell Publishing Ltd.

  9. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012

    Science.gov (United States)

    Hamilton, Stuart E.; Friess, Daniel A.

    2018-03-01

    Mangrove forests store high densities of organic carbon, which, when coupled with high rates of deforestation, means that mangroves have the potential to contribute substantially to carbon emissions. Consequently, mangroves are strong candidates for inclusion in nationally determined contributions (NDCs) to the United Nations Framework Convention on Climate Change (UNFCCC), and payments for ecosystem services (PES) programmes that financially incentivize the conservation of forested carbon stocks. This study quantifies annual mangrove carbon stocks from 2000 to 2012 at the global, national and sub-national levels, and global carbon emissions resulting from deforestation over the same time period. Globally, mangroves stored 4.19 Pg of carbon in 2012, with Indonesia, Brazil, Malaysia and Papua New Guinea accounting for more than 50% of the global stock. 2.96 Pg of the global carbon stock is contained within the soil and 1.23 Pg in the living biomass. Two percent of global mangrove carbon was lost between 2000 and 2012, equivalent to a maximum potential of 316,996,250 t of CO2 emissions.

  10. Pan-tropical monitoring of deforestation

    International Nuclear Information System (INIS)

    Achard, F; DeFries, R; Eva, H; Hansen, M; Mayaux, P; Stibig, H-J

    2007-01-01

    This paper reviews the technical capabilities for monitoring deforestation from a pan-tropical perspective in response to the United Nations Framework Convention on Climate Change (UNFCCC) process, which is studying the technical issues surrounding the ability to reduce greenhouse gas emissions from deforestation in developing countries. The successful implementation of such policies requires effective forest monitoring systems that are reproducible, provide consistent results, meet standards for mapping accuracy, and can be implemented from national to pan-tropical levels. Remotely sensed data, supported by ground observations, are crucial to such efforts. Recent developments in global to regional monitoring of forests can contribute to reducing the uncertainties in estimates of emissions from deforestation. Monitoring systems at national levels in developing countries can also benefit from pan-tropical and regional observations, mainly by identifying hot spots of change and prioritizing areas for monitoring at finer spatial scales. A pan-tropical perspective is also required to ensure consistency between different national monitoring systems. Data sources already exist to determine baseline periods in the 1990s as historical reference points. Key requirements for implementing such monitoring programs, both at pan-tropical and at national scales, are international commitment of resources to increase capacity, coordination of observations to ensure pan-tropical coverage, access to free or low-cost data, and standardized, consensus protocols for data interpretation and analysis

  11. Tracking Large Area Mangrove Deforestation with Time-Series of High Fidelity MODIS Imagery

    Science.gov (United States)

    Rahman, A. F.; Dragoni, D.; Didan, K.

    2011-12-01

    Mangrove forests are important coastal ecosystems of the tropical and subtropical regions. These forests provide critical ecosystem services, fulfill important socio-economic and environmental functions, and support coastal livelihoods. But these forest are also among the most vulnerable ecosystems, both to anthropogenic disturbance and climate change. Yet, there exists no map or published study showing detailed spatiotemporal trends of mangrove deforestation at local to regional scales. There is an immediate need of producing such detailed maps to further study the drivers, impacts and feedbacks of anthropogenic and climate factors on mangrove deforestation, and to develop local and regional scale adaptation/mitigation strategies. In this study we use a time-series of high fidelity imagery from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) for tracking changes in the greenness of mangrove forests of Kalimantan Island of Indonesia. A novel method of filtering satellite data for cloud, aerosol, and view angle effects was used to produce high fidelity MODIS time-series images at 250-meter spatial resolution and three-month temporal resolution for the period of 2000-2010. Enhanced Vegetation Index 2 (EVI2), a measure of vegetation greenness, was calculated from these images for each pixel at each time interval. Temporal variations in the EVI2 of each pixel were tracked as a proxy to deforestaton of mangroves using the statistical method of change-point analysis. Results of these change detection were validated using Monte Carlo simulation, photographs from Google-Earth, finer spatial resolution images from Landsat satellite, and ground based GIS data.

  12. AVHRR for monitoring global tropical deforestation

    Science.gov (United States)

    Malingreau, J. P.; Laporte, N.; Tucker, C. J.

    1989-01-01

    Advanced Very High Resolution Radiometer (AVHRR) data have been used to assess the dynamics of forest trnsformations in three parts of the tropical belt. A large portion of the Amazon Basin has been systematically covered by Local Area Coverage (LAC) data in the 1985-1987 period. The analysis of the vegetation index and thermal data led to the identification and measurement of large areas of active deforestation. The Kalimantan/Borneo forest fires were monitored and their impact was evaluated using the Global Area Coverage (GAC) 4 km resolution data. Finally, High Resolution Picture Transmission (HRPT) data have provided preliminary information on current activities taking place at the boundary between the savanna and the forest in the Southern part of West Africa. The AVHRR approach is found to be a highly valuable means for carrying out deforestation assessments in regional and global perspectives.

  13. A comparison between ERS-1, JERS-1, and Radarsat-1 radar satellite imaging systems and Landsat MSS & TM and Spot Optical Satellite Imaging System to detect and monitor mangrove deforestation in East Kalimantan, Indonesia

    Science.gov (United States)

    Mahfud M. Zuhair; Yousif Ali Hussin; Michael Weir

    2000-01-01

    Mangrove forests are one of the primary features of coastal ecosystems throughout the tropical and subtropical regions of the world. Mangroves are very sensitive and fragile resources, and the pressures of increasing population, food production, and industrial and urban development have caused a significant proportion of the world's mangroves to be destroyed....

  14. SYNERGY OF OPTICAL AND SAR DATA FOR MAPPING AND MONITORING MANGROVES

    Directory of Open Access Journals (Sweden)

    A. K. Monzon

    2016-06-01

    Full Text Available Quantitative information on mangrove cover extents is essential in producing relevant resource management plans and conservation strategies. In the Philippines, mangrove rehabilitation was made a priority in relation to disaster risk response and mitigation following the calamities in the coastal communities during typhoon Haiyan/Yolanda; hence, baseline information on the extent of remaining mangrove cover was essential for effective site interventions. Although mangrove cover maps for the country already exists, analysis of mangrove cover changes were limited to the application of fixed annual deforestation rates due to the challenge of acquiring consistent temporal cloud-free optical satellite data over large landscapes. This study presents an initial analysis of SAR and optical imagery combined with field-based observations for detecting mangrove cover extent and changes through a straightforward graphical approach. The analysis is part of a larger study evaluating the synergistic use of time-series L-band SAR and optical data for mapping and monitoring of mangroves. Image segmentation was implemented on the 25-meter ALOS/PALSAR image mosaics, in which the generated objects were subjected to statistical analysis using the software R. In combination with selected Landsat bands, the class statistics from the image bands were used to generate decision trees and thresholds for the hierarchical image classification. The results were compared with global mangrove cover dataset and validated using collected ground truth data. This study developed an integrated replicable approach for analyzing future radar and optical datasets, essential in national level mangrove cover change monitoring and assessment for long-term conservation targets and strategies.

  15. Deforestation

    OpenAIRE

    Meyfroidt, Patrick

    2013-01-01

    Forests are sources of wood, food, and other non-timber forest products. They provide multiple ecosystem services including carbon sink and storage, habitats for biodiversity, preservation of soils, regulation of hydrological cycles, and micro-and regional climates. Deforestation is the largest single anthropogenic transformation of natural ecosystems, with large impacts on all these goods and services. Concern about forests and deforestation has long been framed through the issue of sustaini...

  16. Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments

    NARCIS (Netherlands)

    Sweetman, A.; Middelburg, J.J.; Berle, A.M.; Bernardino, A.F.; Schander, C.; Demopoulos, A.W.J.; Smith, C.R.

    2010-01-01

    To evaluate how mangrove invasion and removal can modify short-term benthic carbon cycling and ecosystem functioning, we used stable-isotopically labeled algae as a deliberate tracer to quantify benthic respiration and C-flow over 48 h through macrofauna and bacteria in sediments collected from (1)

  17. Monitoring mangrove forests: Are we taking full advantage of technology?

    Science.gov (United States)

    Younes Cárdenas, Nicolás; Joyce, Karen E.; Maier, Stefan W.

    2017-12-01

    Mangrove forests grow in the estuaries of 124 tropical countries around the world. Because in-situ monitoring of mangroves is difficult and time-consuming, remote sensing technologies are commonly used to monitor these ecosystems. Landsat satellites have provided regular and systematic images of mangrove ecosystems for over 30 years, yet researchers often cite budget and infrastructure constraints to justify the underuse this resource. Since 2001, over 50 studies have used Landsat or ASTER imagery for mangrove monitoring, and most focus on the spatial extent of mangroves, rarely using more than five images. Even after the Landsat archive was made free for public use, few studies used more than five images, despite the clear advantages of using more images (e.g. lower signal-to-noise ratios). The main argument of this paper is that, with freely available imagery and high performance computing facilities around the world, it is up to researchers to acquire the necessary programming skills to use these resources. Programming skills allow researchers to automate repetitive and time-consuming tasks, such as image acquisition and processing, consequently reducing up to 60% of the time dedicated to these activities. These skills also help scientists to review and re-use algorithms, hence making mangrove research more agile. This paper contributes to the debate on why scientists need to learn to program, not only to challenge prevailing approaches to mangrove research, but also to expand the temporal and spatial extents that are commonly used for mangrove research.

  18. Mangroves

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, S.; Untawale, A.G.

    bordering Persian Gulf are represented with only few mangrove species. The information on the usages and the impacts on the mangroves of the Indian Ocean region call for an urgent measure of conservation and management of mangroves and are dealt in detail...

  19. Tropical land-sea couplings: Role of watershed deforestation, mangrove estuary processing, and marine inputs on N fluxes in coastal Pacific Panama.

    Science.gov (United States)

    Valiela, Ivan; Elmstrom, Elizabeth; Lloret, Javier; Stone, Thomas; Camilli, Luis

    2018-07-15

    We review data from coastal Pacific Panama and other tropical coasts with two aims. First, we defined inputs and losses of nitrogen (N) mediating connectivity of watersheds, mangrove estuaries, and coastal sea. N entering watersheds-mainly via N fixation (79-86%)-was largely intercepted; N discharges to mangrove estuaries (3-6%), small compared to N inputs to watersheds, nonetheless significantly supplied N to mangrove estuaries. Inputs to mangrove estuaries (including watershed discharges, and marine inputs during flood tides) were matched by losses (mainly denitrification and export during ebb tides). Mangrove estuary subsidies of coastal marine food webs take place by export of forms of N [DON (62.5%), PN (9.1%), and litter N (12.9%)] that provide dissimilative and assimilative subsidies. N fixation, denitrification, and tidal exchanges were major processes, and DON was major form of N involved in connecting fluxes in and out of mangrove estuaries. Second, we assessed effects of watershed forest cover on connectivity. Decreased watershed forest cover lowered N inputs, interception, and discharge into receiving mangrove estuaries. These imprints of forest cover were erased during transit of N through estuaries, owing to internal N cycle transformations, and differences in relative area of watersheds and estuaries. Largest losses of N consisted of water transport of energy-rich compounds, particularly DON. N losses were similar in magnitude to N inputs from sea, calculated without considering contribution by intermittent coastal upwelling, and hence likely under-estimated. Pacific Panama mangrove estuaries are exposed to major inputs of N from land and sea, which emphasizes the high degree of bi-directional connectivity in these coupled ecosystems. Pacific Panama is still lightly affected by human or global changes. Increased deforestation can be expected, as well as changes in ENSO, which will surely raise watershed-derived loads of N, as well as significantly

  20. Monitoring hydrogeochemical interactions in coastal mangroves in Everglades National Park using field spectroscopy and remote sensing

    Science.gov (United States)

    Lagomasino, D.; Price, R. M.; Campbell, P. K.

    2011-12-01

    Coastal tropical and subtropical environments, where there are distinct seasonal shifts in precipitation, can be highly susceptible to environmental changes caused by increasing anthropogenic pressure (e.g., urbanization, deforestation) in addition to natural "press and pulse" events, such as sea-level rise, tropical storms, and a changing climate. These man-made and natural perturbations directly affect the quality and quantity of water flowing through the ecosystem, both on the surface and subsurface. Changes in groundwater and surface water interactions will impact ecological communities, including highly vulnerable coastal mangrove communities. Nearly 1,445 km2 of mangroves cover Everglades National Park along the southern and southwestern coast of Florida. Rising sea levels, a predicted drier climate, and increased water demand may accelerate the landward migration of salt water intrusion which poses threats to the ecological communities along this coastal ecotone. This is a growing concern for the region and it is necessary that we understand the present hydrogeologic conditions to better monitor and model the future and inevitable changes to the coastal environment. The purpose of this preliminary study was to test the feasibility of measuring water quality indirectly from the spectral responses of mangrove vegetation on a regional scale. Spectra-derived biophysical indices were used to assess various relationships between the spectral signatures of the 3 main mangrove species (i.e., Avicennia germinans, Rhizophora mangle, and Laguncularia racemosa) and the ionic and nutrient concentrations in the porewater (i.e., 20cm and 100cm depths), surface water, and groundwater of the mangrove ecotone. Water samples from these sources were collected during the dry season, a transitional period, and the wet season at three sites in large, high-biomass mangroves along Shark River and two sites in dwarf, low-biomass, mangroves along Taylor River. Water samples were

  1. Mangroves

    Indian Academy of Sciences (India)

    Proper stress management is the only survival strategy of man- grove plants facing extreme ... Distribution and Indian Perspective. Mangroves occur in ..... and economic concern to many developing countries including. India. Indiscriminate ...

  2. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000

    Science.gov (United States)

    Giri, Chandra; Pengra, Bruce; Zhu, Zhiliang; Singh, Ashbindu; Tieszen, Larry L.

    2007-06-01

    Mangrove forests in many parts of the world are declining at an alarming rate—possibly even more rapidly than inland tropical forests. The rate and causes of such changes are not known. The forests themselves are dynamic in nature and are undergoing constant changes due to both natural and anthropogenic forces. Our research objective was to monitor deforestation and degradation arising from both natural and anthropogenic forces. We analyzed multi-temporal satellite data from 1970s, 1990s, and 2000s using supervised classification approach. Our spatio-temporal analysis shows that despite having the highest population density in the world in its periphery, areal extent of the mangrove forest of the Sundarbans has not changed significantly (approximately 1.2%) in the last ˜25 years. The forest is however constantly changing due to erosion, aggradation, deforestation and mangrove rehabilitation programs. The net forest area increased by 1.4% from the 1970s to 1990 and decreased by 2.5% from 1990 to 2000. The change is insignificant in the context of classification errors and the dynamic nature of mangrove forests. This is an excellent example of the co-existence of humans with terrestrial and aquatic plant and animal life. The strong commitment of governments under various protection measures such as forest reserves, wildlife sanctuaries, national parks, and international designations, is believed to be responsible for keeping this forest relatively intact (at least in terms of area). While the measured net loss of mangrove forest is not that high, the change matrix shows that turnover due to erosion, aggradation, reforestation and deforestation was much greater than net change. The forest is under threat from natural and anthropogenic forces leading to forest degradation, primarily due to top-dying disease and over-exploitation of forest resources.

  3. Deforestation and sedimentation in Uraba Gulf mangroves; a synthesis of the impacts on macrobenthos and fishes in the Turbo River Delta

    International Nuclear Information System (INIS)

    Blanco Libreros, Juan Felipe; Taborda Marin, Alexander; Amortegui Torres, Viviana; Arroyave Rincon, Andrea; Sandoval, Alejandro; Estrada, Edgar Andres; Leal Florez, Jenny; Vasquez Arango, Jairo Guillermo; Vivas Narvaez, Alberto

    2013-01-01

    This synthesis relates deforestation and land use change in coastal plain of the Turbo River watershed and impacts upon estuarine fauna in its delta. This watershed is shown within the context of hidroclimatological (rainfall and discharge) variability across the eastern margin of Uraba Gulf. Coastal-plain forest conversion rate to crops were quantified, as a possible explanation of increased sediment transport to the river and the near shore. Despite of the expansion of the delta, mangrove area was reduced as a consequence of conversion to crops and pastures. The dominant mangrove snail Neritina virginea was reduced in density in anthropogenic forest gaps and edges, as well as in pastures, due to altered microhabitats, and can be therefore used as a bio-indicator. The high sedimentation rates seem to be responsible for the faunistic poverty of the benthos, but do not seem responsible of deleterious effects on the dominant species. The diversity and abundance of fishes was greatly altered by high sedimentation near the river mouth. Finally, social features of the human communities were related to landscape changes. Herewith, we reported on the current ecosystem status, as the baseline for proposing management and conservation guidelines in order to prevent and restore impacts on mangroves and the coastal zone in this region.

  4. Monitoring coral reefs, seagrasses and mangroves in Costa Rica (CARICOMP

    Directory of Open Access Journals (Sweden)

    Jorge Cortés

    2010-10-01

    Full Text Available The coral reefs, seagrasses and mangroves from the Costa Rican Caribbean coast have been monitored since 1999 using the CARICOMP protocol. Live coral cover at Meager Shoal reef bank (7 to 10m depth at the Parque Nacional Cahuita (National Park, increased from 13.3% in 1999, to 28.2% in 2003, but decreased during the next 5 years to around 17.5%. Algal cover increased significantly since 2003 from 36.6% to 61.3% in 2008. The density of Diadema antillarum oscillated between 2 and 7ind/m2, while Echinometra viridis decreased significantly from 20 to 0.6ind/m2. Compared to other CARICOMP sites, live coral cover, fish diversity and density, and sea urchin density were low, and algal cover was intermediate. The seagrass site, also in the Parque Nacional Cahuita, is dominated by Thalassia testudinum and showed an intermediate productivity (2.7±1.15 g/m2/d and biomass (822.8±391.84 g/m2 compared to other CARICOMP sites. Coral reefs and seagrasses at the Parque Nacional Cahuita continue to be impacted by high sediment loads from terrestrial origin. The mangrove forest at Gandoca, within the Refugio Nacional de Vida Silvestre Gandoca-Manzanillo (National Wildlife Refuge, surrounds a lagoon and it is dominated by the red mangrove, Rhizophora mangle. Productivity and flower production peak was in July. Biomass (14kg/m2 and density (9.0±0.58 trees/100m2 in Gandoca were relatively low compared to other CARICOMP sites, while productivity in July in Costa Rica (4g/m2/d was intermediate, similar to most CARICOMP sites. This mangrove is expanding and has low human impact thus far. Management actions should be taken to protect and preserve these important coastal ecosystems. Rev. Biol. Trop. 58 (Suppl. 3: 1-22. Epub 2010 October 01.

  5. Linking requirements with capabilities for deforestation monitoring in the context of the UNFCCC-REDD process

    International Nuclear Information System (INIS)

    Herold, Martin; Johns, Tracy

    2007-01-01

    As the United Nations Framework Convention on Climate Change nears the end of a two-year period of evaluation of the issue of reducing emissions from deforestation in developing countries, participating countries have agreed on the need to address this globally important source of greenhouse gas emissions. Negotiations on policy frameworks to monitor and reduce deforestation rely on an understanding of the scientific and technical capacity to support these efforts. Current UNFCCC programs to improve observation of land and forest cover change can provide valuable input to a future policy mechanism focusing on deforestation emissions from developing countries. Countries participating in the current debate have officially referenced the value of remote sensing tools and methods for deforestation monitoring, and have identified specific needs and goals related to their implementation. Based on these identified needs, this paper outlines recommendations for a monitoring framework that can be globally applied with sufficient levels of accuracy and certainty. This framework can serve as a starting point for monitoring programs, and can be modified in response to expected progress in establishing an international policy framework for reducing emissions from deforestation

  6. National Scale Monitoring Reporting and Verification of Deforestation and Forest Degradation in Guyana

    Science.gov (United States)

    Bholanath, P.; Cort, K.

    2015-04-01

    Monitoring deforestation and forest degradation at national scale has been identified as a national priority under Guyana's REDD+ Programme. Based on Guyana's MRV (Monitoring Reporting and Verification) System Roadmap developed in 2009, Guyana sought to establish a comprehensive, national system to monitor, report and verify forest carbon emissions resulting from deforestation and forest degradation in Guyana. To date, four national annual assessments have been conducted: 2010, 2011, 2012 and 2013. Monitoring of forest change in 2010 was completed with medium resolution imagery, mainly Landsat 5. In 2011, assessment was conducted using a combination of Landsat (5 and 7) and for the first time, 5m high resolution imagery, with RapidEye coverage for approximately half of Guyana where majority of land use changes were taking place. Forest change in 2013 was determined using high resolution imagery for the whole of Guyana. The current method is an automated-assisted process of careful systematic manual interpretation of satellite imagery to identify deforestation based on different drivers of change. The minimum mapping unit (MMU) for deforestation is 1 ha (Guyana's forest definition) and a country-specific definition of 0.25 ha for degradation. The total forested area of Guyana is estimated as 18.39 million hectares (ha). In 2012 as planned, Guyana's forest area was reevaluated using RapidEye 5 m imagery. Deforestation in 2013 is estimated at 12 733 ha which equates to a total deforestation rate of 0.068%. Significant progress was made in 2012 and 2013, in mapping forest degradation. The area of forest degradation as measured by interpretation of 5 m RapidEye satellite imagery in 2013 was 4 352 ha. All results are subject to accuracy assessment and independent third party verification.

  7. Dimension Reduction of Multi-Spectral Satellite Image Time Series to Improve Deforestation Monitoring

    Directory of Open Access Journals (Sweden)

    Meng Lu

    2017-10-01

    Full Text Available In recent years, sequential tests for detecting structural changes in time series have been adapted for deforestation monitoring using satellite data. The input time series of such sequential tests is typically a vegetation index (e.g., NDVI, which uses two or three bands and ignores all other bands. Being limited to a vegetation index will not benefit from the richer spectral information provided by newly launched satellites and will bring two bottle-necks for deforestation monitoring. Firstly, it is hard to select a suitable vegetation index a priori. Secondly, a single vegetation index is typically affected by seasonal signals, noise and other natural dynamics, which decrease its power for deforestation detection. A novel multispectral time series change monitoring method that combines dimension reduction methods with a sequential hypothesis test is proposed to address these limitations. For each location, the proposed method automatically chooses a “suitable” index for deforestation monitoring. To demonstrate our approach, we implemented it in two study areas: a dry tropical forest in Bolivia (time series length: 444 with strong seasonality and a moist tropical forest in Brazil (time series length: 225 with almost no seasonality. Our method significantly improves accuracy in the presence of strong seasonality, in particular the temporal lag between disturbance and its detection.

  8. Ecosystem carbon stocks of micronesian mangrove forests

    Science.gov (United States)

    J. Boone Kauffman; Chris Heider; Thomas G. Cole; Kathleen A. Dwire; Daniel C. Donato

    2011-01-01

    Among the least studied ecosystem services of mangroves is their value as global carbon (C) stocks. This is significant as mangroves are subject to rapid rates of deforestation and therefore could be significant sources of atmospheric emissions. Mangroves could be key ecosystems in strategies addressing the mitigation of climate change though reduced deforestation. We...

  9. Estimating mangrove in Florida: trials monitoring rare ecosystems

    Science.gov (United States)

    Mark J. Brown

    2015-01-01

    Mangrove species are keystone components in coastal ecosystems and are the interface between forest land and sea. Yet, estimates of their area have varied widely. Forest Inventory and Analysis (FIA) data from ground-based sample plots provide one estimate of the resource. Initial FIA estimates of the mangrove resource in Florida varied dramatically from those compiled...

  10. Monitoring the Restored Mangrove Condition at Perancak Estuary, Jembrana, Bali, Indonesia from 2001 to 2015

    Science.gov (United States)

    Ruslisan, R.; Kamal, M.; Sidik, F.

    2018-02-01

    Mangrove is unique vegetation that lives in tidal areas around the tropical and subtropical coasts. It has important physical, biological, and chemical roles for balancing the ecosystem, as well as serving as carbon pool. Therefore, monitoring the mangrove condition is very important step prior to any management and conservation actions in this area. This study aims to map and monitor the condition of restored mangroves in Perancak Estuary, Jembrana, Bali, Indonesia from 2001 to 2015. We used IKONOS-2, WorldView-2 and WorldView-3 image data to map the extent and canopy cover density of mangroves using visual delineation and semi-empirical modelling through Enhanced Vegetation Index (EVI) as a proxy. The results show that there was a significant increase in mangrove extent from 78.08 hectares in 2001 to 122.54 hectares in 2015. In term of mangrove canopy density, the percentage of high and very-high canopy density classes has increased from 32% in 2001 to 57% in 2015. On the other hand, there were slight changes in low and medium canopy density classes during the observation period. Overall, the result figures from both area extent and canopy density indicates the successful implementation of mangrove restoration effort in Perancak Estuary during the last 14 years.

  11. Hydrologic monitoring and analysis in the Sundarbans mangrove ecosystem, Bangladesh

    Science.gov (United States)

    Wahid, Shahriar Md.; Babel, Mukand S.; Bhuiyan, Abdur Rahman

    2007-01-01

    SummaryThe unique habitat of the Sundarbans mangrove ecosystem is dependent upon the hydrological regime. Therefore, a comprehensive study to understand the hydrologic behaviour and the changes that have taken place due to anthropogenic activities in and around the area is fundamental to the management of natural resources and environment. In the past, ad hoc and uncoordinated efforts were made due to the inherent inaccessibility and high cost of data collection. The present article documents the results of the hydrologic monitoring, modelling and analysis in the Sundarbans. The study results show that the annual maximum tidal range has increased by about 0.75 m in the eastern and central parts during the last two decades. About 60% area remains in higher salinity condition (>20 ppt) for at least 1.5 months in a year. Organic pollution in the waterways is within the Environmental Quality Standard (EQS) of Bangladesh with the average Dissolved Oxygen (DO) of 5.99 mg/L. Total Ammonia, Nitrate (NO 3-N) and Phosphate (PO 4-P) level are present in sufficient quantity for the aquatic life to survive and are within EQS limit. Lead and Chromium occasionally exceed EQS limit especially along the large barge routes in the western part. The data and information presented in the paper will serve as a baseline for future hydrological and environmental studies.

  12. Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Chandra Giri

    2016-09-01

    Full Text Available Mangrove forests, distributed in the tropical and subtropical regions of the world, are in a constant flux. They provide important ecosystem goods and services to nature and society. In recent years, the carbon sequestration potential and protective role of mangrove forests from natural disasters is being highlighted as an effective option for climate change adaptation and mitigation. The forests are under threat from both natural and anthropogenic forces. However, accurate, reliable, and timely information of the distribution and dynamics of mangrove forests of the world is not readily available. Recent developments in the availability and accessibility of remotely sensed data, advancement in image pre-processing and classification algorithms, significant improvement in computing, availability of expertise in handling remotely sensed data, and an increasing awareness of the applicability of remote sensing products has greatly improved our scientific understanding of changing mangrove forest cover attributes. As reported in this special issue, the use of both optical and radar satellite data at various spatial resolutions (i.e., 1 m to 30 m to derive meaningful forest cover attributes (e.g., species discrimination, above ground biomass is on the rise. This multi-sensor trend is likely to continue into the future providing a more complete inventory of global mangrove forest distributions and attribute inventories at enhanced temporal frequency. The papers presented in this “Special Issue” provide important remote sensing monitoring advancements needed to meet future scientific objectives for global mangrove forest monitoring from local to global scales.

  13. Monitoring coral reefs, seagrasses and mangroves in Costa Rica (CARICOMP

    Directory of Open Access Journals (Sweden)

    Jorge Cortés

    2010-10-01

    Full Text Available The coral reefs, seagrasses and mangroves from the Costa Rican Caribbean coast have been monitored since 1999 using the CARICOMP protocol. Live coral cover at Meager Shoal reef bank (7 to 10m depth at the Parque Nacional Cahuita (National Park, increased from 13.3% in 1999, to 28.2% in 2003, but decreased during the next 5 years to around 17.5%. Algal cover increased significantly since 2003 from 36.6% to 61.3% in 2008. The density of Diadema antillarum oscillated between 2 and 7ind/m2, while Echinometra viridis decreased significantly from 20 to 0.6ind/m2. Compared to other CARICOMP sites, live coral cover, fish diversity and density, and sea urchin density were low, and algal cover was intermediate. The seagrass site, also in the Parque Nacional Cahuita, is dominated by Thalassia testudinum and showed an intermediate productivity (2.7±1.15 g/m2/d and biomass (822.8±391.84 g/m2 compared to other CARICOMP sites. Coral reefs and seagrasses at the Parque Nacional Cahuita continue to be impacted by high sediment loads from terrestrial origin. The mangrove forest at Gandoca, within the Refugio Nacional de Vida Silvestre Gandoca-Manzanillo (National Wildlife Refuge, surrounds a lagoon and it is dominated by the red mangrove, Rhizophora mangle. Productivity and flower production peak was in July. Biomass (14kg/m2 and density (9.0±0.58 trees/100m2 in Gandoca were relatively low compared to other CARICOMP sites, while productivity in July in Costa Rica (4g/m2/d was intermediate, similar to most CARICOMP sites. This mangrove is expanding and has low human impact thus far. Management actions should be taken to protect and preserve these important coastal ecosystems. Rev. Biol. Trop. 58 (Suppl. 3: 1-22. Epub 2010 October 01.Los arrecifes coralinos, pastos marinos y manglares de la costa Caribe de Costa Rica han sido monitoreados desde 1999 siguiendo el protocolo de CARICOMP. La cobertura de coral vivo en el arrecife de Meager Shoal (7 a 10m de

  14. Use of archive aerial photography for monitoring black mangrove populations

    Science.gov (United States)

    A study was conducted on the south Texas Gulf Coast to evaluate archive aerial color-infrared (CIR) photography combined with supervised image analysis techniques to quantify changes in black mangrove [Avicennia germinans (L.) L.] populations over a 26-year period. Archive CIR film from two study si...

  15. An assessment of monitoring requirements and costs of 'Reduced Emissions from Deforestation and Degradation'

    Directory of Open Access Journals (Sweden)

    McCallum Ian

    2009-08-01

    Full Text Available Abstract Background Negotiations on a future climate policy framework addressing Reduced Emissions from Deforestation and Degradation (REDD are ongoing. Regardless of how such a framework will be designed, many technical solutions of estimating forest cover and forest carbon stock change exist to support policy in monitoring and accounting. These technologies typically combine remotely sensed data with ground-based inventories. In this article we assess the costs of monitoring REDD based on available technologies and requirements associated with key elements of REDD policy. Results We find that the design of a REDD policy framework (and specifically its rules can have a significant impact on monitoring costs. Costs may vary from 0.5 to 550 US$ per square kilometre depending on the required precision of carbon stock and area change detection. Moreover, they follow economies of scale, i.e. single country or project solutions will face relatively higher monitoring costs. Conclusion Although monitoring costs are relatively small compared to other cost items within a REDD system, they should be shared not only among countries but also among sectors, because an integrated monitoring system would have multiple benefits for non-REDD management. Overcoming initialization costs and unequal access to monitoring technologies is crucial for implementation of an integrated monitoring system, and demands for international cooperation.

  16. Mapping and Change Analysis in Mangrove Forest by Using Landsat Imagery

    Science.gov (United States)

    Dan, T. T.; Chen, C. F.; Chiang, S. H.; Ogawa, S.

    2016-06-01

    Mangrove is located in the tropical and subtropical regions and brings good services for native people. Mangrove in the world has been lost with a rapid rate. Therefore, monitoring a spatiotemporal distribution of mangrove is thus critical for natural resource management. This research objectives were: (i) to map the current extent of mangrove in the West and Central Africa and in the Sundarbans delta, and (ii) to identify change of mangrove using Landsat data. The data were processed through four main steps: (1) data pre-processing including atmospheric correction and image normalization, (2) image classification using supervised classification approach, (3) accuracy assessment for the classification results, and (4) change detection analysis. Validation was made by comparing the classification results with the ground reference data, which yielded satisfactory agreement with overall accuracy 84.1% and Kappa coefficient of 0.74 in the West and Central Africa and 83.0% and 0.73 in the Sundarbans, respectively. The result shows that mangrove areas have changed significantly. In the West and Central Africa, mangrove loss from 1988 to 2014 was approximately 16.9%, and only 2.5% was recovered or newly planted at the same time, while the overall change of mangrove in the Sundarbans increased approximately by 900 km2 of total mangrove area. Mangrove declined due to deforestation, natural catastrophes deforestation and mangrove rehabilitation programs. The overall efforts in this study demonstrated the effectiveness of the proposed method used for investigating spatiotemporal changes of mangrove and the results could provide planners with invaluable quantitative information for sustainable management of mangrove ecosystems in these regions.

  17. Examining change detection approaches for tropical mangrove monitoring

    Science.gov (United States)

    Myint, Soe W.; Franklin, Janet; Buenemann, Michaela; Kim, Won; Giri, Chandra

    2014-01-01

    This study evaluated the effectiveness of different band combinations and classifiers (unsupervised, supervised, object-oriented nearest neighbor, and object-oriented decision rule) for quantifying mangrove forest change using multitemporal Landsat data. A discriminant analysis using spectra of different vegetation types determined that bands 2 (0.52 to 0.6 μm), 5 (1.55 to 1.75 μm), and 7 (2.08 to 2.35 μm) were the most effective bands for differentiating mangrove forests from surrounding land cover types. A ranking of thirty-six change maps, produced by comparing the classification accuracy of twelve change detection approaches, was used. The object-based Nearest Neighbor classifier produced the highest mean overall accuracy (84 percent) regardless of band combinations. The automated decision rule-based approach (mean overall accuracy of 88 percent) as well as a composite of bands 2, 5, and 7 used with the unsupervised classifier and the same composite or all band difference with the object-oriented Nearest Neighbor classifier were the most effective approaches.

  18. Potential of Combining Optical and Dual Polarimetric SAR Data for Improving Mangrove Species Discrimination Using Rotation Forest

    Directory of Open Access Journals (Sweden)

    Hongsheng Zhang

    2018-03-01

    Full Text Available Classification of mangrove species using satellite images is important for investigating the spatial distribution of mangroves at community and species levels on local, regional and global scales. Hence, studies of mangrove deforestation and reforestation are imperative to support the conservation of mangrove forests. However, accurate discrimination of mangrove species remains challenging due to many factors such as data resolution, species number and spectral confusion between species. In this study, three different combinations of datasets were designed from Worldview-3 and Radarsat-2 data to classify four mangrove species, Kandelia obovate (KO, Avicennia marina (AM, Acanthus ilicifolius (AI and Aegiceras corniculatum (AC. Then, the Rotation Forest (RoF method was employed to classify the four mangrove species. Results indicated the benefits of dual polarimetric SAR data with an improvement of accuracy by 2–3%, which can be useful for more accurate large-scale mapping of mangrove species. Moreover, the difficulty of classifying different mangrove species, in order of increasing difficulty, was identified as KO < AM < AI < AC. Dual polarimetric SAR data are recognized to improve the classification of AI and AC species. Although this improvement is not remarkable, it is consistent for all three methods. The improvement can be particularly important for large-scale mapping of mangrove forest at the species level. These findings also provide useful guidance for future studies using multi-source satellite data for mangrove monitoring and conservation.

  19. Detecting and monitoring deforestation and forest degradation: Issues and obstacles for Southeast Asia

    Science.gov (United States)

    Douglas Muchoney; Sharon Hamann

    2013-01-01

    Forest degradation can be defined as the loss of forest volume, biomass and/or forest productivity caused by natural or human influences. Achieving Reduced Emissions from Deforestation and Forest Degradation (REDD+) requires that deforestation and degradation can be efficiently, reliably, and cost-effectively detected and quantified, often where ground and aerial...

  20. ANALISIS FINANSIALPOLA PENGGUNAAN LAHAN MANGROVE

    Directory of Open Access Journals (Sweden)

    Indra Gumay Febryano

    2014-11-01

    The expansion of aquaculture in coastal areas has become a major cause of mangroves deforestation. That has been taking place on a massive scale and impact on the social, economics, and ecology aspects in coastal areas. This study aims to explain the value of mangrove resources through the study of the financial analysis of some mangrove land use patterns. Data were collected through in-depth interviews, participant observation, and document analysis. The results showed that some landuse patterns of mangrove in Pesawaran Regency are intensive shrimp farming, mangrove nursery, and ecotourism that financially feasible to be developed. The high value of landuse patterns for intensive shrimp ponds created a high interest on the bussinesmen to own the mangrove. When intensive shrimp farms have a negative impact to the environment and its surrounding communities, also the constrain of mangrove nursery by market, then ecotourism gives great potential to mangrove protection and its biodiversity along the empowerment of local communities.

  1. Development of national database on long-term deforestation (1930-2014) in Bangladesh

    Science.gov (United States)

    Reddy, C. Sudhakar; Pasha, S. Vazeed; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.

    2016-04-01

    The aim of the present study is to prepare a nation-wide spatial database on forest cover to assess and monitor the land use changes associated with deforestation in Bangladesh. The multi-source data were interpreted to get the forest cover map of 1930, 1975, 1985, 1995, 2006 and 2014. The spatial information generated on total area under forest cover, rate of deforestation and afforestation, changes across forest types, forest canopy density, replacement land use in deforested area and deforestation hotspots. This spatial analysis has indicated that forest cover is undergoing significant negative change in area and quality. We report that forests in Bangladesh covered an area of 23,140 km2 in 1930 which has decreased to 14,086 km2 in 2014, a net loss of 9054 km2 (39.1%) in eight decades. Analysis of annual rate of gross deforestation for the recent period indicates 0.77% during 2006-2014. During the past eight decades, semi-evergreen forests show loss of 56.4% of forest cover followed by moist deciduous forests (51.5%), dry deciduous forests (43.1%) and mangroves (6.5%). The loss of 23.5% of dense forest cover was found from 1975 to 2014. Dense semi-evergreen forests shows more negative change (36.9%) followed by dense moist deciduous forest (32.7%) from 1975 to 2014. Annual rate of deforestation is higher in dense forests compared to open forests from 2006 to 2014 and indicates increased threat due to anthropogenic pressures. The spatial analysis of forest cover change in mangroves has shown a lower rate of deforestation. Most of the forest conversions have led to the degradation of forests to scrub and transition to agriculture and plantation. The study has identified the 'deforestation hotspots' can help in strategic planning for conservation and management of forest resources.

  2. Assessment and monitoring of deforestation and forest fragmentation in South Asia since the 1930s

    Science.gov (United States)

    Sudhakar Reddy, C.; Saranya, K. R. L.; Vazeed Pasha, S.; Satish, K. V.; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.; Rao, P. V. N.; Krishna Murthy, Y. V. N.

    2018-02-01

    The present study, first of its kind, has analyzed the land cover and investigated the spatial patterns of deforestation and forest fragmentation in South Asian region since the 1930's. This region comprises of eight countries: India, Bangladesh, Bhutan, Nepal, Pakistan, Afghanistan, Sri Lanka and Maldives. In South Asia, agricultural land is predominant constituting 43% of the total geographical area followed by barren land (19.99%) and forests (14.72%). The long-term change analysis using the classified maps of 1930 and 2014 indicated a loss of 29.62% of the forest cover. Higher annual net deforestation rates were observed in the period from 1930-1975 (0.68%) followed by 1975-1985 (0.23%), 1985-1995 (0.12%), 1995-2005 (0.06%) and 2005-2014 (0.04%) for the region. Forest fragmentation had significant spatio-temporal variation across the South Asian countries. In 1930, 88.91% of the South Asian forest was classified as large core forest, 8.18% as edge forest and 1.18% as perforated forest. The large core forest category has decreased significantly in area over last eight decades. The results of the present study are expected to serve as a reference for the evaluation of globally agreed Aichi biodiversity target 5 for South Asian countries. This study will be a valuable basis for developing management strategies and restoration programs as it tracks the spatial changes in deforestation and forest fragmentation.

  3. Global patterns in mangrove soil carbon stocks and losses

    KAUST Repository

    Atwood, Trisha B.

    2017-06-26

    Mangrove soils represent a large sink for otherwise rapidly recycled carbon (C). However, widespread deforestation threatens the preservation of this important C stock. It is therefore imperative that global patterns in mangrove soil C stocks and their susceptibility to remineralization are understood. Here, we present patterns in mangrove soil C stocks across hemispheres, latitudes, countries and mangrove community compositions, and estimate potential annual CO2 emissions for countries where mangroves occur. Global potential CO2 emissions from soils as a result of mangrove loss were estimated to be ~7.0 Tg CO2e yr−1. Countries with the highest potential CO2 emissions from soils are Indonesia (3,410 Gg CO2e yr−1) and Malaysia (1,288 Gg CO2e yr−1). The patterns described serve as a baseline by which countries can assess their mangrove soil C stocks and potential emissions from mangrove deforestation.

  4. Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2

    NARCIS (Netherlands)

    Reiche, Johannes; Hamunyela, Eliakim; Verbesselt, Jan; Hoekman, Dirk; Herold, Martin

    2018-01-01

    Combining observations from multiple optical and synthetic aperture radar (SAR) satellites can provide temporally dense and regular information at medium resolution scale, independently of weather, season, and location. This has the potential to improve near real-time deforestation monitoring in dry

  5. Restoring Myanmar’s mangrove forests and coastal communities’ socioeconomic stability with community based mangrove management

    OpenAIRE

    Lindholt, Jonathan Grevstad

    2016-01-01

    Mangrove forests have a significant capacity to provide ecosystem services. However, deforestation from land use changes has led to widespread degradation of these services and consequently jeopardizes coastal populations. Reforestation projects and attempts to develop sustainable management procedures are widely attempted worldwide. However, these projects often have sustainable rural livelihood improvements as a complementary goal. Integrated approaches such as Community Based Mangrove Mana...

  6. Trends in deforestation and forest degradation after a decade of monitoring in the Monarch Butterfly Biosphere Reserve in Mexico.

    Science.gov (United States)

    Vidal, Omar; López-García, José; Rendón-Salinas, Eduardo

    2014-02-01

    We used aerial photographs, satellite images, and field surveys to monitor forest cover in the core zones of the Monarch Butterfly Biosphere Reserve in Mexico from 2001 to 2012. We used our data to assess the effectiveness of conservation actions that involved local, state, and federal authorities and community members (e.g., local landowners and private and civil organizations) in one of the world's most iconic protected areas. From 2001 through 2012, 1254 ha were deforested (i.e., cleared areas had <10% canopy cover), 925 ha were degraded (i.e., areas for which canopy forest decreased), and 122 ha were affected by climatic conditions. Of the total 2179 ha of affected area, 2057 ha were affected by illegal logging: 1503 ha by large-scale logging and 554 ha by small-scale logging. Mexican authorities effectively enforced efforts to protect the monarch reserve, particularly from 2007 to 2012. Those efforts, together with the decade-long financial support from Mexican and international philanthropists and businesses to create local alternative-income generation and employment, resulted in the decrease of large-scale illegal logging from 731 ha affected in 2005-2007 to none affected in 2012, although small-scale logging is of growing concern. However, dire regional social and economic problems remain, and they must be addressed to ensure the reserve's long-term conservation. The monarch butterfly (Danaus plexippus) overwintering colonies in Mexico-which engage in one of the longest known insect migrations-are threatened by deforestation, and a multistakeholder, regional, sustainable-development strategy is needed to protect the reserve. © 2013 Society for Conservation Biology.

  7. Mangrove state

    International Nuclear Information System (INIS)

    Casas Monroy, Oscar; Perdomo Trujillo, Laura

    2002-01-01

    The authors do a diagnostic of the mangroves in Colombia, on the natural regeneration of the mangrove forest, the quality of the waters in the Bay of Chengue and on the structure of the mangrove forest, among other topics

  8. Monitoring deforestation and urbanization growth in rawal watershed area using remote sensing and gis techniques

    International Nuclear Information System (INIS)

    Saeed, M.A.; Ashraf, A.

    2011-01-01

    The Rawal watershed in Pothwar region of Pakistan has undergone significant changes in its environmental conditions and landuse activities due to numerous socio-economic and natural factors. These ultimately influence the livelihood of the inhabitants of the area. The connected environmental changes are resulting in accelerated land degradation, deforestation, and landslides. In the present study, spatio-temporal behaviour of landuse/landcover in the Rawal watershed area was investigated using Remote Sensing (RS) and Geographical Information System (GIS) techniques. Satellite image data of LANDSAT ETM+ of 1992, 2000 and 2010 periods were processed and analyzed for detecting land use change and identifying risk prone locations in the watershed area. The study results revealed significant changes in the coverage of conifer forest (34 % decrease), scrub forest (29 % decrease) and settlement (231 % increase) during the decade 1992-2010. The rate of decline in conifer class is about 19 ha/annum while that of scrub class is 223 ha/annum. In both the cases, the rates of decrease were higher during the period 1992-2000 than the period 2000-2010. The Agriculture land has shown an increase of about 1.8% while built-up land had increased almost four folds, i.e. from 2.6 % in 1992 to 8.7 % in 2010. The growth in urbanization may result in further loss of forest cover in the watershed area. The findings of the study could help in developing effective strategies for future resource management and conservation, as well as for controlling land degradation in the watershed area. (author)

  9. Satellite passive microwaves for monitoring deforestation and drought-induced carbon losses in sub-Saharan Africa

    Science.gov (United States)

    Brandt, M.; Wigneron, J. P.; Chave, J.; Tagesson, T.; Penuelas, J.; Ciais, P.; Rasmussen, K.; Tian, F.; Mbow, C.; Al-Yaari, A.; Rodriguez-Fernandez, N.; Zhang, W.; Kerr, Y. H.; Tucker, C. J.; Mialon, A.; Verger, A.; Fensholt, R.

    2017-12-01

    The African continent is facing one of the driest periods in the past three decades and continuing deforestation. These disturbances threaten vegetation carbon (C) stocks and highlight the need for an operational tool for monitoring carbon stock dynamics. Knowledge of the amount, distribution, and turnover of carbon in African vegetation is crucial for understanding the effects of human pressure and climate change, but the shortcomings of optical and radar satellite products and the lack of systematic field inventories have led to considerable uncertainty in documenting patterns and dynamics of carbon stocks, in particular for drylands. Static carbon maps have been developed, but the temporal dynamics of carbon stocks cannot be derived from the benchmark maps, impeding timely, repeated, and reliable carbon assessments. The Soil Moisture and Ocean Salinity (SMOS) mission launched in 2009 was the first passive microwave-based satellite system operating at L-band (1.4 GHz) frequency. The low frequencies allow the satellite to sense deep within the canopy layer with less influence by the green non-woody plant components. The vegetation optical depth (VOD) derived from SMOS, henceforth L-VOD, is thus less sensitive to saturation effects, marking an important step forward in the monitoring of carbon as a natural resource. In this study, we apply for the first time L-VOD to quantify the inter-annual dynamics of aboveground carbon stocks for the period 2010-2016. We use this new technique to document patterns of carbon gains and losses in sub-Saharan Africa with a focus of dryland response to recent dry years. Results show that drylands lost carbon at a rate of -0.06 Pg C y-1 associated with drying trends, while humid areas lost only -0.02 Pg C y-1. These trends reflect a high inter-annual variability with a very wet (2011) and a very dry year (2016) associated with carbon gains and losses respectively. This study demonstrates, first, the operational applicability of L

  10. Tropical Deforestation.

    Science.gov (United States)

    Raven, Peter H.

    1988-01-01

    Outlines the deforestation problem and some efforts for solving the problem. Considers the impact of population growth, poverty, and ignorance. Includes a discussion of the current rapid decline in tropical forests, the consequences of destruction, and an outlook for the future. (YP)

  11. Online deforestation detection

    OpenAIRE

    Diaz, Emiliano

    2017-01-01

    Deforestation detection using satellite images can make an important contribution to forest management. Current approaches can be broadly divided into those that compare two images taken at similar periods of the year and those that monitor changes by using multiple images taken during the growing season. The CMFDA algorithm described in Zhu et al. (2012) is an algorithm that builds on the latter category by implementing a year-long, continuous, time-series based approach to monitoring images...

  12. MONITORING MANGROVE AREA IN BENOA BAY USING LANDSAT TM AND ETM + DATA

    Directory of Open Access Journals (Sweden)

    Ni Luh Made Ari Sugianthi

    2012-11-01

    Full Text Available Mangrove ecosystems are crucial for the management of some coastal resources in Indonesia. Thisresearch used Landsat TM 1994, Landsat ETM+ 2002 with the purpose to know mangrove area change foreight years, mangrove density and accuracy of image as source of data to mangrove area in Benoa Bay. Fromimage analysis that using maximum likelihood method, the mangrove is classified into 3 classes i.e.:mangroves with high density, medium density and low density. For the ground check, used single plotmethod by using 6 trees.The extent of mangrove area in Benoa Bay were 447.69 ha in 1994 and 622.08 ha in 2002. Thechange of the extent of mangrove area during 8 years (1994 – 2002 increased by 174.41 ha. The area ofdensities in 1994, high density was 225.15 ha, medium density was 122.48 ha and low density was 130.05ha. In 2002, high density was 262.8 ha, medium density was 265.95 ha, and low density was 133.30 ha.Based on the regression analysis between mangrove density and the value of interpretation, the density ofmangrove in Benoa Bay which the criteria of high density is 364.723 – 466.311 tree/ha, medium density is237.738 - 364.723 tree/ha and low density is 186.944 – 237.738 tree/ha. The determination coefficient (r2was 0.6312. Based on the regression analysis in 2002 used in interpretation of mangrove density in 1994,which the criteria of high density is 357.10 tree/ha –316.47 tree/ha, medium density is 273.29 tree/ha –316.47 tree/ha and low density is 252.98 tree/ha –273.29 tree/ha.The accuracy of the Landsat ETM+ 2002 for mangrove area classification in Benoa Bay was 90%.These values were above the acceptable limit of accuracy stated of 80 %, so that this classification accuracywas acceptable.

  13. Mangrove forests

    Science.gov (United States)

    Ariel E. Lugo; Ernesto. Medina

    2014-01-01

    The mangrove environment is not globally homogeneous, but involves many environmental gradients to which mangrove species must adapt and overcome to maintain the familiar structure and physiognomy associated with the mangrove ecosystem. The stature of mangroves, measured by tree height, decreases along the following environmental gradients from low to high salinity,...

  14. Mangrove Study Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Southern Biscayne Bay's shoreline fish community been monitored visually twice a year since 1998 to compare fish use of mangrove prop root habitats along the...

  15. Forest loss maps from regional satellite monitoring systematically underestimate deforestation in two rapidly changing parts of the Amazon

    Science.gov (United States)

    Milodowski, D. T.; Mitchard, E. T. A.; Williams, M.

    2017-09-01

    Accurate, consistent reporting of changing forest area, stratified by forest type, is required for all countries under their commitments to the Paris Agreement (UNFCCC 2015 Adoption of the Paris Agreement (Paris: UNFCCC)). Such change reporting may directly impact on payments through comparisons to national Reference (Emissions) Levels under the Reducing Emissions from Deforestation and forest Degradation (REDD+) framework. The emergence of global, satellite-based forest monitoring systems, including Global Forest Watch (GFW) and FORMA, have great potential in aiding this endeavour. However, the accuracy of these systems has been questioned and their uncertainties are poorly constrained, both in terms of the spatial extent of forest loss and timing of change. Here, using annual time series of 5 m optical imagery at two sites in the Brazilian Amazon, we demonstrate that GFW more accurately detects forest loss than the coarser-resolution FORMA or Brazil’s national-level PRODES product, though all underestimate the rate of loss. We conclude GFW provides robust indicators of forest loss, at least for larger-scale forest change, but under-predicts losses driven by small-scale disturbances (< 2 ha), even though these are much larger than its minimum mapping unit (0.09 ha).

  16. Query deforestation

    OpenAIRE

    Grust, Torsten; Scholl, Marc H.

    1998-01-01

    The construction of a declarative query engine for a DBMS includes the challenge of compiling algebraic queries into efficient execution plans that can be run on top of the persistent storage. This work pursues the goal of employing foldr-build deforestation for the derivation of efficient streaming programs - programs that do not allocate intermediate data structures to perform their task - from algebraic (combinator) query plans. The query engine is based on the insertion representation of ...

  17. Use of remote sensing for monitoring deforestation in tropical and subtropical latitudes

    Science.gov (United States)

    Talbot, J. J.; Pettinger, Lawrence R.

    1981-01-01

    Of the three types of remotely sensed data discussed here, Landsat data offers the greatest potential for monitoring broad changes in extensive tropical forest environments because of its low-cost, synoptic, repetitive coverage. Scientists from developing countries can choose from a variety of Landsat data classification techniques, thus enabling each country to satisfy limitations on available funding, trained personnel, and equipment.

  18. Monitoring anthropogenic sewage pollution on mangrove creeks in southern Mozambique: A test of Palaemon concinnus Dana, 1852 (Palaemonidae) as a biological indicator

    International Nuclear Information System (INIS)

    Penha-Lopes, Gil; Torres, Paulo; Cannicci, Stefano; Narciso, Luis; Paula, Jose

    2011-01-01

    Tropical coastal ecosystems, such as mangroves, have a great ecological and socioeconomic importance for adjacent systems and local populations, but intensive environmental impact monitoring is still lacking, mainly in East Africa. This study evaluated the potential anthropogenic disturbance on Palaemon concinnus population structure and fitness. Palaemon concinnus populations from one peri-urban (domestic sewage impacted) and two pristine mangrove creeks were studied by sampling nearly 100 shrimps per location every 15 days for 12 months. The shrimps at the peri-urban location were larger, experienced longer reproductive periods, presented higher proportion of ovigerous females and better embryo quality when compared with shrimps inhabiting pristine locations. Physiological indices (RNA/DNA ratio) were similar between shrimps at pristine and peri-urban mangroves. However, a higher level of parasitation by a Bopyridae isopod, Pseudione elongata indicated some degree of stress on the host at the peri-urban mangrove, with potential effects on the host population dynamics. -Research highlights: → Domestic sewage discharges at low concentrations increase fauna mangrove population parameters, due to the nutrient limitations. → Shrimps in the peri-urban mangrove location were larger, had longer reproductive periods, higher ovigerous females proportions and better embryo. → Physiological indice analysis (RNA/DNA ratio) between pristine and peri-urban mangroves. → Within the peri-urban mangrove, high levels of parasitation by Pseudionee longata caused stress and potential effects on the host population dynamics. → The effects of sewage on P. concinnus population increased the choice of possible bioindicators in East African coastal water. - The identification of the effects of the peri-urban conditions on P. concinnus increases the choice of possible bioindicators in East African coastal waters.

  19. Monitoring anthropogenic sewage pollution on mangrove creeks in southern Mozambique: A test of Palaemon concinnus Dana, 1852 (Palaemonidae) as a biological indicator

    Energy Technology Data Exchange (ETDEWEB)

    Penha-Lopes, Gil, E-mail: gil.penha-lopes@fc.ul.p [Laboratorio Maritimo da Guia, Centro de Oceanografia, FCUL, Avenida Na Senhora do Cabo, No 939, 2750-374 Cascais (Portugal); Institute of Biology, University of Southern Denmark, DK-5230 Odense M (Denmark); Torres, Paulo, E-mail: biol.paulo@gmail.co [Laboratorio Maritimo da Guia, Centro de Oceanografia, FCUL, Avenida Na Senhora do Cabo, No 939, 2750-374 Cascais (Portugal); Cannicci, Stefano, E-mail: stefano.cannicci@unifi.i [Dipartimento di Biologia Evoluzionistica, Universita degli Studi di Firenze, via Romana 17, I-50125 Firenze (Italy); Narciso, Luis, E-mail: lfnarciso@fc.ul.p [Laboratorio Maritimo da Guia, Centro de Oceanografia, FCUL, Avenida Na Senhora do Cabo, No 939, 2750-374 Cascais (Portugal); Paula, Jose, E-mail: jppaula@fc.ul.p [Laboratorio Maritimo da Guia, Centro de Oceanografia, FCUL, Avenida Na Senhora do Cabo, No 939, 2750-374 Cascais (Portugal)

    2011-02-15

    Tropical coastal ecosystems, such as mangroves, have a great ecological and socioeconomic importance for adjacent systems and local populations, but intensive environmental impact monitoring is still lacking, mainly in East Africa. This study evaluated the potential anthropogenic disturbance on Palaemon concinnus population structure and fitness. Palaemon concinnus populations from one peri-urban (domestic sewage impacted) and two pristine mangrove creeks were studied by sampling nearly 100 shrimps per location every 15 days for 12 months. The shrimps at the peri-urban location were larger, experienced longer reproductive periods, presented higher proportion of ovigerous females and better embryo quality when compared with shrimps inhabiting pristine locations. Physiological indices (RNA/DNA ratio) were similar between shrimps at pristine and peri-urban mangroves. However, a higher level of parasitation by a Bopyridae isopod, Pseudione elongata indicated some degree of stress on the host at the peri-urban mangrove, with potential effects on the host population dynamics. -Research highlights: Domestic sewage discharges at low concentrations increase fauna mangrove population parameters, due to the nutrient limitations. Shrimps in the peri-urban mangrove location were larger, had longer reproductive periods, higher ovigerous females proportions and better embryo. Physiological indice analysis (RNA/DNA ratio) between pristine and peri-urban mangroves. Within the peri-urban mangrove, high levels of parasitation by Pseudionee longata caused stress and potential effects on the host population dynamics. The effects of sewage on P. concinnus population increased the choice of possible bioindicators in East African coastal water. - The identification of the effects of the peri-urban conditions on P. concinnus increases the choice of possible bioindicators in East African coastal waters.

  20. Mangrove postcard

    Science.gov (United States)

    Ball, Lianne C.

    2016-07-14

    Mangrove ecosystems protect vulnerable coastlines from storm effects, recycle nutrients, stabilize shorelines, improve water quality, and provide habitat for commercial and recreational fish species as well as for threatened and endangered wildlife. U.S. Geological Survey scientists conduct research on mangrove ecosystems to provide reliable scientific information about their ecology, productivity, hydrological processes, carbon storage stress response, and restoration success. The Mangrove Science Network is a collaboration of USGS scientists focused on working with natural resource managers to develop and conduct research to inform decisions on mangrove management and restoration. Information about the Mangrove Science Network can be found at: http://www.usgs.gov/ecosystems/environments/mangroves.html.

  1. Biomass and Carbon Sequestration in Community Mangrove Plantations and a Natural Regeneration Stand in the Ayeyarwady Delta, Myanmar

    Science.gov (United States)

    Thant, Y. M.; Kanzaki, M.; nil

    2011-12-01

    Mangroves in the Ayeyarwady Delta is one of the most threatened ecosystems, and is rapidly disappearing as in many tropical countries. The deforestation and degradation of mangrove forest in the Ayeryarwady Delta results in the shortage of wood resources and declining of environmental services that have been provided by the mangrove ecosystem. Cyclone Nargis struck the Ayeyarwady Delta on 2 May 2008 with an intensity unprecedented in the history of Myanmar. The overexploitation of mangroves because of local demands for fuel wood and charcoal and the conversion of mangrove forest land into agricultural land or shrimp farms over the past decades have increased the loss of human life and the damage to settlements caused by the Cyclone.The biomass study was conducted in September of 2006 in Bogale Township in the Ayeyarwady Delta and continued monitoring in September of each year from 2007 to 2010. Above and below ground biomass was studied in six years old mangrove plantations of Avicenia marina (Am), Avicenia officinalis (Ao) and Sonneratia apetala (Sa) and a naturally regenerated stand under regeneration improving felling operation (NR: consists of Ceriops decandra, Bruguiera sexangula, and Aegicerus corniculatum) protected for seven years since 2000. These stands were established by small-scale Community Forestry scheme on abandoned paddy fields where natural mangroves once existed. Common allometric equations were developed for biomass estimation by performing regressions between dry weights of trees as dependent variables and biometric parameters such as stem diameter, height and wood density as independent variables. The above and below ground biomass in NR stand (70 Mg ha-1 and 104 Mg ha-1) was the greatest (P mangrove plantation and induced natural regeneration as a carbon sequestration tool. The establishment of mangrove plantations appeared to be one measure for reducing the risk of cyclone damage after the Cyclone Nargis. This may reduce future human loss

  2. Environmental Concerns of Deforestation in Myanmar 2001–2010

    Directory of Open Access Journals (Sweden)

    Chuyuan Wang

    2016-09-01

    Full Text Available Deforestation in Myanmar has recently attracted much attention worldwide. This study examined spatio-temporal patterns of deforestation and forest carbon flux in Myanmar from 2001 to 2010 and environmental impacts at the regional scale using land products of the Moderate Resolution Imaging Spectroradiometer (MODIS. The results suggest that the total deforestation area in Myanmar was 21,178.8 km2, with an annual deforestation rate of 0.81%, and that the total forest carbon release was 20.06 million tons, with an annual rate of 0.37%. Mangrove forests had the highest deforestation and carbon release rates, and deciduous forests had both the largest deforestation area and largest amount of carbon release. During the study period, the south and southwestern regions of Myanmar, especially Ayeyarwady and Rakhine, were deforestation hotspots (i.e., the highest deforestation and carbon release rates occurred in these regions. Deforestation caused significant carbon release, reduced evapotranspiration (ET, and increased land surface temperatures (LSTs in deforested areas in Myanmar during the study period. Constructive policy recommendations are put forward based on these research results.

  3. Monitoring anthropogenic sewage pollution on mangrove creeks in southern Mozambique: A test of Palaemon concinnus Dana, 1852 (Palaemonidae) as a biological indicator

    DEFF Research Database (Denmark)

    Penha-Lopes, G.; Torres, P.; Cannicci, S.

    2011-01-01

    Tropical coastal ecosystems, such as mangroves, have a great ecological and socioeconomic importance for adjacent systems and local populations, but intensive environmental impact monitoring is still lacking, mainly in East Africa. This study evaluated the potential anthropogenic disturbance...... on Palaemon concinnus population structure and fitness. Palaemon concinnus populations from one pen-urban (domestic sewage impacted) and two pristine mangrove creeks were studied by sampling nearly 100 shrimps per location every 15 days for 12 months. The shrimps at the pen-urban location were larger......, experienced longer reproductive periods, presented higher proportion of ovigerous females and better embryo quality when compared with shrimps inhabiting pristine locations. Physiological indices (RNA/DNA ratio) were similar between shrimps at pristine and pen-urban mangroves. However, a higher level...

  4. UNEP-IOC-WMO-IUCN meeting of experts on a long-term global monitoring system of coastal and near-shore phenomena related to climate change, pilot projects and mangroves and coral reefs

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This meeting was held to develop strategies for long-term global monitoring of coastal and near-shore phenomena related to climate change, specifically mangroves and coral reefs. The agenda included an overview of the Global Ocean Observing System (GOOS) initiative, modules and pilot phase activities. Action plans for the implementation of long-term monitoring of mangrove and coral reef ecosystems were developed including; potential impacts of climate change and sea level rise on mangroves and coral reefs, consideration of parameters, consideration of methodologies, relationships of proposed activities to relevant national, regional and international developments, consideration of monitoring sites, and future implementation.

  5. Insecticide residue monitoring in sediments water fish and mangroves at the Cimanuk Delta

    International Nuclear Information System (INIS)

    Sumatra, Made

    1982-01-01

    The water and sediments from the upper stream of Cimanuk river carry insecticide residues especially during the rainy season. The insecticides are deposited in the estuary of Cimanuk river and along the coast of Cimanuk delta. The insecticide residues found at the delta were diazinon thiodan DDE o p-DDT and p p-DDT. Those insecticides are found in most of the water sediments and mangrove leaves samples and some of fishes samples. The samples were taken from the river the estuary the sea, the tambaks, the coast line, and from paddy field. No insecticide residue is found in the water samples taken in the dry season but they are found in the sediment samples taken in both the dry and rainy season. Generally the diazinon residues are higher at the surface than at 0.5m depth in compact sediment but they are higher at 0.5m depth than at the surface of the mud from the coast line. Diazinon and thiodan are found only in three fish samples out of twenty samples analyzed but thiodan is found in almost all of the sediment and mangrove leaves samples. DDT is found in almost all of the samples analyzed. (author)

  6. Spectral Reflectance and Vegetation Index Changes in Deciduous Forest Foliage Following Tree Removal: Potential for Deforestation Monitoring

    Science.gov (United States)

    Peng, D.; Hu, Y.; Li, Z.

    2016-05-01

    It is important to detect and quantify deforestation to guide strategic decisions regarding environment, socioeconomic development, and climate change. In the present study, we conducted a field experiment to examine spectral reflectance and vegetation index changes in poplar and locust tree foliage with different leaf area indices over the course of three sunny days, following tree removal from the canopy. The spectral reflectance of foliage from harvested trees was measured using an ASD FieldSpec Prospectroradiometer; synchronous meteorological data were also obtained. We found that reflectance in short-wave infrared and red-edge reflectance was more time sensitive after tree removal than reflectance in other spectral regions, and that the normalized difference water index (NDWI) and the red-edge chlorophyll index (CIRE) were the preferred indicators of these changes from several indices evaluated. Synthesized meteorological environments were found to influence water and chlorophyll contents after tree removal, and this subsequently changed the spectral canopy reflectance. Our results indicate the potential for such tree removal to be detected with NDWI or CIRE from the second day of a deforestation event.

  7. Quantifying rate of deforestation and CO2 emission in Peninsular Malaysia using Palsar imageries

    Science.gov (United States)

    Hamdan, O.; Abd Rahman, K.; Samsudin, M.

    2016-06-01

    Increasing human population and the rapid growth of Malaysia's economy are often associated with various environmental disturbances which have been contributing to depletion of natural resources and climate change. The need for more spaces for numerous land development activities has made the existing forests suffer deforestation. The study was carried out in Peninsular Malaysia, which currently has about 5.9 million ha of forests. Phased array type L-band SAR (Palsar) and Palsar-2 images over the years 2010 and 2015, respectively were used to identify forest cover and deforestation occurrences resulted from various conversion of forests to other land uses. Forests have been identified from horizontal-vertical (HV) polarization and then classified into three major categories, which are inland, peat swamp and mangrove. Pixel subtraction technique was used to determine areas that have been changing from forests to other land uses. Forest areas have been found declined from about 6.1 million ha in year 2010 to some 5.9 million ha in 2015 due to conversion of forests to other land uses. Causes of deforestation have been identified and the amount of carbon dioxide (CO2) that has been emitted due to the deforestation activity has been determined in this study. Oil palm and rubber plantations expansion has been found the most prominent factor that caused deforestation in Peninsular Malaysia, especially in the states of Pahang, Terengganu, Johor and Kelantan. The rate of deforestation in the period was at 0.66% yr-1, which amounted a total of about 200,225 ha over the five years. Carbon loss was estimated at about 30.2 million Mg C, which has resulted in CO2 emission accounted at about 110.6 million Mg CO2. The rate of CO2 emission that has been resulted from deforestation was estimated at 22.1 million Mg CO2 yr-1. The study found that the use of a series of Palsar and Palsar-2 images, with a consistent, cloud-free images, are the most appropriate sensors to be used for

  8. Integrated mangrove-shrimp cultivation: Potential for blue carbon sequestration.

    Science.gov (United States)

    Ahmed, Nesar; Thompson, Shirley; Glaser, Marion

    2018-05-01

    Globally, shrimp farming has had devastating effects on mangrove forests. However, mangroves are the most carbon-rich forests, with blue carbon (i.e., carbon in coastal and marine ecosystems) emissions seriously augmented due to devastating effects on mangrove forests. Nevertheless, integrated mangrove-shrimp cultivation has emerged as a part of the potential solution to blue carbon emissions. Integrated mangrove-shrimp farming is also known as organic aquaculture if deforested mangrove area does not exceed 50% of the total farm area. Mangrove destruction is not permitted in organic aquaculture and the former mangrove area in parts of the shrimp farm shall be reforested to at least 50% during a period of maximum 5 years according to Naturland organic aquaculture standards. This article reviews integrated mangrove-shrimp cultivation that can help to sequester blue carbon through mangrove restoration, which can be an option for climate change mitigation. However, the adoption of integrated mangrove-shrimp cultivation could face several challenges that need to be addressed in order to realize substantial benefits from blue carbon sequestration.

  9. Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms

    Science.gov (United States)

    Pham, Lien T. H.; Brabyn, Lars

    2017-06-01

    Mangrove forests are well-known for their provision of ecosystem services and capacity to reduce carbon dioxide concentrations in the atmosphere. Mapping and quantifying mangrove biomass is useful for the effective management of these forests and maximizing their ecosystem service performance. The objectives of this research were to model, map, and analyse the biomass change between 2000 and 2011 of mangrove forests in the Cangio region in Vietnam. SPOT 4 and 5 images were used in conjunction with object-based image analysis and machine learning algorithms. The study area included natural and planted mangroves of diverse species. After image preparation, three different mangrove associations were identified using two levels of image segmentation followed by a Support Vector Machine classifier and a range of spectral, texture and GIS information for classification. The overall classification accuracy for the 2000 and 2011 images were 77.1% and 82.9%, respectively. Random Forest regression algorithms were then used for modelling and mapping biomass. The model that integrated spectral, vegetation association type, texture, and vegetation indices obtained the highest accuracy (R2adj = 0.73). Among the different variables, vegetation association type was the most important variable identified by the Random Forest model. Based on the biomass maps generated from the Random Forest, total biomass in the Cangio mangrove forest increased by 820,136 tons over this period, although this change varied between the three different mangrove associations.

  10. An Approach to Monitoring Mangrove Extents Through Time-Series Comparison of JERS-1 SAR and ALOS PALSAR Data

    Science.gov (United States)

    Thomas, Nathan; Lucas, Richard; Itoh, Takuya; Simard, Marc; Fatoyinbo, Lucas; Bunting, Peter; Rosenqvist, Ake

    2014-01-01

    Between 2007 and 2010, Japan's Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture Radar (PALSAR) captured dual polarization HH and HV data across the tropics and sub-tropics. A pan tropical dataset of Japanese Earth Resources Satellite (JERS-1) SAR (HH) data was also acquired between 1995 and 1998. The provision of these comparable cloud-free datasets provided an opportunity for observing changes in the extent of coastal mangroves over more than a decade. Focusing on nine sites distributed through the tropics, this paper demonstrates how these data can be used to backdate and update existing baseline maps of mangrove extent. The benefits of integrating dense timeseries of Landsat sensor data for both validating assessments of change and determining the causes of change are outlined. The approach is evaluated for wider application across the geographical range of mangroves in order to advance the development of JAXA's Global Mangrove Watch (GMW) program.

  11. Myanmar Ecological Forecasting: Utilizing NASA Earth Observations to Monitor, Map, and Analyze Mangrove Forests in Myanmar for Enhanced Conservation

    Science.gov (United States)

    Weber, Samuel J.; Keddell, Louis; Kemal, Mohammed

    2014-01-01

    Mangroves supply many essential environmental amenities, such as preventing soil erosion, filtering water pollution, and protecting shorelines from harmful waves, floods, storms and winds. The Mangroves in Myanmar not only provide citizens with a food source, but they also offer firewood, charcoal, and construction materials. The depletion of mangroves is threatening more than the biodiversity however; Myanmar's fiscal livelihood is also in harm's way. Mangroves are valued at $100,000 to $277,000 per square kilometer and if managed in a sustainable fashion, can infuse constant income to the emerging Myanmarese economy. This study analyzed three coastline regions, the Ayeyarwady Delta, Rakhine and Tanintharyi, and mapped the spatial extent of mangrove forest during the dry season in 2000 and 2013. The classifications were derived from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operation Land Imager (OLI) imagery, as well as the Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model information. This data was atmospherically corrected, mosaicked, masked and classified in ENVI, followed by ArcGIS to perform raster calculations and create final products. Forest degradation collected from 2000 to 2013 was later used to forecast the density and health of Mangroves in the year 2030. These results were subsequently presented to project partners Dr. Peter Leimgruber and Ellen Aiken at the Smithsonian Conservation Biology Institute in Front Royal, VA. After the presentation of the project to the partners, these organizations formally passed on to the Myanmar Ministry of Environment, Conservation and Forestry for policy makers and forest managers to utilize in order to protect the Myanmar mangrove ecosystem while sustaining a healthy economy.

  12. A post-classifier for mangrove mapping using ecological data

    NARCIS (Netherlands)

    Vaiphasa, C.; Skidmore, A.K.; Boer, de W.F.

    2006-01-01

    global decline in tropical mangrove forests is one of the most serious problems of the world's coastal ecosystems. This problem results in an increasing demand of detailed mangrove maps at the species level for monitoring mangrove ecosystems and their diversity. Consequently, this research is the

  13. Change Detection and Sustainable Policies of Mangrove Forests

    DEFF Research Database (Denmark)

    Malik, Abdul

    Deforestation and degradation of mangrove forests have become one of the main issues for coastal ecosystems in Indonesia and elsewhere in Southeast Asia. Over the past decades, over-exploitation of timber, firewood, charcoal production, housing materials, and commercial logging and conversion...... into other forms of land use such as agriculture, settlement, mining, and especially aquaculture have led to a reduction in the extent of mangrove forests and their biodiversity, which has had significant effects on local communities. This thesis addresses mangrove forest change over the past 33 years...... and the environmental and socioeconomic consequences of the observed changes for communities living around mangrove areas. In this connection, the effects of mangrove exploitation on biodiversity and ecosystem services, including forestry and fishery products, are explored. Finally, the total economic value...

  14. Deforestation intensifies hot days

    Science.gov (United States)

    Stoy, Paul C.

    2018-05-01

    Deforestation often increases land-surface and near-surface temperatures, but climate models struggle to simulate this effect. Research now shows that deforestation has increased the severity of extreme heat in temperate regions of North America and Europe. This points to opportunities to mitigate extreme heat.

  15. Floods and mangrove forests, friends or foes? Perceptions of relationships and risks in Cameroon coastal mangroves

    Science.gov (United States)

    Munji, Cecilia A.; Bele, Mekou Y.; Idinoba, Monica E.; Sonwa, Denis J.

    2014-03-01

    Faced with the growing influence of climate change on climate driven perturbations such as flooding and biodiversity loss, managing the relationship between mangroves and their environment has become imperative for their protection. Hampering this is the fact that the full scope of the threats faced by specific mangrove forests is not yet well documented. Amongst some uncertainties is the nature of the relationship/interaction of mangroves with climate driven perturbations prevalent in their habitat such as coastal floods. We investigated the relationship between coastal flooding and mangrove forest stabilization, identify perceptions of flood risk and responses to offset identified effects. Random household surveys were carried out within four communities purposively sampled within the Cap Cameroon. Coastal changes were investigated over a period of 43 years (1965-2008). Seasonal flooding improved access to mangrove forests and hence promoted their exploitation for non-timber forest products (NTFPs) such as fuel wood and mangrove poles. 989 ha of mangrove forests were estimated to be lost over a period of 43 years in Cap Cameroon with implications on forest resources base, ecosystem stability, and livelihoods. Alternative livelihood activities were found to be carried out to moderate interruptions in fishing, with associated implications for mangrove forest dynamics. Respondents were of the opinion that risks associated with floods and mangrove deforestation will pose a major challenge for sustainable management of mangroves. These locally relevant perceptions and responses should however enable the identification of pertinent needs, challenges and opportunities to inform and orient effective decision-making, and to facilitate the development and participation in adaptive management strategies.

  16. The spectral changes of deforestation in the Brazilian tropical savanna.

    Science.gov (United States)

    Trancoso, Ralph; Sano, Edson E; Meneses, Paulo R

    2015-01-01

    The Cerrado is a biome in Brazil that is experiencing the most rapid loss in natural vegetation. The objective of this study was to analyze the changes in the spectral response in the red, near infrared (NIR), middle infrared (MIR), and normalized difference vegetation index (NDVI) when native vegetation in the Cerrado is deforested. The test sites were regions of the Cerrado located in the states of Bahia, Minas Gerais, and Mato Grosso. For each region, a pair of Landsat Thematic Mapper (TM) scenes from 2008 (before deforestation) and 2009 (after deforestation) was compared. A set of 1,380 samples of deforested polygons and an equal number of samples of native vegetation have their spectral properties statistically analyzed. The accuracy of deforestation detections was also evaluated using high spatial resolution imagery. Results showed that the spectral data of deforested areas and their corresponding native vegetation were statistically different. The red band showed the highest difference between the reflectance data from deforested areas and native vegetation, while the NIR band showed the lowest difference. A consistent pattern of spectral change when native vegetation in the Cerrado is deforested was identified regardless of the location in the biome. The overall accuracy of deforestation detections was 97.75%. Considering both the marked pattern of spectral changes and the high deforestation detection accuracy, this study suggests that deforestation in Cerrado can be accurately monitored, but a strong seasonal and spatial variability of spectral changes might be expected.

  17. CO2 efflux from cleared mangrove peat.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available CO(2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils.We measured CO(2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2 efflux. CO(2 efflux from soils declines from time of clearing from ∼10,600 tonnes km(-2 year(-1 in the first year to 3000 tonnes km(2 year(-1 after 20 years since clearing. Disturbing peat leads to short term increases in CO(2 efflux (27 umol m(-2 s(-1, but this had returned to baseline levels within 2 days.Deforesting mangroves that grow on peat soils results in CO(2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks.

  18. Deforestation trend in North Sumatra over 1990-2015

    Science.gov (United States)

    Basyuni, M.; Sulistiyono, N.; Wati, R.; Hayati, R.

    2018-02-01

    Deforestation and forest degradation have been previously reported to contributing greenhouse gas emission, the primary driver of global warming. The present paper studies deforestation and reforestation trend in North Sumatra, Indonesia using land-use/land-cover change from 1990-2015. The land-use consists of three classes derived from forest land (primary and secondary dry land forest, primary and secondary swamp forest, primary and secondary mangrove forest). Non-Forest (shrub, oil palm plantation, forest plantation, settlement, barren land, swamp shrub, dry land farming, mixed dry land farming, paddy field, aquaculture, airport, transmigration, and mining), and water body (water and swamp). Results showed that from 33 regencies/city in North Sumatra, among them, 25 districts deforested, which was the highest deforestation rate in Labuhanbatu and South Labuhanbatu (2,238.08 and 1,652.55 ha/year, respectively), only one area reforested, and seven districts showed no deforestation or reforestation. During 25 years observed, the forest has been deforested 22.92%, while nonforest has been increased 11.33% of land-use. The significant increasing loss of North Sumatran forest implies conservation efforts and developing sustainable forest management.

  19. Algae associated with mangroves

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.

    are uprooted and enter the mangrove area. The epiphytic algal flora on mangrove trunks, pneumatophores, stilt roots, upper branches and canopies are comparatively poor. With regard to biotic factors there are a number of animals grazing on mangrove associated...

  20. Deforestation, Leakage and Avoided Deforestation Policies: A Spatial Analysis

    OpenAIRE

    Philippe Delacote; Elizabeth J. Z. Robinson; Sébastien Roussel

    2015-01-01

    This paper analyses the impact of several avoided deforestation policies within a patchy forested landscape. Central is the idea that one neighbour's deforestation actions may impact the returns to deforestation in nearby patches. We determine the impact of each policy in terms of avoided deforestation and leakage levels at the landscape scale through modelling and simulations. Avoided deforestation policies at a landscape level are respectively: two Payment for Environmental Services (PES) p...

  1. Evaluation of mangrove management through community-based silvofishery in North Sumatra, Indonesia

    Science.gov (United States)

    Basyuni, M.; Yani, P.; Hartini, K. S.

    2018-02-01

    Aquaculture expansion has been reported as the primary driver of mangrove loss and a significant cause of mangrove deforestation in North Sumatra, Indonesia. Development of silvofishery based on creating balance condition between conserving mangrove forest and offering better livelihood for local communities surrounding mangrove. The present study evaluates of mangrove management through community-based silvofishery in three villages, namely Paluh Manan, Paluh Kurau, and Lama, Hamparan Perak of Deli Serdang Regency, North Sumatra, Indonesia. Three communities used the same ecological type-silvofishery, characterized by planted mangrove surrounded aquaculture. Results showed that in the Paluh Manan village, planted mangrove and aquaculture in the ratio of 75:25 with planting distance of mangrove 50x50 cm, containing 2,500 trees/ha, resulted in US 36.2/month/ha of fish and shrimp farming. In the Paluh Kurau village, a mixture mangrove and aquaculture in an 84:16 ratio, planting distance of 1x1 m, consists of 1,600 trees/ha, US 23.8 of generating revenue from crab farming. Furthermore, in the third village, Lama village, consists of mangrove and aquaculture in the proportions 90:10, with planting spacing 2x2 m, composing 1,000 trees/ha, led to US 45.8/month/ha from fish, shrimp and crab farming. The present study suggested the mangrove management through community-based mangrove-friendly aquaculture.

  2. Mangrove Carbon Stocks and Ecosystem Cover Dynamics in Southwest Madagascar and the Implications for Local Management

    Directory of Open Access Journals (Sweden)

    Lisa Benson

    2017-05-01

    Full Text Available Of the numerous ecosystem services mangroves provide, carbon storage is gaining particular attention for its potential role in climate change mitigation strategies. Madagascar contains 2% of the world’s mangroves, over 20% of which is estimated to have been deforested through charcoal production, timber extraction and agricultural development. This study presents a carbon stock assessment of the mangroves in Helodrano Fagnemotse in southwest Madagascar alongside an analysis of mangrove land-cover change from 2002 to 2014. Similar to other mangrove ecosystems in East Africa, higher stature, closed-canopy mangroves in southwest Madagascar were estimated to contain 454.92 (±26.58 Mg·C·ha−1. Although the mangrove extent in this area is relatively small (1500 ha, these mangroves are of critical importance to local communities and anthropogenic pressures on coastal resources in the area are increasing. This was evident in both field observations and remote sensing analysis, which indicated an overall net loss of 3.18% between 2002 and 2014. Further dynamics analysis highlighted widespread transitions of dense, higher stature mangroves to more sparse mangrove areas indicating extensive degradation. Harnessing the value that the carbon stored within these mangroves holds on the voluntary carbon market could generate revenue to support and incentivise locally-led sustainable mangrove management, improve livelihoods and alleviate anthropogenic pressures.

  3. Deforestation in Portugal

    Directory of Open Access Journals (Sweden)

    João Branco

    2014-01-01

    Full Text Available Deforestation is not a new problem although world-wide population awareness is increasing. This issue has terrible environmental, social and economic consequences due to the over-exploitation of the natural resources and to alternative land uses which are more profitable in the short term. The combat and mitigation of deforestation is one of the biggest challenges for the 21st Century in order to achieve the Millennium Goals and a global sustainable development at all levels of human activities. Therefore, this paper will address this concerns focusing on the causes and consequences of deforestation as well as on the actions carried out by the decision makers in order to provide solutions for this increasingly and alarming problem. This paper will also approach the concepts of sustainability as well as the economy and management of the natural resources aiming an insight of the past deforestation in Portugal, the present situation and a sustainable perspective regarding the future.

  4. Deforestation Hydrological Effects

    International Nuclear Information System (INIS)

    Poveda J, G.; Mesa S, O.J.

    1995-01-01

    Deforestation causes strong disturbances in ecosystems and in hydrological cycle, increasing or reducing wealths. Particularly in this work, effects of feed back between interface processes land - atmosphere are discussed and is demonstrated that losses of water by evaporation-transpiration are thoroughly indispensable to maintain the balance of hydrological regime. It's concluded that as a rule the effect of deforestation is to reduce wealth middle and to increase extreme wealth with consequent stronger and more frequent droughts or flood effects. Other deforestation effects as increase in superficial temperature, increase in atmospherical pressure, decrease in soil moisture, decrease in evaporation-transpiration, decrease of soil ruggedness, decrease of thickness of atmospherical cap limit, decrease of clouds, decrease of rain in both medium and long term and the consequent decrease of rivers wealth middle are explained. Of other side, the basins with greater deforestation affectation in Colombia are indicated. Finally, it's demonstrated the need of implementing reforestation programs

  5. Deforestation and climate change

    OpenAIRE

    Bosetti V.; Lubowski Ruben N. (Ruben Noah)

    2010-01-01

    "Deforestation and forest degradation have long been recognized as environmental problems, with concerns over conservation of natural habitats and biological diversity capturing both scientific and public attention. More recently, the debate over tropical forest conservation has radically shifted to the approximately fifteen percent of global greenhouse gas emissions that are caused by deforestation and forest degradation, and to the potential synergies from integrating forest management with...

  6. Deforestation in Portugal

    OpenAIRE

    João Branco; Márcia Oliveira; Orlanda Povoa

    2014-01-01

    Deforestation is not a new problem although world-wide population awareness is increasing. This issue has terrible environmental, social and economic consequences due to the over-exploitation of the natural resources and to alternative land uses which are more profitable in the short term. The combat and mitigation of deforestation is one of the biggest challenges for the 21st Century in order to achieve the Millennium Goals and a global sustainable development at all levels of human activiti...

  7. Monitoring of impact of anthropogenic inputs on water quality of mangrove ecosystem of Uran, Navi Mumbai, west coast of India.

    Science.gov (United States)

    Pawar, Prabhakar R

    2013-10-15

    Surface water samples were collected from substations along Sheva creek and Dharamtar creek mangrove ecosystems of Uran (Raigad), Navi Mumbai, west coast of India. Water samples were collected fortnightly from April 2009 to March 2011 during spring low and high tides and were analyzed for pH, Temperature, Turbidity, Total solids (TS), Total dissolved solids (TDS), Total suspended solids (TSS), Dissolved oxygen (DO), Biochemical oxygen demand (BOD), Carbon dioxide (CO2), Chemical oxygen demand (COD), Salinity, Orthophosphate (O-PO4), Nitrite-nitrogen (NO2-N), Nitrate-nitrogen (NO3-N), and Silicates. Variables like pH, turbidity, TDS, salinity, DO, and BOD show seasonal variations. Higher content of O-PO4, NO3-N, and silicates is recorded due to discharge of domestic wastes and sewage, effluents from industries, oil tanking depots and also from maritime activities of Jawaharlal Nehru Port Trust (JNPT), hectic activities of Container Freight Stations (CFS), and other port wastes. This study reveals that water quality from mangrove ecosystems of Uran is deteriorating due to industrial pollution and that mangrove from Uran is facing the threat due to anthropogenic stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Estimating mangrove aboveground biomass from airborne LiDAR data: a case study from the Zambezi River delta

    Science.gov (United States)

    Fatoyinbo, Temilola; Feliciano, Emanuelle A.; Lagomasino, David; Kuk Lee, Seung; Trettin, Carl

    2018-02-01

    Mangroves are ecologically and economically important forested wetlands with the highest carbon (C) density of all terrestrial ecosystems. Because of their exceptionally large C stocks and importance as a coastal buffer, their protection and restoration has been proposed as an effective mitigation strategy for climate change. The inclusion of mangroves in mitigation strategies requires the quantification of C stocks (both above and belowground) and changes to accurately calculate emissions and sequestration. A growing number of countries are becoming interested in using mitigation initiatives, such as REDD+ (reducing emissions from deforestation and forest degradation), in these unique coastal forests. However, it is not yet clear how methods to measure C traditionally used for other ecosystems can be modified to estimate biomass in mangroves with the precision and accuracy needed for these initiatives. Airborne Lidar (ALS) data has often been proposed as the most accurate way for larger scale assessments but the application of ALS for coastal wetlands is scarce, primarily due to a lack of contemporaneous ALS and field measurements. Here, we evaluated the variability in field and Lidar-based estimates of aboveground biomass (AGB) through the combination of different local and regional allometric models and standardized height metrics that are comparable across spatial resolutions and sensor types, the end result being a simplified approach for accurately estimating mangrove AGB at large scales and determining the uncertainty by combining multiple allometric models. We then quantified wall-to-wall AGB stocks of a tall mangrove forest in the Zambezi Delta, Mozambique. Our results indicate that the Lidar H100 height metric correlates well with AGB estimates, with R 2 between 0.80 and 0.88 and RMSE of 33% or less. When comparing Lidar H100 AGB derived from three allometric models, mean AGB values range from 192 Mg ha-1 up to 252 Mg ha-1. We suggest the best model

  9. Environmental concerns of deforestation

    International Nuclear Information System (INIS)

    Rahman, A.

    1995-01-01

    The loss of forests as a result of deforestation is a serious problem in Pakistan as well as in other developing world. The forests play important role in environmental protection through soil conservation, regulation of hydrological cycles and micro climate amelioration. At the global scale, forests act as carbon sinks, maintain biodiversity and regulate climate, especially in the context of greenhouse effect. The deforestation should be countered through enforcement of strict laws and elaborating environmental role of forests through media and local councils. Various economic analysis indicate that tropical forests have greater overall benefits if left intact, rather than destroying them for timber. (author)

  10. A Comparison of Mangrove Canopy Height Using Multiple Independent Measurements from Land, Air, and Space

    Science.gov (United States)

    Lagomasino, David; Fatoyinbo, Temilola; Lee, SeungKuk; Feliciano, Emanuelle; Trettin, Carl; Simard, Marc

    2016-01-01

    Canopy height is one of the strongest predictors of biomass and carbon in forested ecosystems. Additionally, mangrove ecosystems represent one of the most concentrated carbon reservoirs that are rapidly degrading as a result of deforestation, development, and hydrologic manipulation. Therefore, the accuracy of Canopy Height Models (CHM) over mangrove forest can provide crucial information for monitoring and verification protocols. We compared four CHMs derived from independent remotely sensed imagery and identified potential errors and bias between measurement types. CHMs were derived from three spaceborne datasets; Very-High Resolution (VHR) stereophotogrammetry, TerraSAR-X add-on for Digital Elevation Measurement (DEM), and Shuttle Radar Topography Mission (TanDEM-X), and lidar data which was acquired from an airborne platform. Each dataset exhibited different error characteristics that were related to spatial resolution, sensitivities of the sensors, and reference frames. Canopies over 10 meters were accurately predicted by all CHMs while the distributions of canopy height were best predicted by the VHR CHM. Depending on the guidelines and strategies needed for monitoring and verification activities, coarse resolution CHMs could be used to track canopy height at regional and global scales with finer resolution imagery used to validate and monitor critical areas undergoing rapid changes.

  11. Habitat monitoring and genotoxicity in Ucides cordatus (Crustacea: Ucididae), as tools to manage a mangrove reserve in southeastern Brazil.

    Science.gov (United States)

    Pinheiro, M A A; Duarte, L F A; Toledo, T R; Adam, M L; Torres, R A

    2013-10-01

    In Brazil, the state of São Paulo contains both preserved areas (Juréia-Itatins Ecological Station) and extremely impacted ones (Cubatão Municipality). This study evaluated the concentrations of five metals (Cu, Cd, Cr, Pb, and Hg) in two mangroves with different levels of anthropogenic impact and the apparent genotoxicity to Ucides cordatus. Water and sediment samples were obtained, and metal concentrations were determined with an atomic absorption spectrophotometer. The genotoxic impact was quantified based on the number of micronucleated cells per 1,000 analyzed (MN‰), using hemolymph slides stained with Giemsa. Metal concentrations in water were below the detection limit, except for lead, although no significant difference was observed between the areas (P > 0.05). Sediment from Cubatão had higher concentrations of Cd, Pb, Cr, and Cu than sediment from Juréia-Itatins (P  0.05). Crabs from Cubatão had a 2.6 times higher mean frequency of micronucleated cells (5.2 ± 1.8 MN‰) than those from Juréia-Itatins (2.0 ± 1.0 MN‰; P mangrove sediments of Cubatão were reflected in the micronucleus assay, demonstrating their genotoxic effect; however, genetic damage should be attributed to a synergistic effect with other kinds of pollutants previously recorded in different environments of Cubatão. U. cordatus proved to be an excellent bioindicator of mangrove pollution. This study established, for the first time, the normal frequency of MN‰ in a population of this species within an ecological station.

  12. Ecological Variability and Carbon Stock Estimates of Mangrove Ecosystems in Northwestern Madagascar

    Directory of Open Access Journals (Sweden)

    Trevor G. Jones

    2014-01-01

    Full Text Available Mangroves are found throughout the tropics, providing critical ecosystem goods and services to coastal communities and supporting rich biodiversity. Despite their value, world-wide, mangroves are being rapidly degraded and deforested. Madagascar contains approximately 2% of the world’s mangroves, >20% of which has been deforested since 1990 from increased extraction for charcoal and timber and conversion to small to large-scale agriculture and aquaculture. Loss is particularly prominent in the northwestern Ambaro and Ambanja bays. Here, we focus on Ambaro and Ambanja bays, presenting dynamics calculated using United States Geological Survey (USGS national-level mangrove maps and the first localized satellite imagery derived map of dominant land-cover types. The analysis of USGS data indicated a loss of 7659 ha (23.7% and a gain of 995 ha (3.1% from 1990–2010. Contemporary mapping results were 93.4% accurate overall (Kappa 0.9, with producer’s and user’s accuracies ≥85%. Classification results allowed partitioning mangroves in to ecologically meaningful, spectrally distinct strata, wherein field measurements facilitated estimating the first total carbon stocks for mangroves in Madagascar. Estimates suggest that higher stature closed-canopy mangroves have average total vegetation carbon values of 146.8 Mg/ha (±10.2 and soil organic carbon of 446.2 (±36.9, supporting a growing body of studies that mangroves are amongst the most carbon-dense tropical forests.

  13. How mangrove forests adjust to rising sea level

    Science.gov (United States)

    Krauss, Ken W.; McKee, Karen L.; Lovelock, Catherine E.; Cahoon, Donald R.; Saintilan, Neil; Reef, Ruth; Chen, Luzhen

    2014-01-01

    Mangroves are among the most well described and widely studied wetland communities in the world. The greatest threats to mangrove persistence are deforestation and other anthropogenic disturbances that can compromise habitat stability and resilience to sea-level rise. To persist, mangrove ecosystems must adjust to rising sea level by building vertically or become submerged. Mangroves may directly or indirectly influence soil accretion processes through the production and accumulation of organic matter, as well as the trapping and retention of mineral sediment. In this review, we provide a general overview of research on mangrove elevation dynamics, emphasizing the role of the vegetation in maintaining soil surface elevations (i.e. position of the soil surface in the vertical plane). We summarize the primary ways in which mangroves may influence sediment accretion and vertical land development, for example, through root contributions to soil volume and upward expansion of the soil surface. We also examine how hydrological, geomorphological and climatic processes may interact with plant processes to influence mangrove capacity to keep pace with rising sea level. We draw on a variety of studies to describe the important, and often under-appreciated, role that plants play in shaping the trajectory of an ecosystem undergoing change.

  14. Biomass and Carbon Stocks of Sofala Bay Mangrove Forests

    Directory of Open Access Journals (Sweden)

    Almeida A. Sitoe

    2014-08-01

    Full Text Available Mangroves could be key ecosystems in strategies addressing the mitigation of climate changes through carbon storage. However, little is known regarding the carbon stocks of these ecosystems, particularly below-ground. This study was carried out in the mangrove forests of Sofala Bay, Central Mozambique, with the aim of quantifying carbon stocks of live and dead plant and soil components. The methods followed the procedures developed by the Center for International Forestry Research (CIFOR for mangrove forests. In this study, we developed a general allometric equation to estimate individual tree biomass and soil carbon content (up to 100 cm depth. We estimated the carbon in the whole mangrove ecosystem of Sofala Bay, including dead trees, wood debris, herbaceous, pneumatophores, litter and soil. The general allometric equation for live trees derived was [Above-ground tree dry weight (kg = 3.254 × exp(0.065 × DBH], root mean square error (RMSE = 4.244, and coefficient of determination (R2 = 0.89. The average total carbon storage of Sofala Bay mangrove was 218.5 Mg·ha−1, of which around 73% are stored in the soil. Mangrove conservation has the potential for REDD+ programs, especially in regions like Mozambique, which contains extensive mangrove areas with high deforestation and degradation rates.

  15. Illegal deforestation in Zambia

    OpenAIRE

    Travis, A.J.

    2005-01-01

    Dr. Dale Lewis, a co-PI on the grant and the originator of the COMACO model, points out recent illegal deforestation in one of Zambia's National Forests to Dr. Alfonso Torres, another co-PI on the grant (from Cornell). LTRA-2 (An Agricultural Markets Model for Biodiversity Conservation)

  16. [Effects mangrove conversion to pasture on density and shell size of two gastropods in the Turbo River Delta (Urabá Gulf, Caribbean coast of Colombia)].

    Science.gov (United States)

    Blanco, Juan F; Castaño, María C

    2012-12-01

    Mangrove deforestation is widespread in the Greater Caribbean but its impact on macrobenthos has not been evaluated to date. In order to assess the impact of mangrove conversion to pasture, densities and shell sizes of two dominant gastropods (Neritina virginea and Melampus coffeus) were compared among four mangrove types: 1) Rhizophora mangle-dominated fringing mangroves, 2) Avicennia germinans-dominated basin mangroves, 3) Mixed-species basin mangroves, and 4) A. germinans- basin mangroves converted to pastures, in the Turbo River Delta (Urabá Gulf, Colombia). Mangrove types were polygon-delimited with satellite images and color aerial photographs were taken in 2009. Various (nsoil properties (e.g. temperature, pH, organic matter content). Finally, we also hypothesize that the local extinction of N. virginea due to clear-cutting may exert strong negative effects on the ecosystem function because it is a dominant omnivore.

  17. Development without Deforestation

    OpenAIRE

    Carlos Ferreira de Abreu Castro; Guilherme B. R. Lambais

    2014-01-01

    The conservation projects managed by the United Nations Development Programme (UNDP) in Brazil are underpinned by a strong element of inclusive local development, consisting of innovative initiatives regarding the sustainable use of biodiversity. There are many examples of projects in Mangrove, Caatinga and Cerrado areas, which conciliate the production of goods and environmental services with the generation of jobs, income and an increase in life quality. It is always an enormous challenge t...

  18. Distribution and dynamics of mangrove forests of South Asia.

    Science.gov (United States)

    Giri, Chandra; Long, Jordan; Abbas, Sawaid; Murali, R Mani; Qamer, Faisal M; Pengra, Bruce; Thau, David

    2015-01-15

    Mangrove forests in South Asia occur along the tidal sea edge of Bangladesh, India, Pakistan, and Sri Lanka. These forests provide important ecosystem goods and services to the region's dense coastal populations and support important functions of the biosphere. Mangroves are under threat from both natural and anthropogenic stressors; however the current status and dynamics of the region's mangroves are poorly understood. We mapped the current extent of mangrove forests in South Asia and identified mangrove forest cover change (gain and loss) from 2000 to 2012 using Landsat satellite data. We also conducted three case studies in Indus Delta (Pakistan), Goa (India), and Sundarbans (Bangladesh and India) to identify rates, patterns, and causes of change in greater spatial and thematic details compared to regional assessment of mangrove forests. Our findings revealed that the areal extent of mangrove forests in South Asia is approximately 1,187,476 ha representing ∼7% of the global total. Our results showed that from 2000 to 2012, 92,135 ha of mangroves were deforested and 80,461 ha were reforested with a net loss of 11,673 ha. In all three case studies, mangrove areas have remained the same or increased slightly, however, the turnover was greater than the net change. Both, natural and anthropogenic factors are responsible for the change and turnover. The major causes of forest cover change are similar throughout the region; however, specific factors may be dominant in specific areas. Major causes of deforestation in South Asia include (i) conversion to other land use (e.g. conversion to agriculture, shrimp farms, development, and human settlement), (ii) over-harvesting (e.g. grazing, browsing and lopping, and fishing), (iii) pollution, (iv) decline in freshwater availability, (v) floodings, (vi) reduction of silt deposition, (vii) coastal erosion, and (viii) disturbances from tropical cyclones and tsunamis. Our analysis in the region's diverse socio-economic and

  19. Mangroves - Nursery for fishes

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Singh, C.

    Mangrove habitats are of a great ecological and socio-economic significance. Goa exhibits fringing mangroves comprising of 15 species. Shizophora mucronata, Avicennia officinalis, Sonneretia alba, S. caseolaris, Exoecaria agallocha and Acanthus...

  20. [Deforestation and overpopulation].

    Science.gov (United States)

    Rivera, A A

    1995-07-01

    Ecological damage and irrational deforestation in El Salvador are very serious problems with potentially catastrophic consequences in the near future. Each year the amount of rainfall declines precipitously, the rivers lose volume, temperatures rise to levels unheard of in the rainy season, and ecological balance is disturbed, with disappearance of entire species of plants and animals. Desertification threatens future generations of Salvadorans. The causes of deforestation are multiple, but ill-conceived urbanization policy and immoderate population growth are two important factors. The increased population requires new housing, electric lines, aqueducts, clinics, and schools. When conditions are unfavorable, marginal zones or squatter settlements lacking all these basic services proliferate. With their concentrations of waste and environmental degradation, they are converted into foci of infectious disease and social pathology. Much scarce agricultural land has been lost to urban development as the population grows uncontrollably in the nation's small area.

  1. Deforestation reduction initiative

    International Nuclear Information System (INIS)

    Sanchez, P.A.

    1990-01-01

    This paper reports on major adverse effects of global warming predicted for the United States and other mid- latitude countries. Within that, 15 to 25% of global warming results from clearing of tropical rainforests. Third world population growth forces landless rural populations to migrate and over exploit tropical rainforests, a problem exacerbated by government colonization policies in such countries as Brazil, Peru, and Indonesia. The resulting agriculture is unsustainable and leads to further deforestation and migration to urban centers. Research has shown that these trends can be reversed. An integrated approach consisting of development and application of sustainable management technologies for tropical soils and appropriate government policies will eliminate the pressure for further deforestation. Some management technologies are available and other evolving which allow continuous production. For every hectare put under sustainable management five to ten hectares of forest are saved each year

  2. Monitoring mangrove forests after aquaculture abandonment using time series of very high spatial resolution satellite images: A case study from the Perancak estuary, Bali, Indonesia.

    Science.gov (United States)

    Proisy, Christophe; Viennois, Gaëlle; Sidik, Frida; Andayani, Ariani; Enright, James Anthony; Guitet, Stéphane; Gusmawati, Niken; Lemonnier, Hugues; Muthusankar, Gowrappan; Olagoke, Adewole; Prosperi, Juliana; Rahmania, Rinny; Ricout, Anaïs; Soulard, Benoit; Suhardjono

    2018-06-01

    Revegetation of abandoned aquaculture regions should be a priority for any integrated coastal zone management (ICZM). This paper examines the potential of a matchless time series of 20 very high spatial resolution (VHSR) optical satellite images acquired for mapping trends in the evolution of mangrove forests from 2001 to 2015 in an estuary fragmented into aquaculture ponds. Evolution of mangrove extent was quantified through robust multitemporal analysis based on supervised image classification. Results indicated that mangroves are expanding inside and outside ponds and over pond dykes. However, the yearly expansion rate of vegetation cover greatly varied between replanted ponds. Ground truthing showed that only Rhizophora species had been planted, whereas natural mangroves consist of Avicennia and Sonneratia species. In addition, the dense Rhizophora plantations present very low regeneration capabilities compared with natural mangroves. Time series of VHSR images provide comprehensive and intuitive level of information for the support of ICZM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Remote Sensing of Mangrove Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2011-04-01

    Full Text Available Mangrove ecosystems dominate the coastal wetlands of tropical and subtropical regions throughout the world. They provide various ecological and economical ecosystem services contributing to coastal erosion protection, water filtration, provision of areas for fish and shrimp breeding, provision of building material and medicinal ingredients, and the attraction of tourists, amongst many other factors. At the same time, mangroves belong to the most threatened and vulnerable ecosystems worldwide and experienced a dramatic decline during the last half century. International programs, such as the Ramsar Convention on Wetlands or the Kyoto Protocol, underscore the importance of immediate protection measures and conservation activities to prevent the further loss of mangroves. In this context, remote sensing is the tool of choice to provide spatio-temporal information on mangrove ecosystem distribution, species differentiation, health status, and ongoing changes of mangrove populations. Such studies can be based on various sensors, ranging from aerial photography to high- and medium-resolution optical imagery and from hyperspectral data to active microwave (SAR data. Remote-sensing techniques have demonstrated a high potential to detect, identify, map, and monitor mangrove conditions and changes during the last two decades, which is reflected by the large number of scientific papers published on this topic. To our knowledge, a recent review paper on the remote sensing of mangroves does not exist, although mangrove ecosystems have become the focus of attention in the context of current climate change and discussions of the services provided by these ecosystems. Also, climate change-related remote-sensing studies in coastal zones have increased drastically in recent years. The aim of this review paper is to provide a comprehensive overview and sound summary of all of the work undertaken, addressing the variety of remotely sensed data applied for mangrove

  4. Mangrove microclimates alter seedling dynamics at the range edge.

    Science.gov (United States)

    Devaney, John L; Lehmann, Michael; Feller, Ilka C; Parker, John D

    2017-10-01

    Recent climate warming has led to asynchronous species migrations, with major consequences for ecosystems worldwide. In woody communities, localized microclimates have the potential to create feedback mechanisms that can alter the rate of species range shifts attributed to macroclimate drivers alone. Mangrove encroachment into saltmarsh in many areas is driven by a reduction in freeze events, and this encroachment can further modify local climate, but the subsequent impacts on mangrove seedling dynamics are unknown. We monitored microclimate conditions beneath mangrove canopies and adjacent open saltmarsh at a freeze-sensitive mangrove-saltmarsh ecotone and assessed survival of experimentally transplanted mangrove seedlings. Mangrove canopies buffered night time cooling during the winter, leading to interspecific differences in freeze damage on mangrove seedlings. However, mangrove canopies also altered biotic interactions. Herbivore damage was higher under canopies, leading to greater mangrove seedling mortality beneath canopies relative to saltmarsh. While warming-induced expansion of mangroves can lead to positive microclimate feedbacks, simultaneous fluctuations in biotic drivers can also alter seedling dynamics. Thus, climate change can drive divergent feedback mechanisms through both abiotic and biotic channels, highlighting the importance of vegetation-microclimate interactions as important moderators of climate driven range shifts. © 2017 by the Ecological Society of America.

  5. Mangroves among the most carbon-rich forests in the tropics

    Science.gov (United States)

    Donato, Daniel C.; Kauffman, J. Boone; Murdiyarso, Daniel; Kurnianto, Sofyan; Stidham, Melanie; Kanninen, Markku

    2011-05-01

    Mangrove forests occur along ocean coastlines throughout the tropics, and support numerous ecosystem services, including fisheries production and nutrient cycling. However, the areal extent of mangrove forests has declined by 30-50% over the past half century as a result of coastal development, aquaculture expansion and over-harvesting. Carbon emissions resulting from mangrove loss are uncertain, owing in part to a lack of broad-scale data on the amount of carbon stored in these ecosystems, particularly below ground. Here, we quantified whole-ecosystem carbon storage by measuring tree and dead wood biomass, soil carbon content, and soil depth in 25 mangrove forests across a broad area of the Indo-Pacific region--spanning 30° of latitude and 73° of longitude--where mangrove area and diversity are greatest. These data indicate that mangroves are among the most carbon-rich forests in the tropics, containing on average 1,023Mg carbon per hectare. Organic-rich soils ranged from 0.5m to more than 3m in depth and accounted for 49-98% of carbon storage in these systems. Combining our data with other published information, we estimate that mangrove deforestation generates emissions of 0.02-0.12Pg carbon per year--as much as around 10% of emissions from deforestation globally, despite accounting for just 0.7% of tropical forest area.

  6. Reduced Deforestation and Economic Growth

    OpenAIRE

    Patrick Doupe

    2014-01-01

    The clearing of forests for agricultural land and other marketable purposes is a well-trodden path of economic development. With these private benefits from deforestation come external costs: emissions from deforestation currently account for 12 per cent of global carbon emissions. A widespread intervention in reducing emissions from deforestation will affect the paths of agricultural expansion and economic growth of lower income nations. To investigate these processes, this paper presents a ...

  7. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.

    Science.gov (United States)

    Serafy, Joseph E; Shideler, Geoffrey S; Araújo, Rafael J; Nagelkerken, Ivan

    2015-01-01

    Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1) Are reef fish abundances limited by mangrove forest area?; and (2) Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as "mangrove-dependent". Analyzed were data from an ongoing, long-term (20-year) citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation) and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1) focus analyses on species that use mangroves as nurseries, (2) consider more than the mean fish abundance response to mangrove forest extent; and/or (3) quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i.e., the Wider

  8. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.

    Directory of Open Access Journals (Sweden)

    Joseph E Serafy

    Full Text Available Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1 Are reef fish abundances limited by mangrove forest area?; and (2 Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as "mangrove-dependent". Analyzed were data from an ongoing, long-term (20-year citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1 focus analyses on species that use mangroves as nurseries, (2 consider more than the mean fish abundance response to mangrove forest extent; and/or (3 quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i

  9. Effects of hydrology on red mangrove recruits

    Science.gov (United States)

    Doyle, Thomas W.

    2003-01-01

    growth of the red mangrove, Rhizophora mangle (fig. 1). Red mangrove propagules (recruits) of select sizes and genotypes (i.e., genetically similar groups) were planted both in greenhouses and in the field. Seedling growth was monitored in both studies on a quarterly basis for over a year; measurements included shoot growth, seedling height, and a final harvest of plant biomass.

  10. The mangroves of the Zambezi Delta: increase in extent observed via satellite from 1994 to 2013

    Science.gov (United States)

    Aurelie C. Shapiro; Carl C. Trettin; Helga Kuchly; Sadroddin Alavinapanah; Salomao Bandeira

    2015-01-01

    Mangroves are recognized for their valued ecosystem services provision while having the highest carbon density among forested ecosystems. Yet they are increasingly threatened by deforestation, conversion to agriculture and development, reducing the benefits they provide for local livelihoods, coastal protection and climate change mitigation. Accordingly, accurate...

  11. The Mangroves of the Zambezi Delta: Increase in Extent Observed via Satellite from 1994 to 2013

    Directory of Open Access Journals (Sweden)

    Aurélie C. Shapiro

    2015-12-01

    Full Text Available Mangroves are recognized for their valued ecosystem services provision while having the highest carbon density among forested ecosystems. Yet they are increasingly threatened by deforestation, conversion to agriculture and development, reducing the benefits they provide for local livelihoods, coastal protection and climate change mitigation. Accordingly, accurate estimates of mangrove area and change are fundamental for developing strategies for sustainable use, conservation and Reducing Emissions from Deforestation and Degradation (REDD+. The Zambezi River Delta in Mozambique contains one of the largest mangrove forests in Africa, and deforestation has been reported to be substantial, however these estimates vary widely. We used Landsat imagery from 1994, 2000 and 2013, to estimate a total current mangrove area of 37,034 ha, which is a net increase of 3723 ha over 19 years. The land cover change assessment was also used to provide perspective on ecosystem carbon stocks, showing that the Zambezi Delta mangrove ecosystem acts as a large carbon sink. Our findings reinforce the importance of conducting land cover change assessments using coherent data and analytical models, coupled with field validation. Broader application of our approach could help quantify the rates of natural change from erosion and land aggradation contrasted with anthropogenic causes.

  12. Researching illegal logging and deforestation

    NARCIS (Netherlands)

    Boekhout van Solinge, T.

    2014-01-01

    Tropical deforestation such as in the Amazon can be studied well from a green criminological perspective. Ethnographic research methods form a useful way to get insight into the dynamics and complexity of tropical deforestation, which often is illegal. This article gives an account of various

  13. Tropical deforestation : an economic perspective

    NARCIS (Netherlands)

    van Soest, D.P.

    1998-01-01

    The main aim of this study is to increase insight in the underlying causes of deforestation and forest degradation by analysing the factors that induce unsustainable land use. Several types of actors involved in the deforestation process are taken into account: the decision-making processes of

  14. Deforestation in the Brazilian Amazon

    NARCIS (Netherlands)

    Boekhout van Solinge, T.|info:eu-repo/dai/nl/156696207

    2015-01-01

    This essay takes a (green) criminological and multidisciplinary perspective on deforestation in the Brazilian Amazon, by focusing on the crimes and damages that are associated with Amazonian deforestation. The analysis and results are partly based on longer ethnographic stays in North Brazil (Amazon

  15. Ecology: The Tropical Deforestation Debt.

    Science.gov (United States)

    Norris, Ken

    2016-08-22

    Tropical deforestation is a significant cause of global carbon emissions and biodiversity loss. A new study shows that deforestation today leaves a carbon and biodiversity debt to be paid over subsequent years. This has potentially profound implications for forest conservation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon.

    Science.gov (United States)

    Godar, Javier; Gardner, Toby A; Tizado, E Jorge; Pacheco, Pablo

    2014-10-28

    Annual deforestation rates in the Brazilian Amazon fell by 77% between 2004 and 2011, yet have stabilized since 2009 at 5,000-7,000 km(2). We provide the first submunicipality assessment, to our knowledge, of actor-specific contributions to the deforestation slowdown by linking agricultural census and remote-sensing data on deforestation and forest degradation. Almost half (36,158 km(2)) of the deforestation between 2004 and 2011 occurred in areas dominated by larger properties (>500 ha), whereas only 12% (9,720 km(2)) occurred in areas dominated by smallholder properties (deforestation rates fell during this period by 68-85% for all actors, the contribution of the largest landholders (>2,500 ha) to annual deforestation decreased over time (63% decrease between 2005 and 2011), whereas that of smallholders went up by a similar amount (69%) during the same period. In addition, the deforestation share attributable to remote areas increased by 88% between 2009 and 2011. These observations are consistent across the Brazilian Amazon, regardless of geographical differences in actor dominance or socioenvironmental context. Our findings suggest that deforestation policies to date, which have been particularly focused on command and control measures on larger properties in deforestation hotspots, may be increasingly limited in their effectiveness and fail to address all actors equally. Further reductions in deforestation are likely to be increasingly costly and require actor-tailored approaches, including better monitoring to detect small-scale deforestation and a shift toward more incentive-based conservation policies.

  17. Microbial diversity in Brazilian mangrove sediments – a mini review

    Science.gov (United States)

    Ghizelini, Angela Michelato; Mendonça-Hagler, Leda Cristina Santana; Macrae, Andrew

    2012-01-01

    The importance and protection of mangrove ecosystems has been recognized in Brazilian Federal law since 1965. Being protected in law, however, has not always guaranteed their protection in practice. Mangroves are found in coastal and estuarine locations, which are prime real estate for the growth of cities, ports and other economic activities important for Brazilian development. In this mini-review we introduce what mangroves are and why they are so important. We give a brief overview of the microbial diversity found in mangrove sediments and then focus on diversity studies from Brazilian mangroves. We highlight the breadth and depth of knowledge about mangrove microbial communities gained from studying Brazilian mangroves. We report on the exciting findings of molecular microbial ecology methods that have been very successfully applied to study bacterial communities. We note that there have been fewer studies that focus on fungal communities and that fungal diversity studies deserve more attention. The review ends with a look at how a combination of new molecular biology methods and isolation studies are being developed to monitor and conserve mangrove ecosystems and their associated microbial communities. These recent studies are having a global impact and we hope they will help to protect and re-establish mangrove ecosystems. PMID:24031949

  18. Characterization of mangrove forest types based on ALOS-PALSAR in overall Indonesian archipelago

    International Nuclear Information System (INIS)

    Darmawan, S; Takeuchi, W; Vetrita, Y; Winarso, G; Wikantika, K; Sari, D K

    2014-01-01

    Indonesia has largest mangrove forest in the world, total area around 3.5 million ha or 17% – 23% from mangrove forest in the world. Mangrove forest provides products and services, such as carbon balance of the coastal zone. Mapping and monitoring biomass of mangrove is very important but field survey of mangrove biomass and productivity in overall Indonesia is very difficult. Global-scale mosaics with HH and HV backscatter of Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) which is 50-m spatial resolution has been generated. This image available for identification and monitoring mangrove forest. The Objective of this research to investigate characterization of mangrove forest types based on ALOS-PALSAR in overall Indonesian archipelago. Methodology consists of collecting ALOS-PALSAR image for overall Indonesian archipelago, preprocessing and mosaicking, collecting region of interest of mangrove forest, plotting, ground survey, characterization and classification. The result of this research has showed characterization of mangrove forest types based on ALOS-PALSAR. Indonesian mangrove forest types has HH value around -10 dB until -7 dB and HV value around -17 dB until -13 dB. Higher of HH and HV backscatters value indicated higher of level biomass. Based on scatter plot of HH and HV, Indonesian mangrove forest can be classified in three level biomass. Generally level biomass of mangrove forest in Indonesia archipelago is moderate

  19. Change and fragmentation trends of Zhanjiang mangrove forests in southern China using multi-temporal Landsat imagery (1977-2010)

    Science.gov (United States)

    Li, M. S.; Mao, L. J.; Shen, W. J.; Liu, S. Q.; Wei, A. S.

    2013-09-01

    Mangrove forests, which are found in saline coastal environments around the tropical and subtropical latitudes, are among the most productive terrestrial ecosystems in the world and provide valuable ecological and societal goods and services. The objective of this work was to characterize the spatio-temporal changes in mangrove distribution and fragmentation patterns in the Zhanjiang National Mangrove Forest Nature Reserve, Guangdong province of Southern China, from 1977 through 2010. In addition, a major goal was to assess the socio-economic drivers contributing to the chronic changes taking place within and around the mangrove reserve. Land use and land cover data sets were generated for the reserve for multiple years via unsupervised classification using Landsat time series images. Mangrove fragmentation patterns were then assessed with a fragmentation model. Results revealed that the mangrove spatial extent decreased sharply during the period from 1977 to 1991 due to deforestation caused by diverse development programs, particularly shrimp farming. Afterwards, there was a continuous increase in mangrove extent from 1991 to 2010 due to afforestation and conservation efforts. The mangrove fragmentation trends depicted by the fragmentation model had a high degree of correlation with the observed areal changes. Additionally, the recorded dynamics of the local biodiversity (mainly birds) were consistent with the mangrove ecosystem fragmentation trends over time, and different fragmentation components, including interior, perforated and edge, had distinct impacts on the local mangrove-dependent biodiversity. The most effective way to protect and expand the current mangroves include the following: (1) establishment of mangrove natural reserves, (2) forceful implementation of regulations, (3) establishment of educational programs related to mangrove management, (4) deepening international exchanges and cooperation and (5) increasing the transparency of the project

  20. The Dynamics, Ecological Variability and Estimated Carbon Stocks of Mangroves in Mahajamba Bay, Madagascar

    Directory of Open Access Journals (Sweden)

    Trevor G. Jones

    2015-08-01

    Full Text Available Mangroves are found throughout the tropics, providing critical ecosystem goods and services to coastal communities and supporting rich biodiversity. Globally, mangroves are being rapidly degraded and deforested at rates exceeding loss in many tropical inland forests. Madagascar contains around 2% of the global distribution, >20% of which has been deforested since 1990, primarily from over-harvest for forest products and conversion for agriculture and aquaculture. While historically not prominent, mangrove loss in Madagascar’s Mahajamba Bay is increasing. Here, we focus on Mahajamba Bay, presenting long-term dynamics calculated using United States Geological Survey (USGS national-level mangrove maps contextualized with socio-economic research and ground observations, and the results of contemporary (circa 2011 mapping of dominant mangrove types. The analysis of the USGS data indicated 1050 hectares (3.8% lost from 2000 to 2010, which socio-economic research suggests is increasingly driven by commercial timber extraction. Contemporary mapping results permitted stratified sampling based on spectrally distinct and ecologically meaningful mangrove types, allowing for the first-ever vegetation carbon stock estimates for Mahajamba Bay. The overall mean carbon stock across all mangrove classes was estimated to be 100.97 ± 10.49 Mg C ha−1. High stature closed-canopy mangroves had the highest average carbon stock estimate (i.e., 166.82 ± 15.28 Mg C ha−1. These estimates are comparable to other published values in Madagascar and elsewhere in the Western Indian Ocean and demonstrate the ecological variability of Mahajamba Bay’s mangroves and their value towards climate change mitigation.

  1. Stress in mangrove forests: early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forest management

    Science.gov (United States)

    Lewis, Roy R; Milbrandt, Eric C; Brown, Benjamin; Krauss, Ken W.; Rovai, Andre S.; Beever, James W.; Flynn, Laura L

    2016-01-01

    Mangrove forest rehabilitation should begin much sooner than at the point of catastrophic loss. We describe the need for “mangrove forest heart attack prevention”, and how that might be accomplished in a general sense by embedding plot and remote sensing monitoring within coastal management plans. The major cause of mangrove stress at many sites globally is often linked to reduced tidal flows and exchanges. Blocked water flows can reduce flushing not only from the seaward side, but also result in higher salinity and reduced sediments when flows are blocked landward. Long-term degradation of function leads to acute mortality prompted by acute events, but created by a systematic propensity for long-term neglect of mangroves. Often, mangroves are lost within a few years; however, vulnerability is re-set decades earlier when seemingly innocuous hydrological modifications are made (e.g., road construction, blocked tidal channels), but which remain undetected without reasonable large-scale monitoring.

  2. Brazilian Amazonia Deforestation Detection Using Spatio-Temporal Scan Statistics

    Science.gov (United States)

    Vieira, C. A. O.; Santos, N. T.; Carneiro, A. P. S.; Balieiro, A. A. S.

    2012-07-01

    The spatio-temporal models, developed for analyses of diseases, can also be used for others fields of study, including concerns about forest and deforestation. The aim of this paper is to quantitatively check priority areas in order to combat deforestation on the Amazon forest, using the space-time scan statistic. The study area location is at the south of the Amazonas State and cover around 297.183 kilometre squares, including the municipality of Boca do Acre, Labrea, Canutama, Humaita, Manicore, Novo Aripuana e Apui County on the north region of Brazil. This area has showed a significant change for land cover, which has increased the number of deforestation's alerts. Therefore this situation becomes a concern and gets more investigation, trying to stop factors that increase the number of cases in the area. The methodology includes the location and year that deforestation's alert occurred. These deforestation's alerts are mapped by the DETER (Detection System of Deforestation in Real Time in Amazonia), which is carry out by the Brazilian Space Agency (INPE). The software SatScanTM v7.0 was used in order to define space-time permutation scan statistic for detection of deforestation cases. The outcome of this experiment shows an efficient model to detect space-time clusters of deforestation's alerts. The model was efficient to detect the location, the size, the order and characteristics about activities at the end of the experiments. Two clusters were considered actives and kept actives up to the end of the study. These clusters are located in Canutama and Lábrea County. This quantitative spatial modelling of deforestation warnings allowed: firstly, identifying actives clustering of deforestation, in which the environment government official are able to concentrate their actions; secondly, identifying historic clustering of deforestation, in which the environment government official are able to monitoring in order to avoid them to became actives again; and finally

  3. The potential of Indonesian mangrove forests for global climate change mitigation

    Science.gov (United States)

    Murdiyarso, Daniel; Purbopuspito, Joko; Kauffman, J. Boone; Warren, Matthew W.; Sasmito, Sigit D.; Donato, Daniel C.; Manuri, Solichin; Krisnawati, Haruni; Taberima, Sartji; Kurnianto, Sofyan

    2015-12-01

    Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha-1 (ref. ). Here, we estimate that Indonesian mangrove C stocks are 1,083 +/- 378 MgC ha-1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. ), Indonesia’s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves, mainly as a result of aquaculture development. This has resulted in annual emissions of 0.07-0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss; however, if this were halted, total emissions would be reduced by an amount equal to 10-31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.

  4. Everglades Ecological Forecasting II: Utilizing NASA Earth Observations to Enhance the Capabilities of Everglades National Park to Monitor & Predict Mangrove Extent to Aid Current Restoration Efforts

    Science.gov (United States)

    Kirk, Donnie; Wolfe, Amy; Ba, Adama; Nyquist, Mckenzie; Rhodes, Tyler; Toner, Caitlin; Cabosky, Rachel; Gotschalk, Emily; Gregory, Brad; Kendall, Candace

    2016-01-01

    Mangroves act as a transition zone between fresh and salt water habitats by filtering and indicating salinity levels along the coast of the Florida Everglades. However, dredging and canals built in the early 1900s depleted the Everglades of much of its freshwater resources. In an attempt to assist in maintaining the health of threatened habitats, efforts have been made within Everglades National Park to rebalance the ecosystem and adhere to sustainably managing mangrove forests. The Everglades Ecological Forecasting II team utilized Google Earth Engine API and satellite imagery from Landsat 5, 7, and 8 to continuously create land-change maps over a 25 year period, and to allow park officials to continue producing maps in the future. In order to make the process replicable for project partners at Everglades National Park, the team was able to conduct a supervised classification approach to display mangrove regions in 1995, 2000, 2005, 2010 and 2015. As freshwater was depleted, mangroves encroached further inland and freshwater marshes declined. The current extent map, along with transition maps helped create forecasting models that show mangrove encroachment further inland in the year 2030 as well. This project highlights the changes to the Everglade habitats in relation to a changing climate and hydrological changes throughout the park.

  5. Deforestation Along the Maya Mountain Massif Belize-Guatemala Border

    Science.gov (United States)

    Chicas, S. D.; Omine, K.; Arevalo, B.; Ford, J. B.; Sugimura, K.

    2016-06-01

    In recent years trans-boundary incursions from Petén, Guatemala into Belize's Maya Mountain Massif (MMM) have increased. The incursions are rapidly degrading cultural and natural resources in Belize's protected areas. Given the local, regional and global importance of the MMM and the scarcity of deforestation data, our research team conducted a time series analysis 81 km by 12 km along the Belize-Guatemalan border adjacent to the protected areas of the MMM. Analysis drew on Landsat imagery from 1991 to 2014 to determine historic deforestation rates. The results indicate that the highest deforestation rates in the study area were -1.04% and -6.78% loss of forested area per year in 2012-2014 and 1995-1999 respectively. From 1991 to 2014, forested area decreased from 96.9 % to 85.72 % in Belize and 83.15 % to 31.52 % in Guatemala. During the study period, it was clear that deforestation rates fluctuated in Belize's MMM from one time-period to the next. This seems linked to either a decline in deforestation rates in Guatemala, the vertical expansion of deforestation in Guatemalan forested areas and monitoring. The results of this study urge action to reduce incursions and secure protected areas and remaining forest along the Belize-Guatemalan border.

  6. DEFORESTATION ALONG THE MAYA MOUNTAIN MASSIF BELIZE-GUATEMALA BORDER

    Directory of Open Access Journals (Sweden)

    S. D. Chicas

    2016-06-01

    Full Text Available In recent years trans-boundary incursions from Petén, Guatemala into Belize’s Maya Mountain Massif (MMM have increased. The incursions are rapidly degrading cultural and natural resources in Belize’s protected areas. Given the local, regional and global importance of the MMM and the scarcity of deforestation data, our research team conducted a time series analysis 81 km by 12 km along the Belize-Guatemalan border adjacent to the protected areas of the MMM. Analysis drew on Landsat imagery from 1991 to 2014 to determine historic deforestation rates. The results indicate that the highest deforestation rates in the study area were −1.04% and −6.78% loss of forested area per year in 2012-2014 and 1995-1999 respectively. From 1991 to 2014, forested area decreased from 96.9 % to 85.72 % in Belize and 83.15 % to 31.52 % in Guatemala. During the study period, it was clear that deforestation rates fluctuated in Belize's MMM from one time-period to the next. This seems linked to either a decline in deforestation rates in Guatemala, the vertical expansion of deforestation in Guatemalan forested areas and monitoring. The results of this study urge action to reduce incursions and secure protected areas and remaining forest along the Belize-Guatemalan border.

  7. Mangrove plantation over a limestone reef - Good for the ecology?

    Science.gov (United States)

    Asaeda, Takashi; Barnuevo, Abner; Sanjaya, Kelum; Fortes, Miguel D.; Kanesaka, Yoshikazu; Wolanski, Eric

    2016-05-01

    There have been efforts to restore degraded tropical and subtropical mangrove forests. While there have been many failures, there have been some successes but these were seldom evaluated to test to what level the created mangrove wetlands reproduce the characteristics of the natural ecosystem and thus what ecosystem services they can deliver. We provide such a detailed assessment for the case of Olango and Banacon Islands in the Philippines where the forest was created over a limestone reef where mangroves did not exist in one island but they covered most of the other island before deforestation in the 1940s and 1950s. The created forest appears to have reached a steady state after 60 years. As is typical of mangrove rehabilitation efforts worldwide, planting was limited to a single Rhizophora species. While a forest has been created, it does not mimic a natural forest. There is a large difference between the natural and planted forests in terms of forest structure and species diversity, and tree density. The high density of planted trees excludes importing other species from nearby natural forests; therefore the planted forest remains mono-specific even after several decades and shows no sign of mimicking the characteristics of a natural forest. The planted forests provided mangrove propagules that invaded nearby natural forests. The planted forest has also changed the substratum from sandy to muddy. The outline of the crown of the planted forest has become smooth and horizontal, contrary to that of a natural forest, and this changes the local landscape. Thus we recommend that future mangrove restoration schemes should modify their methodology in order to plant several species, maintain sufficient space between trees for growth, include the naturally dominant species, and create tidal creeks, in order to reproduce in the rehabilitated areas some of the key ecosystem characteristics of natural mangrove forests.

  8. Earth observations for estimating greenhouse gas emissions from deforestation in developing countries

    International Nuclear Information System (INIS)

    DeFries, Ruth; Achard, Frederic; Brown, Sandra; Herold, Martin; Murdiyarso, Daniel; Schlamadinger, Bernhard; Souza, Carlos de

    2007-01-01

    In response to the United Nations Framework Convention on Climate Change (UNFCCC) process investigating the technical issues surrounding the ability to reduce greenhouse gas (GHG) emissions from deforestation in developing countries, this paper reviews technical capabilities for monitoring deforestation and estimating emissions. Implementation of policies to reduce emissions from deforestation require effective deforestation monitoring systems that are reproducible, provide consistent results, meet standards for mapping accuracy, and can be implemented at the national level. Remotely sensed data supported by ground observations are key to effective monitoring. Capacity in developing countries for deforestation monitoring is well-advanced in a few countries and is a feasible goal in most others. Data sources exist to determine base periods in the 1990s as historical reference points. Forest degradation (e.g. from high impact logging and fragmentation) also contribute to greenhouse gas emissions but it is more technically challenging to measure than deforestation. Data on carbon stocks, which are needed to estimate emissions, cannot currently be observed directly over large areas with remote sensing. Guidelines for carbon accounting from deforestation exist and are available in approved Intergovernmental Panel on Climate Change (IPCC) reports and can be applied at national scales in the absence of forest inventory or other data. Key constraints for implementing programs to monitor greenhouse gas emissions from deforestation are international commitment of resources to increase capacity, coordination of observations to ensure pan-tropical coverage, access to free or low-cost data, and standard and consensual protocols for data interpretation and analysis

  9. Visualizing the Impacts of Deforestation.

    Science.gov (United States)

    Fortner, Rosanne W.

    1992-01-01

    Presents two activities with investigation procedures to aid students in examining the extent and impact of biomass burning and deforestation in Brazil as an example of the global problem. Provides background information, tables, and diagrams. (five references) (MCO)

  10. Deforestation in Sub- Sahara Africa

    OpenAIRE

    Diarrassouba, Malick; Boubacar, Inoussa

    2009-01-01

    According to FAO (2005) about 13 million hectares of the word’s forest are lost due to deforestation. Naoto (2006) found Africa to lead the list of countries with the highest rate of deforestation. This worrisome situation is further aggravated by the possible negative impacts of climate change due to an increase in the mean global temperature. Evidence supports that Africa is most likely to suffer the most the devastating impacts of natural calamities such as droughts and floods. This paper ...

  11. Researching illegal logging and deforestation

    OpenAIRE

    Boekhout van Solinge, T.

    2014-01-01

    Tropical deforestation such as in the Amazon can be studied well from a green criminological perspective. Ethnographic research methods form a useful way to get insight into the dynamics and complexity of tropical deforestation, which often is illegal. This article gives an account of various ethnographic visits to the rainforests of the Amazon in the period 2003-2014. Ethnographic methods provide insight into the overlap between the legal and illegal, the functioning (or not) of state instit...

  12. Mangrove forest decline

    DEFF Research Database (Denmark)

    Malik, Abdul; Mertz, Ole; Fensholt, Rasmus

    2017-01-01

    Mangrove forests in the tropics and subtropics grow in saline sediments in coastal and estuarine environments. Preservation of mangrove forests is important for many reasons, including the prevention of coastal erosion and seawater intrusion; the provision of spawning, nursery, and feeding grounds...... of diverse marine biota; and for direct use (such as firewood, charcoal, and construction material)—all of which benefit the sustainability of local communities. However, for many mangrove areas of the world, unsustainable resource utilization and the profit orientation of communities have often led to rapid...... and severe mangrove loss with serious consequences. The mangrove forests of the Takalar District, South Sulawesi, are studied here as a case area that has suffered from degradation and declining spatial extent during recent decades. On the basis of a post-classification comparison of change detection from...

  13. Deforestation Profile of Regency Level In Sumatra

    OpenAIRE

    Rijal, Syamsu

    2016-01-01

    Deforestation Profile Sumatera Islands is an island with the highest deforestation rate in Indonesia for the of period 1990???2010, even in Southeast Asia. Deforestation assessment based solely on value of deforestation rate. Deforestation rate was not able to be explained and distinguished at areas that still covering a lot of forest, even at areas that less or no forest. The lowest rate results or zero (0) will be significantly better or assessed as undeforested area. This study was deve...

  14. Advancing mangrove macroecology

    Science.gov (United States)

    Rivera-Monroy, Victor H.; Osland, Michael J.; Day, John W.; Ray, Santanu; Rovai, Andre S.; Day, Richard H.; Mukherjee, Joyita; Rivera-Monroy, Victor H.; Lee, Shing Yip; Kristensen, Erik; Twilley, Robert R.

    2017-01-01

    Mangrove forests provide a wide range of ecosystem services to society, yet they are among the most anthropogenically impacted coastal ecosystems in the world. In this chapter, we discuss and provide examples for how macroecology can advance our understanding of mangrove ecosystems. Macroecology is broadly defined as a discipline that uses statistical analyses to investigate large-scale, universal patterns in the distribution, abundance, diversity, and organization of species and ecosystems, including the scaling of ecological processes and structural and functional relationships. Macroecological methods can be used to advance our understanding of how non-linear responses in natural systems can be triggered by human impacts at local, regional, and global scales. Although macroecology has the potential to gain knowledge on universal patterns and processes that govern mangrove ecosystems, the application of macroecological methods to mangroves has historically been limited by constraints in data quality and availability. Here we provide examples that include evaluations of the variation in mangrove forest ecosystem structure and function in relation to macroclimatic drivers (e.g., temperature and rainfall regimes) and climate change. Additional examples include work focused upon the continental distribution of aboveground net primary productivity and carbon storage, which are rapidly advancing research areas. These examples demonstrate the value of a macroecological perspective for the understanding of global- and regional-scale effects of both changing environmental conditions and management actions on ecosystem structure, function, and the supply of goods and services. We also present current trends in mangrove modeling approaches and their potential utility to test hypotheses about mangrove structural and functional properties. Given the gap in relevant experimental work at the regional scale, we also discuss the potential use of mangrove restoration and

  15. Deforestation and Vectorial Capacity of Anopheles gambiae Giles Mosquitoes in Malaria Transmission, Kenya

    Science.gov (United States)

    Afrane, Yaw A.; Little, Tom J.; Lawson, Bernard W.; Githeko, Andrew K.

    2008-01-01

    We investigated the effects of deforestation on microclimates and sporogonic development of Plasmodium falciparum parasites in Anopheles gambiae mosquitoes in an area of the western Kenyan highland prone to malaria epidemics. An. gambiae mosquitoes were fed with P. falciparum–infected blood through membrane feeders. Fed mosquitoes were placed in houses in forested and deforested areas in a highland area (1,500 m above sea level) and monitored for parasite development. Deforested sites had higher temperatures and relative humidities, and the overall infection rate of mosquitoes was increased compared with that in forested sites. Sporozoites appeared on average 1.1 days earlier in deforested areas. Vectorial capacity was estimated to be 77.7% higher in the deforested site than in the forested site. We showed that deforestation changes microclimates, leading to more rapid sporogonic development of P. falciparum and to a marked increase of malaria risk in the western Kenyan highland. PMID:18826815

  16. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic.

    Science.gov (United States)

    Kauffman, J Boone; Heider, Chris; Norfolk, Jennifer; Payton, Frederick

    2014-04-01

    Mangroves are recognized to possess a variety of ecosystem services including high rates of carbon sequestration and storage. Deforestation and conversion of these ecosystems continue to be high and have been predicted to result in significant carbon emissions to the atmosphere. Yet few studies have quantified the carbon stocks or losses associated with conversion of these ecosystems. In this study we quantified the ecosystem carbon stocks of three common mangrove types of the Caribbean as well as those of abandoned shrimp ponds in areas formerly occupied by mangrove-a common land-use conversion of mangroves throughout the world. In the mangroves of the Montecristi Province in Northwest Dominican Republic we found C stocks ranged from 706 to 1131 Mg/ha. The medium-statured mangroves (3-10 m in height) had the highest C stocks while the tall (> 10 m) mangroves had the lowest ecosystem carbon storage. Carbon stocks of the low mangrove (shrub) type (carbon-rich soils as deep as 2 m. Carbon stocks of abandoned shrimp ponds were 95 Mg/ha or approximately 11% that of the mangroves. Using a stock-change approach, the potential emissions from the conversion of mangroves to shrimp ponds ranged from 2244 to 3799 Mg CO2e/ha (CO2 equivalents). This is among the largest measured C emissions from land use in the tropics. The 6260 ha of mangroves and converted mangroves in the Montecristi Province are estimated to contain 3,841,490 Mg of C. Mangroves represented 76% of this area but currently store 97% of the carbon in this coastal wetland (3,696,722 Mg C). Converted lands store only 4% of the total ecosystem C (144,778 Mg C) while they comprised 24% of the area. By these metrics the replacement of mangroves with shrimp and salt ponds has resulted in estimated emissions from this region totaling 3.8 million Mg CO2e or approximately 21% of the total C prior to conversion. Given the high C stocks of mangroves, the high emissions from their conversion, and the other important

  17. Biocomplexity in Mangrove Ecosystems

    Science.gov (United States)

    Feller, I. C.; Lovelock, C. E.; Berger, U.; McKee, K. L.; Joye, S. B.; Ball, M. C.

    2010-01-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical coasts. Despite repeated demonstration of their economic and societal value, more than 50% of the world's mangroves have been destroyed, 35% in the past two decades to aquaculture and coastal development, altered hydrology, sea-level rise, and nutrient overenrichment. Variations in the structure and function of mangrove ecosystems have generally been described solely on the basis of a hierarchical classification of the physical characteristics of the intertidal environment, including climate, geomorphology, topography, and hydrology. Here, we use the concept of emergent properties at multiple levels within a hierarchical framework to review how the interplay between specialized adaptations and extreme trait plasticity that characterizes mangroves and intertidal environments gives rise to the biocomplexity that distinguishes mangrove ecosystems. The traits that allow mangroves to tolerate variable salinity, flooding, and nutrient availability influence ecosystem processes and ultimately the services they provide. We conclude that an integrated research strategy using emergent properties in empirical and theoretical studies provides a holistic approach for understanding and managing mangrove ecosystems.

  18. Mapping and analysis land-use and land-cover changes during 1996-2016 in Lubuk Kertang mangrove forest, North Sumatra, Indonesia

    Science.gov (United States)

    Basyuni, M.; Fitri, A.; Harahap, Z. A.

    2018-03-01

    Mangrove forest plays a significant role for biogeochemical carbon cycle in the context of climate change along the tropical coastal area. The present study analyzed the land-use and land-cover changes from 1996, 2006 and 2016 in Lubuk Kertang mangrove forest, Langkat, North Sumatra, Indonesia. Mangrove diversity in Lubuk Kertang consists of fifteen species, Acanthus ilicifolius, Avicennia marina, A. lanata, A. officinalis, Bruguiera gymnorrhiza, B. sexangula, Ceriops tagal, Excoecaria agallocha, Lumnitzera racemosa, L. littorea, R. apiculata, R. mucronata, Scyphiphora hydrophyllacea, Sonneratia caseolaris, and Xylocarpus granatum. The land use/land cover consists of seven classes namely, mangrove forest, river, residential, paddy field, oil palm plantation, aquaculture, and open space area. A land use change matrix showed that the decrease of mangrove forest 109.4 ha from 1996-2006 converted to aquaculture 51.5 ha (47.1%). By contrast, mangrove lost 291.2 ha during 2006-2016, with main driver deforestation was oil palm plantation 128.1 ha (44%). During twenty years mangrove forest has been lost more than 400.4 ha, which is equal to 20.02 ha/year. On the other hand, oil palm plantation and aquaculture have been increased 155.3 ha and 114.1 ha during 1996-2016, respectively, suggested that both land-uses are mainly responsible for mangrove deforestation. These data are likely to contribute towards coastal management planning and practice and mitigating actions for emission reduction scenario.

  19. BRAZILIAN AMAZONIA DEFORESTATION DETECTION USING SPATIO-TEMPORAL SCAN STATISTICS

    Directory of Open Access Journals (Sweden)

    C. A. O. Vieira

    2012-07-01

    Full Text Available The spatio-temporal models, developed for analyses of diseases, can also be used for others fields of study, including concerns about forest and deforestation. The aim of this paper is to quantitatively check priority areas in order to combat deforestation on the Amazon forest, using the space-time scan statistic. The study area location is at the south of the Amazonas State and cover around 297.183 kilometre squares, including the municipality of Boca do Acre, Labrea, Canutama, Humaita, Manicore, Novo Aripuana e Apui County on the north region of Brazil. This area has showed a significant change for land cover, which has increased the number of deforestation's alerts. Therefore this situation becomes a concern and gets more investigation, trying to stop factors that increase the number of cases in the area. The methodology includes the location and year that deforestation’s alert occurred. These deforestation's alerts are mapped by the DETER (Detection System of Deforestation in Real Time in Amazonia, which is carry out by the Brazilian Space Agency (INPE. The software SatScanTM v7.0 was used in order to define space-time permutation scan statistic for detection of deforestation cases. The outcome of this experiment shows an efficient model to detect space-time clusters of deforestation’s alerts. The model was efficient to detect the location, the size, the order and characteristics about activities at the end of the experiments. Two clusters were considered actives and kept actives up to the end of the study. These clusters are located in Canutama and Lábrea County. This quantitative spatial modelling of deforestation warnings allowed: firstly, identifying actives clustering of deforestation, in which the environment government official are able to concentrate their actions; secondly, identifying historic clustering of deforestation, in which the environment government official are able to monitoring in order to avoid them to became

  20. Mangroves on the Edge: Anthrome-Dependent Fragmentation Influences Ecological Condition (Turbo, Colombia, Southern Caribbean

    Directory of Open Access Journals (Sweden)

    Juan Felipe Blanco-Libreros

    2015-06-01

    Full Text Available Marine protected areas are commonly seen as the most effective strategy for protecting mangroves from external human pressures but little is known about the role of public land-tenure contexts (dense settlements, agricultural or range lands and wild anthromes on clearing rates, patch properties, and ecological condition. We addressed the following questions using a peri-urban to wild gradient along the anthropogenic coastal-scape in Turbo Municipality (Colombia, Southern Caribbean: Do the different deforestation rates observed under peri-urban, rural, military-protected and wild land-use-and-tenure contexts, promote distinctive fragmentation patterns? Do these patterns influence loggers’ access and ultimately ecosystem ecological condition? Loss rate (1938–2009 was the greatest peri-urban mangroves and positively correlated with urban edge and patch density. Pasture edge was highest in rural mangroves while mean patch area was higher in protected and wild mangroves. An Anthropogenic Disturbance Index (ADI was strongly correlated with reduced mean patch area and increased patch density, due to increased trampling and logging, that ultimately promoted high densities of thin (diameter: <5 cm Laguncularia racemosa trees but had no significant effect on the presence of a dominant benthic gastropod. In conclusion, both protection and remoteness were effective in reducing anthropogenic edges and fragmentation, and thus contributed to a high ecological condition in mangroves at a major deforestation hotspot.

  1. Integrating remotely sensed fires for predicting deforestation for REDD.

    Science.gov (United States)

    Armenteras, Dolors; Gibbes, Cerian; Anaya, Jesús A; Dávalos, Liliana M

    2017-06-01

    Fire is an important tool in tropical forest management, as it alters forest composition, structure, and the carbon budget. The United Nations program on Reducing Emissions from Deforestation and Forest Degradation (REDD+) aims to sustainably manage forests, as well as to conserve and enhance their carbon stocks. Despite the crucial role of fire management, decision-making on REDD+ interventions fails to systematically include fires. Here, we address this critical knowledge gap in two ways. First, we review REDD+ projects and programs to assess the inclusion of fires in monitoring, reporting, and verification (MRV) systems. Second, we model the relationship between fire and forest for a pilot site in Colombia using near-real-time (NRT) fire monitoring data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). The literature review revealed fire remains to be incorporated as a key component of MRV systems. Spatially explicit modeling of land use change showed the probability of deforestation declined sharply with increasing distance to the nearest fire the preceding year (multi-year model area under the curve [AUC] 0.82). Deforestation predictions based on the model performed better than the official REDD early-warning system. The model AUC for 2013 and 2014 was 0.81, compared to 0.52 for the early-warning system in 2013 and 0.68 in 2014. This demonstrates NRT fire monitoring is a powerful tool to predict sites of forest deforestation. Applying new, publicly available, and open-access NRT fire data should be an essential element of early-warning systems to detect and prevent deforestation. Our results provide tools for improving both the current MRV systems, and the deforestation early-warning system in Colombia. © 2017 by the Ecological Society of America.

  2. Mangrove vulnerability index using GIS

    Science.gov (United States)

    Yunus, Mohd Zulkifli Mohd; Ahmad, Fatimah Shafinaz; Ibrahim, Nuremira

    2018-02-01

    Climate change, particularly its associated sea level rise, is major threat to mangrove coastal areas, and it is essential to develop ways to reduce vulnerability through strategic management planning. Environmental vulnerability can be understood as a function of exposure to impacts and the sensitivity and adaptive capacity of ecological systems towards environmental tensors. Mangrove vulnerability ranking using up to 14 parameters found in study area, which is in Pulau Kukup and Sg Pulai, where 1 is low vulnerability and 5 is very high vulnerability. Mangrove Vulnerability Index (MVI) is divided into 3 main categories Physical Mangrove Index (PMI), Biological Mangrove Index (BMI) and Hazard Mangrove Index (HMI).

  3. Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery

    Science.gov (United States)

    Castillo, Jose Alan A.; Apan, Armando A.; Maraseni, Tek N.; Salmo, Severino G.

    2017-12-01

    The recent launch of the Sentinel-1 (SAR) and Sentinel-2 (multispectral) missions offers a new opportunity for land-based biomass mapping and monitoring especially in the tropics where deforestation is highest. Yet, unlike in agriculture and inland land uses, the use of Sentinel imagery has not been evaluated for biomass retrieval in mangrove forest and the non-forest land uses that replaced mangroves. In this study, we evaluated the ability of Sentinel imagery for the retrieval and predictive mapping of above-ground biomass of mangroves and their replacement land uses. We used Sentinel SAR and multispectral imagery to develop biomass prediction models through the conventional linear regression and novel Machine Learning algorithms. We developed models each from SAR raw polarisation backscatter data, multispectral bands, vegetation indices, and canopy biophysical variables. The results show that the model based on biophysical variable Leaf Area Index (LAI) derived from Sentinel-2 was more accurate in predicting the overall above-ground biomass. In contrast, the model which utilised optical bands had the lowest accuracy. However, the SAR-based model was more accurate in predicting the biomass in the usually deficient to low vegetation cover non-forest replacement land uses such as abandoned aquaculture pond, cleared mangrove and abandoned salt pond. These models had 0.82-0.83 correlation/agreement of observed and predicted value, and root mean square error of 27.8-28.5 Mg ha-1. Among the Sentinel-2 multispectral bands, the red and red edge bands (bands 4, 5 and 7), combined with elevation data, were the best variable set combination for biomass prediction. The red edge-based Inverted Red-Edge Chlorophyll Index had the highest prediction accuracy among the vegetation indices. Overall, Sentinel-1 SAR and Sentinel-2 multispectral imagery can provide satisfactory results in the retrieval and predictive mapping of the above-ground biomass of mangroves and the replacement

  4. Migration and Deforestation in Indonesia

    OpenAIRE

    Rivayani Darmawan; Stephan Klasen; Nunung Nuryartono

    2015-01-01

    Indonesia now has the highest deforestation rate in the world, with an average increase of about 47,600 ha per year. As a result, the nation is one of the largest emitters of greenhouse gases in the world and is putting its rich biodiversity at risk. Although the literature discussing the political economy of Indonesia commercial's logging is growing, only a small amount focuses on the relation-ship between migration and deforestation. Migration may contribute to the forest cover change, as m...

  5. Separating Mangrove Species and Conditions Using Laboratory Hyperspectral Data: A Case Study of a Degraded Mangrove Forest of the Mexican Pacific

    Directory of Open Access Journals (Sweden)

    Chunhua Zhang

    2014-11-01

    Full Text Available Given the scale and rate of mangrove loss globally, it is increasingly important to map and monitor mangrove forest health in a timely fashion. This study aims to identify the conditions of mangroves in a coastal lagoon south of the city of Mazatlán, Mexico, using proximal hyperspectral remote sensing techniques. The dominant mangrove species in this area includes the red (Rhizophora mangle, the black (Avicennia germinans and the white (Laguncularia racemosa mangrove. Moreover, large patches of poor condition black and red mangrove and healthy dwarf black mangrove are commonly found. Mangrove leaves were collected from this forest representing all of the aforementioned species and conditions. The leaves were then transported to a laboratory for spectral measurements using an ASD FieldSpec® 3 JR spectroradiometer (Analytical Spectral Devices, Inc., USA. R2 plot, principal components analysis and stepwise discriminant analyses were then used to select wavebands deemed most appropriate for further mangrove classification. Specifically, the wavebands at 520, 560, 650, 710, 760, 2100 and 2230 nm were selected, which correspond to chlorophyll absorption, red edge, starch, cellulose, nitrogen and protein regions of the spectrum. The classification and validation indicate that these wavebands are capable of identifying mangrove species and mangrove conditions common to this degraded forest with an overall accuracy and Khat coefficient higher than 90% and 0.9, respectively. Although lower in accuracy, the classifications of the stressed (poor condition and dwarf mangroves were found to be satisfactory with accuracies higher than 80%. The results of this study indicate that it could be possible to apply laboratory hyperspectral data for classifying mangroves, not only at the species level, but also according to their health conditions.

  6. How Can a Little Shrimp Do so Much Damage?: Ecosystem Service Losses Associated with Land Cover Change in Mangroves

    Science.gov (United States)

    Kauffman, J. B.; Bhomia, R. K.

    2014-12-01

    Mangroves provide a number of ecosystem services including habitats for many species of fish and shellfish, storm protection, influences on water quality, wood, aesthetics, and a source of nutrients and energy for adjacent marine ecosystems. C stocks of mangroves are among the highest of any forest type on Earth. We have measured the ecosystem carbon stocks in mangroves across the world and found them to range from 250 to >2000 Mg C/ha which is a CO2 equivalence of 917 to 7340 Mg/ha. Because the numerous values of mangroves are well known, it is ironic that rates of deforestation largely relating to land use/land cover change are among the highest of any forest type on earth exceeding that of tropical rain forests. Dominant causes of deforestation include conversion to aquaculture (shrimp), agricultural conversion, and coastal development. The carbon emissions arising from conversion of mangroves to other uses is exceptionally high. This is because vulnerability of the soil carbon stocks to losses with conversion. Emissions from conversion of mangrove to shrimp ponds range from about 800 to over 3000 Mg CO2e/ha. This places the carbon footprint of shrimp arising from such ponds as among the highest of any food product available. Of great interest is the potential value of mangroves in carbon marketing strategies and other financial incentives that are derived from the conservation of standing forests. This is because of the combination of high carbon stocks in intact mangroves, the high greenhouse gas emissions arising from their conversion, and the conservation of other valuable ecosystem services provided by intact mangroves.

  7. Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific

    Science.gov (United States)

    Kovacs, John M.; Wang, Jinfei; Flores-Verdugo, Francisco

    2005-01-01

    Using both IKONOS and in situ LAI-2000 sensor data, a map of estimated LAI, based on NDVI, was created for the Agua Brava Lagoon, Mexican Pacific. The LAI values were then aggregated according to four classes; red mangrove ( Rhizophora mangle), healthy white mangrove ( Laguncularia racemosa), poor condition white mangrove and dead mangrove. Of the live mangrove, calculated at approximately 85% of the forest, mean LAI values of 2.49, 1.74 and 0.85 were determined for the red, healthy white and poor condition white mangrove, respectively. Excluding the dead areas, an overall estimated mangrove LAI value of 1.81 was ascertained for the 71 km 2 of mapped mangrove forest. Although the results do suggest the technique as a very rapid and effective method for monitoring the condition of mangroves at the species level, potential limitations are also discussed.

  8. Near real time detection of deforestation in the Brazilian Amazon using MODIS imagery

    Directory of Open Access Journals (Sweden)

    Egídio Arai

    2007-06-01

    Full Text Available The objective of this paper is to provide near real time information about deforestation detection (DETER in the entire Brazilian Amazon using MODIS high temporal resolution images. It is part of the operational deforestation monitoring project to estimate the annual deforestation rate in the Brazilian Amazon (PRODES. A rapid deforestation detection method was designed to support land use policies in this region. In order to evaluate the proposed method a test site was selected covering a Landsat ETM+ scene (227/68 located in Mato Grosso State. For this purpose a multitemporal series of MODIS surface reflectance images (MOD09 and the corresponding ETM+ images from June to October 2002 were analyzed. It was found that small deforested areas (lower than 15 ha were detected by MODIS images with lower accuracy when compared with ETM+ images. As the deforested areas increase MODIS and ETM+ results tend to converge. This procedure showed to be adequate to operationally detect and monitor deforested areas and has been used since 2004 as part of a government plan to control the Amazon deforestation.

  9. Global Mangrove Forests Distribution, 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Mangrove Forests Distribution, 2000 data set is a compilation of the extent of mangroves forests from the Global Land Survey and the Landsat archive with...

  10. Arsenic enrichment in mangroves, and sediments along Karachi coast, Pakistan

    Directory of Open Access Journals (Sweden)

    Rashida Parveen

    2013-08-01

    Full Text Available Objective: To assess the arsenic (As concentration in different parts of mangroves Avicennia marina and sediments in Karachi coastal area i.e. Korangi Creek , Manora, Kakapir and Sandspit. Methods: Sites are identified for sampling owing to their vicinity to industrial activities. Sandspit is targeted for its being devoid of industries. The hydride generation atomic absorption spectrometry (HG-AAS were used to analyse the concentration of arsenic in mangrove and sediment. Results: The high concentration of As was found in roots and middle aerial part as compared to the upper part of mangroves. The concentrations of As was found higher in sediments as compared to the mangroves. There is a seasonal variation of As enrichment in mangrove and sediments as dry seasons showed higher concentration while in rainy season dilution factors may be attributed to the low level of As. The concentration variation of As in sampling sites of mangroves and sediments following the trend i.e. Korangi Creek >Manora>Kakapir>Sandspit. The statistical analysis (Two way ANOVA of data exhibited no significant difference (P>0.05 for trace metals concentrations in mangrove as well as in sediments. Conclusions: It is obvious to conclude that As should be continuously monitored in different environmental segments. The data must correlate with geographical distribution of As, quantification in different species, their solubility and bioavailability to understand the possible factors responsible for environmental pollution. The present study will be helpful to improve water management resources.

  11. Deforestation since independence: A quantitative assessment of ...

    African Journals Online (AJOL)

    Deforestation since independence: A quantitative assessment of four decades of land-cover change in Malawi. ... pressure and demographic factors are important predictors of deforestation rate within our study area. Keywords: afforestation, Africa, deforestation, drivers, land-use change, reforestation, rural, urban ...

  12. Implications of deforestation and desertification on sustainable ...

    African Journals Online (AJOL)

    This paper examines the implications of deforestation and desertification in sustainable agriculture. The problems of deforestation and desertification were examined as they affect land and agricultural productivity. The socio-economic implications of deforestation and desertification in sustainable agriculture were equally ...

  13. Mangrove clearing impacts on macrofaunal assemblages and benthic food webs in a tropical estuary.

    Science.gov (United States)

    Bernardino, Angelo Fraga; Gomes, Luiz Eduardo de Oliveira; Hadlich, Heliatrice Louise; Andrades, Ryan; Correa, Lucas Barreto

    2018-01-01

    Despite over 21,000ha of mangrove forests being removed per year in Brazil, ecological changes following mangrove deforestation have been overlooked. Here we evaluated changes in benthic macrofaunal assemblages and food-webs at a mangrove removal and natural sites in a tropical estuary in Eastern Brazil. The impacted site had coarser sediment particle sizes suggesting significant changes in sedimentation processes after forest clearing. Spatial differences in macrofaunal abundance, biomass and diversity were not directly associated with the removal of mangrove forests, supporting recolonization of impacted areas by estuarine fauna. However, benthic assemblage composition, infaunal δ 13 C signatures and food-web diversity markedly differed at the impacted site being strongly related to sedimentary changes. The loss of infaunal trophic diversity that followed mangrove removal suggests that large-scale forest clearing may impact estuarine food webs, with potential consequences to nearby coastal ecosystems given the high clearing rate of mangrove forests in Brazil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Researching Illegal Logging and Deforestation

    Directory of Open Access Journals (Sweden)

    Tim Boekhout van Solinge

    2014-08-01

    Full Text Available Tropical deforestation such as in the Amazon can be studied well from a green criminological perspective. Ethnographic research methods form a useful way to get insight into the dynamics and complexity of tropical deforestation, which often is illegal. This article gives an account of various ethnographic visits to the rainforests of the Amazon in the period 2003-2014. Ethnographic methods provide insight into the overlap between the legal and illegal, the functioning (or not of state institutions, the power of (corporate lobbies, and why tropical deforestation correlates with crimes such as corruption and violence. The use of ethnographic methods in forest areas where trustworthy state actors and institutions are not very present can also present danger and raise ethical issues (such as when the researcher, for reasons of safety, does not present as a criminological researcher. However, a large advantage of ethnographic visits to tropical rainforests is that they allow the gathering of local views and voices, which rarely reach the international level. These local views lead to interesting contradictions at the international level where corporate views and lobbies dominate.

  15. Deforestation and avian infectious diseases.

    Science.gov (United States)

    Sehgal, R N M

    2010-03-15

    In this time of unprecedented global change, infectious diseases will impact humans and wildlife in novel and unknown ways. Climate change, the introduction of invasive species, urbanization, agricultural practices and the loss of biodiversity have all been implicated in increasing the spread of infectious pathogens. In many regards, deforestation supersedes these other global events in terms of its immediate potential global effects in both tropical and temperate regions. The effects of deforestation on the spread of pathogens in birds are largely unknown. Birds harbor many of the same types of pathogens as humans and in addition can spread infectious agents to humans and other wildlife. It is thought that avifauna have gone extinct due to infectious diseases and many are presently threatened, especially endemic island birds. It is clear that habitat degradation can pose a direct threat to many bird species but it is uncertain how these alterations will affect disease transmission and susceptibility to disease. The migration and dispersal of birds can also change with habitat degradation, and thus expose populations to novel pathogens. Some recent work has shown that the results of landscape transformation can have confounding effects on avian malaria, other haemosporidian parasites and viruses. Now with advances in many technologies, including mathematical and computer modeling, genomics and satellite tracking, scientists have tools to further research the disease ecology of deforestation. This research will be imperative to help predict and prevent outbreaks that could affect avifauna, humans and other wildlife worldwide.

  16. Developing Integrated Remote Sensing and Geographical Information Sciences Procedures to Assess Impacts of Climate Variations on Spatio-Temporal Distribution of Mangroves

    Science.gov (United States)

    Qaisar, Maha

    2016-07-01

    Pakistan's periled treasures of mangroves require protection from devastating anthropogenic activities, which can only be achieved through the identification and management of this habitat. The primary objective of this study is to identify the potential habitat of mangroves along the coastline of Pakistan with the help of Remote Sensing (RS) and Geographical Information System (GIS) techniques. Once the mangroves were identified, species of mangroves need to be separated through Object Based Image Analysis (OBIA) which gave the area of mangroves and non mangroves sites. Later other parameters of Sea Surface Temperature, Sea Surface Salinity, chlorophyll-a along with altimetry data were used to assess the climatic variations on the spatio-temporal distribution of mangroves. Since mangroves provide economical, ecological, biological indication of Coastal Change or Sea Level Rise. Therefore, this provides a strong platform to assess the climatic variations which are posing negative impacts on the mangroves ecosystem. The results indicate that mangroves are present throughout along the coastline, proving that Pakistan is rich in these diverse ecosystems. Pakistan being at important geo strategic position can also benefit from its vast mangroves and other coastal resources such as coral reefs and fish varieties. Moreover, coastal zone management through involvement of the local community and establishment of Marine Protected Area (MPA) is the need of the hour to avoid deforestation of mangroves, which can prove to be deadly damaging for the fish populace since it provides habitats to various marine animals. However, the established relationship among SST, SSS, chlorophyll-a and altimetry data assisted to know the suitable sites for mangroves. But due to enhanced climatic impacts these relationships are distorted which has posed devastating effects on the growth and distribution of mangroves. Study area was Karachi Coast, Pakistan. The total area of Karachi is about 70

  17. Export-oriented deforestation in Mato Grosso: harbinger or exception for other tropical forests?

    Science.gov (United States)

    DeFries, Ruth; Herold, Martin; Verchot, Louis; Macedo, Marcia N; Shimabukuro, Yosio

    2013-06-05

    The Brazilian state of Mato Grosso was a global deforestation hotspot in the early 2000s. Deforested land is used predominantly to produce meat for distal consumption either through cattle ranching or soya bean for livestock feed. Deforestation declined dramatically in the latter part of the decade through a combination of market forces, policies, enforcement and improved monitoring. This study assesses how representative the national-level drivers underlying Mato Grosso's export-oriented deforestation are in other tropical forest countries based on agricultural exports, commercial agriculture and urbanization. We also assess how pervasive the governance and technical monitoring capacity that enabled Mato Grosso's decline in deforestation is in other countries. We find that between 41 and 54 per cent of 2000-2005 deforestation in tropical forest countries (other than Brazil) occurred in countries with drivers similar to Brazil. Very few countries had national-level governance and capacity similar to Brazil. Results suggest that the ecological, hydrological and social consequences of land-use change for export-oriented agriculture as discussed in this Theme Issue were applicable in about one-third of all tropical forest countries in 2000-2005. However, the feasibility of replicating Mato Grosso's success with controlling deforestation is more limited. Production landscapes to support distal consumption similar to Mato Grosso are likely to become more prevalent and are unlikely to follow a land-use transition model with increasing forest cover.

  18. Deforestation and Carbon Stock Loss in Brazil's Amazonian Settlements.

    Science.gov (United States)

    Yanai, Aurora Miho; Nogueira, Euler Melo; de Alencastro Graça, Paulo Maurício Lima; Fearnside, Philip Martin

    2017-03-01

    We estimate deforestation and the carbon stock in 2740 (82 %) of the 3325 settlements in Brazil's Legal Amazonia region. Estimates are made both using available satellite data and a carbon map for the "pre-modern" period (prior to 1970). We used data from Brazil's Project for Monitoring Deforestation in Amazonia updated through 2013 and from the Brazilian Biomes Deforestation Monitoring Project (PMDBBS) updated through 2010. To obtain the pre-modern and recent carbon stocks we performed an intersection between a carbon map and a map derived from settlement boundaries and deforestation data. Although the settlements analyzed occupied only 8 % of Legal Amazonia, our results indicate that these settlements contributed 17 % (160,410 km 2 ) of total clearing (forest + non-forest) in Legal Amazonia (967,003 km 2 ). This represents a clear-cutting of 41 % of the original vegetation in the settlements. Out of this total, 72 % (115,634 km 2 ) was in the "Federal Settlement Project" (PA) category. Deforestation in settlements represents 20 % (2.6 Pg C) of the total carbon loss in Legal Amazonia (13.1 Pg C). The carbon stock in remaining vegetation represents 3.8 Pg C, or 6 % of the total remaining carbon stock in Legal Amazonia (58.6 Pg C) in the periods analyzed. The carbon reductions in settlements are caused both by the settlers and by external actors. Our findings suggest that agrarian reform policies contributed directly to carbon loss. Thus, the implementation of new settlements should consider potential carbon stock losses, especially if settlements are created in areas with high carbon stocks.

  19. Attitudes of local communities towards conservation of mangrove forests: A case study from the east coast of India

    Science.gov (United States)

    Badola, Ruchi; Barthwal, Shivani; Hussain, Syed Ainul

    2012-01-01

    The ecological and economic importance of mangrove ecosystems is well established and highlighted by studies establishing a correlation between the protective function of mangroves and the loss of lives and property caused by coastal hazards. Nevertheless, degradation of this ecosystem remains a matter of concern, emphasizing the fact that effective conservation of natural resources is possible only with an understanding of the attitudes and perceptions of local communities. In the present study, we examined the attitudes and perceptions of local communities towards mangrove forests through questionnaire surveys in 36 villages in the Bhitarkanika Conservation Area, India. The sample villages were selected from 336 villages using hierarchical cluster analysis. The study revealed that local communities in the area had positive attitudes towards conservation and that their demographic and socio-economic conditions influenced people's attitudes. Local communities valued those functions of mangrove forests that were directly linked to their wellbeing. Despite human-wildlife conflict, the attitudes of the local communities were not altogether negative, and they were willing to participate in mangrove restoration. People agreed to adopt alternative resources if access to forest resources were curtailed. Respondents living near the forests, who could not afford alternatives, admitted that they would resort to pilfering. Hence, increasing their livelihood options may reduce the pressure on mangrove forests. In contrast with other ecosystems, the linkages of mangrove ecosystem services with local livelihoods and security are direct and tangible. It is therefore possible to develop strong local support for sustainable management of mangrove forests in areas where a positive attitude towards mangrove conservation prevails. The current debates on Reducing Emissions from Deforestation and Forest Degradation (REDD) and payment for ecosystem services provide ample scope for

  20. Cockles in custody: the role of common property arrangements in the ecological sustainability of mangrove Fisheries on the Ecuadorian Coast

    Directory of Open Access Journals (Sweden)

    Christine M. Beitl

    2011-09-01

    Full Text Available Scholars of common property resource theory (CPR have long asserted that certain kinds of institutional arrangements based on collective action result in successful environmental stewardship, but feedback and the direct link between social and ecological systems remains poorly understood. This paper investigates how common property institutional arrangements contribute to sustainable mangrove fisheries in coastal Ecuador, focusing on the fishery for the mangrove cockle (Anadara tuberculosa and A. similis, a bivalve mollusk harvested from the roots of mangrove trees and of particular social, economic, and cultural importance for the communities that depend on it. Specifically, this study examines the emergence of new civil society institutions within the historical context of extensive mangrove deforestation for the expansion of shrimp farming, policy changes in the late 1990s that recognized “ancestral” rights of local communities to mangrove resources, and how custodias, community-managed mangrove concessions, affect the cockle fishery. Findings from interviews with shell collectors and analysis of catch-per-unit-effort (CPUE indicate that mangrove concessions as common property regimes promote community empowerment, local autonomy over resources, mangrove conservation and recovery, higher cockle catch shares, and larger shell sizes, but the benefits are not evenly distributed. Associations without custodias and independent cockle collectors feel further marginalized by the loss of gathering grounds, potentially deflecting problems of overexploitation to “open-access” areas, in which mangrove fisheries are weakly managed by the State. Using Ostrom’s Institutional Analysis and Development (IAD framework, the explicit link between social and ecological systems is studied at different levels, examining the relationship between collective action and the environment through quantitative approaches at the fishery level and qualitative

  1. GHG emissions due to deforestation

    International Nuclear Information System (INIS)

    Croezen, H.; Van Valkengoed, M.

    2009-05-01

    An assessment was made for the magnitude of greenhouse gas emissions resulting from deforestation and forest degradation in tropical forests in Malaysia and Indonesia related to Dutch economic activities. Greenhouse gas emissions (GHG) are calculated in relation to (1) the emissions related to vegetation removal sec; and (2) the emissions related to removal and more long term effects related to assimilation of CO2 in forest regrowth and changes in organic material in soils. Emissions related to vegetation removal and aggregated emissions for both vegetation removal and long term effects are reported separately. Soil organic carbon stock changes are considered by Greenpeace as more uncertain, so the emphasis will be on the direct emissions. Changes in carbon stocks and N2O emissions and actually also changes in vegetation all are events that occur gradually, rather than immediately. Only removal of existing vegetation and possible burning of this vegetation and associated emissions related to both activities are immediate by nature. Carbon stocks and N2O emissions change to a new level within several decades after deforestation or forest degradation. Removed vegetation can grow back or be replaced eventually by other vegetation, thereby changing the net greenhouse gas (GHG) emissions related to deforestation or forest degradation. Vegetation extracted for commercial purposes such as timber or pulp will also take years or decades to become waste and be converted into CO2. In IPCC and LCA's all these emissions are taken into account - or at least all emissions occurring within a period of 20 years, as required by IPCC. Soil organic carbon stock changes are also considered by Greenpeace as more uncertain, so the emphasis will be on the direct emmissions.

  2. Ecological resilience indicators for mangrove ecosystems

    Science.gov (United States)

    Day, Richard H.; Allen, Scott T.; Brenner, Jorge; Goodin, Kathleen; Faber-Langendoen, Don; Ames, Katherine Wirt

    2018-01-01

    Mangrove ecosystems are coastal wetland ecosystems dominated by mangrove species that are typically found in the intertidal zone, characterized by frequently flooded saline soil conditions. The majority of the approximately 500,000 acres of mangrove ecosystem in the United States occurs in the NGoM, and almost all of that is in Florida, with over 90 percent in the four southern counties of Lee, Collier, Miami-Dade, and Monroe. Scattered stands and individuals occur north and westward into Louisiana and Texas (Osland et al., 2016). The three common mangrove species are: black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). The mangrove system described in this project includes Tidal Mangrove Shrubland and Tidal Mangrove Forest as classified in CMECS (FGDC, 2012). It is classified as Caribbean Fringe Mangrove (G004) in the USNVC (2016), with a variety of distinct associations, based on species dominance and ecological setting.

  3. Madagascar’s Mangroves: Quantifying Nation-Wide and Ecosystem Specific Dynamics, and Detailed Contemporary Mapping of Distinct Ecosystems

    Directory of Open Access Journals (Sweden)

    Trevor G. Jones

    2016-01-01

    Full Text Available Mangrove ecosystems help mitigate climate change, are highly biodiverse, and provide critical goods and services to coastal communities. Despite their importance, anthropogenic activities are rapidly degrading and deforesting mangroves world-wide. Madagascar contains 2% of the world’s mangroves, many of which have undergone or are starting to exhibit signs of widespread degradation and deforestation. Remotely sensed data can be used to quantify mangrove loss and characterize remaining distributions, providing detailed, accurate, timely and updateable information. We use USGS maps produced from Landsat data to calculate nation-wide dynamics for Madagascar’s mangroves from 1990 to 2010, and examine change more closely by partitioning the national distribution in to primary (i.e., >1000 ha ecosystems; with focus on four Areas of Interest (AOIs: Ambaro-Ambanja Bays (AAB, Mahajamba Bay (MHJ, Tsiribihina Manombolo Delta (TMD and Bay des Assassins (BdA. Results indicate a nation–wide net-loss of 21% (i.e., 57,359 ha from 1990 to 2010, with dynamics varying considerably among primary mangrove ecosystems. Given the limitations of national-level maps for certain localized applications (e.g., carbon stock inventories, building on two previous studies for AAB and MHJ, we employ Landsat data to produce detailed, contemporary mangrove maps for TMD and BdA. These contemporary, AOI-specific maps provide improved detail and accuracy over the USGS national-level maps, and are being applied to conservation and restoration initiatives through the Blue Ventures’ Blue Forests programme and WWF Madagascar West Indian Ocean Programme Office’s work in the region.

  4. Increasing deforestation at the Arc of Deforestation in Brazil

    Science.gov (United States)

    Silva, Maria Elisa; Pereira, Gabriel; Rocha, Rosmeri

    2013-04-01

    In this study we investigated the impact on regional climate due to the deforestation of Amazonian region. The deforestation was applied specifically to the area at the edge of the Amazonian region in Brazil, named Arc of Deforestation, where the deforestation actually occurs. The numerical experiments were conducted with the regional climate model RegCM3, used by many scientific groups around the world. The simulations performed by the model were conducted for the Brazil's central-southeast region rainy season, which can be defined between October and March. Each rainy season was separately simulated, being July-1st always the first day and March-31th the last one. Some alterations were made in the model specifications in order to better simulate the climate over South America. Land cover information was updated by more recent data. The older data compiled for 1992 was replaced by that compiled for 2005 (GLCC2005). Besides the global coverage updating, Cerrado information over Brazil obtained from the Brazilian Environmental Ministry was included to cover information. Based on results from others studies, carried out to South America, we changed the root and total soil layers depth, they were enlarged to 3.0 and 4.5 meters, respectively. This change can provide more humidity to the atmosphere and then increase the amount of convective precipitation. The spatial and time resolution considered for all simulations were, respectively, 50 km and 30 min. The domain was defined considering the South America region centered in 55W e 22S, with 160 and 120 points in longitudinal and latitudinal directions, respectively. The vertical resolution was described by 18 levels. The convective precipitation was computed by Grell scheme. Initial and boundary conditions were defined by Reanalysis I dataset. Sea surface temperature was those compiled by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, and was obtained from their Web site. Spatial patterns of simulated air temperature at low

  5. Identifikasi Dinamika Spasial Sumberdaya Mangrove di Wilayah Pesisir Kabupaten Demak Jawa Tengah

    Directory of Open Access Journals (Sweden)

    Septiana Faturrohmah

    2017-04-01

    . Conservation can be effective if started by data inventaritation and monitoring-based planning. The aim of this study is to give a contribution on spatial planning of mangrove conservation in coastal area of Demak Regency through mangrove distribution, area, and its dynamics identifications. The dynamics of the mangrove area will be identified for the last five years. The analysis method used in this study is based on qualitative assessment aided by support of remote sensing data and Geographic Information System. The study results show that in the last five years (2010-2015, mangrove forests in Demak Regency didn’t change drastically, instead it is only decreased around 68,17 Hectars. However, observation and analysis on more detailed scale (sub district and village level shows that the dynamics of mangrove area and its distribution varies significantly.

  6. Prehistoric deforestation at Chaco Canyon?

    Science.gov (United States)

    Wills, W H; Drake, Brandon L; Dorshow, Wetherbee B

    2014-08-12

    Ancient societies are often used to illustrate the potential problems stemming from unsustainable land-use practices because the past seems rife with examples of sociopolitical "collapse" associated with the exhaustion of finite resources. Just as frequently, and typically in response to such presentations, archaeologists and other specialists caution against seeking simple cause-and effect-relationships in the complex data that comprise the archaeological record. In this study we examine the famous case of Chaco Canyon, New Mexico, during the Bonito Phase (ca. AD 860-1140), which has become a prominent popular illustration of ecological and social catastrophe attributed to deforestation. We conclude that there is no substantive evidence for deforestation at Chaco and no obvious indications that the depopulation of the canyon in the 13th century was caused by any specific cultural practices or natural events. Clearly there was a reason why these farming people eventually moved elsewhere, but the archaeological record has not yet produced compelling empirical evidence for what that reason might have been. Until such evidence appears, the legacy of Ancestral Pueblo society in Chaco should not be used as a cautionary story about socioeconomic failures in the modern world.

  7. Small farmers and deforestation in Amazonia

    Science.gov (United States)

    Brondízio, Eduardo S.; Cak, Anthony; Caldas, Marcellus M.; Mena, Carlos; Bilsborrow, Richard; Futemma, Celia T.; Ludewigs, Thomas; Moran, Emilio F.; Batistella, Mateus

    This chapter discusses the relationship between small farmers' land use and deforestation, with particular attention paid to the past 30 years of Amazonian colonization in Brazil and Ecuador. Our analysis calls attention to common features uniting different social groups as small farmers (e.g., social identity, access to land and resources, technology, market, and credit), as well as the variability between small farmers in terms of time in the region (from native populations to recent colonists), contribution to regional deforestation, types of land use systems. At a regional level, small farmers contribute to the majority of deforestation events, but are responsible for only a fraction of the total deforested area in Amazonia. We discuss three misconceptions that have been used to define small farmers and their contribution to the regional economy, development, and deforestation: (1) small farmers have backward land use systems associated with low productivity and extensive deforestation and subsistence production, (2) small farmers contribute to Amazonian deforestation as much as large farmers, and (3) small farmers, particularly colonist farmers, follow an inexorable path of deforestation unless curbed by government action. We conclude the chapter discussing their growing regional importance and the need for more inclusive public policies concerning infrastructure and services and valorization of resources produced in rural areas of Amazonia.

  8. Impact of Amazonian deforestation on atmospheric chemistry

    NARCIS (Netherlands)

    Ganzeveld, L.N.; Lelieveld, J.

    2004-01-01

    A single-column chemistry and climate model has been used to study the impact of deforestation in the Amazon Basin on atmospheric chemistry. Over deforested areas, daytime ozone deposition generally decreases strongly except when surface wetness decreases through reduced precipitation, whereas

  9. Temperate mangrove and salt marsh sediments are a small methane and nitrous oxide source but important carbon store

    Science.gov (United States)

    Livesley, Stephen J.; Andrusiak, Sascha M.

    2012-01-01

    Tidal saline wetlands (TSW), such as mangrove and salt marsh systems, provide many valuable ecosystem services, but continue to suffer disturbance, degradation and deforestation. Tropical mangroves perform a critical role in the exchange and storage of terrestrial-marine carbon but can function as a source of methane (CH 4) and nitrous oxide (N 2O). However, little is known of biogeochemical processes in temperate mangrove and salt marsh systems in the southern hemisphere. In this study, the soil/sediment exchange of CO 2, CH 4 and N 2O was measured seasonally along a natural transition from melaleuca woodland, salt marsh and into mangroves along the Mornington Peninsula edge of Westernport Bay, Victoria, Australia. Soil/sediment physiochemical properties and sediment C density were measured concurrently. The melaleuca woodland soil was a constant CH 4 sink of approximately -25 μg C m -2 h -1 but along the transect this rapidly switched to a weak CH 4 source (mangrove sediments where emissions of up to 375 μg C m -2 h -1 were measured in summer. Sediment CH 4 exchange correlated with salinity, pneumatophore number and the redox potential of sediment water at depth. All three ecosystems were a small N 2O source of ecosystem and season along with soil temperature and salinity. Sediment C density was significantly greater in the salt marsh than the mangrove. Salt marsh sediment C density was 168 Mg C ha -1 which is comparable with that measured globally, whereas the mangrove sediment C density of 145 Mg C ha -1 is among the lowest reported. Contrary to global patterns in terrestrial soil C content and salt marsh sediment C content, data from our study indicate that mangrove sediments from a cooler, drier temperate latitude may store less C than mangroves in warmer and wetter tropical latitudes. Understanding both C storage and the greenhouse gas balance of TSWs will help us to better value these vulnerable ecosystems and manage them accordingly.

  10. Trends in size of tropical deforestation events signal increasing dominance of industrial-scale drivers

    Science.gov (United States)

    Austin, Kemen G.; González-Roglich, Mariano; Schaffer-Smith, Danica; Schwantes, Amanda M.; Swenson, Jennifer J.

    2017-05-01

    Deforestation continues across the tropics at alarming rates, with repercussions for ecosystem processes, carbon storage and long term sustainability. Taking advantage of recent fine-scale measurement of deforestation, this analysis aims to improve our understanding of the scale of deforestation drivers in the tropics. We examined trends in forest clearings of different sizes from 2000-2012 by country, region and development level. As tropical deforestation increased from approximately 6900 kha yr-1 in the first half of the study period, to >7900 kha yr-1 in the second half of the study period, >50% of this increase was attributable to the proliferation of medium and large clearings (>10 ha). This trend was most pronounced in Southeast Asia and in South America. Outside of Brazil >60% of the observed increase in deforestation in South America was due to an upsurge in medium- and large-scale clearings; Brazil had a divergent trend of decreasing deforestation, >90% of which was attributable to a reduction in medium and large clearings. The emerging prominence of large-scale drivers of forest loss in many regions and countries suggests the growing need for policy interventions which target industrial-scale agricultural commodity producers. The experience in Brazil suggests that there are promising policy solutions to mitigate large-scale deforestation, but that these policy initiatives do not adequately address small-scale drivers. By providing up-to-date and spatially explicit information on the scale of deforestation, and the trends in these patterns over time, this study contributes valuable information for monitoring, and designing effective interventions to address deforestation.

  11. Stress in mangrove forests: Early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forest management.

    Science.gov (United States)

    Lewis, Roy R; Milbrandt, Eric C; Brown, Benjamin; Krauss, Ken W; Rovai, André S; Beever, James W; Flynn, Laura L

    2016-08-30

    Mangrove forest rehabilitation should begin much sooner than at the point of catastrophic loss. We describe the need for "mangrove forest heart attack prevention", and how that might be accomplished in a general sense by embedding plot and remote sensing monitoring within coastal management plans. The major cause of mangrove stress at many sites globally is often linked to reduced tidal flows and exchanges. Blocked water flows can reduce flushing not only from the seaward side, but also result in higher salinity and reduced sediments when flows are blocked landward. Long-term degradation of function leads to acute mortality prompted by acute events, but created by a systematic propensity for long-term neglect of mangroves. Often, mangroves are lost within a few years; however, vulnerability is re-set decades earlier when seemingly innocuous hydrological modifications are made (e.g., road construction, blocked tidal channels), but which remain undetected without reasonable large-scale monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Ecosystem-Level Carbon Stocks in Costa Rican Mangrove Forests

    Science.gov (United States)

    Cifuentes, M.

    2012-12-01

    represent 38 to 43% of the total ecosystem carbon stocks measured in the Indo-Pacific region, which are among the most carbon-rich ecosystems in the world. Overall, the mangrove forest in the Térraba-Sierpe National Wetland contain close to 8 Tg C, which represents approximately 40% of all carbon currently stored nationwide in mangrove stands. Although deforestation and forest degradation processes have been, for the most part, controlled in the country, available data suggest that between 1990 and 2012 Costa Rica lost almost 4000 ha (8 % of currently remaining area) of mangrove forests. This translates in historical emissions of 1.6 Tg C, which is equivalent to 1.3 times the greenhouse gas emissions from the entire land use sector in Costa Rica in the 1990s. This calculation provides an indication of the potential recovery of carbon stocks which mangrove restoration efforts may offer in the country. Expanding this research to other Central American countries, and analyzing the historical land use dynamics along coastal areas together with the potential impacts of climate change on these ecosystems would yield similar region-wide estimates of greenhouse gas emissions and mitigation potential that could be used to improve the design of climate change mitigation projects in coastal areas.

  13. Baseline Map of Carbon Emissions from Deforestation in Tropical Regions

    Science.gov (United States)

    Harris, Nancy L.; Brown, Sandra; Hagen, Stephen C.; Saatchi, Sassan S.; Petrova, Silvia; Salas, William; Hansen, Matthew C.; Potapov, Peter V.; Lotsch, Alexander

    2012-06-01

    Policies to reduce emissions from deforestation would benefit from clearly derived, spatially explicit, statistically bounded estimates of carbon emissions. Existing efforts derive carbon impacts of land-use change using broad assumptions, unreliable data, or both. We improve on this approach using satellite observations of gross forest cover loss and a map of forest carbon stocks to estimate gross carbon emissions across tropical regions between 2000 and 2005 as 0.81 petagram of carbon per year, with a 90% prediction interval of 0.57 to 1.22 petagrams of carbon per year. This estimate is 25 to 50% of recently published estimates. By systematically matching areas of forest loss with their carbon stocks before clearing, these results serve as a more accurate benchmark for monitoring global progress on reducing emissions from deforestation.

  14. Baseline map of carbon emissions from deforestation in tropical regions.

    Science.gov (United States)

    Harris, Nancy L; Brown, Sandra; Hagen, Stephen C; Saatchi, Sassan S; Petrova, Silvia; Salas, William; Hansen, Matthew C; Potapov, Peter V; Lotsch, Alexander

    2012-06-22

    Policies to reduce emissions from deforestation would benefit from clearly derived, spatially explicit, statistically bounded estimates of carbon emissions. Existing efforts derive carbon impacts of land-use change using broad assumptions, unreliable data, or both. We improve on this approach using satellite observations of gross forest cover loss and a map of forest carbon stocks to estimate gross carbon emissions across tropical regions between 2000 and 2005 as 0.81 petagram of carbon per year, with a 90% prediction interval of 0.57 to 1.22 petagrams of carbon per year. This estimate is 25 to 50% of recently published estimates. By systematically matching areas of forest loss with their carbon stocks before clearing, these results serve as a more accurate benchmark for monitoring global progress on reducing emissions from deforestation.

  15. Deposition gradients across mangrove fringes

    NARCIS (Netherlands)

    Horstman, Erik Martijn; Mullarney, Julia C.; Bryan, K.R.; Sandwell, Dean R.; Aagaard, Troels; Deigaard, Rolf; Fuhrman, David

    2017-01-01

    Observations in a mangrove in the Whangapoua Harbour, New Zealand, have shown that deposition rates are greatest in the fringing zone between the tidal flats and the mangrove forest, where the vegetation is dominated by a cover of pneumatophores (i.e. pencil roots). Current speeds and suspended

  16. Aspects of productivity of mangroves

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, S.

    The term 'mangroves' refers to an assemblage of different flowering plants which can grow in saline brackish water areas like creeks, backwaters, estuaries and deltas. Mangrove forest cover in the tropical area is about 0.5 million km sup(2...

  17. Use of Mangroves by Lemurs.

    Science.gov (United States)

    Gardner, Charlie J

    Despite an increasing recognition of the ecosystem services provided by mangroves, we know little about their role in maintaining terrestrial biodiversity, including primates. Madagascar's lemurs are a top global conservation priority, with 94 % of species threatened with extinction, but records of their occurrence in mangroves are scarce. I used a mixed-methods approach to collect published and unpublished observations of lemurs in mangroves: I carried out a systematic literature search and supplemented this with a targeted information request to 1243 researchers, conservation and tourism professionals, and others who may have visited mangroves in Madagascar. I found references to, or observations of, at least 23 species in 5 families using mangroves, representing >20% of lemur species and >50% of species whose distributions include mangrove areas. Lemurs used mangroves for foraging, sleeping, and traveling between terrestrial forest patches, and some were observed as much as 3 km from the nearest permanently dry land. However, most records were anecdotal and thus tell us little about lemur ecology in this habitat. Mangroves are more widely used by lemurs than has previously been recognized and merit greater attention from primate researchers and conservationists in Madagascar.

  18. Review: Mangrove ecosystem in Java: 2. Restoration

    Directory of Open Access Journals (Sweden)

    PURIN CANDRA PURNAMA

    2004-07-01

    Full Text Available R E V I E W:Ekosistem Mangrove di Jawa: 2. RestorasiThe restoration of mangroves has received a lot of attentions world wide for several reasons. Mangrove ecosystem is very important in term of socio-economic and ecology functions. Because of its functions, wide range of people paid attention whenever mangrove restoration taken place. Mangrove restoration potentially increases mangrove resource value, protect the coastal area from destruction, conserve biodiversity, fish production and both of directly and indirectly support the life of surrounding people. This paper outlines the activities of mangrove restoration on Java island. The extensive research has been carried out on the ecology, structure and functioning of the mangrove ecosystem. However, the findings have not been interpreted in a management framework, thus mangrove forests around the world continue to be over-exploited, converted to aquaculture ponds, and polluted. We strongly argue that links between research and sustainable management of mangrove ecosystem should be established.

  19. Natural Products from Mangrove Actinomycetes

    Directory of Open Access Journals (Sweden)

    Dong-Bo Xu

    2014-05-01

    Full Text Available Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery.

  20. Natural Products from Mangrove Actinomycetes

    Science.gov (United States)

    Xu, Dong-Bo; Ye, Wan-Wan; Han, Ying; Deng, Zi-Xin; Hong, Kui

    2014-01-01

    Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery. PMID:24798926

  1. Evaluating shellfish gathering ( Lucina pectinata) in a tropical mangrove system

    Science.gov (United States)

    Rondinelli, S. F.; Barros, F.

    2010-10-01

    Fish resources are important sources of income and protein to traditional inhabitants of coastal zones. In Garapuá village, the shellfish Lucina pectinata is the main resource exploited in mangroves. This study tests whether if in less explored areas (far from the village) L. pectinata individuals have higher densities and greater lengths, and if there was a decrease in cpue's over the last years. Samples were taken monthly in two habitats (mangrove channels and mangrove roots) in six mangrove areas by random squares. The results indicated that closer areas showed significantly lower densities than areas far from the village. Densities were significantly higher in mangrove roots (quizangas) than at channels. There was a significant increase in monthly L. pectinata cpue, from 18.2 dz./shellfish gatherers/day in 2001 to 19.3 in 2007, showing that this stock does not seem to be overexploited. However, (i) a long-term monitoring of Garapuá shellfish gatherers to evaluate if the stock will support an increasing pressure and (ii) several manipulative experiments to better understand ecological processes are suggested.

  2. PEMBANGUNAN DATABASE MANGROVE UNTUK BIODIVERSITY INFORMATICS BIOFARMAKA IPB

    Directory of Open Access Journals (Sweden)

    Yeni Herdiyeni

    2014-12-01

    Full Text Available Mangroves are a source of traditional medicine that can be used as a source of bioactive compounds. With the conversion of mangrove ecosystem into another designation led to the extinction of mangrove ecosystems. Therefore we need a good management of natural resources. In natural resource management, biodiversity information is needed to sustain the species utilization, exploration potential of the species and their biological and ecological monitoring, policy making, and for the development of biotechnology innovation. Research center of IPB Biopharmaca (Institute for Research and Community Services of Bogor Agricultural University has the mandate to conduct research from upstream to downstream in the medicinal field. This study develops Indonesian mangrove biodiversity database for Biodiversity Informatics. Biodiversity informatics (BI is the development of computer-based technologies for the management of biodiversity information. BI can be used to improve the knowledge management (knowledge management, exploration, analysis, synthesis, and interpretation of data ranging from the level of genomic biodiversity, species level to the ecosystem level. From the results of this study are expected data, information and knowledge of natural wealth mangroves can be managed properly so that the preservation of natural resources can be properly maintained and can be used in particular to the field of medicinal studies.

  3. Tropical Mangrove Mapping Using Fully-Polarimetric Radar Data

    Directory of Open Access Journals (Sweden)

    Bambang Trisasongko

    2009-09-01

    Full Text Available Although mangrove is one of important ecosystems in the world, it has been abused and exploited by human for various purposes. Monitoring mangrove is therefore required to maintain a balance between economy and conservation and provides up-to-date information for rehabilitation. Optical remote sensing data have delivered such information, however ever-changing atmospheric disturbance may significantly decrease thematic content. In this research, Synthetic Aperture Radar (SAR fully polarimetric data were evaluated to present an alternative for mangrove mapping. Assessment using three statistical trees was performed on both tonal and textural data. It was noticeable that textural data delivered fairly good improvement which reduced the error rate to around 5-6% at L-band. This suggests that insertion of textural data is more important than any information derived from decomposition algorithm.

  4. Three Conservation Applications of Astronaut Photographs of Earth: Tidal Flat Loss (Japan), Elephant Impacts on Vegetation (Botswana), and Seagrass and Mangrove Monitoring (Australia)

    Science.gov (United States)

    Lulla, Kamlesh P.; Robinson, Julie A.; Minorukashiwagi; Maggiesuzuki; Duanenellis, M.; Bussing, Charles E.; Leelong, W. J.; McKenzie, Andlen J.

    2000-01-01

    NASA photographs taken from low Earth orbit can provide information relevant to conservation biology. This data source is now more accessible due to improvements in digitizing technology, Internet file transfer, and availability of image processing software. We present three examples of conservation-related projects that benefited from using orbital photographs. (1) A time series of photographs from the Space Shuttle showing wetland conversion in Japan was used as a tool for communicating about the impacts of tidal flat loss. Real-time communication with astronauts about a newsworthy event resulted in acquiring current imagery. These images and the availability of other high resolution digital images from NASA provided timely public information on the observed changes. (2) A Space Shuttle photograph of Chobe National Park in Botswana was digitally classified and analyzed to identify the locations of elephant-impacted woodland. Field validation later confirmed that areas identified on the image showed evidence of elephant impacts. (3) A summary map from intensive field surveys of seagrasses in Shoalwater Bay, Australia was used as reference data for a supervised classification of a digitized photograph taken from orbit. The classification was able to distinguish seagrasses, sediments and mangroves with accuracy approximating that in studies using other satellite remote sensing data. Orbital photographs are in the public domain and the database of nearly 400,000 photographs from the late 1960s to the present is available at a single searchable location on the Internet. These photographs can be used by conservation biologists for general information about the landscape and in quantitative applications.

  5. Deforestation near Rio Branco, Brazil

    Science.gov (United States)

    2001-01-01

    Settlement and deforestation surrounding the Brazilian town of Rio Branco are seen here in the striking 'herring bone' deforestation patterns that cut through the rainforest. Rio Brancois the capital of the Brazilian state of Acre and is situated near the border with northeastern Bolivia. The town is a center for the distribution of goods, including rubber, metals, medicinal plants, Brazil nuts and timber. Colonization projects in the region are supported by farming, logging activities, and extensive cattle ranching. Much of the surrounding terrain is of a poorly-draining clay hardpan soil, and heavy rainfall periodically converts parts of the forested region to swamp.The large overview image was acquired by the Multi-angle Imaging SpectroRadiometer's vertical-viewing (nadir) camera on July 28, 2000, and covers an area of 336 kilometers x 333 kilometers. A plume of smoke is visible north of the Rio Branco road, which roughly parallels the slender, twisting Rio Abuna. Most of the major rivers in the image provide reference points for state or international (Bolivia-Brazil) boundaries, and flow northeast to the Rio Madeira (east of the smoke plume). The border between Acre and the Bolivian department of Pando is marked by the Rio Abuna. Pando's southern boundary with the department of Beni is marked by the Rio Madre de Dios, the large river in the lower half of the image.The two higher-resolution inset images highlight a settled area north of the town of Rio Branco. These nadir views cover an area of 60 kilometers x 67 kilometers, and were acquired eleven months apart during Terra orbits 3251 and 8144. In the later image, more haze is present, possibly due to smoke from fires on that day. Comparing the two images provides a method of measuring the changes and expansion in the area of cleared land. One newly cleared patch is apparent near the middle of the later image, slightly off to the right. This polygon represents an area of about 16 square kilometers, or 4000

  6. Estimating the Impacts of Local Policy Innovation: The Synthetic Control Method Applied to Tropical Deforestation.

    Science.gov (United States)

    Sills, Erin O; Herrera, Diego; Kirkpatrick, A Justin; Brandão, Amintas; Dickson, Rebecca; Hall, Simon; Pattanayak, Subhrendu; Shoch, David; Vedoveto, Mariana; Young, Luisa; Pfaff, Alexander

    2015-01-01

    Quasi-experimental methods increasingly are used to evaluate the impacts of conservation interventions by generating credible estimates of counterfactual baselines. These methods generally require large samples for statistical comparisons, presenting a challenge for evaluating innovative policies implemented within a few pioneering jurisdictions. Single jurisdictions often are studied using comparative methods, which rely on analysts' selection of best case comparisons. The synthetic control method (SCM) offers one systematic and transparent way to select cases for comparison, from a sizeable pool, by focusing upon similarity in outcomes before the intervention. We explain SCM, then apply it to one local initiative to limit deforestation in the Brazilian Amazon. The municipality of Paragominas launched a multi-pronged local initiative in 2008 to maintain low deforestation while restoring economic production. This was a response to having been placed, due to high deforestation, on a federal "blacklist" that increased enforcement of forest regulations and restricted access to credit and output markets. The local initiative included mapping and monitoring of rural land plus promotion of economic alternatives compatible with low deforestation. The key motivation for the program may have been to reduce the costs of blacklisting. However its stated purpose was to limit deforestation, and thus we apply SCM to estimate what deforestation would have been in a (counterfactual) scenario of no local initiative. We obtain a plausible estimate, in that deforestation patterns before the intervention were similar in Paragominas and the synthetic control, which suggests that after several years, the initiative did lower deforestation (significantly below the synthetic control in 2012). This demonstrates that SCM can yield helpful land-use counterfactuals for single units, with opportunities to integrate local and expert knowledge and to test innovations and permutations on policies

  7. Estimating the Impacts of Local Policy Innovation: The Synthetic Control Method Applied to Tropical Deforestation

    Science.gov (United States)

    Sills, Erin O.; Herrera, Diego; Kirkpatrick, A. Justin; Brandão, Amintas; Dickson, Rebecca; Hall, Simon; Pattanayak, Subhrendu; Shoch, David; Vedoveto, Mariana; Young, Luisa; Pfaff, Alexander

    2015-01-01

    Quasi-experimental methods increasingly are used to evaluate the impacts of conservation interventions by generating credible estimates of counterfactual baselines. These methods generally require large samples for statistical comparisons, presenting a challenge for evaluating innovative policies implemented within a few pioneering jurisdictions. Single jurisdictions often are studied using comparative methods, which rely on analysts’ selection of best case comparisons. The synthetic control method (SCM) offers one systematic and transparent way to select cases for comparison, from a sizeable pool, by focusing upon similarity in outcomes before the intervention. We explain SCM, then apply it to one local initiative to limit deforestation in the Brazilian Amazon. The municipality of Paragominas launched a multi-pronged local initiative in 2008 to maintain low deforestation while restoring economic production. This was a response to having been placed, due to high deforestation, on a federal “blacklist” that increased enforcement of forest regulations and restricted access to credit and output markets. The local initiative included mapping and monitoring of rural land plus promotion of economic alternatives compatible with low deforestation. The key motivation for the program may have been to reduce the costs of blacklisting. However its stated purpose was to limit deforestation, and thus we apply SCM to estimate what deforestation would have been in a (counterfactual) scenario of no local initiative. We obtain a plausible estimate, in that deforestation patterns before the intervention were similar in Paragominas and the synthetic control, which suggests that after several years, the initiative did lower deforestation (significantly below the synthetic control in 2012). This demonstrates that SCM can yield helpful land-use counterfactuals for single units, with opportunities to integrate local and expert knowledge and to test innovations and permutations on

  8. Estimating the Impacts of Local Policy Innovation: The Synthetic Control Method Applied to Tropical Deforestation.

    Directory of Open Access Journals (Sweden)

    Erin O Sills

    Full Text Available Quasi-experimental methods increasingly are used to evaluate the impacts of conservation interventions by generating credible estimates of counterfactual baselines. These methods generally require large samples for statistical comparisons, presenting a challenge for evaluating innovative policies implemented within a few pioneering jurisdictions. Single jurisdictions often are studied using comparative methods, which rely on analysts' selection of best case comparisons. The synthetic control method (SCM offers one systematic and transparent way to select cases for comparison, from a sizeable pool, by focusing upon similarity in outcomes before the intervention. We explain SCM, then apply it to one local initiative to limit deforestation in the Brazilian Amazon. The municipality of Paragominas launched a multi-pronged local initiative in 2008 to maintain low deforestation while restoring economic production. This was a response to having been placed, due to high deforestation, on a federal "blacklist" that increased enforcement of forest regulations and restricted access to credit and output markets. The local initiative included mapping and monitoring of rural land plus promotion of economic alternatives compatible with low deforestation. The key motivation for the program may have been to reduce the costs of blacklisting. However its stated purpose was to limit deforestation, and thus we apply SCM to estimate what deforestation would have been in a (counterfactual scenario of no local initiative. We obtain a plausible estimate, in that deforestation patterns before the intervention were similar in Paragominas and the synthetic control, which suggests that after several years, the initiative did lower deforestation (significantly below the synthetic control in 2012. This demonstrates that SCM can yield helpful land-use counterfactuals for single units, with opportunities to integrate local and expert knowledge and to test innovations and

  9. Soil Respiration of Three Mangrove Forests on Sanibel Island, Florida

    Science.gov (United States)

    Cartwright, F.; Bovard, B. D.

    2011-12-01

    Carbon cycling studies conducted in mangrove forests have typically focused on aboveground processes. Our understanding of carbon storage in these systems is therefore limited by the lack information on belowground processes such as fine root production and soil respiration. To our knowledge there exist no studies investigating temporal patterns in and environmental controls on soil respiration in multiple types of mangrove ecosystems concurrently. This study is part of a larger study on carbon storage in three mangrove forests on Sanibel Island, Florida. Here we report on eight months of soil respiration data within these forests that will ultimately be incorporated into an annual carbon budget for each habitat type. Soil respiration was monitored in the following three mangrove habitat types: a fringe mangrove forest dominated by Rhizophora mangle, a basin mangrove forest dominated by Avicennia germinans, and a higher elevation forest comprised of a mix of Avicennia germinans and Laguncularia racemosa, and non-woody salt marsh species. Beginning in June of 2010, we measured soil emissions of carbon dioxide at 5 random locations within three-100 m2 plots within each habitat type. Sampling was performed at monthly intervals and conducted over the course of three days. For each day, one plot from each habitat type was measured. In addition to soil respiration, soil temperature, salinity and gravimetric moisture content were also measured. Our data indicate the Black mangrove forest, dominated by Avicennia germinans, experiences the highest rates of soil respiration with a mean rate of 4.61 ± 0.60 μmol CO2 m-2 s-1. The mixed mangrove and salt marsh habitat has the lowest soil carbon emission rates with a mean of 2.78 ± 0.40 μmol CO2 m-2 s-1. Soil carbon effluxes appear to peak in the early part of the wet season around May to June and are lower and relatively constant the remainder of the year. Our data also suggest there are important but brief periods where

  10. Implications for Forest Resource Degradation and Deforestation ...

    African Journals Online (AJOL)

    Effects of Socio-Economic Status and Food Consumption Pattern on Household Energy uses: Implications for Forest Resource Degradation and Deforestation around Wondo Genet Catchments, South-Central Ethiopia.

  11. The effectiveness of contrasting protected areas in preventing deforestation in Madre de Dios, Peru.

    Science.gov (United States)

    Vuohelainen, Anni Johanna; Coad, Lauren; Marthews, Toby R; Malhi, Yadvinder; Killeen, Timothy J

    2012-10-01

    Accurate monitoring of the effectiveness of protected areas (PAs) in decreasing deforestation is increasingly important given the vital role of forest protection in climate change mitigation. Recent studies on PA effectiveness have used remote-sensing imagery to compare deforestation rates within PAs to surrounding areas. However, remote-sensing data used in isolation provides limited information on the factors contributing to effectiveness. We used landscape-modelling techniques to estimate the effectiveness of ten PAs in Madre de Dios, Peru. Factors influencing PA effectiveness were investigated using in situ key-informant interviews. Although all of the PAs studied had positive effectiveness scores, those with the highest scores were ecotourism and conservation concessions, where monitoring and surveillance activities and good relations with surrounding communities were reported as possible factors in decreasing deforestation rates. Native community areas had the lowest scores, with deforestation mainly driven by internal resource use and population growth. Weak local governance and immigration were identified as underlying factors decreasing the effectiveness of protection, whereas good relations with surrounding communities and monitoring activity increased effectiveness. The results highlight the need to combine remote sensing with in situ information on PA management because identification of drivers and deterrents of deforestation is vital for improving the effectiveness of protection.

  12. Deforestation in Brazil: motivations, journeys and tendencies

    Science.gov (United States)

    Leite, J. C.; Ferreira, A. J. D.; Esteves, T. C. J.; Bento, C. P. M.

    2012-04-01

    José Carlos Leite1; António José Dinis Ferreira2; Tanya Cristina de Jesus Esteves2; Célia Patrícia Martins Bento2 1Universidade Federal de Mato Grosso, Brazil; 2IPC - Escola Superior Agrária de Coimbra, Portugal Over the last three decades, deforestation in Brazil occurred systematically in the area known as the "arc of deforestation", an extensive geographical area located in the interface of the Cerrado and the Amazon biomes. This work encompasses the reasons, causes and/or motivations of that recent deforestation, focusing on the Central-West and Northern regions. A number of reasons will be presented, seeking to build an approach able to identify the deepest roots of deforestation of those regions. Our actions over the environment are framed by our cultural matrix that stream from a western philosophic attitude. This way, to understand the framework where the deforestation actions are justified requires a multidisciplinary approach to understand the deforestation of the Cerrado and Amazon biomes, since the motivations for forest destruction in Brazil are complex and not entirely understood within the domains of a single disciplinary area. To search for an isolated cause to understand the recent deforestation can only be plausible if we ignore information on what actually happens. The methodology used in this work is based on a bibliographical revision, analysis of georeferrenced information, participative processes implementation and observation of stakeholder behavior, and field research. It departs from a general vision on deforestation that initially occurred at the littoral region, by the Atlantic Rainforest, right after the arrival of the Europeans, and throughout the centuries penetrates towards the interior, hitting the Cerrado and Amazon biomes. In this last case, we focused on the Vale do Alto Guaporé region, near Bolivia, where the intensity of the deforestation was verified from 1970 to 1990. Ultimately, the final result is a mosaic of reasons

  13. The Mangroves of Kenya: general information. Compiled for Netherlands Wetlands Conservation and Training Programme, 1996.

    OpenAIRE

    Martens, Els

    1996-01-01

    The report contains general information on mangroves in Kenya with the following main topics: Mangrove ecology, Mangrove distribution, Mangrove vegetation, Mangrove associated flora, Mangrove fauna, Values and utilization, threats. Interactions between mangroves, seagrasses & coral reefs. Main problems related to mangrove management and Conservation. Managing mangroves to insure their survival.

  14. Amazon Fund: financing deforestation avoidance

    Directory of Open Access Journals (Sweden)

    Jacques Marcovitch

    2014-06-01

    Full Text Available The Amazon Fund, created in 2008 by the Brazilian Federal Government, is managed by Banco Nacional de Desenvolvimento Econômico e Social (BNDES. It is a pioneering initiative to fundraise and manage financial resources to cut back deforestation and support sustainable development for 30 million inhabitants in the Amazon Biome. The Amazon Fund has already received more than R$ 1.7 billion in grants (about USD 787 million. This essay analyzes the Amazon Fund's governance and management with focus on its operation and from its stakeholders' perspectives. A combination of research methods includes: documental research, in-depth interviews, and speech analysis. The study offers a comparative analysis of strengths and weaknesses related to its governance. Furthermore, it proposes ways to improve its management towards greater effectiveness. The essay also includes an assessment of the government of Norway, a major donor to the fund. The governments of Norway and Germany, in partnership with Brazil, reveal how important it is to experiment with new means of international cooperation to successfully reduce greenhouse gas emissions through rainforest preservation.

  15. The role of values in no deforestation policies

    OpenAIRE

    Mortimer, Roisin

    2017-01-01

    Since 2013, many companies have made commitments to ensure their supply chain is not linked to deforestation, known as No Deforestation Policies (NDPs). Despite the development of tools to implement NDPs, deforestation is ongoing. This research took a values–based approach to explore less–considered social aspects of why deforestation is ongoing despite the number of NDPs in the agribusiness sector. The role of company values, commercial values, values of no deforestation or environmental pro...

  16. Passive air sampling of persistent organic pollutants (POPs) and emerging compounds in Kolkata megacity and rural mangrove wetland Sundarban in India: An approach to regional monitoring.

    Science.gov (United States)

    Pozo, Karla; Sarkar, Santosh Kumar; Estellano, Victor H; Mitra, Soumita; Audi, Ondrej; Kukucka, Petr; Přibylová, Petra; Klánová, Jana; Corsolini, Simonetta

    2017-02-01

    Polyurethane foam (PUF) disk passive air samplers were deployed concurrently at five sites across Kolkata megacity and the rural mangrove wetland of Sundarban (UNESCO World Heritage Site) between January-March in 2014. Samples were analyzed for hexachlorocyclohexanes (HCHs), dichlorodiphenyltricholoroethanes (DDTs), polychlorinated biphenyls (PCBs) and, polybrominated diphenyl ethers (PBDEs) using gas chromatography and mass spectrometry (GC-MS). Derived air concentrations (pg/m 3 ) for Kolkata ranged: for ∑α- and γ-HCH between 70 and 207 (114 ± 62), ∑ 6 DDTs: 127-216 (161 ± 36), ∑ 7 PCBs: 53-213 (141 ± 64), and ∑ 10 PBDEs: 0.30-23 (11 ± 9). Low values for all the studied POPs were recorded in the remote area of the Sundarban site (with the exception of DDTs: o,p'-DDT and p,p'-DDT), where ∑ 4 DDTs was 161 ± 36. In particular, the site of Ballygunge, located in the southern part of Kolkata, showed the highest level of all the metabolites/congeners of POPs, suggesting a potential hot spot of usage and emissions. From HCHs, α-/γ-HCH isomers ratio was low (0.67-1.96) indicating a possible sporadic source of lindane. γ-HCH dominated the HCH signal (at 3 sites) reflecting wide spread use of lindane both in Kolkata and the Sundarban region; however, isomeric composition in Kolkata also suggests potential technical HCHs use. Among DDT metabolites, both o,p'-DDT and p,p'-DDT shared the dominant percentages accounting for ∼26-46% of total DDTs followed by p,p'-DDE (∼12-19%). The PCB congener profile was dominated by tri- and tetra-Cl at the southern and eastern part of Kolkata. These results are one of the few contributions that reports air concentrations of POPs, concurrently, at urban and remote villages in India. These data are useful to assess atmospheric pollution levels and to motivate local and regional authorities to better understand the potential human exposure risk associated to urban areas in India. Copyright © 2016 Elsevier Ltd

  17. Social-ecological dynamics of the small scale fisheries in Sundarban Mangrove Forest, Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammad Mojibul Hoque Mozumder

    2018-01-01

    Full Text Available The Sundarban Mangrove Forest (SMF is an intricate ecosystem containing the most varied and profuse natural resources of Bangladesh. This study presents empirical research, based on primary and secondary data, regarding the social-ecological system (SES, social-ecological dynamics, different stakeholders and relevant management policies of small-scale or artisanal fisheries such as the SMF; showing how, despite extensive diversification, the livelihood activities of the artisanal fishers in the SMF all depend on the forest itself. Regardless of this critical importance of mangroves, however, deforestation continues due to immature death of mangroves, illegal logging, increased salinity, natural disasters and significant household consumption of mangrove wood by local people. As the mangroves are destroyed fish stocks, and other fishery resources are reduced, leading to moves of desperation among those whose livelihood has traditionally been fishing. The present study also considers several risks and shock factors in the fishers' livelihood: attacks by wild animals (especially tigers and local bandits, illness, natural disasters, river bank erosion, and the cost of paying off corrupt officials. The artisanal fishers of the SMF have adopted different strategies for coping with these problems: developing partnerships, violating the fisheries management laws and regulations, migrating, placing greater responsibility on women, and bartering fishing knowledge and information. This study shows how the social component (human, the ecological component (mangrove resources and the interphase aspects (local ecological knowledge, stakeholder's interest, and money lenders or middle man roles of the SMF as an SES are linked in mutual interaction. It furthermore considers how the social-ecological dynamics of the SMF have negative impacts on artisanal fishermen's livelihoods. Hence there is an urgency to update existing policies and management issues for the

  18. Benthic fauna of mangrove environment

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    distribution of benthic communities in mangrove environment is governEd. by tidal amplitude, light penetration, nature of substratum and distance from the sea. The littoral zone, neritic zone, Barnacle-oyster zone, Uca zone, Polychaeta zone have been delineated...

  19. Height and Biomass of Mangroves in Africa from ICEsat/GLAS and SRTM

    Science.gov (United States)

    Fatoyinbo, Temilola E.; Simard, Marc

    2012-01-01

    The accurate quantification of forest 3-D structure is of great importance for studies of the global carbon cycle and biodiversity. These studies are especially relevant in Africa, where deforestation rates are high and the lack of background data is great. Mangrove forests are ecologically significant and it is important to measure mangrove canopy heights and biomass. The objectives of this study are to estimate: 1. The total area, 2. Canopy height distributions and 3. Aboveground biomass of mangrove forests in Africa. To derive mangrove 3-D structure and biomass maps, we used a combination of mangrove maps derived from Landsat ETM+, LiDAR canopy height estimates from ICEsat/GLAS (Ice, Cloud, and land Elevation Satellite/Geoscience Laser Altimeter System) and elevation data from SRTM (Shuttle Radar Topography Mission) for the African continent. More specifically, we extracted mangrove forest areas on the SRTM DEM using Landsat based landcover maps. The LiDAR (Light Detection and Ranging) measurements from the large footprint GLAS sensor were used to derive local estimates of canopy height and calibrate the Interferometric Synthetic Aperture Radar (InSAR) data from SRTM. We then applied allometric equations relating canopy height to biomass in order to estimate above ground biomass (AGB) from the canopy height product. The total mangrove area of Africa was estimated to be 25 960 square kilometers with 83% accuracy. The largest mangrove areas and greatest total biomass was 29 found in Nigeria covering 8 573 km2 with 132 x10(exp 6) Mg AGB. Canopy height across Africa was estimated with an overall root mean square error of 3.55 m. This error also includes the impact of using sensors with different resolutions and geolocation error which make comparison between measurements sensitive to canopy heterogeneities. This study provides the first systematic estimates of mangrove area, height and biomass in Africa. Our results showed that the combination of ICEsat/GLAS and

  20. Decadal Stability of Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan; Aljowair, Abdulaziz; Duarte, Carlos M.; Irigoien, Xabier

    2015-01-01

    Across the Earth, mangroves play an important role in coastal protection, both as nurseries and carbon sinks. However, due to various human and environmental impacts, the coverage of mangroves is declining on a global scale. The Red Sea is in the northern-most area of the distribution range of mangroves. Little is known about the surface covered by mangroves at this northern limit or about the changes experienced by Red Sea mangroves. We sought to study changes in the coverage of Red Sea mangroves by using multi-temporal Landsat data (1972, 2000 and 2013). Interestingly, our results show that there has been no decline in mangrove stands in the Red Sea but rather a slight increase. The area covered by mangroves is about 69 Km2 along the African shore and 51 Km2 along the Arabian Peninsula shore. From 1972 to 2013, the area covered by mangroves increased by about 0.29% y-1. We conclude that the trend exhibited by Red Sea mangroves departs from the general global decline of mangroves. Along the Red Sea, mangroves expanded by 12% over the 41 years from 1972 to 2013. Losses to Red Sea mangroves, mostly due to coastal development, have been compensated by afforestation projects.

  1. Decadal Stability of Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan

    2015-12-15

    Across the Earth, mangroves play an important role in coastal protection, both as nurseries and carbon sinks. However, due to various human and environmental impacts, the coverage of mangroves is declining on a global scale. The Red Sea is in the northern-most area of the distribution range of mangroves. Little is known about the surface covered by mangroves at this northern limit or about the changes experienced by Red Sea mangroves. We sought to study changes in the coverage of Red Sea mangroves by using multi-temporal Landsat data (1972, 2000 and 2013). Interestingly, our results show that there has been no decline in mangrove stands in the Red Sea but rather a slight increase. The area covered by mangroves is about 69 Km2 along the African shore and 51 Km2 along the Arabian Peninsula shore. From 1972 to 2013, the area covered by mangroves increased by about 0.29% y-1. We conclude that the trend exhibited by Red Sea mangroves departs from the general global decline of mangroves. Along the Red Sea, mangroves expanded by 12% over the 41 years from 1972 to 2013. Losses to Red Sea mangroves, mostly due to coastal development, have been compensated by afforestation projects.

  2. Between Land and Sea: Mangroves and Mollusks along Brazil’s Mangal Coast

    Directory of Open Access Journals (Sweden)

    Judith A. Carney

    2016-12-01

    Full Text Available Westerners have long viewed mangroves as forbidding, pestilential landscapes. While modern medicine transformed their deadly reputation, the perception lingered of an environment that was little more than a tropical wasteland. The 1992 Earth Summit in Rio de Janeiro profoundly changed this view by drawing attention to the ecosystem as a habitat crucial to the life cycles of many species and endangered fauna yet increasingly at risk from deforestation. Conservation initiatives in the years since the Rio Summit, however, seldom recognize mangroves as a habitat that has also long supported human life. This is evident in the shell middens found along mangrove coasts and in the historical record of shellfish harvested for dietary protein. With a focus on Brazil, this article examines the shellfish that sustained Amerindians, enslaved Africans, and their descendants along the mangal coast since pre-Columbian times. The discussion contends that Brazil’s mangrove forests cannot be separated from the history of the tropical peoples who have successively lived in and managed this ecosystem from ancient times to the present. Finally, the article concludes that a research focus on shellfish suggests broader linkages to South Atlantic history.

  3. Belowground dynamics in mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangrove ecosystems are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal communities are important coastal ecosystems that are valued for a variety of ecological and societal goods and services (fig. 1). Mangrove wetlands are important filters of materials moving between the land and sea, trapping sediment, nutrients, and pollutants in runoff from uplands and preventing their direct introduction into sensitive marine ecosystems such as seagrass beds and coral reefs. Mangroves serve as nursery grounds and refuge for a variety of organisms and are consequently vital to the biological productivity of coastal waters. Furthermore, because mangroves are highly resilient to disturbances such as hurricanes, they represent a self-sustaining, protective barrier for human populations living in the coastal zone. Mangrove ecosystems also contribute to shoreline stabilization through consolidation of unstable mineral sediments and peat formation. In order to help conserve mangrove ecoystems, scientists with the United States Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand the dynamics that impact these vital ecosystems.

  4. Spatiotemporal Variation in Mangrove Chlorophyll Concentration Using Landsat 8

    Directory of Open Access Journals (Sweden)

    Julio Pastor-Guzman

    2015-11-01

    Full Text Available There is a need to develop indicators of mangrove condition using remotely sensed data. However, remote estimation of leaf and canopy biochemical properties and vegetation condition remains challenging. In this paper, we (i tested the performance of selected hyperspectral and broad band indices to predict chlorophyll concentration (CC on mangrove leaves and (ii showed the potential of Landsat 8 for estimation of mangrove CC at the landscape level. Relative leaf CC and leaf spectral response were measured at 12 Elementary Sampling Units (ESU distributed along the northwest coast of the Yucatan Peninsula, Mexico. Linear regression models and coefficients of determination were computed to measure the association between CC and spectral response. At leaf level, the narrow band indices with the largest correlation with CC were Vogelmann indices and the MTCI (R2 > 0.5. Indices with spectral bands around the red edge (705–753 nm were more sensitive to mangrove leaf CC. At the ESU level Landsat 8 NDVI green, which uses the green band in its formulation explained most of the variation in CC (R2 > 0.8. Accuracy assessment between estimated CC and observed CC using the leave-one-out cross-validation (LOOCV method yielded a root mean squared error (RMSE = 15 mg·cm−2, and R2 = 0.703. CC maps showing the spatiotemporal variation of CC at landscape scale were created using the linear model. Our results indicate that Landsat 8 NDVI green can be employed to estimate CC in large mangrove areas where ground networks cannot be applied, and mapping techniques based on satellite data, are necessary. Furthermore, using upcoming technologies that will include two bands around the red edge such as Sentinel 2 will improve mangrove monitoring at higher spatial and temporal resolutions.

  5. Mapping Mangrove Density from Rapideye Data in Central America

    Science.gov (United States)

    Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru

    2017-06-01

    Mangrove forests provide a wide range of socioeconomic and ecological services for coastal communities. Extensive aquaculture development of mangrove waters in many developing countries has constantly ignored services of mangrove ecosystems, leading to unintended environmental consequences. Monitoring the current status and distribution of mangrove forests is deemed important for evaluating forest management strategies. This study aims to delineate the density distribution of mangrove forests in the Gulf of Fonseca, Central America with Rapideye data using the support vector machines (SVM). The data collected in 2012 for density classification of mangrove forests were processed based on four different band combination schemes: scheme-1 (bands 1-3, 5 excluding the red-edge band 4), scheme-2 (bands 1-5), scheme-3 (bands 1-3, 5 incorporating with the normalized difference vegetation index, NDVI), and scheme-4 (bands 1-3, 5 incorporating with the normalized difference red-edge index, NDRI). We also hypothesized if the obvious contribution of Rapideye red-edge band could improve the classification results. Three main steps of data processing were employed: (1), data pre-processing, (2) image classification, and (3) accuracy assessment to evaluate the contribution of red-edge band in terms of the accuracy of classification results across these four schemes. The classification maps compared with the ground reference data indicated the slightly higher accuracy level observed for schemes 2 and 4. The overall accuracies and Kappa coefficients were 97% and 0.95 for scheme-2 and 96.9% and 0.95 for scheme-4, respectively.

  6. Multi-Decadal Mangrove Forest Change Detection and Prediction in Honduras, Central America, with Landsat Imagery and a Markov Chain Model

    Directory of Open Access Journals (Sweden)

    Chi-Farn Chen

    2013-11-01

    Full Text Available Mangrove forests play an important role in providing ecological and socioeconomic services for human society. Coastal development, which converts mangrove forests to other land uses, has often ignored the services that mangrove may provide, leading to irreversible environmental degradation. Monitoring the spatiotemporal distribution of mangrove forests is thus critical for natural resources management of mangrove ecosystems. This study investigates spatiotemporal changes in Honduran mangrove forests using Landsat imagery during the periods 1985–1996, 1996–2002, and 2002–2013. The future trend of mangrove forest changes was projected by a Markov chain model to support decision-making for coastal management. The remote sensing data were processed through three main steps: (1 data pre-processing to correct geometric errors between the Landsat imageries and to perform reflectance normalization; (2 image classification with the unsupervised Otsu’s method and change detection; and (3 mangrove change projection using a Markov chain model. Validation of the unsupervised Otsu’s method was made by comparing the classification results with the ground reference data in 2002, which yielded satisfactory agreement with an overall accuracy of 91.1% and Kappa coefficient of 0.82. When examining mangrove changes from 1985 to 2013, approximately 11.9% of the mangrove forests were transformed to other land uses, especially shrimp farming, while little effort (3.9% was applied for mangrove rehabilitation during this 28-year period. Changes in the extent of mangrove forests were further projected until 2020, indicating that the area of mangrove forests could be continuously reduced by 1,200 ha from 2013 (approximately 36,700 ha to 2020 (approximately 35,500 ha. Institutional interventions should be taken for sustainable management of mangrove ecosystems in this coastal region.

  7. RS Application for conducting change detection within the Sundarban Mangrove Forest, Bangladesh to meet REDD+ initiatives

    Science.gov (United States)

    Biswas, T.; Maus, P.; Megown, K.

    2011-12-01

    The U.S. Forest Service (USFS) provided technical support to the Resource Information Management System (RIMS) unit of the Forest Department (FD) of Bangladesh in developing a method to monitor changes within the Sundarbans Reserve Forest using remote sensing and GIS technology to meet the Reducing Emissions from Deforestation and Degradation (REDD+) initiatives within Bangladesh. It included comparing the simple image differencing method with the Z-score outlier change detection method to examine changes within the mangroves of Bangladesh. Landsat data from three time periods (1989, 1999, 2009) were used to quantify change within four canopy cover classes (High, Medium, Low, and Very Low) within Sundarbans. The Z-score change analysis and image differencing was done for all the 6 reflective bands obtained from Landsat and two spectral indices NDVI and NDMI, derived from these bands for each year. Our results indicated very subtle changes in the mangrove forest within the past twenty years and the Z-score analysis was found to be more useful in capturing these subtle changes than the simple image difference method. Percent change in Z-score of NDVI provided the most meaningful index of vegetation change. It was used to summarize change for the entire study area by pixel, by canopy cover classes and the management compartment during this analysis. Our analysis showed less than 5% overall change in area within the mangroves for the entire study period. Percent change in forest canopy cover reduced from 4% in 1989-99 to 2% by 1999-2009 indicating an increase in forest canopy cover. Percent change in NDVI Z-score of each pixel was used to compute the overall percent change in z-score within the entire study area, mean percent change within each canopy cover class and management compartments from 1989 to 1999 and from 1999 to 2009. The above analysis provided insight to the spatial distribution of percent change in NDVI between the study periods and helped in

  8. Monotoring of mangrove ecosystem in relation with exploration and production activities

    Energy Technology Data Exchange (ETDEWEB)

    Alamsyah, C.; Dwistiadi, D.

    1996-11-01

    From Indonesia`s initial 13 million hectares of mangrove forests, presently only 2.6 million hectares remains which must be certainly protected. Mangrove swamps are of considerable ecological importance not only because of their use as spawning and feeding grounds for a many variety of fish and shrimps but also of economical importance and last but not least as coastal protection. In such a sensitive ecosystem, i.e. in the mangrove swamp area of Mahakam Delta in East Kalimantan, Indonesia, TOTAL Indonesie, an affiliate of the French oil company {open_quotes}TOTAL{close_quotes} and one of the production sharing contractors of PERTAMINA, the Indonesian owned state oil company, has undertaken its E&P operations since 1974. Realizing the sensitivity of the mangrove area, TOTAL Indonesie has undertaken continuous monitoring of the environment as part of its Environmental Management System. This monitoring is very important not only to measure the impact to the mangrove ecosystem in particular due to TOTAL Indonesie activities but also as a feed back for the environmental management. Physicochemical and biological aspects of the environment are monitored and various measurements are taken covering: (1) Hydrology and hydrodynamics of the water streams i.e. the water quality, productivity and flow characteristic of the region (2) Sedimentation and biodegradation (3) The influence of accidental and chronic pollution mangrove ecosystem (3) Sensitivity of the mangroves. The above monitoring has led to the conclusion that after more than 20 years of operation, there has significant adverse impact to the mangrove ecosystem by the exploration and production activities of Indonesie.

  9. Author Correction: Global patterns in mangrove soil carbon stocks and losses

    Science.gov (United States)

    Atwood, Trisha B.; Connolly, Rod M.; Almahasheer, Hanan; Carnell, Paul E.; Duarte, Carlos M.; Lewis, Carolyn J. Ewers; Irigoien, Xabier; Kelleway, Jeffrey J.; Lavery, Paul S.; Macreadie, Peter I.; Serrano, Oscar; Sanders, Christian J.; Santos, Isaac; Steven, Andrew D. L.; Lovelock, Catherine E.

    2018-03-01

    In the version of this Article originally published, the potential carbon loss from soils as a result of mangrove deforestation was incorrectly given as `2.0-75 Tg C yr-1'; this should have read `2-8 Tg C yr-1'. The corresponding emissions were incorrectly given as ` 7.3-275 Tg of CO2e'; this should have read ` 7-29 Tg of CO2e'. The corresponding percentage equivalent of these emissions compared with those from global terrestrial deforestation was incorrectly given as `0.2-6%'; this should have read `0.6-2.4%'. These errors have now been corrected in all versions of the Article.

  10. MANGROVE-DERIVED NUTRIENTS AND CORAL REEFS

    Science.gov (United States)

    Understanding the consequences of the declining global cover of mangroves due to anthropogenic disturbance necessitates consideration of how mangrove-derived nutrients contribute to threatened coral reef systems. We sampled potential sources of organic matter and a suite of sessi...

  11. Management of mangroves for energy needs

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.

    Utilization of mangroves for firewood and fodder is quite common along the Indian coast. In order to maintain the supply of different beneficial products, conservation and management practices with large scale afforestation of mangroves have been...

  12. Modeling hurricane effects on mangrove ecosystems

    Science.gov (United States)

    Doyle, Thomas W.

    1997-01-01

    Mangrove ecosystems are at their most northern limit along the coastline of Florida and in isolated areas of the gulf coast in Louisiana and Texas. Mangroves are marine-based forests that have adapted to colonize and persist in salty intertidal waters. Three species of mangrove trees are common to the United States, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangroves are highly productive ecosystems and provide valuable habitat for fisheries and shorebirds. They are susceptible to lightning and hurricane disturbance, both of which occur frequently in south Florida. Climate change studies predict that, while these storms may not become more frequent, they may become more intense with warming sea temperatures. Sea-level rise alone has the potential for increasing the severity of storm surge, particularly in areas where coastal habitats and barrier shorelines are rapidly deteriorating. Given this possibility, U.S. Geological Survey researchers modeled the impact of hurricanes on south Florida mangrove communities.

  13. Status of mangrove research in India

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.

    the Indian coast have reached an alarming stage, particularly along the west coast. A brief review of the status of various aspects of mangrove research suggests certain areas for future investigations. A tentative National Mangrove Plan is proposed...

  14. Evaluating the condition of a mangrove forest of the Mexican Pacific based on an estimated leaf area index mapping approach.

    Science.gov (United States)

    Kovacs, J M; King, J M L; Flores de Santiago, F; Flores-Verdugo, F

    2009-10-01

    mangrove, mean estimated LAI values of 4.66 and 2.39 were calculated, respectively. Given that the former healthy group only represents 8% of the total mangrove area examined, it is concluded that this mangrove system, considered one of the most important of the Pacific coast of the Americas, is currently experiencing a considerable state of degradation. Furthermore, based on the results of this investigation it is suggested that this approach could provide resource managers and scientists alike with a very rapid and effective method for monitoring the state of remaining mangrove forests of the Mexican Pacific and, possibly, other areas of the tropics.

  15. Fate and effects of anthropogenic chemicals in mangrove ecosystems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael, E-mail: lewis.michael@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, 1 Sabine Island Drive, Gulf Breeze, FL 32561 (United States); Pryor, Rachel; Wilking, Lynn [U.S. Environmental Protection Agency, Office of Research and Development, 1 Sabine Island Drive, Gulf Breeze, FL 32561 (United States)

    2011-10-15

    The scientific literature for fate and effects of non-nutrient contaminant concentrations is skewed for reports describing sediment contamination and bioaccumulation for trace metals. Concentrations for at least 22 trace metals have been reported in mangrove sediments. Some concentrations exceed sediment quality guidelines suggesting adverse effects. Bioaccumulation results are available for at least 11 trace metals, 12 mangrove tissues, 33 mangrove species and 53 species of mangrove-habitat biota. Results are specific to species, tissues, life stage, and season and accumulated concentrations and bioconcentration factors are usually low. Toxicity tests have been conducted with 12 mangrove species and 8 species of mangrove-related fauna. As many as 39 effect parameters, most sublethal, have been monitored during the usual 3 to 6 month test durations. Generalizations and extrapolations for toxicity between species and chemicals are restricted by data scarcity and lack of experimental consistency. This hinders chemical risk assessments and validation of effects-based criteria. - Chemical risk assessments and resource management are restricted by the limited chemical fate and effects database for mangroves.

  16. Effect of mangrove rehabilitation on socio-cultural of pulau sembilan society, North Sumatera, Indonesia

    Science.gov (United States)

    Basyuni, M.; Harahap, F. K.; Wati, R.; Putri, L. A. P.

    2018-03-01

    Mangrove forests in North Sumatera, Indonesia existed in the east coast of Sumatera Island and commonly found in Serdang Bedagai, Deli Serdang, Batubara, Tanjung Balai, Asahan, Labuhanbatu until Langkat. The effect of rehabilitated mangrove on socio-cultural of Pulau Sembilan society, Langkat, North Sumatra, Indonesia was studied. The rehabilitation was carried on May 2015 using indirect planting of 2,100 Rhizophora apiculata seedlings. Two times of observations, May and August 2015 were made to monitor and evaluate 400 rehabilitated seedlings. Sixty of 600 households were surveyed using Slovin formula to obtain community perspective on the socio-cultural impact of mangrove rehabilitation. Results showed that the growth of R. apiculata seedlings were 73.3% during four months observations. The restoration affected 65, 58.3 and 35 % of economic, social, and cultural of Pulau Sembilan society, respectively. The perspective of community on the land-use change led to 66.7% was disagreed that mangroves to be converted, 60% respondents stated that mangrove condition was degraded even worse than previously existed. Therefore, to resolve the degraded mangrove, community perspective on rehabilitation was needed (85.5%) and actively involved (88.3%). The present results suggested that the high recommendation for a rehabilitation program for the degraded area was by integrating the stake holders (government, university, and non-governmental organization) and local communities count on the mangrove ecosystems.

  17. Deforestation scenarios for the Bolivian lowlands.

    Science.gov (United States)

    Tejada, Graciela; Dalla-Nora, Eloi; Cordoba, Diana; Lafortezza, Raffaele; Ovando, Alex; Assis, Talita; Aguiar, Ana Paula

    2016-01-01

    Tropical forests in South America play a key role in the provision of ecosystem services such as carbon sinks, biodiversity conservation, and global climate regulation. In previous decades, Bolivian forests have mainly been deforested by the expansion of agricultural frontier development, driven by the growing demands for beef and other productions. In the mid-2000s the Movimiento al Socialismo (MAS) party rose to power in Bolivia with the promise of promoting an alternative development model that would respect the environment. The party passed the world's first laws granting rights to the environment, which they termed Mother Earth (Law No. 300 of 2012), and proposed an innovative framework that was expected to develop radical new conservation policies. The MAS conservationist discourse, policies, and productive practices, however, have since been in permanent tension. The government continues to guarantee food production through neo-extractivist methods by promoting the notion to expand agriculture from 3 to 13 million ha, risking the tropical forests and their ecosystem services. These actions raise major environmental and social concerns, as the potential impacts of such interventions are still unknown. The objective of this study is to explore an innovative land use modeling approach to simulate how the growing demand for land could affect future deforestation trends in Bolivia. We use the LuccME framework to create a spatially-explicit land cover change model and run it under three different deforestation scenarios, spanning from the present-2050. In the Sustainability scenario, deforestation reaches 17,703,786 ha, notably in previously deforested or degraded areas, while leaving forest extensions intact. In the Middle of the road scenario, deforestation and degradation move toward new or paved roads spreading across 25,698,327 ha in 2050, while intact forests are located in Protected Areas (PAs). In the Fragmentation scenario, deforestation expands to almost

  18. Unsustainable development pathways caused by tropical deforestation.

    Science.gov (United States)

    Carrasco, Luis Roman; Nghiem, Thi Phuong Le; Chen, Zhirong; Barbier, Edward B

    2017-07-01

    Global sustainability strategies require assessing whether countries' development trajectories are sustainable over time. However, sustainability assessments are limited because losses of natural capital and its ecosystem services through deforestation have not been comprehensively incorporated into national accounts. We update the national accounts of 80 nations that underwent tropical deforestation from 2000 to 2012 and evaluate their development trajectories using weak and strong sustainability criteria. Weak sustainability requires that countries do not decrease their aggregate capital over time. We adopt a strong sustainability criterion that countries do not decrease the value of their forest ecosystem services with respect to the year 2000. We identify several groups of countries: countries, such as Sri Lanka, Bangladesh, and India, that present sustainable development trajectories under both weak and strong sustainability criteria; countries, such as Brazil, Peru, and Indonesia, that present weak sustainable development but fail the strong sustainability criterion as a result of rapid losses of ecosystem services; countries, such as Madagascar, Laos, and Papua New Guinea, that present unsustainable development pathways as a result of deforestation; and countries, such as Democratic Republic of Congo and Sierra Leone, in which deforestation aggravates already unsustainable pathways. Our results reveal a large number of countries where tropical deforestation is both damaging to nature and not compensated by development in other sectors, thus compromising the well-being of their future generations.

  19. The carbon holdings of northern Ecuador's mangrove forests

    OpenAIRE

    Hamilton, Stuart E.; Lovette, John; Borbor, Mercy; Millones, Marco

    2016-01-01

    Within a GIS environment, we combine field measures of mangrove diameter, mangrove species distribution, and mangrove density with remotely sensed measures of mangrove location and mangrove canopy cover to estimate the mangrove carbon holdings of northern Ecuador. We find that the four northern estuaries of Ecuador contain approximately 7,742,999 t (plus or minus 15.47 percent) of standing carbon. Of particular high carbon holdings are the Rhizophora mangle dominated mangrove stands found in-...

  20. Assessment of deforestation using regression; Hodnotenie odlesnenia s vyuzitim regresie

    Energy Technology Data Exchange (ETDEWEB)

    Juristova, J. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra kartografie, geoinformatiky a DPZ, 84215 Bratislava (Slovakia)

    2013-04-16

    This work is devoted to the evaluation of deforestation using regression methods through software Idrisi Taiga. Deforestation is evaluated by the method of logistic regression. The dependent variable has discrete values '0' and '1', indicating that the deforestation occurred or not. Independent variables have continuous values, expressing the distance from the edge of the deforested areas of forests from urban areas, the river and the road network. The results were also used in predicting the probability of deforestation in subsequent periods. The result is a map showing the output probability of deforestation for the periods 1990/2000 and 200/2006 in accordance with predetermined coefficients (values of independent variables). (authors)

  1. The use of mangroves in coastal protection

    NARCIS (Netherlands)

    Loi, T.T.; Verhagen, H.J.

    2012-01-01

    Apart from many ecological advantages, mangroves in front of a coastal defence may lower the construction and maintenance costs of the defence. Although mangroves have hardly any reducing effect on water levels (and on tsunami impact) mangroves may significantly reduce wave attack on a coastal dike,

  2. Development of Early Warning System Using ALOS-2/PALSAR-2 Data to Detect and Prevent Deforestation

    Science.gov (United States)

    Hayashi, M.; Nagatani, I.; Watanabe, T.; Tadono, T.; Miyoshi, H.; Watanabe, M.; Koyama, C.; Shimada, M.; Ogawa, T.; Ishii, K.; Higashiuwatoko, T.; Miura, M.; Okonogi, H.; Adachi, K.; Morita, T.

    2017-12-01

    Satellite observation is an efficient method for monitoring deforestation, and a synthetic aperture radar (SAR) is useful especially in cloudy tropical forest regions. In this context, JICA and JAXA cooperate to operate the deforestation monitoring system acquired data by the Phased Array type L-band SAR-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), which is named as "JICA-JAXA Forest Early Warning System in the Tropics" (JJ-FAST), and it have been released on November 2016. JJ-FAST detects deforestation areas, and provides their positional information for 77 countries, which is covering almost all tropical forests. It uses PALSAR-2 ScanSAR observation mode (wide-observation swath width) image, which is 50 m spatial resolution acquired at 1.5 months interval. The dark change areas compared with in two acquisitions by PALSAR-2 HV-polarization images are identified as deforestations in the system. We conducted field surveys to validate detection accuracy of the JJ-FAST in Peru (November and December, 2016), Botswana (April, 2017), and Gabon (July, 2017). As the results, 15 of 18 detected areas were correct deforestation areas, therefore user's accuracy could be confirmed as 83.3 % from limited number of the validation data. Erroneous detection areas were caused by seasonal change in agricultural land and open burning in grass land. For improvement of the accuracy, such areas must be excluded from the analysis by additional algorithms e.g. estimation of accurate masking for non-forested areas. Therefore, we are revising the forest map used for pre-processing step in the system. The JJ-FAST can be expected to contribute to monitor and reduce illegal deforestation activities in tropical forests.

  3. Temporal mapping of deforestation and forest degradation in Nepal: Applications to forest conservation

    NARCIS (Netherlands)

    Panta, M.; Kim, K.; Joshi, C.

    2008-01-01

    Deforestation and forest degradation are associated and progressive processes resulting in the conversion of forest area into a mosaic of mature forest fragments, pasture, and degraded habitat. Monitoring of forest landscape spatial structures has been recommended to detect degenerative trends in

  4. Jamaica: Test case for tropical deforestation

    Energy Technology Data Exchange (ETDEWEB)

    Eyre, L A

    1987-01-01

    Deforestation in Jamaica, according to the United Nations (FAO/UNEP) and other sources, is occurring at an annual rate of about tree percent. This is accepted by some Jamaican government agencies, but strongly disputed by others. The Ministry of Agriculture, in particular, claims that the national forested area is actually increasing rapidly. A survey of humid tropical forests in Jamaica, carried out by the author in 1986, indicates a 3.3 percent per annum rate of deforestation for 1980-1986. But, despite significant commercial lumber production, large clear fellings are rare and most modification of the forest is due to expansion of small-scale farming (including Cannabis sativa) and pastoral activity. The size of area cleared is most often 20 to 25 hectares. As uncontrolled deforestation is adversely affecting watersheds and inducing serious flooding some form of control and management is urgently required.

  5. A Multi-Sensor Approach to Enhance the Prediction of Mangrove Biophysical Characteristics in Chilika Lagoon and Bhitarkanika Wildlife Sanctuary, Odisha, India

    Science.gov (United States)

    Kumar, A.; Bledsoe, R.; Mishra, D. R.; Cameron, C.; Dahal, S.; Remillard, C.; Stone, A.; Stupp, P.

    2017-12-01

    Mangroves, one of the most productive ecosystems on Earth, play a major role in coastal ecosystem processes from mitigating erosion to acting as a barrier against tidal and storm surges associated with tropical cyclones. India has about 5 % of the world's mangrove vegetation, and over half of which is found along the east coast of the country. Chilika Lagoon and Bhitarkanika Wildlife Sanctuary are Ramsar sites of international wetland importance, situated in the state of Odisha along the east coast of India. Chilika Lagoon holds three small, but distinct mangrove patches, while Bhitarkanika Wildlife Sanctuary has several large, dense patches of mangroves. There is growing concern for the effective management and conservation of these mangrove forests. This study demonstrated the use of a suite of satellite data (Terra, Landsat, and Sentinel-1) for meeting the following objectives: 1. Derive a long-term spatio-temporal phenological maps of the biophysical parameters (chlorophyll, leaf area index, gross primary productivity, and evapotranspiration); 2. Analyze long-term spatio-temporal variability of physical and meteorological parameters; 3. Document decadal changes in mangroves area estimates starting from 1995 to 2017 using Landsat and radar data. The time series developed in this study revealed a phenological pattern for mangrove biophysical characteristics. Historical analysis of land cover maps indicated decrease in dense mangrove area and increase in open mangrove area and fragmentation. The results of this study will be used as an efficient biophysical mapping and monitoring protocol for mangrove forests in restoration decision-making.

  6. The Environmental Legacy of Modern Tropical Deforestation.

    Science.gov (United States)

    Rosa, Isabel M D; Smith, Matthew J; Wearn, Oliver R; Purves, Drew; Ewers, Robert M

    2016-08-22

    Tropical deforestation has caused a significant share of carbon emissions and species losses, but historical patterns have rarely been explicitly considered when estimating these impacts [1]. A deforestation event today leads to a time-delayed future release of carbon, from the eventual decay either of forest products or of slash left at the site [2]. Similarly, deforestation often does not result in the immediate loss of species, and communities may exhibit a process of "relaxation" to their new equilibrium over time [3]. We used a spatially explicit land cover change model [4] to reconstruct the annual rates and spatial patterns of tropical deforestation that occurred between 1950 and 2009 in the Amazon, in the Congo Basin, and across Southeast Asia. Using these patterns, we estimated the resulting gross vegetation carbon emissions [2, 5] and species losses over time [6]. Importantly, we accounted for the time lags inherent in both the release of carbon and the extinction of species. We show that even if deforestation had completely halted in 2010, time lags ensured there would still be a carbon emissions debt of at least 8.6 petagrams, equivalent to 5-10 years of global deforestation, and an extinction debt of more than 140 bird, mammal, and amphibian forest-specific species, which if paid, would increase the number of 20(th)-century extinctions in these groups by 120%. Given the magnitude of these debts, commitments to reduce emissions and biodiversity loss are unlikely to be realized without specific actions that directly address this damaging environmental legacy. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Deforestation and cultivation mobilize mercury from topsoil.

    Science.gov (United States)

    Gamby, Rebecca L; Hammerschmidt, Chad R; Costello, David M; Lamborg, Carl H; Runkle, James R

    2015-11-01

    Terrestrial biomass and soils are a primary global reservoir of mercury (Hg) derived from natural and anthropogenic sources; however, relatively little is known about the fate and stability of Hg in the surface soil reservoir and its susceptibility to change as a result of deforestation and cultivation. In southwest Ohio, we measured Hg concentrations in soils of deciduous old- and new-growth forests, as well as fallow grassland and agricultural soils that had once been forested to examine how, over decadal to century time scales, man-made deforestation and cultivation influence Hg mobility from temperate surface soils. Mercury concentrations in surficial soils were significantly greater in the old-growth than new-growth forest, and both forest soils had greater Hg concentrations than cultivated and fallow fields. Differences in Hg:lead ratios between old-growth forest and agricultural topsoils suggest that about half of the Hg lost from deforested and cultivated Ohio soils may have been volatilized and the other half eroded. The estimated mobilization potential of Hg as a result of deforestation was 4.1 mg m(-2), which was proportional to mobilization potentials measured at multiple locations in the Amazon relative to concentrations in forested surface soils. Based on this relationship and an estimate of the global average of Hg concentrations in forested soils, we approximate that about 550 M mol of Hg has been mobilized globally from soil as a result of deforestation during the past two centuries. This estimate is comparable to, if not greater than, the amount of anthropogenic Hg hypothesized by others to have been sequestered by the soil reservoir since Industrialization. Our results suggest that deforestation and soil cultivation are significant anthropogenic processes that exacerbate Hg mobilization from soil and its cycling in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Casuses of deforestation in southwestern Madagascar

    DEFF Research Database (Denmark)

    Casse, Thorkil; Milhøj, Anders; Ranaivoson, Socrate

    2004-01-01

    Causes of deforestation are discussed in the case of southwestern Madagascar. Distinction is made between direct and indirect causes. The article ends up with an estimation of the value of agricultural land vs. an estimation of benefits from utilisation of non-timber forest products......Causes of deforestation are discussed in the case of southwestern Madagascar. Distinction is made between direct and indirect causes. The article ends up with an estimation of the value of agricultural land vs. an estimation of benefits from utilisation of non-timber forest products...

  9. Study on water quality around mangrove ecosystem for coastal rehabilitation

    Science.gov (United States)

    Guntur, G.; Sambah, A. B.; Arisandi, D. M.; Jauhari, A.; Jaziri, A. A.

    2018-01-01

    Coastal ecosystems are vulnerable to environmental degradation including the declining water quality in the coastal environment due to the influence of human activities where the river becomes one of the input channels. Some areas in the coastal regions of East Java directly facing the Madura Strait indicate having experienced the environmental degradation, especially regarding the water quality. This research was conducted in the coastal area of Probolinggo Regency, East Java, aiming to analyze the water quality as the basis for coastal rehabilitation planning. This study was carried out using survey and observation methods. Water quality measurement results were analyzed conforming to predetermined quality standards. The coastal area rehabilitation planning as a means to restore the degraded water quality parameters is presumably implemented through mangrove planting. Thus, the mangrove mapping was also devised in this research. Based on 40 sampling points, the results illustrate that according to the quality standard, the water quality in the study area is likely to be deteriorated. On account of the mapping analysis of mangrove distribution in the study area, the rehabilitation of the coastal zone can be done through planning the mangrove forest plantation. The recommended coastal area maintenance is a periodic water quality observation planning in the river region which is divided into three zones to monitor the impact of fluctuating changes in land use or human activities on the coastal water quality.

  10. Mapping Deforestation in North Korea Using Phenology-Based Multi-Index and Random Forest

    Directory of Open Access Journals (Sweden)

    Yihua Jin

    2016-12-01

    Full Text Available Phenology-based multi-index with the random forest (RF algorithm can be used to overcome the shortcomings of traditional deforestation mapping that involves pixel-based classification, such as ISODATA or decision trees, and single images. The purpose of this study was to investigate methods to identify specific types of deforestation in North Korea, and to increase the accuracy of classification, using phenological characteristics extracted with multi-index and random forest algorithms. The mapping of deforestation area based on RF was carried out by merging phenology-based multi-indices (i.e., normalized difference vegetation index (NDVI, normalized difference water index (NDWI, and normalized difference soil index (NDSI derived from MODIS (Moderate Resolution Imaging Spectroradiometer products and topographical variables. Our results showed overall classification accuracy of 89.38%, with corresponding kappa coefficients of 0.87. In particular, for forest and farm land categories with similar phenological characteristic (e.g., paddy, plateau vegetation, unstocked forest, hillside field, this approach improved the classification accuracy in comparison with pixel-based methods and other classes. The deforestation types were identified by incorporating point data from high-resolution imagery, outcomes of image classification, and slope data. Our study demonstrated that the proposed methodology could be used for deciding on the restoration priority and monitoring the expansion of deforestation areas.

  11. KEANEKARAGAM MANGROVE DI WILAYAH TAPAK, TUGUREJO, SEMARANG

    Directory of Open Access Journals (Sweden)

    NKT Martuti

    2014-06-01

    Full Text Available Abstrak __________________________________________________________________________________________ Konversi kawasan mangrove menjadi lahan tambak ikan/udang merupakan penyebab utama rusaknya ekosistem mangrove di Indonesia. Eksploitasi kawasan mangrove yang terus menerus dilakukan berpotensi mereduksi keanekaragaman spesies tumbuhan yang memiliki peran dan fungsi utama secara ekologis. Dusun Tapak merupakan salah satu wilayah di Kota Semarang yang ekosistem mangrovenya masih terjaga. Pengumpulan data primer pada penelitian ini meliputi pengukuran sebaran vegetasi mangrove. Data vegetasi mangrove dianalisis untuk mendapatkan Indeks Nilai Penting (INP dan Indeks Keanekaragaman. Pada tingkat pertumbuhan pohon, Avicennia marina merupakan spesies yang memiliki nilai penting tertinggi pada S II (300 %, S III (287,14 %, dan S IV (186,08 %, sedangkan spesies Rhizophora mucronata memiliki nilai penting tertinggi pada S I (232,06. Berdasarkan hasil analisis vegetasi mangrove di Wilayah Tapak, terdapat 5 spesies mangrove yang berhasil dijumpai, yaitu Rhizophora mucronata, Avicennia marina, Excoecaria aghalloca, Brugueira cylindrical, dan Xylocarpus mocullensis. Hasil penelitian dapat disimpulkan  bahwa Nilai Keanekaragaman mangrove wilayah Tapak rendah (0-0,469.  Hal ini dikarenakan ekosistem mangrove Wilayah Tapak merupakan ekosistem buatan, dengan jenis dan jumlah mangrove yang dominan terdiri dari Rhizophora mucronata dan Avicennia marina.   Abstract __________________________________________________________________________________________ The conversion of the mangrove conservation area into fish/shrimp ponds has been the major cause of the destruction of mangrove ecosystem in Indonesia. The ongoing exploitation of mangrove area potentially reduces the plant species diversity of the area. The mangrove area in Tapak Sub-Village of Semarang City is relatively conserved. The primary data collected in this research consisted of the mangrove vegetation

  12. Deforestation In Government Protected Areas: The Case Of Falgore ...

    African Journals Online (AJOL)

    Deforestation In Government Protected Areas: The Case Of Falgore Game Reservre, ... This paper highlights the nature of deforestation in a government declared “protected area (Falgore Game Reserve)”. ... AJOL African Journals Online.

  13. Environmental Concerns of Deforestation in Myanmar 2001–2010

    OpenAIRE

    Chuyuan Wang; Soe W. Myint

    2016-01-01

    Deforestation in Myanmar has recently attracted much attention worldwide. This study examined spatio-temporal patterns of deforestation and forest carbon flux in Myanmar from 2001 to 2010 and environmental impacts at the regional scale using land products of the Moderate Resolution Imaging Spectroradiometer (MODIS). The results suggest that the total deforestation area in Myanmar was 21,178.8 km2, with an annual deforestation rate of 0.81%, and that the total forest carbon release was 20.06 m...

  14. Does the Pressure of Population and Poverty cause Deforestation?

    OpenAIRE

    Widiaryanto, Pungky

    2012-01-01

    Deforestation has created several negative impacts such as reducing biodiversity, decreasing life support system and increasing green house gases emission. Identifying the causes of deforestation is a key to tackle this problem. Various studies have been conducted to investigate the driver of deforestation in the world. Some experts believe that the pressure of population and poverty cause deforestation. On the other hand, the others argue that there is no relationship among the pressure of p...

  15. The role of values in no deforestation policies

    OpenAIRE

    Mortimer, Roisin

    2017-01-01

    Masters thesis as part of European M Sc Agroecology with NMBU and ISARA-Lyon, internship at The Forest Trust (TFT), Switzerland. Since 2013, many companies have made commitments to ensure their supply chain is not linked to deforestation, known as No Deforestation Policies (NDPs). Despite the development of tools to implement NDPs, deforestation is ongoing. This research took a values–based approach to explore less–considered social aspects of why deforestation is ongoing despite the numbe...

  16. Spatial Modeling of Deforestation in FMU of Poigar, North Sulawesi

    OpenAIRE

    Ahmad, Afandi; Saleh, Muhammad Buce; Rusolono, Teddy

    2016-01-01

    Forest is a part of the ecosystem that provides environmental services. Deforestation may decrease forest function in an ecosystem. This study aims to build a spatial model of deforestation in a forest management unit (FMU) of Poigar. Deforestation analysis carried out by analyze the change of forest cover into non-forest cover with post classification comparison technique. Driving forces of deforestation carried out by spatial modeling using binary logistic regression models (LRM). Result of...

  17. Assessing Niger-Delta Wetland Resources: A Case-Study of Mangrove Ecosystem

    Science.gov (United States)

    Anwan, R. H.; Ndimele, P. E.; Whenu, O. O.; Anetekhai, M. A.; Essien-Ibok, M. A.; Erondu, E. S.

    2016-02-01

    The Niger Delta is located in the Atlantic coast of Southern Nigeria and is the world's second largest delta with a coastline of about 450km. The Niger Delta region occupies a surface area of about 112,110km2, representing about 12% of Nigeria's total surface area. The Delta's environment can be broken down into four ecological zones: coastal barrier islands, mangrove swamp forests, freshwater swamps, and lowland rainforests. The mangrove swamps of Niger Delta, which is the largest delta in Africa constitute the dominant wetland ecosystem in the Niger Delta region and covers an area of about 1,900km2. Mangroves constitute important nurseries for fishes, crustaceans, sponges, algae and other invertebrates, and also acts as a sink, retaining pollutants from contaminated tidal water. The Niger Delta mangrove together with the creeks and rivers are a major source of food and livelihood for about 30 million people, which represents more than 17% of Nigeria's population. Other ecosystem services provided by this unique environment are flood control, ground water re-fill, reservoir of biodiversity, fuel wood, cultural values etc. This ecosystem also plays important role in climate change mitigation because of its high blue carbon sequestration potential. This is particularly important because of continuous gas flaring in Niger Delta from petroleum operations, which releases carbon dioxide among other gases into the atmosphere. This wetland is potentially a good site for ecotourism and also qualifies to be a world heritage site and Ramsar site if proper steps are taken. The benefits derivable from this fragile ecosystem are under severe threat by anthropogenic stressors. These include the installation of pipelines and seismic exploration by oil companies, crude oil pollution, deforestation, urbanization etc. This paper discusses the extent of depletion and loss of mangrove ecosystem in the Niger Delta region and the value of its goods and services.

  18. Land Tenure Induced Deforestation and Environmental Degradation ...

    African Journals Online (AJOL)

    Land Tenure Induced Deforestation and Environmental Degradation in Ethiopia: The Case of Arbagugu State Forest Development and Protection Project (A ... The objective of this paper is to explore the cause and impact of this overarching problem by focusing on Arbagugu State Forest Development and Protection Project, ...

  19. Behavioural economics: Cash incentives avert deforestation

    Science.gov (United States)

    Cárdenas, Juan Camilo

    2017-10-01

    There is tension in developing countries between financial incentives to clear forests and climate regulation benefits of preserving trees. Now research shows that paying private forest owners in Uganda reduced deforestation, adding to the debate on the use of monetary incentives in forest conservation.

  20. Debunking three myths about Madagascar's deforestation | Horning ...

    African Journals Online (AJOL)

    After more than three decades of describing, explaining, and tackling deforestation in Madagascar, the problem persists. Why do researchers, practitioners, politicians, and farmers remain perplexed about this problem? This essay offers that our collective thinking of the past three decades has inadvertently perpetuated ...

  1. Intersectoral labor mobility and deforestation in Ghana

    NARCIS (Netherlands)

    Owusu, V.; Yerfi Fosu, K.; Burger, C.P.J.

    2012-01-01

    This paper quantifies the effects of the determinants of intersectoral labor mobility and the effect of intersectoral labor mobility on deforestation in Ghana over the period 1970–2008. A cointegration and error correction modeling approach is employed. The empirical results show that labor mobility

  2. Deforestation crimes and conflicts in the Amazon

    NARCIS (Netherlands)

    Boekhout van Solinge, T.

    2010-01-01

    This article explores and explains deforestation of the Brazilian Amazon rainforest. It primarily takes a green criminological perspective and looks at the harm that is inflicted on many of the Amazon’s inhabitants, including indigenous populations such as ‘uncontacted’ tribes of hunters-gatherers,

  3. Weathering of a petroleum spill in a tropical mangrove swamp

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, S.J.; Alexander, R.; Kagi, R.I. [Curtin Univ., Perth (Australia)

    1996-12-31

    In August 1987, an indeterminate amount of petroleum condensate was released from a buried pipe leading to contamination of a tropical mangrove swamp surrounding a tidal creek in North Western Australia. Since no bioremediation was attempted at this site, we have monitored the natural weathering of the condensate by detailed analysis of the petroleum hydrocarbons extracted from sediment samples collected on 11 occasions over a 3 year period.

  4. Predictive modelling of contagious deforestation in the Brazilian Amazon.

    Science.gov (United States)

    Rosa, Isabel M D; Purves, Drew; Souza, Carlos; Ewers, Robert M

    2013-01-01

    Tropical forests are diminishing in extent due primarily to the rapid expansion of agriculture, but the future magnitude and geographical distribution of future tropical deforestation is uncertain. Here, we introduce a dynamic and spatially-explicit model of deforestation that predicts the potential magnitude and spatial pattern of Amazon deforestation. Our model differs from previous models in three ways: (1) it is probabilistic and quantifies uncertainty around predictions and parameters; (2) the overall deforestation rate emerges "bottom up", as the sum of local-scale deforestation driven by local processes; and (3) deforestation is contagious, such that local deforestation rate increases through time if adjacent locations are deforested. For the scenarios evaluated-pre- and post-PPCDAM ("Plano de Ação para Proteção e Controle do Desmatamento na Amazônia")-the parameter estimates confirmed that forests near roads and already deforested areas are significantly more likely to be deforested in the near future and less likely in protected areas. Validation tests showed that our model correctly predicted the magnitude and spatial pattern of deforestation that accumulates over time, but that there is very high uncertainty surrounding the exact sequence in which pixels are deforested. The model predicts that under pre-PPCDAM (assuming no change in parameter values due to, for example, changes in government policy), annual deforestation rates would halve between 2050 compared to 2002, although this partly reflects reliance on a static map of the road network. Consistent with other models, under the pre-PPCDAM scenario, states in the south and east of the Brazilian Amazon have a high predicted probability of losing nearly all forest outside of protected areas by 2050. This pattern is less strong in the post-PPCDAM scenario. Contagious spread along roads and through areas lacking formal protection could allow deforestation to reach the core, which is currently

  5. Organic carbon dynamics in mangrove ecosystems: a review

    NARCIS (Netherlands)

    Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C.

    2008-01-01

    Our current knowledge on production, composition, transport, pathways and transformations of organic carbon in tropical mangrove environments is reviewed and discussed. Organic carbon entering mangrove foodwebs is either produced autochthonously or imported by tides and/or rivers. Mangrove litter

  6. Hydrological classification, a practical tool for mangrove restoration

    NARCIS (Netherlands)

    Loon, van Anne F.; Brake, te Bram; Huijgevoort, Van Marjolein H.J.; Dijksma, Roel

    2016-01-01

    Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration

  7. Penaeid prawns and their culture in mangrove areas

    Digital Repository Service at National Institute of Oceanography (India)

    Achuthankutty, C.T.

    Culture of penaeid prawns in mangrove areas has been described. Mangrove ecosystem is rich in particulate organic matter or detritus. Detritus is nutritionally very rich and is the major source of food for the juvenile prawns. The mangrove...

  8. Mangrove Conservation in East Java: The Ecotourism Development Perspectives

    Directory of Open Access Journals (Sweden)

    Luchman Hakim

    2017-09-01

    Full Text Available An analysis of the role of mangrove ecosystems in tourism was undertaken in order to build a strategy for mangrove conservation and conceptualize sustainable mangrove-based tourism development in East Java, Indonesia. The results of the present study suggest that mangroves could be used as nature-based tourism destinations. While tourism in mangrove areas in East Java clearly contributes to mangrove conservation, it still lacks a mangrove tour program, in which it is important to deliver the objectives of ecotourism. For the sustainable use of mangrove biodiversity as a tourist attraction, it is essential to know the basic characteristics of mangroves and establish mangrove tourism programs which are able to support a conservation program. It is also crucial to involve and strengthen the participation of local communities surrounding mangrove areas. The involvement of local wisdom could increase the sustainability of mangrove ecosystems.

  9. Mangrove expansion and saltmarsh decline at mangrove poleward limits

    Science.gov (United States)

    Saintilan, Neil; Wilson, Nicholas C.; Rogers, Kerrylee; Rajkaran, Anusha; Krauss, Ken W.

    2014-01-01

    Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the US Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province. In south-eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the pole-ward extension of temperature thresholds co-incident with sea-level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation.

  10. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew S.

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  11. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone.

    Science.gov (United States)

    Osland, Michael J; Day, Richard H; Larriviere, Jack C; From, Andrew S

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  12. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans: equations for a climate sensitive mangrove-marsh ecotone.

    Directory of Open Access Journals (Sweden)

    Michael J Osland

    Full Text Available Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1 total aboveground biomass; (2 leaf biomass; (3 stem plus branch biomass; and (4 leaf area. Plant volume (i.e., a combination of crown area and plant height was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  13. Wave transmission in mangrove forests

    NARCIS (Netherlands)

    Schiereck, G.J.; Booij, N.

    1995-01-01

    There is an increasing awareness of the role of mangrove forests in coastal ecosystems and coastal protection. At the transition between ocean and land, they have to absorb the energy that comes from the motion of the water. Little quantitative in formation is available, however, on wave

  14. a mangrove estuary in Transkei

    African Journals Online (AJOL)

    containing a diversity of both invertebrates and fish. Its richness is .... distribution of sparse and dense mangroves. S.-Afr. Tydskr. Dierk. ..... important. The low phytoplankton biomass occurring in the .... normally associated with exposed open beaches, including ..... and their abundance there at Mngazana is evidently related.

  15. Mangrove leaf transportation : Do mimic

    NARCIS (Netherlands)

    Gillis, L.G; Zimmer, M.; Bouma, T.J.

    2016-01-01

    Mangrove forests are typically located in the catchment areas of the terrestrial zoneand can be adjacent to oceanic ecosystems (e.g. seagrass beds and coral reefs). These forests arethought to provide ecosystem services by retaining particulate organic matter such as detritalleaves that can

  16. Population characteristics of the mangrove clam Polymesoda (geloina) erosa (solander, 1786) in the Chorao mangrove, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Naik, S.; Furtado, R.; Ansari, Z.A.; Chatterji, A.

    Mangroves are the tropical and sub tropical coastal and/or estuarine intertidal or island plant communities. Since the early history of mankind, mangrove ecosystems have played important role in the socio-economic development of coastal people...

  17. Deforestation Induced Climate Change: Effects of Spatial Scale.

    Science.gov (United States)

    Longobardi, Patrick; Montenegro, Alvaro; Beltrami, Hugo; Eby, Michael

    2016-01-01

    Deforestation is associated with increased atmospheric CO2 and alterations to the surface energy and mass balances that can lead to local and global climate changes. Previous modelling studies show that the global surface air temperature (SAT) response to deforestation depends on latitude, with most simulations showing that high latitude deforestation results in cooling, low latitude deforestation causes warming and that the mid latitude response is mixed. These earlier conclusions are based on simulated large scal land cover change, with complete removal of trees from whole latitude bands. Using a global climate model we examine the effects of removing fractions of 5% to 100% of forested areas in the high, mid and low latitudes. All high latitude deforestation scenarios reduce mean global SAT, the opposite occurring for low latitude deforestation, although a decrease in SAT is simulated over low latitude deforested areas. Mid latitude SAT response is mixed. In all simulations deforested areas tend to become drier and have lower SAT, although soil temperatures increase over deforested mid and low latitude grid cells. For high latitude deforestation fractions of 45% and above, larger net primary productivity, in conjunction with colder and drier conditions after deforestation cause an increase in soil carbon large enough to produce a net decrease of atmospheric CO2. Our results reveal the complex interactions between soil carbon dynamics and other climate subsystems in the energy partition responses to land cover change.

  18. Deforestation Induced Climate Change: Effects of Spatial Scale.

    Directory of Open Access Journals (Sweden)

    Patrick Longobardi

    Full Text Available Deforestation is associated with increased atmospheric CO2 and alterations to the surface energy and mass balances that can lead to local and global climate changes. Previous modelling studies show that the global surface air temperature (SAT response to deforestation depends on latitude, with most simulations showing that high latitude deforestation results in cooling, low latitude deforestation causes warming and that the mid latitude response is mixed. These earlier conclusions are based on simulated large scal land cover change, with complete removal of trees from whole latitude bands. Using a global climate model we examine the effects of removing fractions of 5% to 100% of forested areas in the high, mid and low latitudes. All high latitude deforestation scenarios reduce mean global SAT, the opposite occurring for low latitude deforestation, although a decrease in SAT is simulated over low latitude deforested areas. Mid latitude SAT response is mixed. In all simulations deforested areas tend to become drier and have lower SAT, although soil temperatures increase over deforested mid and low latitude grid cells. For high latitude deforestation fractions of 45% and above, larger net primary productivity, in conjunction with colder and drier conditions after deforestation cause an increase in soil carbon large enough to produce a net decrease of atmospheric CO2. Our results reveal the complex interactions between soil carbon dynamics and other climate subsystems in the energy partition responses to land cover change.

  19. Mangrove vegetation structure in Southeast Brazil from phased array L-band synthetic aperture radar data

    Science.gov (United States)

    de Souza Pereira, Francisca Rocha; Kampel, Milton; Cunha-Lignon, Marilia

    2016-07-01

    The potential use of phased array type L-band synthetic aperture radar (PALSAR) data for discriminating distinct physiographic mangrove types with different forest structure developments in a subtropical mangrove forest located in Cananéia on the Southern coast of São Paulo, Brazil, is investigated. The basin and fringe physiographic types and the structural development of mangrove vegetation were identified with the application of the Kruskal-Wallis statistical test to the SAR backscatter values of 10 incoherent attributes. The best results to separate basin to fringe types were obtained using copolarized HH, cross-polarized HV, and the biomass index (BMI). Mangrove structural parameters were also estimated using multiple linear regressions. BMI and canopy structure index were used as explanatory variables for canopy height, mean height, and mean diameter at breast height regression models, with significant R2=0.69, 0.73, and 0.67, respectively. The current study indicates that SAR L-band images can be used as a tool to discriminate physiographic types and to characterize mangrove forests. The results are relevant considering the crescent availability of freely distributed SAR images that can be more utilized for analysis, monitoring, and conservation of the mangrove ecosystem.

  20. Carbon Stocks in the Small Estuarine Mangroves of Geza and Mtimbwani, Tanga, Tanzania

    Directory of Open Access Journals (Sweden)

    Edmond Alavaisha

    2016-01-01

    Full Text Available Mangrove forests offer important ecosystem services, including their high capacity for carbon sequestration and stocking. However, they face rapid degradation and loss of ecological resilience particularly at local scales due to human pressure. We conducted inventory of mangrove forests to characterise forest stand structure and estimate carbon stocks in the small estuarine mangroves of Geza and Mtimbwani in Tanga, Tanzania. Forest structure, above-ground carbon (AGC, and below-ground carbon (BGC were characterised. Soil carbon was estimated to 1 m depth using loss on ignition procedure. Six common mangrove species were identified dominated by Avicennia marina (Forsk. Vierh. and Rhizophora mucronata Lamarck. Forest stand density and basal area were 1740 stems ha−1 and 17.2 m2 ha−1 for Geza and 2334 stems ha−1 and 30.3 m2 ha−1 for Mtimbwani. Total ecosystem carbon stocks were 414.6 Mg C ha−1 for Geza and 684.9 Mg C ha−1 for Mtimbwani. Soil carbon contributed over 65% of these stocks, decreasing with depth. Mid zones of the mangrove stands had highest carbon stocks. These data demonstrate that studied mangroves are potential for carbon projects and provide the baseline for monitoring, reporting, and verification (MRV to support the projects.

  1. Is the Geographic Range of Mangrove Forests in the Conterminous United States Really Expanding?

    Directory of Open Access Journals (Sweden)

    Chandra Giri

    2016-11-01

    Full Text Available Changes in the distribution and abundance of mangrove species within and outside of their historic geographic range can have profound consequences in the provision of ecosystem goods and services they provide. Mangroves in the conterminous United States (CONUS are believed to be expanding poleward (north due to decreases in the frequency and severity of extreme cold events, while sea level rise is a factor often implicated in the landward expansion of mangroves locally. We used ~35 years of satellite imagery and in situ observations for CONUS and report that: (i poleward expansion of mangrove forest is inconclusive, and may have stalled for now, and (ii landward expansion is actively occurring within the historical northernmost limit. We revealed that the northernmost latitudinal limit of mangrove forests along the east and west coasts of Florida, in addition to Louisiana and Texas has not systematically expanded toward the pole. Mangrove area, however, expanded by 4.3% from 1980 to 2015 within the historic northernmost boundary, with the highest percentage of change in Texas and southern Florida. Several confounding factors such as sea level rise, absence or presence of sub-freezing temperatures, land use change, impoundment/dredging, changing hydrology, fire, storm, sedimentation and erosion, and mangrove planting are responsible for the change. Besides, sea level rise, relatively milder winters and the absence of sub-freezing temperatures in recent decades may be enabling the expansion locally. The results highlight the complex set of forcings acting on the northerly extent of mangroves and emphasize the need for long-term monitoring as this system increases in importance as a means to adapt to rising oceans and mitigate the effects of increased atmospheric CO2.

  2. Sustainability of Mangrove Harvesting: How do Harvesters' Perceptions Differ from Ecological Analysis?

    Directory of Open Access Journals (Sweden)

    Laura López-Hoffman

    2006-12-01

    Full Text Available To harvest biological resources sustainably, it is first necessary to understand what "sustainability" means in an ecological context, and what it means to the people who use the resources. As a case study, we examined the extractive logging of the mangrove Rhizophora mangle in the Río Limón area of Lake Maracaibo, in western Venezuela. The ecological definition of sustainable harvesting is harvesting that allows population numbers to be maintained or to increase over time. In interviews, the harvesters defined sustainable harvesting as levels permitting the maintenance of the mangrove population over two human generations, about 50 yr. In Río Limón, harvesters extract a combination of small adult and juvenile trees. Harvesting rates ranged from 7-35% of small adult trees. These harvesting levels would be sustainable according to the harvester's definition as long as juvenile harvesting was less than 40%. However, some harvesting levels that would be sustainable according to the harvesters were ecologically unsustainable, i.e., eventually causing declines in mangrove population numbers. It was also determined that the structure of mangrove forests was significantly affected by harvesting; even areas harvested at low, ecologically sustainable intensities had significantly fewer adult trees than undisturbed sites. Western Venezuela has no organized timber industry, so mangrove logs are used in many types of construction. A lagging economy and a lack of alternative construction materials make mangrove harvesting inevitable, and for local people, an economic necessity. This creates a trade-off between preserving the ecological characteristics of the mangrove population and responding to human needs. In order to resolve this situation, we recommended a limited and adaptive mangrove harvesting regime. We also suggest that harvesters could participate in community-based management programs as harvesting monitors.

  3. Is the Geographic Range of Mangrove Forests in the Conterminous United States Really Expanding?

    Science.gov (United States)

    Giri, Chandra; Long, Jordan

    2016-11-28

    Changes in the distribution and abundance of mangrove species within and outside of their historic geographic range can have profound consequences in the provision of ecosystem goods and services they provide. Mangroves in the conterminous United States (CONUS) are believed to be expanding poleward (north) due to decreases in the frequency and severity of extreme cold events, while sea level rise is a factor often implicated in the landward expansion of mangroves locally. We used ~35 years of satellite imagery and in situ observations for CONUS and report that: (i) poleward expansion of mangrove forest is inconclusive, and may have stalled for now, and (ii) landward expansion is actively occurring within the historical northernmost limit. We revealed that the northernmost latitudinal limit of mangrove forests along the east and west coasts of Florida, in addition to Louisiana and Texas has not systematically expanded toward the pole. Mangrove area, however, expanded by 4.3% from 1980 to 2015 within the historic northernmost boundary, with the highest percentage of change in Texas and southern Florida. Several confounding factors such as sea level rise, absence or presence of sub-freezing temperatures, land use change, impoundment/dredging, changing hydrology, fire, storm, sedimentation and erosion, and mangrove planting are responsible for the change. Besides, sea level rise, relatively milder winters and the absence of sub-freezing temperatures in recent decades may be enabling the expansion locally. The results highlight the complex set of forcings acting on the northerly extent of mangroves and emphasize the need for long-term monitoring as this system increases in importance as a means to adapt to rising oceans and mitigate the effects of increased atmospheric CO₂.

  4. Changes in size of deforested patches in the Brazilian Amazon.

    Science.gov (United States)

    Rosa, Isabel M D; Souza, Carlos; Ewers, Robert M

    2012-10-01

    Different deforestation agents, such as small farmers and large agricultural businesses, create different spatial patterns of deforestation. We analyzed the proportion of deforestation associated with different-sized clearings in the Brazilian Amazon from 2002 through 2009. We used annual deforestation maps to determine total area deforested and the size distribution of deforested patches per year. The size distribution of deforested areas changed over time in a consistent, directional manner. Large clearings (>1000 ha) comprised progressively smaller amounts of total annual deforestation. The number of smaller clearings (6.25-50.00 ha) remained unchanged over time. Small clearings accounted for 73% of all deforestation in 2009, up from 30% in 2002, whereas the proportion of deforestation attributable to large clearings decreased from 13% to 3% between 2002 and 2009. Large clearings were concentrated in Mato Grosso, but also occurred in eastern Pará and in Rondônia. In 2002 large clearings accounted for 17%, 15%, and 10% of all deforestation in Mato Grosso, Pará, and Rondônia, respectively. Even in these states, where there is a highly developed agricultural business dominated by soybean production and cattle ranching, the proportional contribution of large clearings to total deforestation declined. By 2009 large clearings accounted for 2.5%, 3.5%, and 1% of all deforestation in Mato Grosso, Pará, and Rondônia, respectively. These changes in deforestation patch size are coincident with the implementation of new conservation policies by the Brazilian government, which suggests that these policies are not effectively reducing the number of small clearings in primary forest, whether these are caused by large landholders or smallholders, but have been more effective at reducing the frequency of larger clearings. ©2012 Society for Conservation Biology.

  5. Moving forward socio-economically focused models of deforestation.

    Science.gov (United States)

    Dezécache, Camille; Salles, Jean-Michel; Vieilledent, Ghislain; Hérault, Bruno

    2017-09-01

    Whilst high-resolution spatial variables contribute to a good fit of spatially explicit deforestation models, socio-economic processes are often beyond the scope of these models. Such a low level of interest in the socio-economic dimension of deforestation limits the relevancy of these models for decision-making and may be the cause of their failure to accurately predict observed deforestation trends in the medium term. This study aims to propose a flexible methodology for taking into account multiple drivers of deforestation in tropical forested areas, where the intensity of deforestation is explicitly predicted based on socio-economic variables. By coupling a model of deforestation location based on spatial environmental variables with several sub-models of deforestation intensity based on socio-economic variables, we were able to create a map of predicted deforestation over the period 2001-2014 in French Guiana. This map was compared to a reference map for accuracy assessment, not only at the pixel scale but also over cells ranging from 1 to approximately 600 sq. km. Highly significant relationships were explicitly established between deforestation intensity and several socio-economic variables: population growth, the amount of agricultural subsidies, gold and wood production. Such a precise characterization of socio-economic processes allows to avoid overestimation biases in high deforestation areas, suggesting a better integration of socio-economic processes in the models. Whilst considering deforestation as a purely geographical process contributes to the creation of conservative models unable to effectively assess changes in the socio-economic and political contexts influencing deforestation trends, this explicit characterization of the socio-economic dimension of deforestation is critical for the creation of deforestation scenarios in REDD+ projects. © 2017 John Wiley & Sons Ltd.

  6. Whole-island carbon stocks in the tropical Pacific: implications for mangrove conservation and upland restoration.

    Science.gov (United States)

    Donato, D C; Kauffman, J B; Mackenzie, R A; Ainsworth, A; Pfleeger, A Z

    2012-04-30

    avoiding deforestation of mangroves where this is a management objective. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Impacts of exotic mangroves and mangrove control on tide pool fish assemblages

    Science.gov (United States)

    Richard A. MacKenzie; Cailtin L. Kryss

    2013-01-01

    Fish were sampled from tide pools in Hawaii to determine how exotic mangroves Rhizophora mangle and the use of herbicides to chemically eradicate them are impacting tide pool fish assemblages. Ecological parameters were compared among mangrove-invaded, native vegetated, and non-vegetated tide pools before and after mangroves had been chemically...

  8. The mangrove tangle: short-term bio-physical interactions in coastal mangroves

    NARCIS (Netherlands)

    Horstman, Erik

    2014-01-01

    Mangroves are coastal wetland ecosystems in the upper intertidal area. Salt-tolerant mangrove vegetation dwells on fine substrates in sheltered, low-energy coastal environments such as estuaries and lagoons. At the interface between land and sea, mangroves provide a plethora of regulating, habitat

  9. Biofuels: The hidden cause of deforestation?

    OpenAIRE

    Smith, Alison; Lebensohn, Ignacio; Lickacz, Lindsay; Clarke, Louise

    2009-01-01

    The objective of the project is to establish a causal relationship between the biofuel market in the USA and the Amazonic Deforestation. The project parts from an objectivist approach and uses economic as well as environmental theories as a starting point. It attempts to demonstrate that biofuels are not as environmentally friendly as advertised, but instead have a detrimental effect on the Amazon Rainforest. The project utilizes statistics as a main source for empirical data, as well various...

  10. Possible climatic impact of tropical deforestation

    Energy Technology Data Exchange (ETDEWEB)

    Potter, G L; Ellsaesser, H W; MacCracken, M C; Luther, F M

    1975-12-25

    A computer model of climate changes resulting from removal of tropical rain forests to increase arable acreage is described. A chain of consequences is deduced from the model which begins with deforestation and ends with overall global cooling and a reduction in precipitation. A model of the global water budget shows that the reduction in precipitation is accompanied by cooling in the upper tropical troposphere, a lowering of the tropical tropopause, and a warming of the lower tropical stratosphere. (HLW)

  11. Deforestation crimes and conflicts in the Amazon

    OpenAIRE

    Boekhout van Solinge, T.

    2010-01-01

    This article explores and explains deforestation of the Brazilian Amazon rainforest. It primarily takes a green criminological perspective and looks at the harm that is inflicted on many of the Amazon’s inhabitants, including indigenous populations such as ‘uncontacted’ tribes of hunters-gatherers, the oldest human societies. The green criminological perspective also implies that the definition of victimisation is being enlarged: not only (future) humans, but also non-humans can be considered...

  12. Ecological Values of Mangrove Forest Ecosystem

    OpenAIRE

    Kusmana, Cecep

    1996-01-01

    Research on quantification of ecological values of mangrove forest ecosystem are urgently needed, due to its importance as the basics for utilization and management of resources. From the ecological point of vlew, the main prohlem of mangrove ecosystem is rarity and inconsistency of data and limited accurate methods inquantifying ecological values of that ecosystem. Results show that mangrove has the significant ecological values on coastal ecosystem. However, there must be further research t...

  13. Strategi Pengembangan Ekowisata Mangrove Wonorejo Surabaya

    OpenAIRE

    Umam, Khoirul; Sudiyarto, Sudiyarto; Winarno, Sri Tjondro

    2015-01-01

    The aim of the research are to describe the potential of ecotourism development in mangrove forest, to describe the benefits that can be gained by the community, to analyze the internal and external environment in the development of Mangrove Ecotourism Surabaya, and to formulate development strategiy of Mangrove Ecotourism Wonorejo Surabaya based on internal and external environment. The first and second objectives were answered using descrip­tive analysis, while the third objective was answe...

  14. Global change impacts on mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangroves are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal forests are important coastal ecosystems that are valued for a variety of ecological and societal goods and services. Major local threats to mangrove ecosystems worldwide include clearcutting and trimming of forests for urban, agricultural, or industrial expansion; hydrological alterations; toxic chemical spills; and eutrophication. In many countries with mangroves, much of the human population resides in the coastal zone, and their activities often negatively impact the integrity of mangrove forests. In addition, eutrophication, which is the process whereby nutrients build up to higher than normal levels in a natural system, is possibly one of the most serious threats to mangroves and associated ecosystems such as coral reefs. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand global impacts on these significant ecosystems.Changes in climate and other factors may also affect mangroves, but in complex ways. Global warming may promote expansion of mangrove forests to higher latitudes and accelerate sea-level rise through melting of polar ice or steric expansion of oceans. Changes in sea level would alter flooding patterns and the structure and areal extent of mangroves. Climate change may also alter rainfall patterns, which would in turn change local salinity regimes and competitive interactions of mangroves with other wetland species. Increases in frequency or intensity of tropical storms and hurricanes in combination with sea-level rise may alter erosion and sedimentation rates in mangrove forests. Another global change factor that may directly affect mangrove growth is increased atmospheric carbon dioxide (CO2), caused by burning of fossil fuels and other factors. Elevated CO2 concentration may increase mangrove growth by stimulating photosynthesis or improving water use

  15. Effects of systematic sampling on satellite estimates of deforestation rates

    International Nuclear Information System (INIS)

    Steininger, M K; Godoy, F; Harper, G

    2009-01-01

    Options for satellite monitoring of deforestation rates over large areas include the use of sampling. Sampling may reduce the cost of monitoring but is also a source of error in estimates of areas and rates. A common sampling approach is systematic sampling, in which sample units of a constant size are distributed in some regular manner, such as a grid. The proposed approach for the 2010 Forest Resources Assessment (FRA) of the UN Food and Agriculture Organization (FAO) is a systematic sample of 10 km wide squares at every 1 deg. intersection of latitude and longitude. We assessed the outcome of this and other systematic samples for estimating deforestation at national, sub-national and continental levels. The study is based on digital data on deforestation patterns for the five Amazonian countries outside Brazil plus the Brazilian Amazon. We tested these schemes by varying sample-unit size and frequency. We calculated two estimates of sampling error. First we calculated the standard errors, based on the size, variance and covariance of the samples, and from this calculated the 95% confidence intervals (CI). Second, we calculated the actual errors, based on the difference between the sample-based estimates and the estimates from the full-coverage maps. At the continental level, the 1 deg., 10 km scheme had a CI of 21% and an actual error of 8%. At the national level, this scheme had CIs of 126% for Ecuador and up to 67% for other countries. At this level, increasing sampling density to every 0.25 deg. produced a CI of 32% for Ecuador and CIs of up to 25% for other countries, with only Brazil having a CI of less than 10%. Actual errors were within the limits of the CIs in all but two of the 56 cases. Actual errors were half or less of the CIs in all but eight of these cases. These results indicate that the FRA 2010 should have CIs of smaller than or close to 10% at the continental level. However, systematic sampling at the national level yields large CIs unless the

  16. Recent advances in understanding Colombian mangroves

    Science.gov (United States)

    Polanía, J.; Urrego, L. E.; Agudelo, C. M.

    2015-02-01

    Throughout the last 15 years, researchers at the National University of Colombia at Medellin have studied Colombian mangroves. Remote sensing, pollen analysis of superficial and deep sediments, Holocene coastal vegetation dynamics, sediment dating using 14C and 210Pb, sampling in temporary plots, sampling in temporary and permanent plots, and other techniques have been applied to elucidate long- and short-term mangrove community dynamics. The studied root fouling community is structured by several regulatory mechanisms; habitat heterogeneity increases species richness and abundance. Fringe mangroves were related to Ca concentration in the soil and the increased dominance of Laguncularia racemosa and other nonmangrove tree species, while the riverine mangroves were associated with Mg concentration and the dominance of Rhizophora mangle. The seedling and mangrove tree distributions are determined by a complex gradient of natural and anthropogenic disturbances. Mangrove pollen from surface sediments and the existing vegetation and geomorphology are close interrelated. Plant pollen of mangrove and salt marsh reflects environmental and disturbance conditions, and also reveals forest types. Forest dynamics in both coasts and their sensitivity of to anthropogenic processes are well documented in the Late Quaternary fossil record. Our studies of short and long term allow us to predict the dynamics of mangroves under different scenarios of climate change and anthropogenic stress factors that are operating in Colombian coasts. Future research arises from these results on mangrove forests dynamics, sea-level rise at a fine scale using palynology, conservation biology, and carbon dynamics.

  17. Air temperature and canopy cover of impacted and conserved mangrove ecosystems: a study of a subtropical estuary in Brazil

    OpenAIRE

    Beserra de Lima, Nadia Gilma; Galvani, Emerson; Falcao, Rita Monteiro; Cunha-Lignon, Marilia [UNIFESP

    2013-01-01

    The aim of this study was to analyze and compare the variation of air temperature between impacted and conserved mangrove areas by monitoring the microclimate and canopy cover of mangrove forests in the southern coast of São Paulo State, Brazil. Data were collected from September 2011 to August 2012 using meteorological towers installed below the canopy at a height of 2 m. Hemispherical photographs were processed to acquire the canopy opening and Leaf Area Index, which quantifies the area wit...

  18. Coastal sediment elevation change following anthropogenic mangrove clearing

    Science.gov (United States)

    Hayden, Heather L.; Granek, Elise F.

    2015-11-01

    Coastal mangrove forests along tropical shorelines serve as an important interface between land and sea. They provide a physical buffer protecting the coastline from erosion and act as sediment "traps" catching terrestrial sediment, thus preventing smothering of subtidal coral reefs. Coastal development that removes mangrove habitat may impact adjacent nearshore coral reefs through sedimentation and nutrient loading. We examined differences in sediment elevation change between patches of open-coast intact and anthropogenically cleared red mangroves (Rhizophora mangle) on the east side of Turneffe Atoll, Belize, to quantify changes following mangrove clearing. Samples were collected over a 24 month period at five study sites, each containing paired intact (+mangrove) and cleared (-mangrove) plots. Five sediment elevation pins were deployed in each plot: behind areas cleared of mangroves (-mangrove) and behind adjacent intact mangroves (+mangrove). Sediment elevation increased at intact mangrove sites (M = +3.83 mm, SE = 0.95) whereas cleared mangrove areas suffered elevation loss (M = -7.30 mm, SE = 3.38). Mangroves inshore of partial or continuous gaps in the adjacent fringing reefs had higher rates of elevation loss (M = -15.05 mm) than mangroves inshore of continuous fringing reefs (M = -1.90 mm). Our findings provide information on potential effects of mangrove clearing and the role of offshore habitat characteristics on coastal sediment trapping and maintenance of sediment elevation by mangroves. With implications for coastline capacity to adjust to sea level rise, these findings are relevant to management of coastal fringing mangrove forests across the Caribbean.

  19. Environmental management of estuarine areas: a proposal for conservation of water and biodiversity to the mangroves of the Paraiba do Sul River estuary, Gargaú, RJ

    Directory of Open Access Journals (Sweden)

    Edêmea Faria Carlos Rocha

    2016-12-01

    Full Text Available Being impacted by illegal occupation and untreated sewage release, the mangrove estuary of the Paraíba do Sul River has high biodiversity and provides various ecosystem services. In this study, we focused on strategies for sustainability promotion in Gargaú, a locality in this estuarine region, associating mangrove conservation to the uses of common resources practiced by locals. The main investigated issues were: “Would it be feasible to create a Conservation Unit in order to reinforce legal mechanisms to protect the mangrove?”; and “How does the local community see the scenario of environmental degradation and the proposal of creating a Conservation Unit in the region?”. Locals strongly depend on the estuarine area resources and perceive mangrove deforestation as well as untreated sewage release as the main causes of negative impacts. Despite not knowing what a Conservation Unit actually is, local key informants agreed to its creation after clarification of the categories and groups fixed by Brazilian legislation. Although accepting it with reservation, they understood it is a necessary measure to conserve the mangrove that sustains them.

  20. Limits of Brazil's Forest Code as a means to end illegal deforestation.

    Science.gov (United States)

    Azevedo, Andrea A; Rajão, Raoni; Costa, Marcelo A; Stabile, Marcelo C C; Macedo, Marcia N; Dos Reis, Tiago N P; Alencar, Ane; Soares-Filho, Britaldo S; Pacheco, Rayane

    2017-07-18

    The 2012 Brazilian Forest Code governs the fate of forests and savannas on Brazil's 394 Mha of privately owned lands. The government claims that a new national land registry (SICAR), introduced under the revised law, could end illegal deforestation by greatly reducing the cost of monitoring, enforcement, and compliance. This study evaluates that potential, using data from state-level land registries (CAR) in Pará and Mato Grosso that were precursors of SICAR. Using geospatial analyses and stakeholder interviews, we quantify the impact of CAR on deforestation and forest restoration, investigating how landowners adjust their behaviors over time. Our results indicate rapid adoption of CAR, with registered properties covering a total of 57 Mha by 2013. This suggests that the financial incentives to join CAR currently exceed the costs. Registered properties initially showed lower deforestation rates than unregistered ones, but these differences varied by property size and diminished over time. Moreover, only 6% of registered producers reported taking steps to restore illegally cleared areas on their properties. Our results suggest that, from the landowner's perspective, full compliance with the Forest Code offers few economic benefits. Achieving zero illegal deforestation in this context would require the private sector to include full compliance as a market criterion, while state and federal governments develop SICAR as a de facto enforcement mechanism. These results are relevant to other tropical countries and underscore the importance of developing a policy mix that creates lasting incentives for sustainable land-use practices.

  1. Mangrove ecosystems under climate change

    Science.gov (United States)

    Jennerjahn, T.C.; Gilman, E.; Krauss, Ken W.; Lacerda, L.D.; Nordhaus, I.; Wolanski, E.

    2017-01-01

    This chapter assesses the response of mangrove ecosystems to possible outcomes of climate change, with regard to the following categories: (i) distribution, diversity, and community composition, (ii) physiology of flora and fauna, (iii) water budget, (iv) productivity and remineralization, (v) carbon storage in biomass and sediments, and (vi) the filter function for elements beneficial or harmful to life. These categories are then used to identify the regions most vulnerable to climate change. The four most important factors determining the response of mangrove ecosystems to climate change are sea level rise, an increase in frequency and/or intensity of storms, increases in temperature, and aridity. While these changes may be beneficial for some mangrove forests at latitudinal distribution limits, they will threaten forest structure and functions and related ecosystem services in most cases. The interaction of climate change with human interventions is discussed, as well as the effects on ecosystem services including possible adaptation and management options. The chapter closes with an outlook on knowledge gaps and priority research needed to fill these gaps.

  2. The national determinants of deforestation in sub-Saharan Africa

    OpenAIRE

    Rudel, Thomas K.

    2013-01-01

    For decades, the dynamics of tropical deforestation in sub-Saharan Africa (SSA) have defied easy explanation. The rates of deforestation have been lower than elsewhere in the tropics, and the driving forces evident in other places, government new land settlement schemes and industrialized agriculture, have largely been absent in SSA. The context and causes for African deforestation become clearer through an analysis of new, national-level data on forest cover change for SSA countries for the ...

  3. Moving forward socio-economically focused models of deforestation

    OpenAIRE

    DEZÉCACHE CAMILLE; SALLES JEAN-MICHEL; VIEILLEDENT GHISLAIN; HÉRAULT BRUNO

    2017-01-01

    While high resolution spatial variables contribute to a good fit of spatially-explicit deforestation models, socio-economic processes are often beyond the scope of these models. Such a low level of interest in the socio-economic dimension of deforestation limits the relevancy of these models for decision making and may be the cause of their failure to accurately predict observed deforestation trends in the medium term. This study aims to propose a flexible methodology for taking into account ...

  4. A Micropropagation Protocol for a Critically Endangered Mangrove Excoecaria Agallocha L

    Directory of Open Access Journals (Sweden)

    Panneerselvam RAJARAM

    2012-06-01

    Full Text Available Excoecaria agallocha L. is a critically endangered mangrove tree from the Pichavaram mangrove reserve forest, the Tamil Nadu Coastal area. It is distributed on the seashore and the edge-mangrove. In order to reduce the decrease in number of these Mediterranean mixed stand, unsupervised forest management practices have drastically been reduced. In addition, the deforestation of the mangrove area, along with a low seed germination rate further endanger this species. In this study we developed a protocol for the micropropagation of adult Excoecaria agallocha. Microcuttings were obtained from lateral and apical twigs of mature plants and used as explants. Microcuttings with axillary buds were grown on different media, plant growth regulators and phenolic exudation substances. The axillary shoots produced on uncontaminated explants were excised, segmented and recultured in the same medium, to increase the stock of shoot cultures. The Modified Murashige and Skoog (MMS medium, augmented with different concentrations of N6 – benzyl adenine (BAP and Naphthalene acetic acid (NAA, either alone, or in combinations, as a potential medium for shoot multiplication by nodal segments, was tested. In the following experiment, equal molar concentrations of four cytokonins [BAP, Kinetin and 2- isopenthenyladenine (2iP] in combination with equal molar concentrations of three auxins [ NAA, Indole acetic acid (IAA and indole-3- butyric ]were used to test the rate of axillary shoot proliferation, induced on MMS agar medium supplemented with 3.9 µM BAP and 1.34 µM NAA after 6 weeks in culture. Different auxins (NAA, IBA and IAA were to determine the optimum conditions for in vitro rooting of microshoots. The best results were accomplished with NAA 5.41 µM (89% rooting and with IBA at 2.85 or 5.71µM (86% and 86.5% rooting, respectively.

  5. Deforestation and Industrial Forest Patterns in Colombia: a Case Study

    Science.gov (United States)

    Huo, L. Z.; Boschetti, L.; Sparks, A. M.; Clerici, N.

    2017-12-01

    The recent peace agreement between the government and the Revolutionary Armed Forces of Colombia (FARC) offers new opportunities for peaceful and sustainable development, but at the same time requires a timely effort to protect biological resources, and ecosystem services (Clerici et al., 2016). In this context, we use the 2001-2017 Landsat data record to prototype a methodology to establish a baseline of deforestation, afforestation and industrial forest practices (i.e. establishment and harvest of forest plantations), and to monitor future changes. Two study areas, which have seen considerable deforestation in recent years, were selected: one in the South of the country, at the edge of the Amazon Forest (WRS path 008 row 059) and one in the center, in mixed forest (WRS path 008 row 055). The time series of all the available cloud free Landsat 5, Landsat 7 and Landsat 8 data was classified into a sequence of binary forest/non forest maps using a deep learning model, successfully used in the natural language processing field, trained to detect forest transitions. Recurrent Neural Networks (RNN) is a class of artificial neural network that extends the conventional neural network with loops in the connections (Graves et al., 2013). Unlike a feed-forward neural network, an RNN is able to process the sequential inputs by having a recurrent hidden state whose activation at each step depends on that of the previous steps. In this manner, the RNN provides a good framework to dynamically model time series data, and has been successfully applied to natural language processing in Google (Sutskever et al., 2014). The sequence of forest cover state maps was subsequently post-processed to differentiate between deforestation (e.g. transition from forest to non forest land use) and industrial forest harvest (i.e. timber harvest followed by regrowth), by integrating the detection of temporal patterns, and spatial patterns. References Clerici, N., et al., (2016). Colombia: Dealing

  6. The Perplex of Deforestation in sub-Saharan Africa

    OpenAIRE

    A.W Yalew

    2015-01-01

    Deforestation has been a complex phenomenon to study in sub-Saharan Africa. The average annual deforestation rate in the region is by far higher than the world average. What causes and drives deforestation in the region are debated to date. The present paper is motivated by this debate. It attempts to test whether the maintained hypotheses on the causes of deforestation can give answer to the problem in sub-Saharan Africa. It used average cross-national data of forty eight countries in the re...

  7. Deforestation of Peano continua and minimal deformation retracts☆

    Science.gov (United States)

    Conner, G.; Meilstrup, M.

    2012-01-01

    Every Peano continuum has a strong deformation retract to a deforested continuum, that is, one with no strongly contractible subsets attached at a single point. In a deforested continuum, each point with a one-dimensional neighborhood is either fixed by every self-homotopy of the space, or has a neighborhood which is a locally finite graph. A minimal deformation retract of a continuum (if it exists) is called its core. Every one-dimensional Peano continuum has a unique core, which can be obtained by deforestation. We give examples of planar Peano continua that contain no core but are deforested. PMID:23471120

  8. Measuring the effectiveness of protected area networks in reducing deforestation.

    Science.gov (United States)

    Andam, Kwaw S; Ferraro, Paul J; Pfaff, Alexander; Sanchez-Azofeifa, G Arturo; Robalino, Juan A

    2008-10-21

    Global efforts to reduce tropical deforestation rely heavily on the establishment of protected areas. Measuring the effectiveness of these areas is difficult because the amount of deforestation that would have occurred in the absence of legal protection cannot be directly observed. Conventional methods of evaluating the effectiveness of protected areas can be biased because protection is not randomly assigned and because protection can induce deforestation spillovers (displacement) to neighboring forests. We demonstrate that estimates of effectiveness can be substantially improved by controlling for biases along dimensions that are observable, measuring spatial spillovers, and testing the sensitivity of estimates to potential hidden biases. We apply matching methods to evaluate the impact on deforestation of Costa Rica's renowned protected-area system between 1960 and 1997. We find that protection reduced deforestation: approximately 10% of the protected forests would have been deforested had they not been protected. Conventional approaches to evaluating conservation impact, which fail to control for observable covariates correlated with both protection and deforestation, substantially overestimate avoided deforestation (by over 65%, based on our estimates). We also find that deforestation spillovers from protected to unprotected forests are negligible. Our conclusions are robust to potential hidden bias, as well as to changes in modeling assumptions. Our results show that, with appropriate empirical methods, conservation scientists and policy makers can better understand the relationships between human and natural systems and can use this to guide their attempts to protect critical ecosystem services.

  9. Remote sensing techniques for mangrove mapping

    NARCIS (Netherlands)

    Vaiphasa, C.

    2006-01-01

    Mangroves, important components of the world's coastal ecosystems, are threatened by the expansion of human settlements, the boom in commercial aquaculture, the impact of tidal waves and storm surges, etc. Such threats are leading to the increasing demand for detailed mangrove maps for the purpose

  10. Protecting mangrove forests in Cambodia | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-07-15

    Jul 15, 2011 ... ... of trees, and the rich resources of mangroves are rapidly dwindling. ... jagged and gnarled mangrove trees are able to grow in the brackish ... when we invited them to come to a meeting, they were still thinking about Pol Pot.

  11. Mangroves of the Pacific Islands: research opportunities

    Science.gov (United States)

    Ariel E. Lugo

    1990-01-01

    The perception of mangroves by people in the Pacific islands and throughout all the world has changed in the past decades. Today, the economic, social, ecologic, and esthetic values of mangroves are well recognized. Past research on these ecosystems is responsible for the change in perception. However, a review of eleven subjects relevant to the management of Pacific...

  12. Deforestation in Amazonia impacts riverine carbon dynamics

    Science.gov (United States)

    Langerwisch, Fanny; Walz, Ariane; Rammig, Anja; Tietjen, Britta; Thonicke, Kirsten; Cramer, Wolfgang

    2016-12-01

    Fluxes of organic and inorganic carbon within the Amazon basin are considerably controlled by annual flooding, which triggers the export of terrigenous organic material to the river and ultimately to the Atlantic Ocean. The amount of carbon imported to the river and the further conversion, transport and export of it depend on temperature, atmospheric CO2, terrestrial productivity and carbon storage, as well as discharge. Both terrestrial productivity and discharge are influenced by climate and land use change. The coupled LPJmL and RivCM model system (Langerwisch et al., 2016) has been applied to assess the combined impacts of climate and land use change on the Amazon riverine carbon dynamics. Vegetation dynamics (in LPJmL) as well as export and conversion of terrigenous carbon to and within the river (RivCM) are included. The model system has been applied for the years 1901 to 2099 under two deforestation scenarios and with climate forcing of three SRES emission scenarios, each for five climate models. We find that high deforestation (business-as-usual scenario) will strongly decrease (locally by up to 90 %) riverine particulate and dissolved organic carbon amount until the end of the current century. At the same time, increase in discharge leaves net carbon transport during the first decades of the century roughly unchanged only if a sufficient area is still forested. After 2050 the amount of transported carbon will decrease drastically. In contrast to that, increased temperature and atmospheric CO2 concentration determine the amount of riverine inorganic carbon stored in the Amazon basin. Higher atmospheric CO2 concentrations increase riverine inorganic carbon amount by up to 20 % (SRES A2). The changes in riverine carbon fluxes have direct effects on carbon export, either to the atmosphere via outgassing or to the Atlantic Ocean via discharge. The outgassed carbon will increase slightly in the Amazon basin, but can be regionally reduced by up to 60 % due to

  13. Regional processes in mangrove ecosystems: Spatial scaling relationships, biomass, and turnover rates following catastrophic disturbance

    Science.gov (United States)

    Ward, G.A.; Smith, T. J.; Whelan, K.R.T.; Doyle, T.W.

    2006-01-01

    Physiological processes and local-scale structural dynamics of mangroves are relatively well studied. Regional-scale processes, however, are not as well understood. Here we provide long-term data on trends in structure and forest turnover at a large scale, following hurricane damage in mangrove ecosystems of South Florida, U.S.A. Twelve mangrove vegetation plots were monitored at periodic intervals, between October 1992 and March 2005. Mangrove forests of this region are defined by a -1.5 scaling relationship between mean stem diameter and stem density, mirroring self-thinning theory for mono-specific stands. This relationship is reflected in tree size frequency scaling exponents which, through time, have exhibited trends toward a community average that is indicative of full spatial resource utilization. These trends, together with an asymptotic standing biomass accumulation, indicate that coastal mangrove ecosystems do adhere to size-structured organizing principles as described for upland tree communities. Regenerative dynamics are different between areas inside and outside of the primary wind-path of Hurricane Andrew which occurred in 1992. Forest dynamic turnover rates, however, are steady through time. This suggests that ecological, more-so than structural factors, control forest productivity. In agreement, the relative mean rate of biomass growth exhibits an inverse relationship with the seasonal range of porewater salinities. The ecosystem average in forest scaling relationships may provide a useful investigative tool of mangrove community biomass relationships, as well as offer a robust indicator of general ecosystem health for use in mangrove forest ecosystem management and restoration. ?? Springer 2006.

  14. Climate Variability and Mangrove Cover Dynamics at Species Level in the Sundarbans, Bangladesh

    Directory of Open Access Journals (Sweden)

    Manoj Kumer Ghosh

    2017-05-01

    Full Text Available Mangrove ecosystems are complex in nature. For monitoring the impact of climate variability in this ecosystem, a multidisciplinary approach is a prerequisite. Changes in temperature and rainfall pattern have been suggested as an influential factor responsible for the change in mangrove species composition and spatial distribution. The main aim of this study was to assess the relationship between temperature, rainfall pattern and dynamics of mangrove species in the Sundarbans, Bangladesh, over a 38 year time period from 1977 to 2015. To assess the relationship, a three stage analytical process was employed. Primarily, the trend of temperature and rainfall over the study period were identified using a linear trend model; then, the supervised maximum likelihood classifier technique was employed to classify images recorded by Landsat series and post-classification comparison techniques were used to detect changes at species level. The rate of change of different mangrove species was also estimated in the second stage. Finally, the relationship between temperature, rainfall and the dynamics of mangroves at species level was determined using a simple linear regression model. The results show a significant statistical relationship between temperature, rainfall and the dynamics of mangrove species. The trends of change for Heritiera fomes and Sonneratia apelatala show a strong relationship with temperature and rainfall, while Ceriops decandra shows a weak relationship. In contrast, Excoecaria agallocha and Xylocarpus mekongensis do not show any significant relationship with temperature and rainfall. On the basis of our results, it can be concluded that temperature and rainfall are important climatic factors influencing the dynamics of three major mangrove species viz. H. fomes, S. apelatala and C. decandra in the Sundarbans.

  15. Sap flow characteristics of neotropical mangroves in flooded and drained soils

    Science.gov (United States)

    Krauss, Ken W.; Young, P. Joy; Chambers, Jim L.; Doyle, Thomas W.; Twilley, Robert R.

    2007-01-01

    Effects of flooding on water transport in mangroves have previously been investigated in a few studies, most of which were conducted on seedlings in controlled settings. In this study, we used heat-dissipation sap probes to determine if sap flow (Js) attenuates with radial depth into the xylem of mature trees of three south Florida mangrove species growing in Rookery Bay. This was accomplished by inserting sap probes at multiple depths and monitoring diurnal flow. For most species and diameter size class combinations tested, Js decreased dramatically beyond a radial depth of 2 or 4 cm, with little sap flow beyond a depth of 6 cm. Mean Js was reduced on average by 20% in Avicennia germinans (L.) Stearn, Laguncularia racemosa (L.) Gaertn. f. and Rhizophora mangle L. trees when soils were flooded. Species differences were highly significant, with L. racemosahaving the greatest midday Js of about 26g H2O H2O m−2s−1 at a radial depth of 2 cm compared with a mean for the other two species of about 15 g H2O m−2s−1. Sap flow at a depth of 2 cm in mangroves was commensurate with rates reported for other forested wetland tree species. We conclude that: (1) early spring flooding of basin mangrove forests causes reductions in sap flow in mature mangrove trees; (2) the sharp attenuations in Js along the radial profile have implications for understanding whole-tree water use strategies by mangrove forests; and (3) regardless of flood state, individual mangrove tree water use follows leaf-level mechanisms in being conservative.

  16. Modeling mangrove biomass using remote sensing based age and growth estimates

    Science.gov (United States)

    Lagomasino, D.; Fatoyinbo, T. E.; Feliciano, E. A.; Lee, S. K.; Trettin, C.; Mangora, M.; Rahman, M.

    2016-12-01

    Mangroves are highly regarded coastal forests because of their ecosystem services and high carbon storage potential. In addition, these forests can develop rapidly in locations where congenial environmental conditions and sediment supply are available. Monitoring the growth and age of developing mangrove forests is crucial for sustainable management and estimating carbon stocks. Combining imagery from radar and optical satellites (e.g., TanDEM-X and Landsat), we can estimate young mangrove growth and age at regional and continental scales. We used TanDEM-X radar interferometry for modeling canopy height in 2013 and Landsat to measure land cover change from 1990 to 2013. Annual NDVI composites were determined for each calendar year between 1990 and 2013. New land areas gained from the transition of water to vegetation were determined by the differences in annual NDVI composites and the reference year 2013. The year of the greatest NDVI difference that met the threshold criteria was used as the initial tree height (0 m). Annual canopy height growth rates were estimated by the duration between land generation times and 2013 canopy height models derived from TanDEM-X and very-high resolution optical data. In this presentation, we compare growth rates and biomass accumulation in mangrove forests at four river deltas; the Zambezi (Mozambique), Rufiji (Tanzania), Ganges (Bangladesh), and Mekong (Vietnam). The spatial patterns of growth rates coincided with characteristic successional paradigms and stream morphology, where the maximum growth rates typically occurred along prograding creek banks. Initial comparisons between height-only and growth-age biomass indicate that the latter tend to overestimate biomass for younger forest stands of similar height. Both the vertical (e.g., canopy height) and horizontal (e.g., expansion) growth rates measured from remote sensing can garner important information regarding mangrove succession and primary productivity. Continued research

  17. Deforestation change detection in North Korea between 1999 and 2008 using multi temporal satellite image

    Science.gov (United States)

    KIM, K. M.

    2017-12-01

    After the mid-1990s, North Korea has gone through a hard time of shortage of food and fuel due to the large scale flood and landslide. This became a vicious circle, which has kept accelerating the deforestation in North Korea. This study aims to analyze the change of deforestation in North Korea using two different seasonal satellite images of Landsat 5-TM and SPOT-5 between 1999 and 2008. The Land cover was classified into 6 categories: forest, cropland, grassland, bare land, built area and water body. And the deforested and degraded forest area was extracted considering forest land boundary and classified into 3 categories: the cultivated, the unstocked forest land and the bare mountain. For the all classification process, unsupervised classification method was used since North Korea is inaccessible area. The results of the study showed that the stocked forest area has decreased 1,379,000 ha compared with those in 1999, whereas the deforested and degraded forest area has increased 1,207,000 ha in 2008. The increase of 880,000 ha in the unstocked forest land was the biggest expansion among 3 categories of the deforested and degraded forest area during 9 yrs. It is resulted from an increase of firewood usage, which is presumably owing to the severe shortage of fuel and food. I look forward for the outcome of this study to being used as baseline data for inter-Korean forest cooperation. Especially, it is expected to serve as important input data for the potential REDD project site selection with results of the 3rd forest monitoring(2018) of North Korea.

  18. Effect of oil palm sustainability certification on deforestation and fire in Indonesia.

    Science.gov (United States)

    Carlson, Kimberly M; Heilmayr, Robert; Gibbs, Holly K; Noojipady, Praveen; Burns, David N; Morton, Douglas C; Walker, Nathalie F; Paoli, Gary D; Kremen, Claire

    2018-01-02

    Many major corporations and countries have made commitments to purchase or produce only "sustainable" palm oil, a commodity responsible for substantial tropical forest loss. Sustainability certification is the tool most used to fulfill these procurement policies, and around 20% of global palm oil production was certified by the Roundtable on Sustainable Palm Oil (RSPO) in 2017. However, the effect of certification on deforestation in oil palm plantations remains unclear. Here, we use a comprehensive dataset of RSPO-certified and noncertified oil palm plantations (∼188,000 km 2 ) in Indonesia, the leading producer of palm oil, as well as annual remotely sensed metrics of tree cover loss and fire occurrence, to evaluate the impact of certification on deforestation and fire from 2001 to 2015. While forest loss and fire continued after RSPO certification, certified palm oil was associated with reduced deforestation. Certification lowered deforestation by 33% from a counterfactual of 9.8 to 6.6% y -1 Nevertheless, most plantations contained little residual forest when they received certification. As a result, by 2015, certified areas held less than 1% of forests remaining within Indonesian oil palm plantations. Moreover, certification had no causal impact on forest loss in peatlands or active fire detection rates. Broader adoption of certification in forested regions, strict requirements to avoid all peat, and routine monitoring of clearly defined forest cover loss in certified and RSPO member-held plantations appear necessary if the RSPO is to yield conservation and climate benefits from reductions in tropical deforestation. Copyright © 2017 the Author(s). Published by PNAS.

  19. Effect of oil palm sustainability certification on deforestation and fire in Indonesia

    Science.gov (United States)

    Gibbs, Holly K.; Noojipady, Praveen; Burns, David N.; Morton, Douglas C.; Walker, Nathalie F.; Paoli, Gary D.; Kremen, Claire

    2018-01-01

    Many major corporations and countries have made commitments to purchase or produce only “sustainable” palm oil, a commodity responsible for substantial tropical forest loss. Sustainability certification is the tool most used to fulfill these procurement policies, and around 20% of global palm oil production was certified by the Roundtable on Sustainable Palm Oil (RSPO) in 2017. However, the effect of certification on deforestation in oil palm plantations remains unclear. Here, we use a comprehensive dataset of RSPO-certified and noncertified oil palm plantations (∼188,000 km2) in Indonesia, the leading producer of palm oil, as well as annual remotely sensed metrics of tree cover loss and fire occurrence, to evaluate the impact of certification on deforestation and fire from 2001 to 2015. While forest loss and fire continued after RSPO certification, certified palm oil was associated with reduced deforestation. Certification lowered deforestation by 33% from a counterfactual of 9.8 to 6.6% y−1. Nevertheless, most plantations contained little residual forest when they received certification. As a result, by 2015, certified areas held less than 1% of forests remaining within Indonesian oil palm plantations. Moreover, certification had no causal impact on forest loss in peatlands or active fire detection rates. Broader adoption of certification in forested regions, strict requirements to avoid all peat, and routine monitoring of clearly defined forest cover loss in certified and RSPO member-held plantations appear necessary if the RSPO is to yield conservation and climate benefits from reductions in tropical deforestation. PMID:29229857

  20. TINGKAT KEPEKAAN MANGROVE INDONESIA TERHADAP TUMPAHAN MINYAK (The Sensitivity Levels of Indonesian Mangrove to Oil Spills

    Directory of Open Access Journals (Sweden)

    Muarif Muarif

    2016-09-01

    Full Text Available ABSTRAK Kepekaan mangrove merupakan komponen penting dalam menentukan tingkat kepekaan ekosistem mangrove terhadap tumpahan minyak. Mangrove Indonesia dapat dikelompokkan dalam 5 tingkat kepekaan terhadap tumpahan minyak, yaitu tidak peka (Acanthus, Nypa, Inocarpus, Acrostichum, kurang peka (Aegiceras, Excoecaria, Hibiscus, Lumnitzera, Ficus, Scyphiphora, Thespasia, Merope, Osbornea, Pandanus, cukup peka (Bruguiera, Ceriops, Xylocarpus, Heritiera, peka (Rhizophora, dan sangat peka (Avicennia, dan Sonneratia. Penilaian terhadap komunitas mangrove di Indonesia menunjukkan sebagian besar tergolong ke dalam katagori sangat peka dan peka apabila komunitas mangrove tersebut terkena tumpahan minyak.   ABSTRACT The sensitivity of mangrove is an important component to determine the sensitivity of mangrove ecosystem to oil spills. The Indonesian mangrove can be grouped into five levels of sensitivity to the oil spill, include not sensitive (Acanthus, Nypa, Inocarpus, and Acrostichum, low sensitive (Aegiceras, Excoecaria, Hibiscus, Lumnitzera, Ficus, Scyphiphora, Thespasia, Merope, Osbornea, and Pandanus, intermediate sensitive (Bruguiera, Ceriops, Xylocarpus, and Heritiera, sensitive (Rhizophora, and very sensitive (Avicennia, and Sonneratia. Assessment of mangrove communities in Indonesia showed mostly belong to the category of very sensitive and sensitive if the mangrove communities injured by the oil spill.

  1. Accumulation of six metals in the mangrove crab Ucides cordatus (Crustacea: Ucididae) and its food source, the red mangrove Rhizophora mangle (Angiosperma: Rhizophoraceae).

    Science.gov (United States)

    Pinheiro, Marcelo Antonio Amaro; Silva, Pablo Pena Gandara E; Duarte, Luis Felipe de Almeida; Almeida, Alaor Aparecido; Zanotto, Flavia Pinheiro

    2012-07-01

    The crab Ucides cordatus and the red mangrove Rhizophora mangle are endemic mangrove species and potential bio-accumulators of metals. This study quantified the accumulation of six metals (Cd, Cr, Cu, Hg, Mn and Pb) in different organs (claw muscle, hepatopancreas and gills) of U. cordatus, as well as in different maturation stages of the leaves (buds, green mature, and pre-abscission senescent) of R. mangle. Samples were collected from mangrove areas in Cubatão, state of São Paulo, a heavily polluted region in Brazil. Data for metal contents in leaves were evaluated by one-way ANOVA; while for crabs a factorial ANOVA was used to investigate the effect of different tissues, animal size and the interactions between them. Means were compared by Tukey test at five percent, and the association between the metal concentrations in each crab organ, depending on the size, was evaluated by Pearson's linear correlation coefficient (r). Concentrations of Pb and Hg were undetectable for the different leaf stages and crab tissues, while Cd concentrations were undetectable in the leaf stages. In general, the highest accumulation of metals in R. mangle leaves occurred in pre-abscission senescent and green mature leaves, except for Cu, which was found in the highest concentrations in buds and green mature leaves. For the crab, Cd, Cu, Cr and Mn were present in concentrations above the detection limit, with the highest accumulation in the hepatopancreas, followed by the gills. Cu was accumulated mostly in the gills. Patterns of bioaccumulation between the crab and the mangrove tree differed for each metal, probably due to the specific requirements of each organism for essential metals. However, there was a close and direct relationship between metal accumulation in the mangrove trees and in the crabs feeding on them. Tissues of R. mangle leaves and U. cordatus proved effective for monitoring metals, acting as important bioindicators of mangrove areas contaminated by various

  2. Economic impacts of deforestation in Europe

    International Nuclear Information System (INIS)

    Zoboli, R.

    1992-01-01

    Assessments of the economic impacts of the deterioration of European forests are being made from two points of view - the marketing of wood products and the potential economic benefits which can possibly be derived from a healthy environment. This article considers the principal results of these studies and evaluates their limitations and usefulness. In reviewing some scientific aspects of current debate on the probable causes of deforestation, as well as, in examining government efforts towards air pollution abatement, the article makes reference to tabled data on deforestation in Europe. Overall, the results of economic impacts studies based on the use of simulation models indicate a significant reduction in local supplies to the European wood products industry thus resulting in a dramatic drop in world market share and consequent market instability. Economic losses due to the inability to capitalize on healthy forests are valued in the order of billions of dollars per year in terms of the loss of business in the wood products and commercial-recreational sectors. While pointing out the uncertainties involved in the formulation of these assessments, the article also suggests how their results can constitute useful guidelines in cost benefit analyses of proposed government interventions. A discussion is made of the efficacy of some of these interventions now being considered aimed at reforestation and air pollution abatement

  3. Implic ations of climate change and deforestation on behavioural ...

    African Journals Online (AJOL)

    Indiscriminate forest exploitation leads to deforestation also, release of CO2 and other pollutants tampers with ozone layer which has been acting as a big umbrella against ultraviolet radiation. This paper discusses effects of climate change and deforestation on physical environment as they affect animal population, ...

  4. Deforestation in the Brazilian Amazon: A Classroom Project.

    Science.gov (United States)

    Nijman, Jan; Hill, A. David

    1991-01-01

    Presents a classroom project dealing with tropical deforestation in the Brazilian Amazon. Addresses environmental consequences and economic, social, and political causes. Involves both lectures and individual research and reports by student groups on deforestation causes. Includes a note-playing activity in which students make recommendations for…

  5. Deforestation and the environmental Kuznets curve. An institutional perspective

    Energy Technology Data Exchange (ETDEWEB)

    Culas, Richard J. [School of Agricultural and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678 (Australia)

    2007-03-01

    Institutions for secure property rights and better environmental policies for moving the system towards a sustainable growth path can reduce the height of an environmental Kuznets curve (EKC) relationship between income and deforestation. This study examines the impact of these specific institutional factors on the EKC relationship for deforestation across Latin American, African and Asian countries. The factors related to agricultural production, population, economy and governmental policies of each country are hypothesised to affect deforestation. Results of the Latin American countries show significant evidence of an EKC relationship for deforestation and also relevance of the institutional factors to reduce the rate of deforestation. Improvements in institutions for secure property rights and better environmental policies can thus significantly reduce the rate of deforestation without hindering the level of economic growth. Evidence also suggests that the effect of agricultural production on deforestation could be halted by strengthening institutional factors. There was found to be complementarity between the institutional factors and forest sector polices, and an additive effect between the institutional factors and forest products export promotion policies, which could also eventually reduce the rate of deforestation. (author)

  6. Revisiting deforestation in Africa (1990–2010): One more lost ...

    African Journals Online (AJOL)

    This spotlight revisits the dynamics and prognosis outlined in the late 1980's published in Déforestation en Afrique. This book on deforestation in Africa utilized available statistical data from the 1980's and was a pioneering self - styled attempt to provide a holistic viewpoint of the ongoing trends pertaining to deforestation in ...

  7. Bioinformatics study of the mangrove actin genes

    Science.gov (United States)

    Basyuni, M.; Wasilah, M.; Sumardi

    2017-01-01

    This study describes the bioinformatics methods to analyze eight actin genes from mangrove plants on DDBJ/EMBL/GenBank as well as predicted the structure, composition, subcellular localization, similarity, and phylogenetic. The physical and chemical properties of eight mangroves showed variation among the genes. The percentage of the secondary structure of eight mangrove actin genes followed the order of a helix > random coil > extended chain structure for BgActl, KcActl, RsActl, and A. corniculatum Act. In contrast to this observation, the remaining actin genes were random coil > extended chain structure > a helix. This study, therefore, shown the prediction of secondary structure was performed for necessary structural information. The values of chloroplast or signal peptide or mitochondrial target were too small, indicated that no chloroplast or mitochondrial transit peptide or signal peptide of secretion pathway in mangrove actin genes. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove actin genes. To clarify the relationship among the mangrove actin gene, a phylogenetic tree was constructed. Three groups of mangrove actin genes were formed, the first group contains B. gymnorrhiza BgAct and R. stylosa RsActl. The second cluster which consists of 5 actin genes the largest group, and the last branch consist of one gene, B. sexagula Act. The present study, therefore, supported the previous results that plant actin genes form distinct clusters in the tree.

  8. Mangrove macrobenthos: Assemblages, services, and linkages

    Science.gov (United States)

    Lee, S. Y.

    2008-02-01

    Macrobenthic assemblages are relatively poorly known compared to other components of the mangrove ecosystem. Tropical mangroves support macrobenthic biodiversity resources yet to be properly documented and interpreted. Some methodological challenges, such as the generally high spatial heterogeneity and complexity of the habitat, evidently reduce sampling efficiency and accuracy, while also leaving some microhabitats under-sampled. Macrobenthic assemblage structure seems to be influenced by local environmental conditions, such as hydroperiod, organic matter availability and sediment characteristics. Brachyurans, gastropods and oligochaetes dominate in the sediment, with the former two groups also common on hard surfaces provided by tree trunks, while insects and arachnids inhabit the canopy. Traditionally, studies of mangrove macrobenthos have focused on assemblage structure or the biology of individual species, but more complex inter-specific interactions and the inter-relationship between habitat and the biota are recently being addressed. Brachyuran crabs are the best-studied macrobenthos group, but many issues about their role in mangrove ecosystem dynamics are still controversial. Despite many species of mangrove macrobenthos being referred to as 'trophic dead ends', most serve as important links between recalcitrant mangrove organic matter and estuarine secondary production, through feeding excursion by mobile nekton during the high tide, and macrobenthos-mediated processing and exportation of organic matter. A significant difference in the standing crop biomass of forests between the Indo-west-Pacific (IWP)' and Atlantic-east-Pacific (AEP) mangroves may be related to the difference in species richness of mangrove as well as macrobenthos diversity in the two bioregions. Such differences in assemblage structure may also result in different ecosystem functioning, but the nature of the links is, however, yet to be explored. There is also a strong need for

  9. Assessing the Relative Ecological Importance and Deforestation Risks of Unprotected Areas in Western Brazil Using Landsat, CBERS and Quantum GIS

    Science.gov (United States)

    Smith, A.; Sevilla, C.; Lanclos, A.; Carson, C.; Larson, J.; Sankaran, M.; Saad, M.

    2012-12-01

    In addition to understanding Brazilian policies and currently utilized methodologies, the measurement of the impacts of deforestation is essential for enhancing techniques to reduce deforestation in the future. Adverse impacts of deforestation include biodiversity loss, increased carbon dioxide emissions, and a reduced rate of evapotranspiration, all of which contribute directly or indirectly to global warming. With the continual growth in population in developing countries such as Brazil, increased demands are placed on infrastructural development and food production. As a result, forested areas are cleared for agricultural production. Recently, exploration for hydrocarbons in Western Brazil has also intensified as a means to stimulate the economy, as abundant oil and gas is believed to be found in these regions. Unfortunately, hydrocarbon-rich regions of Western Brazil are also home to thousands of species. Many of these regions are as of yet untapped but are at risk of ecological disruption as a result of impending human activity. This project utilized Landsat 5 TM to monitor deforestation in a subsection of the Brazilian states of Rondônia and Amazonas. A risk map identifying areas susceptible to future deforestation, based on factors such as proximity to roads, bodies of water, cities, and proposed hydrocarbon activities such as pipeline construction, was created. Areas at higher risk of clearance were recommended to be a target for enhanced monitoring and law enforcement. In addition, an importance map was created based on biodiversity and location of endangered species. This map was used to identify potential areas for future protection. A Chinese-Brazilian satellite, CBERS 2B CCD was also utilized for comparison. The NDVI model was additionally replicated in Quantum GIS, an open source software, so that local communities and policymakers could benefit without having to pay for expensive ArcGIS software. The capabilities of VIIRS were also investigated to

  10. Population growth, human development, and deforestation in biodiversity hotspots.

    Science.gov (United States)

    Jha, S; Bawa, K S

    2006-06-01

    Human population and development activities affect the rate of deforestation in biodiversity hotspots. We quantified the effect of human population growth and development on rates of deforestation and analyzed the relationship between these causal factors in the 1980s and 1990s. We compared the averages of population growth, human development index (HDI, which measures income, health, and education), and deforestation rate and computed correlations among these variables for countries that contain biodiversity hotspots. When population growth was high and HDI was low there was a high rate of deforestation, but when HDI was high, rate of deforestation was low, despite high population growth. The correlation among variables was significant for the 1990s but not for the 1980s. The relationship between population growth and HDI had a regional pattern that reflected the historical process of development. Based on the changes in HDI and deforestation rate over time, we identified two drivers of deforestation: policy choice and human-development constraints. Policy choices that disregard conservation may cause the loss of forests even in countries that are relatively developed. Lack of development in other countries, on the other hand, may increase the pressure on forests to meet the basic needs of the human population. Deforestation resulting from policy choices may be easier to fix than deforestation arising from human development constraints. To prevent deforestation in the countries that have such constraints, transfer of material and intellectual resources from developed countries may be needed. Popular interest in sustainable development in developed countries can facilitate the transfer of these resources.

  11. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon

    Science.gov (United States)

    Morton, Douglas C.; Defries, Ruth S.; Shimabukuro, Yosio E.; Anderson, Liana O.; Arai, Egidio; Del Bon Espirito-Santo, Fernando; Freitas, Ramon; Morisette, Jeff

    2006-09-01

    Intensive mechanized agriculture in the Brazilian Amazon grew by >3.6 million hectares (ha) during 2001-2004. Whether this cropland expansion resulted from intensified use of land previously cleared for cattle ranching or new deforestation has not been quantified and has major implications for future deforestation dynamics, carbon fluxes, forest fragmentation, and other ecosystem services. We combine deforestation maps, field surveys, and satellite-based information on vegetation phenology to characterize the fate of large (>25-ha) clearings as cropland, cattle pasture, or regrowing forest in the years after initial clearing in Mato Grosso, the Brazilian state with the highest deforestation rate and soybean production since 2001. Statewide, direct conversion of forest to cropland totaled >540,000 ha during 2001-2004, peaking at 23% of 2003 annual deforestation. Cropland deforestation averaged twice the size of clearings for pasture (mean sizes, 333 and 143 ha, respectively), and conversion occurred rapidly; >90% of clearings for cropland were planted in the first year after deforestation. Area deforested for cropland and mean annual soybean price in the year of forest clearing were directly correlated (R2 = 0.72), suggesting that deforestation rates could return to higher levels seen in 2003-2004 with a rebound of crop prices in international markets. Pasture remains the dominant land use after forest clearing in Mato Grosso, but the growing importance of larger and faster conversion of forest to cropland defines a new paradigm of forest loss in Amazonia and refutes the claim that agricultural intensification does not lead to new deforestation. agriculture | carbon | land use change | soybean

  12. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon

    Science.gov (United States)

    Morton, Douglas C.; DeFries, Ruth S.; Shimabukuro, Yosio E.; Anderson, Liana O.; Arai, Egidio; del Bon Espirito-Santo, Fernando; Freitas, Ramon; Morisette, Jeff

    2006-01-01

    Intensive mechanized agriculture in the Brazilian Amazon grew by >3.6 million hectares (ha) during 2001–2004. Whether this cropland expansion resulted from intensified use of land previously cleared for cattle ranching or new deforestation has not been quantified and has major implications for future deforestation dynamics, carbon fluxes, forest fragmentation, and other ecosystem services. We combine deforestation maps, field surveys, and satellite-based information on vegetation phenology to characterize the fate of large (>25-ha) clearings as cropland, cattle pasture, or regrowing forest in the years after initial clearing in Mato Grosso, the Brazilian state with the highest deforestation rate and soybean production since 2001. Statewide, direct conversion of forest to cropland totaled >540,000 ha during 2001–2004, peaking at 23% of 2003 annual deforestation. Cropland deforestation averaged twice the size of clearings for pasture (mean sizes, 333 and 143 ha, respectively), and conversion occurred rapidly; >90% of clearings for cropland were planted in the first year after deforestation. Area deforested for cropland and mean annual soybean price in the year of forest clearing were directly correlated (R2 = 0.72), suggesting that deforestation rates could return to higher levels seen in 2003–2004 with a rebound of crop prices in international markets. Pasture remains the dominant land use after forest clearing in Mato Grosso, but the growing importance of larger and faster conversion of forest to cropland defines a new paradigm of forest loss in Amazonia and refutes the claim that agricultural intensification does not lead to new deforestation. PMID:16973742

  13. FISHERIES ASSOCIATED WITH MANGROVE ECOSYSTEM IN INDONESIA: A View from a Mangrove Ecologist

    Directory of Open Access Journals (Sweden)

    SUKRISTIJONO SUKARDJO

    2004-01-01

    Full Text Available Blessed with mangrove area of some 9.6 million ha in extent, Indonesia represents an important country with fishery resources being a source of food an d nutrients. The fishery resources utilized by man, such as fishes, crustaceans and mollusks that are found in the mangrove ecosystem/swamp ar ea arc enormous. There is a range of species caught in the mangrove and surrounding areas with over 70 species. However, commercially valued species are limited to a few such as rabbit fish, snapper, grouper, marline catfish, fringe-scale sard ine, and anchovy. Leaf detritus from mangroves contribute a major energy input into fisheries. But information about the study on the relationship between fishery species and mangroves, ecologically and biologically, arc scanty. The mangrove is a physiographic unit, the principal components of which arc organisms. Therefore, the problems are predominantly of a biological nature (e.g., mangroves - fishery relationship. Positive correlation between the mangrove area and penaeid shrimp catch found in Indonesia, the Philippines, Australia and Mexico. Finally, the most important part of the variance of the MSY (Maximum Sustainable Yield of penaieds (53% of the variance could be explained by a combination of area of mangrove habitats and latitude.

  14. Mangroves Response to Climate Change: A Review of Recent Findings on Mangrove Extension and Distribution

    Directory of Open Access Journals (Sweden)

    Mario D.P. Godoy

    2015-06-01

    Full Text Available Mangroves function as a natural coastline protection for erosion and inundation, providing important environmental services. Due to their geographical distribution at the continent-ocean interface, the mangrove habitat may suffer heavy impacts from global climate change, maximized by local human activities occurring in a given coastal region. This review analyzed the literature published over the last 25 years, on the documented response of mangroves to environmental change caused by global climate change, taking into consideration 104 case studies and predictive modeling, worldwide. Most studies appeared after the year 2000, as a response to the 1997 IPCC report. Although many reports showed that the world's mangrove area is decreasing due to direct anthropogenic pressure, several others, however, showed that in a variety of habitats mangroves are expanding as a response to global climate change. Worldwide, pole ward migration is extending the latitudinal limits of mangroves due to warmer winters and decreasing the frequency of extreme low temperatures, whereas in low-lying coastal plains, mangroves are migrating landward due to sea level rise, as demonstrated for the NE Brazilian coast. Taking into consideration climate change alone, mangroves in most areas will display a positive response. In some areas however, such as low-lying oceanic islands, such as in the Pacific and the Caribbean, and constrained coastlines, such as the SE Brazilian coast, mangroves will most probably not survive.

  15. Big earth-observation data analytics for modelling pan-tropical land-use change trajectories for newly deforested areas

    Science.gov (United States)

    Coca Castro, Alejandro; Reymondin, Louis; Rebetez, Julien; Fabio Satizabal Mejia, Hector; Perez-Uribe, Andres; Mulligan, Mark; Smith, Thomas; Hyman, Glenn

    2017-04-01

    Global land use monitoring is important to the the Sustainable Development Goals (SDGs). The latest advances in storage and manipulation of big earth-observation data have been key to developing multiple operational forest monitoring initiatives such as FORMA, Terra-i and Global Forest Change. Although the data provided by these systems are useful for identifying and estimating newly deforested areas (from 2000), they do not provide details about the land use to which these deforested areas are transitioned. This information is critical to understand the biodiversity and ecosystem services impact of deforestation and the resulting impacts on human wellbeing, locally and downstream. With the aim of contributing to current forest monitoring initiatives, this research presents a set of experimental case studies in Latin America which integrate existing land-change information derived from remote sensing image and aerial photography/ground datasets, high-temporal resolution MODIS data, advanced machine learning (i.e deep learning) and big data technologies (i.e. Hadoop and Spark) to assess land-use change trajectories in newly deforested areas in near real time.

  16. Environmental Policy of Mangroves Management in Rembang Regency

    Science.gov (United States)

    Roziqin, Ali

    2018-02-01

    Mangrove area is an area overgrown mangrove in a natural or artificial, to maintain the environmental sustainability of coastal areas. In addition to maintaining the ecosystem of biodiversity, the mangrove area also has a role to social-economic, and socio-cultural. Rembang regency is one of the districts on the north coast of Java which has a large mangrove area. However, due to the high economic activity in the region of Rembang Regency, the mangrove area becomes less and damaged. This research to describe how environmental policy to manage mangrove area in Rembang regency with qualitative descriptive approach. The result is the role of government and society gradually able to restore mangrove ecosystem. Moreover the district government through Environmental Agency has made a masterplan for the development of mangrove ecotourism in Pasarbanggi Village. The existence of sustainable mangrove conservation has a positive impact on the environment and society.

  17. DEFORESTATION AND LANDSLIDES IN YUNNAN, CHINA.

    Science.gov (United States)

    Wieczorek, Gerald F.; Wu, Jishan; Li, Tianchi

    1987-01-01

    Landslides historically have caused severe erosion problems in the Xiao River drainage region of northeastern Yunnan Province, China, that hence resulted in serious economic and social consequences. Owing to monsoonal storms of high rainfall intensity, the erosion potential is high in this mountainous, seismically active region. Landslides transported large quantities of materials into the ravines. During intense storms, high runoff from the deforested areas has mobilized this material into debris flows. Where these flows emerged onto flatter slopes in the lower parts of the watersheds, the channels were too small to hold them, so farmland and villages were inundated. Debris flows in this region during June-August 1985 killed 12 people, damaged roads and the main rail line to Kunming, the capital of Yunnan Province, inundated farmland, and overflowed debris-retention structures. To mitigate these severe erosion problems, several different methods have been used.

  18. INTEGRATED SUSTAINABLE MANGROVE FOREST MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Cecep Kusmana

    2015-07-01

    Full Text Available Mangrove forest as a renewable resource must be managed based on sustainable basis in which the benefits of ecological, economic and social from the forest have to equity concern in achieving the optimum forest products and services in fulfill the needs of recent generation without destruction of future generation needs and that does not undesirable effects on the physical and social environment. This Sustainable Forest Management (SFM practices needs the supporting of sustainability in the development of social, economic and environment (ecological sounds simultaneously, it should be run by the proper institutional and regulations. In operational scale, SFM need integration in terms of knowledge, technical, consultative of stakeholders, coordination among sectors and other stakeholders, and considerations of ecological inter-relationship in which mangroves as an integral part of both a coastal ecosystem and a watershed (catchment area. Some tools have been developed to measure the performent of SFM, such as initiated by ITTO at 1992 and followed by Ministry of Forestry of Indonesia (1993, CIFOR (1995, LEI (1999, FSC (1999, etc., however, the true nuance of SFM’s performance is not easy to be measured. 

  19. Regional hydro-climatic impacts of contemporary Amazonian deforestation

    Science.gov (United States)

    Khanna, Jaya

    More than 17% of the Amazon rainforest has been cleared in the past three decades triggering important climatological and societal impacts. This thesis is devoted to identifying and explaining the regional hydroclimatic impacts of this change employing multidecadal satellite observations and numerical simulations providing an integrated perspective on this topic. The climatological nature of this study motivated the implementation and application of a cloud detection technique to a new geostationary satellite dataset. The resulting sub daily, high spatial resolution, multidecadal time series facilitated the detection of trends and variability in deforestation triggered cloud cover changes. The analysis was complemented by satellite precipitation, reanalysis and ground based datasets and attribution with the variable resolution Ocean-Land-Atmosphere-Model. Contemporary Amazonian deforestation affects spatial scales of hundreds of kilometers. But, unlike the well-studied impacts of a few kilometers scale deforestation, the climatic response to contemporary, large scale deforestation is neither well observed nor well understood. Employing satellite datasets, this thesis shows a transition in the regional hydroclimate accompanying increasing scales of deforestation, with downwind deforested regions receiving 25% more and upwind deforested regions receiving 25% less precipitation from the deforested area mean. Simulations robustly reproduce these shifts when forced with increasing deforestation alone, suggesting a negligible role of large-scale decadal climate variability in causing the shifts. Furthermore, deforestation-induced surface roughness variations are found necessary to reproduce the observed spatial patterns in recent times illustrating the strong scale-sensitivity of the climatic response to Amazonian deforestation. This phenomenon, inconsequential during the wet season, is found to substantially affect the regional hydroclimate in the local dry and parts of

  20. Deforestation alters rainfall: a myth or reality

    Science.gov (United States)

    Hanif, M. F.; Mustafa, M. R.; Hashim, A. M.; Yusof, K. W.

    2016-06-01

    To cope with the issue of food safety and human shelter, natural landscape has gone through a number of alterations. In the coming future, the expansion of urban land and agricultural farms will likely disrupt the natural environment. Researchers have claimed that land use change may become the most serious issue of the current century. Thus, it is necessary to understand the consequences of land use change on the climatic variables, e.g., rainfall. This study investigated the impact of deforestation on local rainfall. An integrated methodology was adopted to achieve the objectives. Above ground biomass was considered as the indicator of forest areas. Time series data of a Moderate Resolution Imaging Spectroradiometer (MODIS) sensor were obtained for the year of 2000, 2005, and 2010. Rainfall data were collected from the Department of Irrigation and Drainage, Malaysia. The MODIS time series data were classified and four major classes were developed based on the Normalised Difference Vegetation Index (NDVI) ranges. The results of the classification showed that water, and urban and agricultural lands have increased in their area by 2, 3, and 6%, respectively. On the other hand, the area of forest has decreased 10% collectively from 2000 to 2010. The results of NDVI and rainfall data were analysed by using a linear regression analysis. The results showed a significant relationship at a 90% confidence interval between rainfall and deforestation (t = 1.92, p = 0.06). The results of this study may provide information about the consequences of land use on the climate on the local scale.

  1. Towards integrated monitoring of REDD+

    NARCIS (Netherlands)

    Sassi, de C.; Joseph, S.; Bos, A.B.; Duchelle, A.E.; Ravikumar, A.; Herold, M.

    2015-01-01

    Monitoring socioecological impacts of policy interventions aimed at changing land-use practices is a major challenge in sustainable development and conservation. Reducing emissions from deforestation and forest degradation (REDD+) intends to compensate local stakeholders for demonstrated carbon

  2. Artificial Mangrove Species Mapping Using Pléiades-1: An Evaluation of Pixel-Based and Object-Based Classifications with Selected Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Dezhi Wang

    2018-02-01

    Full Text Available In the dwindling natural mangrove today, mangrove reforestation projects are conducted worldwide to prevent further losses. Due to monoculture and the low survival rate of artificial mangroves, it is necessary to pay attention to mapping and monitoring them dynamically. Remote sensing techniques have been widely used to map mangrove forests due to their capacity for large-scale, accurate, efficient, and repetitive monitoring. This study evaluated the capability of a 0.5-m Pléiades-1 in classifying artificial mangrove species using both pixel-based and object-based classification schemes. For comparison, three machine learning algorithms—decision tree (DT, support vector machine (SVM, and random forest (RF—were used as the classifiers in the pixel-based and object-based classification procedure. The results showed that both the pixel-based and object-based approaches could recognize the major discriminations between the four major artificial mangrove species. However, the object-based method had a better overall accuracy than the pixel-based method on average. For pixel-based image analysis, SVM produced the highest overall accuracy (79.63%; for object-based image analysis, RF could achieve the highest overall accuracy (82.40%, and it was also the best machine learning algorithm for classifying artificial mangroves. The patches produced by object-based image analysis approaches presented a more generalized appearance and could contiguously depict mangrove species communities. When the same machine learning algorithms were compared by McNemar’s test, a statistically significant difference in overall classification accuracy between the pixel-based and object-based classifications only existed in the RF algorithm. Regarding species, monoculture and dominant mangrove species Sonneratia apetala group 1 (SA1 as well as partly mixed and regular shape mangrove species Hibiscus tiliaceus (HT could well be identified. However, for complex and easily

  3. Bacterial N2-fixation in mangrove ecosystems: insights from a diazotroph-mangrove interaction.

    Science.gov (United States)

    Alfaro-Espinoza, Gabriela; Ullrich, Matthias S

    2015-01-01

    Mangrove forests are highly productive ecosystems but represent low nutrient environments. Nitrogen availability is one of the main factors limiting mangrove growth. Diazotrophs have been identified as key organisms that provide nitrogen to these environments. N2-fixation by such organisms was found to be higher in the mangrove roots than in surrounding rhizosphere. Moreover, previous studies showed that mangroves grew better in the presence of N2-fixers indicating a potentially mutualistic relationship. However, the molecular signals and mechanisms that govern these interactions are still poorly understood. Here we present novel insights in the interaction of a diazotroph with a mangrove species to improve our understanding of the molecular and ecophysiological relationship between these two organisms under controlled conditions. Our results showed that Marinobacterium mangrovicola is a versatile organism capable of competing with other organisms to survive for long periods in mangrove soils. N2-fixation by this bacterium was up-regulated in the presence of mangrove roots, indicating a possible beneficial interaction. The increase in N2-fixation was limited to cells of the exponential growth phase suggesting that N2-fixation differs over the bacterial growth cycle. Bacterial transformants harboring a transcriptional nifH::gusA fusion showed that M. mangrovicola successfully colonized mangrove roots and simultaneously conducted N2-fixation. The colonization process was stimulated by the lack of an external carbon source suggesting a possible mutualistic relationship. M. mangrovicola represents an interesting genetically accessible diazotroph, which colonize mangrove roots and exhibit higher N2-fixation in the presence of mangrove roots. Consequently, we propose this microorganism as a tool to study molecular interactions between N2-fixers and mangrove plants and to better understand how changes in the environment could impact these important and relatively unknown

  4. The drivers of tropical deforestation: a comprehensive review

    Science.gov (United States)

    Sanford, T. J.; Boucher, D.; Elias, P.; Lininger, K.; May-Tobin, C.; Roquemore, S.; Saxon, E.; Martin, J.; Mulik, K.

    2011-12-01

    Tropical forests are disappearing around the world. This clearing causes around 15% of global carbon emissions, leads to the rapid loss of biodiversity, and destroys the livelihoods of many indigenous peoples. We comprehensively reviewed the literature on drivers of tropical deforestation and found a number of trends. While deforestation was predominately driven by small farmers and government action in the 1970s and 1980s, since the 1990s most deforestation has been driven by large scale commercial agriculture. In Latin America, and Brazil in particular, forest clearing has mostly been due to expansion of cattle pastures and for a period in the late 1990s and early 2000s soy bean expansion. In Southeast Asia, deforestation has mainly been due to expansion of oil palm plantations and timber harvesting. In Africa small farmers and wood fuel collection still play a role, although deforestation rates are considerably lower there than in other regions. Additionally, increased urbanization and trends toward a diet based on meat, particularly beef, have help drive deforestation. Biofuels policies around the world are also adding demand, both directly for vegetable oil, and by expanding demand for competing crops such as corn. We examine the extent to which biofuels demand directly and indirectly acts as a driver of deforestation, and the policies that can mitigate this problem by analyzing alternative scenarios of biofuel expansion and their impact on land use change, commodity prices and green house gas emissions.

  5. The Perplex of Deforestation in sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    A.W Yalew

    2015-09-01

    Full Text Available Deforestation has been a complex phenomenon to study in sub-Saharan Africa. The average annual deforestation rate in the region is by far higher than the world average. What causes and drives deforestation in the region are debated to date. The present paper is motivated by this debate. It attempts to test whether the maintained hypotheses on the causes of deforestation can give answer to the problem in sub-Saharan Africa. It used average cross-national data of forty eight countries in the region. The data are retrieved from international sources. The Spearman’s rank correlation coefficients between two deforestation indicators and five often-cited causes of deforestation were computed. The role of public forest ownership, share of forest and agricultural products in total exports, and the year of forest laws enacted are also discussed. However, it finds no clear, strong, and systematic pattern to argue that population density, rural population, rural poverty, industrial logging for exports, economic growth, late enactment of forest laws, and public ownership of forests are underlying causes of deforestation in the region. The trends of forestland in Rwanda and Zimbabwe vividly present the finding. Therefore, future studies related to the topic in the region shall focus on sub-national panel data.

  6. SPATIAL ANALYSIS FRAMEWORK FOR MANGROVE FORESTS RESTORATION

    Directory of Open Access Journals (Sweden)

    Arimatéa de Carvalho Ximenes

    2016-09-01

    Full Text Available Mangroves are coastal ecosystems in transition between sea and land, localized worldwide on the tropical and subtropical regions. However, anthropogenic pressure in coastal areas has led to the conversion of many mangrove areas to other uses. Due to the increased awareness of the importance of mangroves worldwide, restoration methods are being studied. Our aim is to develop a framework for selecting suitable sites for red mangrove planting using Geographic Information Systems (GIS. For this reason, the methodology is based on abiotic factors that have an influence on the zonation (distribution and growing of the Rhizophora mangle. A total suitable area of 6,12 hectares was found, where 15.300 propagules could be planted.

  7. Ecophysiological approach to mangroves: a review

    Directory of Open Access Journals (Sweden)

    Sávia Soares Pascoalini

    2014-05-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2014v27n3p1 Mangrove has a high primary productivity that partly results from physiological mechanisms applied by plant species to environmental restrictions. This synthesis aims to assess the state of the art of ecophysiological studies on mangroves and identify gaps that allow increasing scientific knowledge on Brazilian mangroves and their potential contributions to climate changes. The worsening of environmental restrictions, such as increased salinity, longer flooding, and nutrient deficiency, induces a decrease of photosynthetic assimilation, resulting in a reduction in the development of species. The response of a given species to stress depends on its tolerance. We conclude that ecophysiological studies on mangrove vegetation are occasional, and their results differ between field and laboratory studies. In Brazil, this knowledge is still incipient, making it difficult to predict the behavior of species in face of climate change.

  8. Ecophysiological approach to mangroves: a review

    Directory of Open Access Journals (Sweden)

    Sávia Soares Pascoalini

    2014-09-01

    Full Text Available Mangrove has a high primary productivity that partly results from physiological mechanisms applied by plant species to environmental restrictions. This synthesis aims to assess the state of the art of ecophysiological studies on mangroves and identify gaps that allow increasing scientific knowledge on Brazilian mangroves and their potential contributions to climate changes. The worsening of environmental restrictions, such as increased salinity, longer flooding, and nutrient deficiency, induces a decrease in photosynthetic assimilation, resulting in a reduction in the development of species. The response of a given species to stress depends on its tolerance. We conclude that ecophysiological studies on mangrove vegetation are occasional, and their results differ between field and laboratory studies. In Brazil, this knowledge is still incipient, making it difficult to predict the behavior of species in face of climate change.

  9. Higher marine fungi from mangroves (Manglicolous fungi)

    Digital Repository Service at National Institute of Oceanography (India)

    ChinnaRaj, S.

    of higher marine fungi which included 23 Ascomycetes, 2 Basidiomycetes and 17 Deuteromycetes (Kohlmeyer and Kohlmeyer, 1979). Hyde (1990a) listed 120 species from 29 mangroves from all over the World this includes 87 Ascomycetes, 2 Basidiomycetes and 31...

  10. Nutrient Limitation in Central Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan; Duarte, Carlos M.; Irigoien, Xabier

    2016-01-01

    Red Sea have characteristic heights of ~2 m, suggesting nutrient limitation. We assessed the nutrient status of mangrove stands in the Central Red Sea and conducted a fertilization experiment (N, P and Fe and various combinations thereof) on 4-week

  11. Evolutionary diversity among Atlantic coast mangroves

    Science.gov (United States)

    Dodd, Richard S.; Rafii, Zara A.; Fromard, François; Blasco, François

    1998-06-01

    Current knowledge of intraspecific variation of mangrove species is limited in terms of rangewide distributions and is mostly restricted to morphological analyses, which have indicated a high degree of homogeneity. However, our analyses of the aliphatic hydrocarbon and triterpenoid fraction of foliar waxes (by gas chromatography and mass spectroscopy) of mangrove species ( Rhizophora mangle, Avicennia germinans and Laguncularia racemosa) from Gabon in West Africa and French Guiana in South America show significant genetic differentiation between eastern and western Atlantic provenances. The greater diversity in lipid composition, and the tendency for longer carbon chain lengths in all taxa from Africa, may suggest that American mangroves exhibit derived characteristics. A consequence of this hypothesis would be that Atlantic mangroves are unlikely to have dispersed from the Tethys via the Pacific, as has been proposed by some authors. More widespread sampling within the Atlantic and east Pacific region is needed to support and confirm these results.

  12. Management Mangrove Experiences Form Coastal People

    Science.gov (United States)

    Indah, P. N.; Radianto, I.; Abidin, Z.; Amir, I. T.; Pribadi, D. U.

    2018-01-01

    The mangrove area has an important meaning in beach ecosystem, both from ecological and economical aspects. For this, the rehabilitation of mangrove forest is done as one effort that aims to maintain and return the mangrove forest function as one of life system supporters, especially in beach area. The most respondent ages of coast people of Gending, Pajarakan, dan Kraksaan districts, Probolinggo Regency are between 30 to 59 years old, i.e. as 86 people or 95.55% indicates that coast people are productive ages so they can be hoped very potential for having role in supporting mangrove ecosystem management of Probolinggo Regency coast. The average respondent educational rates are mostly Elementary School to Senior High School, i.e. as 76 people. Generally, human resources of coast people have relatively good education level. Thereby, it can be hoped to have positive potencies for the role of coast people themselves toward the mangrove ecosystem management support of Probolinggo Regency coast. The average most respondents have family burdens two and three people as six people or 6.67 percent. But, there are still three respondents who have not have family burdens. Generally, more and more members help in respondent’s jobs. The mangrove ecosystem management strategy of Probolinggo Regency coast is by involving people role (people and people figures) and governmental supports through the models of mangrove forest management strategy, the model of embankment cultivation management by entering mangrove as input resources of production facilities, and ecotourism management by the purpose of improving people income.

  13. Do Mangroves Subsidize Carbon to Adjacent Mudflat Fish Communities?

    Science.gov (United States)

    Henkel, S.; Kasten, S.; Hartmann, J.; Staubwasser, M.; Hernandez, M. F.; West, L.; Midway, S. R.; Polito, M. J.

    2017-12-01

    Mangroves are often implicated as energetic sources for fisheries productivity. However, the validity of this connection still remains in contention. Stable isotopes may provide answers by tracking the use of specific basal carbon sources in fish and invertebrates living in mangrove-mudflat habitat mosaics. We analyzed 307 consumer samples representing n=44 fish and invertebrate species collected from mangrove forest creeks and adjacent mudflats in coastal Tanzania using bulk carbon and nitrogen stable isotope analysis. Given the proposed high productivity of mangrove habitats, we hypothesize that mudflat communities will have carbon stable isotope values similar to mangrove communities either through the flux of mangrove carbon into adjacent mudflats and/or via the movement of mudflat fish communities into and out of mangrove habitats. Alternatively, mangrove carbon is often refractory, which may result in mudflat communities with isotopic values that differ from those found in adjacent mangrove communities. This scenario would suggest limited carbon flow between mudflat and mangrove food webs and that the movement of fish into and out of mangrove habitats is related to shelter from predation more than feeding. Data analysis is ongoing to test these competing hypotheses. By understanding the contribution of mangrove carbon to adjacent habitats, managers in Tanzania can make better informed decisions regarding the protection of mangroves and the local fisheries, which are a crucial source of income and food.

  14. Roads Investments, Spatial Intensification and Deforestation in the Brazilian Amazon

    Science.gov (United States)

    Pfaff, Alexander; Robalino, Juan; Walker, Robert; Aldrich, Steven; Caldas, Marcellus; Reis, Eustaquio; Perz, Stephen; Bohrer, Claudio; Arima, Eugenio; Laurance, William; hide

    2007-01-01

    Understanding the impact of road investments on deforestation is part of a complete evaluation of the expansion of infrastructure for development. We find evidence of spatial spillovers from roads in the Brazilian Amazon: deforestation rises in the census tracts that lack roads but are in the same county as and within 100 km of a tract with a new paved or unpaved road. At greater distances from the new roads the evidence is mixed, including negative coefficients of inconsistent significance between 100 and 300 km, and if anything, higher neighbor deforestation at distances over 300 km.

  15. Spatial Causality. An application to the Deforestation Process in Bolivia

    Directory of Open Access Journals (Sweden)

    Javier Aliaga

    2011-01-01

    Full Text Available This paper analyses the causes of deforestation for a representative set of Bolivian municipalities. The literature on environmental economics insists on the importance of physical and social factors. We focus on the last group of variables. Our objective is to identify causal mechanisms between these factors of risk and the problem of deforestation. To this end, we present a testing strategy for spatial causality, based on a sequence of Lagrange Multipliers. The results that we obtain for the Bolivian case confirm only partially the traditional view of the problem of deforestation. Indeed, we only find unequivocal signs of causality in relation to the structure of property rights.

  16. The consequences of rapid deforestation: A North African example

    International Nuclear Information System (INIS)

    Zaimeche, S.E.

    1994-01-01

    This paper discusses some of the consequences of deforestation in Algeria. It focuses on the Wilaya region of Jijel, in the eastern part of the country, which has some of the last, dense, sub-humid Mediterranean forests. The issue of a possible connection between the recent widespread deforestation and the drier conditions affecting the region is discussed. It is also shown how rapid social and economic changes have induced deforestation on such a large scale that erosion and soil losses are reaching unprecedented levels. The paper also points to the loss of economic potential for Algeria's forests. 38 refs, 2 figs, 3 tabs, 3 photos

  17. Strategi Pengembangan Ekowisata Mangrove Wonorejo Surabaya

    Directory of Open Access Journals (Sweden)

    Khoirul Umam

    2016-03-01

    Full Text Available The aim of the research are to describe the potential of ecotourism development in mangrove forest, to describe the benefits that can be gained by the community, to analyze the internal and external environment in the development of Mangrove Ecotourism Surabaya, and to formulate development strategiy of Mangrove Ecotourism Wonorejo Surabaya based on internal and external environment. The first and second objectives were answered using descrip­tive analysis, while the third objective was answered using IFAS (Internal Factors Analysis Strategy and EFAS (External Factors Analysis. The result showed that the Mangrove Ecotourism Wonorejo Surabaya has potential aspects to develop in referring to the ecology places/sutainability places, the natural resources including flora and fauna, the government support, the organizational, and the community of Wonorejo support for facilities and infrastructure. There are three aspects in terms of the benefit that owned by Mangrove Ecotourism Wonorejo Surabaya includ­ing social, economic and agribusiness aspects. Based on internal factors analysis (IFAS and external factors analysis (EFAS, it was suggested that the aggressive strategy (growth, It can uses to get the opportunity strengthly, must be taken to develop mangrove ecotourism potential in Wonorejo, Surabaya.

  18. Economic Valuation of Mangrove Restoration in Indonesia

    Directory of Open Access Journals (Sweden)

    Djoko Suprapto

    2015-12-01

    Full Text Available Mangrove forest is one of the important ecosystems in Karimunjawa, Indonesia. It provides a variety of services both ecologically and economically. However, over-exploited activity, such as timber theft, can be threatening the sustainability of mangrove forest in Karimunjawa now and in the future. Thus, the improved management for mangrove forest is necessary to ensure its sustainability, and it is depending on how people value the conservation from economic and environment consideration. This study examines the factors influencing on the willingness to pay (WTP of respondents for mangrove restoration in Karimunjawa. A total of 502 respondents were interviewed using census method. The method employed is Contingent Valuation Method (CVMSingle Bounded. In CVM, the logit model was defined based on dichotomous choice method to estimate the willingness-to-pay (WTP randomly with three different starting bid value. Findings showed that local awareness of the importance of the values given by mangroves was popularized among local communities. The findings also indicated that respondents who are higher education and have more income were more likely to pay for the mangrove restoration.

  19. Extreme weather impacts on tropical mangrove forests in the Eastern Brazil Marine Ecoregion.

    Science.gov (United States)

    Servino, Ricardo Nogueira; Gomes, Luiz Eduardo de Oliveira; Bernardino, Angelo Fraga

    2018-07-01

    Extreme weather events are likely to become more frequent in the 21st century bringing significant impacts to coastal ecosystems. However, the capacity to detect and measure those impacts are still limited, with effects largely unstudied. In June 2016, a hailstorm with wind gusts of over 100 km·h -1 caused an unprecedented mangrove dieback on Eastern Brazil. To quantify the scale of impact and short-term recovery of mangroves (15-mo), we used satellite imagery and field sampling to evaluate changes in forest structure in control and impacted areas after the hailstorm. Satellite imagery revealed mangrove dieback in over 500 ha, corresponding to 29.3% of the total forest area suddenly impacted after the hailstorm. Fifteen months after the hailstorm, some impacted areas show an initial recovery, while others continued to degrade. The El Niño years of 2014-2016 created mild drought conditions in Eastern Brazil. As observed in wetlands of semi-arid regions during the same period, mangrove recovery may have been impaired by continued physiological stress and climate change effects. Economic losses in the study site from typical mangrove ecosystem services including food provision, climate regulation, raw materials and nurseries are estimated to at least US$ 792,624 yr -1 . This is the first evidence of an extreme weather impact on mangroves in Brazil that typically provide unique ecological and economic subsistence to coastal populations. Our results reveal that there is a pressing need for long-term monitoring and climate change adaptation actions for coastal wetlands in Brazil, and to provide broad estimates of ecosystem values associated with these ecosystems given many areas are already experiencing chronic stress from local impacts, drought and high temperatures. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. 18S rDNA Sequences from Microeukaryotes Reveal Oil Indicators in Mangrove Sediment

    Science.gov (United States)

    Santos, Henrique F.; Cury, Juliano C.; Carmo, Flavia L.; Rosado, Alexandre S.; Peixoto, Raquel S.

    2010-01-01

    Background Microeukaryotes are an effective indicator of the presence of environmental contaminants. However, the characterisation of these organisms by conventional tools is often inefficient, and recent molecular studies have revealed a great diversity of microeukaryotes. The full extent of this diversity is unknown, and therefore, the distribution, ecological role and responses to anthropogenic effects of microeukaryotes are rather obscure. The majority of oil from oceanic oil spills (e.g., the May 2010 accident in the Gulf of Mexico) converges on coastal ecosystems such as mangroves, which are threatened with worldwide disappearance, highlighting the need for efficient tools to indicate the presence of oil in these environments. However, no studies have used molecular methods to assess the effects of oil contamination in mangrove sediment on microeukaryotes as a group. Methodology/Principal Findings We evaluated the population dynamics and the prevailing 18S rDNA phylotypes of microeukaryotes in mangrove sediment microcosms with and without oil contamination, using PCR/DGGE and clone libraries. We found that microeukaryotes are useful for monitoring oil contamination in mangroves. Our clone library analysis revealed a decrease in both diversity and species richness after contamination. The phylogenetic group that showed the greatest sensitivity to oil was the Nematoda. After contamination, a large increase in the abundance of the groups Bacillariophyta (diatoms) and Biosoecida was detected. The oil-contaminated samples were almost entirely dominated by organisms related to Bacillariophyta sp. and Cafeteria minima, which indicates that these groups are possible targets for biomonitoring oil in mangroves. The DGGE fingerprints also indicated shifts in microeukaryote profiles; specific band sequencing indicated the appearance of Bacillariophyta sp. only in contaminated samples and Nematoda only in non-contaminated sediment. Conclusions/Significance We believe that

  1. Remote Sensing for Mapping RAMSAR Heritage Site at Sungai Pulai Mangrove Forest Reserve, Johor, Malaysia

    International Nuclear Information System (INIS)

    Hasmadi, I.M.; Pakhriazad, H.Z.; Norlida, K.

    2011-01-01

    The Sungai Pulai Mangrove Forest Reserve (SPMFR) is the largest reverin mangrove system in Johore. In 2003 about 9,126 ha of the Sungai Pulai mangrove was designated as a RAMSAR site. RAMSAR sites are wetland areas that are deemed to have international importance and are included in the List of Wetlands of International Importance. The SPMFR plays a significant socio-economic role to the adjacent 38 villages. Satellite remote sensing is a useful source of information where it provides timely and complete coverage for vegetation mapping especially in mangroves where the accessibility is difficult. This study was carried out to identify and map land cover types using SPOT-4 imagery at the Sungai Pulai-RAMSAR site and its surrounding areas. Through unsupervised classification technique a total of seven classes of land cover type were mapped, where about 90 % mapping accuracy was gained from the accuracy assessment. Later, vegetation densities were classified into five levels namely very high, high, medium, low and very low based on crown density scale using vegetation indices model such as NDVI, AVI and OSAVI. Results from NDVI and OSAVI model were almost similar but AVI model detected more on medium vegetation which did not show the real ground condition. The study concludes that SPOT-4 imagery was able to discriminate mangrove area clearly from other land covers type. Vegetation indices model can be used as a tool for mapping vegetation density level in the SPMFR and its surrounding area. Therefore VIs models from remote sensing are useful to monitor and manage the mangrove forest for sustainable management and preserve the SPMFR as a RAMSAR site in Peninsular Malaysia. (author)

  2. Trophic behaviour of juvenile reef fishes inhabiting interlinked mangrove-seagrass habitats in offshore mangrove islets

    Science.gov (United States)

    Mangroves are essential fish habitats acting as shelters and nurseries, but the relative contribution of mangrove resources to fish diets relies on site-specific context and fish life history stage. Stable isotope (δ13C, δ15N) and gut-content analyses were used to investigate siz...

  3. Saltmarsh boundary modulates dispersal of mangrove propagules: implications for mangrove migration with sea-level rise.

    Directory of Open Access Journals (Sweden)

    Jennifer M Peterson

    Full Text Available Few studies have empirically examined the suite of mechanisms that underlie the distributional shifts displayed by organisms in response to changing climatic condition. Mangrove forests are expected to move inland as sea-level rises, encroaching on saltmarsh plants inhabiting higher elevations. Mangrove propagules are transported by tidal waters and propagule dispersal is likely modified upon encountering the mangrove-saltmarsh ecotone, the implications of which are poorly known. Here, using an experimental approach, we record landward and seaward dispersal and subsequent establishment of mangrove propagules that encounter biotic boundaries composed of two types of saltmarsh taxa: succulents and grasses. Our findings revealed that propagules emplaced within saltmarsh vegetation immediately landward of the extant mangrove fringe boundary frequently dispersed in the seaward direction. However, propagules moved seaward less frequently and over shorter distances upon encountering boundaries composed of saltmarsh grasses versus succulents. We uniquely confirmed that the small subset of propagules dispersing landward displayed proportionately higher establishment success than those transported seaward. Although impacts of ecotones on plant dispersal have rarely been investigated in situ, our experimental results indicate that the interplay between tidal transport and physical attributes of saltmarsh vegetation influence boundary permeability to propagules, thereby directing the initial phase of shifting mangrove distributions. The incorporation of tidal inundation information and detailed data on landscape features, such as the structure of saltmarsh vegetation at mangrove boundaries, should improve the accuracy of models that are being developed to forecast mangrove distributional shifts in response to sea-level rise.

  4. Saltmarsh boundary modulates dispersal of mangrove propagules: implications for mangrove migration with sea-level rise.

    Science.gov (United States)

    Peterson, Jennifer M; Bell, Susan S

    2015-01-01

    Few studies have empirically examined the suite of mechanisms that underlie the distributional shifts displayed by organisms in response to changing climatic condition. Mangrove forests are expected to move inland as sea-level rises, encroaching on saltmarsh plants inhabiting higher elevations. Mangrove propagules are transported by tidal waters and propagule dispersal is likely modified upon encountering the mangrove-saltmarsh ecotone, the implications of which are poorly known. Here, using an experimental approach, we record landward and seaward dispersal and subsequent establishment of mangrove propagules that encounter biotic boundaries composed of two types of saltmarsh taxa: succulents and grasses. Our findings revealed that propagules emplaced within saltmarsh vegetation immediately landward of the extant mangrove fringe boundary frequently dispersed in the seaward direction. However, propagules moved seaward less frequently and over shorter distances upon encountering boundaries composed of saltmarsh grasses versus succulents. We uniquely confirmed that the small subset of propagules dispersing landward displayed proportionately higher establishment success than those transported seaward. Although impacts of ecotones on plant dispersal have rarely been investigated in situ, our experimental results indicate that the interplay between tidal transport and physical attributes of saltmarsh vegetation influence boundary permeability to propagules, thereby directing the initial phase of shifting mangrove distributions. The incorporation of tidal inundation information and detailed data on landscape features, such as the structure of saltmarsh vegetation at mangrove boundaries, should improve the accuracy of models that are being developed to forecast mangrove distributional shifts in response to sea-level rise.

  5. Degradation of mangrove-derived organic matter in mangrove associated sponges

    NARCIS (Netherlands)

    Hunting, E.R.; de Goeij, J.M.; Asselman, M.; van Soest, R.W.M.; van der Geest, H.G.

    2010-01-01

    Sponge communities found in Caribbean mangroves are typical to this habitat: partly endemic and very distinct from sponge communities on nearby reefs. A trade-off between resistance to competitors and predators appears to influence success of individual sponge species in mangrove habitats. We

  6. mangrove litter production and seasonality of dominant species

    African Journals Online (AJOL)

    L.A

    storminess, and sea-level rise (Snedaker, 1995; Nigel, 1998). In the last .... mangrove species (three-levels) were entered as fixed factors, with the total litter components ..... Mangroves and climate change in the Florida and Caribbean region:.

  7. Development of an intertidal mangrove nursery and afforestation techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.

    The development of an intertidal mangrove nursery and afforestation technique for regeneration and restoration of mangroves of Goa is described. Site selection, source of plant material, nursery plantation, season of transplantation, technique...

  8. Asia Pacific Mangrove Information Network (APMIN): A conceptual model

    Digital Repository Service at National Institute of Oceanography (India)

    Chavan, V.S.; Jagtap, T.G.; Untawale, A.G.

    Asia Pacific Mangrove Information Network (APMIN), its structure and scope, is discussed in this paper. Establishment of National Mangrove Information Centers (NMIC) in 20 Asia-Pacific countries, would contribute towards development of databases...

  9. Status of mangroves along the countries bordering the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.; Wafar, S.; Jagtap, T.G.

    Distribution of mangroves in the countries bordering the Arabian Sea, including Gulf of Oman, Persian Gulf, Gulf of Aden and Red Sea, is reviewed and their present status is discussed. The estimated area of mangrove vegetation is 1140 sq. km...

  10. Quantitative Review and Distribution Status of Mangrove Forest ...

    African Journals Online (AJOL)

    FIRST LADY

    This paper statistically evaluated the distribution of mangrove forest distributions in Nineteen ... interlinked with highly productive coastal lagoons, tidal estuaries and deltas. Similarly .... (Atlantic–East Pacific red mangroves), ver. 2.1. In: Elevitch ...

  11. The Impact of Amazonian Deforestation on Dry-Season Rainfall

    Science.gov (United States)

    Negri, Andrew J.; Adler, Robert F.; Xu, Li-Ming; Surratt, Jason; Starr, David OC. (Technical Monitor)

    2002-01-01

    Many modeling studies have concluded that widespread deforestation of Amazonia would lead to decreased rainfall. We analyze geosynchronous infrared satellite data with respect percent cloudiness, and analyze rain estimates from microwave sensors aboard the Tropical Rainfall Measuring Mission satellite. We conclude that in the dry-season, when the effects of the surface are not overwhelmed by synoptic-scale weather disturbances, deep convective cloudiness, as well as rainfall occurrence, all increase over the deforested and non-forested (savanna) regions. This is in response to a local circulation initiated by the differential heating of the region's varying forestation. Analysis of the diurnal cycle of cloudiness reveals a shift toward afternoon hours in the deforested and savanna regions, compared to the forested regions. Analysis of 14 years of data from the Special Sensor Microwave/Imager data revealed that only in August did rainfall amounts increase over the deforested region.

  12. Landscape hydrology. The hydrological legacy of deforestation on global wetlands.

    Science.gov (United States)

    Woodward, C; Shulmeister, J; Larsen, J; Jacobsen, G E; Zawadzki, A

    2014-11-14

    Increased catchment erosion and nutrient loading are commonly recognized impacts of deforestation on global wetlands. In contrast, an increase in water availability in deforested catchments is well known in modern studies but is rarely considered when evaluating past human impacts. We used a Budyko water balance approach, a meta-analysis of global wetland response to deforestation, and paleoecological studies from Australasia to explore this issue. After complete deforestation, we demonstrated that water available to wetlands increases by up to 15% of annual precipitation. This can convert ephemeral swamps to permanent lakes or even create new wetlands. This effect is globally significant, with 9 to 12% of wetlands affected, including 20 to 40% of Ramsar wetlands, but is widely unrecognized because human impact studies rarely test for it. Copyright © 2014, American Association for the Advancement of Science.

  13. Contribution of Agriculture to Deforestation in the Tropics: A ...

    African Journals Online (AJOL)

    This has resulted in a high rate of deforestation and posing a serious ..... formation of top soils, creation of favourable soil structure and storage of nutrients that are .... is non-renewable within any reasonable biological and economic time scale.

  14. Weak simulated extratropical responses to complete tropical deforestation

    Science.gov (United States)

    Findell, K.L.; Knutson, T.R.; Milly, P.C.D.

    2006-01-01

    The Geophysical Fluid Dynamics Laboratory atmosphere-land model version 2 (AM2/LM2) coupled to a 50-m-thick slab ocean model has been used to investigate remote responses to tropical deforestation. Magnitudes and significance of differences between a control run and a deforested run are assessed through comparisons of 50-yr time series, accounting for autocorrelation and field significance. Complete conversion of the broadleaf evergreen forests of South America, central Africa, and the islands of Oceania to grasslands leads to highly significant local responses. In addition, a broad but mild warming is seen throughout the tropical troposphere (deforested run and the control run are similar in magnitude and area to the differences between nonoverlapping segments of the control run. These simulations suggest that extratropical responses to complete tropical deforestation are unlikely to be distinguishable from natural climate variability.

  15. Impact of deforestation in the Amazon basin on cloud climatology.

    Science.gov (United States)

    Wang, Jingfeng; Chagnon, Frédéric J F; Williams, Earle R; Betts, Alan K; Renno, Nilton O; Machado, Luiz A T; Bisht, Gautam; Knox, Ryan; Bras, Rafael L

    2009-03-10

    Shallow clouds are prone to appear over deforested surfaces whereas deep clouds, much less frequent than shallow clouds, favor forested surfaces. Simultaneous atmospheric soundings at forest and pasture sites during the Rondonian Boundary Layer Experiment (RBLE-3) elucidate the physical mechanisms responsible for the observed correlation between clouds and land cover. We demonstrate that the atmospheric boundary layer over the forested areas is more unstable and characterized by larger values of the convective available potential energy (CAPE) due to greater humidity than that which is found over the deforested area. The shallow convection over the deforested areas is relatively more active than the deep convection over the forested areas. This greater activity results from a stronger lifting mechanism caused by mesoscale circulations driven by deforestation-induced heterogeneities in land cover.

  16. The role of supply-chain initiatives in reducing deforestation

    Science.gov (United States)

    Lambin, Eric F.; Gibbs, Holly K.; Heilmayr, Robert; Carlson, Kimberly M.; Fleck, Leonardo C.; Garrett, Rachael D.; le Polain de Waroux, Yann; McDermott, Constance L.; McLaughlin, David; Newton, Peter; Nolte, Christoph; Pacheco, Pablo; Rausch, Lisa L.; Streck, Charlotte; Thorlakson, Tannis; Walker, Nathalie F.

    2018-01-01

    A major reduction in global deforestation is needed to mitigate climate change and biodiversity loss. Recent private sector commitments aim to eliminate deforestation from a company's operations or supply chain, but they fall short on several fronts. Company pledges vary in the degree to which they include time-bound interventions with clear definitions and criteria to achieve verifiable outcomes. Zero-deforestation policies by companies may be insufficient to achieve broader impact on their own due to leakage, lack of transparency and traceability, selective adoption and smallholder marginalization. Public-private policy mixes are needed to increase the effectiveness of supply-chain initiatives that aim to reduce deforestation. We review current supply-chain initiatives, their effectiveness, and the challenges they face, and go on to identify knowledge gaps for complementary public-private policies.

  17. CASE STUDY: Community Based Ecological Mangrove Rehabilitation (CBEMR) in Indonesia

    OpenAIRE

    Brown, Ben; Fadillah, Ratna; Nurdin, Yusran; Soulsby, Iona; Ahmad, Rio

    2014-01-01

    While successful examples of large-scale (5 000-10 000 ha) ecological wetland/mangrove rehabilitation projects exist worldwide, mangrove rehabilitation efforts in Indonesia, both large and small, have mainly failed. The majority of projects (both government programs and non-government initiatives) have oversimplified the technical processes of mangrove rehabilitation, favouring the direct planting of a restricted subset of mangrove species (from the family Rhizophoracea), commonly in the lowe...

  18. PENILAIAN JASA EKOSISTEM MANGROVE DI TELUK BLANAKAN KABUPATEN SUBANG

    OpenAIRE

    Martini Dwi Indrayanti; Achmad Fahrudin; Isdradjad Setiobudiandi

    2015-01-01

    Mangrove is one of the natural resource that has an important role in maintaining the balance between land-based and aquatic ecosystems. Therefore the ecosystems are placed as one of the life-supporting ecosystems which is needed to be preserved. This study was held in Blanakan Bay with objectives were: 1) To describe the covered area of mangrove ecosystem; and 2) To calculate the value of mangrove ecosystem services. Mangrove covered area was obtained through satellite image analysis while e...

  19. Predicting the deforestation-trend under different carbon-prices

    Directory of Open Access Journals (Sweden)

    Obersteiner Michael

    2006-12-01

    Full Text Available Abstract Background Global carbon stocks in forest biomass are decreasing by 1.1 Gt of carbon annually, owing to continued deforestation and forest degradation. Deforestation emissions are partly offset by forest expansion and increases in growing stock primarily in the extra-tropical north. Innovative financial mechanisms would be required to help reducing deforestation. Using a spatially explicit integrated biophysical and socio-economic land use model we estimated the impact of carbon price incentive schemes and payment modalities on deforestation. One payment modality is adding costs for carbon emission, the other is to pay incentives for keeping the forest carbon stock intact. Results Baseline scenario calculations show that close to 200 mil ha or around 5% of todays forest area will be lost between 2006 and 2025, resulting in a release of additional 17.5 GtC. Today's forest cover will shrink by around 500 million hectares, which is 1/8 of the current forest cover, within the next 100 years. The accumulated carbon release during the next 100 years amounts to 45 GtC, which is 15% of the total carbon stored in forests today. Incentives of 6 US$/tC for vulnerable standing biomass payed every 5 year will bring deforestation down by 50%. This will cause costs of 34 billion US$/year. On the other hand a carbon tax of 12 $/tC harvested forest biomass will also cut deforestation by half. The tax income will, if enforced, decrease from 6 billion US$ in 2005 to 4.3 billion US$ in 2025 and 0.7 billion US$ in 2100 due to decreasing deforestation speed. Conclusion Avoiding deforestation requires financial mechanisms that make retention of forests economically competitive with the currently often preferred option to seek profits from other land uses. Incentive payments need to be at a very high level to be effective against deforestation. Taxes on the other hand will extract budgetary revenues from the regions which are already poor. A combination of

  20. Mining drives extensive deforestation in the Brazilian Amazon

    OpenAIRE

    Sonter, Laura J.; Herrera, Diego; Barrett, Damian J.; Galford, Gillian L.; Moran, Chris J.; Soares-Filho, Britaldo S.

    2017-01-01

    Mining poses significant and potentially underestimated risks to tropical forests worldwide. In Brazil’s Amazon, mining drives deforestation far beyond operational lease boundaries, yet the full extent of these impacts is unknown and thus neglected in environmental licensing. Here we quantify mining-induced deforestation and investigate the aspects of mining operations, which most likely contribute. We find mining significantly increased Amazon forest loss up to 70 km beyond mining lease boun...

  1. Deforestation in Portugal: causes, consequences and possible solutions

    OpenAIRE

    Branco, João; Oliveira, Márcia; Ferreira, Ricardo; Póvoa, Orlanda

    2014-01-01

    Deforestation is not a new problem although world-wide population awareness is increasing. This issue has terrible environmental, social and economic consequences due to the over-exploitation of the natural resources and to alternative land uses which are more profitable in the short term. The combat and mitigation of deforestation is one of the biggest challenges for the 21st Century in order to achieve the Millennium Goals and a global sustainable development at all levels of human activiti...

  2. Deforestation and stream warming affect body size of Amazonian fishes.

    Science.gov (United States)

    Ilha, Paulo; Schiesari, Luis; Yanagawa, Fernando I; Jankowski, KathiJo; Navas, Carlos A

    2018-01-01

    Declining body size has been suggested to be a universal response of organisms to rising temperatures, manifesting at all levels of organization and in a broad range of taxa. However, no study to date evaluated whether deforestation-driven warming could trigger a similar response. We studied changes in fish body size, from individuals to assemblages, in streams in Southeastern Amazonia. We first conducted sampling surveys to validate the assumption that deforestation promoted stream warming, and to test the hypothesis that warmer deforested streams had reduced fish body sizes relative to cooler forest streams. As predicted, deforested streams were up to 6 °C warmer and had fish 36% smaller than forest streams on average. This body size reduction could be largely explained by the responses of the four most common species, which were 43-55% smaller in deforested streams. We then conducted a laboratory experiment to test the hypothesis that stream warming as measured in the field was sufficient to cause a growth reduction in the dominant fish species in the region. Fish reared at forest stream temperatures gained mass, whereas those reared at deforested stream temperatures lost mass. Our results suggest that deforestation-driven stream warming is likely to be a relevant factor promoting observed body size reductions, although other changes in stream conditions, like reductions in organic matter inputs, can also be important. A broad scale reduction in fish body size due to warming may be occurring in streams throughout the Amazonian Arc of Deforestation, with potential implications for the conservation of Amazonian fish biodiversity and food supply for people around the Basin.

  3. Deforestation and stream warming affect body size of Amazonian fishes

    Science.gov (United States)

    Yanagawa, Fernando I.; Jankowski, KathiJo; Navas, Carlos A.

    2018-01-01

    Declining body size has been suggested to be a universal response of organisms to rising temperatures, manifesting at all levels of organization and in a broad range of taxa. However, no study to date evaluated whether deforestation-driven warming could trigger a similar response. We studied changes in fish body size, from individuals to assemblages, in streams in Southeastern Amazonia. We first conducted sampling surveys to validate the assumption that deforestation promoted stream warming, and to test the hypothesis that warmer deforested streams had reduced fish body sizes relative to cooler forest streams. As predicted, deforested streams were up to 6 °C warmer and had fish 36% smaller than forest streams on average. This body size reduction could be largely explained by the responses of the four most common species, which were 43–55% smaller in deforested streams. We then conducted a laboratory experiment to test the hypothesis that stream warming as measured in the field was sufficient to cause a growth reduction in the dominant fish species in the region. Fish reared at forest stream temperatures gained mass, whereas those reared at deforested stream temperatures lost mass. Our results suggest that deforestation-driven stream warming is likely to be a relevant factor promoting observed body size reductions, although other changes in stream conditions, like reductions in organic matter inputs, can also be important. A broad scale reduction in fish body size due to warming may be occurring in streams throughout the Amazonian Arc of Deforestation, with potential implications for the conservation of Amazonian fish biodiversity and food supply for people around the Basin. PMID:29718960

  4. Predicting future mangrove forest migration in the Everglades under rising sea level

    Science.gov (United States)

    Doyle, Thomas W.

    2003-01-01

    Mangroves are highly productive ecosystems that provide valued habitat for fish and shorebirds. Mangrove forests are universally composed of relatively few tree species and a single overstory strata. Three species of true mangroves are common to intertidal zones of the Caribbean and Gulf of Mexico Coast, namely, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangrove forests occupy intertidal settings of the coastal margin of the Everglades along the southwest tip of the Florida peninsula (fig. 1).

  5. Deforestation and its impacts on district Abbottabad

    International Nuclear Information System (INIS)

    Siddique, M.; Shahzadi, I.; Yousaf, S.

    2005-01-01

    In District Abbottabad, area cover under forests is 76148 ha, which is 5.4% of the forest resources of the province. The study areas have sufficient natural resources but these natural resources are depleting very rapidly. The present study showed that most of the population living especially near the mountain range is poor, illiterate and having no other means of income generation. Therefore they cut forests trees for the fuel and timber not only to fulfill their domestic needs but also on commercial scale. There are no other alternatives of fuel wood in the area. They mostly depend of forest for fuel wood. People of the area get timber mainly from the nearby forests for construction. Agriculture is the backbone of local economy in the area. The forest trees near the agriculture area are cut down to extend their agricultural land. Soil erosion and flooding is increased because of clearing of land for agriculture. People of the area graze their livestock freely in the rangelands and forests without taking care of their carrying capacity. The political administration and forest department cannot take any step to prevent overgrazing and deforestation activities in the area. Some times the local people damage the plants by cutting or putting them in fire, which causes severe damage to the plants. Lack of awareness among local communities about the importance of natural resources i.e. forest and wildlife. The people considered the wildlife, as free gift of nature there is no restriction on hunting from government or other agency. (author)

  6. Tropical deforestation alters hummingbird movement patterns

    Science.gov (United States)

    Hadley, Adam S.; Betts, Matthew G.

    2009-01-01

    Reduced pollination success, as a function of habitat loss and fragmentation, appears to be a global phenomenon. Disruption of pollinator movement is one hypothesis put forward to explain this pattern in pollen limitation. However, the small size of pollinators makes them very difficult to track; thus, knowledge of their movements is largely speculative. Using tiny radio transmitters (0.25 g), we translocated a generalist tropical ‘trap-lining’ hummingbird, the green hermit (Phaethornis guy), across agricultural and forested landscapes to test the hypothesis that movement is influenced by patterns of deforestation. Although, we found no difference in homing times between landscape types, return paths were on average 459±144 m (±s.e.) more direct in forested than agricultural landscapes. In addition, movement paths in agricultural landscapes contained 36±4 per cent more forest than the most direct route. Our findings suggest that this species can circumvent agricultural matrix to move among forest patches. Nevertheless, it is clear that movement of even a highly mobile species is strongly influenced by landscape disturbance. Maintaining landscape connectivity with forest corridors may be important for enhancing movement, and thus in facilitating pollen transfer. PMID:19158031

  7. A mangrove creek restoration plan utilizing hydraulic modeling

    Science.gov (United States)

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. As a result, the restoration of mangrove forests has become an important topic of research. Urban development has been a primary cause for mangrove destruction and d...

  8. Coastal erosion and mangrove progradation of Southern Thailand

    NARCIS (Netherlands)

    Thampanya, U.; Vermaat, J.E.; Sinsakul, S.; Panapitukkul, N.

    2006-01-01

    Approximately 60% of the southern Thai coastline used to be occupied by mangroves according to the first mangrove forest assessment in 1961. During the past three decades, these mangrove areas have been reduced to about 50% with less than 10% left on the east coast. Coastal erosion and accretion

  9. Abiotic water quality control on mangrove distribution in estuarine ...

    African Journals Online (AJOL)

    Therefore, to replace the mangrove that has been lost due to die-off, the red mangrove maybe used in viable restoration efforts for the protection of inland areas from floods, as well as to provide ecosystem goods and services. Keywords: electromagnetic-induction, tropical wetland, water quality, mangrove distribution ...

  10. The national determinants of deforestation in sub-Saharan Africa.

    Science.gov (United States)

    Rudel, Thomas K

    2013-01-01

    For decades, the dynamics of tropical deforestation in sub-Saharan Africa (SSA) have defied easy explanation. The rates of deforestation have been lower than elsewhere in the tropics, and the driving forces evident in other places, government new land settlement schemes and industrialized agriculture, have largely been absent in SSA. The context and causes for African deforestation become clearer through an analysis of new, national-level data on forest cover change for SSA countries for the 2000-2005 period. The recent dynamic in SSA varies from dry to wet biomes. Deforestation occurred at faster rates in nations with predominantly dry forests. The wetter Congo basin countries had lower rates of deforestation, in part because tax receipts from oil and mineral industries in this region spurred rural to urban migration, declines in agriculture and increased imports of cereals from abroad. In this respect, the Congo basin countries may be experiencing an oil and mineral fuelled forest transition. Small farmers play a more important role in African deforestation than they do in southeast Asia and Latin America, in part because small-scale agriculture remains one of the few livelihoods open to rural peoples.

  11. Forest extent and deforestation in tropical Africa since 1900.

    Science.gov (United States)

    Aleman, Julie C; Jarzyna, Marta A; Staver, A Carla

    2018-01-01

    Accurate estimates of historical forest extent and associated deforestation rates are crucial for quantifying tropical carbon cycles and formulating conservation policy. In Africa, data-driven estimates of historical closed-canopy forest extent and deforestation at the continental scale are lacking, and existing modelled estimates diverge substantially. Here, we synthesize available palaeo-proxies and historical maps to reconstruct forest extent in tropical Africa around 1900, when European colonization accelerated markedly, and compare these historical estimates with modern forest extent to estimate deforestation. We find that forests were less extensive in 1900 than bioclimatic models predict. Resultantly, across tropical Africa, ~ 21.7% of forests have been deforested, yielding substantially slower deforestation than previous estimates (35-55%). However, deforestation was heterogeneous: West and East African forests have undergone almost complete decline (~ 83.3 and 93.0%, respectively), while Central African forests have expanded at the expense of savannahs (~ 1.4% net forest expansion, with ~ 135,270 km 2 of savannahs encroached). These results suggest that climate alone does not determine savannah and forest distributions and that many savannahs hitherto considered to be degraded forests are instead relatively old. These data-driven reconstructions of historical biome distributions will inform tropical carbon cycle estimates, carbon mitigation initiatives and conservation planning in both forest and savannah systems.

  12. Mining drives extensive deforestation in the Brazilian Amazon.

    Science.gov (United States)

    Sonter, Laura J; Herrera, Diego; Barrett, Damian J; Galford, Gillian L; Moran, Chris J; Soares-Filho, Britaldo S

    2017-10-18

    Mining poses significant and potentially underestimated risks to tropical forests worldwide. In Brazil's Amazon, mining drives deforestation far beyond operational lease boundaries, yet the full extent of these impacts is unknown and thus neglected in environmental licensing. Here we quantify mining-induced deforestation and investigate the aspects of mining operations, which most likely contribute. We find mining significantly increased Amazon forest loss up to 70 km beyond mining lease boundaries, causing 11,670 km 2 of deforestation between 2005 and 2015. This extent represents 9% of all Amazon forest loss during this time and 12 times more deforestation than occurred within mining leases alone. Pathways leading to such impacts include mining infrastructure establishment, urban expansion to support a growing workforce, and development of mineral commodity supply chains. Mining-induced deforestation is not unique to Brazil; to mitigate adverse impacts of mining and conserve tropical forests globally, environmental assessments and licensing must considered both on- and off-lease sources of deforestation.

  13. Functional differentiation between fish assemblages from forested and deforested streams

    Directory of Open Access Journals (Sweden)

    Fabrício Barreto Teresa

    Full Text Available We tested the hypothesis that streams in deforested areas shelter different fish communities to nearby forested areas, and that these disparities are due to environmental parameters that limit or benefit different species according to their functional traits. We compared the community composition of three south east Brazilian streams flanked by riparian forest with three nearby streams in deforested areas. The following functional traits were considered: diet, habitat use, water flow preference, size, and hypoxia tolerance. Differentiation between forested and deforested streams corresponded with the different contributions of three functional groups. Species reported in the literature to be hypoxia tolerant, and exhibiting a variable combination of the other traits prevailed in deforested streams, although we did not find substantial differences in oxygen levels between forested and deforested streams. In forested streams, benthic species associated with a high water flow and an insectivorous diet were dominant. Changes in streams induced by deforestation which are associated with habitat availability, food resources, and physicochemical conditions appear to restrict the occurrence of specialized species and instead benefit tolerant generalists.

  14. Mangroves

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.

    stream_size 2 stream_content_type text/plain stream_name Biodiversity_Western_Ghats_Inf_Kit_1994_4.2_1.pdf.txt stream_source_info Biodiversity_Western_Ghats_Inf_Kit_1994_4.2_1.pdf.txt Content-Encoding ISO-8859-1 Content-Type text...

  15. Spatio-temporal variations in the composition of organic matter in surface sediments of a mangrove receiving shrimp farm effluents (New Caledonia)

    International Nuclear Information System (INIS)

    Aschenbroich, Adélaïde; Marchand, Cyril; Molnar, Nathalie; Deborde, Jonathan; Hubas, Cédric; Rybarczyk, Hervé; Meziane, Tarik

    2015-01-01

    In order to investigate spatio-temporal variations in the composition and origin of the benthic organic matter (OM) at the sediment surface in mangrove receiving shrimp farm effluents, fatty acid (FA) biomarkers, natural stable isotopes (δ 13 C and δ 15 N), C:N ratios and chlorophyll-a (chl-a) concentrations were determined during the active and the non-active period of the farm. Fatty acid compositions in surface sediments within the mangrove forest indicated that organic matter inputs varied along the year as a result of farm activity. Effluents were the source of fresh particulate organic matter for the mangrove, as evidenced by the unsaturated fatty acid (UFA) distribution. The anthropogenic MUFA 18:1ω9 was not only accumulated at the sediment surface in some parts of the mangrove, but was also exported to the seafront. Direct release of bacteria and enhanced in situ production of fungi, as revealed by specific FAs, stimulated mangrove litter decomposition under effluent runoff condition. Also, microalgae released from ponds contributed to maintain high benthic chl-a concentrations in mangrove sediments in winter and to a shift in microphytobenthic community assemblage. Primary production was high whether the farm released effluent or not which questioned the temporary effect of shrimp farm effluent on benthic microalgae dynamic. This study outlined that mangrove benthic organic matter was qualitatively and quantitatively affected by shrimp farm effluent release and that responses to environmental condition changes likely depended on mangrove stand characteristics. - Highlights: • Fatty acid 18:1ω9 is a relevant marker to monitor effluent pathway in the mangrove. • OM nature and distribution at sediment surface varied in relation to farm activity. • Enhancement of litter-decomposer biomass and activity stimulates litter degradation. • Diatoms dominate the microalgae community under effluent runoff conditions. • Chl-a concentrations suggest

  16. Spatio-temporal variations in the composition of organic matter in surface sediments of a mangrove receiving shrimp farm effluents (New Caledonia)

    Energy Technology Data Exchange (ETDEWEB)

    Aschenbroich, Adélaïde, E-mail: adelaide.aschenbroich@univ-brest.fr [UMR BOREA 7208 CNRS/MNHN/UPMC/IRD/UCBN, Muséum National d' Histoire Naturelle, CP 53, 61 rue Buffon, 75231 Paris cedex 5 (France); Marchand, Cyril [Institut de Recherche pour le Développement (IRD), UMR 7590, UR 206, BP A5, 98848 Nouméa, New Caledonia (France); Molnar, Nathalie [UMR BOREA 7208 CNRS/MNHN/UPMC/IRD/UCBN, Muséum National d' Histoire Naturelle, CP 53, 61 rue Buffon, 75231 Paris cedex 5 (France); Institut de Recherche pour le Développement (IRD), UMR 7590, UR 206, BP A5, 98848 Nouméa, New Caledonia (France); Deborde, Jonathan [Institut de Recherche pour le Développement (IRD), UMR 7590, UR 206, BP A5, 98848 Nouméa, New Caledonia (France); Hubas, Cédric; Rybarczyk, Hervé; Meziane, Tarik [UMR BOREA 7208 CNRS/MNHN/UPMC/IRD/UCBN, Muséum National d' Histoire Naturelle, CP 53, 61 rue Buffon, 75231 Paris cedex 5 (France)

    2015-04-15

    In order to investigate spatio-temporal variations in the composition and origin of the benthic organic matter (OM) at the sediment surface in mangrove receiving shrimp farm effluents, fatty acid (FA) biomarkers, natural stable isotopes (δ{sup 13}C and δ{sup 15}N), C:N ratios and chlorophyll-a (chl-a) concentrations were determined during the active and the non-active period of the farm. Fatty acid compositions in surface sediments within the mangrove forest indicated that organic matter inputs varied along the year as a result of farm activity. Effluents were the source of fresh particulate organic matter for the mangrove, as evidenced by the unsaturated fatty acid (UFA) distribution. The anthropogenic MUFA 18:1ω9 was not only accumulated at the sediment surface in some parts of the mangrove, but was also exported to the seafront. Direct release of bacteria and enhanced in situ production of fungi, as revealed by specific FAs, stimulated mangrove litter decomposition under effluent runoff condition. Also, microalgae released from ponds contributed to maintain high benthic chl-a concentrations in mangrove sediments in winter and to a shift in microphytobenthic community assemblage. Primary production was high whether the farm released effluent or not which questioned the temporary effect of shrimp farm effluent on benthic microalgae dynamic. This study outlined that mangrove benthic organic matter was qualitatively and quantitatively affected by shrimp farm effluent release and that responses to environmental condition changes likely depended on mangrove stand characteristics. - Highlights: • Fatty acid 18:1ω9 is a relevant marker to monitor effluent pathway in the mangrove. • OM nature and distribution at sediment surface varied in relation to farm activity. • Enhancement of litter-decomposer biomass and activity stimulates litter degradation. • Diatoms dominate the microalgae community under effluent runoff conditions. • Chl-a concentrations suggest

  17. Nutrient Limitation in Central Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan

    2016-12-24

    As coastal plants that can survive in salt water, mangroves play an essential role in large marine ecosystems (LMEs). The Red Sea, where the growth of mangroves is stunted, is one of the least studied LMEs in the world. Mangroves along the Central Red Sea have characteristic heights of ~2 m, suggesting nutrient limitation. We assessed the nutrient status of mangrove stands in the Central Red Sea and conducted a fertilization experiment (N, P and Fe and various combinations thereof) on 4-week-old seedlings of Avicennia marina to identify limiting nutrients and stoichiometric effects. We measured height, number of leaves, number of nodes and root development at different time periods as well as the leaf content of C, N, P, Fe, and Chl a in the experimental seedlings. Height, number of nodes and number of leaves differed significantly among treatments. Iron treatment resulted in significantly taller plants compared with other nutrients, demonstrating that iron is the primary limiting nutrient in the tested mangrove population and confirming Liebig\\'s law of the minimum: iron addition alone yielded results comparable to those using complete fertilizer. This result is consistent with the biogenic nature of the sediments in the Red Sea, which are dominated by carbonates, and the lack of riverine sources of iron.

  18. Performance and bacterial community structure of a 10-years old constructed mangrove wetland.

    Science.gov (United States)

    Tian, Tingting; Tam, Nora F Y; Zan, Qijie; Cheung, S G; Shin, Paul K S; Wong, Y S; Zhang, Li; Chen, Zhanghe

    2017-11-30

    Constructed mangrove wetland has been used for wastewater treatment but its long-term performance has not been reported. One-year monitoring of a 10-years old horizontal subsurface-flow constructed mangrove wetland consisting of three belts, two with mangrove plants and one without, revealed that the system maintained high and stable removal percentages of organic matter and nutrients, and planted belts performed better than unplanted control. Substrates in belts planted with Aegiceras corniculatum or Kandelia obovata had higher abundance of ammonifiers, nitrifiers and denitrifiers but lower total heterotrophic bacteria than unplanted substrate. Denaturing gradient gel electrophoresis showed that microbial diversity in planted substrate was significantly lower than that in unplanted one. The bacteria in substrates, irrespective to belts, were phylogenetically related to Proteobacteria (most dominant), Acidobacteria, Firmicutes, Nitrospirae, Gemmatimonadetes, Chloroflexi and Cyanobacteria. The steady performance of this 10-year old constructed mangrove wetland was affected by the abundance and diversity of bacterial community in substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Assessing Genetic Diversity after Mangrove Restoration in Brazil: Why Is It So Important?

    Directory of Open Access Journals (Sweden)

    Renan Granado

    2018-04-01

    Full Text Available Vital for many marine and terrestrial species, and several other environmental services, such as carbon sink areas, the mangrove ecosystem is highly threatened due to the proximity of large urban centers and climate change. The forced fragmentation of this ecosystem affects the genetic diversity distribution among natural populations. Moreover, while restoration efforts have increased, few studies have analyzed how recently-planted areas impact the original mangrove genetic diversity. We analyzed the genetic diversity of two mangroves species (Laguncularia racemosa and Avicennia schaueriana in three areas in Brazil, using inter-simple sequence repeat (ISSR markers. Using the local approach, we identified the genetic diversity pool of a restored area compared to nearby areas, including the remnant plants inside the restored area, one well-conserved population at the shore of Guanabara Bay, and one impacted population in Araçá Bay. The results for L. racemosa showed that the introduced population has lost genetic diversity by drift, but remnant plants with high genetic diversity or incoming propagules could help improve overall genetic diversity. Avicennia schaueriana showed similar genetic diversity, indicating an efficient gene flow. The principal component analysis showing different connections between both species indicate differences in gene flow and dispersal efficiencies, highlighting the needed for further studies. Our results emphasize that genetic diversity knowledge and monitoring associated with restoration actions can help avoid bottlenecks and other pitfalls, especially for the mangrove ecosystem.

  20. Mapping changes in the largest continuous Amazonian mangrove belt using object-based classification of multisensor satellite imagery

    Science.gov (United States)

    Nascimento, Wilson R.; Souza-Filho, Pedro Walfir M.; Proisy, Christophe; Lucas, Richard M.; Rosenqvist, Ake

    2013-01-01

    Mapping and monitoring mangrove ecosystems is a crucial objective for tropical countries, particularly where human disturbance occurs and because of uncertainties associated with sea level and climatic fluctuation. In many tropical regions, such efforts have focused largely on the use of optical data despite low capture rates because of persistent cloud cover. Recognizing the ability of Synthetic Aperture Radar (SAR) for providing cloud-free observations, this study investigated the use of JERS-1 SAR and ALOS PALSAR data, acquired in 1996 and 2008 respectively, for mapping the extent of mangroves along the Brazilian coastline, from east of the Amazon River mouth, Pará State, to the Bay of São José in Maranhão. For each year, an object-orientated classification of major land covers (mangrove, secondary vegetation, gallery and swamp forest, open water, intermittent lakes and bare areas) was performed with the resulting maps then compared to quantify change. Comparison with available ground truth data indicated a general accuracy in the 2008 image classification of all land covers of 96% (kappa = 90.6%, tau = 92.6%). Over the 12 year period, the area of mangrove increased by 718.6 km2 from 6705 m2 to 7423.60 km2, with 1931.0 km² of expansion and 1213 km² of erosion noted; 5493 km² remained unchanged in extent. The general accuracy relating to changes in mangroves was 83.3% (Kappa 66.1%; tau 66.7%). The study confirmed that these mangroves constituted the largest continuous belt globally and were experiencing significant change because of the dynamic coastal environment and the influence of sedimentation from the Amazon River along the shoreline. The study recommends continued observations using combinations of SAR and optical data to establish trends in mangrove distributions and implications for provision of ecosystem services (e.g., fish/invertebrate nurseries, carbon storage and coastal protection).

  1. Trade, tropical deforestation and policy interventions

    International Nuclear Information System (INIS)

    Barbier, E.B.; Rauscher, M.

    1992-01-01

    This paper examines several aspects of the links between the trade in tropical timber and deforestation from the perspective of an exporting country. The various versions of the model developed here have highlighted a number of important features of this linkage. First, if the producer country values its tropical forest solely as a source of timber export earnings then it will aim for a smaller forest stock in the long run than if it also considers the other values provided by the forest. Second, if importing nations want the exporting countries to conserve more of their forests, trade interventions appear to be second-best way of achieving this result. Third, increased market power by a large country exporter or group of exporters may actually lead to greater forest conservation. Finally, the existence of a foreign capital market may further ensure that the tropical timber country may conserve its forest stock in the long run. Several recent reviews of global forest sector policies have discussed implications similar to those analyzed theoretically in our model. Generally, the same conclusions have been reached. However, what is of increasing concern is that domestic market and policy failures within tropical forest countries continue to distort the incentives for more sustainable management of timber production and efficient development of processing capacity, while at the same time the international community increasingly contemplates the use of bans, tariffs and other trade measures to discourage 'unsustainable' tropical timber exploitation. As our paper has attempted to show, sometimes the more simple solutions lead neither to a straightforward, nor to the desired, results. 18 refs, 1 fig

  2. Methyl halide emissions from greenhouse-grown mangroves

    Science.gov (United States)

    Manley, Steven L.; Wang, Nun-Yii; Walser, Maggie L.; Cicerone, Ralph J.

    2007-01-01

    Two mangrove species, Avicennia germinans and Rhizophora mangle, were greenhouse grown for nearly 1.5 years from saplings. A single individual of each species was monitored for the emission of methyl halides from aerial tissue. During the first 240 days, salinity was incrementally increased with the addition of seawater, and was maintained between 18 and 28‰ for the duration of the study. Exponential growth occurred after 180 days. Methyl halide emissions normalized to leaf area were measured throughout the study and varied dramatically. Emission rates normalized to land area (mg m-2 y-1), assuming a LAI = 5, yielded 82 and 29 for CH3Cl, 10 and 1.6 for CH3Br, and 26 and 11 for CH3I, for A. germinans and R. mangle, respectively. From these preliminary determinations, only CH3I emissions emerge as being of possible global atmospheric significance. This study emphasizes the need for field studies of methyl halide emissions from mangrove forests.

  3. The Use of Spot Image for Mangrove Inventory in Cimanuk Delta West Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Hartono .

    2013-07-01

    At least two mangrove types of mangrove could be identified from the SPOT image. Dense mangrove was found in Petak 7, Petak 8, Petak 9 and Petak 12. In the other Petaks, mangrove were less than 20% of their surface. Mangrove of Rhizophora in 26 Petaks covered 290 Ha only.

  4. Nutrient controls on biocomplexity of mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangrove forests are important coastal ecosystems that provide a variety of ecological and societal services. These intertidal, tree-dominated communities along tropical coastlines are often described as “simple systems,” compared to other tropical forests with larger numbers of plant species and multiple understory strata; however, mangrove ecosystems have complex trophic structures, and organisms exhibit unique physiological, morphological, and behavioral adaptations to environmental conditions characteristic of the land-sea interface. Biogeochemical functioning of mangrove forests is also controlled by interactions among the microbial, plant, and animal communities and feedback linkages mediated by hydrology and other forcing functions. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to understand more fully the impact of nutrient variability on these delicate and important ecosystems.

  5. Nutrient enrichment increases mortality of mangroves.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients.

  6. IMPORTANCE OF MANGROVE TO REDUCE THE TSUNAMI WAVE ENERGY

    Directory of Open Access Journals (Sweden)

    Anastasia Neni Candra Purnamasari

    2017-09-01

    Full Text Available Mangrove has a very important role to reduce the tsunami wave energy. It is shown that the coastal areas have no vegetation or in this case will have an impact Mangrove forests greater damage due to tsunami waves than the coastal areas of vegetation. The purpose of the Term Paper is proved the importance of Mangrove to reduce the tsunami wave energy by comparing the various methods that have been observed in some case studies on the impact of the tsunami that occurred in several Asian countries in 2004 and case studies on ocean waves on the Gulf coast of south Florida. Based on the research results that could dampen Mangrove Tsunami wave energy. Tsunami wave energy can be reduced by several factors, namely mangrove species, tree size, vast mangrove forest, nature tree structure, and the size limit Mangrove forest (as far as how much of the ocean to the surface.

  7. Changes in biotic and abiotic processes following mangrove clearing

    Science.gov (United States)

    Granek, Elise; Ruttenberg, Benjamin I.

    2008-12-01

    Mangrove forests, important tropical coastal habitats, are in decline worldwide primarily due to removal by humans. Changes to mangrove systems can alter ecosystem properties through direct effects on abiotic factors such as temperature, light and nutrient supply or through changes in biotic factors such as primary productivity or species composition. Despite the importance of mangroves as transitional habitats between land and sea, little research has examined changes that occur when they are cleared. We examined changes in a number of biotic and abiotic factors following the anthropogenic removal of red mangroves ( Rhizophora mangle) in the Panamanian Caribbean, including algal biomass, algal diversity, algal grazing rates, light penetration, temperature, sedimentation rates and sediment organic content. In this first study examining multiple ecosystem-level effects of mangrove disturbance, we found that areas cleared of mangroves had higher algal biomass and richness than intact mangrove areas. This increase in algal biomass and richness was likely due to changes in abiotic factors (e.g. light intensity, temperature), but not biotic factors (fish herbivory). Additionally the algal and cyanobacterial genera dominating mangrove-cleared areas were rare in intact mangroves and included a number of genera that compete with coral for space on reefs. Interestingly, sedimentation rates did not differ between intact and cleared areas, but the sediments that accumulated in intact mangroves had higher organic content. These findings are the first to demonstrate that anthropogenic clearing of mangroves changes multiple biotic and abiotic processes in mangrove forests and that some of these changes may influence adjacent habitats such as coral reefs and seagrass beds. Additional research is needed to further explore the community and ecosystem-level effects of mangrove clearing and their influence on adjacent habitats, but it is clear that mangrove conservation is an

  8. Implementation of avoided deforestation in a post-2012 climate regime

    Energy Technology Data Exchange (ETDEWEB)

    Soederblom, Johan

    2009-01-15

    The awareness of the global warming has increased the last few years and a majority of the world's scientists believes that anthropogenic emissions of carbon dioxide are the strongest contributing cause. Greenhouse gas emissions due to clearing of tropical rain forest has so far been given little attention, even though deforestation is responsible for 20-25 percent of the anthropogenic emissions of greenhouse gases and is the second largest sector of emissions after energy production. Forest ecosystems contain large amounts of carbon, and in total there is more carbon stored in forests on earth than what is held in form of carbon dioxide in earth's atmosphere. During the latest years the rate of deforestation has been about 13 million hectares annually, which is calculated to release almost 6 Gton of carbon dioxide each year. The underlying causes of deforestation are normally depending on present as well as historical circumstances and the drivers of deforestation can vary substantially between different countries. This study describes the proceedings of deforestation and discusses the carbon balance for possible scenarios when a forest has been cleared. The amount of emissions can vary substantially depending on the land use after deforestation and the usage of the harvested biomass. The carbon balance in soil is also of importance for the carbon emissions. Uncertainties regarding carbon emissions from soil are however large and is therefore often neglected in estimations of carbon emissions due to deforestation, the figures mentioned above included. Reducing the emissions of carbon dioxide through REDD (Reducing Emissions from Deforestation in Developing countries) is considered to be cost effective. In this study a Marginal abatement cost (MAC) curve is created to illustrate how the cost of REDD will increase with time. A selection of reports that estimate the total cost of REDD is also reviewed. These estimates are all more or less uncertain and in

  9. Bio-accumulation of Polycyclic Aromatic Hydrocarbons in the Grey Mangrove (Avicennia marina along Arabian Gulf, Saudi Coast

    Directory of Open Access Journals (Sweden)

    Orif Mohammed

    2018-04-01

    Full Text Available The Arabian Gulf is considered as one of the most important sources for the crude oil all over the world. Due to the vast oil exploration and exploitation, huge amounts of organic pollutants infiltrate to the gulf. An important class of organic pollutants is polycyclic aromatic hydrocarbons (PAHs. One of the marine habitats in Arabian Gulf area is the mangrove stands, that are undoubtedly impacted by all anthropogenic factors like oil industries and sewage discharge. In the monitoring framework for mangrove ecosystem along Saudi coasts, nine mangrove stands were examined for the accumulation of PAHs in the Arabian Gulf coast. PAHs were measured using Gas Chromatography-Mass Spectrometry. The mean values detected for total PAHs in mangrove sediments, roots and leaf were 105.39, 680.0 and 282.4 ng/g, respectively. The trend of total PAHs concentrations in all sites showed the descending order: roots > leaf > sediments. Despite the sandy nature and low organic carbon contents of the mangrove sediments, moderate values of PAHs were detected in the major sites. PAH bio-accumulation factors for roots are higher than that in leaf. The diagnostic ratios revealed that the sources of PAHs are mainly pyrogenic, except for Damam and Damam Port that were found to be petrogenic.

  10. The impact of Amazonian deforestation on Amazon basin rainfall

    Science.gov (United States)

    Spracklen, D. V.; Garcia-Carreras, L.

    2015-11-01

    We completed a meta-analysis of regional and global climate model simulations (n = 96) of the impact of Amazonian deforestation on Amazon basin rainfall. Across all simulations, mean (±1σ) change in annual mean Amazon basin rainfall was -12 ± 11%. Variability in simulated rainfall was not explained by differences in model resolution or surface parameters. Across all simulations we find a negative linear relationship between rainfall and deforestation extent, although individual studies often simulate a nonlinear response. Using the linear relationship, we estimate that deforestation in 2010 has reduced annual mean rainfall across the Amazon basin by 1.8 ± 0.3%, less than the interannual variability in observed rainfall. This may explain why a reduction in Amazon rainfall has not consistently been observed. We estimate that business-as-usual deforestation (based on deforestation rates prior to 2004) would lead to an 8.1 ± 1.4% reduction in annual mean Amazon basin rainfall by 2050, greater than natural variability.

  11. Carbon emissions risk map from deforestation in the tropical Amazon

    Science.gov (United States)

    Ometto, J.; Soler, L. S.; Assis, T. D.; Oliveira, P. V.; Aguiar, A. P.

    2011-12-01

    Assis, Pedro Valle This work aims to estimate the carbon emissions from tropical deforestation in the Brazilian Amazon associated to the risk assessment of future land use change. The emissions are estimated by incorporating temporal deforestation dynamics, accounting for the biophysical and socioeconomic heterogeneity in the region, as well secondary forest growth dynamic in abandoned areas. The land cover change model that supported the risk assessment of deforestation, was run based on linear regressions. This method takes into account spatial heterogeneity of deforestation as the spatial variables adopted to fit the final regression model comprise: environmental aspects, economic attractiveness, accessibility and land tenure structure. After fitting a suitable regression models for each land cover category, the potential of each cell to be deforested (25x25km and 5x5 km of resolution) in the near future was used to calculate the risk assessment of land cover change. The carbon emissions model combines high-resolution new forest clear-cut mapping and four alternative sources of spatial information on biomass distribution for different vegetation types. The risk assessment map of CO2 emissions, was obtained by crossing the simulation results of the historical land cover changes to a map of aboveground biomass contained in the remaining forest. This final map represents the risk of CO2 emissions at 25x25km and 5x5 km until 2020, under a scenario of carbon emission reduction target.

  12. A Comparison of Microeconomic and Macroeconomic Approaches to Deforestation Analysis

    Directory of Open Access Journals (Sweden)

    Jeff Felardo

    2016-01-01

    Full Text Available The economics of deforestation has been explored in detail. Generally, the frame of analysis takes either a microeconomics or macroeconomics approach. The microeconomics approach assumes that individual decision makers are responsible for deforestation as a result of utility maximizing behavior and imperfect property right regimes. The macroeconomics approach explores nationwide trends thought to be associated with forest conversion. This paper investigates the relationship between these two approaches by empirically testing the determinants of deforestation using the same data set from Thailand. The theory for both the microeconomics-based and macroeconomics-based approaches are developed and then tested statistically. The models were constructed using established theoretical frames developed in the literature. The results from both models show statistical significance consistent with prior results in the tropical deforestation literature. A comparison of the two approaches demonstrates that the macro approach is useful in identifying relevant aggregate trends in the deforestation process; the micro approach provides the opportunity to isolate factors of those trends which are necessary for effective policy decisions.

  13. Studies on mangrove swamps of Goa 1. Heterotrophic bacterial flora from mangrove swamps

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P; Mathani, S; Mavinkurve, S

    Heterotrophic bacterial flora from the mangrove swamps of Goa consisted of physiologically active organisms exhibiting cellulolytic, pectinolytic, amylolytic, proteolytic and H2S forming activities, throughout the year. Coryneform and Bacillus were...

  14. Mangrove forest composition and structure in Las Perlas Archipelago, Pacific Panama.

    Science.gov (United States)

    McGowan, Tom; Cunningham, Sarah L; Guzmán, Héctor M; Mair, James M; Guevara, José M; Betts, Tanja

    2010-09-01

    Mangrove forest is an important ecosystem that provides many services, but in Panama, as in other countries, they are under threat due to a variety of human activities. Nowadays, large areas of mangroves continue to be lost without been described and lack of management strategies. This study focused on the mangrove structure in the two largest islands, Isla del Rey and Isla San Jose, of Las Perlas Archipelago (LPA), Pacific Panama. Assessment of Landsat satellite imagery revealed loss of mangroves in the LPA of 965ha in the period 1974-1986, and 248ha in the period 1986-2000. The majority of the loss (>77%) from the two study islands was due to timber extraction and agricultural development. In May 2006, permanent plots following the CARICOMP protocol were established at two sites on Isla del Rey (R1 and R2) and one site on Isla San Jose (SJ) where standardized metrics such as species, height and diameter at breast height of adult trees and seedlings were recorded. Forest structure differed at the three sites, although R1 and R2 were most similar. At R1, Laguncularia racemosa was the important species and R2 was dominated by Pelliciera rhizophorae. Examination of the forest structure and classified imagery indicated that these sites are spatially dynamic and appear to be rejuvenating. The forest structure would indicate that the sites have been growth-limited previously by human activities and possibly by other factors. SJ was dominated by Rhizophora mangle and appears to have a mature forest with large adult trees and few seedlings. It does not appear to have shown the same extent of spatial regrowth as the other two sites between 1986 and 2000 and is relatively static. The establishment of permanent plots and monitoring will be useful as part of the management plan, as the LPA shows a variety of mangrove structures and could be subject to further coastal development.

  15. Ecosystem Development after Mangrove Wetland Creation: Plant-Soil Change across a 20-year Chronosequence

    Science.gov (United States)

    Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland loss. However, ecosystem development and functional equivalence in restored and created mangrove wetlands is poorly understood. We compared a 20-yr chrono...

  16. Effectiveness of community-based mangrove management for sustainable resource use and livelihood support

    NARCIS (Netherlands)

    Damastuti, Ekaningrum; Groot, de Dolf

    2017-01-01

    Community-Based Mangrove Management (CBMM) is implemented with different approaches and outcomes. This study examined the effectiveness of various CBMM practices to achieve sustainable management of mangrove resources. We analyzed local mangrove resource management strategies in four coastal

  17. Ecological status and sources of anthropogenic contaminants in mangroves of the Wouri River Estuary (Cameroon)

    KAUST Repository

    Fusi, Marco; Beone, Gian Maria; Suciu, Nicoleta Alina; Sacchi, Angela; Trevisan, Marco; Capri, Ettore; Daffonchio, Daniele; Din, Ndongo; Dahdouh-Guebas, Farid; Cannicci, Stefano

    2016-01-01

    Mangroves are critically threatened by human activities, despite the important ecosystem functions and services they provide. Mangroves in Cameroon represent no exception to the worldwide trend of mangrove destruction, especially around Douala

  18. Heterogeneity of experts’ opinion regarding opportunities and challenges of tackling deforestation in the tropics: a Q methodology application

    NARCIS (Netherlands)

    Nijnik, M.; Nijnik, A.; Bergsma, E.; Matthews, R.

    2014-01-01

    Making the concept of Reducing Emissions from Deforestation and Degradation (REDD+) ready to be a mechanism to combat tropical deforestation and associated greenhouse gas (GHG) emissions by compensating developing countries for income foregone in reducing their rates of deforestation, requires

  19. Reserves protect against deforestation fires in the Amazon.

    Directory of Open Access Journals (Sweden)

    J Marion Adeney

    Full Text Available BACKGROUND: Reserves are the principal means to conserve forests and biodiversity, but the question of whether reserves work is still debated. In the Amazon, fires are closely linked to deforestation, and thus can be used as a proxy for reserve effectiveness in protecting forest cover. We ask whether reserves in the Brazilian Amazon provide effective protection against deforestation and consequently fires, whether that protection is because of their location or their legal status, and whether some reserve types are more effective than others. METHODOLOGY/PRINCIPAL FINDINGS: Previous work has shown that most Amazonian fires occur close to roads and are more frequent in El Niño years. We quantified these relationships for reserves and unprotected areas by examining satellite-detected hot pixels regressed against road distance across the entire Brazilian Amazon and for a decade with 2 El Niño-related droughts. Deforestation fires, as measured by hot pixels, declined exponentially with increasing distance from roads in all areas. Fewer deforestation fires occurred within protected areas than outside and the difference between protected and unprotected areas was greatest near roads. Thus, reserves were especially effective at preventing these fires where they are known to be most likely to burn; but they did not provide absolute protection. Even within reserves, at a given distance from roads, there were more deforestation fires in regions with high human impact than in those with low impact. The effect of El Niño on deforestation fires was greatest outside of reserves and near roads. Indigenous reserves, limited-use reserves, and fully protected reserves all had fewer fires than outside areas and did not appear to differ in their effectiveness. CONCLUSIONS/SIGNIFICANCE: Taking time, regional factors, and climate into account, our results show that reserves are an effective tool for curbing destructive burning in the Amazon.

  20. Reserves Protect against Deforestation Fires in the Amazon

    Science.gov (United States)

    Adeney, J. Marion; Christensen, Norman L.; Pimm, Stuart L.

    2009-01-01

    Background Reserves are the principal means to conserve forests and biodiversity, but the question of whether reserves work is still debated. In the Amazon, fires are closely linked to deforestation, and thus can be used as a proxy for reserve effectiveness in protecting forest cover. We ask whether reserves in the Brazilian Amazon provide effective protection against deforestation and consequently fires, whether that protection is because of their location or their legal status, and whether some reserve types are more effective than others. Methodology/Principal Findings Previous work has shown that most Amazonian fires occur close to roads and are more frequent in El Niño years. We quantified these relationships for reserves and unprotected areas by examining satellite-detected hot pixels regressed against road distance across the entire Brazilian Amazon and for a decade with 2 El Niño-related droughts. Deforestation fires, as measured by hot pixels, declined exponentially with increasing distance from roads in all areas. Fewer deforestation fires occurred within protected areas than outside and the difference between protected and unprotected areas was greatest near roads. Thus, reserves were especially effective at preventing these fires where they are known to be most likely to burn; but they did not provide absolute protection. Even within reserves, at a given distance from roads, there were more deforestation fires in regions with high human impact than in those with low impact. The effect of El Niño on deforestation fires was greatest outside of reserves and near roads. Indigenous reserves, limited-use reserves, and fully protected reserves all had fewer fires than outside areas and did not appear to differ in their effectiveness. Conclusions/Significance Taking time, regional factors, and climate into account, our results show that reserves are an effective tool for curbing destructive burning in the Amazon. PMID:19352423

  1. A mangrove creek restoration plan utilizing hydraulic modeling.

    Science.gov (United States)

    Marois, Darryl E; Mitsch, William J

    2017-11-01

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. Urban development has been a primary cause for mangrove destruction and deterioration in south Florida USA for the last several decades. As a result, the restoration of mangrove forests has become an important topic of research. Using field sampling and remote-sensing we assessed the past and present hydrologic conditions of a mangrove creek and its connected mangrove forest and brackish marsh systems located on the coast of Naples Bay in southwest Florida. We concluded that the hydrology of these connected systems had been significantly altered from its natural state due to urban development. We propose here a mangrove creek restoration plan that would extend the existing creek channel 1.1 km inland through the adjacent mangrove forest and up to an adjacent brackish marsh. We then tested the hydrologic implications using a hydraulic model of the mangrove creek calibrated with tidal data from Naples Bay and water levels measured within the creek. The calibrated model was then used to simulate the resulting hydrology of our proposed restoration plan. Simulation results showed that the proposed creek extension would restore a twice-daily flooding regime to a majority of the adjacent mangrove forest and that there would still be minimal tidal influence on the brackish marsh area, keeping its salinity at an acceptable level. This study demonstrates the utility of combining field data and hydraulic modeling to aid in the design of mangrove restoration plans.

  2. Mangroves in the Gulf of California increase fishery yields.

    Science.gov (United States)

    Aburto-Oropeza, Octavio; Ezcurra, Exequiel; Danemann, Gustavo; Valdez, Víctor; Murray, Jason; Sala, Enric

    2008-07-29

    Mangroves are disappearing rapidly worldwide despite their well documented biodiversity and the ecosystem services they provide. Failure to link ecological processes and their societal benefits has favored highly destructive aquaculture and tourism developments that threaten mangroves and result in costly "externalities." Specifically, the potentially irreparable damage to fisheries because of mangrove loss has been belittled and is greatly underestimated. Here, we show that, in the Gulf of California, fisheries landings are positively related to the local abundance of mangroves and, in particular, to the productive area in the mangrove-water fringe that is used as nursery and/or feeding grounds by many commercial species. Mangrove-related fish and crab species account for 32% of the small-scale fisheries landings in the region. The annual economic median value of these fisheries is US $37,500 per hectare of mangrove fringe, falling within the higher end of values previously calculated worldwide for all mangrove services together. The ten-year discounted value of one hectare of fringe is >300 times the official cost set by the Mexican government. The destruction of mangroves has a strong economic impact on local fishing communities and on food production in the region. Our valuation of the services provided by mangroves may prove useful in making appropriate decisions for a more efficient and sustainable use of wetlands.

  3. Biology of the Mangrove Palm, Nypa fruticans

    DEFF Research Database (Denmark)

    Barfod, Anders S.

    The Southeast Asian mangrove palm Nypa fruticans Wurmb occurs in large, monospecific stands in estuaries and along rivers. It is the only member of the subfamily Nypoideae, which derived early in palm evolution and is known from a fossil record extending back in time at least 70 millions years...

  4. Investigating Extreme Lifestyles through Mangrove Transcriptomics

    Science.gov (United States)

    Dassanayake, Maheshi

    2009-01-01

    Mangroves represent phylogenetically diverse taxa in tropical coastal terrestrial habitats. They are extremophiles, evolutionarily adapted to tolerate flooding, anoxia, high temperatures, wind, and high and extremely variable salt conditions in typically resource-poor environments. The genetic basis for these adaptations is, however, virtually…

  5. Benthic macroinvertebrate assemblages in mangroves and open ...

    African Journals Online (AJOL)

    Benthic macroinvertebrate assemblages in mangroves and open intertidal areas on the Dar es Salaam coast, Tanzania. ... it is recommended that conservation efforts along the Tanzanian coast should focus here. Keywords: benthic macrofauna, community structure, littoral zone, Tanganyika, Western Indian Ocean ...

  6. Mangrove ecosystem of India: Conservation and management

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Murthy, P.S.; Komarpant, D.S.

    groups of islands in the Bay of Bengal and the Arabian Sea respectively. Coastal wetlands area of about 63,600 sq km in the country hardly includes about 5% of mangrove cover. Due to unawareness regarding the importance and lack of management in the past...

  7. Evaluation of secondary metabolites from mangrove associated ...

    African Journals Online (AJOL)

    Methods: Foliar fungus was isolated from the leaves of Rhizophora mucronata collected from Pichavaram mangrove forest, Tamilnadu. Extracts from liquid state culture were tested for cytotoxicity against two cancer cell lines using the MTT assay. Antibacterial activity was determined using the well diffusion method.

  8. The Amazon Mangrove Coast: The Role of Geological Factors in its Evolution During the Quaternary

    Science.gov (United States)

    Souza-Filho, P. W.; Lara, R.; Silveira, O.; Miranda, F. P.

    2007-05-01

    reactived by peripheral bulge. In this sector, the location of these inactive cliffs is spatially coincident with the peripheral bulge. Hence, we suggest that the inactive cliffs are a result of the flexural reactivation of ancient normal faults, which is supported by studies of in the northeastern Brazilian coast. Sector 3 is also marked by normal faults and peripheral bulge influence, presenting geomorphological characteristics similar to Sector 2. In Sectors 2 and 3 the retreated coastal plateau and inundation deposits of the estuaries allowed the development of wide tidal flats where the largest mangrove belt is established. In Sector 4 there is a great mangrove development. This area is characterized by a gravimetric high, with little influenced by peripheral bulge and is structurally controlled by normal faults limited by the Cururupu arch. The interaction of regional framework and flexural deformation explains the reactivation of ancient faults responsible for the geomorphology of the North Brazilian mangrove coast. However, further structural and geodetic monitoring from interferometric SAR data are needed for a more detailed knowledge of the Quaternary tectonics of this region. This may provide elements for a better comprehension of wetland evolution in the moist tropics, particularly regarding their response to coastal subsidence and relative sea level changes in time of global changes.

  9. Effectiveness of community-based mangrove management for sustainable resource use and livelihood support: A case study of four villages in Central Java, Indonesia.

    Science.gov (United States)

    Damastuti, Ekaningrum; de Groot, Rudolf

    2017-12-01

    Community-Based Mangrove Management (CBMM) is implemented with different approaches and outcomes. This study examined the effectiveness of various CBMM practices to achieve sustainable management of mangrove resources. We analyzed local mangrove resource management strategies in four coastal villages (e.g. Sriwulan, Bedono, Timbulsloko, and Surodadi) on Central Java, Indonesia. Local data on institutions, socio-economic conditions and mangrove resources utilization was collected through participatory resource mapping and interviews with 16 key actors and 500 households. The main differences in CBMM-practices that affect the outcomes in each village were the type of community participation, the level of organizational and economic assistance from external institutions, the magnitude of the rehabilitation project, the time selected for rehabilitation and the maintenance strategies applied in each village. Surodadi achieved most in terms of both efficient resource utilization and local livelihood improvement. Bedono's management strategy was most effective in extending and maintaining the rehabilitated mangrove areas but less in terms of livelihood support while the strategy applied in Timbulsloko resulted in higher resource utilization compared to Surodadi. Sriwulan failed on most criteria. This study suggests that combining the management strategies practiced in Bedono and Surodadi and adding external scientific and technological assistance, income diversification, institutional reinforcement and continuous monitoring of the functioning of local institutions can improve the CBMM performance to sustainably manage mangrove resources and improve livelihoods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A Review on Biodiversity, Ecosystem Services, and Perceptions of New Zealand’s Mangroves: Can We Make Informed Decisions about Their Removal?

    Directory of Open Access Journals (Sweden)

    Amrit Melissa Dencer-Brown

    2018-03-01

    Full Text Available Mangrove cover is increasing in estuaries and harbours in many areas on North Island, New Zealand. The expansion of mangroves has been attributed to anthropogenic land-use change, including urbanisation and conversion of land to agriculture. Rapid expansion of mangroves in the coastal landscape has created discord in local communities over their importance in terms of the services they deliver to both wildlife and people. Some community groups have been advocates for the large-scale removal of mangrove habitat, whilst other local residents oppose this removal. This review paper investigated and discussed pertinent biodiversity and ecosystem services studies based in New Zealand mangroves from 1950 to 2017. Results showed that the majority of biodiversity studies have targeted particular species or groups of organisms, with a focus on benthic invertebrate communities. Deficits remain in our knowledge of this expanding forest and shrub ecosystem, notably the terrestrial component of biodiversity, species community-shifts with landscape fragmentation, and associated cultural values. It is recommended that broader species assessments and a longer-term approach be applied to biodiversity monitoring in mangroves, coupled with Mātauranga Māori (Māori knowledge and western science for holistic management of this coastal ecosystem.

  11. CMS: Estimated Deforested Area Biomass, Tropical America, Africa, and Asia, 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides estimates of pre-deforestation aboveground live woody biomass (AGLB) at 30-m resolution for deforested areas of tropical America, tropical...

  12. LBA-ECO ND-01 Watershed Deforestation from Landsat TM Series, Rondonia, Brazil: 1999

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides estimates of watershed deforestation, as a proportion of the total area of watersheds, in Rondonia, Brazil for 1999. Deforestation maps were...

  13. LBA-ECO ND-01 Watershed Deforestation from Landsat TM Series, Rondonia, Brazil: 1999

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides estimates of watershed deforestation, as a proportion of the total area of watersheds, in Rondonia, Brazil for 1999. Deforestation...

  14. Estimating the opportunity costs of reducing carbon dioxide emissions via avoided deforestation, using integrated assessment modelling

    NARCIS (Netherlands)

    Overmars, K.P.; Stehfest, E.; Tabeau, A.A.; Meijl, van J.C.M.; Beltran, A.M.; Kram, T.

    2014-01-01

    Estimates show that, in recent years, deforestation and forest degradation accounted for about 17% of global greenhouse gas emissions. The implementation of REDD (Reducing Emissions from Deforestation and Forest Degradation in Developing Countries) is suggested to provide substantial emission

  15. KEANEKARAGAMAN JENIS KRUSTASEA DI KAWASAN MANGROVE KABUPATEN PURWOREJO, JAWA TENGAH (Biodiversity of Crustacea in Mangrove Area, Purworejo Regency, Central Java

    Directory of Open Access Journals (Sweden)

    Slamet Mardiyanto Rahayu

    2017-05-01

    Full Text Available dan pendidikan. Luas kawasan mangrove di Kabupaten Purworejo semakin berkurang akibat adanya penebangan, pemukiman, tambak, dan pertanian. Ada tiga stasiun, yaitu mangrove lebat (Desa Gedangan, mangrove sedang (Desa Jatikontal, dan mangrove jarang (Desa Ngentak. Ditemukan 19 jenis dari 6 famili krustasea yaitu Ocypodidae, Sesarmidae, Portunidae,Alpheidae, Palaemonidae, dan Penaeidae. Terdapat empat jenis krustasea bernilai ekonomi tinggi. Kepadatan krustasea tertinggi di stasiun I, terendah di stasiun III. Indeks keanekaragaman (H’ krustasea di seluruh stasiun termasuk kategori sedang dengan. Indeks keseragaman (E krustasea di seluruh stasiun termasuk kategori sedang. Indeks  dominansi (C krustasea di seluruh stasiun termasuk kategori rendah. Vegetasi mangrove pada stasiun I adalah Rhizophora mucronata, Nypa fruticans, Sonneratia alba, dan Hibiscus tiliaceus. Vegetasi mangrove pada stasiun II adalah Sonneratia caseolaris, Rhizophora stylosa, N.fruticans, H.tiliaceus, dan Morinda citrifolia.Vegetasi mangrove pada stasiun III adalah S.alba, S.caseolaris, N.fruticans, dan R.mucronata. Kondisi faktor lingkungan di seluruh stasiun relatif baik untuk kehidupan mangrove dan krustasea.   Kata Kunci: krustasea, mangrove, Purworejo, keanekaragaman   Kata Kunci: krustasea, mangrove, Purworejo, keanekaragaman

  16. Phylogeny of culturable cyanobacteria from Brazilian mangroves.

    Science.gov (United States)

    Silva, Caroline Souza Pamplona; Genuário, Diego Bonaldo; Vaz, Marcelo Gomes Marçal Vieira; Fiore, Marli Fátima

    2014-03-01

    The cyanobacterial community from Brazilian mangrove ecosystems was examined using a culture-dependent method. Fifty cyanobacterial strains were isolated from soil, water and periphytic samples collected from Cardoso Island and Bertioga mangroves using specific cyanobacterial culture media. Unicellular, homocytous and heterocytous morphotypes were recovered, representing five orders, seven families and eight genera (Synechococcus, Cyanobium, Cyanobacterium, Chlorogloea, Leptolyngbya, Phormidium, Nostoc and Microchaete). All of these novel mangrove strains had their 16S rRNA gene sequenced and BLAST analysis revealed sequence identities ranging from 92.5 to 99.7% when they were compared with other strains available in GenBank. The results showed a high variability of the 16S rRNA gene sequences among the genotypes that was not associated with the morphologies observed. Phylogenetic analyses showed several branches formed exclusively by some of these novel 16S rRNA gene sequences. BLAST and phylogeny analyses allowed for the identification of Nodosilinea and Oxynema strains, genera already known to exhibit poor morphological diacritic traits. In addition, several Nostoc and Leptolyngbya morphotypes of the mangrove strains may represent new generic entities, as they were distantly affiliated with true genera clades. The presence of non-ribosomal peptide synthetase, polyketide synthase, microcystin and saxitoxin genes were detected in 20.5%, 100%, 37.5% and 33.3%, respectively, of the 44 tested isolates. A total of 134 organic extracts obtained from 44 strains were tested against microorganisms, and 26% of the extracts showed some antimicrobial activity. This is the first polyphasic study of cultured cyanobacteria from Brazilian mangrove ecosystems using morphological, genetic and biological approaches. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Distribution and dynamics of mangrove forests of South Asia

    Science.gov (United States)

    Giri, Chandra; Long, Jordan; Abbas, Sawaid; Murali, R. Mani; Qamer, Faisal M.; Pengra, Bruce; Thau, David

    2014-01-01

    Mangrove forests in South Asia occur along the tidal sea edge of Bangladesh, India, Pakistan, and Sri Lanka. These forests provide important ecosystem goods and services to the region's dense coastal populations and support important functions of the biosphere. Mangroves are under threat from both natural and anthropogenic stressors; however the current status and dynamics of the region's mangroves are poorly understood. We mapped the current extent of mangrove forests in South Asia and identified mangrove forest cover change (gain and loss) from 2000 to 2012 using Landsat satellite data. We also conducted three case studies in Indus Delta (Pakistan), Goa (India), and Sundarbans (Bangladesh and India) to identify rates, patterns, and causes of change in greater spatial and thematic details compared to regional assessment of mangrove forests.

  18. PENILAIAN JASA EKOSISTEM MANGROVE DI TELUK BLANAKAN KABUPATEN SUBANG

    Directory of Open Access Journals (Sweden)

    Martini Dwi Indrayanti

    2015-08-01

    Full Text Available Mangrove is one of the natural resource that has an important role in maintaining the balance between land-based and aquatic ecosystems. Therefore the ecosystems are placed as one of the life-supporting ecosystems which is needed to be preserved. This study was held in Blanakan Bay with objectives were: 1 To describe the covered area of mangrove ecosystem; and 2 To calculate the value of mangrove ecosystem services. Mangrove covered area was obtained through satellite image analysis while ecosystem services was anlyzed by economic valuation method. Economic valuation for mangrove ecosystem services is an important variable in coastal management. The result showed that mangrove covered area was decreasing by 5% per year during the period of 2005-2012 while the value of the ecosystem services in the study area was Rp3.815.790.110,97/year.

  19. Conservation and restoration of mangroves: Global status, perspectives, and prognosis

    Science.gov (United States)

    Romañach, Stephanie; DeAngelis, Donald L.; Koh, Hock Lye; Li, Yuhong; Teh, Su Yean; Barizan, Raja Sulaiman Raja; Zhai, Lu

    2018-01-01

    Mangrove forests provide critical services around the globe to both human populations and the ecosystems they occupy. However, losses of mangrove habitat of more than 50% have been recorded in some parts of the world, and these losses are largely attributable to human activities. The importance of mangroves and the threats to their persistence have long been recognized, leading to actions taken locally, by national governments, and through international agreements for their protection. In this review, we explore the status of mangrove forests as well as efforts to protect them. We examine threats to the persistence of mangroves, consequences, and potential solutions for effective conservation. We present case studies from disparate regions of the world, showing that the integration of human livelihood needs in a manner that balances conservation goals can present solutions that could lead to long-term sustainability of mangrove forests throughout the world.

  20. Export-oriented deforestation in Mato Grosso: harbinger or exception for other tropical forests?

    NARCIS (Netherlands)

    DeFries, R.; Herold, M.; Verchot, L.; Macedo, M.N.; Shimabukuro, Y.

    2013-01-01

    The Brazilian state of Mato Grosso was a global deforestation hotspot in the early 2000s. Deforested land is used predominantly to produce meat for distal consumption either through cattle ranching or soya bean for livestock feed. Deforestation declined dramatically in the latter part of the decade

  1. Modeling fire-driven deforestation potential in Amazonia under current and projected climate conditions

    NARCIS (Netherlands)

    Le Page, Y.; van der Werf, G.R.; Morton, D.C.; Pereira, J.M.C.

    2010-01-01

    Fire is a widely used tool to prepare deforested areas for agricultural use in Amazonia. Deforestation is currently concentrated in seasonal forest types along the arc of deforestation, where dry-season conditions facilitate burning of clear-felled vegetation. Interior Amazon forests, however, are

  2. The role of pasture and soybean in deforestation of the Brazilian Amazon

    International Nuclear Information System (INIS)

    Barona, Elizabeth; Ramankutty, Navin; Coomes, Oliver T; Hyman, Glenn

    2010-01-01

    The dynamics of deforestation in the Brazilian Amazon are complex. A growing debate considers the extent to which deforestation is a result of the expansion of the Brazilian soy industry. Most recent analyses suggest that deforestation is driven by the expansion of cattle ranching, rather than soy. Soy seems to be replacing previously deforested land and/or land previously under pasture. In this study, we use municipality-level statistics on agricultural and deforested areas across the Legal Amazon from 2000 to 2006 to examine the spatial patterns and statistical relationships between deforestation and changes in pasture and soybean areas. Our results support previous studies that showed that deforestation is predominantly a result of pasture expansion. However, we also find support for the hypothesis that an increase of soy in Mato Grosso has displaced pasture further north, leading to deforestation elsewhere. Although not conclusive, our findings suggest that the debate surrounding the drivers of Amazon deforestation is not over, and that indirect causal links between soy and deforestation may exist that need further exploration. Future research should examine more closely how interlinkages between land area, prices, and policies influence the relationship between soy and deforestation, in order to make a conclusive case for 'displacement deforestation'.

  3. Deforestation in Viet Nam | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Deforestation in Viet Nam reports on a innovative and timely study by a team of Vietnamese and Canadian researchers. It presents a labourious historical analysis of the smallest changes affecting soil use, forest cover, population, and political and socioeconomic characteristics. The book concludes with suggestions for ...

  4. Clearing the way for reducing emissions from tropical deforestation

    International Nuclear Information System (INIS)

    Skutsch, M.; Bird, N.; Trines, E.; Dutschke, M.; Frumhoff, P.; Jong, B.H.J. de; Laake, P. van; Masera, O.; Murdiyarso, D.

    2007-01-01

    Carbon emissions from tropical deforestation account for about 25% of all anthropogenic carbon dioxide emissions but cannot be credited under current climate change agreements. In the discussions around the architecture of the post-2012 climate regime, the possibility of including credits for reduced emissions from deforestation arises. The paper reviews two approaches for this, compensated reductions (CR) as proposed by Santilli et al. and the Joint Research Centre proposal that combine voluntary commitments by non-Annex I countries to reduce emissions from deforestation with carbon market financing. Both approaches have the clear advantages of simplicity and the possibility of fitting to an evolving greenhouse gas emission reduction regime. The authors consider the strengths and limitations of each proposal and build upon them to address several implementation challenges and options for improvement. Given the urgency of avoiding dangerous climate change, the timely development of technically sound, politically acceptable, cost-effective and practicable measures to reduce emissions from deforestation and forest degradation is essential. These two approaches take us a step closer to this goal, but they need to be refined rapidly to enable this goal to be realised

  5. Climate regulation of fire emissions and deforestation in equatorial Asia

    NARCIS (Netherlands)

    van der Werf, G. R.; Dempewolf, J.; Trigg, S. N.; Randerson, J. T.; Kasibhatla, P. S.; Giglio, L.; Murdiyarso, D.; Peters, W.; Morton, D. C.; Collatz, G. J.; Dolman, A. J.; Defries, R. S.

    2008-01-01

    Drainage of peatlands and deforestation have led to large-scale fires in equatorial Asia, affecting regional air quality and global concentrations of greenhouse gases. Here we used several sources of satellite data with biogeochemical and atmospheric modeling to better understand and constrain fire

  6. Clearing the way for reducing emissions from tropical deforestation

    Energy Technology Data Exchange (ETDEWEB)

    Skutsch, M. [Department of Technology and Sustainable Development, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Bird, N. [Joanneum Research, Elizabethstrasse 5/1, A-8010 Graz (Austria); Trines, E. [Gramserweg 2, 3711 AW Austerlitz (Netherlands); Dutschke, M. [Biocarbon, Badstrasse 41, 77652 Offenburg (Germany); Frumhoff, P. [Union of Concerned Scientists, 2 Brattle Square, Cambridge, MA 02238-9105 (United States); De Jong, B.H.J. [El Colegio de la Frontera Sur, Unidad Villahermosa, Carr. Vhsa-Reforma Km. 15.5, C.P. 86280, Ra Guineo 2da Secc, Villahermosa, Tabasco (Mexico); Van Laak, P. [ITC, Department of Natural Resources, P.O. Box 6, 7500 AA Enschede (Netherlands); Masera, O. [Centro de Investigaciones en Ecosistemas, UNAMAP 27-3 Xangari 58089, Morelia, Michoacan (Mexico); Murdiyarso, D. [Center for International Forestry Research, Jl. CIFOR, Situ Gede Sindangbarang, Bogor 16680 (Indonesia)

    2007-06-15

    Carbon emissions from tropical deforestation account for about 25% of all anthropogenic carbon dioxide emissions but cannot be credited under current climate change agreements. In the discussions around the architecture of the post-2012 climate regime, the possibility of including credits for reduced emissions from deforestation arises. The paper reviews two approaches for this, compensated reductions (CR) as proposed by Santilli et al. and the Joint Research Centre proposal that combine voluntary commitments by non-Annex I countries to reduce emissions from deforestation with carbon market financing. Both approaches have the clear advantages of simplicity and the possibility of fitting to an evolving greenhouse gas emission reduction regime. The authors consider the strengths and limitations of each proposal and build upon them to address several implementation challenges and options for improvement. Given the urgency of avoiding dangerous climate change, the timely development of technically sound, politically acceptable, cost-effective and practicable measures to reduce emissions from deforestation and forest degradation is essential. These two approaches take us a step closer to this goal, but they need to be refined rapidly to enable this goal to be realised.

  7. Aluminium release from acidic forest soil following deforestation and ...

    African Journals Online (AJOL)

    Acidic tropical soils often have high Al3+ concentrations in soil solutions, which can be toxic to plants and, thereby, reduce agricultural yields. This study focuses on the impact of deforestation and cultivation on the short and long-term Al geochemistry of acidic soils in Ghana, West Africa. Site-specific investigations were ...

  8. Modeling spatial pattern of deforestation using GIS and logistic ...

    African Journals Online (AJOL)

    This study aimed to predict spatial distribution of deforestation and detects factors influencing forest degradation of Northern forests of Ilam province. For this purpose, effects of six factors including distance from road and settlement areas, forest fragmentation index, elevation, slope and distance from the forest edge on the ...

  9. Evapotranspiration of deforested areas in central and southwestern Amazonia

    NARCIS (Netherlands)

    Randow, von R.C.S.; Randow, C.; Hutjes, R.W.A.; Tomasella, J.; Kruijt, B.

    2012-01-01

    Considering the high rates of evapotranspiration of Amazonian forests, understanding the impacts of deforestation on water loss rates is important for assessing those impacts on a regional and global scale. This paper quantifies evapotranspiration rates in two different pasture sites in Amazonia and

  10. The challenge of assessing social dimensions of avoided deforestation

    DEFF Research Database (Denmark)

    Pasgaard, Maya

    2013-01-01

    Reduced Emissions from Deforestation and Forest Degradation in developing countries (REDD +) has moved to the central stage of the climate change debate by being promoted as a significant, cheap, and quick win–win strategy to reduce greenhouse gas emissions and thereby mitigate climate change...

  11. Bushmeat Hunting, Deforestation, and Prediction of Zoonotic Disease

    Science.gov (United States)

    Daszak, Peter; Kilpatrick, A. Marm; Burke, Donald S.

    2005-01-01

    Understanding the emergence of new zoonotic agents requires knowledge of pathogen biodiversity in wildlife, human-wildlife interactions, anthropogenic pressures on wildlife populations, and changes in society and human behavior. We discuss an interdisciplinary approach combining virology, wildlife biology, disease ecology, and anthropology that enables better understanding of how deforestation and associated hunting leads to the emergence of novel zoonotic pathogens. PMID:16485465

  12. Quantifying deforestation and forest degradation with thermal response.

    Science.gov (United States)

    Lin, Hua; Chen, Yajun; Song, Qinghai; Fu, Peili; Cleverly, James; Magliulo, Vincenzo; Law, Beverly E; Gough, Christopher M; Hörtnagl, Lukas; Di Gennaro, Filippo; Matteucci, Giorgio; Montagnani, Leonardo; Duce, Pierpaolo; Shao, Changliang; Kato, Tomomichi; Bonal, Damien; Paul-Limoges, Eugénie; Beringer, Jason; Grace, John; Fan, Zexin

    2017-12-31

    Deforestation and forest degradation cause the deterioration of resources and ecosystem services. However, there are still no operational indicators to measure forest status, especially for forest degradation. In the present study, we analysed the thermal response number (TRN, calculated by daily total net radiation divided by daily temperature range) of 163 sites including mature forest, disturbed forest, planted forest, shrubland, grassland, savanna vegetation and cropland. TRN generally increased with latitude, however the regression of TRN against latitude differed among vegetation types. Mature forests are superior as thermal buffers, and had significantly higher TRN than disturbed and planted forests. There was a clear boundary between TRN of forest and non-forest vegetation (i.e. grassland and savanna) with the exception of shrubland, whose TRN overlapped with that of forest vegetation. We propose to use the TRN of local mature forest as the optimal TRN (TRN opt ). A forest with lower than 75% of TRN opt was identified as subjected to significant disturbance, and forests with 66% of TRN opt was the threshold for deforestation within the absolute latitude from 30° to 55°. Our results emphasized the irreplaceable thermal buffer capacity of mature forest. TRN can be used for early warning of deforestation and degradation risk. It is therefore a valuable tool in the effort to protect forests and prevent deforestation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Clearing the Way for Reducing Emissions from Tropical Deforestation

    NARCIS (Netherlands)

    Skutsch, Margaret; Bird, N.; Trines, E.; Dutschke, M.; Frumhoff, P.; de Jong, B.H.J.; van Laake, P.E.; Masera, O.; Murdiyarso, D.

    2007-01-01

    Carbon emissions from tropical deforestation account for about 25% of all anthropogenic carbon dioxide emissions but cannot be credited under current climate change agreements. In the discussions around the architecture of the post-2012 climate regime, the possibility of including credits for

  14. Mapping Deforestation and Forest Degradation Patterns in Western Himalaya, Pakistan

    Directory of Open Access Journals (Sweden)

    Faisal Mueen Qamer

    2016-05-01

    Full Text Available The Himalayan mountain forest ecosystem has been degrading since the British ruled the area in the 1850s. Local understanding of the patterns and processes of degradation is desperately required to devise management strategies to halt this degradation and provide long-term sustainability. This work comprises a satellite image based study in combination with national expert validation to generate sub-district level statistics for forest cover over the Western Himalaya, Pakistan, which accounts for approximately 67% of the total forest cover of the country. The time series of forest cover maps (1990, 2000, 2010 reveal extensive deforestation in the area. Indeed, approximately 170,684 ha of forest has been lost, which amounts to 0.38% per year clear cut or severely degraded during the last 20 years. A significant increase in the rate of deforestation is observed in the second half of the study period, where much of the loss occurs at the western borders along with Afghanistan. The current study is the first systematic and comprehensive effort to map changes to forest cover in Northern Pakistan. Deforestation hotspots identified at the sub-district level provide important insight into deforestation patterns, which may facilitate the development of appropriate forest conservation and management strategies in the country.

  15. Emissions and Deforestation Associated with Household Fuel Wood ...

    African Journals Online (AJOL)

    Fuel wood is regarded as a major source of energy around the world, particularly in developing nations where it forms part of the energy mix. Most rural communities around the world, consider forests a repository of stored energy. This paper focuses on the role of fuel wood in deforestation and the emission of greenhouse ...

  16. Ecology of mangroves in the Jewfish Chain, Exuma, Bahamas

    Science.gov (United States)

    Wilcox, L. V.; Yocom, Thomas G.; Forbes, A. M.

    1976-01-01

    The structure and function of mangrove communities in the Jewfish Chain, Exumas, Bahamas, were investigated for 3-1/2 years. Mangrove vegetation in the Jewfish Chain is similar to that in all the Caribbean-Florida area; Rhizophora mangle L. dominates and is interspersed with Avicennia germinans (L.) Lamk. and Laguncularia racemosa (L.) Gaertn. There is no apparent zonation of these three species. The mangrove communities in the Jewfish Chain occur only where they are protected from prevailing winds, storms, and tides, although all are periodically devastated by hurricanes. We found little or no evidence of coast building within these protected locations. The importance of the mangroves appears to be in providing protection and food for other flora and fauna within this unique ecosystem. Twenty-four species of algae were found in the mangroves, 9 of which had not previously been reported from the Bahamas. Distribution of these algae appears to be correlated to incident solar radiation, desiccation, and tide level. A total of 56 species of fish were found in the mangroves, 2 of which were not previously known from the Bahamas. Many fish taken were juveniles, suggesting that mangroves are a nursery ground for numerous species. Nine species of molluscs were found. Each species had a distinct distribution pattern relative to distance from the seaward edge of the mangroves, as well as a distinct vertical distribution pattern. Seventeen species of decapod crustaceans were recorded. Though several species of birds were noted in the mangroves, three species were most abundant: the white-crowned pigeon (Columba leucocephala) uses the mangrove for nesting but feeds in nearby shrub-thorn communities; the gray kingbird (Tyrannus dominicensis) and green heron (Butorides virescens) nest and feed in the mangroves. Our data do not completely describe a stereotyped mangrove community in the Bahamas, but they do give an indication of community structure and suggest several

  17. Hydrological Classification, a Practical Tool for Mangrove Restoration

    OpenAIRE

    Van Loon, Anne F.; Te Brake, Bram; Van Huijgevoort, Marjolein H. J.; Dijksma, Roel

    2016-01-01

    Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds) in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined....

  18. The physiology of mangrove trees with changing climate

    Science.gov (United States)

    Lovelock, Catherine E.; Krauss, Ken W.; Osland, Michael J.; Reef, Ruth; Ball, Marilyn C.; Meinzer, Frederick C.; Niinemets, Ülo

    2016-01-01

    Mangrove forests grow on saline, periodically flooded soils of the tropical and subtropical coasts. The tree species that comprise the mangrove are halophytes that have suites of traits that confer differing levels of tolerance of salinity, aridity, inundation and extremes of temperature. Here we review how climate change and elevated levels of atmospheric CO2 will influence mangrove forests. Tolerance of salinity and inundation in mangroves is associated with the efficient use of water for photosynthetic carbon gain which unpins anticipated gains in productivity with increasing levels of CO2. We review evidence of increases in productivity with increasing CO2, finding that enhancements in growth appear to be similar to trees in non-mangrove habitats and that gains in productivity with elevated CO2 are likely due to changes in biomass allocation. High levels of trait plasticity are observed in some mangrove species, which potentially facilitates their responses to climate change. Trait plasticity is associated with broad tolerance of salinity, aridity, low temperatures and nutrient availability. Because low temperatures and aridity place strong limits on mangrove growth at the edge of their current distribution, increasing temperatures over time and changing rainfall patterns are likely to have an important influence on the distribution of mangroves. We provide a global analysis based on plant traits and IPCC scenarios of changing temperature and aridity that indicates substantial global potential for mangrove expansion.

  19. Mangrove expansion into salt marshes alters associated faunal communities

    Science.gov (United States)

    Smee, Delbert L.; Sanchez, James A.; Diskin, Meredith; Trettin, Carl

    2017-03-01

    Climate change is altering the distribution of foundation species, with potential effects on organisms that inhabit these environments and changes to valuable ecosystem functions. In the Gulf of Mexico, black mangroves (Avicennia germinans) are expanding northward into salt marshes dominated by Spartina alterniflora (hereafter Spartina). Salt marshes are essential habitats for many organisms, including ecologically and economically important species such as blue crabs (Callinectes sapidus) and Penaeid shrimp (e.g., Penaeus aztecus), which may be affected by vegetation changes. Black mangroves occupied higher tidal elevations than Spartina, and Spartina was present only at its lowest tidal elevations in sites when mangroves were established. We compared nekton and infaunal communities within monoculture stands of Spartina that were bordered by mangroves to nearby areas where mangroves had not yet become established. Nekton and infaunal communities were significantly different in Spartina stands bordered by mangroves, even though salinity and temperature were not different. Overall abundance and biomass of nekton and infauna was significantly higher in marshes without mangroves, although crabs and fish were more abundant in mangrove areas. Black mangrove expansion as well as other ongoing vegetation shifts will continue in a warming climate. Understanding how these changes affect associated species is necessary for management, mitigation, and conservation.

  20. A global assessment of closed forests, deforestation and malaria risk

    Science.gov (United States)

    GUERRA, C. A.; SNOW, R. W.; HAY, S. I.

    2011-01-01

    Global environmental change is expected to affect profoundly the transmission of the parasites that cause human malaria. Amongst the anthropogenic drivers of change, deforestation is arguably the most conspicuous, and its rate is projected to increase in the coming decades. The canonical epidemiological understanding is that deforestation increases malaria risk in Africa and the Americas and diminishes it in South–east Asia. Partial support for this position is provided here, through a systematic review of the published literature on deforestation, malaria and the relevant vector bionomics. By using recently updated boundaries for the spatial limits of malaria and remotely-sensed estimates of tree cover, it has been possible to determine the population at risk of malaria in closed forest, at least for those malaria-endemic countries that lie within the main blocks of tropical forest. Closed forests within areas of malaria risk cover approximately 1.5 million km2 in the Amazon region, 1.4 million km2 in Central Africa, 1.2 million km2 in the Western Pacific, and 0.7 million km2 in South–east Asia. The corresponding human populations at risk of malaria within these forests total 11.7 million, 18.7 million, 35.1 million and 70.1 million, respectively. By coupling these numbers with the country-specific rates of deforestation, it has been possible to rank malaria-endemic countries according to their potential for change in the population at risk of malaria, as the result of deforestation. The on-going research aimed at evaluating these relationships more quantitatively, through the Malaria Atlas Project (MAP), is highlighted. PMID:16630376

  1. Geospatial characterization of deforestation, fragmentation and forest fires in Telangana state, India: conservation perspective.

    Science.gov (United States)

    Sudhakar Reddy, C; Vazeed Pasha, S; Jha, C S; Dadhwal, V K

    2015-07-01

    Conservation of biodiversity has been put to the highest priority throughout the world. The process of identifying threatened ecosystems will search for different drivers related to biodiversity loss. The present study aimed to generate spatial information on deforestation and ecological degradation indicators of fragmentation and forest fires using systematic conceptual approach in Telangana state, India. Identification of ecosystems facing increasing vulnerability can help to safeguard the extinctions of species and useful for conservation planning. The technological advancement of satellite remote sensing and Geographical Information System has increased greatly in assessment and monitoring of ecosystem-level changes. The areas of threat were identified by creating grid cells (5 × 5 km) in Geographical Information System (GIS). Deforestation was assessed using multi-source data of 1930, 1960, 1975, 1985, 1995, 2005 and 2013. The forest cover of 40,746 km(2), 29,299 km(2), 18,652 km(2), 18,368 km(2), 18,006 km(2), 17,556 km(2) and 17,520 km(2) was estimated during 1930, 1960, 1975, 1985, 1995, 2005 and 2013, respectively. Historical evaluation of deforestation revealed that major changes had occurred in forests of Telangana and identified 1095 extinct, 397 critically endangered, 523 endangered and 311 vulnerable ecosystem grid cells. The fragmentation analysis has identified 307 ecosystem grid cells under critically endangered status. Forest burnt area information was extracted using AWiFS data of 2005 to 2014. Spatial analysis indicates total fire-affected forest in Telangana as 58.9% in a decadal period. Conservation status has been recorded depending upon values of threat for each grid, which forms the basis for conservation priority hotspots. Of existing forest, 2.1% grids had severe ecosystem collapse and had been included under the category of conservation priority hotspot-I, followed by 27.2% in conservation priority hotspot-II and 51.5% in conservation

  2. IDENTIFIKASI TINGKAT KERAWANAN DEGRADASI KAWASAN HUTAN MANGROVE DESA MUARA, TANGERANG, BANTEN

    Directory of Open Access Journals (Sweden)

    Hadisti Nur Aini

    2015-07-01

    Full Text Available This study is intended to estimate the vulnerability of degradation of mangrove forest in Muara Village, Tangerang, Banten. There are five species of mangroves found in mangrove forest of Muara, which are: Avicennia alba, Avicennia officinnalis. Rhizophora apiculata, Rhizophora stylosa, and Rhizophora mucronata. The results showed that the mangrove forest in Muara has a high vulnerability of degradation based on the three vegetation characteristics, such as: density, domination, and biodiversity of mangrove species. The density of mangrove vegetation has only reached 739 individual/Ha. While the biodiversity of mangrove species is low and the domination level of mangrove species is high, in which the dominant species is Rhizophora mucronata. Mangrove rehabilitation activities are required by revegetation methods, and the mangrove species that are used in revegetation process are local species which available in the mangrove forest of Muara. Mangrove rehabilitation process that needs to be done is by revegetation of mangroves and mangrove species conservation. Mangrove species which is suitable for mangrove rehabilitation in Muara Village are Rhizophora mucronata and Avecinnea alba. Keywords: mangrove, forest, degradation, rehabilitation

  3. Influence of deforestation, logging, and fire on malaria in the Brazilian Amazon.

    Science.gov (United States)

    Hahn, Micah B; Gangnon, Ronald E; Barcellos, Christovam; Asner, Gregory P; Patz, Jonathan A

    2014-01-01

    Malaria is a significant public health threat in the Brazilian Amazon. Previous research has shown that deforestation creates breeding sites for the main malaria vector in Brazil, Anopheles darlingi, but the influence of selective logging, forest fires, and road construction on malaria risk has not been assessed. To understand these impacts, we constructed a negative binomial model of malaria counts at the municipality level controlling for human population and social and environmental risk factors. Both paved and unpaved roadways and fire zones in a municipality increased malaria risk. Within the timber production states where 90% of deforestation has occurred, compared with areas without selective logging, municipalities where 0-7% of the remaining forests were selectively logged had the highest malaria risk (1.72, 95% CI 1.18-2.51), and areas with higher rates of selective logging had the lowest risk (0.39, 95% CI 0.23-0.67). We show that roads, forest fires, and selective logging are previously unrecognized risk factors for malaria in the Brazilian Amazon and highlight the need for regulation and monitoring of sub-canopy forest disturbance.

  4. Parks versus payments: reconciling divergent policy responses to biodiversity loss and climate change from tropical deforestation

    International Nuclear Information System (INIS)

    Busch, Jonah; Grantham, Hedley S

    2013-01-01

    Biodiversity loss and climate change both result from tropical deforestation, yet strategies to address biodiversity loss have focused primarily on protected areas while strategies to address climate change have focused primarily on carbon payments. Conservation planning research has focused largely on where to prioritize protected areas to achieve the greatest representation of species at viable levels. Meanwhile research on reducing emissions from deforestation and forest degradation (REDD+) has focused largely on how to design payments to achieve the greatest additional reduction in greenhouse gases relative to baseline rates. This divergence of strategies and research agendas may be attributed to four factors: rare species are more heterogeneously distributed than carbon; species are more difficult to measure and monitor than carbon; species are more sensitive to ecological processes and human disturbance than carbon; and people’s value for species diminishes beyond a threshold while their value for carbon storage does not. Conservation planning can achieve greater biodiversity benefits by adopting the concept of additionality from REDD+. REDD+ can achieve greater climate benefits by incorporating spatial prioritization from conservation planning. Climate and biodiversity benefits can best be jointly achieved from tropical forests by targeting the most additional actions to the most important places. These concepts are illustrated using data from the forests of Indonesia. (letter)

  5. Influence of deforestation, logging, and fire on malaria in the Brazilian Amazon.

    Directory of Open Access Journals (Sweden)

    Micah B Hahn

    Full Text Available Malaria is a significant public health threat in the Brazilian Amazon. Previous research has shown that deforestation creates breeding sites for the main malaria vector in Brazil, Anopheles darlingi, but the influence of selective logging, forest fires, and road construction on malaria risk has not been assessed. To understand these impacts, we constructed a negative binomial model of malaria counts at the municipality level controlling for human population and social and environmental risk factors. Both paved and unpaved roadways and fire zones in a municipality increased malaria risk. Within the timber production states where 90% of deforestation has occurred, compared with areas without selective logging, municipalities where 0-7% of the remaining forests were selectively logged had the highest malaria risk (1.72, 95% CI 1.18-2.51, and areas with higher rates of selective logging had the lowest risk (0.39, 95% CI 0.23-0.67. We show that roads, forest fires, and selective logging are previously unrecognized risk factors for malaria in the Brazilian Amazon and highlight the need for regulation and monitoring of sub-canopy forest disturbance.

  6. Scientists as citizens and knowers in the detection of deforestation in the Amazon.

    Science.gov (United States)

    Monteiro, Marko; Rajão, Raoni

    2017-08-01

    This paper examines how scientists deal with tensions emerging from their role as providers of objective knowledge and as citizens concerned with how their research influences policy and politics in Brazil. This is accomplished through an ethnographic account of scientists using remote sensing technology, of their knowledge-making activities and of the broader socio-political controversies that permeate the detection of deforestation in the Amazon rainforest. Strategies for mitigating uncertainty are central aspects of the knowledge practices analyzed, bringing controversies 'external' to the laboratory 'into' the lab, making these boundaries conceptually problematic. In particular, the anticipation of alternative interpretations of rainforest cover is a crucial way that scientists bring the world into the lab, helping to shed light on how scientists, usually seen and analyzed as isolated, are in fact often in constant dialogue with the broader political controversies related to their work. These insights help question the idea that the monitoring of deforestation through remote sensing is a form of secluded research, drawing a more complex picture of the dual role of scientists as knowledge producers and concerned citizens.

  7. Deforestation and the structure of frog communities in the Humedale Terraba-Sierpe, Costa Rica.

    Science.gov (United States)

    Furlani, Dario; Francesco Ficetola, Gentile; Colombo, Giorgio; Ugurlucan, Murat; De Bernardi, Fiorenza

    2009-03-01

    Loss of tropical forests is a major cause of biodiversity loss worldwide. Although drastic modification of the habitat has been shown to negatively affect amphibians, we are far from a complete understanding of the response of amphibian communities to deforestation. We studied frog assemblages in a gradient of forest modification in a humid area of Costa Rica, where the primary forest has been partially converted into pasture. The study area is a mosaic of primary palm forest, abandoned pasture covered by secondary forest, and pasture. Species richness was assessed by randomized walk surveys and audio strip transects. We also measured ecological features to evaluate the relationship between landscape alteration and amphibian distribution. The study area hosted a large number of amphibian species. We focused our monitoring on six anurans: Leptodactylus labialis, Eleutherodactylus fitzingeri, E. diastema, Hyla rosenbergi, H. microcephale, and Cochranella granulosa. Three species (L. labialis, H. rosenbergi, and H. microcephala) were most abundant in pasture areas with livestock presence, while E. fitzingeri, E. diastema, and C. granulosa were associated with primary forest. Most of the variation in community structure was explained by the joint effect of forest alteration and presence of livestock. Whereas forest specialists suffer direct negative effect from deforestation, generalist species can take advantage of forest alteration and the presence of farm animals. Species that are able to take advantage of the new environmental characteristics associated with human modifications of landscapes will come to prevail in the new communities.

  8. Threshold responses of Amazonian stream fishes to timing and extent of deforestation.

    Science.gov (United States)

    Brejão, Gabriel L; Hoeinghaus, David J; Pérez-Mayorga, María Angélica; Ferraz, Silvio F B; Casatti, Lilian

    2017-12-06

    Deforestation is a primary driver of biodiversity change through habitat loss and fragmentation. Stream biodiversity may not respond to deforestation in a simple linear relationship. Rather, threshold responses to extent and timing of deforestation may occur. Identification of critical deforestation thresholds is needed for effective conservation and management. We tested for threshold responses of fish species and functional groups to degree of watershed and riparian zone deforestation and time since impact in 75 streams in the western Brazilian Amazon. We used remote sensing to assess deforestation from 1984 to 2011. Fish assemblages were sampled with seines and dip nets in a standardized manner. Fish species (n = 84) were classified into 20 functional groups based on ecomorphological traits associated with habitat use, feeding, and locomotion. Threshold responses were quantified using threshold indicator taxa analysis. Negative threshold responses to deforestation were common and consistently occurred at very low levels of deforestation (70% deforestation and >10 years after impact. Findings were similar at the community level for both taxonomic and functional analyses. Because most negative threshold responses occurred at low levels of deforestation and soon after impact, even minimal change is expected to negatively affect biodiversity. Delayed positive threshold responses to extreme deforestation by a few species do not offset the loss of sensitive taxa and likely contribute to biotic homogenization. © 2017 Society for Conservation Biology.

  9. A global predictive model of carbon in mangrove soils

    International Nuclear Information System (INIS)

    Jardine, Sunny L; Siikamäki, Juha V

    2014-01-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO 2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO 2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha −1 ) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha −1 ). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological

  10. A global predictive model of carbon in mangrove soils

    Science.gov (United States)

    Jardine, Sunny L.; Siikamäki, Juha V.

    2014-10-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha-1) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha-1). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological predictors, e.g. to

  11. Plant diversity and biomass of Marudu bay mangroves in Malaysia

    International Nuclear Information System (INIS)

    Hanum, F.; Kudus, K.A.; Saari, N.S

    2012-01-01

    The mangroves of Marudu Bay in the state of Sabah is situated at the tip of Borneo Island, and at the southern limit of the Coral Triangle whose waters hold the highest diversity of corals, fish, molluscks, crustaceans and marine plant species in the world. The ecosystem shows a deterioration due to unsustainable fishing, pollution and encroachment, and these are impacting the Marudu Bay coastal communities economically. Fishing is the major economic activity here. Realising the importance of conserving the mangroves to uplift the socio-economic livelihood of the coastal community, a resource inventory of the mangroves and its productivity study were carried out. A total of 16 plant species in 12 genera and 9 families were identified. It was also found that 0.7 ha is capable of capturing all the species in the mangrove forest. The mangrove forests of Marudu Bay are dominated by Rhizopora apiculata and R. mucronata. The highest Importance Value index (IVI) was given by Rhizophora mucronata. Total Above Ground Biomass (TAGB) for 1-ha of mangrove forest in Marudu Bay was estimated to be 98.4 t/ha. It was found in other parallel studies that the mangroves of Marudu Bay are productive ecosystems that provide valuable habitats, nurseries and spawning grounds for various commercially important species of fish and invertebrates such as shrimp besides many species of wildlife. The mangroves at Marudu Bay are not only aesthetically attractive but provide opportunities for ecotourism activities that can be undertaken by the local community inhabiting the area to uplift their meagre income, These activities include mangrove cruising, recreational fishing, educational tourism and mangrove honey production, amongst others. This way, the degradation of the mangrove in Marudu Bay can be halted and reversed. (author)

  12. Hydrological Classification, a Practical Tool for Mangrove Restoration.

    Science.gov (United States)

    Van Loon, Anne F; Te Brake, Bram; Van Huijgevoort, Marjolein H J; Dijksma, Roel

    2016-01-01

    Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds) in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined. Using an existing hydrological classification for mangroves, sites were classified into hydrological classes, based on duration of inundation, and vegetation classes, based on occurrence of mangrove species. For the natural sites hydrological and vegetation classes were similar, showing clear distribution of mangrove species from wet to dry sites. Application of the classification to disturbed sites showed that in some locations hydrological conditions had been restored enough for mangrove vegetation to establish, in some locations hydrological conditions were suitable for various mangrove species but vegetation had not established naturally, and in some locations hydrological conditions were too wet for any mangrove species (natural or planted) to grow. We quantified the effect that removal of obstructions such as dams would have on the hydrology and found that failure of planting at one site could have been prevented. The hydrological classification needs relatively little data, i.e. water levels for a period of only one lunar tidal cycle without additional measurements, and uncertainties in the measurements and analysis are relatively small. For the study locations, the application of the hydrological classification gave important information about how to restore the hydrology to suitable conditions to improve natural regeneration or to plant mangrove species, which could not have been obtained by estimating elevation only. Based on this research a number of recommendations

  13. Associational resistance protects mangrove leaves from crab herbivory

    Science.gov (United States)

    Erickson, Amy A.; Bell, Susan S.; Dawes, Clinton J.

    2012-05-01

    While associational defenses have been well documented in many plant and algal ecosystems, this study is the first to document associational resistance in mangroves. Mangrove tree crab (Aratus pisonii) density and herbivory on three life-stages of the red mangrove (Rhizophora mangle) were documented in pure red versus mixed-species and predominantly non-red mangrove stands containing black (Avicennia germinans) and white (Laguncularia racemosa) mangroves in 1999-2000 in Tampa Bay, Florida. This study first established that R. mangle is the focal species in the context of associational resistance because it is damaged more than either of the other mangrove species. Next, it was hypothesized that crab density and leaf damage on R. mangle would be lower when in mixed-species and predominantly non-red versus red mangrove stands. A non-significant trend suggested that crab density varies among stands, and crab damage on R. mangle leaves was significantly lower in mixed-species and non-red stands. Mechanisms to explain associational resistance were examined. Positive Pearson correlations between the percent of adult R. mangle in a stand and both crab density and R. mangle leaf damage provided support for the resource concentration hypothesis. Limited support was found for the attractant-decoy hypothesis because the total amount of damaged leaves of all mangrove species combined typically differed among stands, suggesting that crabs were not shifting to alternative mangrove species to offset reduced availability of R. mangle leaves. Finally, while R. mangle seedlings were shorter in non-red stands compared to others, intra-specific differences in R. mangle leaf chemistry and sclerophylly among stands failed to explain associational patterns. These combined results argue for the need for additional experiments to elucidate mechanisms responsible for defensive plant associations in mangrove ecosystems and to determine whether such associations could be of use in mangrove

  14. Hydrological Classification, a Practical Tool for Mangrove Restoration.

    Directory of Open Access Journals (Sweden)

    Anne F Van Loon

    Full Text Available Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined. Using an existing hydrological classification for mangroves, sites were classified into hydrological classes, based on duration of inundation, and vegetation classes, based on occurrence of mangrove species. For the natural sites hydrological and vegetation classes were similar, showing clear distribution of mangrove species from wet to dry sites. Application of the classification to disturbed sites showed that in some locations hydrological conditions had been restored enough for mangrove vegetation to establish, in some locations hydrological conditions were suitable for various mangrove species but vegetation had not established naturally, and in some locations hydrological conditions were too wet for any mangrove species (natural or planted to grow. We quantified the effect that removal of obstructions such as dams would have on the hydrology and found that failure of planting at one site could have been prevented. The hydrological classification needs relatively little data, i.e. water levels for a period of only one lunar tidal cycle without additional measurements, and uncertainties in the measurements and analysis are relatively small. For the study locations, the application of the hydrological classification gave important information about how to restore the hydrology to suitable conditions to improve natural regeneration or to plant mangrove species, which could not have been obtained by estimating elevation only. Based on this research a number

  15. Antibacterial phenolics from the mangrove Lumnitzera racemosa

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, L.; Wahidullah, S.; PrabhaDevi

    -(4- hydroxyphenyl)-propyl-3′-(3,4-dihydroxyphenyl)- propionate1. This communication relates to the identification of antibacterial principle in L. racemosa which is associated with polyphenolic constituents. The efficacy of this mangrove has been studied... be necessary for a full evaluation of their practical usefulness in the field of modern medicine. Acknowledgements The authors thank Dr. S. R. Shetye, Director, NIO for his keen interest in the work. Financial support by Ministry of Earth Sciences under...

  16. Mangrove root communities in Jobos Bay

    International Nuclear Information System (INIS)

    Yoshioka, P.M.

    1975-01-01

    Based on the presence and absence of species, at least two major types of mangrove root communities exist in Jobos Bay. One community, occurring mainly along the Aguirre Ship Channel, is composed of species characteristic of coastal waters. Another occurring in Jobos Bay and in mangrove channels in the vinicity of Mar Negro Lagoon is characterized by embayment species. Water mass is the best single parameter which correlates with the different communities. In general, subtidal species are more susceptible to elevated temperatures than intertidal species and consequently will be the first affected. Because most of the predators and competitors are subtidal, the predation and competition which limit populations may be cut back. The effect will first be seen in increased populations of barnacles, because they are severely limited by predation and competition but are physiologically quite tolerant. The intertidal species should flourish (on a relative basis) and their vertical distributions should be extended downward. These effects are only primary. Many species which would do best in thermally altered situations are colonizing or fugitive species. It is unknown whether such an assemblage could persist with continued recruitment and growth of new individuals. The dominance of these colonizing or fugitive species may be only temporary, however, because blue-green algae are tolerant of elevated temperatures and have a negative effect on barnacle recruitment and growth. Consequently, blue-green algae may eventually dominate thermally affected mangrove roots

  17. The Story of Mangrove Depletion: Using Socioscientific Cases to Promote Ocean Literacy

    Science.gov (United States)

    Luther, Rachel A.; Tippins, Deborah J.; Bilbao, Purita P.; Tan, Andrew; Gelvezon, Ruth L.

    2013-01-01

    The value of mangroves and mangrove ecosystems has not always been recognized. In fact, mangroves were historically regarded largely as wastelands with little or no value. Over time, humans began to recognize the multiple ways in which they could be used, particularly through development, making the mangrove ecosystem vulnerable to destruction and…

  18. Artificial Crab Burrows Facilitate Desalting of Rooted Mangrove Sediment in a Microcosm Study

    Directory of Open Access Journals (Sweden)

    Nathalie Pülmanns

    2015-07-01

    Full Text Available Water uptake by mangrove trees can result in salt accumulation in sediment around roots, negatively influencing growth. Tidal pumping facilitates salt release and can be enhanced by crab burrows. Similarly, flushing of burrows by incoming tidal water decreases sediment salinity. In contrast to burrows with multiple entrances, the role of burrows with one opening for salinity reduction is largely unknown. In a microcosm experiment we studied the effect of artificial, burrow-like macro-pores with one opening on the desalting of mangrove sediment and growth of Rhizophora mangle L. seedlings. Sediment salinity, seedling leaf area and seedling growth were monitored over six months. Artificial burrows facilitated salt release from the sediment after six weeks, but seedling growth was not influenced. To test whether crab burrows with one opening facilitate salt release in mangrove forests, sediment salinities were measured in areas with and without R. mangle stilt roots in North Brazil at the beginning and end of the wet season. In addition, burrows of Ucides cordatus were counted. High crab burrow densities and sediment salinities were associated with stilt root occurrence. Precipitation and salt accumulation by tree roots seem to have a larger effect on sediment salinity than desalting by U. cordatus burrows.

  19. Bio-geochemical studies of indus delta mangrove ecosystem through heavy metal assessment

    International Nuclear Information System (INIS)

    Ismail, S.; Saifullah, S.M.

    2014-01-01

    In the present study monitoring of heavy metal pollution was done in the mangrove habitats of Indus Delta. Different levels of four heavy metal (Pb, Cu, Cd, and Zn) in abiotic component (sediments and water) and biotic components (mangrove plants parts like, (Pneumatophores, bark, leaves, flowers, and fruits) were determined. The highest average concentration of heavy metals (111 ppm Zn, 60.0 ppm Pb, 52.2 ppm Cu, 1.43 ppm Cd) were measured in sediments and the lowest in the water (0.13 ppm Zn, 0.0014 ppm Cu, 0.0007 ppm Pb , 0.00061 ppm Cd). Among the four heavy metals, Zn was the most abundant metal in all components of the ecosystem, followed by Cu, Pb, and Cd (Zn>Cu>Pb>Cd), and hence A. marina can be proposed as a hyper-accumulator for Zn, which opens doors for further research. The pollution load index (PLI) had values higher than 1 and varied between 2.02-1.70 at Indus Delta, whereas at MianiHor the PLI was 0.65, which indicated that Indus Delta mangrove Ecosystem was under threat of pollution under the present scenario. (author)

  20. Mangrove restoration in Vietnam : Key considerations and a practical guide

    NARCIS (Netherlands)

    Marchand, M.

    2008-01-01

    In Vietnam mangrove rehabilitation has a long history and gained momentum after the war that destroyed huge forested areas, especially in the Mekong Delta. In addition, in various places mangrove have been and still are being planted specifically as a way to protect shorelines and sea-dykes from

  1. Herbivory enhances the resistance of mangrove forest to cordgrass invasion.

    Science.gov (United States)

    Zhang, Yihui; Meng, Hanyu; Wang, Yi; He, Qiang

    2018-06-01

    The biotic resistance hypothesis proposes that biotic interactions, such as competition and herbivory, resist the establishment and spread of non-native species. The relative and interactive role of competition and herbivory in resisting plant invasions, however, remains poorly understood. We investigated the interactive role of competition and herbivory (by the native rodent Rattus losea) in resisting Spartina alterniflora (cordgrass) invasions into mangrove forests. In southern China, although exotic cordgrass numerically dominates intertidal mudflats and open gaps in mangrove forests, intact forests appear to be highly resistant to cordgrass invasion. A field transplant and rodent exclusion experiment showed that while the impact of rodent grazing on cordgrass was weak on mangrove forest edges and open mudflats, rodent grazing strongly suppressed cordgrass in mangrove understory habitats. A greenhouse experiment confirmed a synergistic interaction between grazing and light availability (a proxy for mangrove shading and light competition) in suppressing cordgrass establishment, with the strongest impacts of grazing in low light conditions that likely weakened cordgrass to survive and resprout. When both were present, as in mangrove understory habitats, grazing and low light acted in concert to eliminate cordgrass establishment, resulting in resistance of mangrove forests to cordgrass invasion. Our results reveal that grazing by native herbivores can enhance the resistance of mangrove forests to cordgrass invasion in southern China, and suggest that investigating multifactor interactions may be critical to understanding community resistance to exotic invasions. © 2018 by the Ecological Society of America.

  2. Mangrove litter production and organic carbon pools in the ...

    African Journals Online (AJOL)

    Mngazana Estuary is an important source of mangrove litter and POC for the adjacent marine environment, possibly sustaining nearshore food webs. Keywords: Dissolved organic carbon, harvesting, litter production, mangroves, particulate organic carbon, Rhizophora mucronata, South Africa African Journal of Aquatic ...

  3. Low Carbon sink capacity of Red Sea mangroves.

    Science.gov (United States)

    Almahasheer, Hanan; Serrano, Oscar; Duarte, Carlos M; Arias-Ortiz, Ariane; Masque, Pere; Irigoien, Xabier

    2017-08-29

    Mangroves forests of Avicennia marina occupy about 135 km 2 in the Red Sea and represent one of the most important vegetated communities in this otherwise arid and oligotrophic region. We assessed the soil organic carbon (C org ) stocks, soil accretion rates (SAR; mm y -1 ) and soil C org sequestration rates (g C org m -2 yr -1 ) in 10 mangrove sites within four locations along the Saudi coast of the Central Red Sea. Soil C org density and stock in Red Sea mangroves were among the lowest reported globally, with an average of 4 ± 0.3 mg C org cm -3 and 43 ± 5 Mg C org ha -1 (in 1 m-thick soils), respectively. Sequestration rates of C org , estimated at 3 ± 1 and 15 ± 1 g C org m -2 yr -1 for the long (millennia) and short (last century) temporal scales, respectively, were also relatively low compared to mangrove habitats from more humid bioregions. In contrast, the accretion rates of Central Red Sea mangroves soils were within the range reported for global mangrove forests. The relatively low C org sink capacity of Red Sea mangroves could be due to the extreme environmental conditions such as low rainfall, nutrient limitation and high temperature, reducing the growth rates of the mangroves and increasing soil respiration rates.

  4. The selection exerted by oil contamination on mangrove fungal communities

    NARCIS (Netherlands)

    Fasanella, Cristiane Cipola; Franco Dias, Armando Cavalcante; Rigonato, Janaina; Fiore, Marli de Fatima; Soares, Fabio Lino; Melo, Itamar Soares; Pizzirani-Kleiner, Aline Aparecida; van Elsas, Jan Dirk; Dini Andreote, Fernando

    Mangrove ecosystems are tropical environments that are characterized by the interaction between the land and the sea. As such, this ecosystem is vulnerable to oil spills. Here, we show a culture-independent survey of fungal communities that are found in the sediments of the following two mangroves

  5. Sulphur oxidising bacteria in mangrove ecosystem: A review ...

    African Journals Online (AJOL)

    Sulphur-oxidizing bacteria such as photoautotrophs, chemolithotrophs and heterotrophs play an important role in the mangrove environment for the oxidation of the toxic sulphide produced by sulphur reducing bacteria and act as a key driving force behind all sulphur transformations in the mangrove ecosystem which is ...

  6. Mangroves and sediment dynamics along the coasts of southern Thailand

    NARCIS (Netherlands)

    Thampanya, U.

    2006-01-01

    Mangroves are a specific type of evergreen forest that is found along the coastlines of tropical and subtropical regions, particularly along deltas and bays where rivers discharge freshwater and sediment to the sea. These mangroves provide important ecological and socio-economic functions to coastal

  7. The Economic Value of Mangroves: A Meta-Analysis

    Science.gov (United States)

    Marwa Salem; D. Evan Mercer

    2012-01-01

    This paper presents a synthesis of the mangrove ecosystem valuation literature through a meta-regression analysis. The main contribution of this study is that it is the first meta-analysis focusing solely on mangrove forests, whereas previous studies have included different types of wetlands. The number of studies included in the regression analysis is 44 for a total...

  8. Global patterns in the poleward expansion of mangrove forests

    Science.gov (United States)

    Cavanaugh, K. C.; Feller, I. C.

    2016-12-01

    Understanding the processes that limit the geographic ranges of species is one of the central goals of ecology and biogeography. This issue is particularly relevant for coastal wetlands given that climate change is expected to lead to a `tropicalization' of temperate coastal and marine ecosystems. In coastal wetlands around the world, there have already been observations of mangroves expanding into salt marshes near the current poleward range limits of mangroves. However, there is still uncertainty regarding regional variability in the factors that control mangrove range limits. Here we used time series of Landsat satellite imagery to characterize patterns of mangrove abundance near their poleward range limits around the world. We tested the commonly held assumption that temporal variation in abundance should increase towards the edge of the range. We also compared variability in mangrove abundance to climate factors thought to set mangrove range limits (air temperature, water temperature, and aridity). In general, variability in mangrove abundance at range edges was high relative to range centers and this variability was correlated to one or more climate factors. However, the strength of these relationships varied among poleward range limits, suggesting that some mangrove range limits are control by processes other than climate, such as dispersal limitation.

  9. Low Carbon sink capacity of Red Sea mangroves

    KAUST Repository

    Almahasheer, Hanan

    2017-08-22

    Mangroves forests of Avicennia marina occupy about 135 km2 in the Red Sea and represent one of the most important vegetated communities in this otherwise arid and oligotrophic region. We assessed the soil organic carbon (C-org) stocks, soil accretion rates (SAR; mm y(-1)) and soil C-org sequestration rates (g C-org m(-2) yr(-1)) in 10 mangrove sites within four locations along the Saudi coast of the Central Red Sea. Soil C-org density and stock in Red Sea mangroves were among the lowest reported globally, with an average of 4 +/- 0.3 mg Corg cm(-3) and 43 +/- 5 Mg C-org ha(-1) (in 1 m-thick soils), respectively. Sequestration rates of C-org, estimated at 3 +/- 1 and 15 +/- 1 g C-org m(-2) yr(-1) for the long (millennia) and short (last century) temporal scales, respectively, were also relatively low compared to mangrove habitats from more humid bioregions. In contrast, the accretion rates of Central Red Sea mangroves soils were within the range reported for global mangrove forests. The relatively low C-org sink capacity of Red Sea mangroves could be due to the extreme environmental conditions such as low rainfall, nutrient limitation and high temperature, reducing the growth rates of the mangroves and increasing soil respiration rates.

  10. Mangroves as alien species: the case of Hawaii

    Science.gov (United States)

    James A. Allen

    1998-01-01

    Prior to the early 1900s, there were no mangroves in the Hawaiian Archipelago. In 1902, Rhizophora mangle was introduced on the island of Molokai, primarily for the purpose of stabilizing coastal mud flats. This species is now well established in Hawaii, and is found on nearly all of the major islands. At least five other species of mangroves or...

  11. Nitrate ammonification in mangrove soils: A hidden source of nitrite?

    NARCIS (Netherlands)

    Balk, M.; Laverman, A.M.; Keuskamp, J.A.; Laanbroek, H.J.

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought

  12. Carbon stocks of mangroves within the Zambezi River Delta, Mozambique

    Science.gov (United States)

    Christina E. Stringer; Carl C. Trettin; Stanley J. Zarnoch; Wenwu Tang

    2015-01-01

    Mangroves are well-known for their numerous ecosystem services, including storing a globally significant C pool. There is increasing interest in the inclusion of mangroves in national climate change mitigation and adaptation plans in developing nations as they become involved with incentive programs for climate change mitigation. The quality and precision of data...

  13. Research on the ecology and management of Micronesian mangroves

    Science.gov (United States)

    J.A. Allen

    1999-01-01

    Mangroves are a vitally important natural resource on the high islands of Micronesia. This importance is especially valid in the Federated States of Micronisa (FSM) and the Republic of Palau, where mangroves cover 10-15% of the total land area and are used heavily by islanders as sources of wood, crabs, fish, thatching material, and other products.

  14. Growth Response of Selected Mangrove Species to Domestic ...

    African Journals Online (AJOL)

    The sewage system of Dar es Salaam City, Tanzania, serves only 15% of the population, making sewage one of the leading sources of marine pollution. This study was initiated to assess the potential of peri-urban mangrove forests as filters and phyto-remediators of sewage and the growth of two mangrove species under ...

  15. Low Carbon sink capacity of Red Sea mangroves

    KAUST Repository

    Almahasheer, Hanan; Serrano, Oscar; Duarte, Carlos M.; Arias-Ortiz, Ariane; Masque, Pere; Irigoien, Xabier

    2017-01-01

    Mangroves forests of Avicennia marina occupy about 135 km2 in the Red Sea and represent one of the most important vegetated communities in this otherwise arid and oligotrophic region. We assessed the soil organic carbon (C-org) stocks, soil accretion rates (SAR; mm y(-1)) and soil C-org sequestration rates (g C-org m(-2) yr(-1)) in 10 mangrove sites within four locations along the Saudi coast of the Central Red Sea. Soil C-org density and stock in Red Sea mangroves were among the lowest reported globally, with an average of 4 +/- 0.3 mg Corg cm(-3) and 43 +/- 5 Mg C-org ha(-1) (in 1 m-thick soils), respectively. Sequestration rates of C-org, estimated at 3 +/- 1 and 15 +/- 1 g C-org m(-2) yr(-1) for the long (millennia) and short (last century) temporal scales, respectively, were also relatively low compared to mangrove habitats from more humid bioregions. In contrast, the accretion rates of Central Red Sea mangroves soils were within the range reported for global mangrove forests. The relatively low C-org sink capacity of Red Sea mangroves could be due to the extreme environmental conditions such as low rainfall, nutrient limitation and high temperature, reducing the growth rates of the mangroves and increasing soil respiration rates.

  16. Mangrove reforestation: greening or grabbing coastal zones and ...

    African Journals Online (AJOL)

    Besides their important contribution to global biodiversity, mangroves provide many services. Nevertheless, due to an increase of human activities and to climate change, in less than 20 years these ecosystems have lost one fifth of their global surface area. In response to this decrease, mangrove reforestation incentives ...

  17. Mangroves can provide protection against wind damage during storms

    Science.gov (United States)

    Das, Saudamini; Crépin, Anne-Sophie

    2013-12-01

    Research has established that mangroves can protect lives and property from storms by buffering the impacts of storm surges. However, their effects in attenuating wind velocity and providing protection from wind damage during storms are not known. This study examined whether mangroves attenuate damage from cyclonic winds and found that they provide substantial protection to properties, even relatively far away from mangroves and the coast. We devised a theoretical model of wind protection by mangroves and calibrated and applied this model using data from the 1999 cyclone in the Odisha region of India. The model predicted and quantified the actual level of damage reasonably accurately and showed that mangroves reduced wind damage to houses. The wind protection value of mangroves in reducing house damage amounted to approximately US$177 per hectare at 1999 prices. This provides additional evidence of the storm protection ecosystem services that mangroves supply in the region and an additional reason to invest in mangrove ecosystems to provide better adaptability to coastal disasters such as storms.

  18. Fatty acids in an estuarine mangrove ecosystem

    Directory of Open Access Journals (Sweden)

    Nabeel M Alikunhi

    2010-06-01

    Full Text Available Los ácidos grasos se han utilizado con éxito para estudiar la transferencia de materia orgánica en las redes alimentarias costeras y estuarinas. Para delinear las interacciones tróficas en las redes, se analizaron perfiles de ácidos grasos en las especies de microbios (Azotobacter vinelandii y Lactobacillus xylosus, camarones (Metapenaeus monoceros y Macrobrachium rosenbergii y peces (Mugil cephalus, que están asociadas con la descomposición de las hojas de dos especies de mangle, Rhizophora apiculata y Avicennia marina. Los ácidos grasos, con excepción de los de cadena larga, exhiben cambios durante la descomposición de las hojas de mangle, con una reducción de los ácidos grasos saturados y un aumento de los monoinsaturados. Los ácidos grasos ramificados están ausentes en las hojas de mangle sin descomponer, pero presentes de manera significativa en las hojas descompuestas, en camarones y peces, representando una fuente importante para ellos. Esto revela que los microbios son productores dominantes que contribuyen significativamente con los peces y camarones en el ecosistema de manglar. Este trabajo demuestra que los marcadores biológicos de los ácidos grasos son una herramienta eficaz para la identificación de las interacciones tróficas entre los productores dominantes y consumidores en este manglar.Fatty acids have been successfully used to trace the transfer of organic matter in coastal and estuarine food webs. To delineate these web connections, fatty acid profiles were analyzed in species of microbes (Azotobacter vinelandii, and Lactobacillus xylosus, prawns (Metapenaeus monoceros and Macrobrachium rosenbergii and finfish (Mugil cephalus, that are associated with decomposing leaves of two mangrove species, Rhizophora apiculata and Avicennia marina. The fatty acids, except long chain fatty acids, exhibit changes during decomposition of mangrove leaves with a reduction of saturated fatty acids and an increase of

  19. Effectiveness of community forest management at reducing deforestation in Madagascar

    DEFF Research Database (Denmark)

    Rasolofoson, Ranaivo Andriarilala; Ferraro, Paul J.; Jenkins, Clinton N.

    2015-01-01

    Community Forest Management (CFM) is a widespread conservation approach in the tropics. It is also promoted as a means by which payment for ecosystem services schemes can be implemented. However, evidence on its performance is weak. We investigated the effectiveness of CFM at reducing deforestation...... from 2000 to 2010 in Madagascar. To control for factors confounding impact estimates, we used statistical matching. We also contrasted the effects of CFM by whether commercial use of forest resources is allowed or not. We cannot detect an effect, on average, of CFM compared to no CFM, even when we...... restricted the sample to only where information suggests effective CFM implementation on the ground. Likewise, we cannot detect an effect of CFM where commercial use of natural resources is allowed. However, we can detect a reduction in deforestation in CFM that does not permit commercial uses, compared...

  20. An integrative approach to research of deforestation under concession management

    International Nuclear Information System (INIS)

    Hepner, G.F.; Walker, R.T.

    1991-01-01

    A methodological approach integrating questionnaire research of tropical foresters with analyses of the actual patterns of concession logging and land use activities portrayed on various types of satellite imagery is discussed. The imagery analysis is necessary to: document the location place and magnitude of forest utilization and change in concession areas; confirm that responses vis-a-vis deforestation in the questionnaire correspond to observable behaviors as evidenced by the actual patterns of logging activities; and document the postharvest land utilization and conversion to other land uses. It is argued that this approach will link the process and pattern of logging activities to reveal the main factors leading to deforestation under the concession system of management. 20 refs

  1. Pervasive Rise of Small-scale Deforestation in Amazonia.

    Science.gov (United States)

    Kalamandeen, Michelle; Gloor, Emanuel; Mitchard, Edward; Quincey, Duncan; Ziv, Guy; Spracklen, Dominick; Spracklen, Benedict; Adami, Marcos; Aragão, Luiz E O C; Galbraith, David

    2018-01-25

    Understanding forest loss patterns in Amazonia, the Earth's largest rainforest region, is critical for effective forest conservation and management. Following the most detailed analysis to date, spanning the entire Amazon and extending over a 14-year period (2001-2014), we reveal significant shifts in deforestation dynamics of Amazonian forests. Firstly, hotspots of Amazonian forest loss are moving away from the southern Brazilian Amazon to Peru and Bolivia. Secondly, while the number of new large forest clearings (>50 ha) has declined significantly over time (46%), the number of new small clearings (<1 ha) increased by 34% between 2001-2007 and 2008-2014. Thirdly, we find that small-scale low-density forest loss expanded markedly in geographical extent during 2008-2014. This shift presents an important and alarming new challenge for forest conservation, despite reductions in overall deforestation rates.

  2. Thermodynamic contributions of deforestation to global climate change

    International Nuclear Information System (INIS)

    Bell, A.

    2009-01-01

    This paper examines a portion of the thermodynamics of global warming. The calculations use the endothermic photosynthesis reaction and yearly measures of CO 2 uptake to determine the amount of energy that is absorbed by forest cover each year. The energy absorption value of forest coverage determines the yearly cost of deforestation. The calculations reveal that 3.92 * 10 15 kJ less solar energy is absorbed by global forest coverage because of deforestation each year. The energy is enough to warm the atmosphere by 0.00008 °C / year. By comparison the same amount of energy represents 0.001 % of the atmospheric energy gains between 1995 and 2003. The results of this paper raise questions about the nature of global warming and the possibility that thermodynamic contributions to global climate change are significant. (author)

  3. Narco-scapes: Cocaine Trafficking and Deforestation in Central America

    Science.gov (United States)

    Wrathall, D.; McSweeney, K.; Nielsen, E.; Pearson, Z.

    2015-12-01

    Narcotics trafficking and drug interdiction efforts have resulted in a well-documented social crisis in Central America, but more recently, has been tightly linked to environmental catastrophe and accelerated deforestation in transit zones. This talk will outline synthesis findings from multi-country, interdisciplinary research on cocaine trafficking as an engine of forest loss in Central America. During the "narco-boom" of the mid-2000s, we observed a geographical evolution of cocaine flows into Central America, and the transit of cocaine through new spaces, accompanied by specific patterns of social and environmental change in new nodes of transit. We coarsely estimated that the total amount of cocaine flowing through Central America increased from 70 metric tons in 2000 to 350 mt in 2012, implying that total cocaine trafficking revenue in the region increased from roughly 600 million dollars to 3.5 billion in that time. We describe the mechanism by which these locally captured cocaine rents resulted in a rapid conversion of forest into cattle pasture. Narco-traffickers are drawn to invest in the cattle economy, as a direct means of laundering and formalizing proceeds. Ranching is a land intensive activity, and new narco-enriched cattle pastures can be isolated from other forms forest loss solely by their spatial and temporal change characteristics. A preliminary forest change study in Honduras, for example, indicated that areas of accelerated deforestation were in close proximity to known narcotics trafficking routes and were thirteen times more extensive on average than other forest clearings. Deforested areas commonly appeared in isolated and biodiverse lowland tropical rainforest regions that often intersected with protected areas and indigenous reserves. We find that narco-deforestation is a readily identifiable signal of the extent and health of the cocaine economy. This talk will feature summaries of both ethnographic and land cover change we have observed

  4. Commodity production in Brazil: Combining zero deforestation and zero illegality

    Directory of Open Access Journals (Sweden)

    Andrea A. Azevedo

    2015-12-01

    Full Text Available Abstract This article documents the degree of noncompliance of soy producers in the Amazon portion of Mato Grosso with Brazil’s Forest Code and addresses the importance of market demands in shifting agricultural production and land occupation towards zero deforestation. By using a sample composed of the boundaries of 9,113 properties (72.5% of soy in the region we assessed: a compliance with Forest Code legal reserve requirements (a percentage of the property must have its original vegetation kept undisturbed; and compared it to b compliance with the zero deforestation criterion of the soy moratorium. We found that 82% of the sampled properties have not deforested since 2008, thus complying with the soy moratorium. However, approximately 65% out of these 82% are noncompliant with Forest Code legal reserve requirements. This situation is even worse in the Cerrado portion of Mato Grosso. Even though the soy moratorium criterion is only applicable to the Amazon biome, the Forest Code is applicable nationwide. Despite legal reserve requirements being much lower (35% of the property in the Cerrado, as opposed to 80% in the Amazon, almost 70% of sampled properties were noncompliant with the Forest Code. From this analysis we concluded that while there was a role for consumer-driven market demand for zero deforestation soy production, there is still a need (and opportunity to implement purchasing and financing criteria to promote compliance with Forest Code requirements in regards to legal reserve deficits. We believe that if this succeeds, it will drive a process of restoration and compensation of Forest Code deficits, strengthening public policy as well as reducing economic distortions between those who have and have not complied with Forest Code requirements.

  5. Status of the undisturbed mangroves at Brunei Bay, East Malaysia: a preliminary assessment based on remote sensing and ground-truth observations

    Directory of Open Access Journals (Sweden)

    Behara Satyanarayana

    2018-02-01

    Full Text Available Brunei Bay, which receives freshwater discharge from four major rivers, namely Limbang, Sundar, Weston and Menumbok, hosts a luxuriant mangrove cover in East Malaysia. However, this relatively undisturbed mangrove forest has been less scientifically explored, especially in terms of vegetation structure, ecosystem services and functioning, and land-use/cover changes. In the present study, mangrove areal extent together with species composition and distribution at the four notified estuaries was evaluated through remote sensing (Advanced Land Observation Satellite—ALOS and ground-truth (Point-Centred Quarter Method—PCQM observations. As of 2010, the total mangrove cover was found to be ca. 35,183.74 ha, of which Weston and Menumbok occupied more than two-folds (58%, followed by Sundar (27% and Limbang (15%. The medium resolution ALOS data were efficient for mapping dominant mangrove species such as Nypa fruticans, Rhizophora apiculata, Sonneratia caseolaris, S. alba and Xylocarpus granatum in the vicinity (accuracy: 80%. The PCQM estimates found a higher basal area at Limbang and Menumbok—suggestive of more mature vegetation, compared to Sundar and Weston. Mangrove stand structural complexity (derived from the complexity index was also high in the order of Limbang > Menumbok > Sundar > Weston and supporting the perspective of less/undisturbed vegetation at two former locations. Both remote sensing and ground-truth observations have complementarily represented the distribution of Sonneratia spp. as pioneer vegetation at shallow river mouths, N. fruticans in the areas of strong freshwater discharge, R. apiculata in the areas of strong neritic incursion and X. granatum at interior/elevated grounds. The results from this study would be able to serve as strong baseline data for future mangrove investigations at Brunei Bay, including for monitoring and management purposes locally at present.

  6. Status of the undisturbed mangroves at Brunei Bay, East Malaysia: a preliminary assessment based on remote sensing and ground-truth observations

    Science.gov (United States)

    Izzaty Horsali, Nurul Amira; Mat Zauki, Nurul Ashikin; Otero, Viviana; Nadzri, Muhammad Izuan; Ibrahim, Sulong; Husain, Mohd-Lokman; Dahdouh-Guebas, Farid

    2018-01-01

    Brunei Bay, which receives freshwater discharge from four major rivers, namely Limbang, Sundar, Weston and Menumbok, hosts a luxuriant mangrove cover in East Malaysia. However, this relatively undisturbed mangrove forest has been less scientifically explored, especially in terms of vegetation structure, ecosystem services and functioning, and land-use/cover changes. In the present study, mangrove areal extent together with species composition and distribution at the four notified estuaries was evaluated through remote sensing (Advanced Land Observation Satellite—ALOS) and ground-truth (Point-Centred Quarter Method—PCQM) observations. As of 2010, the total mangrove cover was found to be ca. 35,183.74 ha, of which Weston and Menumbok occupied more than two-folds (58%), followed by Sundar (27%) and Limbang (15%). The medium resolution ALOS data were efficient for mapping dominant mangrove species such as Nypa fruticans, Rhizophora apiculata, Sonneratia caseolaris, S. alba and Xylocarpus granatum in the vicinity (accuracy: 80%). The PCQM estimates found a higher basal area at Limbang and Menumbok—suggestive of more mature vegetation, compared to Sundar and Weston. Mangrove stand structural complexity (derived from the complexity index) was also high in the order of Limbang > Menumbok > Sundar > Weston and supporting the perspective of less/undisturbed vegetation at two former locations. Both remote sensing and ground-truth observations have complementarily represented the distribution of Sonneratia spp. as pioneer vegetation at shallow river mouths, N. fruticans in the areas of strong freshwater discharge, R. apiculata in the areas of strong neritic incursion and X. granatum at interior/elevated grounds. The results from this study would be able to serve as strong baseline data for future mangrove investigations at Brunei Bay, including for monitoring and management purposes locally at present. PMID:29479500

  7. Status of the undisturbed mangroves at Brunei Bay, East Malaysia: a preliminary assessment based on remote sensing and ground-truth observations.

    Science.gov (United States)

    Satyanarayana, Behara; M Muslim, Aidy; Izzaty Horsali, Nurul Amira; Mat Zauki, Nurul Ashikin; Otero, Viviana; Nadzri, Muhammad Izuan; Ibrahim, Sulong; Husain, Mohd-Lokman; Dahdouh-Guebas, Farid

    2018-01-01

    Brunei Bay, which receives freshwater discharge from four major rivers, namely Limbang, Sundar, Weston and Menumbok, hosts a luxuriant mangrove cover in East Malaysia. However, this relatively undisturbed mangrove forest has been less scientifically explored, especially in terms of vegetation structure, ecosystem services and functioning, and land-use/cover changes. In the present study, mangrove areal extent together with species composition and distribution at the four notified estuaries was evaluated through remote sensing (Advanced Land Observation Satellite-ALOS) and ground-truth (Point-Centred Quarter Method-PCQM) observations. As of 2010, the total mangrove cover was found to be ca. 35,183.74 ha, of which Weston and Menumbok occupied more than two-folds (58%), followed by Sundar (27%) and Limbang (15%). The medium resolution ALOS data were efficient for mapping dominant mangrove species such as Nypa fruticans , Rhizophora apiculata , Sonneratia caseolaris , S. alba and Xylocarpus granatum in the vicinity (accuracy: 80%). The PCQM estimates found a higher basal area at Limbang and Menumbok-suggestive of more mature vegetation, compared to Sundar and Weston. Mangrove stand structural complexity (derived from the complexity index) was also high in the order of Limbang > Menumbok > Sundar > Weston and supporting the perspective of less/undisturbed vegetation at two former locations. Both remote sensing and ground-truth observations have complementarily represented the distribution of Sonneratia spp. as pioneer vegetation at shallow river mouths, N. fruticans in the areas of strong freshwater discharge, R. apiculata in the areas of strong neritic incursion and X. granatum at interior/elevated grounds. The results from this study would be able to serve as strong baseline data for future mangrove investigations at Brunei Bay, including for monitoring and management purposes locally at present.

  8. Assessing impact of climate change on Mundra mangrove forest ecosystem, Gulf of Kutch, western coast of India: a synergistic evaluation using remote sensing

    Science.gov (United States)

    Srivastava, Prashant K.; Mehta, Abhinav; Gupta, Manika; Singh, Sudhir Kumar; Islam, Tanvir

    2015-05-01

    Mangrove cover changes have globally raised the apprehensions as the changes influence the coastal climate as well as the marine ecosystem services. The main goals of this research are focused on the monitoring of land cover and mangrove spatial changes particularly for the Mundra forest in the western coast of Gujarat state, India, which is famous for its unique mangrove bio-diversity. The multi-temporal Indian Remote Sensing (IRS) Linear Imaging Self Scanning (LISS)-II (IRS-1B) and III (IRS P6/RESOURCESAT-1) images captured in the year 1994 and 2010 were utilized for the spatio-temporal analysis of the area. The land cover and mangrove density was estimated by a unique hybrid classification which consists of K means unsupervised following maximum likelihood classification (MLC) supervised classification-based approach. The vegetation and non-vegetation layers has been extracted and separated by unsupervised classification technique while the training-based MLC was applied on the separated vegetation and non-vegetation classes to classify them into 11 land use/land cover classes. The climatic variables of the area involves wind, temperature, dew point, precipitation, and mean sea level investigated for the period of 17 years over the site. To understand the driving factors, the anthropogenic variables were also taken into account such as historical population datasets. The overall analysis indicates a significant change in the frequency and magnitude of sea-level rise from 1994 to 2010. The analysis of the meteorological variables indicates a high pressure and changes in mangrove density during the 17 years of time, which reveals that if appropriate actions are not initiated soon, the Mundra mangroves might become the victims of climate change-induced habitat loss. After analyzing all the factors, some recommendations and suggestions are provided for effective mangrove conservation and resilience, which could be used by forest official to protect this precious

  9. PAD TECHNIQUE ON DEFORESTATION SITUATION ON PETROPOLIS’ METROPOLITAN AREA - RJ

    Directory of Open Access Journals (Sweden)

    Amanda Santos de Alencar

    2015-12-01

    Full Text Available With the rising and intensification of production’s activities, as industries, the deforestation taxes show to be on an alarming level. It is wide spread known the consequences that deforestation might cause in metropolitan areas. In order to evalue the consequences of this growing phenomenon, is possible to use a role of ambiental impacts evaluations techniques. One of them is the Preliminary Analysis of Danger (PAD, which is based on qualitative and statistics analysis and might be used in association with other ambiental impacts evaluations techniques. It’s goal is to analyze dangers in potential, it’s causes and consequences, in which is also done an associated risk analysis, which the last is the association between the classifications of frequency and severity, and, in the end, it gives suggestions of measures to avoid these dangers (undesired events. In this study, six dangers have been identified, in which none of them present despicable or low risk (0%, 16% present medium or high risk and 66% present critic risk. These datas point out that the deforestation situation might cause dangers with great consequences to Petropolis’ metropolitan area, just as floodings and earth slidings, which higthlights the urgency of management of the area. DOI: http://dx.doi.org/10.12957/sustinere.2015.20003

  10. The deforestation of rural areas in the Lower Congo Province.

    Science.gov (United States)

    Iloweka, Ernest Manganda

    2004-12-01

    The Lower Congo is one of eleven provinces in the Democratic Republic of Congo, and is located southwest of Kinshasa Town Province. It has an area of approximately 53.947 km2 with a population of 1,504,361 at an estimated 237 persons per km2. The Province comprises five districts, including Lukaya and Cataracts where rural poverty is severe and the population struggle to make a living through agriculture and woodcutting. These activities result in excessive resource exploitation. The high demand for foodstuffs and the high consumption of wood (for energy, construction and export) in Kinshasa, the capital city of the Democratic Republic of Congo and the expanding towns of Matadi and Boma in the Lower Congo Province, are speeding the deforestation rate and unbalancing forest ecosystems. In addition there is the stress resulting from reduced josher (the rest period for agriculture ground), plus climate change and erosion. The phenomena that that we need to address in these two districts include deforestation, reduced josher, excessive agriculture, erosion, burning and climate change which taken together largely explain the current soil degradation. These areas are marked by excessive post deforestation savannah formation and extended areas of sandy soil, distributed throughout grass and shrub savannahs. This desertification, which is rampant in Lukaya and Cataracts, risks imprisoning the rural population in a vicious cycle of poverty if adequate solutions are not found.

  11. Deforestation and hunting effects on wildlife across Amazonian indigenous lands

    Directory of Open Access Journals (Sweden)

    Pedro de Araujo Lima. Constantino

    2016-06-01

    Full Text Available Deforestation and hunting are main wildlife threats in Amazonia, affecting the ecosystem and dwellers that rely on game meat. Data from 9109 hunted animals from 35 villages of 8 Pano indigenous lands in Brazilian Amazonia were used to build 4 indicators of wildlife status based on ecological models and to analyze the effects of deforestation, hunting pressure, and socioeconomic aspects on wildlife variation. Although variation in wildlife status indicated depletion in certain locations, hunters from most villages continued to hunt their preferred game after decades of intensive hunting. Indigenous hunting resulted in local depletion of species because of the dispersal of animals away from the source of hunting. This local effect can be explained by the permanent hunting of wildlife in the region, the behavior of Pano hunters, and the design and scale of this study analysis. Regionally, however, deforestation and associated factors are the cause of reduced population density and hunting success, extirpating sensitive species. Roads exacerbated hunting effects through disturbance, encroachment, and provision of access to livestock meat at markets. To avoid local depletion, indigenous people must review their subsistence hunting practices, whereas to achieve regional wildlife conservation and to maintain indigenous societies in Amazonia, wildlife habitat loss should be limited.

  12. Impact of deforestation on biomass burning in the tropics

    International Nuclear Information System (INIS)

    Hao, W.M.; Liu, M.H.; Ward, D.E.

    1994-01-01

    Fires are widely used for various land use practices in tropical countries. Large amounts of trace gases and aerosol particles are produced during the fires. It is important to assess the potential impact of these gases and particulate matter on the chemistry of the atmosphere and global climate. One of the largest uncertainties in quantifying the effects is the lack of information on the source strengths. The authors quantify the amount of biomass burned due to deforestation in each tropical country on basis of the deforestation rate, the above ground density, and the fraction of above ground biomass burned. Approximately 725 Tg of biomass were burned in 1980 and 984 Tg were burned in 1990. The 36% increase took place mostly in Latin America and tropical Asia. The largest source was Brazil, contributing about 29% of the total biomass burned in the tropics. The second largest source was Indonesia accounting for 10%, followed by Zaire accounting for about 8%. The burning of biomass due to increased deforestation has resulted in an additional 33 Tg CO and 2.5 Tg CH 4 emitted annually to the atmosphere from 1980 to 1990

  13. Tropical deforestation: balancing regional development demands and global environmental concerns

    Energy Technology Data Exchange (ETDEWEB)

    Wood, A B [US Dept. of State, Washington, DC (USA)

    1990-01-01

    Over half of the world's tropical closed forests, which contain the greatest biodiversity, are found in just three countries: Brazil, Indonesia, and Zaire. Accelerated conversion of tropical forests is occurring because of several interlocking socio-economic and political factors: inequitable land distribution, entrenched rural poverty, and rapidly growing populations which push landless and near-landless peasants on to forest lands that are often infertile. If rates instead of absolute numbers are used to measure the severity of deforestation, Nigeria, Argentina, India, Thailand, Myanmar (Burma), Ecquador, and above all Ivory Coast stand out as countries facing an immediate deforestation crisis. Local management of forest resources, however, can be very contentious and complicated, with overlapping government agencies, competing economic interests, and ambiguous regulations. Without capital investment and entrepreneurial initiatives, residents of forest regions may have no alternative but to farm increasingly infertile soils. Non-governmental organizations, such as the World Wildlife Fund are playing leading roles in innovative debt-for-nature swaps and other forest conservation efforts. International development agencies, such as the World Bank, may play the leading role in conservation and reforestation efforts through their financial assistance programmes. The media, as a global information network, has become a powerful influence on the debate over deforestation. The Third World, bearing an increasingly heavy burden of payments to lending institutions that in 1988 surpassed 50 billion US dollars, will make a strong case that it cannot afford widespread forest conservation.

  14. REDD+: Quick Assessment of Deforestation Risk Based on Available Data

    Directory of Open Access Journals (Sweden)

    Giulio Di Lallo

    2017-01-01

    Full Text Available The evaluation of the future dynamics of deforestation is essential to creating the basis for the effective implementation of REDD+ (Reducing Emissions from Deforestation and forest Degradation initiatives. Such evaluation is often a challenging task, especially for countries that have to cope with a critical lack of data and capacities, higher uncertainties, and competing interests. We present a new modeling approach that makes use of available and easily accessible data sources to predict the spatial location of future deforestation. This approach is based on the Random Forest algorithm, which is a machine learning technique that enables evidence-based, data-driven decisions and is therefore often used in decision-making processes. Our objective is to provide a straightforward modeling approach that, without requiring cost-intensive assessments, can be applied in the early stages of REDD+, for a stepwise implementation approach of REDD+ projects in regions with limited availability of data, capital, technical infrastructure, or human capacities. The presented model focuses on building business-as-usual scenarios to identify and rank potentially suitable areas for REDD+ interventions. For validation purposes we applied the model to data from Nicaragua.

  15. Sustainable Deforestation Evaluation Model and System Dynamics Analysis

    Science.gov (United States)

    Feng, Huirong; Lim, C. W.; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi

    2014-01-01

    The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony. PMID:25254225

  16. Sustainable deforestation evaluation model and system dynamics analysis.

    Science.gov (United States)

    Feng, Huirong; Lim, C W; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi

    2014-01-01

    The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony.

  17. Changing drivers of deforestation and new opportunities for conservation.

    Science.gov (United States)

    Rudel, Thomas K; Defries, Ruth; Asner, Gregory P; Laurance, William F

    2009-12-01

    Over the past 50 years, human agents of deforestation have changed in ways that have potentially important implications for conservation efforts. We characterized these changes through a meta-analysis of case studies of land-cover change in the tropics. From the 1960s to the 1980s, small-scale farmers, with state assistance, deforested large areas of tropical forest in Southeast Asia and Latin America. As globalization and urbanization increased during the 1980s, the agents of deforestation changed in two important parts of the tropical biome, the lowland rainforests in Brazil and Indonesia. Well-capitalized ranchers, farmers, and loggers producing for consumers in distant markets became more prominent in these places and this globalization weakened the historically strong relationship between local population growth and forest cover. At the same time, forests have begun to regrow in some tropical uplands. These changing circumstances, we believe, suggest two new and differing strategies for biodiversity conservation in the tropics, one focused on conserving uplands and the other on promoting environmental stewardship in lowlands and other areas conducive to industrial agriculture.

  18. Sustainable Deforestation Evaluation Model and System Dynamics Analysis

    Directory of Open Access Journals (Sweden)

    Huirong Feng

    2014-01-01

    Full Text Available The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony.

  19. Food sources for the mangrove tree crab aratus pisonii: a carbon isotopic study

    International Nuclear Information System (INIS)

    Lacerda, L.D.; Silva, C.A.R.; Rezende, C.E.; Martinelli, L.A.

    1991-01-01

    Muscle tissues from the mangrove tree crab Aratus pisonii was analysed for carbon isotopic composition, in order to trace its major food sources. Potential food sources: mangrove leaves epi phytic green algae, mangrove sediments and open water and mangrove suspended matter; were also analysed. The results show that A. pisonii is basically omnivorous, with major food sources from marine origin. However, mangrove carbon can contribute with 16% to 42% in the crab's diet. (author)

  20. Ecosystem Services and Disservices of Mangrove Forests: Insights from Historical Colonial Observations

    OpenAIRE

    Daniel A. Friess

    2016-01-01

    Ecosystem services are now strongly applied to mangrove forests, though they are not a new way of viewing mangrove-people interactions; the benefits provided by such habitats, and the negative interactions (ecosystem disservices) between mangroves and people have guided perceptions of mangroves for centuries. This study quantified the ecosystem services and disservices of mangroves as written by colonial explorers from 1823–1883 through a literature survey of 96 expedition reports and studies...